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Abstract
The flip distance for two triangulations of a point set is defined as the smallest number of edge flips
needed to transform one triangulation into another, where an edge flip is the act of replacing an
edge of a triangulation by a different edge such that the result remains a triangulation.

We adapt and engineer a sophisticated A∗ search algorithm acting on the so-called flip graph.
In particular, we prove that previously proposed lower bounds for the flip distance form consistent
heuristics for A∗ and show that they can be computed efficiently using dynamic algorithms. As an
alternative approach, we present an integer linear program (ILP) for the flip distance problem.

We experimentally evaluate our approaches on a new real-world benchmark data set based on
an application in geodesy, namely sea surface reconstruction. Our evaluation reveals that A∗ search
consistently outperforms our ILP formulation as well as a naive baseline, which is bidirectional
breadth-first search. In particular, the runtime of our approach improves upon the baseline by more
than two orders of magnitude. Furthermore, our A∗ search successfully solves most of the considered
sea surface instances with up to 41 points. This is a substantial improvement compared to the
baseline, which struggles with subsets of the real-world data of size 25.

Lastly, to allow the consideration of global sea level data, we developed a decomposition-based
heuristic for the flip distance. In our experiments it yields optimal flip distance values for most of
the considered sea level data and it can be applied to large data sets due to its fast runtime.
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1 Introduction

A triangulation D of a point set S ⊆ R2 is a maximal set of non-intersecting straight line
edges with endpoints in S. Triangulations play an important role in theoretical as well
as applied computational geometry. Applications can, for example, be found in computer
graphics [15], finite element mesh generation [33], or reconstruction problems in geodesy [28].
Usually, the set T(S) of all triangulations of a point set S is exponential in size.

One way to navigate the set T(S) is by edge or diagonal flips. Let e be a diagonal of
D, i.e., an edge that is not part of the convex hull, and let Q be the quadrilateral given
by the two adjacent triangles of e. If Q is convex, then the edge flip of e in D is given by
substituting the diagonal e by the other diagonal f in Q; see Figure 1. This procedure of
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Figure 1 A triangulation with the flip of e indicated by the blue quadrilateral and flipped edge f .

flipping diagonals is often used for iterative local optimization of triangulations with respect
to some criteria. The most famous application of this idea is the construction of the Delaunay
triangulation [8], which uses a min−max angle criterion [20].

A more general question regarding the flip distance is the following: For two triangulations
D and D′, what is the minimal number of edge flips needed to transform D into D′? This
number is called the flip distance dF (D, D′) of D and D′. The set T(S) of all triangulations
and the flip distance dF (◦, ◦) form a metric space, since the flip distance is symmetric,
non-negative, and satisfies the triangle inequality.

Another interesting property of the flip operation is that it induces a graph structure on
T(S), which is called the flip graph FG(S) of S. The set of vertices of the graph corresponds
to T(S) and two triangulations D, D′ ∈ T(S) are connected by an (unweighted) edge if one
can be transformed into the other by exactly one flip. Since every triangulation can be
transformed to the Delaunay triangulation in a finite number of flips [20], the flip graph of a
point set is connected. Additionally, the flip distance dF (D, D′) corresponds to the shortest
path between D and D′ in FG(S). Thus, standard methods for the calculation of shortest
paths can be used to compute the flip distance. It should be noted that the flip graph can
have an exponential number of vertices and edges, which implies an exponential runtime for
the shortest path algorithms. In fact, Pilz [30] showed that deciding if the flip distance of a
pair of triangulations is at most k is NP-complete.

The motivation for our work is a recent paper by Nitzke, Niedermann, Fenoglio-Marc,
Kusche and Haunert [28] who used optimal minimum error triangulations to reconstruct
the sea surface using tide gauge stations and satellite data. In their work, they compute an
optimized triangulation for every month in a period of 22 years and use these optimized
triangulations to reconstruct the sea surface at other points in time. Due to seasonal changes
in sea level, it is usually more accurate to reconstruct the sea surface for a given date
(month and year) from an optimized triangulation for the same month (but a different year).
However, due to local shifts and fluctuations, this expectation does not always materialize.
Therefore, to gain more insights which triangulations should be used for the reconstruction
at a specific point in time, it is of interest to cluster the set of optimized triangulations with
respect to some distance measure. One candidate for a distance measure is the flip distance
since it is a natural way to define the distance between two triangulations. Additionally,
dF (◦, ◦) is a metric on T(S), which allows the use of most generic clustering algorithms.

The literature on theoretical results regarding the flip distance of point sets is extensive,
but to the best of our knowledge, the practical computation of the flip distance for real-world
applications has yet to be discussed in any detail. With our work, we want to initiate this
discussion.
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Our contribution

We adapt and engineer an A∗ search algorithm for the exact computation of the flip
distance. For this, we prove that the lower bound given by Eppstein [9] constitutes a
consistent heuristic in the context of the A∗ paradigm. For the calculation of the heuristic
values during a node extension, we use dynamic algorithms to improve the naive runtime
by a factor of O(n).
As an alternative approach, we suggest the first integer linear program for the flip distance
problem.
We present a new decomposition-based upper bound for the flip distance problem that
can be effectively applied to the real-world data.
We propose and discuss a new benchmark data set for the flip distance problem. The
data set consists of real-world data based on the sea surface reconstruction problem as
well as randomly generated data for systematic testing.
We use our benchmark data to perform an experimental evaluation of our algorithms
against bidirectional breadth-first search as a baseline. Our analysis focuses on the runtime
and highlights the impact of employing good heuristics on the algorithms’ performance.
Finally, we discuss the performance of our decomposition heuristic on the real-world data.

