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Abstract
Displaying line data is important in many visualization applications, and especially in the context of
interactive geographical and cartographic visualization. When rendering linear features as roads,
rivers or movement data on zoomable maps, the challenge is to display the data in an appropriate
level of detail. A too detailed representation results in slow rendering and cluttered maps, while a
too coarse representation might miss important data aspects. In this paper, we propose the gradual
line simplification (GLS) problem, which aims to compute a fine-grained succession of consistent
simplifications of a given input polyline with certain quality guarantees. The core concept of
gradual simplification is to iteratively remove points from the polyline to obtain increasingly coarser
representations. We devise two objective functions to guide this simplification process and present
dynamic programs that compute the optimal solutions in O(n3) for an input line with n points.
For practical application to large inputs, we also devise significantly faster greedy algorithms that
provide constant factor guarantees for both problem variants at once. In an extensive experimental
study on real-world data, we demonstrate that our algorithms are capable of producing simplification
sequences of high quality within milliseconds on polylines consisting of over half a million points.
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1 Introduction

Polyline simplification is the process of reducing the complexity of linear structures while
ensuring that the output still resembles the input. There is a variety of applications for
polyline simplification, including data compression [17, 14], noise reduction in movement
trajectories [15, 16], and visualization of linear data on maps [19]. In particular in interactive
cartographic visualizations, there are often large data volumes that need to be rendered
efficiently. For example, the front-end of a trajectory search engine must be able to display
huge amounts sets of trajectory data over a map layer, and map rendering tools that allow
customization (e.g. rayshader [18]) must accommodate selected features quickly, see Figure 1.
Simplifying the data to the desired level of detail prior to rendering is a suitable step to
reduce the data complexity, thereby reducing the rendering time and avoiding visual clutter.

Formally, a polyline P = p1, p2, . . . , pn is defined as a sequence of points and the induced
straight line segments between consecutive points. In the classical polyline simplification
problem, the input is a polyline P , a distance measure dX , and a threshold ε > 0.
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19:2 Algorithms for Gradual Polyline Simplification

Figure 1 Left: 3D map (created with rayshader [18]), overlaid with linear features extracted
from OSM, namely waterways (blue), primary and secondary roads (yellow and white), and a GPS
track (red). The waterways and roads consist of roughly 240,000 points in total, the GPS track of
1481 points. Right: Simplifications of the GPS track with 10%, 5% and 1% of the original points in
red (original track for visual comparison in gray).

A line segment Sij – also called shortcut – between points pi and pj with j > i is called
valid if dX(P [i, j], Sij) ≤ ε, where P [i, j] refers to the subpolyline of P from pi to pj and
dX(P [i, j], Sij) denotes the shortcut error. The goal of polyline simplification is to compute
a minimum-sized path from p1 to pn that only uses valid shortcuts. The endpoints of these
shortcuts define the simplified polyline P ′ ⊆ P . Typical similarity measures for polylines are
the Hausdorff distance dH and the Fréchet distance dF . The polyline simplification problem
can be solved optimally in O(n2) for dH [8] and in O(n2 log n) for dF [22].

However, a single simplification of the given input is often not sufficient for the application
scenario. If the linear features are to be displayed on a zoomable digital map, a simplified
representation is needed for each zoom level. There are three main guidelines the resulting
sequence of simplifications should adhere to:

Complexity. The level of detail should decrease monotonically when zooming out.

Conformity. The shape should be sufficiently preserved across all zoom levels.

Consistency. Once simplified away, polyline points should not reappear later.
To generate such simplification sequences, the concept of progressive line simplification
problem is used in [5]. Here the input is a polyline P and a sequence of distance thresholds
ε1 < ε2 < · · · < εk. The task is to compute a valid polyline simplification for each εi, where
the simplification for εi has to be a subset of the points chosen for the simplification for εi−1
for all i > 1. This subset constraint ensures visual consistency between the simplifications.
The optimization goal is to find a sequence of simplifications with the smallest number of
shortcuts accumulated over all simplification levels. It was shown in [5] that the problem can
be solved to optimality in O(n3k) for both dH and dF . However, determining an appropriate
sequence of distance thresholds for progressive line simplification is a non-trivial task that
demands the user to have knowledge about the polyline structure. For example, it can
happen that several consecutive ε values in the sequence induce the same or a very similar
simplification, which only adds computational complexity but no further visual benefits.
Thus, a continuous version was discussed in [5], where the distance threshold sequence does
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not need to be specified, since all possible ε values at which the simplification might change
are taken into account. However, the algorithm for computing the respective simplification
sequence has a rather impractical running time of O(n5).

In this paper, we introduce the gradual line simplification (GLS) optimization problem.
GLS is based on the concept of iterative point removal to generate a fine-grained and
consistent simplification sequence. The objective function ensures that the shape of polyline
is well preserved throughout the simplification process. We will discuss two problem variants
and show that both can be solved very efficiently in theory and practice. In contrast to
progressive line simplification, GLS does not require the user to specify distance thresholds,
but simplification sequences with any desired level of detail and with any number of zoom
levels can be extracted based on a single GLS solution.

1.1 Related Work

The concept of generalization of geometrical objects for visualization on zoomable maps
is well-established in cartography [23, 21, 7, 4]. There are many different incarnations as,
e.g., object shrinking or fading, feature elimination, smoothing, or merging of different
objects. For linear structures displayed on maps such as country borders, rivers, roads,
or GPS-based movement trajectories, polyline simplification is typically applied to obtain
coarser representations [25, 11].

