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Abstract
Online exact string matching is a fundamental computational problem in computer science, involving
the sequential search for a pattern within a large text without prior access to the entire text. Its
significance is underscored by its diverse applications in data compression, data mining, text editing,
and bioinformatics, just to cite a few, where efficient substring matching is crucial. While the
problem has been a subject of study for years, recent decades have witnessed a heightened focus
on experimental solutions, employing various techniques to achieve superior performance. Notably,
approaches centered around weak factor recognition have emerged as leaders in experimental settings,
gaining increasing attention. This paper introduces Hash Chain, a novel algorithm founded on
a robust weak factor recognition approach that links adjacent factors through hashing. Building
upon the efficacy of weak recognition techniques, the proposed algorithm incorporates innovative
strategies for organizing data structures and optimizations to enhance performance. Despite its
quadratic worst-case time complexity, the new proposed algorithm demonstrates sublinear behavior
in practice, outperforming currently known algorithms in the literature.
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1 Introduction

The string matching problem consists in finding all the occurrences of a pattern x of length
m in a text y of length n, both strings defined over an alphabet Σ of size σ. The relevance of
this problem is due to its direct applications in many fields, such as data compression, data
mining, text editing, and bioinformatics, where fast and efficient pattern matching is critical.
Given its fundamental nature in computer science, marked by intriguing theoretical and
practical aspects that make it particularly compelling and challenging, the string matching
problem has garnered significant attention in the literature.

The problem can be addressed in online mode, when you do not have access to the text
before carrying out the search, or in offline mode, in which case it is possible to preprocess
the text to speed up the search phase. In this work we consider online string matching.
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Online string matching can be solved in linear time, with respect to the size of the text,
but although the first optimal solutions appeared already in the 1970s, such as the Knuth,
Morris and Pratt [22] (KMP) algorithm, several solutions have been proposed over the past
decades [15], many of which appeared in recent years [18, 19]. This suggests that the interest
in increasingly efficient solutions has been significant since the beginning and is still high.

Boyer and Moore (BM) provided the first sub-linear solution on average [4], while the
Backward-Dawg-Matching (BDM) algorithm [9] was instead the first solution to reach the
optimal O(n logσ(m)/m) time complexity on the average, as proved by Yao [27]. Both the
KMP and the BDM algorithms are based on an exact factor recognition: they simulate the
deterministic automaton for the language Σ⋆x and the deterministic suffix automaton for
the language of the suffixes of x, respectively. Many of the papers in the literature have
amply demonstrated (see for instance [25, 10, 6, 14]) how the efficiency of these solutions is
strongly affected by the encoding used for simulating the underlying automaton, especially
when the bit-parallelism technique [2] is used. For this reason, recent research [11, 18, 7, 10]
has focused more on approaches based on a weak recognition.

An algorithm performs weak recognition when it is able to recognize a broader language
than the set of pattern sub-strings. The Backward Oracle Matching [1] (BOM) can be
considered the pioneer of this approach, making use of the Factor Oracle of the reverse
pattern. In the same direction, the Weak Factor Recognition algorithm [7] (WFR) approach
is based on indexing all the O(m2) subsequences of the pattern x using a bloom filter [3].
In [10], Q-gram Filtering (QF) ensures that q-grams read in a window all belong to the
same chain of q-grams in the pattern. More recently, Faro and Scafiti introduced the Range
Automaton [18], a non-standard, weak version of the non-deterministic suffix automaton.

In this paper, we introduce the Hash Chain algorithm (HC), a new efficient algorithm
for online exact string matching based on weak factor recognition and hashing. The HC
algorithm stands out for its refined experimental design, marked by distinctive features
and optimizations that elevate its practical performance to exceptional levels. It is based
on a robust improved filtering approach which links together hash values corresponding to
adjacent factors of the input string x. Despite the O(nm) worst-case time complexity, the
HC algorithm exhibits a sublinear behaviour in practice, obtaining the best running times
when compared against the most effective algorithms known to date in the literature. This
makes our proposed solution one of the most flexible algorithms in practical cases.

The paper is organized as follows. In Section 2 we introduce the new algorithm, describing
its preprocessing and searching phase in detail. In Section 3 we propose some practical
optimizations to improve the performance of the algorithm. Finally, we present in Section 4
the results of an extensive experimentation. We draw our conclusions in Section 5.

2 The Hash Chain Algorithm

In this section we present an efficient algorithm for the exact string matching problem based
on a weak-factor-recognition approach using hashing. Our proposed algorithm is named
Hash Chain (HC) and consists of a preprocessing and a searching phase. The algorithm is
influenced by the Weak Factor Recognition (WFR) algorithm [8], which employs indexing
via a Bloom filter to store hash values derived from all pattern factors. This implies that if,
during the search phase, two consecutive text factors are identified that match portions of
the pattern but are not in adjacent positions, the search continues even if an exact match will
be not found. The HC algorithm also incorporates information about adjacent factors into
its data structure to streamline the verification phase and drastically decrease the occurrence
of false positives. In addition, by identifying q-grams which are not adjacent to each other in
the pattern, the HC algorithm enables a large forward shift on average.