The remaining paper is structured as follows: We start in Section 2 by providing an
overview of related work on the flip distance problem. Then, in Section 3, we present our
A∗ algorithm. Next, in Section 4, we summarize the known lower bounds and show that
they are consistent heuristics for A∗. Additionally, we show how to compute the heuristics
efficiently during the A∗ search. We present our integer linear program (ILP) for the flip
distance problem in Section 5 and our decomposition heuristic in Section 6. In Section 7 we
discuss the benchmark data set and conduct our experimental analysis of the algorithms.
Lastly, we give our conclusion and propose further research directions in Section 8.

2 Related Works

For a more detailed survey of known results, we refer to the work by Bose and Hurtado [3].

Convex polygons/points in convex position. The setting with n points in convex position
has been studied extensively. The main reason for this is that there is a bijection between
triangulations of the n-gon and binary trees with n − 2 inner nodes. Additionally, diagonal
flips in triangulations correspond to rotations in these trees. This is, for example, proven by
Sleator, Tarjan and Thurston [32]. In the same work, they show that 2n − 10 for n > 12 is a
tight upper bound on the flip distance in the convex case. Baril [2] and Pallo [29] proposed
upper and lower bounds on the flip distance and experimentally evaluated them.

There are multiple fixed-parameter tractable (FPT) algorithms for the convex flip distance
where the parameter k is the flip distance [6, 25, 21]. The best known FPT algorithm with
runtime O(3.82k) was developed by Li and Xia [21].

Interestingly, the complexity of the flip distance problem remains unknown for convex
polygons, despite the extensive amount of research invested into the problem.

In his bachelor thesis [22], Lipp used standard shortest path methods, i.e., BFS and A∗,
to compute the convex flip distance. To the best of our knowledge, this is the only work that
implements and evaluates a method to compute the flip distance to optimality.
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Points in arbitrary position. The first published result for the flip distance problem in
the general case was the work by Lawson [19], which showed that any two triangulations
of a point set can be transformed into each other by a sequence of flips. Additionally, he
showed that O(n2) flips are sufficient [19]. Hurtardo, Noy and Urrutia [16] showed that this
upper bound is tight by providing example triangulations for which Ω(n2) flips are needed to
transform one triangulation into the other. In a secondary work [20] Lawson also showed
that any triangulation can be transformed into the well-known Delaunay triangulation [8].

The work [13] by Hanke, Ottmann and Schuierer shows that for two triangulations the
number of (proper) intersections of edges provides an upper bound on the flip distance.
Eppstein [9] proved that for point sets that do not contain empty pentagons the flip distance
can be computed in O(n2) time. As a byproduct of his discussion, he derives a lower bound on
the flip distance for point sets that contain empty pentagons, which we discuss in Section 4.

A first FPT algorithm with runtime O∗(k · ck), where c ≤ 2 · 1411, was given by Kanj,
Sedgwick, and Xia [17]. Later, Feng, Li, Meng and Wang [10] improved the algorithm, which
led to a runtime of O∗(k · 32k).

Lubiw and Pathak [24] as well as Pilz [30] independently showed that the flip distance
problem is NP-complete. Additionally, Pilz showed the APX-hardness of the problem.

3 Adapting A∗ Search for the Flip Graph

In this section, we present an A∗ search algorithm adapted for the flip graph FG(S) of a
point set S of size n with c points on its convex hull. To avoid confusion with other graphs,
which are defined in Section 4, we call the triangulations nodes of FG(S) instead of vertices.

We start with some basic definitions (contextualized in the triangulation setting). A
heuristic with respect to a target triangulation Dt is a function hDt : T(S) → R. We say hDt

is admissible if for all triangulations D the heuristic hDt(D) is a lower bound for dF (D, Dt).
The heuristic is consistent if hDt(Dt) = 0 and for all pairs of adjacent triangulations D and
D′ in the flip graph FG(S) we have hDt(D) ≤ 1 + hDt(D′) and vice versa1. From now on we
assume that the target triangulation is fixed and we write h(D) instead of hDt(D).

The A∗ search algorithm first proposed by Hart, Nilsson and Raphael [14] keeps a priority
queue Q of open nodes that need to be processed. It starts with Q = {Ds} and in every
iteration the node D from Q with minimal value f(D) = dF (Ds, D)+h(D) is extended.
During the extension of a node D, it is removed from Q, marked as closed and all of its
neighbors D′ are opened by adding them to Q with their respective f(D′) values. The search
is complete when Dt is closed. If h is admissible the resulting path is optimal. Additionally,
neighbors that are marked as closed do not need to be re-opened during a node extension if
h is consistent. Note that the heuristics we present in Section 4 are consistent.

Next, we discuss the data structures that are needed to traverse FG(S). Different from
usual A∗ algorithms, the graph FG(S) is not known in its entirety and would be far too large
to be stored in memory, even for small instances. Thus, we build the graph FG(S) on the fly
and only add a node to the graph when it is first opened. Since every node is associated
with a triangulation D, we need to represent D in some way. For the sake of simplicity, we
assign an integer value to every triangle that can occur in a triangulation. Note that the
number of triangles in a triangulation of n points with c points on the convex hull is given
by z = 2n − c − 2; see for example [7]. Hence, a triangulation can be represented by a sorted

1 Our definition differs from the usual definition, but they are equivalent since our graph is unweighted.
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Algorithm 1 AStarSearch(Ds, Dt).

