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Abstract
Identifying a maximum independent set is a fundamental NP-hard problem. This problem has several
real-world applications and requires finding the largest possible set of vertices not adjacent to each
other in an undirected graph. Over the past few years, branch-and-bound and branch-and-reduce
algorithms have emerged as some of the most effective methods for solving the problem exactly.
Specifically, the branch-and-reduce approach, which combines branch-and-bound principles with
reduction rules, has proven particularly successful in tackling previously unmanageable real-world
instances. This progress was largely made possible by the development of more effective reduction
rules. Nevertheless, other key components that can impact the efficiency of these algorithms have not
received the same level of interest. Among these is the branching strategy, which determines which
vertex to branch on next. Until recently, the most widely used strategy was to choose the vertex
of the highest degree. In this work, we present a graph neural network approach for selecting the
next branching vertex. The intricate nature of current branch-and-bound solvers makes supervised
and reinforcement learning difficult. Therefore, we use a population-based genetic algorithm to
evolve the model’s parameters instead. Our proposed approach results in a speedup on 73% of the
benchmark instances with a median speedup of 24%.
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1 Introduction

An independent set of an undirected graph G = (V, E) with vertex set V and edge set E, is a
subset I ⊂ V such that the vertices in I are pairwise non-adjacent, i.e. ∀u, v ∈ I : {u, v} /∈ E.
The problem of finding an independent set of maximum cardinality is a fundamental NP-hard
problem [15]. Its applications span computer graphics [44], network analysis [41], route
planning [24], and computational biology [3, 7]. More applications use its complementary
problems minimum vertex cover and maximum clique.

Branch-and-reduce is one of the most successful techniques in both theory [6, 54] and
practice [1, 18, 19, 40] to solve the maximum independent set problem (MIS). Branch-and-
reduce algorithms combine classical branch-and-bound algorithms with repeated application
of so-called reduction rules after every branching step. Reduction rules can remove known
parts of the graph that are provably in or out of some maximum independent set or such
that a solution for the reduced graph can be lifted to a solution for the original graph. These
reduction rules can often drastically reduce the size of the graphs, leading to faster processing
times.

In the past, research has mainly been focused on developing reduction rules [2, 5, 8, 20, 49].
Recently, other aspects like search space pruning [40] and branching vertex selection [18]
have been shown to have considerable impact on the performance of branch-and-reduce
solvers. Some first results using machine learning have also shown to be effective for heuristic
(inexact) solvers [26, 32], where vertices that are likely to be part of a solution are predicted.

2 Related Work

In this section, we cover the existing work on branching techniques and introduce graph
neural networks. We also give a brief overview of the different learning paradigms used in
this area.

2.1 Branching Vertex Selection

The most commonly used strategy for selection a branching vertex for maximum independent
set and minimum vertex cover is to select a vertex of maximum degree [1, 14, 19, 40]. Akiba
and Iwata [1] compare this strategy to branching on a vertex of minimum degree or a random
vertex and show that both of these perform substantially worse. Wang et al. [53] also
compare maximum degree branching to other simple heuristics for the weighted version of
minimum vertex cover and find maximum degree branching to perform best. Hespe et al. [18]
introduce several new branching vertex selection strategies and show that targeting vertices
whose removal enables new reductions consistently leads to improved or equal performance
compared to branching on the highest degree vertex. They show this result on benchmark
instances from the 2019 PACE challenge on vertex cover [12] and the 1993 DIMACS challenge
on maximum clique [21].

Most algorithms for maximum clique use a greedy algorithm to compute a vertex coloring
and branch on vertices with a high coloring number [47, 51]. Other algorithms use the so-called
degeneracy order of the graph [4] or iterative maximum independent set computations [29]
to determine the branching order. Some algorithms use MaxSAT encodings to prune the set
of branching vertices [29, 30, 31].
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2.2 Graph Neural Networks
Graph Neural Networks (GNNs) are machine learning models that process and analyze data
structured as graphs [45]. Traditional neural networks are not well-suited for processing
graph-structured data since they operate on fixed-sized input vectors. GNNs address these
limitations by introducing specialized architectures that handle graph data effectively. One
popular GNN architecture is the Graph Convolutional Network (GCN) introduced by Kipf
and Welling [25]. At each layer in a GCN, each node aggregates information from its
immediate neighbors and combines it with its own data. After this, the information stored
in each node is passed through a layer-specific neural network to create the node information
for the next layer. This architecture is the same one we use to build our GCN models,
and it is defined as follows: Let A be the adjacency matrix for an undirected graph with
added self-edges and D be the diagonal degree matrix, where Dii =

∑
j Aij . Each vertex

has a feature representation that changes at each layer in the model. The length d of the
feature representation at layer l is denoted by d(l). Stacking all the feature vectors at the
l’th layer gives the matrix H(l) ∈ R|V |×d(l) . Finally, as in traditional neural networks, we
have the trainable parameters W (l) ∈ Rd(l)×d(l+1) and bias b(l) ∈ R1×d(l+1) , in addition to
a non-linear activation function σ, such as ReLU(x) := max(0, x). With this, we use the
following layer-wise propagation rule.

H(l+1) = σ(D− 1
2 AD− 1

2 H(l)W (l) + b(l))

In our case, there are no features associated with the vertices. The only input to the
problem is the graph itself. Therefore, we set the input dimension d(0) = 1 and initialize
H(0) with all ones.

To clarify the propagation rule further, the first part of the equation D− 1
2 AD− 1

2 H(l) is
a message-passing step where each vertex aggregates information from its neighbors. The
inclusion of the two D− 1

2 matrices scales each message with both the sender and receiver’s
degree. The rest, σ(H(l)W (l) + b(l)), is like any traditional neural network. Both H and W

are dense matrices where each row in H corresponds to the feature vector of one vertex. The
bias term b is a vector added to each row of the output at this layer. See Figure 1 for an
illustration of one GCN layer.

Supervised Learning

A widely used technique to train GNNs for combinatorial optimization tasks is supervised
learning. Examples of this include the traveling salesperson problem [22], coloring [27],
maximum cut [46], and maximum independent set [26, 32]. Given a set of training examples
with associated labels or targets, supervised learning aims to adapt the model’s parameters
based on these examples and targets. More specifically, using a loss function that measures
how well the current parameters align with the target outputs, the problem is to minimize
this loss value. Assuming the loss function is continuous and differentiable, we can compute
gradients for each parameter and perform gradient descent. For a more in-depth introduction
to supervised learning, see, for instance, Goodfellow et al. [16].

