
Improved Cut Strategy for Tensor Network
Contraction Orders
Christoph Staudt #

Friedrich Schiller University Jena, Germany

Mark Blacher #

Friedrich Schiller University Jena, Germany

Julien Klaus #

Friedrich Schiller University Jena, Germany

Farin Lippmann #

Friedrich Schiller University Jena, Germany

Joachim Giesen #

Friedrich Schiller University Jena, Germany

Abstract
In the field of quantum computing, simulating quantum systems on classical computers is crucial.
Tensor networks are fundamental in simulating quantum systems. A tensor network is a collection
of tensors, that need to be contracted into a result tensor. Tensor contraction is a generalization of
matrix multiplication to higher order tensors. The contractions can be performed in different orders,
and the order has a significant impact on the number of floating point operations (flops) needed to
get the result tensor. It is known that finding an optimal contraction order is NP-hard. The current
state-of-the-art approach for finding efficient contraction orders is to combinine graph partitioning
with a greedy strategy. Although heavily used in practice, the current approach ignores so-called
free indices, chooses node weights without regarding previous computations, and requires numerous
hyperparameters that need to be tuned at runtime. In this paper, we address these shortcomings by
developing a novel graph cut strategy. The proposed modifications yield contraction orders that
significantly reduce the number of flops in the tensor contractions compared to the current state
of the art. Moreover, by removing the need for hyperparameter tuning at runtime, our approach
converges to an efficient solution faster, which reduces the required optimization time by at least an
order of magnitude.

2012 ACM Subject Classification Theory of computation → Algorithm design techniques; Mathem-
atics of computing → Solvers; Applied computing → Physics

Keywords and phrases tensor network, contraction order, graph partitioniong, quantum simulation

Digital Object Identifier 10.4230/LIPIcs.SEA.2024.27

Supplementary Material Software (Source Code):
https://github.com/ti2-group/hybrid_contraction_tree_optimizer [25]

archived at swh:1:dir:72b3334932a79d590af0d303cb339bd8fc93abe6

Funding Supported by the Carl Zeiss Stiftung within the project “Interactive Inference”.

1 Introduction

Quantum computing is a rapidly evolving field that holds a lot of promise, especially for
simulating quantum systems. However, building reliably working quantum computers is still
a major challenge, because of to the fragile nature of quantum states, which can easily be
disturbed by environmental factors [3]. Therefore, simulating quantum systems on classical
computers is still a viable alternative. It is, however, a computationally intensive task, as
the size of the state space grows exponentially with the number of qubits.

© Christoph Staudt, Mark Blacher, Julien Klaus, Farin Lippmann, and Joachim Giesen;
licensed under Creative Commons License CC-BY 4.0

22nd International Symposium on Experimental Algorithms (SEA 2024).
Editor: Leo Liberti; Article No. 27; pp. 27:1–27:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christoph.staudt@uni-jena.de
https://orcid.org/0009-0000-4250-546X
mailto:mark.blacher@uni-jena.de
https://orcid.org/0009-0007-2009-7996
mailto:julien.klaus@uni-jena.de
https://orcid.org/0000-0002-1498-2653
mailto:farin.lippmann@uni-jena.de
https://orcid.org/0009-0004-3726-3434
mailto:joachim.giesen@uni-jena.de
https://orcid.org/0000-0001-6598-6833
https://doi.org/10.4230/LIPIcs.SEA.2024.27
https://github.com/ti2-group/hybrid_contraction_tree_optimizer
https://github.com/ti2-group/hybrid_contraction_tree_optimizer
https://archive.softwareheritage.org/swh:1:dir:72b3334932a79d590af0d303cb339bd8fc93abe6;origin=https://github.com/ti2-group/hybrid_contraction_tree_optimizer;visit=swh:1:snp:43cd970f4096efa2f95c1f4cf7b1c164a5d1dd51;anchor=swh:1:rev:dcf3c162f4d532634350e83cbf7af54c9b745ded
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Improved Cut Strategy for Tensor Network Contraction Orders

Tensor networks are a fundamental data structure used in quantum simulations [16],
including the simulation of quantum circuits that are designed to run on quantum computers,
but can also be simulated on classical computers. A tensor network is a graph, where the
nodes are tensors and the edges represent indices shared among the tensors. Evaluating a
tensor network means contracting the tensors over the shared indices, one index after the
other. We provide a formal definition of tensor networks and tensor network contractions
in Section 2. The efficiency of evaluating a tensor network heavily depends on the order of
the indices that is used for the contractions. Finding a good, or even optimal, contraction
order is known as the tensor network contraction order problem. Finding an optimal order is
NP-hard [12]. Therefore, heuristics are used in practice for computing good contraction orders.
There are two main classes of contraction order heuristics, namely greedy [24] and graph-
structure-based heuristics, such as tree decompositions, graph partitioning, or community
detection [8, 24]. In practice, the best results are reported when combining graph-structure
and greedy algorithms [8]. Graph-structure-based algorithms are used to hierarchically
decompose the problem into smaller and balanced subproblems and subproblems below a
certain size are optimized by a greedy approach [8, 10]. Here, we present a new hybrid of
graph-structure and greedy heuristics that addresses three main shortcomings of the state of
the art: (1) Relating balanced partitions to balanced contraction trees, (2) disregarding free
indices in the cut size, and (3) a weak correlation between partition size and contraction cost.

Experimental results show that our hybrid approach outperforms the state of the art in
terms of contraction order quality and optimization time. Compared to the state of the art,
our hybrid approach reduces the number of floating point operations (flops) in the tensor
contraction on the Google Sycamore circuits [2] by at least a third, in a fraction of the time.

Furthermore, we present an anytime algorithm that does not rely on hard-to-tune
hyperparameters. Both aspects are practically relevant as it happens in practice that more
time is spent on optimizing contraction orders, including hyperparameter tuning, than
on actually contracting the tensor network. An anytime algorithm for contraction order
optimization that tracks the required number of flops can stop when it no longer pays off
in terms of the overall running time. This includes optimizing the contraction order and
actually contracting the tensor network. Experimental results show that our hybrid algorithm
exhibits a better contraction order quality to optimization time ratio than state-of-the-art
algorithms for contraction order optimization.