Optimal algorithms for polyline simplification rely on first constructing a shortcut graph
and computing a shortest link path therein [8, 22]. However, heuristics typically avoid the
expensive shortcut graph construction phase and instead select points to be preserved in the
simplification in a greedy fashion. Iteratively discarding points as long as the shortcut distance
threshold is not violated is a wide-spread algorithm design paradigm here. For example,
the heuristic by Visvalingam and Whyatt [24] works by always removing the point from the
polyline which together with its neighbors forms a triangle of smallest area. The algorithm
runs in O(n log n) time. The famous Douglas-Peucker algorithm [9] proceeds the other way
around by selecting promising points one by one until the shortcut distance threshold is
obeyed. The Douglas-Peucker algorithm can be implemented to run in O(n log n) under dH

and in O(n2) under dF [13]. Further examples of iterative simplifications are the algorithms
by Wang-Müller [26] or Zou-Jones [10]. All algorithms following the design paradigm of
iterative point removal generate a consistent simplification sequence as a by-product. But
the existing methods do not provide quality guarantees for the resulting sequence.

To cater for multiple zoom levels, hierarchical simplification was studied e.g. in [19].
In their setup, they have multiple non-intersecting polylines and a sequence of distance
thresholds ε1 < · · · < εk and they seek to find for each εi simplifications for all polylines that
obey the respective distance threshold and additionally remain intersection-free. However,
they do not take consistency into account.

Polyline simplification algorithms can also be useful for simplifying polygons or more
complex structures as polygonal subdivisions and graphs. For polygons, a single point is
chosen as start and end point of the polyline (one could also iterate over all points in that
role and record the best result). For subdivisions and graphs, the simplification problem
can be reduced to a set of independent polyline simplifications by retaining all nodes with a
degree of three or more [11]. The process of iterative point removal and shortcut insertion
can however also be applied to graphs with arbitrary node degrees, as explored in [3] for
consistent and continuous road network simplification. But the focus there is also on fast
heuristics to deal with large inputs.
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1.2 Contribution
We introduce gradual line simplification (GLS) as a formal optimization problem and provide
several theoretical and practical results. We consider two problem variants, one in which we
aim to minimize the maximum error of any introduced shortcut (max-error) and one in which
we minimize the sum over all shortcut errors (sum-error). We show that optimal max-error or
sum-error solutions can be computed in time O(n3) and space O(n2). This result applies for
shortcut errors being measured by Fréchet or Hausdorff distance. Under the Fréchet distance,
we prove that a simple greedy algorithm simultaneously approximates the max-error by a
factor of 2 and the sum-error by a factor of 4. This greedy algorithm can be implemented to
run in O(n2) time. But to achieve this running time heavy machinery is used. Therefore, we
also present a more practical greedy variant that only relies on simple methods and allows to
trade running time against quality. Furthermore, we propose output-sensitive algorithms
to extract any simplification of desired size from the GLS sequence. The underlying data
structure has linear size and can be computed in linear time. This allows a user to easily
select simplification subsequences of desired complexity. Finally, we provide an extensive
experimental study in which we evaluate our methods on real GIS data. As the main outcome,
we observe that the proposed approximation algorithms are orders of magnitude faster than
the exact algorithms while producing close-to-optimal results.

2 Preliminaries and Definitions

In this section, we provide the formal GLS problem definition, and describe notation and
basic algorithmic building blocks that will be used throughout the paper.

2.1 Shortcutting and Gradual Simplification
The core concept of GLS is to obtain a sequence of n − 1 consistent simplifications of size
n, n − 1, . . . , 2 by iterative point removal from the input polyline. Formally, this removal is
referred to as point shortcutting as defined below.

▶ Definition 1 (Point Shortcutting). Given a polyline P = p1 . . . , pn and a point pi with
i ∈ {2, . . . , n − 1}, the shortcutting operation removes pi from P and creates Si−1,i+1.

Based on this notion, GLS is defined as follows.

▶ Definition 2 (Gradual Line Simplification (GLS)). Given a polyline P = p1, . . . , pn and
a point shortcutting order π : {p2, . . . , pn−1} → {1, . . . , n − 2}, we denote the sequence of
polyline simplifications P0, . . . , Pn−2 as gradual simplification of P where P0 = P and Pi is
derived from Pi−1 by shortcutting the point pj with π(pj) = i. The total set of shortcuts that
results from the respective point shortcutting operations is denoted by Sπ(P ).

Figure 2 illustrates GLS on a small example instance.
According to the definition, the final simplification always consists solely of the shortcut

from the start to the end point of the input polyline, that is Pn−2 = p1, pn = S1n. We
observe that any shortcutting order results in a consistent polyline simplification sequence as
we clearly ensure Pi ⊂ Pj for any i > j. Furthermore, the simplification sequence is the most
fine-grained one possible among all consistent simplification sequences, i.e., it contains the
maximum number of distinct simplifications.

To guide the gradual simplification process, we devise two different optimization problems.
Both aim at simplification sequences that preserve the shape of the input polyline.
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Figure 2 Example polyline (black) with n = 29 nodes. A shortcutting order of the inner points is
indicated by the green labels. Additionally, the resulting simplifications P10 (solid blue, containing
only points with a label higher than 10) and P20 (dashed purple, containing only points with a label
higher than 20) are displayed.