1: Q ← PriorityQueue, OPEN← HashMap, CLOSED← HashMap
2: Ds.d = 0
3: Ds.f = computeHeuristic(Ds, Dt)
4: Q.insert(Ds, Ds.f), OPEN.add(Ds)
5: while Q ≠ ∅ do
6: D = Q.extractMin()
7: OPEN.remove(D), CLOSED.add(D)
8: if D = Dt then return D.d

9: computeHeuristic(D, Dt) ▷ only executed for the computation of hE ; see Section 4
10: for each valid flip e of D do
11: D′ = doFlip(D, e)
12: if D′ ∈ CLOSED then continue
13: h = computeHeuristicNeighbor(D′, D, Dt)
14: D′.d = D.d + 1
15: D′.f = D′.d + h

16: if D′ ∈ OPEN then
17: Q.decreaseKey(D′, D′.f) ▷ only executed if D′.f is smaller than the known value
18: else
19: Q.insert(D′, D′.f), OPEN.add(D′)

array of z integer values. This representation allows for easy equality tests and we can use it
to derive all diagonals and their corresponding quadrilaterals/flips in linear time. We keep
track of nodes that have been opened during the search by storing them in a hashmap using
the triangulation-representation as keys. The value of a triangulation D in the hashmap is
given by the tuple (h(D), dF (Ds, D), i) where i is the position in the priority queue.

Algorithm 1 summarizes our A∗ algorithm. As stated before, in addition to the usual
priority queue Q we need to keep track of all opened and closed triangulations, which is done
in OPEN and CLOSED. Closed nodes can be skipped in line 12, because our used heuristics
are consistent. Finally, we note that the calculation of the heuristic value for a triangulation
D′ in line 13 depends on its parent node D. This is the case because we want to dynamically
update the heuristics using the information of the parent node. The dynamic updates for
the different heuristics are discussed in Section 4.

4 Lower Bounds on the Flip Distance

In this section, we present two heuristics given by known lower bounds for the flip distance
and show how to compute them efficiently during the A∗ search.

A simple lower bound. Let D and D′ be two triangulations in T(S). Then we can define
lS(D, D′) to be the number of diagonals that are in D and not in D′. Every diagonal in D

that does not coincide with a diagonal in D′ has to be flipped at some point. Thus, lS(D, D′)
is a lower bound on the flip distance. In Figure 2 (a) the lower bound lS(D, D′) is five.
Moreover, adjacent triangulations D and D̂ in FG(S) only differ by one diagonal, which
implies |lS(D, D′) − lS(D̂, D′)| ≤ 1. Consequently, we get the following simple observation:

▶ Observation 1. The heuristic hS(D) = lS(D, Dt) is admissible and consistent.

A refined lower bound by Eppstein. To describe Eppstein’s [9] heuristic, we first need an
additional graph, which we call the quadrilateral graph QG. The vertex set of QG is given
by all O(n2) diagonals that may be used in a triangulation of S. Two diagonals e = uv and

SEA 2024
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(a) two superimposed triangulations.
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(b) the QG graph.

Figure 2 In (a) two triangulations D (red) and D′ (dashed blue) of a point set are given.
Diagonals that coincide are given in black. In (b) the QG graph is depicted, the relevant diagonals
are indicated in red and blue. A minimal flip sequence is given by ab→ df, af→ cd, de→ bh, bd→
fh, df→ ch, eh→ bg, bh→ fg. The paths corresponding to the flip sequence are given as wavy edges
and the shortest paths corresponding to a minimum weight perfect matching in B(D, D′) are the
fat black edges. We have lS(D, D′) = 5, lE(D, D′) = 6 and dF (D, D′) = 7.

e′ = u′v′ are connected by an edge in QG if e and e′ properly intersect and the quadrilateral
q given by {u, u′, v, v′} does not contain any points of S in its interior. Note that q is a
convex quadrilateral if e and e′ properly intersect. An example of a QG graph is depicted in
Figure 2.

▶ Observation 2 (Eppstein [9]). Let D and D′ be two triangulations of S. Any sequence of
flips that transforms D to D′ corresponds to a set of walks in QG that connect diagonals of
D with diagonals of D′.

These walks are indicated for a minimal flip sequence in Figure 2. Now we can describe the
lower bound lE(D, D′) given by Eppstein: Let B(D, D′) be the complete bipartite graph
with one part given by the diagonals of D and the other part by the diagonals of D′. We
define the cost c(e, e′) of an edge between a diagonal of e ∈ D and a diagonal e′ ∈ D′ to be
the length of the shortest path between e and e′ in QG. Then, lE(D, D′) is given by the
value of a minimum weight perfect matching (MWPM) on B(D, D′) with respect to the
costs c.

▶ Proposition 3. The heuristic hE(D) = lE(D, Dt) is admissible and consistent.

Proof. The proof is given in Appendix A. ◀

The only edges in the bipartite graph B(D, Dt) that have value zero are edges between
common diagonals. All other edges in the matching have at least value one, which implies:

▶ Observation 4. For every possible triangulation D of S we have hE(D) ≥ hS(D).

Before we discuss how to compute these heuristics efficiently during the A∗ search, we
investigate the runtime of a node extension, i.e., one execution of the while loop in Algorithm 1.
Let t[h(D′)] be the runtime of one heuristic computation and t[b(D′)] be the runtime of the
bookkeeping in the priority queue and hashmaps for one neighbor D′. It is well known [7]
that every triangulation of a point set with c points on the convex hull consists of 3n − c − 3
edges. Thus, for one triangulation O(n) diagonals are candidates for possible flips. After
deriving all diagonals and their (valid) flips from the representation of D in linear time, we
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can perform each flip in constant time. Note that for every neighbor that is inserted into the
hashmap a new representation array must be created, which implies that the processing time
for a neighbor is at least O(n). Thus, one node extension needs O(n · (n+ t[h(D′)]+ t[b(D′)]))
time.

Extending nodes with the simple heuristic. For the initial triangulation Ds, the heuristic
value hS(Ds) has to be calculated from scratch. Note that we can represent the edge sets of
Ds and Dt by integer arrays As and At. After sorting the arrays, the number k of elements
that are present in both arrays can be computed using a simultaneous pass through both
arrays. Thus, the heuristic, given by hS(Ds) = |As| − k, can be computed in O(n log n) time.

