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Abstract
Linear programming (LP) is a fundamental problem with rich theory and wide applications. A
ubiquitous technique in LP is scaling, where the input instance is transformed in some way to make
its solution easier. Dadush et al. [STOC ’20] have recently devised an algorithm which scales the
columns of the constraint matrix of a linear program in a way that aims to minimize the circuit
imbalance measure, a matrix condition number of growing theoretical interest. They show that this
rescaling achieves favorable theoretical guarantees for certain LP algorithms.

We follow up on their work in an experimental manner. First, we have implemented their
algorithm, overcoming several engineering obstacles. Next, we have used our implementation to
obtain a rescaling of 142 publicly available instances. Finally, we have performed experiments
evaluating the effects of the obtained rescalings on the runtime of real-world LP solvers, and we
have evaluated their quality with regard to the circuit imbalance measure.
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1 Introduction

Linear programming (LP) is a core topic in theoretical computer science and optimization
with many applications in practice. One of the possible approaches to improve LP algorithms
is the use of preconditiong [7] or scaling [19, Section 7.2]. Dadush et al. [9] have shown that
the complexity of the LP interior-point method of Vavasis and Ye [23] can be bounded in
terms of a certain condition number κ of the constraint matrix A. This condition number
can be changed by scaling individual columns of A by positive real values, and they present
an algorithm which finds a positive diagonal matrix D such that the κ of the rescaled matrix
approximates the minimum achievable value.

We follow up on their work by exploring its applicability in practice and describing
the effects of the condition number on the performance of practical LP solvers, including
ones not based on interior-point methods. The theoretical results of Dadush et al. [9] only
directly apply to the particular interior-point method of Vavasis and Ye [23], so why do
we test whether it speeds up other methods? We acknowledge this apparent “irrelevance”;
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18:2 Experimental Analysis of LP Scaling Methods

our motivation is simply that the rescaling of Dadush et al. [9] is a significant theoretical
contribution, and it is not a priori obvious whether and how it would affect the performance
of real-world solvers.

1.1 The Circuit Imbalance Measure
The matrix condition numbers κ and κ∗ as defined by Dadush et al. [9] are center to our
work. Consider an LP min{c⊤x | Ax = b, x ≥ 0}. A circuit of the vector matroid of the
columns of A is an inclusion-wise minimal set of indices of linearly dependent columns. For
every circuit C of the vector matroid of A, we can consider its elementary vector, which is
an element of the kernel of A that has C as its support. The circuit imbalance measure κ of
matrix A is the maximum ratio of absolute values of nonzero elements over all elementary
vectors of the vector matroid of A.

Scaling the columns of A does not change the set of circuits C. However, the elementary
vectors do change and so κ can also change. Viewing κ as a measure of how ill-conditioned
the matrix A is, we ask for the best value of κ obtainable by choosing a suitable column
scaling. This optimal value is denoted κ∗.

The interest in circuits and their imbalances has been steadily growing. Since circuits
are a generalization of the edge directions of a polytope, bounds on the lengths of circuit
walks have been of much interest [3, 4]. The computational complexity of finding good
circuit steps has also been considered [18, 2, 5]. In the wake of the paper of Dadush et
al. [9], circuit imbalances have been used to devise a fast first-order LP algorithm [8] or prove
stronger bounds on circuit walks [10]. For more, we refer the reader to the excellent survey
of Ekbatani et al. [11].

1.2 Our Contribution
Our first contribution is an implementation of the approximation rescaling algorithm of
Dadush et al. [9]. We have discovered several non-obvious challenges, such as how exactly
sparsity or floating-point arithmetic comes into play. We discuss the possible approaches
and their trade-offs, paving the way for any possible further engineering effort. Secondly,
we used the implementation to obtain an approximate rescaling of many problems in the
benchmark sets Netlib [13] and MIPLIB [14], considering continuous relaxations in the latter
case. Because of the high (even if polynomial) complexity of the algorithm and size of
the mentioned problems there remain problem instances for which the computation of the
rescaling using our implementation is infeasible in realistic timeframes. Third, we used
the LP solvers GLPK1, Gurobi [15], and SCIP [1] to evaluate the impact of the computed
rescalings on the efficiency of the solvers. We have used all available solving methods and
using both exact and floating-point arithmetic where available. Moreover, we discuss how
successful the algorithm is in reducing the circuit imbalance measure κ.

Our main finding can be seen in Figure 1. On the one hand, the rescaling did not
consistently speed-up any one solving method. On the other hand, for a great majority (79%)
of instances, the rescaling sped-up at least one of the solving methods, showing possible
promise for practical applicability. Moreover, the greatest achieved speed-up was by a factor
of 13×. It also needs to be said that the compared solving times are sometimes very small
(see the full data for details), possibly decreasing our confidence in meaningfulness of the
measured time change.

1 Open source software available at http://www.gnu.org/software/glpk/glpk.html

http://www.gnu.org/software/glpk/glpk.html
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Figure 1 The results of the experiment. The rescaling improved the performance of at least one
method for 112 out of the total 142 (79%) tested instances, and the best achieved speed-up was by
a factor of 13×. However, the rescaling did not consistently help any particular method.

Because no single method consistently benefited from the rescaling, this may be regarded
as a negative result. However, we still believe that positive results even for a minority of
instances can point to potential applicability of this scaling approach. Conceivably, future
research could identify features of instances for which this type of scaling helps, and if these
instances could be recognized quickly, solving time improvements could be reaped. A major
obstacle in this direction is the time necessary to compute the rescaling itself, which for all
considered instances was vastly longer than the time it takes to solve the instance in the first
place. However, our goal here was purely exploratory.

Paper Organization
This paper is based on the thesis [17], which contains many more details and helpful
illustrations and examples.

2 Preliminaries

2.0.1 Notation
R denotes the set of real numbers, and N the set of natural numbers, including zero, and
[n] denotes the set {1, 2, . . . , n}. Matrices are written as A ∈ Rm×n and vectors as x ∈ Rn.
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18:4 Experimental Analysis of LP Scaling Methods

All vectors are regarded as column vectors, the notation x⊤ is used to denote row vectors
when needed. Vector elements are provided with indices and not written in bold font, as in
x = (x1, x2, . . . , xn)⊤. For B ⊆ [n], let AB denote the submatrix of A obtained by selecting
exactly columns with indices in B and similarly let vB denote the subvector of v obtained
by selecting exactly the entries of v with indices in B. Whenever used with the index in
bold font, xi does not denote the i-th coordinate, but it is a vector itself. The notation
Diag(d) means a diagonal matrix with elements of d on the diagonal. When using the ≤ and
similar relations (≥, <, >, =) on vectors, we mean that the relation holds coordinate-wise,
i.e. x ≤ y means that xi ≤ yi for every coordinate i. Sets are denoted with capital letters.
We use the union symbol strictly for the union of sets, e.g., A ∪B. For the set difference of
A and B, we write A \B. If F is arbitrary field, then the coordinate space whose elements
are n-tuples of elements of F is denoted Fn.

