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Abstract
The Token Jumping problem, also known as the independent set reconfiguration problem under
the token jumping model, is defined as follows: Given a graph and two same-sized independent
sets, determine whether one can be transformed into the other via a sequence of independent sets.
Token Jumping has been extensively studied, mainly from the viewpoint of algorithmic theory, but
its practical study has just begun. To develop a practically good solver, it is important to construct
benchmark datasets that are scalable and hard. Here, “scalable” means the ability to change the
scale of the instance while maintaining its characteristics by adjusting the given parameters; and
“hard” means that the instance can become so difficult that it cannot be solved within a practical
time frame by a solver. In this paper, we propose four types of instance series for Token Jumping.
Our instance series is scalable in the sense that instance scales are controlled by the number of
vertices. To establish their hardness, we focus on the numbers of transformation steps; our instance
series requires exponential numbers of steps with respect to the number of vertices. Interestingly,
three types of instance series are constructed by importing theories developed by algorithmic research.
We experimentally evaluate the scalability and hardness of the proposed instance series, using the
SAT solver and award-winning solvers of the international competition for Token Jumping.
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26:2 Scalable Hard Instances for Independent Set Reconfiguration

(a)  I0 = Is (b)  I1 (c)  I2

(d)  I3 (e)  I4 (f )  I5 = It

Figure 1 A sequence ⟨I0, I1, . . . , I5⟩ of independent sets between Is = I0 and It = I5, where
tokens (i.e., the vertices in an independent set) are colored with gray.

(a) Is (b) It

Figure 2 An example of instances to which the answer is no.

1 Introduction

Combinatorial reconfiguration [22, 37, 21] is a family of problems that involve finding a
step-by-step transformation between two given feasible solutions of a combinatorial (search)
problem such that all intermediate solutions are also feasible and each step respects a
prescribed reconfiguration rule. One of the most well-studied reconfiguration problems is the
Token Jumping problem, which is also known as the Independent Set Reconfiguration
problem under the token jumping model [28]. Recall that an independent set I of a graph G

is a vertex subset of G such that no two vertices are adjacent in G. Imagine that a token
is placed on each vertex in I. Given two independent sets (token placements) of G, we are
asked whether there is a transformation from one into the other by moving a single token
at a time while always maintaining independent sets of G. (See Figure 1 for a yes-instance,
and Figure 2 for a no-instance.) Token Jumping has been extensively studied from the
viewpoint of algorithmic theory (see the surveys in [11, 37]), and is known to be PSPACE-
complete [28]. Since NP ⊆ PSPACE, this implies that there is a yes-instance such that even a
shortest transformation requires a super-polynomial number of steps under the assumption of
NP ̸= PSPACE; otherwise, we can use a transformation (of polynomial steps) as the witness.
Indeed, examples that actually require exponential numbers of steps have been constructed for
some reconfiguration problems [17, 27, 9]. In the literature, standard algorithmic techniques
designed for NP-complete problems are rarely extended to reconfiguration problems, and
significant algorithmic developments are required. We think this is one of the main reasons
why Token Jumping and other combinatorial reconfiguration problems have attracted much
attention from the theoretical algorithms research community.

Token Jumping has been used to prove the PSPACE-completeness of several other
reconfiguration problems. In this sense, Token Jumping is a theoretically central problem
and is thus important, similar to the SAT problem for NP-complete problems. Indeed, in
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addition to the theoretical studies, recently, there has been a growing focus on practical
studies for Token Jumping. In particular, initiated by the international solver competitions
for Token Jumping held in 2022 1 and 2023 2, named CoRe Challenge, general-purpose
solvers for Token Jumping are studied. Christen et al. [13] developed a solver that
utilizes AI planning methods [16]. Yamada et al. [42] proposed a solver based on answer set
programming [3]. Ito et al. [23] proposed a solver based on a data structure for a family
of sets, called zero-suppressed binary decision diagram [32]. Notice that all the studies
mentioned above are published in 2023 and 2024.

To accelerate these practical studies, it is crucial to construct benchmark datasets that are
scalable and hard. Here, “scalable” means the ability to change the scale of the instance while
maintaining its characteristics by adjusting the given parameters; and “hard” means that
the instance can become so difficult that it cannot be solved within a practical time frame
by a solver. To develop general-purpose solvers that do not rely on prior problem-specific
knowledge, these properties are desirable for benchmark instances, as we have seen in history,
e.g., for instances for SAT solvers. For example, the tower of Hanoi is easy to solve if we
use problem-specific knowledge; however, interestingly, it is recognized and often used as a
scalable and hard benchmark instance for general-purpose solvers such as SAT/CSP solvers
(refer to CSP/SAT benchmark database 3,4 and the literature [36]).