If we extend a node D, we can query the heuristic value hS(D) of D. For all neighbors
D′ we can now compute the heuristic value hS(D′) in constant time. Let e be the diagonal
that is flipped to e′ in D′. Then we only need to check if e ∈ Dt or e′ ∈ Dt and we get

hS(D′) =


hS(D) + 1 if e ∈ Dt and e′ /∈ Dt

hS(D) − 1 if e /∈ Dt and e′ ∈ Dt

hS(D) otherwise.

It follows that the processing time for a single neighbor is dominated by the construction of
the representation and we get the runtime O(n2 + n · t[b(D′)]) for a node extension with the
simple heuristic.

Extending nodes with Eppstein’s heuristic. To allow for a fast construction of the cost
matrix CDD′ that corresponds to the bipartite graph B(D, D′), we compute the distance
matrix DQG for the quadrilateral graph QG in a pre-processing step. To this end we need to
solve the all-pairs shortest-path problem on QG. Since the graph QG is unweighted with
O(n2) vertices and O(n4) edges, we can solve the problem in time O(n6) using breadth first
search. This runtime seems excessive, but for the instances we consider in our experiments,
this is fast enough.

It remains to be shown how to compute the minimum weight perfect matching. For this,
we can use the Hungarian algorithm which was introduced by Kuhn [18] and later refined
by Munkres [27]. Their algorithm works in O(n) phases that each take O(n2) time, which
leads to a runtime of O(n3). Using this algorithm and the pre-processed matrix DQG, the
heuristic calculation for one neighbor can be done in O(n3). Since we have O(n) neighbors
per node extension, the runtime for a node extension with the (static) Hungarian algorithm
is O(n4 + n · t[b(D′)]).

If we consider a neighbor D′ during a node extension, only one diagonal ek changes with
respect to the parent node D. This implies that for the other diagonals, all costs remain the
same. Thus, we can derive the cost matrix CD′Dt for a neighbor by taking the cost matrix
CDDt

of the parent node and changing exactly the row k of costs corresponding to the flipped
edge. It seems wasteful to recompute the matching from scratch. In fact, there is a dynamic
version of the Hungarian algorithm established by Mills-Tettey, Stent, and Dias [26]. This
dynamic algorithm only needs to perform one additional phase of the Hungarian algorithm
per changed row. Hence, it has runtime O(n2) if only one row is changed.

If we want to use this dynamic algorithm for the neighbors of a node during the node’s
extension, we need to know the perfect matching of the parent node and the corresponding
labeling of the Hungarian algorithm. Storing this information for every opened triangulation
would drastically increase the memory consumption. Instead, we perform a “redundant”
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(static) computation of the matching and labeling for the parent node, which is indicated in
line 9 in Algorithm 1. We can then compute the heuristics dynamically for the neighbors
using the labels and matching of the parent node. Thus, we get the runtime

O(n3 + n · n2 + n · t[b(D′)]) = O(n3 + n · t[b(D′)])

for the node extension with O(n) neighbors. Note that at least asymptotically the additional
computation of the heuristic does not matter.

5 A Layered Integer Linear Program

For many combinatorial optimization problems integer programming based approaches
perform very well. To the best of our knowledge, no ILP for the flip distance has been
proposed so far, so we introduce one in this section. Let D and D′ be two triangulations
of a point set S given by n points. The idea of the ILP is to build a layered formulation
where every layer corresponds to a valid triangulation and two consecutive layers differ by
exactly one edge. If we fix the first layer to D and the last layer to D′ and the number of
layers is sufficiently large, then the number of changes between layers is the flip distance. To
ensure that the number of layers L is big enough, we choose L to be the upper bound given
by Hanke et al. [13]. As mentioned in Section 4, the number of edges of the triangulation D

(and D′) is M = 3n − c − 3, where c is the size of the convex hull of S. Let E be the set of
all edges that can be utilized by a triangulation of the point set S. Additionally, let E ⊆ E
and E′ ⊆ E be the sets of edges for D and D′. For every e ∈ E and every 0 ≤ i ≤ L we have
variables xi

e and di
e. The xi

e variables are used to encode valid triangulations on each layer
and the di

e variables encode the deletion of an edge between layers i and i + 1. Using these
variables, the ILP is given by:

minimize
∑
k≤L

∑
e∈E

dk
e

xi
e + xi

f ≤ 1 ∀e, f ∈ E , e crosses f , i ≤ L (T1)∑
e∈E

xi
e = M ∀i ≤ L (T2)

xi
e − xi+1

e − di
e ≤ 0 ∀e ∈ E , ∀i ≤ L − 1 (F1)∑

e∈E
di

e ≤ 1 ∀i ≤ L − 1 (F2)∑
e∈E

di+1
e ≤

∑
e∈E

di
e ∀i ≤ L − 1 (F3)

x0
e = 1 ∀e ∈ E, x0

e = 0 ∀e /∈ E (I1)
xL

e = 1 ∀e ∈ E′, xL
e = 0 ∀e /∈ E′ (I2)

xi
e ∈ {0, 1}, di

e ∈ {0, 1} ∀e ∈ E , ∀i ≤ L (B)

Since our triangulations have M edges and a triangulation is a set of non-intersecting edges,
the constraints (T1) and (T2) guarantee that on every layer the set of positive edge variables
corresponds to a valid triangulation. The constraints (F1) encode edge deletions from one
layer to the next, i.e., if we have a variables xi

e = 1 and xi+1
e = 0, we must also have di

e = 1.
Constraints (F2) ensure that only one edge is deleted from one layer to the next. Note
that constraints (F1) do not forbid edge insertions, but (T2) implies that every insertion
must correspond to a deletion. Hence, we can only have one edge insertion between layers.
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(a) (b) (c) (d) (e)

Figure 3 In (a) and (b) the triangulations Ds and Dt are shown. In (c) the common edges
are given in black and the dotted red and blue edges indicate the non-common edges. In (d) the
2-connected component C that contains the convex hull is indicated in black and the remaining
points are given in gray. The final decomposition is given in (e) where all edges that can be flipped
are indicated by dotted lines. Note that some common edges can now be flipped.