Reinforcement Learning

Unlike supervised learning, reinforcement learning does not rely on training examples. Instead,
an agent––in this case, a GNN model – explores an environment by taking actions. After
choosing an action, the new state is evaluated into a reward and passed back along with the
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Figure 1 Illustration showing the layer-wise propagation rule introduced by Kipf and Welling [25].
The first column shows the input graph and input matrix H(0). Since the input is only the graph
itself, the feature matrix H(0) is initialized with a single 1 for each vertex. The second column
shows the message-passing step. The matrix T is only used in this figure as the temporary result
between the message-passing and the dense neural network part. Since the message-passing step
uses D− 1

2 AD− 1
2 , the output for each vertex depends on both its own degree and the degree of each

vertex in its neighborhood. The last column shows the dense neural network part. Here we do a
dense matrix multiplication between T and the trainable parameters at this level W (0) to get H(1).
Finally, the bias vector b(0) is also added to each row of H(1). The activation function is not shown
in the illustration but is applied to each element of H(1) at the very end.

state to the agent. The goal is to maximize this cumulative reward. This learning paradigm
saw a surge in popularity after the success of AlphaGo for the game of Go [48]. It has since
also been successfully applied to combinatorial optimization problems with GNNs. Examples
of this include the traveling salesperson problem [10, 23], vehicle routing [39], subgraph
matching [52], and minimum vertex cover [23].

Genetic Algorithms

A far less common technique is to use genetic algorithms to train the model’s parameters.
Genetic algorithms make use of biology-inspired mechanisms to evolve a solution over
time. These mechanisms include crossover, mutation, and selection [33]. Historically,
some contention existed between supervised learning using backpropagation and genetic
algorithms [36]. However, the former turned out to be far more successful, especially in
light of computer vision. Still, recent results have shown that genetic algorithms can be
a competitive alternative to reinforcement learning [13, 43, 50]. In these comparisons, the
problem was Atari games or similar benchmarks. To our knowledge, training GNNs using
genetic algorithms has yet to be applied to combinatorial optimization tasks.

3 GCN Guided Branching

We now briefly motivate our GCN-based branching strategy before describing how we train
and use the models. For motivation, several good arguments exist for using machine learning
for branch selection. First, the default strategy used in most solvers – branching on the
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highest degree vertex – is already a heuristic. Regardless of the strategy used, the correctness
of the algorithm is not changed, and the asymptotic running time remains the same. However,
we know from previous studies that the choice of branching strategy can have a large impact
on overall performance. The benchmark instances typically used are not arbitrary graphs
either. For example, the instances from the 2019 PACE challenge include transit graphs, road
networks, and social network graphs [12]. It is reasonable to think that there are patterns
in this data that a machine-learning model can pick up and learn new branching strategies
from.

At a high level, our strategy is to let a GCN model decide the next vertex to branch on.
Before each branch, we pass the remaining graph as input to a pre-trained GCN model. The
output from the model is a single value for each vertex (d = 1 at the last layer). The solver
then uses the vertex with the highest value as the next branching vertex.

Training a GCN model to pick the next vertex to branch on is problematic from a
machine-learning perspective. Ideally, we would like to do supervised learning with labeled
data. However, it is not obvious how to generate such data. Several factors could make one
branch better than another. For instance, after branching, the resulting graph could:

Break apart into multiple connected components
Yield better lower/upper bounds
Shrink further due to reduction rules

Furthermore, these benefits may not manifest immediately. Instead, the best strategy may
be to perform several seemingly bad branches that eventually lead to early termination. This
makes it difficult to find optimal branching sequences, even for small instances. Previous
results show that it can be done [38], but we argue that two main issues still remain.

The first is non-unique solutions. As with the independent set problem itself, an optimal
solution is not necessarily unique. Also, the intersection between optimal solutions could
be empty, meaning a GCN could output an optimal solution while being completely wrong
measured against the known target. In their supervised learning approach to the MIS problem,
Li et al. [32] addressed this issue by having the GCN model output multiple solutions and
using the best one to compute gradients, using hindsight loss. While this does address the
problem, it’s not a solution.

The second problem is that following a branching sequence close to the optimal could
result in a vastly different execution time compared to the optimal. For example, consider
the case where the optimal sequence splits the graph into two connected components. If
only one vertex appeared later in the sequence, the graph could remain connected, and the
execution time could be worse than the maximum degree branching. The point is that we
would be training on a proxy problem, and a model that achieves low loss on the training
data would not necessarily perform well in practice. This also distinguishes this problem
from the broader branch of prediction algorithms [34], which should be learnable with few
examples. For these reasons, we do not attempt supervised learning.

The next logical step would be to use some form of reinforcement learning. The problem
of picking the next branch fits nicely into the agent-action-reward cycle. However, the main
problem with this approach is the intricate implementations of the existing solvers. Moving
between states has the added cost of checking reduction rules, testing connectivity, and
searching for lower bounds. It would not make sense to turn off these parts, as it’s precisely
this interaction between the branching and other elements of the solver we wish to learn.
Reinforcement learning is certainly a promising approach, but we also leave this for future
work.

SEA 2024
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Having excluded supervised and reinforcement learning, we move on to evolutionary-based
approaches. The main advantage of this approach is that we can train directly on reducing
execution times. This means we avoid the problems mentioned for supervised learning because
any output resulting in the same running time reduction is rewarded equally. Using a similar
genetic algorithm as Such et al. [50], we start from a population of N randomly initialized
GCN models. At every iteration, we assign each model a fitness score (see Section 3.2). The
genetic algorithm performs truncation selection, where the top T best-performing models
become parents for the next generation. More specifically, when moving from one generation
to the next, the best performer is copied directly to the next generation. The rest are mutated
or crossovers from models among the top T performers in the previous population.

3.1 Genetic Operators for Neural Networks

Genetic algorithms are not commonly used directly on the parameters of a model. However,
there are some previous studies that have introduced genetic operators specifically for neural
networks. In the following, we present the operators that we use in our training procedure.

Mutate-Weights

The simplest form of generating a new model is by simply copying the parent’s weights and
adding Gaussian noise to them. It was the only operator used by Such et al. [50]. Montana
and Davis also tested this in an earlier study [36]. However, they showed that it performs
poorly compared to slightly more complicated operators.

Mutate-Nodes

The nodes here do not refer to the input graph’s vertices but rather the nodes of the neural
network. Typically, neural networks are depicted as directed graphs, with the parameters
being edge weights. Based on this picture, the mutate-nodes operator selects a few random
non-input nodes in the neural network and adds Gaussian noise to the incoming edge weights.
As for the GNN architecture presented in this paper, this operator selects random columns
from the W matrices to mutate, including the associated bias value. Montana and Davis [36]
introduced this operator and showed it to outperform mutate-weights.

Crossover-Directed

This operator takes two parents and creates one offspring. The idea is to use the most
important parameters from each parent and fill in the rest with random values [13]. More
specifically, a new model is created as follows:
1. Remove a fraction ζ of the parents’ weights closest to zero.
2. Set the child’s parameters to the larger of the parents’ values.
3. Add random weights to make up for the lost values.