It is important for solver developments to construct datasets reflecting the characteristic
property of combinatorial reconfiguration, which gives a clear difference from NP-complete
problems. To construct such datasets for Token Jumping, we focus on the numbers of
required transformation steps. This is because, as mentioned above, one of the characteristic
properties of Token Jumping is that there is a yes-instance such that even a shortest
transformation requires a super-polynomial number of steps under the assumption of NP ̸=
PSPACE. On the other hand, interestingly, Token Jumping is solvable in polynomial time
if the number of transformation steps is bounded by a constant [35]. We thus think that
the number of transformation steps gives a strong influence on the “hardness” of instances.
One may think that it is not so difficult to construct datasets for Token Jumping, because
there are various graphs that can be used from publicly available datasets, e.g., the DIMACS
Challenge [25]. However, from the results of CoRe Challenge 2022 5, despite the wide range
of vertex numbers, from 11 to 10000, such instances do not need many transformation steps:
instances with less than 10 steps occur in 80% of all DIMACS instances, and the longest step
is only 112. Indeed, those instances were often easily solved by several solvers (including the
SAT solver for an NP-complete problem).

In this paper, we propose four types of instance series for Token Jumping. Our instance
series is scalable in the sense that instance scales are controlled by the number of vertices.
We establish their hardness by ensuring that they require exponential numbers of steps with
respect to the number of vertices. Interestingly, we constructed three of them by importing
theories [17, 27, 9] developed by algorithmic research (and the remaining one is from scratch).
We experimentally evaluate the scalability and hardness of the proposed instance series
using the SAT solver and award-winning solvers of the international competition CoRe
Challenge [39]. By comparing with randomly generated instances, we will confirm that the
proposed instances are scalable and hard enough.

1 https://core-challenge.github.io/2022/
2 https://core-challenge.github.io/2023/
3 https://www.xcsp.org/instances/
4 https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
5 https://core-challenge.github.io/2022result/
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The paper is organized as follows. Section 2 introduces terminology used in the following
sections. Section 3 explains how to create the proposed Token Jumping instance series.
Section 4 explains three kinds of Token Jumping solvers with distinct characteristics.
Section 5 shows empirical experiments demonstrating the scalability and hardness of the
proposed instance series. Section 6 concludes this paper.

2 Preliminaries

In this section, we formally define the Token Jumping problem and its related terminologies.
Let G = (V, E) be an unweighted and undirected graph. A vertex subset I ⊆ V is an

independent set of G if no two vertices in I are adjacent in G. For a positive integer k, the
solution space Sk(G) is a graph such that each node in Sk(G) is an independent set I of G

with |I| = k and two nodes are joined by an edge in Sk(G) if and only if the corresponding
independent sets I and I ′ satisfy |I \ I ′| = |I ′ \ I| = 1. A path in Sk(G) connecting two
nodes I and I ′ is called a reconfiguration sequence between I and I ′. The length of the
reconfiguration sequence is defined to be the number of edges in the path.

Given a graph G and two independent sets Is and It of G such that |Is| = |It| = k, the
Token Jumping problem is to determine whether or not there exists a reconfiguration
sequence between Is and It in Sk(G). Note that Token Jumping is a decision problem, and
hence we are not asked for an actual reconfiguration sequence as an output. Throughout
this paper, we denote by (G, Is, It) an instance of Token Jumping.

To evaluate the “hardness” of instances of Token Jumping, we introduce the notion
of the “distance” of an instance. Let (G, Is, It) be an instance of Token Jumping. Then,
the distance of (G, Is, It) is defined as the shortest length of any reconfiguration sequence
between Is and It; it is defined as +∞ if the answer to (G, Is, It) is no. We say that an
instance of Token Jumping is hard if its distance is exponential in the input size.

3 Scalable Hard Instances

In this section, we give four types of hard instance series for Token Jumping: three series
are given in Section 3.1 by reductions from well-studied reconfiguration problems; and the
last one in Section 3.2 is our original.