2 Tensor Network Contractions

Tensor networks are given by tensors with a shared set of indices. For n ∈ N+, the set of
tensor indices is given as [n] = {1, . . . , n}, the length of the i-th index is given by ki ∈ N+,
and the set of positions is the Cartesian product K =

∏n
i=1[ki]. For an index set I ⊆ [n], a

tensor over the real numbers is a mapping

T : K|I
→ R

that maps positions to real numbers. Here, K|I
is the projection of K onto the indices in I.

The size |I| of the index set I is called the order of T . If I = ∅, then K|∅ = {()} contains
only the empty tuple and the corresponding order-0 tensor is a scalar. A tensor network is a
set {T1, . . . , Tm} of tensors that, for all i ∈ [n], satisfy

Ji :=
∣∣{j ∈ [m] | i ∈ Ij}

∣∣ ≤ 2,

that is, any index is shared by at most two tensors. Indices of axes that belong to only one
tensor are called free indices. The structure of a tensor network can be encoded in a weighted
graph with a vertex for every tensor and an edge for every shared index. The edge weights

C. Staudt, M. Blacher, J. Klaus, F. Lippmann, and J. Giesen 27:3

are the lengths of the corresponding axes. We illustrate the graphical representation on the
simple example of a matrix chain multiplication that we will use throughout this article.
Here, free indices are depicted by dangling edges. Let M1 ∈ R2×8 and M2, M3, M4 ∈ R8×8

be four matrices, where Mi and Mj share an index if |i − j| = 1. The corresponding tensor
network is shown in Figure 1.

M1 M2 M3 M4
j(8) k(8) l(8)i(2) m(8)

Figure 1 Matrix chain tensor network. The edges correspond to tensor axes and are labeled
by indices. Their weights (in brackets) are the lengths of the axes. Dangling edges belong to free
indices.

Let L =
{

i ∈ [n]
∣∣ |Ji| = 2

}
=: {i1 < . . . < iℓ} be the set of contraction indices. The

tensor network contraction problem asks to compute

∑
α∈K|L

m∏
j=1

Tj(α|Ij
),

where α|I
is the projection of α onto the indices in I. The tensor network contraction problem

can also be written in the form∑
α1∈[ki1]

. . .
∑

αℓ∈[kiℓ
]

m∏
j=1

Tj(α|Ij
),

where α = (α1, . . . , αℓ). The interpretation of the latter form is that the edges of the tensor
network are contracted one after the other in the order given by the order on [ℓ]. Changing
the contraction order by a permutation π on [ℓ] does not change the value. This can be
significantly more efficient with a good choice for π, because, by the distributive law, products
and sums can be interleaved.

In our matrix chain multiplication example, the contraction indices are L = {j, k, i} with
kj = kk = kl = 8, while the free indices are i and m with ki = 2, km = 8. The tensor network
contraction problem for the matrix chain is to compute

R(i, m) = M1M2M3M4 =
8∑

j=1

8∑
k=1

8∑
l=1

M1(i, j) · M2(j, k) · M3(k, l) · M4(l, m).

By the associativity of matrix multiplication, we have different contraction orders. For
instance,

(
(M1M2)M3

)
M4 corresponds to the order jkl, and

(M1M2)(M3M4) =
8∑

k=1

[8∑
j=1

M1(i, j) · M2(j, k) ·
8∑

l=1
M3(k, l) · M4(l, m)

]
,

where products and sums have been interleaved by the distributive law, corresponds to the
orders jlk and ljk. The contraction orders differ in the number of multiplications (flops),
which are 384 for the contraction order jkl and 768 for the contraction orders jlk and ljk.
Every contraction order can be encoded in a contraction tree, where the tree is uniquely
defined by the order, but the tree does not uniquely determine the order. However, all
contraction orders of the same tree require the same number of flops. Therefore, it is sufficient

SEA 2024

27:4 Improved Cut Strategy for Tensor Network Contraction Orders

to find a good contraction tree and not a specific contraction order. The contraction trees
for

(
(M1M2)M3

)
M4 and (M1M2)(M3M4) with intermediate tensors, labeled by C1 and C2,

are shown in Figure 2.

R

C2

C1

M1 M2

M3

M4

(a) Imbalanced contraction tree for the order jkl.

R

C1

M1 M2

C2

M3 M4

(b) Balanced contraction tree for jlk and ljk.

Figure 2 Comparison of contraction trees for the matrix chain problem from Figure 1, using
different contraction orders.

3 Related Work

Finding an optimal contraction order, that is, a contraction order that minimizes the number
of flops, is known to be NP-hard [12]. Therefore, randomized search heuristics [22] and,
especially, greedy heuristics [8, 24] are in widespread use. Greedy heuristics score the edges
of the tensor network, for instance by the size difference of a contracted tensor and the two
tensors that have been contracted. For the contraction ordering, an edge with minimal score
is selected, and the scores of the remaining edges have to be updated, because the contraction
along the selected edge can affect the scores of the remaining edges. Greedy heuristics build
a contraction tree from the bottom up.

Alternatively, contraction trees can also be built top down. Since every subtree of a
contraction tree corresponds to a subnetwork of the original tensor network, any contraction
tree corresponds to a hierarchical partitioning of the tensor network. Graph partitioning
was first used by Kourtis et al. [11] for computing contraction orders. It has become a
standard technique for challenging quantum supremacy circuits [9, 17, 18] and is an integral
part of cotengra, the state-of-the-art implemention for computing contraction orders [8]. It
was integrated into a recently presented quantum circuit simulator targeting the current
state of quantum computing, also known as the noisy intermediate-scale quantum (NISQ)
era [26]. For a subdivison, cotengra aims at minimizing the cost of the cut, measured by
the sum of the edge weights in the cut. The subdivision scheme shares the disadvantage
of optimizing locally and not considering contraction costs down the line with the greedy
approach. To counteract expensive contractions down the line, cotengra balances the cuts.
For computing a balanced, low cost hierarchical partitioning of a tensor network, cotengra
builds on the Karlsruhe (hyper-)graph partitioner (kahypar) [23] that constitutes the state of
the art. However, cotengra still faces some challenges. Most notably, balanced contraction
trees can be suboptimal. A first example can be seen in Figure 2, where the number of
flops for the balanced contraction tree is significantly larger than for the unbalanced tree.
The problem can be mitigated by increasing the number of partitions and the imbalance
parameter of the graph partitioner. Therefore, given a user defined time limit, cotengra
searches over these hyperparameter settings. Moreover, kahypar is randomized and also needs
several runs. Together, this results in a fairly large variance in the quality of cotengra’s
solutions. The issues become evident on a larger example [15], which we also discuss in our
experiments in Subsection 5.5.