▶ Definition 3 (Max-error GLS). Given a polyline P = P1, . . . , pn and a distance measure
dX , find a shortcutting order π that minimizes the maximum shortcut error under dX , that
is, min maxS∈Sπ(P ) ε(S).

▶ Definition 4 (Sum-error GLS). Given a polyline P = P1, . . . , pn and a distance measure
dX , find a shortcutting order π that minimizes the sum of shortcut errors under dX , that is,
min

∑
S∈Sπ(P ) ε(S).

2.2 Shortcut Error Computation

The GLS problem and the algorithms we will design crucially rely on access to shortcut
errors ε(Sij) := dX(P [i, j], Sij) under a given distance measure. Throughout this paper,
we focus on the Hausdorff distance dH and the Fréchet distance dF . Classical polyline
simplification algorithms usually only require an oracle that decides whether a shortcut
Sij for 1 ≤ i < j ≤ n has distance at most ε to its respective subpolyline P [i, j]. Such an
oracle can be implemented for both dH and dF in time O(n). However, for gradual line
simplification, the actual shortcut errors are relevant. Under dH , such errors can be computed
in O(n). Under dF , using the algorithms by Alt and Godau [2], the error can be computed in
O(n2) in a quite simple fashion, or in O(n log n) if parametric search is applied. We will refer
to the more expensive variant also as vanilla error computation method. Recently, Buchin et
al. [6] introduced a Fréchet distance data structure (FDS) that allows to preprocess a given
polyline in time and space O(n · k3+δ + n2) for δ > 0 and then answers distance queries from
any line segment to a selected subpolyline in time O(n

k log2 n + log4 n) for some of k ∈ [n].
We will exploit this data structure with a careful choice of k to compute relevant shortcut
errors faster in our algorithms.

SEA 2024
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3 Exact Algorithms

We first show that the max-error GLS and the sum-error GLS problem can be solved to
optimality in polytime under both dH and dF . In particular, we design efficient dynamic
programs (DP) that require O(n3) time and O(n2) space.

The main observation is that we can decompose our problem into subproblems which
encode whether or not a certain shortcut is contained in the solution. Let ε(Sij) denote the
error of shortcut Sij . Further, let εmax(Sij) denote the max-error of an optimal solution of
the gradual simplification problem restricted to P [i, j], which implies that Sij is part of the
solution. Similarly, εsum(Sij) denotes the optimal sum-error of gradual polyline simplification
for P [i, j]. Let pk be the last point shortcut before pi and pj , i.e. the point whose shortcutting
resulted in the insertion of Sij . Then the shortcuts (or original segments) Sik and Skj are
part of the solution as well, and we have εmax(Sij) = max{εmax(Sik), εmax(Skj), ε(Sij)} and
εsum(Sij) = εsum(Sik) + εsum(Skj) + ε(Sij). Based on these formulas, we can construct the
solution set recursively starting with S1n, which always has to be contained in any solution.
However, we don’t know the value of k if we go top-down. But this can easily be overcome
by iterating over all possible k with i < k < j and picking the minimum resulting max-
or sum-error. We can store already computed solutions for Sij in a look-up table to avoid
redundant computations. This results in the following dynamic program: We allocate an
n × n table and initially set all entries to 0. In cell cij with i < j, we store εmax(Sij) or
εsum(Sij), respectively. The table cells are filled by using the above formulas. As we always
need access to all shortcuts of smaller hop length to get the correct results, we consider the
cells sorted increasingly by j − i.

▶ Theorem 5. The DP approach solves max-error and sum-error GLS in time O(n3) under
dH and dF , respectively, using quadratic space.

Proof. The created table has a space consumption of Θ(n2). The running time is determined
by the time needed to fill the Θ(n2) cells. To get the correct cell value cij , we first need to
compute ε(Sij) and then iterate over all values k between i and j and check cells cik and ckj .
The latter part can be accomplished in constant time per considered cell and hence takes
O(n) in total. The computation of ε(Sij) depends on the distance measure. For dH , it takes
time O(n). For the Frèchet distance, as discussed above, this would take O(n log n) when
using the parametric search technique. However, based on the FDS by Buchin et al. with
a choice of k ∈ Θ(n1/3), preprocessing the polyline and determining all potential shortcut
errors can be accomplished in o(n3) using O(n2) space. Thus, we spend on average O(n)
time per cell for both dH and dF , which amounts to an overall running time of O(n3). ◀

Figure 3 shows an example where the optimal outcomes for sum-error and max-error coincide.
If in the optimal sum-error solution the max-error is assumed by the final shortcut S1n, the
solution is automatically also optimal for max-error. However, as visible in the example,
the max-error is not necessarily assumed by S1n and thus the two problem variants have
different solutions in general.

4 Approximation Algorithms under the Fréchet Distance

The cubic running time and the quadratic space consumption of the exact algorithm might
be prohibitive in practice, especially when dealing with large inputs. Therefore, we next
investigate approximation algorithms with better performance. We will present constant-
factor approximations for both max-error and sum-error GLS under dF . Our algorithms
rely on a well-known lemma by Agarwal et al. [1], rephrased below in our terminology and
illustrated in Figure 4.
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Figure 3 Example polyline (grey) and optimal gradual simplification (blue and red shortcuts) for
sum-error and max-error. The red polyline corresponds to the respective simplification of the input
polyline after half the points have been shortcut.