2.0.2 Linear Programming
For A ∈ Rm×n, b ∈ Rm and c ∈ Rn, linear programming (LP) in standard form is the
problem min{c⊤x | Ax = b, x ≥ 0, x ∈ Rn}. The standard form is convenient in theoretical
contexts, however, in real-world applications, the following modelling form is common. Let
Aub ∈ Rm1×n, Aeq ∈ Rm2×n, bub ∈ Rm1 , beq ∈ Rm2 , c ∈ Rn and l, u ∈ (R ∪ {−∞,∞})n

such that l ≤ u. Then, a linear program in modelling form is

min {c⊤x | Aubx ≤ bub, Aeqx = beq, l ≤ x ≤ u, x ∈ Rn}

It is not difficult to see that every LP in standard form is already in modelling form.
What is potentially less clear is that also every LP in modelling form can be efficiently
converted to an equivalent LP in standard form (using standard techniques, see, e.g., Gärtner
and Matoušek [12, Section 4.1]), rendering the two forms easily interchangeable.

2.0.3 Solving Scaled Instances
The motivation for scaling comes from the ability to relate the optima of the original and
the scaled instance, as shown here:

▶ Proposition 1. Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn and let D ∈ Rn×n be a diagonal matrix with
positive entries on the diagonal. Let P be the standard-form LP min {c⊤x | Ax = b, x ≥ 0}
and Q the standard-form LP min {c⊤Dx | (AD)x = b, x ≥ 0}. Then x′ is an optimum of
P if and only if D−1x′ is an optimum of Q.

Proof. Let x′ be an optimum of P . Because D has positive diagonal entries, D−1 also has
positive diagonal entries, so D−1x′ ≥ 0 holds. The equality constraint is also satisfied, which
follows from (AD)(D−1x′) = A(DD−1)x′ = Ax′ = b. This proves that D−1x′ is feasible for
Q. What is left to show is the optimality of D−1x′ for Q. For contradiction consider that Q

has a better solution x′′ such that c⊤Dx′′ < c⊤D(D−1x′). Then, Dx′′ is feasible for P and
it holds that c⊤(Dx′′) < c⊤x′, contradicting that x′ is an optimum of P . The proof of the
opposite direction is symmetric. ◀

2.1 Circuit Imbalance Measures
We refer to the thesis [17, Section 2.3] or the book of Oxley [20] for the basics of matroid
theory. In Section 1.1, we have already defined the notions of a circuit, its elementary vector,
and the circuit imbalance measure κ. For a circuit C, let gC denote its elementary vector,
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and for a matroid M , let C(M) denote the set of its circuits. The pairwise circuit imbalance
measure for coordinate pair i, j ∈ [n], i ̸= j, is the value

κA
ij(C) :=

∣∣gC
j

∣∣∣∣gC
i

∣∣ or 0 if gC
i = 0, κA

ij := max{κA
ij(C) | C ∈ C(A), i, j ∈ C}.

By convention we set κij = 0 if there is no circuit supporting i and j.
Define the circuit imbalance measure to be κA := max{κA

ij | i, j ∈ [n]}, and let κA(C) :=
max{κA

ij(C) | i, j ∈ C}, which satisfies κA = max{κA(C) | C ∈ C(M(A))}.
Let D be the set of n× n real diagonal matrices with positive entries on the diagonal.

The optimal circuit imbalance measure for A is the number κ∗
A := inf{κAD | D ∈ D}. If clear

from context, we will omit the A subscript or superscript from κ and its variants. It is not a
priori clear that the infimum is indeed attained, but we will later see that it in fact is.

2.2 Algorithm for Optimizing the Circuit Imbalance Measure
Here we give an overview of the scaling algorithm of Dadush et al. [9] that is implemented
and used in our experiments. The purpose of the algorithm is to find a diagonal matrix D

such that κAD is not much larger that κ∗
A.

First, it is not difficult to see that we can assume the vector matroid of A is connected,
otherwise we can process its components separately.

Next, it follows from Tuncel [22] that approximating κ up to a factor of 2O(m) is NP-hard.
The algorithm provided in the following text finds a κ̂A satisfying

κ̂A ≤ κA ≤ n(κ∗
A)2

κ̂A

in polynomial time. Note that this is not a contradiction to the NP-hardness claim, because
the approximation ratio depends on κ∗

A.
The basic idea of the algorithm is as follows. One first shows that if we had the values

κA
ij , we could efficiently compute the value of κ. The values κij are of course still NP-hard to

compute, but it is possible to efficiently find certain proxies and use these instead to obtain
a good enough approximation κ̂. The following theorem states what kind of proxies we are
looking for, and what approximation do they yield; the theorem is stated in [9] differently
due to the different focus of their work compared to ours, but its substance is the same:

▶ Theorem 2 ([9, Theorem 2.5]). For every i, j ∈ [n] let κ̂ij satisfy

κ̂ij ≤ κij ≤ (κ∗)2
κ̂ij . (1)

Define κ̂ := max{κ̂ij | i, j ∈ [n]}. Then it holds that κ̂ ≤ κ ≤ n(κ∗)2
κ̂.

From now on, we will use κ̂ij for any value satisfying (1). While possibly many values satisfy
this, the same value is always meant when κ̂ij occurs multiple times. Now we are left with
the task of finding the pairwise approximations κ̂ij . The solution is actually simple: find any
circuit that contains both i and j and estimate κij based on this circuit:

▶ Proposition 3 ([9, Corollary 2.13]). Let i, j ∈ [n] and let C be any circuit such that i, j ∈ C.
Then κij(C) ≤ κij ≤ (κ∗)2

κij(C).

The task of finding such circuit will be the central topic of Section 2.2.1. Computing the
diagonal matrix which witnesses an approximation κ̂∗ of κ∗ is more involved, but can still be
done efficiently [9, Theorem 2.5]; let us reformulate their result in a more algorithmic way:

SEA 2024



18:6 Experimental Analysis of LP Scaling Methods

▶ Definition 4 (Circuit ratio digraph). The circuit ratio digraph is a directed graph CG •
•

:=
([n], E), where E := {(i, j) ∈ [n]2 | i ̸= j, κij > 0}.