C. Staudt, M. Blacher, J. Klaus, F. Lippmann, and J. Giesen 27:5

Motivated by the special case of matrix chain multiplication, where the contraction order
problem can be solved by dynamic programming (DP) in polynomial time [4], Ibrahim et al.
first bring the tensors of the tensor network into an optimized linear order and then use the
DP approach for matrix chains on the linear order [10]. We included this DP approach in
our experimental evaluation. Dynamic programming has also been used by Pfeifer et al. [20]
to exhaustively search the space of all contraction orders to find an optimal contraction
order. The time and space requirements for this DP approach have been improved by Liang
et al. [13]. Still, computing an optimal contraction order is only feasible for small tensor
networks.

On the theoretical side, for tensor networks where all indices have the same length,
Markov and Shi [14] have shown that the most expensive contraction requires exponentially
many flops only in the treewidth of the line graph of the tensor network. Furthermore,
given a tree decomposition of the line graph, they have devised an algorithm for computing
a contraction order that requires exponentially many flops in the width of the given tree
decomposition. The cost of the most expensive contraction can be a reasonable proxy for
the overall magnitude of the number of flops if there are not many large contractions. In
general, however, it is only a rough approximation for the number of flops [5]. Moreover,
the analysis and algorithm apply only to networks without free indices and where all indices
have the same length.

Another line of research is to learn good contraction orders. Meirom et al. [15] present a
reinforcement Learning (RL) approach combined with graph neural networks (GNNs) for
computing contraction orders. While the reported results compare well to the state of the
art established by cotengra, their performance depends on the training data. At the moment
it is difficult to assess the out-of-sample performance of the RL approach in terms of time
and quality. Nevertheless, we have included it in our experiments in Section 5.

4 Algorithmic Improvements

Top-down algorithms like cotengra that build on cost optimized balanced cuts of the tensor
network face three main challenges:
1. Relating balanced partitions to balanced contraction trees. For many tensor

networks the optimal contraction tree is very imbalanced. Current approaches can
only generate imbalanced contraction trees, if the partitions are imbalanced. However,
highly imbalanced partitions lead to a more greedy-like approach that can produce high
contraction costs down the line.

2. Accounting for free indices in the cut size. The cut size should relate to the
contraction cost between the partitions. Currently, however, free indices, which also
contribute to the contraction cost, are discarded before the problem is passed to the
graph partitioner. cotengra can address this problem by putting all nodes with a free
index into a single partition. However, this constraint limits the possible cuts.

3. Accounting for a node’s contribution to the contraction cost of a subnetwork.
The size of the partitions should relate to contraction cost of the corresponding subnet-
works. Current node weighting schemes, however, do not reflect the contributions of
individual nodes to the contraction costs very well.

Moreover, by addressing the three challenges, many of the hyperparameters used by
cotengra can be eliminated. In the following, we present our solutions to the three challenges.

SEA 2024

27:6 Improved Cut Strategy for Tensor Network Contraction Orders

4.1 Arbitrarily balanced contraction trees from balanced partitions

To address the first challenge, that is, relating balanced partitions to balanced contraction
trees, we propose a new problem formulation that allows for arbitrarily balanced contraction
trees from balanced partitions. Our algorithmic changes can be illustrated on the matrix
chain multiplication example from Figure 1. The edge weights passed to the partitioner are
the binary logarithms of the index lengths, because the contraction cost between two tensors
is proportional to the product of their index lengths, which is equal to the sum of the edge
weights, that is, the cut size, after applying the binary-logarithm transformation. Here, we
color the free indices gray, because in the standard approach, the graph partitioner receives
the network without them. A balanced cut leads to the child and parent networks that are
depicted in Figure 3a and Figure 3b, respectively.

M1 M2 M3 M4

C1 C2
j(3) k(3) k(3) l(3)i(1) m(3)

(a) The two child networks after the cut.

C1 C2

P
k(3)i(1) m(3)

(b) Parent network, combining
the two partitions.

Figure 3 The standard approach creates a parent network, which has a child node for each
partition. The children can be partitioned further. The edge weights are logarithms of the index
lengths. Gray edges represent free indices that are not passed to the graph partitioning algorithm.

Since the initial partition is balanced and there is only one way to contract the parent
network, this inevitably leads to the more expensive (balanced) contraction tree in Figure 2b.
The problem can be circumvented by picking one of the partitions and declaring it as the
parent partition. We will explain later how the parent is picked. Instead of creating a new
parent network with two nodes, one for each child, we just combine the nodes of the parent
partition with a single child node that represents the result of the other partition as shown in
Figure 4. The parent network P can still lead to the balanced tree in Figure 2b if needed by
contracting the index l next. However, it can also lead to the imbalanced tree in Figure 2a
by contracting the index k next. Thereby we have decoupled balancing the partitions from
balancing the contraction tree. This allows us to always run the graph partitioner with a
small imbalance parameter, typically resulting in smaller total contraction costs.

M1 M2 C M3 M4

C P
j(3) k(3) i(1) k(3) l(3)i(1) m(3)

Figure 4 The child network C (on the left) is contracted first and the resulting tensor is added as
node C (yellow) to the new parent network P (on the right). Note that the index k is a free index
of the child network C.

If the tensor network has free indices, the parent network will be chosen as described in
the next section. Otherwise, we compute a contraction order for the two possible parent and
child network combinations using a greedy algorithm and pick the one with the lowest total
cost.