Additionally, this added edge must be the other diagonal of the (convex) quadrilateral given
by the incident triangles of the deleted edge, since otherwise (T1) would be violated. Hence,
every di

e = 1 variable encodes a valid flip. Constraints (F3) are used to break symmetries.
They force the flips to be done as early as possible. This is only relevant if the number of
layers is not minimal and they are not needed for the correctness of the formulation. The
constraints (I1) and (I2) set the first and last layer to D and D′, respectively. Finally, the
objective function counts the overall number of edge deletions, which is exactly the number
of flips.

We also considered formulations that use triangles (similar to De Loera et al. [23]) and
quadrilaterals as variables, but we do not present them here, since they are very similar to
the presented ILP and performed far worse.

6 A Decomposition Approach

In this section, we discuss a decomposition-based approach to heuristically solve the flip
distance problem. The basic idea of the approach is that, if two triangulations Ds and
Dt already have a common edge, then we assume that it is not flipped in an optimal flip
sequence. This assumption is true in the convex case [32] and has been used for multiple
FPT-algorithms [4, 6, 25]. For arbitrary point sets the assumption is not always correct (see
Pilz [30]), but we get an upper bound for dF (Ds, Dt) by only flipping non-common edges.
We start this section by discussing our decomposition approach and then we introduce a class
of instances (that is relevant in our application) for which the approach is advantageous.

If we fix edges that coincide in both triangulations, there can be paths of fixed edges
that split the instance into sub-problems that can be solved individually. Note that the
boundaries of the sub-problems are not necessarily convex, but our algorithms also work
with non-convex boundaries. Using this simple insight we can present our decomposition
scheme (see Figure 3 for an illustration of the different steps):

1. Compute the set F of edges that are used in Ds as well as Dt.
2. Compute the 2-connected components of F and find the component C that contains the

convex hull.
3. Compute all faces Fi of the geometric graph given by C.
4. Distribute the remaining points and the sub-triangulations to the faces Fi.
5. Solve the sub-problems individually and combine their solutions.

SEA 2024
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(a) k = 0. (b) k = 2. (c) k = 5. (d) k = 17.

Figure 4 The k-OD fixed edges of a point set for different orders.

The algorithm is designed to only fix a small, necessary set of edges that yield a decomposition.
To this end, we only consider the (non-trivial) 2-connected components, since only those
decompose our problem into smaller sub-problems. Additionally, we decided to only use the
2-connected component that contains the convex hull. This guarantees that every point from
S \ C is contained in exactly one sub-problem.

The other known upper bound by Hanke et al. [13], also never flips common edges. Thus,
our heuristic is always at least as good as the one by Hanke, as, unlike Hanke’s approach,
it computes optimal sequences on the sub-problems given by non-coinciding edges. For
arbitrary inputs, we cannot expect the decomposition approach to be fast, since we cannot
assume that a lot of edges coincide and in particular, they may not form paths that split
our instance into smaller sub-problems. We now propose a class of instances for which the
decomposition approach can be used effectively.

Higher-order Delaunay triangulations The instances we are interested in are those where
Ds and Dt both are higher-order Delaunay triangulations with order k. Higher-order
Delaunay triangulations [11, 31] are similar to the Delaunay triangulation while leaving
room for optimization. More specifically, for every triangle T of a k-order Delaunay (k-OD)
triangulation the circumcircle of T contains at most k points of S. They are often used for
interpolation tasks and in particular, they are used in the sea level reconstruction data. It
is a well-known fact [11] that only O(nk) of the O(n2) possible edges are used in all k-OD
triangulations of a point set. For small k this results in a lot of fixed edges that are part
of every k-OD triangulation. Figure 4 depicts the fixed edges of a point set for different
orders k. For orders k ≤ 7 the experiments by Arutyunova et al. [1] show that, even for
larger data sets, the k-OD fixed edges already yield a good decomposition. Thus, if Ds and
Dt both have order k ≤ 7, their common edges include the k-OD fixed edges and we can
expect a useful decomposition of our instance.

7 Experiments

We start this section by presenting the used benchmark instances. Then we give some details
on our implementation and evaluate our algorithms.

7.1 Data

We use two types of instances: randomly generated instances and instances given by the sea
surface reconstruction task introduced by Nitzke et al. [28].
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Table 1 Overview of the relevant data and the number of non-trivial instances with ∆b > 0.

R15 R20 R25 R30 S41-2 S25-5 S30-5 S35-5 S41-5 S25-25 S30-30 S35-35 S41-41

instances 1900 1900 950 950 630 630 630 630 630 276 276 276 276
nontrivial 682 819 575 751 130 42 244 152 238 187 214 267 271

Random instances. We consider point sets of size n ∈ {15, 20, 25, 30}. We generate ten
uniformly randomly distributed sets of points for n ∈ {15, 20} and five for n ∈ {25, 30}.
For each point set, we generate 20 random triangulations (see Appendix B). Then, the flip
distance problem instances corresponding to the point set are given by the

(20
2

)
= 190 pairs

of triangulations. Thus, for a fixed n we either get 1900 (n ≤ 20) or 950 instances (n ≥ 25).
We denote these instance sets by RX in our experiments where X is the size of the instance.

Sea level instances. The sea level triangulations by Nitzke et al. [28] stem from the 41 tide
gauge stations in the European North Sea. The triangulations are optimized with respect to
monthly generated satellite altimetry. In our experiments, we focus on the data collected
from 2009 to 2011, which yields 36 triangulations in our timeframe. Nitzke et al. only consider
higher-order Delaunay triangulations. Consequently, they have different sets of optimized
triangulations for different orders. In the application [28], distinct orders are not mixed.
Consequently, we also treat different orders as separate data sets. We focus on triangulations
of order 2 and 5, which yield the most consistent reconstructions according to [28] and [1],
respectively. Additionally, we consider unconstrained sea level instances in a smaller time
frame of 2009–2010 (an instance is unconstrained if its order equals its size). In addition to
the complete North Sea set with 41 points, we consider subsets of the tide gauge set of size
n ∈ {25, 30, 35}, which still cover the North Sea and therefore allow for optimization. All in
all, for a size n, we have 630 instances of order 2 and 5, respectively, and 276 unconstrained
instances. We denote these instance sets by SX-Y where X is the size and Y is the order.