▶ Lemma 6. Given a polyline P , consider a shortcut Sij with error ε. Then for any shortcut
Sab with i ≤ a < b ≤ j, its error under dF is bounded by dF (P [a, b], Sab) ≤ 2ε.

We remark that for any distance measure where the factor between the error of Sij and
Sab is bounded by a constant, the algorithms we describe below will yield constant-factor
approximations for max-error and sum-error GLS. As this does not apply to dH , though,
our approximation results do not transfer to the Hausdorff distance. However, the Fréchet
distance is usually deemed the more appropriate polyline distance measure anyhow, as it
takes the course of the polyline explicitly into account while the Hausdorff distance treats
the polyline as unordered set of contained points.

4.1 2-Approximation for Max-Error GLS

We first consider the max-error GLS problem. In the following lemma, we show the somewhat
surprising result that any shortcutting order produces a maximum shortcut error within a
factor of 2 of the optimal one under the Freéchet distance.

▶ Lemma 7. Any order π is a 2-approximation for max-error GLS under dF .

Proof. According to the GLS definition, we know that for any π we have S1n ∈ Sπ(P ). Thus,
ε(S1n) is a lower bound for the optimum value OPT . Lemma 6 implies that for any possible
Sab ∈ Sπ(P ) it holds ε(Sab) ≤ 2ε(S1n) and hence ε(Sab) < 2OPT . As this applies for any
shortcut error it clearly also applies to the maximum shortcut error in any set Sπ(P ). ◀

The lemma illustrates that solely focusing on the max-error does not provide enough guidance
to obtain practically useful simplification sequences. Thus, we will from now on focus on the
sum-error variant.

i

ja

b

≤ 2ε

ε

Figure 4 Illustration of Lemma 6.
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4.2 4-Approximation for Sum-Error GLS

In the following we present and analyze a simple greedy algorithm for sum-error GLS:
Given the current simplification Pi, we always choose the next point p ∈ Pi to remove by
selecting the one whose shortcutting results in the currently smallest shortcut error among
all candidates. We will now prove that this strategy yields a constant-factor approximation
algorithm and subsequently investigate its running time and space consumption.

▶ Theorem 8. GREEDY is a 4-approximation algorithm for sum-error GLS under dF .

Proof. Let P be a polyline of size n. Let S1, . . . , Sn−2 be the shortcuts created by the greedy
algorithm in their insertion order and let π1, . . . , πn−2 denote the points in P according to
their contraction order. Further, let S∗

1 , . . . , S∗
n−2 be the shortcuts inserted based on an

optimal point ordering. We use Pi or P ∗
j to refer to the subpolylines shortcut by Si or S∗

j ,
respectively. As before, we use ε(S) to denote the shortcut error of a shortcut S.

We construct an assignment of shortcuts inserted by the greedy algorithm to optimal
shortcuts. In particular, we assign shortcut Si to S∗

j if the following two conditions are met:
At the moment before πi is shortcut by the greedy algorithm, there are at least three
points in P ∗

j that are not yet shortcut, including πi.
Index j is the smallest index in the optimal ordering for which the above property holds.

Note that the assignment is well-defined, as we have S∗
n−2 = s1n and the first condition is

always true for S∗
n−2 as we never shortcut its endpoints.

We now show that if Si is assigned to S∗
j it holds ε(Si) ≤ 2ε(S∗

j ). This applies because if
at least three points of P ∗

j are not shortcut before the shortcutting of point πi, we know that
shortcutting the middle of these three points would result in a shortcut for a subpolyline
of P ∗

j . According to Lemma 6, the error of any such shortcut is upper bounded by 2ε(S∗
j ).

As the greedy algorithm selects the next point to shortcut based on the minimum possible
induced error at the current stage, we thus conclude that ε(Si) ≤ 2ε(S∗

j ) has to hold as well.
Let now cj be the number of shortcuts Si assigned to a particular shortcut S∗

j in the optimal
solution. Then the greedy sum-error can be upper bound by

∑n−2
i=1 ε(Si) ≤

∑n−2
j=1 cj · 2ε(S∗

j ).
To complete the proof, we will argue that cj ≤ 2 for all j = 1, . . . , n − 2. Assume now

for contradiction that there exists a shortcut S∗
j to which we assigned at least three greedy

shortcuts. Let the respective points that resulted in these shortcut insertions in that order
be q1, q2, q3. Based on the assignment criterion, we have q1, q2, q3 ∈ P ∗

j . Furthermore, there
need to be three points that are not shortcut yet at the point greedy considers q3 in order
for the respective shortcut to get assigned to S∗

j . Hence we have at least also q4, q5 ∈ P ∗
j

that are shortcut after q3. Now we consider the point p∗ that was shortcut by S∗
j in the

optimal solution. At that moment, there were only the points pl, p∗, pr left in L∗
j , where

pl is the left endpoint of S∗
j and pr the right one. Hence the shortcuts (or original line

segments) Sl = (pl, p∗) and Sr = (p∗, pr) exist in the optimal solution. If those are shortcuts,
their index needs to be smaller than j, as they were constructed before S∗