C. Staudt, M. Blacher, J. Klaus, F. Lippmann, and J. Giesen 27:7

4.2 Accounting for free indices in the cut size

The second challenge is to account for free indices when computing the cut size, because,
without the free indices, the cut size does not accurately represent the contraction cost. It
is important to consider free indices even if the original tensor network had none, because
every cut introduces free indices into the child networks.

We illustrate the problem on a square tensor network with two free indices that is shown
in Figure 5. The minimal balanced cut contains only the edges a and c, which suggests a
contraction cost of 2 · 23 = 16 for the parent network. However, the child networks C1 and
C2 have free indices that contribute to the overall contraction cost. Contracting the parent
network and contracting each child network all have the same cost, namely 2·23 ·23 ·23 = 1 024
flops, leading to total contraction costs of 3 072 flops.

C1

C2

b(3)

a(3)

d(3)

c(1)

f(3) e(3)

(a) Smallest balanced cut.

C1

C2

P

a(3)

d(3)

c(1)

e(3)

(b) Standard contraction.

C2

P1 b(3)

a(3)

d(3)

c(1)

e(3)

(c) Integrated child node.

Figure 5 The standard approach disregards free indices in the cut size.

As shown in Figure 5c, the approach of turning one child network into a parent network
and integrating the other child network as a node into the parent network, which we have
proposed in Subsection 4.1 to counteract problems with balanced cuts, does not resolve the
problem. However, the idea to add additional nodes to the network can also be used to
account for indices in the cut size. Here, we add a new node F , called free node, to the
network and connect it to the existing nodes by the free indices. As can be seen in Figure 6a,
a minimal balanced cut in our example network now contains the edges b and f , because
all other cuts contain at least three edges or produce a partition with only one node. The
new node F represents the result tensor of the contraction and thus becomes the root of the
contraction tree. Therefore, as depicted in Figure 6b, the child network C2, which contains
the node F , becomes the parent network P2. The child network C1 is added as a node to P2.
The minimal balanced cut now accounts for all edges shared between the two partitions but
also for the free indices of the child network. The total contraction cost is the sum of the
contraction cost of the child network C1 and the contraction cost of the parent network P2.
Contracting C1 requires 23 · 23 · 23 = 512 flops, and the two remaining contractions in P2
require 1 024 flops each. Thus, the total contraction cost is 2 560 flops, which is about 30%
less than the contraction cost for the standard approach.

F

C1 C2b(3)

a(3)
d(3)

c(1)

f(3)
e(3)

(a) Adding the free node F to C2.

C1 F

P2
b(3) d(3)

c(1)
f(3) e(3)

(b) Parent with integrated child node.

Figure 6 The new approach considers free indices in the cut size.

SEA 2024

27:8 Improved Cut Strategy for Tensor Network Contraction Orders

1

1

1

1

1

1

b(1.0)

d(1.0)

e(3.0)

c(1.0)

i(3.0)

g(1.0)

f(1.0)

(a) Unit weighted nodes.

1

1

5

6

7

2

b(1.0)

d(1.0)

e(3.0)

c(1.0)

i(3.0)

g(1.0)

f(1.0)

(b) Log-size weighted nodes.

2 27 27

1 32 8

b(1.0)

d(1.0)

e(3.0)

f(1.0)i(3.0)

c(1.0) g(1.0)

(c) Cost weighted nodes.

Figure 7 Different node weight functions for the same tensor network give rise to different minimal
balanced cuts (depicted by dashed edges).

4.3 Contraction cost based node weights
The third challenge is to find good estimates for the contraction costs for the partitions. We
address this challenge by assigning weights to the nodes of the network, so that the weight
of a partition reflects its expected contraction costs.

At the moment, there are two standard node weight functions, namely assigning unit
weight to all nodes or to assign the binary logarithm of the node size. We refer to the first
weight function as unit weight and the second as log-size weight. Before we introduce our own
weight function, we discuss problems with the two standard weight functions. Figure 7a,b
shows an example graph with weighted nodes. In the unit weighted case, the smallest
balanced cut contains the edges b, c, f , and g, which separates the lower triangle from the
other nodes. To use this cut to find a good contraction order, we need to decide which
partition becomes the parent and which becomes the child subnetwork. We can then use the
opt_einsum greedy algorithm to compute contraction orders on the subnetworks. Regardless
which partition is chosen as parent, the total cost is 790 flops. A corresponding contraction
tree is shown in Figure 8a. In the log-size weighted case, the smallest balanced cut contains
the edges b, c, e, i, and g. Here, the best result is obtained by choosing the two nodes in
the middle of the network as the parent subnetwork. However, with 838 flops the cost is
even higher than in the unit weighted case. A corresponding contraction tree is shown in
Figure 8b. Both weight functions miss that the top middle tensor is rather expensive to
contract and needs to be separated from the tensor with indices b, d and e (white) and the
tensor with indices e and f (dark yellow). To address this problem, we define a new weight
function.

1

2

4

8

9

(a) Full/unit weighted.

1

2

6

9

8

(b) Log-size weighted.

1

6

6

7

5

(c) Cost weighted.

Figure 8 Contraction trees for the example graph using different node weight functions. The
numbers represent the binary logarithms of the contraction costs.

The core idea is to improve on the log-size weight function. For a given contraction tree,
the log-size does not necessarily reflect the actual contraction costs that should be attributed
to the tensor. For any node of the contraction tree, we can compute the cost of contracting
the two associated and already contracted subnetworks. We want to distribute this cost
among the tensors in the subnetworks. Intuitively, tensors that contribute many indices to

C. Staudt, M. Blacher, J. Klaus, F. Lippmann, and J. Giesen 27:9

the node should be assigned more of the cost. This leads to the following idea for a weight
function: Given a contraction tree G and a node T of the tensor network, the nodes of G

correspond to subnetworks of the tensor network. The set of subnetworks that contains
the tensor corresponding to T forms a path from a leaf to the root of G. The contraction
costs along this path should be partially attributed to T depending on how many indices
T shares with the nodes on the path. To keep the weight function simple, we assign the
contraction cost times the number of contributed indices to T . Formally, let A be a node on
the path, let shared-indices(T, A) be the number of indices shared between T and A, and
cost(A, G) be the contraction cost at node A in G. The weight assigned to T at A would be
log2(cost(A, G)) · shared-indices(T, A). To mitigate the effect of long paths, we only assign
the maximum weight along the path, that is,

cost-weight(T, G) = max
A∈path(T,G)

[
log2(cost(A, G)) · shared-indices(T, A)

]
.