Next we want to introduce a measure of hardness for an instance. For this, we define
∆b(D, D′) = uH(D, D′) − lE(D, D′) to be the gap between the upper bound given by our
implementation of the algorithm by Hanke et al. [13] and the best known lower bound by
Eppstein. If we have ∆b(D, D′) = 0, the solution given by the upper bound is already
optimal. We expect instances to get harder with increasing ∆b(D, D′). It turns out that the
sea level instances with small order are “easier” than unconstrained instances. In particular,
all of the instances of sizes 25, 30 and 35 and order 2 can be trivially solved using the
bounds. The numbers of non-trivial instances for the other sets are given in Table 1 and their
distributions of ∆b(D, D′) are given in Figure 5. Note that for order 5 all of the instances
have ∆b(D, D′) ≤ 3 and most of them have ∆b(D, D′) = 1. Additionally, Figure 5 suggests
that the unconstrained sea level data sets contain the hardest instances.

7.2 Experimental Evaluation
Before we present our evaluation, we give some details on the used hardware and software.
The systems used for the experiments are equipped with an AMD EPYC 7402P CPU, 256 GB
of RAM and have Ubuntu 22.04 installed. Our code is written in C++17, compiled with
GCC 9.4, and it is available online2. In our implementation, we use an array-based binary
heap as priority queue. For the hashmap, we utilize the unordered map provided by the
C++ standard library, while employing a simple combinatorial hash function.

2 https://github.com/PhilipMayer94/AStarFlipDistance
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Figure 5 The ∆b(D, D′) distribution of the instances for the different data sets.

Table 2 Overview of the relative number of timeouts (all values are percentages) of the four
main algorithms and an additional combined approach A∗

C .

R15 R20 R25 R30 S41-2 S25-5 S30-5 S35-5 S41-5 S25-25 S30-30 S35-35 S41-41

BFS 0.00 73.26 100.00 100.00 97.69 57.14 99.18 100.00 100.00 98.93 100.00 100.00 100.00
ILP 41.94 85.23 93.91 99.87 4.62 11.90 54.10 23.03 66.81 96.26 99.53 100.00 100.00
A∗

S 0.00 0.73 30.09 89.08 0.00 0.00 0.82 0.66 8.82 23.53 65.42 88.76 99.63
A∗

E 0.00 0.00 8.17 75.63 0.00 0.00 0.82 1.32 17.65 9.09 50.00 83.15 99.63

A∗
C 0.00 0.00 6.61 72.70 0.00 0.00 0.00 0.66 8.40 8.02 42.99 79.03 99.63

For the Hungarian algorithm, we ported the O(n3) implementation by Stern3 to C++
and added the dynamic features. As an ILP-solver Gurobi 9.5.1 [12] using a single thread is
employed. We set the number of layers of the ILP to the flip distance dF , if it is available
from other experiments. Note that this information is usually not available to the ILP
and it has to use an upper bound for dF . Our evaluation is going to show that even this
idealized version is not competitive with the A∗ approaches. As a baseline, we implemented
an iterative bi-directional breadth-first search (BFS). We denote the A∗ search that uses
the simple heuristic hS by A∗

S and the one using Eppstein’s heuristic hE by A∗
E . With the

clustering application in mind, we choose a timeout of five minutes in all experiments.

Comparing all approaches. We start by investigating all presented approaches. Table 2
depicts for each data set the timeout percentages of the presented algorithms (and an
additional algorithm we discuss later). The BFS does not run into timeouts for the smallest
data set R15 but struggles on all other sets. This can be attributed to the fact that BFS is
uninformed and the runtime of BFS exponentially depends on dF . The ILP performs less
consistently than BFS and even has timeouts for R15, but it can at least solve some (up to
95.38%) instances of every data set. This could be attributed to the fact that the ILP works
with more information, e.g, a dual bound (which coincides with hS at the root).

Both of the A∗ algorithms perform more consistently than the other two approaches.
They both have less than 2% timeouts for instances with size n ≤ 20 or order k ≤ 5 (except
for S41-5). The simpler algorithm A∗

S has fewer timeouts on the easier instances with ∆B < 3
and A∗

E has fewer timeouts on the harder instances. Overall both approaches still have at
least 25% timeouts for the large unconstrained instances and the large random instances.

3 https://github.com/KevinStern/software-and-algorithms

https://github.com/KevinStern/software-and-algorithms
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Figure 6 The runtimes (on a log scale) of the different approaches on all non-trivial and solved
instances. Note that every odd dF is grouped with its predecessor and that for dF > 27 the boxes
for BFS and ILP degenerate to a line, since they mostly time out.
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Figure 7 The runtime-wins of A∗
E and A∗

S with respect to ∆h(Ds).

Next, in Figure 6, we consider the runtimes on all solved instances (an instance is solved
if at least one approach solved it in the allotted time) depending on the flip distance. Note
that, if an algorithms times out for a solved instance, the timeout time is counted as its
runtime. We can see that, on average, both A∗ algorithms outperform the other approaches
by at least two orders of magnitude. On average, BFS outperforms the ILP in runtime, but
as mentioned earlier, for the larger flip distances some outliers can be solved faster (or at
all) with the ILP. Concerning the A∗ algorithms, we can see that A∗

S is on average faster
for dF < 26 and for the larger flip distances A∗

E outperforms A∗
S by an order of magnitude.