M. N. Palmer, S. Faro, and S. Scafiti 24:3

Before delving into the details, it is essential to formalize certain concepts and introduce
key definitions that will prove valuable throughout the paper. We represent a string x ∈ Σm

as an array x[0 . . m − 1] of characters of Σ and write |x| = m. For m = 0 we obtain the
empty string ε. Thus, x[i] is the (i + 1)-st character of x, for 0 ≤ i < m, and x[i . . j] is the
substring of x contained between its (i+1)-st and the (j +1)-st characters, for 0 ≤ i ≤ j < m.
A q-gram of x is a substring of x with a fixed length q. Given a finite alphabet Σ, we denote
by Σm, with m ≥ 0, the set of all strings of length m over Σ and put Σ∗ =

⋃
m∈N Σm.

Throughout the paper we assume x is a pattern of length m and y is a text of length n.
We also assume that both strings x and y are drawn from a common alphabet Σ of size σ.
In addition, we make use of the following bitwise operators: the bitwise OR “|”, the bitwise
AND “&”, and bit-shift left “≪”.

We are now ready to provide a detailed description of the Hash-Chain algorithm, discussing,
in the following three sections, the preprocessing phase, the structure of the hash function,
and the searching phase, respectively.

2.1 The preprocessing phase
The preprocessing phase consists of the computation of an extended Bloom filter data
structure indexing all the q-grams of the pattern x. It is backed by a bit-vector F of
2α words, where each word has w bits and α controls the size of F . Two hash functions
are used: h : Σq → {0, 1, ..., 2α − 1}, which produces an index into a word in F , and
λ : {0, 1, ..., 2α − 1} → {0, 1, ..., 2w − 1}, which outputs a word with only one of its bits set.

The filter is built by linking together each pair of adjacent non-overlapping factors, u1 ·u2
of fixed size q using the following formula:

F [h(u2)]← F [h(u2)] | λ(h(u1)). (1)

We use the bitwise OR operator “|” to retain bits already set from previous q-gram pairs,
if they had hashed to the same word in F . More formally, formula 1 is iterated for each pair
of distinct q-grams ⟨u1, u2⟩ such that:
|ui| = q, i = 1, 2,
u1 = x[i..j], where j = i + q − 1, for some 0 ≤ i ≤ m− 2 · q
u2 = x[j + 1..j + q]

Note that the first q positions of any pattern do not have a q-gram to their left. To ensure
they are recognized as factors of the pattern, we index any such factor u separately using
the following formula:

F [h(u)]← F [h(u)] | 1 (2)

To apply formula 1 efficiently to each pair of non-overlapping adjacent factors of x, Hash
Chain groups sequences of non-overlapping q-grams according to the position they appear
in the pattern. More specifically, each pattern position j, with m− q ≤ j < m, defines a
sequence of ⌊(j + 1)/q⌋ non-overlapping q-grams, given by:

{x[i..i + q − 1] | i ≥ 0, i = j − q + 1, j − 2q + 1, ...}.

Each of such sets is denoted as a q-gram chain of the pattern. By processing q-grams in
chains, we can pass a hash value from one linked pair of q-grams to the computation of the
next pair. This approach enables us to compute the hash only once for each q-gram in the
pattern. Figure 1 shows the 3 chains of q-grams arising in a pattern of length m = 13 with
q = 3.
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0 1 2 3 4 5 6 7 8 9 10 11 12 Chain 1

H8H9H10H11

0 1 2 3 4 5 6 7 8 9 10 11 12 Chain 2

H4H5H6H7

0 1 2 3 4 5 6 7 8 9 10 11 12 Chain 3

H1H2H3

F [H11] |= 1 F [H8] |= λ(H9)F [H9] |= λ(H10)F [H10] |= λ(H11)

F [H4] |= λ(H5)F [H5] |= λ(H6)F [H6] |= λ(H7)F [H7] |= 1

F [H1] |= λ(H2)F [H2] |= λ(H3)F [H3] |= 1

Figure 1 The three q-gram chains for a pattern x of length m = 13 and q = 3, and the operations
performed for each q-gram. The |= symbol represents the logical Or operator (the result is stored
in the left hand operand). Each hash Hn is labelled with a number n reflecting the order in which
they are calculated during pre-processing.

Obviously, a pattern where m = q can only have one chain, and one q-gram, in it. More
generally, when m < 2 · q − 1, it only has m− q + 1 distinct chains, and when m ≥ 2 · q − 1,
it has q distinct chains of q-grams.