Faycal and Zito [13] introduced this operator and argued that the largest weights contribute
the most to a model’s success and should therefore be the ones passed on to the offspring.
They base this argument on another result by Mocanu et al. [35] demonstrating that neural
networks with sparse connections can achieve the same accuracy as fully connected ones.
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Crossover-Nodes

As in mutate-nodes, crossover-nodes refer to the nodes in the neural network, not the input
graph. This operator also starts from two parents and produces one offspring as follows:
For each node in the neural network – columns in the H matrix – flip a coin and copy the
incoming edge weights from the first or second parent [36]. The intuition for this operator is
that the edge weights going into one node form a natural subgroup of all the parameters in
the model. This is because these weights will determine one feature for the next layer. When
combining two parents to make a new model, it is not likely that a random mix of their
parameters will lead to a better-performing model. Using this crossover operator instead,
learned features from each parent could combine into a better-performing offspring.

We use all the operators mentioned so far to produce the next generation. As stated
earlier, the best-performing model is copied unmodified to the next generation. The rest of
the population is generated by choosing a random operator and then picking one or two
parents based on the selected operator. The parents are chosen uniformly at random from
the top T best performers from the previous generation.

3.2 Fitness Function

Deciding how to define fitness depends on what results one aims for. There are sensible
aggregated measures, such as the total time to solve a set of benchmark instances or the
average speedup compared to max. degree branching. The types of models one gets from
training with different fitness functions can vary greatly. For example, in the case of total
time, models that perform well on the longest-running instances will score the best. This
model could be preferable as it may lead to more solved instances. But on the other hand,
it could also perform significantly worse on easier instances. Average speedup or geometric
mean of speedup are both options that treat fast and slow running instances equally. In
this case, the aim is to have a model that generally makes the solver run faster. The three
options mentioned so far, total, average, and geometric mean, are all reasonable. Table 1 and
Figure 2 illustrates how these different fitness functions could impact the final performance.
We use the geometric mean of speedup as our fitness function since it is the most robust in
Table 1 and Figure 2, and it treats all instances equally, which is reasonable when aiming for
a model that performs well on unknown inputs.

Table 1 Table of aggregated total speedup, average speedup, and the geometric mean of speedup
for each of the respective fitness functions. The columns are models trained on each fitness function,
and the value at each row is how the model performed according to a different aggregated measure.
For this example, the baseline is max degree branching, and the solver is BnR. The source of these
aggregated values can be seen in Figure 2.

↓ eval. | trained on→ total average geom. mean
total 1.19 1.01 1.16
average 1.17 1.22 1.20
geom. mean 1.14 1.17 1.19

SEA 2024
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Figure 2 Illustration of how different fitness functions can lead to different results. The plot
shows the speedup compared to max. degree branching for models trained with different fitness
functions. Each of the models is best in their respective aggregated measure. This experiment
used ten randomly selected graphs from the training data and the BnR solver. It only shows the
difference fitness function can make and is otherwise unrelated to the later results.

4 Experiments

In the following, we present the computation platform, benchmark instances, details on how
the GCN models were trained, and results from the experimental evaluation. When running
the solvers, we record two measures: the execution time and the number of branches the
solver checks. The number of branches can give an indication of how much overhead the
GCN computation adds. The plots show speedup over max. degree branching, where speedup
is computed by dividing the execution time of max. degree branching by the execution time
of the respective alternative. Similarly, in the case of branches, the speedup is the number of
branches with max. degree branching divided by the number of branches with the respective
alternative. For a complete overview of the results, see the appendix.

4.1 Experimental Environment
We insert the GCN-based branching strategy into two pre-existing solvers. The first is the
branch-and-reduce solver by Akiba and Iwata [1], also used by Hespe et al. [18] to find better
branching strategies. And the second is the SAT-and-reduce solver by Plachetta and van
der Grinten [40]. These two solvers will be referred to as BnR and SnR, respectively. Both
solvers and the GCN implementation are written in C++ and compiled with g++ version
9.4.0 using the -O3 flag. The code for both of the modified solvers is publicly available on
GitHub23. The machine used to execute all the experiments has an AMD EPYC 7551P
32-core processor with 256GB of DDR4 ECC memory running Ubuntu 20.04.4 with Linux
Kernel 5.4.0-124. We run one instance per NUMA node to speed up the experiments, so 4
instances are run concurrently. To reduce noise and maintain fairness, only a single solver
runs simultaneously, and the instances are started in the same order for each solver.

2 https://github.com/KennethLangedal/CutBranching-GNN
3 https://github.com/KennethLangedal/vc-satreduce-gnn

https://github.com/KennethLangedal/CutBranching-GNN
https://github.com/KennethLangedal/vc-satreduce-gnn
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4.2 Instances

Table 2 List of the instances used for testing. Along with the number of vertices and edges for
each graph.

Graph |V | |E|
as-skitter 1,696,415 11,095,298
baidu-relatedpages 415,641 2,374,044
bay 321,270 397,415
col 435,666 521,200
fla 1,070,376 1,343,951
hudong-internallink 1,984,484 14,428,382
in-2004 1,382,870 13,591,473
libimseti 220,970 17,233,144
musae-twitch_DE 9,498 153,138
musae-twitch_FR 6,549 112,666
petster-fs-dog 426,820 8,543,549
soc-LiveJournal1 4,847,571 42,851,237
web-BerkStan 685,230 6,649,470
web-Google 875,713 4,322,051
web-NotreDame 325,730 1,090,108
web-Stanford 281,903 1,992,636
PACE, 200 graphs 153 - 138,141 625 - 227,241
DIMACS, 80 graphs 28 - 4,000 72 - 3,997,732

We evaluate our GCN-based approach on the same instances the authors of BnR and SnR
used. Both of these solvers were evaluated on instances from the PACE 2019 Challenge on
Minimum Vertex Cover [11]. BnR further evaluated the branching techniques on instances
from the second DIMACS Implementation Challenge [21], the Stanford Network Analysis
Project (SNAP) [28], the 9th DIMACS Implementation Challenge on Shortest Paths [9], and
the Network Data Repository [42]. Table 2 shows more information about the instances.
Individually for each solver, the instances with less than 10 branches or less than 0.1 seconds
running time are excluded for that solver. Furthermore, instances are also excluded if no
branching strategy solves them within 30 minutes. When computing aggregated speedups, if
one strategy times out and another finishes within 30 minutes, the strategy that times out
receives the 30 minutes as execution time and the same number of branches as the strategy
that finished. A time limit of 30 minutes is commonly used for evaluating exact solvers. It
was used by SnR and is also the standard time limit for the PACE challenge [40, 12]. Due
to the exponential running time for these solvers, it is unlikely that longer execution times
would drastically change our results. BnR included results with a 10-hour time limit, and on
the PACE instances, only two additional instances were solved [18].

For training the GCN models, we need to use a different dataset. The PACE 2019
Challenge drew the final 200 instances from a larger collection of over 12 thousand instances.
Filtering out the 200 instances that ended up in the challenge and those with less than 0.1
seconds or more than 1 minute running time, we are left with roughly 1700 instances to use
for training and validation.