This is a result of the trade-off between the smaller search space of the better heuristic hE

and the faster computation time for hS .
We now have a brief look at the runtime-wins. Neither the ILP nor BFS are the fastest

approach for a single instance. A∗
S has the fastest runtime 1 527 times and A∗

E only 1 218 times.
Our previous discussion suggests that these wins depend on the hardness of the instances. We
propose an additional measure ∆h(Ds) = hE(Ds) − hS(Ds), which quantifies how much hE

improves upon hS . In Figure 7 the wins are grouped with respect to ∆h(Ds). As expected
most A∗

S wins happen for ∆h(Ds) = 0 and the rest for ∆h(Ds) = 1 or ∆h(Ds) = 2. When
∆h(Ds) is two or larger, A∗

S consistently expands over ten times as many nodes as A∗
E . This

observation helps to explain why AE exhibits faster runtimes on such instances. A more
in-depth discussion of node extensions can be found in Appendix C.

A combined approach. Note that ∆h is apriori knowledge. Thus, we can use it to develop
an approach that combines both heuristics. A first naive possibility would be to compute
∆h(Ds) and then use A∗

S if ∆h(Ds) = 0 and A∗
E otherwise. Since this approach only covers

SEA 2024
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Figure 8 In (a) the runtimes of the A∗ approaches on all considered non-trivial and solved
random and real-world data are presented. In (b) the speedups of A∗

C with respect to A∗
S and A∗

E

are given grouped by flip distance (uneven dF values are grouped with their even predecessors).

the ∆h(Ds) = 0 wins of A∗
S , we engineered a more sophisticated approach A∗

C in an attempt
to use more ∆h knowledge. A∗

C is based on the assumption that if we have hS(D) = hE(D)
for a node D, the heuristics will probably not diverge (too much) for children of D.

Thus, we make a dynamic decision at every node D, by considering ∆h(D), before
extending it. More specifically, before line 9 in Algorithm 1 we compute ∆h′(D) =
hknown(D) − hS(D), where hknown(D) is the algorithm’s best known heuristic value for D. If
∆h′(D) = 0, we do not execute line 9 and in line 13 computeHeuristicNeighbor(D′, D, Dt)
is performed with respect to hS instead of hE . If ∆h′(D) > 0, we perform the usual update
with respect to hE . This combined heuristic is valid since the maximum of two admissible
and consistent heuristics still satisfies both properties. Note that performing a node extension
with respect to hS implies that hknown(D′) = hS(D′) for all children D′ of D and, if a child
is later extended, it will always be extended using hS .

As before, we used all of the data to test A∗
C . The timeouts are given in Table 2. For

every data set except S41-41, the timeout percentage is smaller than that of A∗
S and A∗

E . In
particular, A∗

C can solve all instances for the set S30-5 in the allotted time. The runtimes
of all A∗ approaches grouped by flip distance are depicted in Figure 8 (a). A∗

C on average
computes dF faster than the other approaches for all distances. It should be noted that the
runtime of A∗

C is similar to A∗
S for small flip distances and similar to A∗

E for larger distances.
This aligns with our assumption that we primarily utilize hS for easier instances and mostly
rely on hE for more challenging cases. All of the previous observations can also be verified
if we consider the runtime speedups of A∗

C with respect to A∗
S and A∗

E , which are given
in Figure 8 (b). Here the speedup with respect to A∗

E decreases with dF and the speedup
with respect to A∗

S increases. We can also deduce from the speedup plot that dynamically
choosing the heuristic in A∗

C improves upon A∗
E for hard instances since otherwise, we would

expect the speedup for A∗
E to be very close to one for dF >30.

Next, we consider the runtime-wins grouped by ∆h(Ds), which are given in Figure 9.
Note that if two algorithms have the same (fastest) runtime on an instance, the win is counted
for both of them. Algorithm A∗

C has by far the most wins, except for ∆h(Ds) = 0, but on
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Figure 9 The runtime-wins with respect
to ∆h(Ds) of the different A∗ approaches.
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Figure 10 The runtime of the decomposi-
tion heuristic for instances of size n.

those instances A∗
C mimics A∗

S . Thus, all of those wins are actually “shared” wins where
both approaches have the same runtime. In fact, A∗

S only solves 1.1% and A∗
E only 6.5%

of the instances faster than A∗
C . Hence, for 92.4% of instances A∗

C is the (possibly shared)
fastest algorithm and for 43.8% instances it even improves upon the basic A∗ algorithms. On
average our algorithm A∗

C is 20% faster than the virtual best of A∗
S and A∗

E (the virtual best
uses a posteriori knowledge to choose the faster of the two approaches for every instance).

Finally, we discuss the peak memory consumption of the algorithm. On the most memory-
intensive instance, which consists of 41 points and times out after five minutes with 201 109 543
opened triangulations, the combined algorithm uses 50 GB of memory. Most of this is due to
the hashmap that manages the open triangulations. Its memory usage could be improved by
changing the representation of the triangulations to a more sophisticated one, such as an
adaptation of the planar encodings given by Chuang et al. [5]. Note that maintaining these
encodings may come with an increase in runtime. Additionally, the unordered map of the
C++ Standard Library has a large memory overhead. Thus, using a more memory-efficient
map could also improve memory usage.

A brief evaluation of the decomposition heuristic. We ran our decomposition-based
heuristic on all of the application-relevant instances, i.e., the sea level instances with order
2 and 5. On all instances that could be solved by A∗

C in the allotted time, our heuristic
value coincided with the optimal flip distance value computed by A∗

C . The average runtime
of the heuristic on the considered instances was 0.66 milliseconds. This suggests that, at
least for the considered application-oriented instances, finding an optimal solution is usually
not difficult, but verifying its optimality takes significant effort. Finally, to get an idea of
how the runtime increases for larger instances, we generated 100 random instances of order
5 for n = 50, 100, ..., 500 and computed our heuristic on them. The runtimes are given in
Figure 10. The increase in runtime on the considered data set is close to linear and even
instances of size n = 500 can on average be solved heuristically in 30 milliseconds.