Figure 2 shows the process of linking four adjacent q-grams of the pattern
x = acgtgtacgctgcaca. To complete pre-processing, we would need to process the remaining
chains of q-grams in pattern x: those starting at position 1 (cgtg, tacg, ctgc), the ones at
position 2 (gtgt, acgc, tgca) and those at position 3 (tgta, cgct and gcac).

2.2 Hash functions
As described above, the preprocessing phase makes use of two different hash functions, and
specifically the Hash function h : Σq → {0, 1, ..., 2α − 1}, which produces an index into a
word in F , and the Link-Hash function λ : {0, 1, ..., 2α − 1} → {0, 1, ..., 2w − 1}, which
outputs a word with only one of its bits set. The design of h and λ strongly affect the
performance of the algorithm and, for this reason, has been carefully defined.

The Hash function h has been designed to follow a shift-then-add structure, which can
be implemented efficiently in modern architectures [26]. It is recursively defined as:

h(x) =
{

0 if m = 0
(h(x[1..m− 1]) · 2s + x[0]) otherwise.

mod 2α (3)

The hash value is multiplied by 2s, or equivalently bit-shifted left by s, for each additional
character added. To ensure we do not shift data much beyond the maximum hash value, we
calculate the bit shift s by the following formula:

s← ⌊α/q⌋ (4)
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h(ACGT)

2

h(GTAC)

9

h(GCTG)

3

h(CACA)

9

λ(2)

0100

λ(9)

0010

λ(3)

1000
OR into F[9] OR into F[3] OR into F[9]

0001
OR into F[2]

A C G T G T A C G C T G C A C A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F

x

11000001 0010

Figure 2 Linking of adjacent q-grams q = 4, in a pattern m = 16, with w = 4 and α = 4. The top
part of the figure shows the calculations which are performed for the first four adjacent q-grams in
the pattern and where they are stored. The bottom part of the figure shows the final state of the bit
vector F after all calculations have been performed. Empty cells have no entries and contain 0000.

The final value of the hash is taken as mod 2α, which can be efficiently computed by
bitwise ANDing it with 2α − 1.

The Link-Hash function λ is a simple function mapping each value 0 ≤ v < 2α to the
set {20, 21, ..., 2w−1}. It is meant to link together adjacent factors of the input pattern x,
and that’s why we refer to it as the link hash function. Its definition is given by:

λ(v) = 2(v mod w). (5)

where v is the value to obtain a link hash for and w is the number of bits in a word in the bit
vector F . Given that w is a power of two, the mod w operation can be efficiently computed
by logically bitwise ANDing it with w − 1. It returns a word with a single bit set in it.

Pseudo-codes for the hash function h (Hash), the link hash function λ (Link-Hash), and
the Preprocessing procedure are given in Figure 3. We don’t pass w into the Link-Hash
function as it is assumed to be hard-coded. Note that the Preprocessing procedure
processes each chain of q-grams backwards, calculates the hashes for the first q q-grams last,
and returns a hash value Hv in order to facilitate some optimisations discussed in section 3.
It uses min() functions on lines 5 and 14 to ensure that we only process q-gram chains that
actually exist in the pattern, as short patterns where m < 2 · q − 1 have fewer than q chains.

Obviously, a pattern where m = q can only have one chain, and one q-gram, in it; more
generally when m < 2 · q, it has m− q + 1 distinct chains of a single q-gram each.

Regarding the time complexity of the preprocessing phase, it is proportional to the
number of q-grams in the pattern. A pattern contains m− q + 1 distinct q-grams in it, each
of which requires a hash computing for it once if the q-grams are processed in chains. It
also re-computes the hash for the first q q-grams again to set a bit for them. Each q-gram
requires O(q) time to be read, so the time complexity is O(m · q).
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Hash(x, p, q, s, F ′)
1. v ← 0
2. for i← p to p− q + 1 do
3. v ← (v ≪ s) + x[i]
4. return v & F ′

LinkHash(v)
1. return 1≪ (v & (w − 1))

Preprocessing(x, m, q, α)
1. s← ⌊α/q⌋
2. F ′ ← 2α − 1
3. for i← 0 to F ′ do
4. F [i]← 0
5. for i← min(m− q + 1, q) to 1 do
6. v ← Hash(x, m− i, q, s, F ′)
7. j ← m− i− q

8. while j ≥ q − 1 do
9. v′ ← v

10. v ← Hash(x, j, q, s, F ′)
11. F [v′]← F [v′] | LinkHash(v)
12. j ← j − q

13. Hv ← v

14. for i← q − 1 to min(q · 2− 1, m)− 1 do
15. v ← Hash(x, i, q, s, F ′)
16. if F [v] = 0 then
17. F [v]← 1
18. return F, s, F ′, Hv

Figure 3 (On the left) The pseudo-codes of the Hash function h : Σq → {0, 1, ..., 2α − 1},
which produces an index into a word in F , and the Link-Hash function λ : {0, 1, ..., 2α − 1} →
{0, 1, ..., 2w − 1}, which outputs a word with only one of its bits set. (On the right) The pseudo-code
of the preprocessing phase of the Hash-Chain algorithm.

u

up

Safe shift

Read text y backwards

Window

Figure 4 The general approach of factor based search algorithms. A factor u is read backwards
from the end of the current window until upu is not a factor of the pattern; it is then safe to shift
the window past up. If the entire window is read, then a possible match must be verified when a
weak recognition approach is used.