Coming back to our example, the greedy contraction order gives rise to the contraction
tree in Figure 8a. Using this contraction tree results in the cost weight function that is
shown in the weighted network in Figure 7c. The smallest balanced cut in this weighted
network contains the edges b, d, i, and f . Here, the best result is obtained by choosing the two
lower right nodes of the network as the parent subnetwork. The resulting total contraction
costs, computed as before, are only 290 flops. A corresponding contraction tree is shown in
Figure 8c.

5 Experiments

We will first describe the datasets and baselines that we use in our experiments, then we
quickly go over implementation details of our algorithm. Afterwards, we discuss the impact
of our algorithmic modifications on the contraction cost for the two largest networks in the
dataset. Finally, we present comparative experimental results on all networks. Our code,
including a python implementation of the algorithm and the experiments, is available at
https://github.com/ti2-group/hybrid_contraction_tree_optimizer.

The experiments were run on a computer with two Intel Xeon 6140 processors with 18
Cores, 2.3 Ghz clock speed and 192 GB RAM.

5.1 Datasets and baselines
Unfortunately, we were not able to run the code from Meirom et al. [15] for lack of a
suitable GPU cluster that is needed for training, and for missing pre-trained weights for
inference. Nevertheless, since Meirom et al. published all networks that they have used in
their experiments, we benchmark us and all other baselines against them. For their approach,
we report the numbers as given in their paper. We clarified with the authors that they
used the opt_einsum reporting for flops. In contrast to our description so far, opt_einsum
counts additions and multiplications leading to twice as many flops compared to counting
only multiplications. To be consistent, we report the flops counted by opt_einsum in all
experiments and all algorithms.

Meirom et al. [15] have used the following three types of tensor networks in their
experiments:
1. Synthetic random 3-regular networks, which were generated with the Python

package opt_einsum [24]. The number of tensors ranges from 25 to 225 and for each
network size there are 100 different networks. We excluded networks with only 25 tensors

SEA 2024

https://github.com/ti2-group/hybrid_contraction_tree_optimizer

27:10 Improved Cut Strategy for Tensor Network Contraction Orders

from our benchmarks, because they can be solved by an optimal dynamic programming
algorithm in less than a second. The number of indices per tensor was sampled i.i.d. from
{2, 3, 4, 5, 6}.

2. The Sycamore circuits from the Google quantum supremacy experiment [2]. Meirom
et al. have used the circuits with 53 qubits and m = 10, 12, 14 and 20 cycles. These
networks have 162 to 379 tensors after simplification with the Python package quimb [6].

3. A single Max-cut circuit with 1 688 qubits and depth 21 resulting in 5 908 tensors
with four free indices. Meirom et al. modeled the network based on previous work [19].
Since the network is much larger than the others used in their experiments, they only
optimized the last 100, 1 000, and 2 000 contraction steps. To that end, they computed a
contraction order using the opt_einsum greedy heuristic and then contracted the network
up to the step they wanted to optimize. In their published data, the file for the last 2 000
steps was missing, so we generated one ourselves and made sure that our implementation
matches theirs for the last 100 and 1 000 steps. For the last 100 steps, the overall cost is
dominated by the previous steps, so we will not report the results for that. The costs for
contracting up to the last 1 000 and 2 000 steps are 1.61e+12 and 4.49e+08, respectively.
In order to always compare the costs for the entire network, we added these preprocessing
flops to the results.

Besides Meirom et al.’s reinforcement learning based approach, named RL-TNCO from
now on, we benchmark the following baseline algorithms that also have been used in [15]:

The greedy and kahypar algorithms from the Python package cotengra [8]. We will refer
to them as CTG greedy and CTG kahypar in the following. Because the greedy algorithm
now utilizes an updated Rust implementation and because faster implementations allow
for more trials, the results have improved compared to the earlier benchmarks [15].
cotengra offers three hyperparameter optimizers: random, nevergrad and optuna [21, 1].
For the greedy algorithm, mostly the random hyperparameter optimizer works best. It is
fast and thus allows for more trials. Only on large networks with long run times, optuna
can provide some benefit. For the kahypar algorithm, optuna generally seems to give
superior results compared to nevergrad and random. Additionally, cotengra offers various
methods to improve a given path, which are commonly used in practice. However, since
this is possible for paths produced by any algorithm, we excluded this feature to simplify
our comparison.
The miminmal linear arrangement and dynamic programming approach, called
MLA-DP [10]. We integrated the Julia implementation of MLA-DP into cotengra. Unfortu-
nately, MLA-DP’s hyperparameters are not documented. Changing the hyperparameters
renders the algorithm unstable. Therefore, we only vary the seed randomly. Moreover,
MLA-DP does neither support networks with more than one connected component nor
networks with free indices. Since the random regular networks include disconnected
networks and the max-cut network has free indices we cannot benchmark MLA-DP on
these networks.

5.2 Implementation details
We first describe small further improvements of the algorithm and then detail the hyperpara-
meters that are used by our algorithm and its dependencies.