8 Conclusion

We have engineered an A∗ algorithm that combines two different heuristics and discussed
how to dynamically compute them. Our approach significantly outperforms bidirectional
breadth-first search as the baseline, as well as our novel integer linear program. Random
instances of size up to 25 points can consistently be solved by our algorithm. Our investigation
of the instances from the sea surface reconstruction task shows that our approach can solve
over 90% of the relevant instances (41 points in the North Sea) with small Delaunay orders
in less than five minutes per instance.

SEA 2024
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On all of our considered application data, our new decomposition-based heuristic rap-
idly computes a solution that is already optimal, suggesting that in our case (sea surface
reconstruction under higher-order Delaunay constraints) possibly only verifying optimality
is hard. Overall, with our new optimal algorithm the clustering task in the context of sea
surface reconstruction may become feasible for small data sets (e.g., the North Sea), and
using our heuristic approach it would also be feasible for the global data sets (with more
than 500 points [1]). Employing them here might yield interesting results.
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A Eppstein’s Heuristic is Admissible and Consistent

▶ Proposition 3. The heuristic hE(D) = lE(D, Dt) is admissible and consistent.

Proof. We start by showing that the heuristic is admissible. This has already been shown by
Eppstein [9], but we reiterate the proof for the sake of completeness. By Observation 2 the
length of a minimal flip sequence between D and Dt is given by the sum of lengths of the
walks in QG. The length of every walk is lower bounded by the length of the shortest path
between its endpoints. The shortest paths correspond to a perfect matching in B(D, Dt)
and thus, the sum of their lengths is lower bounded by the value of the MWPM in B(D, Dt)
which is exactly hE(D) = lE(D, Dt); see Figure 2 for an example.

It remains to be shown that hE is consistent. If all diagonals coincide, there is a perfect
matching of length zero which implies hE(Dt) = lE(Dt, Dt) = 0.

Let D and D′ be adjacent triangulations in FG(S). Since they are adjacent they differ
by exactly one flip of the diagonal e. Thus, the diagonal e was moved in the QG graph to an
adjacent diagonal e′. Consequently, in length, the shortest paths from e′ to the diagonals in
Dt can differ to the paths from e by at most one.

If we now assume that e and e′ correspond to the same node v in B(D, Dt) and we define
c to be the costs with respect to D and c′ to be the costs with respect to D′. Then, for all
xt ∈ Dt we have c(x, xt) = c′(x, xt) for all x ̸= v and |c(x, xt) − c′(x, xt)| ≤ 1 for x = v. Now
let M ′ be the MWPM for c′ and M for c. We get

c′(M ′) ≥ c(M ′) − 1 ≥ c(M) − 1,

which implies hE(D) ≤ hE(D′) + 1. ◀

B (Our) Random Triangulations for Point Sets

In this section we briefly discuss how to generate random triangulations. To the best of
our knowledge, there is no “easy” way to generate triangulations of point sets uniformly at
random. We use the following approach:

1. Generate a set S of points uniformly at random in [0, 1]2.
2. For every triangle T that can be used in some triangulation of S, generate a weight wT

uniformly at random in [0, 1].
3. Compute the triangulation Drand that minimizes the sum of its triangle weights, i.e.,

Drand = argmin
D∈T(S)

∑
T ∈D

wT . (1)

4. Repeat Steps 2 and 3 if multiple random triangulations for the same point set are needed.

Note that Step 3 is NP-hard, but for instances with up to 500 points the triangulation
can usually be found quickly using an integer linear program. We want to emphasize, that
this approach not necessarily generates triangulations picked uniformly at random, but for
our use case it yields an interesting mix of easy and hard instances.
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C A Brief Look at Node Extensions

We also considered the number of node extensions during our experiments. Again, we used
all non-trivial instances of the datasets. In Figure 11 we present an overview of the node
extensions grouped by the flip distance. In (a) the total numbers of node extensions are
given and in (b) the ratios of extended nodes A∗

S/A∗
C and A∗

E/A∗
C are depicted. Notice that

the numbers of extended nodes for A∗
S are the largest which immediately follows from the

fact that Eppstein’s heuristic is at least as accurate as the simple heuristic. Starting at flip
distance 30 the number of extensions with A∗

S is five to ten times larger than the number of
extensions for A∗

C and A∗
E . This can also be seen in the ratio-plot (b).

Up to this point, our discussion suggests that with increasing flip distance the node
extension ratio increases. This is of course somewhat true, but there is a second aspect
namely the quality difference of the heuristics that needs to be considered. We focus on
the heuristic distance ∆h at the root/start triangulation Ds. Most instances with large flip
distances also have large ∆h. A visualization of the ratio of extended nodes A∗

S/A∗
E grouped

by ∆h is given in Figure 12. As expected, we see that for ∆h = 0 the ratio is close to one.
For ∆h = 1 it is between two and five and starting at ∆h = 2, it is larger than ten.

This explains the runtime-wins that A∗
S achieves for ∆h < 2, since for those instances the

decreased number of node extensions for A∗
E with respect to A∗

S is not enough to compensate
for the increased runtime of the heuristic calculation of hE .
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Figure 11 The number of node extensions of the A∗ approaches on all considered random and
real-world data. Only solvable and non-trivial instances were considered. In (a), the total numbers
of node extensions are given, and in (b) the node extension ratios of A∗

S and A∗
E with respect to A∗

C

are given grouped by flip distance (uneven dF values are grouped with their even predecessors).
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Figure 12 The ratio of extended nodes of A∗
S with respect to A∗

E , grouped by the heuristic
distance ∆h at the root/start triangulation Ds.
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