SEA 2024
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4.3 GCN Training
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Figure 3 Results from 25 generations using the BnR solver. The shaded red area shows the range
of performance from the top T models on the training data. Similarly, the gray area shows the same
for the validation data.

We use a population size of N = 100 and T = 10 parents for the next generation to
train the GCN models. Each mutation operator is equally likely to be used, and we use
ζ = 0.3 for the crossover-directed operator. The models are initialized using weights drawn
uniformly at random in the real interval [−1, 1]. The architecture of the models consists of
three GCN layers with 32 features in the hidden layers. When adding noise to the weights
in mutate-weights and mutate-nodes, we use a normal distribution with a mean of 0 and a
standard deviation of 0.01. Finally, we remove the two highest speedups when computing
the fitness. The reason for doing this is that, in some instances, the running time can be
reduced to virtually zero by picking the correct vertex to branch on. When this happens, the
population gets stuck since any change in that particular graph leads to a very large drop in
fitness. The goal is to train a model that performs well in general, not optimally on a select
few graphs.

The results from 25 generations using the BnR solver can be seen in Figure 3. The red
line in the figure shows the fitness of the best model on the training data. Since we copy the
best model unmodified, the fitness for this model will never decrease. However, the fitness
for the rest of the models in the top T can vary from generation to generation. The shaded
red area in the figure illustrates this, showing the range of fitness for the top T models. The
black line in the figure shows the best fitness on the validation data. And similarly, the
shaded black area shows the range of fitness for the top T models on the validation data.
Note that the best performer on the validation set is not necessarily the best on the training
data.

Population-based training of neural networks like this is highly parallelizable. Evaluating
the fitness of each model can be done in parallel with no communication or synchronization.
However, using execution time in the fitness function made this more challenging. Modern
CPUs have dynamic clock speeds that fluctuate depending on the current workload and
power/temperature limitations. Loading up all the cores will typically reduce the clock
speeds significantly compared to a sequential program. Both cache and memory bandwidth
are also shared resources that can impact the execution time. To address these issues, we
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lowered the machine’s clock speed until we got stable execution times while running several
instances in parallel. Doing this introduces a new problem since it changes the cost of memory
access compared to higher clock speeds. Still, the difference between running the training
sequentially and in parallel is at the order of weeks compared to days, so we opt for the
lowered clock speed. In the end, executing one iteration took roughly 30 minutes, with some
uncertainty based on the overall quality of the particular generation. The whole training
procedure took two days to finish.

4.4 Experimental Results for BnR
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Figure 4 Cactus plot showing the speedup of our GCN-based branching and targeting the packing
reduction rule in the BnR solver. The basis for computing speedup is the max. degree branching
strategy. Instances are sorted by the speedup over max. degree branching, individually for each
configuration. Instances that timed out are ranked the lowest and marked with tle, instances that
were unsolved by max. degree branching but solved by another configuration are ranked the highest
and marked with new. This figure shows results for the whole set of benchmark instances (excluding
those solved by no configuration and those solved quickly or with very few branches), including the
speedup comparing execution time and number of branches.

We start by showing the results of our GCN-based branching strategy on the whole
dataset using the BnR solver. The results are shown in Figure 4, along with the best strategy
by Hespe et al. [18] targeting the packing reduction rule. The GCN-based strategy clearly
outperforms both the max. degree and packing strategies. In addition to being the fastest
on the majority of instances, it also solves 15 more instances that timed out with both the
max. degree and packing strategies. For this solver, the speedup in terms of branches closely
resembles the speedup in execution time. However, there is a more noticeable gap between
the two for the GCN strategy.

SEA 2024



20:12 Targeted Branching for the MIS Problem Using GNNs

The 296 graphs used for testing can be categorized as follows:
Unsolved by any configuration: 147
Solved with less than 10 branches or in less than 0.1 seconds: 42
Remaining instances shown in Figure 4: 107

Regarding aggregated measures, the result is a total speedup of 2.37 over maximum degree
branching, the geometric mean of the speedups is 1.94, and the average speedup is 547.04.
Note that outliers heavily influence these measures. For instance, the speedup sometimes
reaches the thousands on graphs where max. degree and packing timed out. Besides looking
at the tables in the appendix or Figure 4, we can observe that our GCN-based branching is
fastest on 78 out of 107 instances. Among the graphs with a speedup, the median speedup is
24%. In terms of checking the fewest branches, the number increases to 92 out of 107, with a
median speedup of 24%.
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Figure 5 Speedup of our GCN-based branching compared to max. degree branching for the BnR
solver on the DIMACS and the other sparse instances. The basis for computing speedup is the max.
degree branching strategy. Instances are sorted by the speedup over max. degree branching.

The results are substantially better on the PACE instances than on the DIMACS and
the other sparse instances. In fact, there is only one graph from the PACE challenge where
our GCN-based strategy performs worse than max. degree branching. This is not surprising
since the training data is more closely related to the PACE instances. In Figure 5, we show
the speedup on only the DIMACS and sparse instances. It is clear that the results in terms
of the number of branches are better than the execution time. This could indicate that the
GCN model is choosing better branches than simply going for the highest degree, but the
added overhead of invoking the GCN model outweighs the benefit. The GCN-based strategy
also solves one more instance here compared to the other strategies.

4.5 Experimental Results for SnR
To the best of our knowledge, SnR is the current stat-of-the-art for exactly solving the vertex
cover and independent set problems. In its default configuration, the SAT solver takes most
of the execution time. With this setting, the solver looks at far fewer branches and, in
extreme cases, times out while having checked virtually no branches. Since choosing these
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Figure 6 Cactus plot showing the speedup of our GCN-based branching in the SnR solver. The
basis for computing speedup is the max. degree branching strategy. Instances are sorted by the
speedup over max. degree branching, individually for execution time and the number of branches.
Instances that timed out are ranked the lowest and marked with tle. Instances that were unsolved
using one strategy but solved with the other are ranked the highest and marked with new. This figure
shows results for the whole set of benchmark instances (excluding those solved by no configuration
and those solved quickly or with very few branches), including the speedup comparing execution
time and number of branches.

branches is the only way for our GCN-based approach to make a difference, it limits the
potential impact of our GCN-based branching strategy. Therefore, we also evaluate the SnR
solver with reduced time for the SAT solver, later called GCN-R. In this configuration, the
SAT recourse limit is halved from its default value of 8192 down to 4096.

In a similar classification as the BnR solver, the 296 graphs used for testing are distributed
as follows:

Unsolved by any configuration: 94
Solved with less than 10 branches or in less than 0.1 seconds: 133
Remaining instances shown in Figure 6: 69

SnR is a far stronger solver than BnR. With the default branching strategy, it solves
52 more instances than BnR with our GCN-based branching. Furthermore, the number of
instances solved before any branching takes place is also significantly higher, 133 compared
to 25 for BnR, highlighting the strength of the pruning techniques used by SnR.