▶ Remark 5. From Proposition 3 it follows that κij > 0 if and only if κ̂ij > 0. The edge set
above can therefore be equivalently defined as E := {(i, j) ∈ [n]2 | i ̸= j, κ̂ij > 0}.

▶ Theorem 6 ([9, Theorem 2.5]). Consider the optimization program

min t

κ̂ijdj/di ≤ t ∀(i, j) ∈ E(CG •
•
) (2)

d > 0.

Let d̂ be the optimal value of d for (2) and D := Diag(d̂). Then κAD ≤ (κ∗
A)3.

▶ Remark 7. Note that (2) can be made into an LP by taking the logarithms of all variables.
In the following, let d̂ always denote the optimal value of d for (2). This optimization

problem can be solved in polynomial time using LP techniques. There also exists an equivalent
combinatorial description for the rescaling, which will yield additional insights.

▶ Theorem 8 ([9, Theorem 2.5]). Consider a weighted directed graph G defined by V (G) := [n],
E(G) := {(i, j) ∈ [n]2 | i ̸= j, κ̂ij > 0}, and wG(e) := κ̂ij for all e ∈ E(G). Define t̂ as the
maximum geometric mean of a cycle in G, that is

t̂ := max


(∑

e∈C

wG(e)
) 1

|C|
∣∣∣∣∣∣C is a cycle in G

 .

Let H be a weighted directed graph defined by V (H) := V (G) ∪ {r},

E(H) := E(G) ∪ {(r, i) | i ∈ [n]}, and wH(e) :=
{

log t̂− log κ̂ij for e ∈ E(H) s.t. r ̸∈ e,

0 for e ∈ E(H) s.t. r ∈ e.

Let si denote the length of the shortest path from r to i in H, and define di := exp(si)
for all i ∈ [n]. Then, it holds that d = d̂.

▶ Remark 9. Note that while H has negative edge weights, it has no negative cycles, because
t̂ is defined as the maximum geometric mean of weights over all cycles in G. The graph H has
the same cycles as G, so for every cycle C of H it must hold that |C| log t̂ ≥

∑
(i,j)∈C log κ̂ij .

Therefore, the Bellman-Ford shortest path algorithm can be used to determine the length of
the shortest path from r to i in H, and, in particular, the values si are well-defined.

2.2.1 Finding Circuits
What remains is to describe how to find circuits Cij that include both i and j. Since we only
consider connected matroids, such circuits always exist. We will now describe the algorithm
from [9, Theorem 2.14] to find these circuits.

Suppose we have a basis B of M(A). We start by computing the set of all fundamental
circuits FB with respect to B. If there is a circuit C ∈ FB with i, j ∈ FB, we set Cij := C

and we are done with this pair i, j.
Otherwise, we construct an undirected graph G with V (G) = B and edges between

elements that are contained in a common fundamental circuit. Because M(A) is connected,
so is G. First assume i, j ̸∈ B, and recall that, for an element e ̸∈ B, C(B, e) denotes the
fundamental circuit of e with respect to B. We find a shortest path in G between any vertex
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in the set C(B, i)\{i} and any vertex in the set C(B, j)\{j}. This can be represented by the
sequences V := {v1, v2, . . . , vℓ+1} ⊆ [n] \B, v1 = i, vℓ+1 = j, and U = {u1, u2, . . . , uℓ} ⊆ B.
The set V corresponds to vertices of G and the set U to edges of G. More precisely, we set
vi := b for some b ∈ B such that the i-th edge on the path connects vertices in C(B, b).

It is shown in [9] that the set S := (B \ U) ∪ V contains a unique circuit C that contains
all vt’s, including i and j.

If {i, j}∩B ≠ ∅, assume w.l.o.g. that i ∈ B. Then, for any choice of V = {v1, v2, . . . , vℓ+1}
and U = {u1, u2, . . . , uℓ} as before such that i ∈ C(B, v1) and i ̸∈ C(B, vt) for t > 1, the
unique circuit in (B \U)∪V also contains i. If both i, j ∈ B, we proceed in a similar manner
with j. For more details see the original algorithm description [9].

2.2.2 Finding a unique circuit in a set S

It remains to show how to find the unique circuit in S together with its elementary vector.
There are standard tools of linear algebra that can be utilized for this task, but [9] also
provides an alternative solution. We provide both of these solutions here because comparing
their efficiency and suitability in practical settings will be an important topic of Section 3.2.

The first method is to solve the linear system ASx = 0 using any generic linear equation
solver, and pronounce the result to be the unique circuit contained in S. This approach is
justified by the next Lemma:

▶ Lemma 10. Let A ∈ Rn×m and let S ⊆ [n] such that M(AS) contains a unique circuit C.
Then, Ker(AS) has dimension 1. Let the basic vector of Ker(AS) (unique up to scaling) be v.
Then, v is an elementary vector for C and C = supp(v).

Proof. We will only prove that dim(Ker(AS)) = 1, the rest of the lemma statement follows
in a straightforward way. Let C be a circuit of M(AS) and let v1 be its elementary vector.
For contradiction, suppose that dim(Ker(AS)) ≥ 2. That implies that there exists another
vector v2 ∈ Ker(AS) that is linearly independent from v1.

Let i be any element such that i ∈ C. If (v2)i = 0, define v3 := v2. Otherwise, let
v3 := v2 −

(v1)i

(v2)i
v1. In both cases, i ̸∈ supp(v3). Because v3 ∈ Ker(AS), supp(v3) is a

dependent set in M(AS). Let C ′ be any inclusion-wise minimal dependent subset of supp(v3).
Because i ∈ C and i ̸∈ C ′, it must hold that C ̸= C ′, which is a contradiction with the

claim that M(AS) has exactly one circuit. ◀

The second approach is advantageous if the task is solved repeatedly for the same matrix
but different subsets S, which is exactly our situation. It requires converting the matrix A

into the row-reduced echelon form (RREF) A′ = (Im|H), but this step is independent of the
choice of S and only has to be done once in the course of the algorithm:

▶ Proposition 11 ([9, Inside proof of Theorem 2.14]). Define an elementary vector g for
a circuit C using the following procedure: Set gv1 := 1. Using Gauss-Jordan elimination,
convert A to the form A′ = (Im|H). Now for each t ∈ [ℓ], the row of A′

S corresponding
to ut contains only two nonzero entries: A′

utvt
and A′

utvt+1
. Propagate the value gv1 by

assigning gv2 , gv3 , . . . , gvℓ+1 . Uniquely extend g to the indices in B ∩ S for any basis B so
that g ∈ Ker(A). Then, g is an elementary vector for C and it holds that C = supp(g).