2.3 The Searching Phase

The searching phase works like any factor algorithm, such as BOM, WFR or QF. The
difference between them lies in how valid factors of the pattern are determined.

A window of size m is slid along the text, starting at position 0, and shifted to the right
after each attempt, until we reach the end of the text. A factor u of the pattern is read
backwards in the text y, from the position aligned with the end of the window. If upu is not
a factor of the pattern, then it is safe to shift the window after up. This is shown in figure 4.
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The pseudocode of the HC search algorithm is given in figure 5. We determine whether a
q-gram is a valid factor u by first calculating its hash value v. For the first q-gram processed,
aligned with the end of the current window, it looks in the word at F [v] to see if it is empty
at line 6. If a word in F is empty, no q-gram in the pattern hashed to v, and so u cannot be a
factor. We then shift on from the end of the window by the maximum distance it is possible
to shift without missing a possible occurrence, m− q + 1, and look at the next window.

If F [v] ̸= 0, then we have a possible match for u and the algorithm enters the while else
loop at line 8. Hash chain must now look in turn at the q-grams in the window preceding
u to see if they are also possible factors of the pattern. Since pre-processing links adjacent
q-grams together with the λ function, we calculate the hash value vp of the preceding factor
up, and check to see if the bit returned by λ(vp) is set in F [v] at line 11. If the bit is not set,
then the two factors were not linked during pre-processing, and upu cannot be a factor of
the pattern. It is then safe to shift from the position of up and look at the next window.

This is repeated until we reach the start of the current window, when the else branch
at line 14 executes. On line 15, the position of the search j is updated such that adding
j + m− q + 1 to it on line 18 results in the window being advanced only by one. Finally, a
check for the existence of the pattern is executed from line 16 to verify the actual presence of
the pattern before reporting any occurrence. Note that, according to the while else semantics.,
the else branch at line 14 is only taken if the execution of the loop has not been interrupted
by the break statement at line 12: naive check is thus not executed unless the window has
been fully scanned.

The window is eventually advanced at line 18 depending on the size of the scanned
window, thus starting a new iteration of the algorithm.

Concerning the algorithm’s complexity, it is evident that the search phase exhibits a time
complexity of O(nm) in the worst-case scenario and necessitates additional space of O(2α).
With the preprocessing phase consuming computational time at O(mq), the overall complexity
of the algorithm is delineated as O(m(n + q)). While its complexity may not rival other
solutions that demonstrate superior worst-case efficiency, the proposed algorithm manifests
commendable performance in practical scenarios, as underscored by our experimental tests
elucidated in Section 4.

3 Algorithmic Optimisations

Optimizing algorithms is a crucial aspect in algorithm design, particularly in experimental
contexts. The efficiency of an algorithm not only impacts its practical applicability but also
influences resource consumption, execution speed, and overall performance. In experimental
settings, where algorithms are tested and evaluated, optimization becomes paramount to
ensure that computational resources are utilized effectively.

In this section we discuss the following optimisations for the Hash Chain algorithm, which
are implemented in the bench-marked versions: (i) reduce the bits set for the first q q-grams;
(ii) reduce need for full pattern verification; (iii) use a sentinel pattern at the end of the text.

The first two optimisations are included in the basic Hash Chain (HC) algorithm, while
the Sentinel Hash Chain algorithm (SHC) additionally implements the last one.

3.1 Reduce the Bits Set for the First q q-grams
The preprocessing order originally presented in Figure 2 is sub-optimal in one way. The first
step was to place an arbitrary 1 bit into the hash address of the first q-gram, to ensure it is
recognised as a factor. This simplified the description process; we start at the beginning and
progressed straightforwardly to the end.

SEA 2024



24:8 Efficient Exact Online String Matching Through Linked Weak Factors

Hash-Chain(x, m, y, n, q, α)
1. F, s, F ′, Hv ← Preprocessing(x, m, q, α)
2. j ← m− 1
3. while j < n do
4. v ← Hash(y, j, q, s, F ′)
5. z ← F [v]
6. if z ̸= 0 then
7. i← j −m + 2 · q
8. while j ≥ i do
9. j ← j − q

10. v ← Hash(y, j, q, s, F ′)
11. if z & LinkHash(v) = 0 then
12. break (to line 18)
13. z ← F [v]
14. else
15. j ← i− q
16. if v = Hv and y[j − q..j − q + m− 1] = x
17. output j − q
18. j ← j + m− q + 1

Figure 5 The pseudo-code of the Hash-Chain (HC) algorithms for the exact string matching
problem. In addition to the two strings and their length, the algorithm receives as input the size of
the q-grams used for hashing and the parameter α which regulates the size of the hash table.