To decide which part of the network should be partitioned next, the algorithm uses a
priority queue. The priority queue is sorted by the contraction costs of the subnetworks,
which are calculated by a greedy algorithm. While the priority queue is not empty,

C. Staudt, M. Blacher, J. Klaus, F. Lippmann, and J. Giesen 27:11

the subnetwork with smallest contraction cost is removed from the priority queue and
partitioned into a parent and a child network. Partial contraction orders are computed for
both networks, again by the greedy algorithm. The partition is rejected if the sum of the
costs of the two partial contraction orders is larger than the cost of the old contraction
order. Otherwise, both subnetworks are added to the priority queue with the cost of the
respective partial contraction order.
Since networks commonly have more than one minimal balanced cut of the same size, we
repeat each partitioning step several times and choose the partition with the lowest total
amount of flops. The number of repetitions is a hyperparameter that we describe below.
As described in Subsection 4.3, the weights that we assign to the nodes depend on a
contraction tree. To make the weights less dependent on a single contraction tree and
guiding the partitioning towards a more balanced cut, we average the weights over the
contraction trees that result from the repetitions that we have described in the item
above.
To turn our algorithm into an anytime algorithm, we use the total costs of the greedy
contraction trees to update our current cost estimate for the whole network.
Since both cotengrust [7] and kahypar also support (tensor) hypernetworks, our algorithm
does so as well.

Our algorithm is using the following hyperparameters and default choices for them:
Partition imbalance parameter : We configure kahypar to partition the networks into two
parts with an imbalance parameter of 0.05.
Choice of greedy algorithm: We use the greedy algorithm implemented in cotengrust. We
run the greedy algorithm 256 times with random choices for its hyperparameters.
Node weight function: We use only cost based node weights, as they give superior results
in our ablation study in Subsection 5.3.
Number of repetitions of the partitioner on a given (sub) network: 10.
Base case: If a subnetwork has less than 15 nodes we compute an optimal contraction tree
by the optimal dynamic programing algorithm by Pfeifer et al. [20] that is implemented
in cotengrust.
Stopping criterion: The algorithm stops if the cost of the next subnetwork scheduled for
partitioning, and therefore the cost for each remaining subnetwork, is less than 0.001% of
the current contraction cost.

The exact versions of the used softwares in our implementation can be found in the code
repository1.

5.3 Ablation study
Figure 9 shows how our algorithmic ideas reduce the number of flops required to contract the
max-cut and Sycamore network for m = 20, where m is the number of cycles. On the x-axis
we compare how different mappings of the tensor network to the graph partitioning problem
influence the number of flops. Since the max-cut network has output indices adding a free
node proves to be effective. It reduces the required number of flops by a fifth. Without the
free node, all the other algorithmic modifications are not effective. This is because, without
the free node, as shown in Figure 10, the algorithm cannot find a cut that improves the
greedy baseline. Using the cost weighted nodes improves the result slightly.

1 https://github.com/ti2-group/hybrid_contraction_tree_optimizer/blob/main/requirements.
txt.

SEA 2024

https://github.com/ti2-group/hybrid_contraction_tree_optimizer/blob/main/requirements.txt
https://github.com/ti2-group/hybrid_contraction_tree_optimizer/blob/main/requirements.txt

27:12 Improved Cut Strategy for Tensor Network Contraction Orders

The results on the Sycamore network are very different. Here, every algorithmic modi-
fication improves the result. However, the overall improvement is smaller. Again, the
improvements are a result of more successful cuts as can be seen in Figure 10. While
the Sycamore network does not have free indices, new free indices are introduced into the
child network of each cut. Therefore, the free node proves to be effective in this setting
as well. Additionally, weighting the nodes based on the contraction tree results in a clear
improvement.

standard child node child node + free node

1

2

3

4

5

fl
op

s

×1013 Max-cut (600s)

standard child node child node + free node

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

×1018 Sycamore m = 20 (360s)

weight function

unit weighted

log-size weighted

cost weighted

Figure 9 Comparison of the number of flops for the standard partitioning approach, the integrated
child node, and the integrated child and free node modifications. The colors encode how the nodes
are weighted. Each hyperparameter combination is executed ten times.

standard child node child node + free node
0

20

40

60

80

100

S
uc

ce
ss

fu
l

cu
ts

Max-cut

standard child node child node + free node
0

2

4

6

8

Sycamore m = 20

weight function

unit weighted

log-size weighted

cost weighted

Figure 10 Comparison of the number of cuts for the different algorithmic modifications that
result in a reduction of contraction costs compared to the cost estimation by the greedy algorithm.

5.4 Contraction order quality, run time, and variance

Here, we present comparative results on the random regular networks and the Sycamore
circuits. We compare the contraction order quality, the runtimes, and the variance of the
results. Results for the max-cut network will be presented in the next subsection.

C. Staudt, M. Blacher, J. Klaus, F. Lippmann, and J. Giesen 27:13

5.4.1 Synthetic random regular networks

RL-TNCO was only benchmarked on networks up to size 100. They trained a network for
each size on randomly generated graphs of the same size and then evaluated them on the
benchmark set. For each problem they sampled 50 and 1000 paths and reported the results
for both separately. For all methods the experiment was run three times per network and
then averaged over all networks of the same size [15]. The median was first calculated for
each network and then over all networks of the same size. All results are shown in Table 1
and Table 2. On small networks with only 50 tensors the reinforcement learning approach
outperforms the other methods. However, on larger networks it falls behind, at 100 nodes it
performs worse than all other algorithms. Our algorithm achieves the best mean and median
cost on all networks with more than 50 tensors. On the larger networks our algorithm finds
up to 40 times better paths on average for a runtime of 300s. For shorter runtimes the
difference becomes even larger. In general our algorithm improves only slightly when the
runtime is increased from one minute to 5 minutes, whereas cotengra improves significantly.
This might indicate that cotengra would need more time to find good paths. However, as we
will see in the next section, even running CTG kahypar for hours may not result in much
better paths.

Table 1 Number of flops on the synthetic networks with 50 to 125 nodes. The run times in
parenthesis belong to RL-TNCO.