SEA 2024



18:8 Experimental Analysis of LP Scaling Methods

2.2.3 LP Dataset

To evaluate algorithms related to LP, we will use two publicly available collections of instances.
The first and older one is Netlib [13]. In order to widen the set of instances considered here,
we also consider the larger and more modern repository MIPLIB [14], which contains mixed
integer programs (MIP). Because this work only directly applies to LPs and not MIPs, we
consider the LP relaxations of MIPLIB instances.

2.2.4 Problem Format

Both Netlib and MIPLIB problems are in MPS format, which is the industry standard for
linear programming problems. Without going into unnecessary detail, let us mention that
MPS is very similar to a sparsely represented modelling LP form. Reading the problem file
into a convenient representation will be discussed later. Most of the considered problems are
very sparse and therefore using a sparse representation is crucial.

3 Algorithm Implementation

We use SageMath [21] for the implementation of the algorithm. SageMath uses Python and
can be used directly from Python code, which gives the advantage of a variety of available
scientific packages. SageMath itself has support for working with both densely and sparsely
represented matrices over both exact and inexact fields, working with graphs, and some
support for working with matroids. These capabilities make SageMath a good fit for our
goal, which is exploratory rather than aiming for practical efficiency.

Despite Python being relatively slow, this is likely not a major bottleneck since a large
portion of the run-time of our implementation is spent inside library functions that have
heavily optimized low-level implementations. Thus, the potential performance gain of
re-implementing the same algorithm in a lower-level language is unlikely to be large.

3.1 Linear Programming Considerations and Challenges

When reading an LP instance represented in the MPS format, we deal with two considerations.
First, how to even read MPS and handle it efficiently? Second, the MPS format is akin
to the modelling LP form representation, but our algorithm assumes the standard form of
LP. A direct solution would be to perform the polynomial conversion from modelling to the
standard form; we point out that we can do a bit better by stopping the conversion earlier.

3.1.1 Reading The Problem Matrix from MPS

Several Python libraries allow reading LPs from the MPS format. The problem with most of
these libraries is that it is not easy to access the problem matrix itself. In order to avoid
writing an MPS parser from scratch, we utilize the open-source scikit-glpk 2 Python
package. This package provides Python bindings for GLPK and allows to read the problem
into modelling form as sparse SciPy matrices and vectors, which can be easily converted to
sparse matrices and vectors native to SageMath.

2 Available from https://github.com/mckib2/scikit-glpk

https://github.com/mckib2/scikit-glpk
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Prior to our work, this package was not able to read all MPS files that are used in Netlib
and MIPLIB. To allow efficient reading all of the problems, we needed to make some changes
to the library, which we contributed back to the original package3.

The first modification of the library was fixing a bug caused by earlier modifications of
the library that rendered the MPS reading and writing capabilities defunct. The second
modification addressed the fact that the MPS reader inside GLPK sometimes internally
represents constraints bounded from both sides, i.e. b1 ≤ a⊤x ≤ b2. As this does not
directly correspond to a constraint in modelling form, the library did not support reading
the problems whose internal GLPK representation contained such a constraint. We have
modified the library to split any such constraint into the two constraints b1 ≤ a⊤x and
b2 ≥ a⊤x. Lastly, we have significantly improved the library performance for working with
sparse matrices. The original implementation used an intermediate dense representation
when combining two matrices into one and only then converted the resulting matrix back
into a sparsely represented one. By using a sparse implementation for the combining step,
we avoid the need for the costly dense conversion.

3.1.2 Solving LP Form Mismatch
The standard procedure to convert an LP in modelling form to an LP in standard form turns
inequality constraints into equality constraints and turns generic bounds into non-negativity
bounds. Here we show that converting the bounds to the form x ≥ 0 is not necessary
and it suffices to arrive at the more general form of box constraints l ≤ x ≤ u for vectors
l, u ∈ (R ∪ {−∞, +∞})n satisfying l ≤ u, since this step does not change the value of κ nor
the value of κ∗. We call an LP {min c⊤x | Ax = b, l ≤ x ≤ u} to be in semi-standard form.
Our main result here is the following:

▶ Theorem 12. Let A be a problem matrix of an LP in semi-standard form and A′ a problem
matrix for the same LP converted to standard form. Then, κA = κA′ and κ∗

A = κ∗
A′ .

We will break down the proof of Theorem 12 into several simpler statements.
The textbook algorithm for converting an LP in semi-standard form to standard form

only uses the following operations:
(O1) Take a variable xi and express it as xi = x+

i − x−
i for new variables x+

i , x−
i ≥ 0. Let,

without loss of generality,

A =


...

A∗i

...

Ā

, x =


xi

...
x̂
...

.

The problem matrix after this operation is then

A′ =


...

...
A∗i −A∗i

...
...

Ā

.

3 https://github.com/mckib2/scikit-glpk/pull/24
https://github.com/mckib2/scikit-glpk/pull/25
https://github.com/mckib2/scikit-glpk/pull/23

SEA 2024

https://github.com/mckib2/scikit-glpk/pull/24
https://github.com/mckib2/scikit-glpk/pull/25
https://github.com/mckib2/scikit-glpk/pull/23


18:10 Experimental Analysis of LP Scaling Methods

(O2) Take a bound ±x ≥ l and turn it into a constraint. If we assume the same layout of x
as in (O1), the problem matrix after this operation is

A′ =


... 0

A∗i

... 0
0 0 ±1 1

Ā

.

We will show that performing neither operation changes the values κ, κ∗. By induction it
then follows that performing the conversion algorithm also does not change these values.

▶ Lemma 13. κA ≥ 1.

Proof. Let us choose any C ∈M(A). For all i, j ∈
(

C
2
)
, both values κA

ij(C) and κA
ji(C) are

considered when determining the value of κA(C). Because κA
ij = 1/κA

ji, it must be the case
that max{κA

ij(C), κA
ji(C)} ≥ 1. Therefore, the maximum over all pairs of i, j is also greater

than 1, meaning that κA(C) ≥ 1 for any circuit C. By taking maximum over all circuits, we
get the lemma statement. ◀

▶ Lemma 14. Performing operation (O1) does not change the value of κ.

Proof. Let A, A′ be problem matrices before and after performing the operation respectively.
Firstly we will show the inequality κA ≤ κA′ . Let C ∈ C(M(A)) be the circuit that κA =
κA(C) and let gC = (ḡC, gi)⊤ be its elementary vector. Define the vector gC′ := (ḡC, gi, 0)⊤.
For this vector it holds that


...