However, the algorithm only requires that the word in F for that q-gram is not empty, in
order that it can be identified as a valid factor of the pattern. If we process all the other
pairs of q-grams first, it is possible that a collision will occur and the entry for it will already
contain one or more bits. In that case, there is no need to set an additional 1 into the entry,
as it already flags that it is a possible factor, by not being empty.

Therefore, when implementing the pre-processing phase, it is advisable to process the
first q q-grams with no preceding q-gram last, and to only place a bit into the entry for
them if it is empty. This strategy ensures we set as few bits as possible in the bit vector,
which reduces the chance of a false positive match. The pre-processing pseudo-code given in
Figure 3 already implements this optimisation in lines 14-17.

3.2 Reduce the Full Pattern Verifications

When the algorithm reads back to the start of the current window, it always performs a full
pattern verification. However, note that if the pattern does match the current window, then
the last hash value v calculated on line 10 of the pseudocode in Figure 5 must match the
hash value of the first q-gram in the chain ending at the end of the pattern, which we will
call Hv. Therefore, if we return Hv from the pattern pre-processing stage, we can compare v

with it before entering the pattern verification step at line 16. If the hash does not match,
there is no need to perform full pattern verification.

This is the reason for the ordering of pre-processing in the pseudo-code in Figure 3. Each
chain of the pattern is processed backwards from the end of the pattern. The last chain to
be processed ends at the end of the pattern. We compute that chain back from the end of
the pattern, so the last hash value computed in it is the first hash in that chain, which is Hv.
This can then be returned by the pre-processing stage without having to re-compute it. The
pseudo code for HC search in figure 5 shows this optimisation on line 16, where we test that
v = Hv before attempting to verify that the text matches the pattern. In Figure 1, the hash
value H11 as the first q-gram in the first chain would be returned as Hv.
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Sentinel-Hash-Chain(x, m, y, n, q, α)
1. F, s, F ′, Hv ← Preprocessing(x, m, q, α)
2. for i← 0 to m− 1 do
3. y[n + i]← x[i]
4. j ← m− 1
5. while j < n do
6. while F [Hash(y, j, q, s, F ′)] = 0 do
7. j ← j + m− q + 1
8. if j < n then
9. v ← Hash(y, j, q, s, F ′)

10. z ← F [v]
11. i← j −m + 2 · q
12. while j ≥ i do
13. j ← j − q
14. v ← Hash(y, j, q, s, F ′)
15. if z & LinkHash(v) = 0 then
16. break (to line 22)
17. z ← F [v]
18. else
19. j ← i− q
20. if v = Hv and y[j − q..j − q + m− 1] = x
21. output j − q
22. j ← j + m− q + 1

Figure 6 The pseudo-code of the Sentinel-Hash-Chain (SHC) algorithms for the exact string
matching problem. In addition to the two strings and their length, the algorithm receives as input
the size of the q-grams used for hashing and the parameter α which regulates the size of the table.

3.3 Use a Sentinel Pattern at the End of the Text

A final optimisation technique, that can be applied to many different algorithms, is the use
of a sentinel pattern at the end of the text. This technique first makes a copy of the pattern
into the text, just after the end of the text to be searched, called the sentinel pattern. When
searching, it uses a fast search loop that does not have to perform a position check. This
is because the sentinel pattern at the end of the text guarantees we will find a copy of the
pattern if we go past the end of the text, so we can safely loop without checking our position.
Once the fast loop exits, we have to check that we have not run past the end of the text, but
if not, we have a possible match to consider.

This technique, while powerful, has some serious constraints for real-world use. It requires
control over the memory allocation of the text buffer to be searched, and the ability to
write data into it. Many real-world applications will not offer that control to a search
algorithm, but in cases where it is possible, it can have a performance advantage. It has been
implemented and bench-marked separately as the Sentinel Hash Chain algorithm (SHC).

Pseudo code for the SHC algorithm is given in figure 6. The pattern x is copied to the
end of y at n in lines 2 and 3. The fast loop without a position test looking for blank words
in F is at lines 6 and 7, and we test to see if we have run past the end of the text at n in
line 8. If not, we proceed to validate the rest of the chain and the pattern as normal.