j . Now if we have
q1, q2, q3, q4, q5 in P ∗

j , at least three of them have to be contained in either the subpolyline
belonging to Sl or Sr. W.l.o.g. assume it is Sl. That automatically implies that Sl is indeed
a shortcut and not an original segment. Now if we shortcut the qi with smallest index i in
Sl (which implies i ≤ 3), we assign Si to Sl, as Sl has a smaller index than S∗

j , and there
are at least three not yet shortcut points in the respective subpolyline including qi. This
contradicts our claim that Si is assigned to S∗

j . We therefore conclude that cj ≤ 2 holds.
Accordingly, we get

∑n−2
j=1 cj · 2ε(S∗

j ) ≤
∑n−2

j=1 2 · 2ε(S∗
j ) = 4

∑n−2
j=1 ε(S∗

j ) = 4 · OPT . ◀
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According to Lemma 7 and Theorem 8, a greedy ordering provides simultaneously a 2-
approximation for max-error and a 4-approximation for sum-error.

▶ Lemma 9. GREEDY runs in O(n2 log n) using linear space.

Proof. The greedy algorithm needs to compute linearly many shortcut errors. The initial
errors of shortcuts Sii+2 for i = 1, . . . , n − 2 can be computed in O(1). Then, after selecting
the next point to shortcut, only the values for its two former neighbors need to be updated
which amounts to O(n) non-trivial error computations. If we use parameteric search for
shortcut error computation, the overall running time is O(n2 log n). As only linearly many
shortcut errors need to be stored at any time, the space consumption is linear. ◀

For a faster implementation of the greedy approach, we can again exploit the FDS by Buchin
et al., however, at the cost of an increased space consumption.

▶ Lemma 10. GREEDY can be implemented to run in O(n2) time using quadratic space.

Proof. Recall that FDS requires a preprocessing time of O(n·k3+δ +n2) and has a query time
of O( n

k log2 n+log4 n) for some k ∈ [1, n]. As we need to issue O(n) shortcut error queries, the
total time of GREEDY based on FDS can be expressed as O(n ·k3+δ +n2 + n2

k log2 n+n log4 n).
If we choose k to be slightly smaller than n1/3, e.g. k = n(3−δ)/9, then all summands are in
O(n2). Selecting n − 2 times the one with minimum error among the current O(n) shortcut
candidates can clearly also be accomplished in O(n2). ◀

This implementation of the GREEDY algorithm thus matches the space consumption of the DP
for exact sum-error GLS computation but reduces the running time by a factor of n.

4.3 A More Practical Greedy Approach
Both greedy variants described in Lemma 9 and Lemma 10 rely on sophisticated search
techniques or data structures and are cumbersome to implement. If we use the vanilla
approach by Alt and Godau [2] with a running time of O(n2), the implementation is much
easier. However, the resulting running time is in O(n3) and thus too slow for large input
polylines. Therefore, we now discuss another variant of the greedy algorithm tailored to
practical implementation. That is, we only want to use easy-to-implement subroutines but
get competitive running times nevertheless.

To achieve this goal, we first observe that the greedy algorithm does not necessarily
require the knowledge of the precise shortcut errors of all candidates, but only needs to
identify the currently smallest one. Thus, it would suffice to identify a threshold ε such
that one candidate has a smaller error and the others a larger one. This concept would
allow us to only use the decision oracle whether a shortcut exhibits an error of at most ε

as subroutine (just like in classical polyline simplification). Binary search over the range
of possible ε values until we have the desired division of candidates sounds appealing. But
this approach suffers from the issue that if two shortcuts exhibit very similar errors, then
the number of search steps might be huge; potentially even incurring a larger running time
than the naive implementation using vanilla shortcut error computation. But if we abort
the binary search after a fixed number of search steps, then there might be still several
candidates in the remaining interval and the ratio between their errors could be unbounded
(in particular if the lower bound of the current search interval is still zero). If that error
ratio is unbounded, the greedy algorithm loses its approximation guarantee. Thus, we need
a sensible stopping criterion for the search that allows us to bound the number of steps as
well as the approximation factor. The next theorem shows that this is indeed possible.

SEA 2024
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▶ Theorem 11. GREEDY can be implemented to run in O(c ·n2 logb n) time using linear space,
with an approximation factor of (4b + 1

nc ) for any b, c > 1.

Proof. Let ε = ε(S1n) be the shortcut error of the final shortcut, which is necessarily a part
of any GLS. Accordingly, we have OPT ≥ ε, and we know by Lemma 6 that all shortcut
errors are bounded by 2ε.

In every round, we then proceed as follows with the two newly created shortcut candidates:
We first invoke the decision oracle for 2ε. As long as the oracle returns true, i.e., that the
shortcut errors is below or equal to the threshold, we divide the current bound by b and
repeat. We abort the process if the oracle returns false or if the bound drops below ε

nc for
some c ≥ 1. This happens after at most c · logb(n) + logb(2) ∈ O(c logb n) rounds. Then, we
choose one of the shortcut candidates with smallest known error upper bound for the next
insertion. The overall running time is in O(c · n2 logb n) as there are less than n rounds, and
in each round we conduct at most two searches with O(c logb n) steps each, where a single
search step consists of invoking the decision oracle which takes linear time. The value of ε to
initialize the searches can be computed using the vanilla approach in O(n2).