...
A∗i −A∗i

...
...

Ā


 gi

0

...
ḡC

...


= AgC = 0.

We will show that C ′ = supp(gC′) is a circuit of M(A′). From the above it directly
follows that C ′ is a dependent set. For contradiction assume that there exists a dependent
set of M(A′) denoted by C ′′ ⊂ C ′. Let (ḡC′′

, 0)⊤ be an elementary vector for this set. Then,
supp(ḡC′′) ⊂ C is an independent set of M(A), which contradicts that C is a circuit.

Because gC′ has the same non-zeroes as gC , we have κA(C) = κA′(C ′). Thus,

κA = κA(C) = κA′(C ′) ≤ κA′ .

For the other inequality, consider any C ′ ∈ C(M(A′)) with its elementary vector gC′ .
Because the last two columns of A′ are linearly dependent, only two scenarios occur for gC′ :
1. Either gC′ = (ḡC′

, gi, 0)⊤ or gC′ = (ḡC′
, 0,−gi)⊤. In that case, (ḡC′

, gi)⊤ is an element-
ary vector for some vector C ∈ C(M(A)) and it holds that κA′(C ′) = κA(C).

2. Otherwise, gC′ = (0, gi, gi)⊤. Then clearly κA′(C ′) = 1.

For any circuit C ′ it therefore holds that κA′(C ′) ≤ max{κA, 1}. By using the previously
stated Lemma 13, we get the inequality κA′(C ′) ≤ κA.

Consider C ′′ such that κA′ = κA′(C ′′). Then it is holds that

κA′ = κA′(C ′′) ≤ κA. ◀
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▶ Lemma 15. For any D ∈ D, C(M(A)) = C(M(AD)).

Proof. Multiplying vectors by nonzero constants in a set of vectors does not change the
linear dependence of the set. Therefore, rescaling columns with matrix D does not change
dependent sets nor inclusion-wise minimal dependent sets. ◀

▶ Lemma 16. Performing operation (O1) does not change the value of κ∗.

Proof. Let A, A′ be matrices as in the previous proof. We will start by showing that
κ∗

A′ ≤ κ∗
A. Consider D ∈ D such that κ∗

A = κAD. Define

D′ :=


0 0

0
di 0

0 0 di

D̄

.

Consider the circuit C ′ ∈ C(M(A′D′)) such that κA′D′ = κA′D′(C ′) with an elementary
vector gC′ .

Using Lemma 15, we again know that this circuit can be of one of two types:
1. If gC′ = (ḡC′

, gi, 0)⊤ or gC′ = (ḡC′
, 0,−gi)⊤, then the vector gC := (ḡC′

, gi)⊤ is an
elementary vector for a circuit C ∈ C(M(AD)). Because this vector shares the same
nonzero values with gC′ , it holds that

κ∗
A′ ≤ κA′D′ = κA′D′(C ′) = κAD(C) ≤ κAD = κ∗

A.

2. Otherwise, gC′ = (0, gi, gi)⊤. In that case, κA′D′(C ′) = 1. By Lemma 13,

κ∗
A′ ≤ κA′D′ = κA′D′(C ′) = 1 ≤ κAD = κ∗

A.

To prove the other inequality, consider the (n + 1)× (n + 1) diagonal matrix with positive
entries on the diagonal

D′ =


0

0
0 0 dn+1

D̄′


such that κ∗

A′ = κA′D′ .
Define D := D̄′ and consider C ∈ C(M(AD)) such that κAD = κAD(C) together with

the elementary vector gC . Then, the vector gC′ := (gC , 0)⊤ is an elementary vector of a
circuit in M(A′D′) with κA′D′(C ′) = κAD(C). Therefore it must hold that

κ∗
A ≤ κAD = κAD(C) = κA′D′(C ′) ≤ κA′D′ = κ∗

A′ . ◀

▶ Lemma 17. Performing operation (O2) does not change the value of κ.

Proof. Let A, A′ be matrices as before, C ′ ∈ C(M(A′)) such that κA′ = κA′(C ′) and its
elementary vector gC′ . For the elementary vector it must hold that

0

0
0 0 ±1 1

A




...
ḡC′

...
gn+1

 =


...
0
...
0

.
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This can be split into two conditions

ḡC′
∈ Ker(A)

gn+1 = ±gn.

We will show that gC := ḡC′ is an elementary vector of a circuit C := supp(ḡC′) ∈
C(M(A)). We already know that C is dependent. For contradiction let us now suppose
that there exists another dependent set Ĉ ⊂ C. This circuit can be extended to a circuit
Ĉ ′ ∈ C(A′) such that Ĉ ′ ⊂ C ′, contradicting that C ′ is a circuit. The set C is therefore
maximal dependent.

Vectors gC′ and gC have the same nonzero absolute values, which yields κA(C) = κA′(C ′).
Consequently,

κA′ = κA′(C ′) = κA(C) ≤ κA.

For showing the opposite inequality, it suffices to observe that every elementary vector
gC for a circuit C ∈ C(A) can be uniquely extended to an elementary vector gC′ for a circuit
C ′ ∈ C(A′) such that κA(C) = κA′(C ′). Specifically for C such that κA = κA(C), it then
follows that

κA = κA(C) = κA′(C ′) ≤ κA′ . ◀

▶ Lemma 18. Performing operation (O2) does not change the value of κ∗.

Proof. We again denote the matrices A and A′ before and after performing the operation.
First let us show that κ∗

A′ ≥ κ∗
A. Let D′ be a diagonal matrix with positive numbers on the

diagonal such that κ∗
A′ = κA′D′ . The scaled matrix can be written as

A′D′ =


0

0
0 0 ±dn dn+1

AD̄′

.

For any elementary vector gC′ = (ḡC′
, gn+1)⊤ of a circuit in C(M(A′D′)) it must hold

that

ḡC′
∈ Ker(A(̄D′))

gn+1 = ± dn

dn+1
gn.

Let C ∈ C(AD̄) be a circuit such that κAD̄(C) = κAD̄ with an elementary vector gC . Define
gC′ := (gC ,± dn

dn+1
gn)⊤ and observe that C ′ := supp(gC′) ∈ C(M(A′D′)).

Because gC′ contains all the non-zero elements that gC contains, it must be the case that
κA′D′(C ′) ≥ κAD̄(C), leaving us with

κ∗
A′ = κA′D′ ≥ κA′D′(C ′) ≥ κAD̄(C) = κAD̄ ≥ κ∗

A.