4 Experimental Results

We report in this section the results of an extensive experimental comparison of the HC
algorithm against the most efficient solutions known in the literature for the online exact
string matching problem. Specifically, the following 21 algorithms (implemented in 99
variants, depending on the values of their parameters) have been compared:

SEA 2024
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AOSOq: Average-Optimal variant [21] of Shift-Or [2] with 2 ≤ q ≤ 6;
BNDMq: Backward-Nondeterministic-DAWG-Matching [24] with 1 ≤ q ≤ 6;
BRAMq: Backwards Range Automaton [18], with 3 ≤ q ≤ 7;
BSDMq: Backward-SNR-DAWG-Matching [14], with 2 ≤ q ≤ 8;
BSXq: Backward-Nondeterministic-DAWG [10], with 1 ≤ q ≤ 8;
EBOM: Extended version [13] of BOM;
FJS algorithm [20];
LBNDM: Long BNDM algorithm [25];
KBNDM: Factorized BNDM algorithm [6];
FSBq,s: Forward Simplified [6] BNDM [24], with 2 ≤ q ≤ 8 and 1 ≤ s ≤ 6;
HASHq: Hashing algorithm [23], with 3 ≤ q ≤ 8;
HCq,α: Hash Chain, and its variant SHCq,α, with 1 ≤ q ≤ 8 and 8 ≤ α ≤ 12.
IOM and WOM: Improved Occurrence and Worst Occurrence Matching [5];
QFq,s: Qgram-Filtering algorithm [10], with 2 ≤ q ≤ 16 and 1 ≤ s ≤ 6;
SBNDMq: Simplified BNDM [28] with 2 ≤ q ≤ 8;
WFRq: Weak Factor Recognition [8], with 1 ≤ q ≤ 8 and its variant TWFRq;
UFMq: Unique Factor Matcher [17], with 1 ≤ q ≤ 10.

For completeness, we also included the Exact Packed String Matching (EPSM) al-
gorithm [12], which makes use of SSE or AVX instructions and which can only report counts
but not the positions of occurrences. Although we report its timings, we do not compare it
with the other algorithms.

All algorithms have been implemented in the C programming language and have been
tested using the Smart tool [16]. All experiments have been executed locally on a computer
running Linux Ubuntu 22.04.1 with an Intel Xeon E3-1226 v3 CPU @ 3.30GHz and 24GB
ECC RAM.2

Our tests have been run on a genome sequence, a protein sequence, and an English
text (each of size 100MB) extracted from the well known Pizza&Chilli Corpus3. In the
experimental evaluation, patterns of length m were randomly extracted from the sequences,
with m ranging over the set of values {2i | 3 ≤ i ≤ 9}. In all cases, the mean over the search
speed plus the pre-processing time (expressed in milliseconds) of 500 runs for each pattern
length has been reported.

Tables 1, 2 and 3 summarise our evaluations. Each table is divided into five blocks. The
first block contains algorithms based on automata. The second contains algorithms based on
character comparison. The third block contains algorithms which use weak factor recognition,
which includes the Hash Chain algorithm. The fourth block contains algorithms that modify
the text buffer to use a “sentinel” optimisation technique; all of these are also weak factor
algorithms. The final block contains algorithms which are limited to only reporting a count
of occurrences, but not their positions. Results within 105% of the best time are underlined,
and best results have been boldfaced (without considering EPSM in the final block). For
algorithms with variant parameters, such as the q-gram length, only the fastest variant is
presented in brackets in a subscript next to the result.

Time measurements are denoted in milliseconds (ms). Nonetheless, in certain instances,
certain solutions exhibited notable delays. Consequently, entries marked with the symbol
“> 200” signify that the algorithm exceeded 200ms in search time and experienced a timeout.

2 The source code for the new algorithm and the Smart tool are available for download respectively at
https://github.com/nishihatapalmer/HashChain and https://github.com/smart-tool/smart.

3 The corpus is available at http://pizzachili.dcc.uchile.cl/index.html.

https://github.com/nishihatapalmer/HashChain
https://github.com/smart-tool/smart
http://pizzachili.dcc.uchile.cl/index.html
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Table 1 Experimental results obtained for searching on a genome sequence. Entries that state
> 200 indicate that the algorithm took longer than 200ms to search and timed out.

m 8 16 32 64 128 256 512
AOSOq 63.17(2) 38.65(4) 19.66(6) 19.75(6) 19.71(6) 19.74(6) 19.66(6)
BNDMq 37.48(4) 19.63(4) 10.35(6) 10.24(6) 10.28(6) 10.26(6) 10.19(6)
BSDMq 29.0(4) 15.59(6) 9.3(7) 7.45(8) 7.19(8) 7.27(7) 7.34(7)
BXSq 37.06(4) 19.04(4) 9.72(6) 9.74(6) 9.71(6) 9.73(6) 9.71(6)
EBOM 95.02 64.79 40.09 24.51 14.58 9.63 7.75
FSBq,s 35.1(4,1) 19.13(6,2) 10.4(6,1) 10.38(6,1) 10.47(6,1) 10.49(6,1) 10.35(6,1)
KBNDM 107.38 68.98 39.31 23.83 23.2 23.22 23.19
LBNDM 140.1 80.12 45.44 36.13 30.05 >200 >200
SBNDMq 36.8(4) 19.03(4) 10.5(6) 10.52(6) 10.49(6) 10.49(6) 10.4(6)