Figure 6 shows the results of our GCN-based branching in the SnR solver compared to
the default max. degree branching. Our GCN-based branching also improves this solver, but
to a lesser extent. With this solver, the number of solved instances is the same for both
strategies. However, they both time out on one instance where the other finished within
the time limit. Regarding aggregated numbers, the average speedup is 1.08, the geometric
mean of speedup is 1.06, and the total speedup is 1.03. The ratio of improved instances stays
roughly the same as in BnR, with 50 out of 69 graphs having a speedup with regard to the
execution time. Among the graphs with a speedup, the median speedup is 6%.
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When reducing the SAT resource limit, the speedups improve. The average speedup is
now 1.22, the geometric mean of speedup is 1.19, and the total speedup is 1.12. The ratio of
improved instances is now much higher, at 62 out of 69 instances. Among the graphs with a
speedup, the median speedup is now 21%.

5 Conclusion and Future Work

We have introduced a GCN-based branching strategy and demonstrated its effectiveness
on established benchmark instances. We trained and tested our technique in two different
solvers. First, we used a branch-and-reduce solver that had previously been used to find
better branching strategies than simply using the highest-degree vertex. Second, we used
the current state-of-the-art solver for the vertex cover and independent set problems. Our
GCN-based approach gave the best branching strategy on most test instances in both solvers.
For the branch-and-reduce solver, we also solved 15 more test instances.

To the best of our knowledge, this work is also the first application of evolutionary-based
training of graph neural networks. We combined specialized mutation operators for neural
networks to make up our training procedure, and the models were trained on unused data
from the 2019 PACE Challenge. This training paradigm could open up additional avenues for
machine learning on combinatorial problems. Especially where supervised or reinforcement
learning is difficult to use. This is because evolutionary-based training only requires a fitness
function to train the model.

As is usually the case with machine learning, more data and longer training would likely
push our results further. Given more time and effort, it is likely that the other training
paradigms could also be made to work for this problem – especially reinforcement learning,
given its success on similar problems. There are also more types of GNN architectures to
try. We have only considered the GCN model in this work. Still, other options like GIN [55],
k-GNNs [37], or GraphSAGE [17] would be natural continuations.

Finally, we have only considered the independent set problem and two solvers. There
are other applicable problems where we could use the technique presented in this work. For
example, there were many competitive solvers that used branch-and-bound type algorithms
for the directed feedback vertex set problem in the 2022 PACE challenge.
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A Results for BnR

Table 3 Detailed results for the BnR solver on the SPARSE instances. The s column shows
speedup compared to the max. degree. The lowest execution time and number of branches appear in
bold. Notice that one graph timed out with the max. degree and packing strategies. This instance
receives the 30-minute running time and the same number of branches as the GCN-based strategy
for the aggregated measures.

Execution Time Number of Branches
Max degree Packing s GCN s Max degree Packing s GCN s

as-Skitter >1,800.00 >1,800.00 1.00 1,619.45 >1.11 >1,574,639 >1,574,639 1.00 1,574,639 >1.00
bay 2.19 3.68 0.60 3.05 0.72 1,479 2,539 0.58 2,572 0.58
fla 156.13 224.05 0.70 193.22 0.81 74,693 107,189 0.70 104,658 0.71
in-2004 5.68 5.68 1.00 5.61 1.01 769 754 1.02 655 1.17
libimseti 1,185.60 1,188.06 1.00 1,188.57 1.00 483 483 1.00 482 1.00
musae-twitch_FR 41.93 41.54 1.01 45.51 0.92 11,015 10,858 1.01 11,143 0.99
petster-friendships-dog 7.91 7.94 1.00 7.91 1.00 91 91 1.00 90 1.01
soc-LiveJournal1 11.26 11.26 1.00 11.17 1.01 134 129 1.04 120 1.12
web-BerkStan 212.77 209.50 1.02 229.68 0.93 54,590 53,450 1.02 46,841 1.17
web-Google 2.43 2.44 1.00 2.43 1.00 47 47 1.00 48 0.98
web-NotreDame 11.26 12.17 0.92 4.86 2.32 4,824 5,354 0.90 1,565 3.08
zhishi-baidu-relatedpages 0.86 0.87 0.99 1.35 0.64 80 80 1.00 80 1.00
zhishi-hudong-internallink 1.37 1.38 0.99 1.41 0.97 12 12 1.00 13 0.92
total 3,439.39 3,508.57 0.98 3,314.22 1.04 1,722,856 1,755,625 0.98 1,742,906 0.99
average 0.94 1.03 0.94 1.13
geom. mean 0.93 0.98 0.93 1.04

Table 4 Detailed results for the BnR solver on the DIMACS instances. The s column shows
speedup compared to the max. degree. The lowest execution time and number of branches appear
in bold.

Execution Time Number of Branches
Max degree Packing s GCN s Max degree Packing s GCN s