For the other direction, consider D ∈ D such κ∗
A = κAD . Choose D′ such that

D′ :=


0 0

0
dn 0

0 0 dn

D̄

.
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Consider the circuit C ′ ∈ C(M(A′D′)) such that κA′D′(C ′) = κA′D′ together with its
elementary vector gC′ = (ḡC′

, gn+1)⊤. Plugging into the conditions above, it must hold that

ḡC′
∈ Ker(AD)

gn+1 = ±gn.

We can observe that ḡC′ is an elementary vector of a circuit C ∈ C(M(AD)). The vectors
gC′ and ḡC′ have the same nonzero absolute values, therefore κA′D′(C ′) = κAD(C). By
putting everything together, we get

κ∗
A = κAD ≥ κAD(C) = κA′D′(C ′) = κA′D′ ≥ κ∗

A′ . ◀

Combining Lemmas 14, 16, 17 and 18 concludes the proof of Theorem 12.

3.2 Practical Aspects of Dealing With the Vector Matroid
To perform computations with the vector matroid and to understand their efficiency, it is
important to understand how the relevant operations on vector matroids can be implemented.
These details have great implications for the practicality and scalability of the experiments.

3.2.1 Exactness of Computation
When performing computations with real numbers on modern computers, a floating point
(FP) number representation is typically used. While this representation is convenient in
many cases, practical calculations then suffer from an inherent precision loss. We will show
that this causes issues when using FP computations for working with the vector matroid of a
matrix. Not only can small numerical differences in values of the matrix completely change
the structure of its vector matroid, but they may also arbitrarily change both the values κ

and κ∗.
Example 19 shows that inaccuracies introduced by FP computations may lead an algorithm

to falsely proceed as if some set S is independent when it in fact contains a circuit.

▶ Example 19 (Floating-point arithmetics and vector matroid). For a ∈ R consider the matrix

A :=
(

a a 4a

0 a a

)
.

Because 3 · A∗1 + A∗2 = A∗3, {1, 2, 3} is not an independent set of M(A). However, when
using floating-point operations ·F and +F , one may get the result

3 ·F
(

a

0

)
+F

(
a

a

)
=
(

4a + ε1
a + ε2

)
for small values of ε1 and ε2. This might lead an algorithm relying on floating-point
arithmetics to proceed as if all the three columns were linearly independent and to conclude
that {1, 2, 3} is an independent set of M(A).

The obvious remedy is using exact arithmetic, but this is undesirable for performance reasons.
We have tested an alternative approach based on trying to (quickly) find a candidate for a
circuit using p-bit precision computation for increasing values of p, while verifying potential
candidate circuits by exact computation. Unfortunately, this approach turned out to be
impractical because all attempted choices for the precision parameters led to unreasonably
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high iteration counts. As a matter of fact, the algorithm converged in reasonable time only for
very small problem instances. Since we have not found a way to work with the vector matroid
using floating-point arithmetics, we use SageMath’s support for exact rational numbers.

Not only is working with the vector matroid without using exact arithmetics tricky to
say the least, but we also observe that small changes in A can inflict large changes in both κ

and κ∗. This can be dangerous if we obtain a nearly optimal rescaling of a matrix and then
try to use it in an inexact context (e.g., run an LP solver that uses FP arithmetics).

Example 20 shows that FP inaccuracies may make an algorithm operate as if κA = C for
an arbitrarily large C, despite κA = 1. Moreover, Example 21 shows how not only κ∗ but
also the scaling matrix D is sensitive to inaccuracies.

▶ Example 20 (Floating-point arithmetic and κ). For a, C ∈ R+ consider the matrix

A :=
(

a a Ca + ε

a a Ca

)
.

The only circuit of M(A) is {1, 2} and g = (1,−1, 0)⊤ is its elementary vector, implying
κA = 1. An algorithm based on floating-point numbers could however falsely believe that
{2, 3} is a circuit with an elementary vector (0, C,−1)⊤ and therefore that κA = C.

▶ Example 21 (Floating-point arithmetics and κ∗). The vector matroid of matrix

A :=

κ̄ 1 κ̄ 0
κ̄ κ̄2 0 κ̄2

ε 0 0 0


for κ̄ > 1 has a single circuit {2, 3, 4}. The scaling matrix

D :=


1

κ̄

1
κ̄

 gives AD =

κ̄ κ̄ κ̄ 0
κ̄ κ̄3 0 κ̄3

ε 0 0 0

 .

The only circuit then has an elementary vector g = (0, 1,−1,−1)⊤, and thus κ∗
A = κAD = 1.

An algorithm using floating-point numbers may however give results as if ε = 0 due to
loss of precision, effectively making κ∗

A = κ̄.
If we were to use the exactly computed scaling matrix D in an inexact context (assuming

ε is treated as 0), we get κAD = κ̄2. This shows that not only is the value κ∗ sensitive to
inaccuracies, but the same is also true for the scaling matrix D.

3.2.2 Relevant Matroid Operations

For the purposes of the algorithm, the following matroid operations are relevant:
Components() splits the vector matroid to matroids for its components,
Basis() finds any basis of the vector matroid,
FundamentalCircuits(B) finds all fundamental circuits with respect to the basis B,
ElementaryVector(C) finds an elementary vector for the circuit C and
UniqueCircuit(B, U , V ) finds a circuit contained in (B \U)∪ V that is guaranteed to
be unique, where U ⊆ B, V ⊆ [n] \B.
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3.2.3 Utilizing SageMath

SageMath comes with the LinearMatroid class which natively provides most of the op-
erations, and allows easy implementation of the remaining ones. If M is an instance of
LinearMatroid, then Components() is implemented by M.components(), Basis() is im-
plemented by M.basis() and FundamentalCircuits(B) can be implemented by using the
method M.fundamental_circuit(B, e) for every non-basic element e.

The operations ElementaryVector(C) and UniqueCircuit(B, U , V ) can be im-
plemented either using the method in Lemma 10 or the one in Proposition 11. In both
cases, we will work directly with the matrix A. In the first case this can be done using
A.matrix_from_columns(C).right_kernel().basis()[0] for ElementaryVector(C) and A.
matrix_from_columns(B.difference(U).union(V)).right_kernel().basis()[0].support() for
implementing the operation UniqueCircuit(B, U , V ).

The latter option is a bit more involved. Firstly, the matrix A needs to be converted to
RREF using Gauss-Jordan elimination. Then, we construct a “vector finding graph” that
will allow for efficient implementation of the procedure.