To prove the approximation guarantee, we first consider the shortcuts that were inserted
because their error is at most ε

nc . As there are less than n shortcuts in total, the summed
error is upper bounded by nε

nc ≤ OPT · n1−c. For the shortcuts that came with a larger
error, we identified an interval with its lower bound being within a factor of b of the upper
bound. Now if we perform the same assignment of shortcuts in the greedy solution to
shortcuts in the optimal solution as described in Theorem 8, we still assign at most two
greedy shortcuts to each optimal shortcut S∗

j . For the greedy shortcut Si this implies that
at the time of its insertion there was also a candidate shortcut with error at most 2ε(S∗

j ).
As the binary search approximates the error within a factor of b, we thus can guarantee that
ε(Si) ≤ 2b · ε(S∗

j ). Plugging this into the sum formula from the proof of Theorem 8, we end
up with an accumulated error of at most 4b · OPT . Combined with the OPT · n1−c error
bound from the first part of the analysis, we hence get an overall approximation guarantee
of (4b + ε) · OPT where ε = n1−c can be made as small as desired. ◀

The theorem allows a simple implementation of the greedy algorithm that trades running
time against approximation quality. As b is the crucial parameter for this trade-off, we will
from now on refer to this greedy variant as b-GREEDY. For practical application, it is also
worthwhile to use a priority queue (PQ) data structure (e.g. a min-heap) to take care of
the selection of the next best shortcut to insert, reducing the running time with the naive
sweep from O(n2) to O(n log n). Here, we use the upper bounds of the error intervals as key.
While the overall running time is still dominated by the upper bound searches in the worst
case, the reduced selection time still has an impact in practice.

5 Indexing and Output-Sensitive Extraction

The result of GLS of an input polyline P is a s sequence consisting of n − 1 simplifications.
For some applications the sequence will be used as a whole (e.g. morphing between repres-
entations [20], or continuous zooming [23]), for other applications we might only want to use
a certain subsequence at a time (e.g. when dealing with a fixed number of zoom levels) or
even only select a single simplification of desired size.

Thus, we would like to have fast access to individual simplifications. Given a polyline P

and a shortcutting order π, we want to index this data such that for given k, the simplification
consisting of k line segments (that is the one after contracting n − k − 1 points) can be
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extracted in O(k). A simple way to achieve this is to store all n − 1 simplifications explicitly.
But this requires quadratic space. We note that it suffices for given k to retrieve the set of
points p with π(p) ≥ n−k in their order of occurrence in P . The corresponding shortcuts are
simply the line segments between consecutive points in the ordered set. This gives rise to the
following simple data structure: We store the points of P in the given order in an array and
augment them with their π-values. We also store the position of the point contracted last,
that is, the point with π(p) = n − 2. Furthermore, for each point pi, we store the index of
the point pl in P [1, i − 1] with largest π-value smaller than that of pi such that for all points
p′ ∈ [pl + 1, pi − 1], we have π(p′) < π(pl). Similarly, we store the point pr in P [i + 1, n] with
largest π-value smaller than that of pi such that for all points p′ ∈ [pi + 1, pr − 1], we have
π(p′) < π(pr). If pl or pr do not exist, we store a default index instead. Clearly, the data
structure has linear space consumption. It can also be computed in linear time based on an
algorithm for 1D range maxima queries [12].

In a query, where k ∈ [n] is provided by the user, we use the constructed data structure
as follows. If k = 1, we simply return the first and the last point in the array. For k > 1, we
initialize a double linked list P ′ with p1, pn and then insert the point p with π(p) = n − 2
into the middle of this list. As its position information is precomputed, it only takes constant
time to access the point and to look up its stored values for pl and pr. If π(pl) ≤ n − k, we
insert pl as left neighbor of p in P ′ and proceed recursively. Similarly, if π(pr) ≤ n − k, we
insert it as right neighbor of p in P ′ and then proceed recursively as well. Clearly, inserting a
new element in P ′ as neighbor of a currently considered element takes constant time. In total,
we insert k − 1 additional elements after initialization. For each element or point p, we spend
constant time on checking the π-values of the point itself as well as pl and pr, respectively.
Thus, overall the extraction time is O(k), making the described algorithm output-sensitive.

We further remark that if the user wants to extract a simplification subsequence from
the data structure with sizes k1 < k2 < · · · < ks, a total running time of O(ks log ks) can be
achieved no matter the value of s. We simply need to ensure in the query for the simplification
of size ks that whenever we consider multiple candidate points with π(p) ≤ n − ks, we add
the one with highest π value first. In that way, we faithfully reconstruct the whole suffix
of the simplification sequence down to the one of size ks and thus can easily return any
requested subsequence. Keeping track of the maximum takes O(ks log ks) in total when using
a max-heap data structure. Of course, if only a subsequence is needed, one could attempt to
directly solve the optimization problem where given a size sequence k1 < k2 < · · · < ks, the
goal is to find a consistent simplification sequence adhering to the given sizes with smallest
maximum or summed shortcut error. The advantage of instrumenting GLS is that it serves
as a lightweight data structure from which any desired sequence can be extracted quickly,
e.g. to cater for different devices with varying rendering capabilities or to dynamically adapt
the zoom level. Consistency is always guaranteed by construction.

6 Experimental Study

For experimental evaluation, we implemented the proposed algorithms for GLS in C++.
Experiments were conducted on a single core of an AMD Ryzen processor at 4.2 GHz.