FJS >200 >200 >200 >200 >200 >200 >200
HASHq 88.0(3) 42.34(3) 21.85(5) 12.86(5) 11.12(5) 11.68(5) 13.73(5)
IOM >200 >200 >200 >200 >200 >200 >200
WOM >200 >200 >200 97.49 84.66 72.05 64.32

BRAMq 58.56(5) 25.13(5) 12.67(7) 8.76(7) 7.83(7) 6.92(7) 4.03(7)
HCq,α 30.3(4,12) 14.2(6,12) 8.5(6,12) 7.14(6,12) 7.06(6,12) 5.75(6,12) 3.35(6,12)
QFq,s 33.4(4,3) 14.69(4,3) 8.66(6,2) 7.39(6,2) 7.08(6,2) 5.77(6,2) 3.43(6,2)
UFMq 42.0(5) 18.38(6) 9.96(7) 7.71(8) 7.68(8) 6.46(8) 3.66(8)
WFRq 35.6(4) 16.63(5) 9.93(5) 7.72(7) 7.17(6) 5.79(6) 3.25(7)

SHCq,α 29.6(4,12) 12.8(5,12) 8.7(6,12) 7.39(6,12) 7.03(6,12) 5.63(6,12) 3.29(6,12)
TWFRq 31.04(4) 15.68(5) 9.33(6) 7.62(6) 7.08(6) 5.66(6) 3.17(7)

EPSM 22.93 9.96 6.82 6.63 5.57 3.5 1.98

Table 2 Experimental results obtained for searching on a protein sequence. Entries that state
> 200 indicate that the algorithm took longer than 200ms to search and timed out.

m 8 16 32 64 128 256 512
AOSOq 33.7(4) 24.18(4) 16.35(6) 16.17(6) 16.16(6) 16.16(6) 16.2(6)
BNDMq 19.18(2) 11.96(2) 8.36(4) 8.17(4) 8.16(4) 8.18(4) 8.19(4)
BSDMq 17.63(3) 10.06(4) 7.58(4) 6.8(4) 6.69(4) 6.66(4) 6.62(4)
BXSq 15.51(2) 9.95(3) 7.77(4) 7.76(4) 7.76(4) 7.77(3) 7.79(4)
EBOM 15.98 10.97 8.97 8.11 7.06 5.52 3.11
FSBq,s 15.87(2,0) 9.96(3,1) 7.96(3,1) 7.98(3,1) 7.97(3,1) 7.98(3,1) 7.95(3,1)
KBNDM 45.47 25.63 14.9 11.95 10.95 11.42 11.41
LBNDM 68.43 42.74 20.28 14.2 11.8 9.89 9.21
SBNDMq 15.83(2) 10.85(2) 8.36(4) 8.32(4) 8.33(4) 8.33(4) 8.33(4)

FJS 69.82 46.86 35.53 31.05 28.51 27.39 27.22
HASHq 80.9(3) 37.23(3) 19.5(3) 12.55(5) 10.79(5) 11.48(3) 12.9(3)
IOM 62.5 41.85 31.74 27.41 25.23 24.26 24.22
WOM 67.28 43.7 31.41 25.62 21.99 19.92 18.49

BRAMq 31.48(3) 16.36(3) 11.15(3) 8.58(7) 7.79(7) 6.81(7) 3.71(7)
HCq,α 16.17(3,11) 9.38(3,11) 7.58(3,11) 6.84(6,12) 6.23(3,11) 4.12(3,11) 2.37(4,12)
QFq,s 16.03(2,6) 9.93(3,4) 7.63(3,4) 6.84(4,3) 6.27(3,4) 4.16(3,4) 2.33(4,3)
UFMq 23.15(3) 13.66(3) 9.69(7) 7.72(8) 7.68(8) 6.37(7) 3.54(8)
WFRq 26.03(2) 12.36(4) 8.37(4) 7.2(4) 6.61(4) 4.75(4) 2.52(5)

SHCq,α 15.85(3,11) 9.23(3,11) 7.49(3,11) 6.82(4,12) 6.19(3,11) 4.06(3,11) 2.29(4,12)
TWFRq 23.37(4) 10.73(4) 8.09(4) 7.1(4) 6.52(4) 4.62(4) 2.49(5)

EPSM 11.44 10.06 6.87 6.69 5.62 3.52 1.95
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Table 3 Experimental results obtained for searching on an English text. Entries that state > 200
indicate that the algorithm took longer than 200ms to search and timed out.