Mean ± std Median ± MAD

n 50 75 100 125 50 75 100 125

Scale 107 1010 1012 1013 107 1010 1012 1013

run time 5s (4.2s) 5s (6.8s) 10s (9.6s) 60s 5s (4.2s) 5s (6.8s) 10s (9.6s) 60s

CTG greedy 10.2 ± 41.7 3.08 ± 9.11 5.08 ± 15.2 50.2 ± 114 3.46 ± 2.80 0.50 ± 0.46 0.92 ± 0.81 10.7 ± 9.62
CTG kahypar 8.29 ± 22.9 8.62 ± 30.3 9.89 ± 41.2 18.2 ± 50.4 3.43 ± 2.68 0.54 ± 0.50 0.62 ± 0.56 2.53 ± 2.35
RL-TNCO 3.93 ± 4.54 1.68 ± 4.62 9.18 ± 21.16 N/A 2.05 ± 4.54 0.24 ± 4.62 2.37 ± 21.16 N/A
this paper 5.67 ± 13.1 0.82 ± 2.02 0.53 ± 1.28 2.91 ± 6.36 2.85 ± 2.29 0.17 ± 0.15 0.14 ± 0.11 0.79 ± 0.70

run time 60s (74.6s) 120 (124.2s) 120s (164s) 300s 60s (74.6s) 120s (124.2s) 120s (164s) 300s

CTG greedy 8.02 ± 30.4 1.85 ± 5.38 2.74 ± 9.38 29.8 ± 64.4 3.00 ± 2.49 0.30 ± 0.28 0.49 ± 0.42 6.56 ± 5.74
CTG kahypar 5.55 ± 13.8 0.80 ± 2.21 1.03 ± 2.91 8.44 ± 20.6 2.63 ± 2.16 0.17 ± 0.15 0.21 ± 0.18 1.75 ± 1.59
RL-TNCO 3.22 ± 3.53 1.23 ± 2.75 5.55 ± 11.09 N/A 1.87 ± 1.57 0.21 ± 0.14 1.86 ± 1.69 N/A
this paper 5.25 ± 12.7 0.60 ± 1.39 0.40 ± 1.05 2.42 ± 5.19 2.69 ± 2.09 0.15 ± 0.13 0.11 ± 0.09 0.63 ± 0.55

Table 2 Number of flops on the synthetic networks with 150 to 225 nodes.

Mean ± std Median ± MAD

n 150 175 200 225 150 175 200 225

Scale 1016 1018 1020 1022 1016 1018 1020 1022

run time 60s

CTG greedy 33.8 ± 154 33.6 ± 95.4 340 ± 2337 617 ± 2353 4.27 ± 4.02 4.99 ± 4.80 11.1 ± 10.7 21.8 ± 20.3
CTG kahypar 10.6 ± 49.6 3.41 ± 9.78 18.1 ± 67.6 321 ± 1985 0.56 ± 0.52 0.34 ± 0.32 0.88 ± 0.79 1.53 ± 1.49
this paper 0.43 ± 0.95 0.12 ± 0.22 0.36 ± 1.20 0.23 ± 0.83 0.08 ± 0.07 0.03 ± 0.03 0.03 ± 0.02 0.02 ± 0.02

run time 300s

CTG greedy 14.6 ± 56.3 18.1 ± 74.1 228 ± 1794 213 ± 698 2.51 ± 2.35 2.44 ± 2.28 5.13 ± 4.88 8.61 ± 8.24
CTG kahypar 1.43 ± 3.44 0.69 ± 1.45 2.58 ± 10.2 4.71 ± 18.8 0.26 ± 0.24 0.11 ± 0.10 0.20 ± 0.18 0.23 ± 0.21
this paper 0.34 ± 0.84 0.08 ± 0.14 0.21 ± 0.70 0.11 ± 0.38 0.06 ± 0.06 0.02 ± 0.02 0.02 ± 0.01 0.01 ± 0.01

SEA 2024

27:14 Improved Cut Strategy for Tensor Network Contraction Orders

5.4.2 Sycamore networks

To compare against RL-TNCO, we first present results on the Sycamore networks for a
optimization time of 1 hour. We report the results after 3 hours for RL-TNCO, since they did
not report their results after 1h for the smaller networks. As shown in Table 3 we outperform
all other approaches on all networks. This even holds when our algorithm runs for only one
minute. We present extended statistics in Table 4 in the appendix.

0 500 1000 1500 2000 2500 3000 3500

run time (s)

0.2

0.4

0.6

0.8

1.0

fl
op

s

×1019

algorithm

MLA-DP

CTG kahypar

CTG greedy

this paper

(a) Flops vs. time.

3600.0

run time (s)

3

4

5

6

7

8

9

fl
op

s

×1018

(b) Variance (1h).

Figure 11 Comparison of flops over time and variance after 1h for the Sycamore network with
m = 20.

Besides contraction order quality measured in flops, practical relevant performance
measures are quality over run time and variance of the solution quality. Therefore, we present
the flops over time and the variance after 1h for the m = 20 network in Figure 11. We run
each algorithm 10 times for 10, 30, 60, 120, 360, 600, 1800 and 3600 seconds. Our algorithm
reliably finds good contraction trees after 360s, while the other algorithms slowly improve
towards the 1h time limit. However, as can be seen in Figure 11b, even after 1h the quality
of their results, especially of CTG kahypar varies greatly.

Table 3 Median number of flops on the Sycamore networks over 10 independent runs. The
parameter m represents the cycles of the Sycamore circuits and controls their size and complexity.

m = 10 m = 12 m = 14 m = 20

Scale 1010 1012 1014 1018

MLA-DP 1h 2.45 10.7 1.94 8.32
CTG greedy 1h 2.34 8.61 2.21 4.51
CTG kahypar 1h 2.20 10.9 2.06 6.87
RL-TNCO 3h 5.44 7.4 2.63 3.5
this paper 60s 1.78 6.05 1.61 2.79
this paper 1h 1.52 5.76 1.37 2.46

C. Staudt, M. Blacher, J. Klaus, F. Lippmann, and J. Giesen 27:15

5.5 Hyperparameter optimization and max-cut network
So far, all reported experimental results for our algorithm were obtained with the default
hyperparameter settings. Since we observed that the hyperparameter optimizer optuna for
CTG greedy is able to find better contraction orders than CTG greedy with randomly chosen
hyperparameters on the large max-cut network, we also examined the effect of optimizing
the imbalance hyperparameter on our algorithm. Results are shown in Figure 12 and in the
appendix in Table 5. On the max-cut network, both cotengra algorithms struggle to find a
good contraction order. CTG kahypar finds a reasonably good contraction order, but only
after 6h. The same holds for RL-TNCO, which finds a good contraction order after nearly 6h.
Even though the network is large, the contraction costs are rather low. On most modern
computers it can be contracted within minutes. For the long optimzation times to pay off,
one needs to contract the network fairly often. Our algorithm with default hyperparameter
settings finds a good contraction order after only 10 minutes. Optimizing the imbalance
parameter improves the results by about 25%, leading to the best contraction order for this
network.