brock200_1 131.31 129.73 1.01 129.23 1.02 314,172 299,394 1.05 284,536 1.10
brock200_2 4.14 4.14 1.00 4.27 0.97 5,308 5,258 1.01 5,245 1.01
brock200_3 20.86 20.78 1.00 18.29 1.14 42,295 41,167 1.03 31,335 1.35
brock200_4 25.53 25.56 1.00 27.97 0.91 43,928 43,323 1.01 45,506 0.97
c-fat500-1 1.12 1.12 1.00 1.20 0.93 78 78 1.00 78 1.00
c-fat500-2 0.56 0.56 1.00 0.59 0.95 38 38 1.00 38 1.00
c-fat500-5 0.35 0.35 1.00 0.37 0.94 14 14 1.00 14 1.00
C125.9 0.98 0.93 1.05 0.85 1.15 3,424 3,237 1.06 2,920 1.17
DSJC500_5 1,333.99 1,334.34 1.00 1,357.59 0.98 1,018,216 1,014,808 1.00 998,587 1.02
gen200_p0.9_44 145.70 157.59 0.92 151.75 0.96 315,541 337,284 0.94 322,804 0.98
gen200_p0.9_55 126.96 104.25 1.22 42.51 2.99 298,937 231,273 1.29 82,544 3.62
hamming8-4 17.83 17.83 1.00 19.25 0.93 14,693 14,686 1.00 15,455 0.95
johnson16-2-4 45.03 43.94 1.02 59.95 0.75 308,173 296,707 1.04 449,724 0.69
keller4 2.49 2.50 1.00 2.55 0.98 4,021 3,885 1.04 4,074 0.99
MANN_a27 0.49 0.49 1.01 1.00 0.49 1,371 1,358 1.01 1,966 0.70
MANN_a45 74.64 73.55 1.01 261.54 0.29 123,729 122,681 1.01 228,736 0.54
p_hat1000-1 827.20 831.05 1.00 841.37 0.98 198,063 196,671 1.01 192,302 1.03
p_hat300-1 3.87 3.88 1.00 3.89 0.99 2,863 2,819 1.02 2,802 1.02
p_hat300-2 5.25 5.23 1.00 5.39 0.97 4,115 4,006 1.03 3,834 1.07
p_hat300-3 170.14 164.26 1.04 170.18 1.00 172,392 161,944 1.06 160,874 1.07
p_hat500-1 39.42 39.46 1.00 40.29 0.98 18,546 18,507 1.00 18,586 1.00
p_hat500-2 84.93 84.34 1.01 86.04 0.99 46,135 45,157 1.02 42,972 1.07
p_hat700-1 156.66 156.32 1.00 158.58 0.99 35,482 35,456 1.00 35,041 1.01
p_hat700-2 802.38 786.44 1.02 816.72 0.98 342,951 327,476 1.05 322,804 1.06
san1000 875.86 866.85 1.01 802.24 1.09 145,523 134,899 1.08 99,207 1.47
san200_0.7_1 9.76 9.83 0.99 8.10 1.20 14,004 13,740 1.02 10,478 1.34
san200_0.7_2 0.26 0.26 1.01 0.30 0.89 281 281 1.00 305 0.92
san200_0.9_1 12.04 11.14 1.08 12.15 0.99 17,277 15,689 1.10 16,085 1.07
san200_0.9_2 31.17 15.37 2.03 253.64 0.12 71,784 28,644 2.51 540,166 0.13
san200_0.9_3 1,068.29 1,042.05 1.03 906.57 1.18 2,866,949 2,646,993 1.08 2,313,584 1.24
san400_0.5_1 9.10 9.07 1.00 9.38 0.97 3,099 2,993 1.04 3,116 0.99
san400_0.7_1 896.18 901.66 0.99 721.25 1.24 544,733 542,205 1.00 383,222 1.42
sanr200_0.7 44.34 44.44 1.00 45.36 0.98 87,555 86,366 1.01 83,157 1.05
sanr200_0.9 646.97 583.20 1.11 496.29 1.30 1,734,428 1,510,574 1.15 1,256,081 1.38
sanr400_0.5 331.11 330.89 1.00 339.26 0.98 348,818 347,425 1.00 343,145 1.02
total 7,946.91 7,803.38 1.02 7,795.90 1.02 9,148,936 8,537,036 1.07 8,301,323 1.10
average 1.04 1.01 1.08 1.10
geom. mean 1.04 0.92 1.06 1.01
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Table 5 Detailed results for the BnR solver on the 2019 PACE instances. The s column shows
speedup compared to the max. degree. The lowest execution time and number of branches appear
in bold. Notice that some graphs timed out with the max. degree and packing strategies. These
instances receives the 30-minute running time and the same number of branches as the GCN-based
strategy for the aggregated measures.

Execution Time Number of Branches
Max degree Packing s GCN s Max degree Packing s GCN s