3.1 Hard instances based on reductions
In this subsection, we provide three types of hard instance series for Token Jumping, by
introducing polynomial-time reductions from three well-studied reconfiguration problems.
We will show (in Theorems 1, 2, and 3) that the distances of the corresponding instances of
Token Jumping are at least those of source instances of the reductions. Then, because hard
instance series are known for the three source reconfiguration problems of the reductions, we
will obtain hard instance series for Token Jumping.

3.1.1 SAT-based series
Gopalan et al. [17] introduced the SAT Reconfiguration problem, as follows: we are given
two satisfying truth assignments for a CNF formula ϕ, and are asked to determine whether
or not we can transform one into the other by flipping a truth assignment of a single variable
at a time so that all intermediate results remain satisfying truth assignments for ϕ. This
problem is PSPACE-complete [17], and the complexities of SAT Reconfiguration and its
related problems have been studied very precisely [17, 30, 31, 34]. Ito et al. [22, Theorem 2]
gave the following reduction.
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▶ Theorem 1 ([22]). Let ϕ be a 3-CNF-formula with N variables and M clauses, as an
instance of SAT Reconfiguration. Then, there is a corresponding instance of Token
Jumping such that the input size is O(NM) and its distance is at least that of the original
instance.

We note in passing that the distance of the corresponding instance of Token Jumping is at
most M times that of the original instance of SAT Reconfiguration.

Gopalan et al. [17, Lemma 3.7] constructed an instance series for SAT Reconfiguration
such that formulas are 3-CNF and the distances of the instances are exponential in the input
sizes. Then, by taking such SAT Reconfiguration instances, Theorem 1 gives a hard
instance series for Token Jumping, which we call the SAT series in this paper.

3.1.2 Shortest-Path-based series
Kamiński et al. [27] introduced the Shortest Path Reconfiguration problem, as follows:
we are given two shortest paths connecting two specified vertices s and t in an unweighted
graph, and are asked to determine whether or not we can transform one into the other by
exchanging a single vertex in a shortest path at a time so that all intermediate results remain
shortest paths connecting s and t. Surprisingly, this problem is PSPACE-complete [7, 41], and
polynomial-time algorithms have been developed for restricted graph classes [1, 2, 7, 8, 15].
Kamiński et al. [28, Theorem 3] gave the following reduction.

▶ Theorem 2 ([28]). Let G′ be a graph with N vertices, as an instance of Shortest Path
Reconfiguration. Then, there is a corresponding instance of Token Jumping such that
the input size is O(N2) and its distance is equal to that of the original instance.

Kamiński et al. [27, Theorem 1] constructed an instance series for Shortest Path
Reconfiguration such that the distances of the instances are exponential in the input
sizes. Then, by taking such Shortest Path Reconfiguration instances, Theorem 2 gives
a hard instance series for Token Jumping, which we call the SP series in this paper.

3.1.3 List-Coloring-based series
Let C be a set of k colors. For a graph G′ = (V ′, E′), assume that each vertex v in V ′ has a
list L(v) ⊆ C of colors. Then, a list coloring of G is to assign a color in L(v) to each vertex
v in V ′ so that no two adjacent vertices receive the same color. Then, the List Coloring
Reconfiguration problem is defined as follows: we are given two list colorings of G, and
are asked to determine whether or not we can transform one into the other by recoloring
a single vertex at a time, so that all intermediate results remain list colorings of G. This
problem and its related problems appear in several research fields, such as Glauber dynamics
in statistical physics (e.g., see [24]).

List Coloring Reconfiguration has been studied also in the field of theoretical
computer science. The problem is PSPACE-complete [9, 19, 41], and there are some tractable
cases [6, 12, 19, 20, 26]. A standard reduction from list colorings to independent sets in
graphs (e.g., see [33]) gives the following reduction also for reconfiguration problems.

▶ Theorem 3. As an instance of List Coloring Reconfiguration, let G′ be a graph
with N vertices and M edges, and let |C| = k. Then, there is a corresponding instance of
Token Jumping such that the input size is O(k2N + kM) and its distance is equal to that
of the original instance.

SEA 2024
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Proof. We construct a graph G for Token Jumping, as follows: For each vertex v in G′, we
construct a new clique of |L(v)| vertices; each vertex in the clique corresponds to a color in
L(v). For each edge uv in G′, if L(u) ∩ L(v) ̸= ∅, then we join the two vertices in the cliques
for u and v that correspond to each color c ∈ L(u) ∩ L(v). Then, the theorem follows from
the fact that a one-to-one correspondence holds between list colorings of G′ and maximum
independent sets of G. ◀

Bonsma and Cereceda [9, Theorem 21] constructed an instance series for List Coloring
Reconfiguration such that the distances of the instances are exponential in the input
size. Then, by taking such List Coloring Reconfiguration instances, Theorem 3 gives
a hard instance series for Token Jumping, which we call the LC series in this paper.