▶ Definition 22 (Vector finding graph). Let A be a matrix in RREF such that M(A) is
connected, let U , V and B be sets as above and let S := (B \U)∪V . Consider the submatrix
Ā obtained by selecting the columns in S and the rows where columns in U have their only
nonzero-value (this value is 1). Let uv denote the indices such that Āuv corresponds to Auv.

Then, the vector finding graph of A is a weighed directed graph G such that

V (G) := [n],

E(G) :=
{

(u, v) ∈ [n]2
∣∣∣ there is a row ruv in Ā whose only nonzero values
are in columns ū and v̄

}
,

wG((u, v)) := −
Āruvū

Āruv v̄

.

This graph can be constructed in time O(nm). Its meaning is that for an elementary vector
g of the unique circuit contained in S it holds that if (u, v) ∈ E(G), then gv

gu
= wG((u, v)).

The procedure from Proposition 11 can be implemented as follows: start with an empty
vector w and set wv1 ← 1. Then, run a depth-first search (DFS) from v1 in the vector
finding graph and for every discovered edge (i, j), set wj ← wi · wG((i, j)). Processing edges
in this order guarantees that every edge (i, j) is used only after the value wi is known,
that everything that can be propagated, and that no value gj is computed more that once.
Lastly, set values to indices in B ∩ S such that w ∈ Ker(A). This is done by performing the
matrix-vector multiplication wB∩S ← −(Aw)B∩S , which is a relatively simpler operation
than solving a generic system of linear equations as in Lemma 10.

▶ Remark 23. It suffices to convert the matrix A to RREF only once in the course of the run
of the algorithm and then reuse it for all calls of ElementaryVector and UniqueCircuit.

Upon inspection of the source code of SageMath, we have discovered that its vector matroid
implementation cannot leverage matrix sparsity. In particular, the matrix is converted to an
internal dense representation when constructing the vector matroid object. Because matrices
of problems in Netlib and MIPLIB usually have many zeroes, representing them densely
has great impact on both memory and runtime of the operations. It is therefore natural to
explore other options that work with the matrix directly in its sparse representation.
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3.2.4 Sparsity and RREF

While it might seem sufficient to modify SageMath’s algorithm’s internals to work with the
sparse representation of A, there are more fundamental problems that make it impossible to
fully avoid the memory blow-up caused by converting to a dense representation. The root
of the problem lies in needing the RREF of matrix A. Even if A is sparse, converting it to
RREF it is often not the case and the representation becomes inefficient. This is known as
matrix fill-in and has been studied for example by Brayton et al. [6]. Because of this, the
memory savings (and consequently time savings) that motivated the use of sparse matrices
are not directly possible.

Note that while we can avoid using RREF explicitly by using the alternative method
in Lemma 10, the SageMath implementation of vector matroids nevertheless echelonizes
the matrix A internally. It might be possible to reorder the columns of A in a way which
minimizes the fill-in, however, we are only aware of strategies for minimizing fill-in when
computing LU and QR decompositions, but not for computing RREF.

3.2.5 Comparison of the Methods

The choice of a suitable implementation of the UniqueCircuit method depends on the
available computational resources. The generic method of Lemma 10 based on sparse opera-
tions is a good fit for scenarios where available memory is limited. The specialized method
of Proposition 11 internally uses a dense representation (due to SageMath’s implementation
of vector matroids) and exhibited higher memory usage during our tests, but had the benefit
of considerably shorter run times.

We have opted for the specialized method; we believe that a practical implementation of
the scaling algorithm should, in the context of the UniqueVector method, focus either on
optimizing sparsity, or avoiding RREF altogether. Nevertheless, the generic and “natively”
sparse method can conceivably be more practical for extremely memory-demanding problems.

3.3 Other Implementation Concerns

Besides working with the vector matroid, the algorithm also solves the maximum geometric
mean problem for the pairwise imbalance measure digraph, and the single-source shortest
path problem for finding the rescaling diagonal values.

3.3.1 Maximum Geometric Mean Problem

The maximum geometric mean problem can be converted to the minimum geometric mean
problem in a straightforward way, and then further reduced to the minimum arithmetic mean
problem by taking logarithms of all edge weights. This well-known problem can then be
solved by Karp’s algorithm [16].

We have not found an implementation of Karp’s algorithm in SageMath, so we opted
for our own implementation in plain Python. It may be possible to significantly speed up
this step of the algorithm by choosing a lower-level language implementation, however, this
procedure only represents a very small portion of the total runtime.

At this point in the algorithm we no longer need to use exact arithmetic; we will formally
argue why this is not a problem later (Lemma 24).
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3.3.2 Single-source Shortest Path Problem
The graph in which we need to find shortest paths from u to all other vertices v contains
negative edges, so the natural choice is to use the Bellman-Ford algorithm. This is implemen-
ted in SageMath as the method shortest_paths(u, by_weight=True, algorithm="Bellman-
Ford_Boost") of SageMath graph objects, and it internally calls a Boost implementation of
Bellman-Ford which does not support weights that are SageMath-specific infinite-precision
rational numbers.

By using inexact arithmetic, the shortest paths can only change by a very small amount.
Because the shortest path lengths are exactly the diagonal elements of the obtained rescaling
matrix, this causes us to have found a slightly different rescaling. The following lemma shows
that this rescaling cannot be much worse than the one found when using exact values.

▶ Lemma 24. Let α ≥ 1, and let D ∈ D and D′ ∈ D satisfy D′
ii ∈

[ 1
α Dii, αDii

]
for every

i ∈ [n]. Then, κAD′ ≤ α2κAD.

Proof. Consider the circuit C and indices i, j such that κAD′ = κAD′

ij (C). Let gAD

and gAD′ be the elementary vectors corresponding to C such that gAD ∈ Ker(AD) and
gAD′ ∈ Ker(AD′). Then,

κAD′ = κAD′

ij (C) =

∣∣∣∣∣gAD′

j

gAD′
i

∣∣∣∣∣ ≤ α
∣∣gAD

j

∣∣
α−1

∣∣gAD
i

∣∣ ≤ α2κAD. ◀

Even though the original graph is guaranteed to not contain negative cycles, inexact
arithmetics may introduce slightly negative cycles. In that case, the Boost implementation
fails. For this reason, we increase all edge weights by a value ε to compensate for such
inaccuracies. thus making the shortest path up to n · ε longer.