vc-exact_005 1.93 1.87 1.04 1.81 1.07 4,942 4,689 1.05 4,442 1.11
vc-exact_006 0.89 0.85 1.04 0.81 1.10 2,732 2,635 1.04 2,412 1.13
vc-exact_010 2.22 2.18 1.02 2.02 1.10 6,157 6,010 1.02 5,414 1.14
vc-exact_019 3.07 2.95 1.04 2.59 1.19 7,032 6,636 1.06 5,720 1.23
vc-exact_031 77.97 71.89 1.08 54.95 1.42 222,904 201,316 1.11 146,606 1.52
vc-exact_033 0.99 1.03 0.96 0.78 1.26 3,081 3,192 0.97 2,659 1.16
vc-exact_035 7.64 7.35 1.04 6.81 1.12 23,591 22,275 1.06 20,667 1.14
vc-exact_036 1.90 2.32 0.82 14.26 0.13 3,004 3,678 0.82 26,646 0.11
vc-exact_037 10.43 9.85 1.06 9.31 1.12 30,311 27,905 1.09 26,601 1.14
vc-exact_038 12.10 11.99 1.01 11.11 1.09 10,838 10,641 1.02 4,785 2.26
vc-exact_039 93.29 100.86 0.92 3.47 26.85 241,090 257,121 0.94 9,115 26.45
vc-exact_041 48.44 45.67 1.06 36.69 1.32 130,627 120,246 1.09 97,165 1.34
vc-exact_042 36.59 33.69 1.09 29.34 1.25 89,789 81,377 1.10 70,749 1.27
vc-exact_043 181.42 173.34 1.05 139.48 1.30 485,761 450,065 1.08 371,633 1.31
vc-exact_044 91.88 85.57 1.07 73.57 1.25 247,265 224,352 1.10 196,418 1.26
vc-exact_045 24.55 23.24 1.06 21.88 1.12 61,960 57,378 1.08 54,936 1.13
vc-exact_046 112.91 104.91 1.08 75.94 1.49 294,775 267,548 1.10 201,541 1.46
vc-exact_047 57.05 52.27 1.09 48.51 1.18 151,632 135,866 1.12 128,166 1.18
vc-exact_048 25.16 22.99 1.09 22.67 1.11 66,630 59,255 1.12 59,263 1.12
vc-exact_049 18.03 16.20 1.11 16.54 1.09 49,831 43,610 1.14 45,608 1.09
vc-exact_050 50.43 47.12 1.07 43.23 1.17 139,040 126,211 1.10 119,690 1.16
vc-exact_051 55.43 51.48 1.08 46.35 1.20 139,558 127,253 1.10 118,036 1.18
vc-exact_052 23.18 20.62 1.12 20.77 1.12 69,106 59,590 1.16 59,743 1.16
vc-exact_053 59.36 56.66 1.05 57.34 1.04 166,485 154,733 1.08 164,098 1.01
vc-exact_054 32.32 30.78 1.05 26.25 1.23 92,747 85,916 1.08 74,889 1.24
vc-exact_055 7.00 6.45 1.09 6.69 1.05 19,686 17,675 1.11 18,366 1.07
vc-exact_056 95.92 86.94 1.10 72.06 1.33 241,359 212,937 1.13 180,337 1.34
vc-exact_057 64.98 61.75 1.05 49.72 1.31 175,755 162,101 1.08 136,008 1.29
vc-exact_058 48.02 45.18 1.06 42.04 1.14 131,639 120,494 1.09 114,129 1.15
vc-exact_059 13.90 13.52 1.03 12.66 1.10 40,884 38,320 1.07 35,835 1.14
vc-exact_060 77.39 73.33 1.06 65.32 1.18 198,644 183,543 1.08 166,652 1.19
vc-exact_061 22.38 21.54 1.04 17.90 1.25 66,667 63,137 1.06 52,073 1.28
vc-exact_062 67.69 63.65 1.06 52.58 1.29 183,366 167,497 1.09 135,594 1.35
vc-exact_063 68.42 63.48 1.08 46.11 1.48 185,107 168,191 1.10 115,779 1.60
vc-exact_064 28.98 26.81 1.08 25.84 1.12 79,071 71,632 1.10 71,004 1.11
vc-exact_065 36.82 32.88 1.12 28.09 1.31 88,525 77,805 1.14 68,470 1.29
vc-exact_066 8.41 8.04 1.05 7.47 1.13 26,832 25,102 1.07 23,443 1.14
vc-exact_067 120.54 110.98 1.09 100.61 1.20 281,249 251,171 1.12 238,119 1.18
vc-exact_068 8.81 8.08 1.09 8.25 1.07 22,323 19,847 1.12 20,791 1.07
vc-exact_069 43.52 41.35 1.05 34.04 1.28 119,349 110,681 1.08 93,329 1.28
vc-exact_070 11.97 11.62 1.03 9.75 1.23 33,671 31,962 1.05 26,571 1.27
vc-exact_071 34.85 31.81 1.10 27.44 1.27 81,516 72,726 1.12 63,213 1.29
vc-exact_072 44.41 42.70 1.04 35.04 1.27 110,122 103,759 1.06 82,337 1.34
vc-exact_073 42.53 39.16 1.09 35.14 1.21 117,587 106,432 1.10 93,342 1.26
vc-exact_074 7.46 6.98 1.07 6.85 1.09 22,981 20,823 1.10 20,756 1.11
vc-exact_075 >1,800.00 >1,800.00 1.00 472.02 >3.81 >729,491 >729,491 1.00 729,491 >1.00
vc-exact_077 13.90 13.49 1.03 12.67 1.10 40,884 38,320 1.07 35,835 1.14
vc-exact_081 134.31 125.76 1.07 108.79 1.23 350,329 317,725 1.10 282,692 1.24
vc-exact_082 64.11 61.22 1.05 50.17 1.28 196,274 182,337 1.08 152,207 1.29
vc-exact_083 180.28 165.94 1.09 143.98 1.25 503,993 448,958 1.12 405,946 1.24
vc-exact_088 >1,800.00 >1,800.00 1.00 128.57 >14.00 >298,310 >298,310 1.00 298,310 >1.00
vc-exact_091 237.21 221.19 1.07 193.85 1.22 704,763 631,255 1.12 569,242 1.24
vc-exact_093 106.14 100.44 1.06 95.12 1.12 302,210 276,323 1.09 269,310 1.12
vc-exact_099 >1,800.00 >1,800.00 1.00 1.27 >1,419.97 >2,198 >2,198 1.00 2,198 >1.00
vc-exact_100 >1,800.00 >1,800.00 1.00 90.76 >19.83 >222,987 >222,987 1.00 222,987 >1.00
vc-exact_101 >1,800.00 >1,800.00 1.00 45.46 >39.59 >107,949 >107,949 1.00 107,949 >1.00
vc-exact_102 >1,800.00 >1,800.00 1.00 409.29 >4.40 >757,151 >757,151 1.00 757,151 >1.00
vc-exact_104 >1,800.00 >1,800.00 1.00 60.70 >29.65 >93,769 >93,769 1.00 93,769 >1.00
vc-exact_122 >1,800.00 >1,800.00 1.00 599.67 >3.00 >975,834 >975,834 1.00 975,834 >1.00
vc-exact_123 >1,800.00 >1,800.00 1.00 1,011.17 >1.78 >1,603,466 >1,603,466 1.00 1,603,466 >1.00
vc-exact_125 >1,800.00 >1,800.00 1.00 0.36 >4,969.05 >240 >240 1.00 240 >1.00
vc-exact_134 >1,800.00 >1,800.00 1.00 523.57 >3.44 >834,495 >834,495 1.00 834,495 >1.00
vc-exact_144 >1,800.00 >1,800.00 1.00 0.44 >4,127.31 >444 >444 1.00 444 >1.00
vc-exact_149 >1,800.00 >1,800.00 1.00 0.08 >23,488.58 >55 >55 1.00 55 >1.00
vc-exact_186 >1,800.00 >1,800.00 1.00 0.07 >24,279.37 >63 >63 1.00 63 >1.00
total 27,819.17 27,661.96 1.01 5,398.07 5.15 12,692,126 12,086,703 1.05 11,114,834 1.14
average 1.04 899.84 1.06 1.56
geom. mean 1.04 3.06 1.06 1.19
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B Results for SnR

Table 6 Detailed results for the SnR solver on the DIMACS and sparse instances. The s column
shows speedup compared to the max. degree. The lowest execution time and number of branches
appear in bold. Notice that some graphs timed out. These instances receives the 30-minute running
time and the same number of branches as the other strategy for the aggregated measures.

Execution time Number of Branches
Max degree GCN s GCN-R s Max degree GCN s GCN-R s

brock200_2 5.87 6.25 0.94 6.19 0.95 135 141 0.96 141 0.96
brock200_3 45.25 44.75 1.01 41.64 1.09 127 125 1.02 125 1.02
brock200_4 153.50 153.62 1.00 408.02 0.38 127 125 1.02 161 0.79
C125.9 6.66 5.26 1.27 4.60 1.45 569 283 2.01 491 1.16
gen200_p0.9_55 9.13 4.99 1.83 4.76 1.92 119 119 1.00 119 1.00
johnson16-2-4 3.51 3.55 0.99 3.61 0.97 111 119 0.93 119 0.93
keller4 2.96 2.52 1.17 2.00 1.48 183 172 1.06 172 1.06
MANN_a27 3.67 2.28 1.61 1.82 2.01 952 698 1.36 700 1.36
MANN_a45 240.48 354.66 0.68 381.75 0.63 59,764 77,684 0.77 133,865 0.45
p_hat300-1 10.78 10.74 1.00 10.55 1.02 155 153 1.01 147 1.05
p_hat300-2 98.05 97.88 1.00 99.47 0.99 143 139 1.03 139 1.03
p_hat500-1 111.63 121.56 0.92 110.44 1.01 147 147 1.00 147 1.00
p_hat700-1 1,283.38 1,176.11 1.09 1,254.23 1.02 149 149 1.00 149 1.00
san1000 1,033.95 1,041.04 0.99 1,273.51 0.81 583 591 0.99 893 0.65
san200_0.7_2 3.12 3.32 0.94 2.90 1.08 155 143 1.08 161 0.96
san400_0.5_1 28.82 27.84 1.04 28.50 1.01 317 301 1.05 319 0.99
san400_0.7_1 573.00 569.68 1.01 480.19 1.19 131 135 0.97 135 0.97
sanr200_0.7 1,311.31 861.72 1.52 745.57 1.76 155 179 0.87 187 0.83
san400_0.7_2 >1,800.00 1,514.90 >1.19 >1,800.00 1.00 >131 131 >1.00 >131 1.00
musae-twitch_FR 760.18 678.89 1.12 517.91 1.47 63,655 59,923 1.06 60,233 1.06
total 7,485.23 6,681.57 1.12 7,177.68 1.04 127,808 141,457 0.90 198,534 0.64
average 1.12 1.16 1.06 0.96
geom. mean 1.09 1.09 1.04 0.94
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Table 7 Detailed results for the SnR solver on the 2019 PACE instances. The s column shows
speedup compared to the max. degree. The lowest execution time and number of branches appear
in bold. Notice that some graphs timed out. These instances receives the 30-minute running time
and the same number of branches as the other strategy for the aggregated measures.