3.2 Original instance series
In this subsection, we construct our original hard instance series for Token Jumping, which
we call the IS series6 in this paper. We give the following theorem.

▶ Theorem 4. Let x ≥ 3, y ≥ 1, z ≥ 1 be any three integers such that x is odd. Then, there
is an instance of Token Jumping such that

the number of vertices is 5xy + 2z,
the number of edges is 8xy − y + 2z − 1, and
its distance is Ω(z · xy).

More specifically, its distance is equal to

x(x − 1)y − 2
x − 2 z + x(x − 1)y − (2x − 4)y − x

(x − 2)2 (3x − 2) + 2y.

Proof sketch. We here sketch the construction of our instance, and roughly explain why
it requires an exponential distance. The graph G of the instance is shown in Figure 3. It
consists of a path of 2z vertices (shown in the left of the figure) and y villages (shown in
Figure 4), where each village has x houses (shown in Figure 5). We order the houses from
top to bottom, and the villages from left to right, as labeled in Figure 3.

We say that a house is in the north-position (resp., south-position) if the two tokens in the
house are placed as shown in Figure 5(a) (resp., in Figure 5(b)). For an independent set I of
G and each i ∈ {1, 2, . . . , y}, we denote by si(I) the number of houses in the south-position in
the i-th village; thus si(I) ∈ {0, 1, . . . , x}. In the initial independent set Is, all the houses in
all the villages are in the north-position, and hence si(Is) = 0 for all i ∈ {1, 2, . . . , y}. In the
target independent set It, all the houses in the y-th village are in the south-position, and the
others are in the north-position; that is, sy(It) = x and si(It) = 0 for all i ∈ {1, 2, . . . , y − 1}.
Therefore, any reconfiguration sequence from Is to It must change the value sy for the y-th
village from 0 to x. The structure of G forces the following properties:

to increase the value sy from j to j + 1 for even j, we need to change the value sy−1 for
the (y − 1)-st village from 0 to x; and
to increase the value sy from j to j + 1 for odd j, we need to change the value sy−1 for
the (y − 1)-st village from x to 0.

During the changes of sy from 0 to x, the above changes for sy−1 happen x times alternatively.
Furthermore, y villages are recursively connected in G, and this recursive structure yields
the exponential factor Ω(xy) into the distance of our instance. ◀

6 IS stands for Independent Sets, since this instance series is designed originally for Token Jumping.
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(a) An initial independent set Is.
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(b) A target independent set It.

Figure 3 The construction of an instance in the IS series, where x is odd.

x

2

1

x

2

1

(a) (b)

Figure 4 The village gadgets used in the
IS series. (a) The number of houses in the
south-position in the village is 0. (b) The
number of houses in the south-position in the
village is x.

(a) (b)

Figure 5 The house gadgets used in
the IS series. (a) A north-position. (b) A
south-position.

4 Solvers Used for Evaluation

In this section, we describe three solvers that will be used for the evaluations in Section 5:
SAT-based solver, ZDD-based solver, and IDA-BFS-based solver. The authors develop the
SAT-based solver for this paper to perform the most fundamental evaluation, which will
be available as described in Conclusions. The ZDD-based and IDA-BFS-based solvers have
participated in CoRe Challenge 2022 [39]. The ZDD-based solver solved the instance with
the largest shortest reconfiguration sequence in the challenge. The IDA-BFS-based solver
solved the most instances and got the first place in the shortest track of the overall solver
category. Both competition solvers are publicly available from the competition repository7.

7 https://github.com/core-challenge/2022solver-showcase
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4.1 SAT-based solver
Let (G, Is, It) be an instance of Token Jumping, where G = (V, E). Our SAT-based solver
employs the method of the bounded model checking [4]. More specifically, for a bound
(integer) ℓ, the solver determines whether there is a reconfiguration sequence of length ℓ

between Is and It; and then we increment the bound ℓ.
First, for an integer i ∈ {0, 1, . . . , ℓ} and a vertex u ∈ V , let pi,u be a propositional

variable such that it is true if and only if a token is placed on the vertex u at Step i; we
define the initial independent set Is as Step 0. To represent an independent set at Step i, we
introduce a function Token(i) as follows:

Token(i) =



∧
u∈Is

pi,u ∧
∧

u ̸∈Is

¬pi,u if i = 0,∧
{u,v}∈E

(¬pi,u ∨ ¬pi,v) if 0 < i < ℓ,∧
u∈It

pi,u ∧
∧

u̸∈It

¬pi,u if i = ℓ.