All algorithms were implemented using the Fréchet distance to measure shortcut errors.
The best theoretical running time bounds for DP and GREEDY rely on FDS. However, this
data structure is very sophisticated and was not implemented so far. Also, the parametric
search variant by Alt and Godau to compute shortcut errors in O(n log n) is quite involved.
The authors themselves recommend to rather use the vanilla variant with a running time
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Table 1 Running times of the implemented algorithms for GLS when shortcut errors under dF

are computed in O(n2). Approximation factors for max- and sum-error GLS are provided below.

max-DP sum-DP GREEDY b-GREEDY
time O(n4) O(n4) O(n3) O(n2 logb n)
apx max 1 2 2 2
apx sum - 1 4 4b + ε

of O(n2) for practical purposes. The vanilla variant is easy to implement and numerically
robust. We hence only use this method for shortcut error computation in our experiments.
Table 1 provides an overview of the resulting running times of our proposed algorithms.
Furthermore, we implemented four simple baselines:

ORDER. Use the given input point order as order for gradual simplification.
RAND. Use a random permutation of the points.
HOPS. Choose the next shortcut to insert to be the one where the corresponding subpolyline
of P contains the smallest number of points, i.e. has smallest hop-distance. The idea is
that shortcuts that span fewer points are more likely to induce a small Fréchet error than
shortcuts that span long parts of the polyline.
AREA. Choose the next shortcut to insert to be the one with the smallest triangle area,
i.e. the triangle formed by the new shortcut and the two shortcuts it is replacing [24].

The first three baseline algorithms can all be implemented to run in linear time. AREA takes
O(n log n) time. By virtue of Lemma 7, all of them provide a 2-approximation for max-error
GLS. But none of them comes with an approximation guarantee for sum-error GLS.

6.1 Comparative Performance of GLS Algorithms
To test our algorithms on a diverse set of polylines, we used openly available trajectories from
OSM. The database holds almost a million trajectories of varying size. For the experiments,
we picked 100 random trajectories of each size (if available) and used different upper bounds
on the trajectory size. We always specify along with each experiment which sets were used.

We first conducted comparative experiments on the DP, the GREEDY algorithm, 2-GREEDY,
and the four baselines with respect to running time and solution quality. Table 2 provides
an overview of the results on instances with up to 1000 points (containing roughly 100000
trajectories). As expected, the DP approach is very slow, taking several minutes already

Table 2 Running times and shortcut errors compared to optimal results (computed with DP).
Input size ≤ 1, 000 vertices. Running times measured in microseconds, except for DP and GREEDY.

running time approximation ratio
(µs) sum error max error

avg. max. min. avg. max. min. avg. max.

DP 584 s 2,423 s
GREEDY 3 s 58 s 1.0 1.3 1.4 1.0 1.1 2.0
2-GREEDY 897 1,934 1.0 1.5 3.4 1.0 1.1 2.0
AREA 290 464 1.0 1.7 7.1 1.0 1.1 2.0
HOPS 272 434 1.2 1.5 2.9 1.0 1.0 1.8
RAND 233 382 1.5 2.2 4.5 1.0 1.1 2.0
ORDER 109 227 2.5 69.2 197.6 1.0 1.1 2.0
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Figure 5 Comparison between 2-GREEDY and the baselines with respect to running time (left)
and solution quality (right).

on small input polylines. GREEDY is two orders of magnitude faster than DP, but the exact
computation of the Fréchet distance values for the candidates is still quite expensive. 2-
GREEDY is vastly faster. On the sample instances, all results were computed in less than 2
milliseconds. This yields a speed-up of more than a factor of 1000 over the GREEDY algorithm
with naive Fréchet distance computation. For max-error GLS our experiments show that the
theoretical approximation ratio of 2 is tight and that there is little difference in performance
among the algorithms. For sum-error GLS, we observe that all approaches except ORDER
produce reasonable results. GREEDY performs best and stays way beyond the theoretical
approximation factor of 4. 2-GREEDY, with an approximation guarantee of ≈ 8, also performs
much better in practice but slightly worse than GREEDY. It thus offers a good trade-off between
running time and quality.

In Figure 5, we further compare the running time and the solution quality of 2-GREEDY
and the baselines on larger instances. As the DP was too slow to compute exact solutions, we
provide a relative quality comparison to the output of 2-GREEDY. As expected, the baseline
methods are considerably faster as they do not rely on shortcut error computation. But
they also produce results of worse quality. While AREA often comes close to the quality of
2-GREEDY, there are some notable outliers in sum error. HOPS is more consistent but also
worse than 2-GREEDY on almost all instances. We conclude that 2-GREEDY is the more reliable
approach with reasonable running time costs.

6.2 Sensitivity Analysis for b-GREEDY

Next, we strive to investigate the performance of our proposed b-GREEDY algorithm more
closely. Above, we used b = 2 in the comparative evaluation. Now, we study the influence of
the parameter b.

Figure 6 depicts the running times and the solution quality for various values of b ranging
from 1.1 to 4. As expected from the theoretical analysis, the running time decreases with
growing b but the solution quality deteriorates slightly. Thus, if in a specific application one
aspect is more important than the other, b can be chosen appropriately.

Setting b = 3, we obtain running times of around 200 milliseconds on average and a
maximum of around 6 seconds for trajectories with over half a million points.
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Figure 6 b-GREEDY performance for various values of b. Input sizes ≤ 1000 vertices. Quality
relative to optimal = 1.