m 8 16 32 64 128 256 512
AOSOq 36.67(4) 24.19(4) 16.3(6) 16.11(6) 16.11(6) 16.08(6) 16.09(6)
BNDMq 24.55(2) 13.37(4) 8.9(4) 8.83(4) 8.79(4) 8.83(4) 8.76(4)
BSDMq 18.92(3) 10.8(4) 8.07(4) 7.07(6) 6.85(6) 6.87(4) 6.81(4)
BXSq 21.18(2) 11.92(3) 8.33(4) 8.31(4) 8.31(4) 8.36(4) 8.29(4)
EBOM 21.43 16.36 13.71 11.78 9.41 7.13 4.62
FSBq,s 20.44(3,1) 11.97(3,1) 8.71(4,2) 8.71(4,2) 8.7(4,2) 8.75(4,2) 8.68(4,2)
KBNDM 49.08 30.41 19.88 15.23 11.89 11.82 11.81
LBNDM 81.15 49.51 26.67 16.95 13.08 10.47 9.13
SBNDMq 20.75(2) 13.41(4) 8.89(4) 8.84(4) 8.83(4) 8.9(4) 8.83(4)

FJS 75.05 49.48 36.19 29.83 24.97 21.69 20.46
HASHq 80.36(3) 36.76(3) 18.67(3) 12.33(3) 10.71(3) 11.49(3) 13.87(3)
IOM 67.84 45.18 33.21 26.8 22.51 19.83 19.18
WOM 72.35 45.86 31.92 25.4 20.48 17.87 16.75

BRAMq 31.99(3) 17.98(3) 10.85(5) 8.35(5) 7.7(5) 6.14(5) 3.23(7)
HCq,α 17.54(3,11) 10.67(3,11) 8.08(6,12) 6.84(6,12) 6.49(3,11) 4.57(3,11) 2.58(4,12)
QFq,s 20.28(3,4) 10.47(4,3) 8.06(4,3) 6.99(4,3) 6.5(4,3) 4.64(4,3) 2.61(4,3)
UFMq 24.71(3) 13.94(5) 9.02(6) 7.47(6) 7.4(6) 5.69(6) 3.21(8)
WFRq 26.47(2) 12.75(4) 8.67(4) 7.3(4) 6.63(4) 4.77(5) 2.54(5)

SHCq,α 17.14(3,11) 10.41(3,11) 8.0(5,12) 7.0(5,12) 6.44(3,11) 4.52(3,11) 2.48(4,12)
TWFRq 23.52(4) 11.14(4) 8.31(4) 7.13(4) 6.53(4) 4.67(4) 2.51(5)

EPSM 12.83 9.95 6.81 6.62 5.56 3.47 1.94

For all alphabets and pattern lengths where m > 8, HCq, α and its variant SHCq, α

consistently demonstrate superior speed. Specifically, on protein sequences alone, BSDMq

outperforms others in terms of speed when m = 64. On genome sequences, TWFRq exhibits
the fastest performance when m ≥ 512, and for BSDMq when m = 8. Notably, among the
fastest algorithms for cases where m ≥ 16, the predominant approach is based on weak factor
recognition, whereas for instances with m < 16, automata-based algorithms typically emerge
as the fastest.

Upon comparing SHC and HC, it becomes evident that SHC outpaces its counterpart,
consistently securing the highest number of top-ranking results across all alphabets. With
the exception of genome sequences, SHC stands out as the fastest algorithm for various
pattern lengths. In instances where SHC is not the fastest, HC frequently claims the top
position. Notably, when neither algorithm secures the fastest time, their respective timings
typically fall within a range of 105% of the fastest recorded time.

Regarding the performances of the different variants of the HC algorithm, the optimal
parameter value for α has consistently demonstrated to be 12, with α = 11 yielding the
best running time only in occasional instances. Concerning the size of the q-grams utilized
in the algorithm implementation, as intuitively anticipated, larger q values yield enhanced
performance as the pattern size increases. Nevertheless, the parameter q should be consistently
constrained within the range of 3 to 6.

If your primary concern is the count of pattern occurrences within the text rather than
their specific positions, the EPSM algorithm stands out as a top performer. Leveraging
the latest SSE (or AVX) instructions inherent in contemporary processors, it consistently
delivers superior speed with markedly reduced execution times. Exploring the feasibility of
implementing a weak factor recognition algorithm using similar SSE technologies could be
an intriguing avenue for further investigation.
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5 Conclusions

In this paper, we introduced the Hash Chain algorithm (HC) and its variant SHC, representing
innovative approaches to the online exact string matching problem. These algorithms leverage
weak factor recognition and a hashing function that connects adjacent hash values of the
pattern x.

Our comprehensive experimental evaluation reveals the remarkable competitiveness of
our proposed solutions when benchmarked against state-of-the-art algorithms documented
in the literature. The impressive performance exhibited by HC and SHC, along with other
analogous weak factor recognizers, underscores the promise of weak factor recognition as a
compelling approach in the realm of pattern recognition. This success encourages and paves
the way for further exploration and research in the same direction.

Furthermore, contemplating a linear version of HC and SHC, mirroring the conceptual
framework of the Linear Weak Factor Recognition algorithm[8], appears to be a feasible and
promising avenue for future investigations.
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