4 Performance Comparison

Our main result is the evaluation of the performance of LP solvers both on the original
problem and the problem after applying the approximate optimal rescaling. Note that while
Dadush et al. [9] give some performance guarantees (indeed, that is their primary motivation),
their relevance in our case is somewhat limited. Firstly, all claims in [9] are relevant for the
interior point LP algorithm of Vavasis and Ye [23], but none of the tested algorithms directly
use this method and, to the best of our knowledge, no theoretical claims have been made
about the effects of the rescaling for other algorithms.

The second thing to note is that for problems with large κ∗, the rescaling may be very
far from an optimal one. Still, the potentially weak guarantee is only a worst-case one, and
the algorithm may do well on real-world instances nevertheless.

Lastly, despite the potential pitfalls of working with the circuit imbalance measure
using non-exact arithmetic explained earlier, we also evaluate the performance of non-exact
(floating-point) LP algorithms. We do so for completeness and because the vast majority of
use cases of LP are in FP (not exact) arithmetic.

4.1 Exact Solvers
Some evaluated solvers can be configured to find the solution using exact arithmetic. However,
even these solvers read its input from MPS files and at least some of them parse the numeric
values in it into floating-point numbers and only then into an exact data type. Because of
issues outlined earlier, a naive use of an exact solver will lead to problems with precision loss.
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We propose the following workaround. Due to the properties of the IEEE 754 floating-
point number arithmetic standard, multiplying an FP number by a (possibly negative) power
of two does not cause precision loss if the mathematically correct result can be represented as
an IEEE 754 FP number. Therefore, if we restrict the elements of our rescaling matrix to be
such powers of two, the rescaled problem as loaded by the exact solver will be mathematically
precisely the original problem with scaled columns of the problem matrix.

The next lemma shows that rounding down the rescaling matrix obtained by our algorithm
to integral powers of two gives a rescaling not much worse than the original one:

▶ Lemma 25. Let D = Diag(d) ∈ D. Define d̂i to be the nearest smaller integral power of
two than di for every i ∈ [n] and let D̂ := Diag(d̂). Then, κAD̂ ≤ 2 · κAD.

The proof of this lemma is almost identical to the proof of Lemma 24.

4.2 Experimental Methodology
We have measured solving times for both original and rescaled instances using the open-source
solvers GLPK and SCIP [1] and using the proprietary solver Gurobi [15]. In all cases, garbage
collection was disabled during the measuring process to keep it from interfering with the
measurement. We exclude parsing time from the measurement. We did our best to disable
any built-in scaling so as to not interfere with our scaling. We repeat every measurement 10
times and then consider the arithmetic mean to mitigate faulty measurements.

We include problem instances that were solved in a very short time (under 0.0003 seconds).
As was pointed out by the reviewers, the time ratio for these instances might not be very
meaningful. We are thankful for this remark and we will make a more careful selection of
the measured results in a future journal version of this paper.

Our main interest is the relative effect the rescaling has on the solver run time. Let τo be
the time that a solver needs to solve the original instance, and τr the time the solver needs
to solve the rescaled instance. Define the time ratio of the rescaling as ρ :=

(
τr

τo
· 100

)
%.

For floating-point solvers, we measure τr using the precise rescaling, while exact solvers we
use the rescaling rounded to powers of two as described in Subsection 4.1.

To measure τo, an MPS file created from the problem converted to semi-standard form is
used in contrast to using the original MPS files. This is done so that the difference between
the two tested problems is solely in column scaling and structural differences of the matrices
can not affect performance.

The software versions used to perform the measurements were GLPK v4.65 (floating
point simplex and interior point methods, and an exact simplex method), Gurobi v10.0.2
(floating-point default method), SCIP v8.0.3 (floating-point simplex) and an exact version of
SCIP v8.0.0.14 (exact simplex). All solver settings unrelated to scaling or exact arithmetic
are set to their default values. We thank the reviewers for noting that this makes it more
difficult to draw conclusions about the results of Gurobi and SCIP, as they may use both
simplex and interior point methods as appropriate for every instance. Because changing this
setting would require running new experiments with different solver settings, we will consider
this in a future journal version of this paper.

We used a computational cluster where each machine is equipped with AMD EPYC 7532
CPUs which have SPECfp2017 score of 6.9 per core. The solvers were limited to use a single
CPU core.

4 Available from https://github.com/scipopt/scip/tree/exact-rational

https://github.com/scipopt/scip/tree/exact-rational
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Figure 2 Two histograms depicting the improvement of κ̂. In both plots, the y axis depicts the
number of instances. On the left, the x axis depicts the relative improvement κ̂A/κ̂AD, where larger
ratio represents bigger improvement. On the right, the x axis depicts the absolute new value of κ̂,
where smaller values mean smaller imbalance lower bound.

4.3 Measurement Results
We managed to compute the approximate rescaling for a total of 142 problem instances of
MIPLIB and Netlib. We ran the measurements for all solution methods and all problem
instances. We exclude measurements that have not finished in the allotted time.

The best average time ratio was attained for GLPK using an interior-point method with
a value of 132%. The highest number of problem instances with time ratio under 100% was
attained for Gurobi with 51 (36%) said problem instances.

The lowest (best) achieved time ratio is 7.6 %, meaning that applying the rescaling led to
a 13× speed-up of the solver. On a similar note, for 112 of the problem instances the rescaling
had a time ratio smaller than 100% for at least one of the solution methods, providing a
speed-up in the runtime.

We have not observed strong correlations between speed-ups for the various solvers.
Detailed results of the experiment can be found in Figure 1. Columns of the scatter plot

correspond to individual instances. In addition to time ratios for all solving methods, we
have included the best and the mean time ratio for every problem instance.

4.3.1 Improvement of κ

Besides possible performance benefits, it is also natural to ask about the improvement of
the circuit imbalance measure. Ideally, we would report statistics about the ratio κA/κAD,
however, due to the intractability of computing these quantities, we resort to comparing the
improvement with respect to the set of circuits C′ computed by the algorithm. Specifically,
recall that κ̂A is a lower bound on κA based on C′, and let κ̂AD be the largest imbalance
of any circuit in C′ with respect to AD; thus, κ̂AD gives a lower bound on κAD. Figure 2
shows the relative improvement (wrt. C′) κ̂A/ ˆκAD, and the (absolute) new estimate κ̂AD.
Again, note that this is a lower bound.

Admittedly, comparing two lower bounds gives a fairly weak claim. It is however unclear
whether there is much of an alternative: one could try generating (or sampling) many circuits
to enlarge C′ and get better bounds, but short of computing the κ’s exactly, it is impossible
to show (useful) definite bounds on the quality of the rescaling.

SEA 2024
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