Execution time Number of Branches
Max degree GCN s GCN-R s Max degree GCN s GCN-R s

vc-exact_005 14.24 10.31 1.38 9.26 1.54 21,373 16,341 1.31 16,337 1.31
vc-exact_006 4.67 4.66 1.00 3.99 1.17 10,321 8,743 1.18 8,897 1.16
vc-exact_010 11.26 9.43 1.19 8.71 1.29 24,805 21,525 1.15 21,791 1.14
vc-exact_019 12.81 12.13 1.06 11.52 1.11 25,573 21,141 1.21 21,141 1.21
vc-exact_031 262.48 236.28 1.11 228.99 1.15 751,333 618,845 1.21 624,627 1.20
vc-exact_035 47.16 46.91 1.01 40.29 1.17 103,415 92,773 1.11 92,965 1.11
vc-exact_037 65.20 57.22 1.14 49.67 1.31 139,951 115,079 1.22 118,101 1.19
vc-exact_038 536.75 504.55 1.06 336.93 1.59 47,564 13,571 3.50 15,224 3.12
vc-exact_041 283.35 249.62 1.14 228.26 1.24 560,171 446,575 1.25 448,417 1.25
vc-exact_042 209.96 200.84 1.05 176.79 1.19 412,043 318,093 1.30 323,581 1.27
vc-exact_043 682.69 575.96 1.19 608.90 1.12 1,987,935 1,510,951 1.32 1,706,531 1.16
vc-exact_044 830.47 747.88 1.11 633.91 1.31 1,169,595 927,837 1.26 958,159 1.22
vc-exact_045 141.62 130.87 1.08 117.05 1.21 223,855 184,035 1.22 184,411 1.21
vc-exact_046 479.52 420.71 1.14 402.01 1.19 1,385,345 1,078,477 1.28 1,095,625 1.26
vc-exact_047 432.25 403.83 1.07 338.20 1.28 700,511 532,225 1.32 554,569 1.26
vc-exact_048 172.49 187.00 0.92 161.74 1.07 277,717 265,105 1.05 269,873 1.03
vc-exact_049 143.05 158.20 0.90 119.71 1.19 265,311 225,279 1.18 231,625 1.15
vc-exact_050 289.93 240.01 1.21 214.05 1.35 524,847 411,621 1.28 420,361 1.25
vc-exact_051 368.18 351.44 1.05 299.89 1.23 605,749 479,097 1.26 490,917 1.23
vc-exact_052 112.94 131.90 0.86 99.80 1.13 222,787 179,035 1.24 187,557 1.19
vc-exact_053 367.94 367.61 1.00 325.34 1.13 742,883 590,957 1.26 608,933 1.22
vc-exact_054 203.35 181.03 1.12 160.81 1.26 396,235 314,093 1.26 317,659 1.25
vc-exact_055 42.68 52.20 0.82 41.26 1.03 77,763 67,797 1.15 69,833 1.11
vc-exact_056 484.93 481.31 1.01 400.77 1.21 605,493 443,437 1.37 461,611 1.31
vc-exact_057 533.33 564.06 0.95 382.75 1.39 369,193 267,187 1.38 312,279 1.18
vc-exact_058 296.89 296.55 1.00 233.02 1.27 389,189 328,549 1.18 350,827 1.11
vc-exact_059 94.05 89.48 1.05 73.01 1.29 153,767 133,153 1.15 134,747 1.14
vc-exact_060 441.34 441.46 1.00 378.06 1.17 750,693 545,615 1.38 555,759 1.35
vc-exact_061 106.38 103.28 1.03 92.24 1.15 237,715 207,215 1.15 209,261 1.14
vc-exact_062 339.35 377.05 0.90 324.93 1.04 580,635 477,137 1.22 495,085 1.17
vc-exact_063 364.76 354.49 1.03 308.13 1.18 539,377 446,631 1.21 539,917 1.00
vc-exact_064 203.36 190.20 1.07 164.95 1.23 379,593 318,951 1.19 323,193 1.17
vc-exact_065 214.95 201.38 1.07 176.85 1.22 330,061 263,297 1.25 274,535 1.20
vc-exact_066 65.16 56.59 1.15 46.15 1.41 129,915 105,033 1.24 106,829 1.22
vc-exact_067 746.68 695.39 1.07 599.71 1.25 718,307 580,471 1.24 622,477 1.15
vc-exact_068 83.35 39.53 2.11 43.90 1.90 74,777 61,695 1.21 76,097 0.98
vc-exact_069 244.19 213.16 1.15 186.07 1.31 431,177 332,151 1.30 339,629 1.27
vc-exact_070 74.72 66.14 1.13 54.57 1.37 141,555 122,765 1.15 122,913 1.15
vc-exact_071 199.15 164.80 1.21 129.95 1.53 297,773 193,943 1.54 202,583 1.47
vc-exact_072 307.34 349.41 0.88 262.03 1.17 383,985 289,101 1.33 299,845 1.28
vc-exact_073 287.55 285.56 1.01 254.10 1.13 526,765 421,175 1.25 433,831 1.21
vc-exact_074 48.24 47.57 1.01 38.21 1.26 85,133 83,435 1.02 84,653 1.01
vc-exact_077 94.11 89.49 1.05 73.04 1.29 153,767 133,153 1.15 134,747 1.14
vc-exact_081 910.11 855.98 1.06 717.73 1.27 1,129,433 817,385 1.38 876,193 1.29
vc-exact_082 356.12 321.09 1.11 292.62 1.22 868,967 710,671 1.22 722,971 1.20
vc-exact_083 1,114.70 1,267.89 0.88 962.21 1.16 1,692,351 1,121,237 1.51 1,204,803 1.40
vc-exact_091 1,156.70 1,184.84 0.98 977.77 1.18 1,959,583 1,523,743 1.29 1,684,477 1.16
vc-exact_093 684.89 743.10 0.92 600.95 1.14 1,035,161 830,441 1.25 883,663 1.17
vc-exact_200 1,384.23 >1,800.00 <0.77 >1,800.00 <0.77 163 >163 <1.00 >163 <1.00
total 16,551.54 16,560.38 1.00 14,190.79 1.17 24,641,610 19,196,929 1.28 20,240,222 1.22
average 1.07 1.24 1.29 1.23
geom. mean 1.05 1.23 1.26 1.21
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