6.3 Further Engineering of b-GREEDY

The practical running time of the b-GREEDY approach can be further reduced in practice by
decreasing the number of calls to the shortcut error oracle. We observe that in particular
for shortcut candidates with small shortcut errors, our proposed procedure of starting with
an oracle call with error 2ε(S1n) and proceeding to divide the current error by b until the
oracle returns false for the first time is quite time-consuming. If we start the procedure with
a tighter upper bound on the shortcut error, fewer oracle calls are induced. To get such an
upper bound for shortcut Sij , we use dF (Sij) ≤ max{d(pi, pk), d(pk, pj) | i < k ≤ j}. So we
simply compute the maximum Euclidean distance of any point in P [i, j] to the shortcut end
points pi and pj in time O(j − i). As the time to compute this upper bound is equivalent to
that of an oracle call, the overall running time decreases even if only a few oracle calls are
saved. A second observation that helps to avoid unnecessary oracle calls is that error intervals
do not need to be refined all the way down to the backstop ε/nc immediately. Instead, if
we consider the set of current shortcut candidates, refinements are only necessary until the
best candidate is separated from the others. Thus, upon insertion of a new element in the
PQ we issue oracle calls with decreasing error bounds until false is returned, or until we
reach the same upper bound as we have for the current top element in the PQ. In the latter
case, we refine both of them further until the oracle returns false for one (or both) of them.
Thus, especially when the best candidate has a significantly smaller error than the others,
oracle calls are saved. We investigate the impact of backstop value and of the proposed

Table 3 2-GREEDY running times as a function of ε0. Input size ≤ 600, 000. Number of oracle
calls per shortcut, and in relation to the worst-case.

2-GREEDY time (ms) ‘oracle’
ε0 (m) avg. max. calls % worst

100 43.5 1961 1.6 75%
10 53.1 2261 5.1 64%
1 65.1 2973 10.4 63%

0.1 80.8 3601 17.8 70%
1e-3 96.7 4171 27.0 60%
1e-5 102.0 4447 30.0 48%
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Figure 7 Results of gradual simplification for Mallorca with (from top to bottom) 35000, 548,
137, and 11 points.

engineering on the number of oracle calls for the 2-GREEDY algorithm. Table 3 summarizes
our findings. The backstop value ε0 provides a lower bound for the shortcut error interval
refinement process and can be modulated via the choice of c in Theorem 11. As we deal in
our experiments with real-world trajectories, we provide ε0 in meters. As to be expected, the
smaller the backstop the larger the running times as more oracle calls need to be issued to
differentiate between shortcuts with small errors. As shown in the last column of the table,
using improved upper bounds on the shortcut errors and only refining intervals on demand
reduces the number of oracle calls by 25-52%. This helps to achieve fast processing times
even for huge trajectories with over half a million points.

6.4 Showcase Appplication
As discussed in Section 5, one strength of GLS is that after the solution sequence is computed,
an simplification consisting of k segments can be extracted in time O(k) for any given k.
This is an important feature for dynamic map rendering, where polylines or polygonal shapes
are displayed on demand based on user interaction and selection.

In Figure 7, top, the island of Mallorca is shown as represented in OpenStreetMap
with roughly 35000 points. When rendering Mallorca as part of a larger map, it is clearly
unnecessary to draw it with all these details. So a rendering engine might ask for a
simplification using only few hundred points. This can be easily realized by drawing only the
last k points in the GLS ordering where k can be chosen completely freely (e.g. depending on
the rendering capability of the device). Figure 7 also shows simplifications of Mallorca using
different numbers of points. In a zoomed out view, there is hardly any difference between
the representation using 35000 points versus the representation using 137 points, which are
less than 0.5% of the input. Again, note that such a representation can be obtained using
only 137 steps based on our index structure after GLS computation.
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Figure 8 Comparison of GLS based simplification (top) with naive subsampling (bottom) on the
port of Mallorca instance using 4382 points each. In the bottom image, shape distortions and visual
artifacts are clearly visible.

A naive method that allows for such fast simplification would be to perform simple sub-
sampling, where only every n/k-th point is displayed. While not requiring any preprocessing,
the results are considerably worse, as can be seen in a closeup of the port of Mallorca in
Figure 8. Here we show a zoomed in view of the port of Mallorca in a simplification consisting
of 4,382 points. On top, using GLS, we see that the piers are well preserved, whereas using
subsampling as depicted in the bottom picture leads to a heavily distorted shape. Further-
more, using subsampling on different zoom levels violates our requirement of producing
consistent simplification sequences. GLS, on the other hand, offers full flexibility in the
selection of desired local simplifications and simplification sequences, which are guaranteed
to be consistent with each other.

7 Conclusions and Future Work

We proposed the gradual line simplification problem and provided practically useful al-
gorithmic solutions. In particular the b-GREEDY algorithm turns out to be an easy to
implement and fast approximation algorithm for GLS, which allows to trade running time
against quality. Choosing suitable parameters, even huge input lines and line sets can be
processed in real time. By providing n − 1 consistent simplifications of a given input polyline
with a single computation at once, GLS caters to applications as continuous zooming or
customized level of detail selection.

In future work different objective functions for GLS could be investigated, as e.g. the sum
of squared shortcut errors, or the sum over the shortcut errors of each individual simplification.
The latter takes the order in which shortcuts are inserted into account, yielding a more
intricate optimization problem.
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