Next, we introduce two kinds of propositional variables q10
i,u and q01

i,u to represent a token
movement at a vertex u ∈ V between Steps i and i + 1: q10

i,u (resp., q01
i,u) is true if and only if

a token is removed from u (resp., placed to u) between Steps i and i + 1. Then, the following
constraint Jump(i) represents a single token movement between Steps i and i + 1:

Jump(i) =
(∧

u∈V

(q10
i,u ↔ (pi,u ∧ ¬pi+1,u))

)

∧

(∧
u∈V

(q01
i,u ↔ (¬pi,u ∧ pi+1,u))

)

∧

(∑
u∈V

q10
i,u = 1

)
∧

(∑
u∈V

q01
i,u = 1

)
.

Note that the arithmetic constraint of
∑

i xi = 1 can be encoded into propositional clauses
by using the sequential counter [38].

Finally, we check whether there is a reconfiguration sequence of length ℓ by computing
the satisfiability of the following formula Ψℓ:

Ψℓ =
ℓ∧

i=0
Token(i) ∧

ℓ−1∧
i=0

Jump(i)

Our SAT-based solver increases ℓ one by one and performs satisfiability testing of Ψℓ. The
method stops once the formula Ψℓ becomes satisfiable, and outputs its model as a shortest
reconfiguration sequence. In addition, incremental SAT solving [14] is used to speed up
the computation by reusing learned clauses of SAT solvers. We implemented the proposed
SAT-based method in the Scala language and used CaDiCaL [5] as its backend SAT solver.

4.2 ZDD-based solver
A zero-suppressed binary decision diagram (ZDD) is a data structure that efficiently represents
the family of sets. Ito et al. [23] developed a solver that solves various reconfiguration problems
(including Token Jumping) using ZDDs. In CoRe Challenge 2022 [39], the ZDD-based
solver solved Token Jumping instances requiring longer shortest reconfiguration sequences
that the other participants could not solve.
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We briefly describe the algorithm of the ZDD-based solver for Token Jumping. The
solver conducts the breadth-first search in the solution space Sk(G) starting from the node
corresponding to Is. (Recall the definition of Sk(G) given in Section 2.) Let Zi be the family
of all independent sets in Sk(G) that are distance at i from Is. We represent Zi as a ZDD
in a compressed form and construct Z0, Z1, . . . in turn, where Z0 = {Is}. After constructing
Zi, we check whether Zi contains the target independent set It. If so, we can conclude that
there is a reconfiguration sequence of length i between Is and It. Ito et al. [23] designed an
algorithm that efficiently constructs Zi from Zi−1 using ZDD manipulation methods.

4.3 IDA-BFS-based solver
Turau and Weyer developed a solver for Token Jumping, which got the first place in the
shortest track of the overall solver category in CoRe Challenge 2022 [39]. Their solver is
a hybrid one carrying both the iteratively deepening A* algorithm (IDA*) [29] and the
breadth-first search (BFS) on the solution space Sk(G). In this paper, we call their solver
the IDA-BFS-based solver.

Roughly speaking, the IDA-BFS-based solver regards Token Jumping as the standard
graph problem that searches a path in a graph Sk(G) connecting two nodes Is and It. Thus,
we can make use of A* search. However, A* search needs a huge amount of memory because
Sk(G) is usually large and it needs to store the visited nodes. To save the memory usage, the
IDA-BFS-based solver employs the method that combines the depth-first search (DFS) with
A* search, called IDA* [29]. In addition, when the answer to (G, Is, It) is no, IDA* searches
nodes in Sk(G) many times. To avoid such a situation, the IDA-BFS-based solver uses BFS
together with IDA*, which run in parallel in separate threads. Details are given in the first
section of the description of CoRe Challenge 2022 [40].

5 Empirical Evaluations

In this section, we evaluate the instance series proposed in Section 3 by the solvers in
Section 4. In the following, all experiments were conducted on a machine equipped with a
3.2 GHz CPU and 64GB of memory. The time limit is 30 minutes for each instance.

5.1 Benchmark instances
We generated benchmark instances from the series of SAT (Section 3.1.1), SP (Section 3.1.2),
LC (Section 3.1.3), and IS (Section 3.2). In addition, for the purpose of comparisons, we
generated random instances as follows:
1. Generate a random graph by specifying the numbers of vertices and edges8. These

numbers were chosen to be approximately the same as those from benchmark instances
of SAT, SP, LC, and IS for the purpose of comparison.

2. For the generated graph, compute two maximal independent sets of the same size as
initial and target independent sets.

3. Check if there exists a reconfiguration sequence for the generated instance. If it exists,
return it as a random instance; otherwise, attempt another pair of maximal independent
sets. If a given number (this time 100) of attempts is unsuccessful, return to Step 1.

8 Specifically, the gnm_random_graph method in the NetworkX graph library [18] is used, which chooses a
graph uniformly at random from all the graphs with n vertices and m edges for specified n and m.
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Figure 6 Distance of instances with respect to the number of vertices.

For each n and m, we generated five random instances. In the following, all values for random
instances are their median values. For each series, instances with 130 vertices or fewer were
generated. As we will describe in Conclusions, all benchmark instances and their generators
are available online.

5.2 Evaluation
5.2.1 Distances of benchmark instances
First, we evaluated the benchmark instances by their distances, which are computed by one
of the three solvers in Section 4. Figure 6 shows the distances, where the horizontal axis
represents the number of vertices, and the vertical axis in a logarithmic scale represents the
distance.

Recall that we have theoretically shown in Section 3 that distances of SAT, SP, LC and
IS series increase exponentially with the numbers of vertices. This fact was also confirmed
by our experiments as shown in Figure 6 (notice that the vertical axis uses a logarithmic
scale): the plots of SP and IS draw steeply straight lines, and the plots of SAT and LC
draw comparably mild straight lines.

On the other hand, the line of RAND no longer increases significantly when the number
of nodes is over 100. This implies the difficulty of constructing scalable hard instances for
Token Jumping in a straightforward way.

5.2.2 Evaluation by CPU time
Next, we evaluated the benchmark instances by CPU times of three solvers in Section 4.
Recall that the SAT-based solver (Section 4.1) was developed by the authors for this paper
to perform the most fundamental evaluation. On the other hand, the ZDD-based and IDA-
BFS-based solvers (Sections 4.2 and 4.3, respectively) have participated in CoRe Challenge
2022 [39], and they are designed for Token Jumping. Figures 7(a), 7(b), and 7(c) show
the CPU times of the SAT-based, ZDD-based, and IDA-BFS-based solvers, respectively. In
each figure, the horizontal axis represents the number of vertices, and the vertical axis in a
logarithmic scale represents the CPU time.

For the SAT-based solver (see Figure 7(a)), the CPU time increases sharply according
to the increase in the number of vertices for all hard instance series SAT, SP, LC, and
IS. In particular, hard instances having more than 50 vertices become unsolvable for the



T. Soh, T. Watanabe, J. Kawahara, A. Suzuki, and T. Ito 26:11

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

 0  20  40  60  80  100  120

C
P

U
 T

im
e

#Vertices

  RAND

LC

SAT

SP

IS

(a) SAT-based solver.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

 0  20  40  60  80  100  120

C
P

U
 T

im
e

#Vertices

  RAND

LC

SAT

SP

IS

(b) ZDD-based solver.
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(c) IDA-BFS-based solver.

Figure 7 CPU time with respect to the number of vertices.

SAT-based solver. In contrast, all instances in RAND are solved within 10 seconds, even
when the number of vertices increases to more than 100. We remark that the reason why
the computation time of the SAT solver exceeds one second for all instances is believed
to be due to the use of the Scala programming language on the Java Virtual Machine for
implementation, which results in significant overhead during startup.

The ZDD-based and IDA-BFS-based solvers show similar behaviors, as shown in Fig-
ures 7(b) and 7(c), respectively. The plots of CPU time for all hard instance series SAT,
SP, LC, and IS draw straight lines, namely showing the exponential growths of CPU times.
Compared to the SAT-based solver, lines of SAT, SP, LC, and IS are much more gradual,
and indeed the ZDD-based and IDA-BFS-based solvers can solve hard instances having more
than 100 vertices. In this sense, our hard instance series are “nicely” hard to develop and
improve a solver for Token Jumping.

We note that the lines of RAND for the ZDD-based and IDA-BFS-based solvers are
different from that for the SAT-based solver: the ZDD-based and IDA-BFS-based solvers
experience rapid increases in CPU times according to the numbers of vertices in those
instances. We discuss the reason for this behavior in the following section, regarding the
SAT-based and ZDD-based solvers.

5.2.3 Analyses of solver performance
To understand the behavior of solvers, we add some more analyses for the SAT-based and
ZDD-based solvers.

We analyzed the number of clauses in the SAT formula for the SAT-based solver because
this is a standard metric for the difficulty of SAT instances. Figure 8(a) shows the growth of
the number of clauses according to the number of vertices. As this figure shows, the number
of clauses exponentially grows for all hard instance series SAT, SP, LC, and IS; while it
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Figure 8 Analyses of solvers’ behavior.

becomes stable for RAND even when the number of vertices is over 100. These behaviors
are almost the same as the increases in the distances of instances, as shown in Figure 6.
Recall that our SAT-based solver employs the bounded model checking which depends on
distances of instances, as explained in Section 4.1.

For the ZDD-based solver, we analyzed the number of independent sets that appear in
the computation. Recall that Zi is the family of all independent sets in the solution space
Sk(G) that are distance at i from Is, and that the ZDD-based solver constructs Zi from
Zi−1 using ZDD manipulation methods. Thus, as a metric, we computed the number of
independent sets in Zi, and take the maximum among i = 0, 1, . . . , ℓ, where ℓ is the distance
of the instance. Figure 8(b) shows the growth of this maximum number of independent sets
computed by the ZDD-based solver, according to the number of vertices. Then, compared to
the line of RAND, those of SAT, SP, LC, and IS are much more gradual, and hence they
are exponentially small numbers. This seems to be a natural property, because there are at
most 2|V | independent sets in a graph G = (V, E), and hence the number of independent sets
at distance i would be small if the distance ℓ is exponential. Because the ZDD-based solver
conducts the breadth-first search on Sk(G), it becomes more effective for hard instances and
less effective for random instances in RAND.

5.2.4 Evaluation summary
We summarize the evaluations. As theoretically shown in Section 3, all the proposed instance
series SAT, SP, LC, and IS result in exponential growths in the distances according to
the number of vertices. On the other hand, as shown in Figure 6, we could not observe
such growth in the distance for random instances in RAND. In addition, as mentioned in
Introduction, recall that instances in CoRe Challenge 2022 [39] made from graphs in the
DIMACS challenge do not have long distances: despite the wide range of vertex numbers
from 11 to 10000, 80% of such instances have distance less than 10, and the longest distance
is only 112. Therefore, we confirmed the effectiveness of theoretical approaches to creating
benchmark instances, particularly when we require scalability. In this context, there is a
related work [10] that analyzes the asymptotic behavior of longest distances of instances
among all graphs having prescribed numbers of vertices and tokens, although their intention
is not to focus on the construction of hard instances.

In addition, we analyzed how this distance property affects the performances of solvers. We
confirmed that the required CPU times by three solvers also show scalability and exponential
growth according to the number of vertices. This implies that solvers adept at handling long
distances demonstrate good performance, resulting in identical rankings for each solver.
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6 Conclusions

In this paper, we proposed four types of instance series for Token Jumping, to acceler-
ate practical studies of general-purpose solvers that do not rely on prior problem-specific
knowledge. Our instance series is scalable in the sense that instance scales are controlled
by the numbers of vertices of input graphs. We focused on the distances of instances to
establish the hardness, and theoretically show that our instance series require exponential
numbers of steps with respect to the number of vertices. We confirmed their scalability and
hardness by three distinct solvers: SAT-based solver, ZDD-based solver, and IDA-BFS-based
solver. We emphasize again that constructing such scalable and hard instances is not a trivial
task. In addition, our experiments demonstrated that the randomly generated instances can
be sufficiently hard for two types of solvers, but not for the SAT-based solver. All bench-
mark instances, experimental result logs, and solver programs are available on a GitHub
repository9.

As a future work, there would be other ways to establish the hardness of instances for
Token Jumping. For example, there may be instances where the distance is short but
listing all candidate independent sets for the next step is difficult. The difficulty of such
instances may depend on other parameters such as the size of independent sets. Future work
also includes creating benchmark datasets for other reconfiguration problems.
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