0 2000 4000 6000 8000 10000

run time (s)

1013

1014

fl
op

s

algorithm

CTG greedy

CTG kahypar

this paper

this paper (optimized)

(a) Flops vs. time.

3600.0

run time (s)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

fl
op

s

×1014

(b) Variance (1h).

Figure 12 Comparison of flops over time and variance after 1h for the last 2000 steps of the
max-cut network.

6 Conclusions

We have introduced a novel cut strategy for finding efficient tensor network contraction
orders. The strategy consists of three algorithmic modifications over the state-of-the-art
approach based on top-down balanced graph partitioning and bottom-up greedy algorithms.

Our first modification addresses a mismatch between the partition balance objective and
imbalanced optimal contraction trees. For many tensor networks the optimal contraction tree
is imbalanced, which is difficult to achieve with a balanced cut objective in the partitioner. In
our modification, we designate one partition as the child and the other as the parent network.
The child network is integrated as a node into the parent network, which facilitates the
generation of both unbalanced and balanced contraction trees. Moreover, the modification
reduces the number of hyperparameters.

SEA 2024

27:16 Improved Cut Strategy for Tensor Network Contraction Orders

Our second modification addresses that free indices were not accounted for in the cut size
objective. Accounting for free indices is important, because they contribute to the contraction
cost. In our modification, we include an additional node that represents the free indices
in each partitioning step. The additional node ensures that the contraction costs are more
accurately reflected in the cut objective.

Our third modification addresses the problem of estimating the contraction costs of
partitions. A partitioner can use the estimates as weights when computing a small balanced
cut. In our modification we address this challenge by assigning weights to the nodes of
the network, so that the weight of a partition reflects its expected contraction costs. To
iteratively update the weights we leverage the greedy approach for computing contraction
orders on the partitions. The iterative refinement ensures that the weighted network graph
more accurately reflects the optimization objective.

Experimental results demonstrate that all three algorithmic modifications can improve
the current state of the art in finding good contraction orders. Overall, the proposed
algorithm computes more efficient contraction orders in significantly less time. Even though
our algorithm is randomized, just like the baseline algorithms, it exhibits a reduced variance
in the quality of the computed solutions. Moreover, the algorithm serves as an anytime
algorithm that can stop when it becomes obvious that further optimizations no longer pay
off.

References

1 Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Ankur Teredesai, Vipin
Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis, editors, Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD 2019, Anchorage, AK, USA, August 4-8, 2019, pages 2623–2631. ACM, 2019. doi:
10.1145/3292500.3330701.

2 Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends,
Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett,
Yu Chen, and et al. Quantum supremacy using a programmable superconducting processor.
Nature, 574(7779):505–510, October 2019. Number: 7779 Publisher: Nature Publishing Group.
doi:10.1038/s41586-019-1666-5.

3 Adrian Cho. The biggest flipping challenge in quantum computing. Science, 2020. doi:
10.1126/science.abd7332.

4 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

5 Eugene F. Dumitrescu, Allison L. Fisher, Timothy D. Goodrich, Travis S. Humble, Blair D.
Sullivan, and Andrew L. Wright. Benchmarking treewidth as a practical component of tensor
network simulations. PLOS ONE, 13(12):1–19, December 2018. doi:10.1371/journal.pone.
0207827.

6 Johnnie Gray. quimb: A python package for quantum information and many-body calculations.
J. Open Source Softw., 3(29):819, 2018. doi:10.21105/joss.00819.

7 Johnnie Gray. jcmgray/cotengrust, February 2024. original-date: 2023-08-31T18:57:15Z. URL:
https://github.com/jcmgray/cotengrust.

8 Johnnie Gray and Stefanos Kourtis. Hyper-optimized tensor network contraction. Quantum,
5:410, 2021. doi:10.22331/q-2021-03-15-410.

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.abd7332
https://doi.org/10.1126/science.abd7332
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1371/journal.pone.0207827
https://doi.org/10.1371/journal.pone.0207827
https://doi.org/10.21105/joss.00819
https://github.com/jcmgray/cotengrust
https://doi.org/10.22331/q-2021-03-15-410

C. Staudt, M. Blacher, J. Klaus, F. Lippmann, and J. Giesen 27:17

9 Cupjin Huang, Fang Zhang, Michael Newman, Xiaotong Ni, Dawei Ding, Junjie Cai, Xun Gao,
Tenghui Wang, Feng Wu, Gengyan Zhang, Hsiang-Sheng Ku, Zhengxiong Tian, Junyin Wu,
Haihong Xu, Huanjun Yu, Bo Yuan, Mario Szegedy, Yaoyun Shi, Hui-Hai Zhao, Chunqing Deng,
and Jianxin Chen. Efficient parallelization of tensor network contraction for simulating quantum
computation. Nat. Comput. Sci., 1(9):578–587, 2021. doi:10.1038/s43588-021-00119-7.

10 Cameron Ibrahim, Danylo Lykov, Zichang He, Yuri Alexeev, and Ilya Safro. Constructing
optimal contraction trees for tensor network quantum circuit simulation. In IEEE High
Performance Extreme Computing Conference, HPEC 2022, Waltham, MA, USA, September
19-23, 2022, pages 1–8. IEEE, 2022. doi:10.1109/HPEC55821.2022.9926353.

11 Stefanos Kourtis, Claudio Chamon, Eduardo R. Mucciolo, and Andrei E. Ruckenstein. Fast
counting with tensor networks. SciPost Physics, 7(5):060, November 2019. arXiv:1805.00475
[cond-mat, physics:physics]. doi:10.48550/arXiv.1805.00475.

12 Chi-Chung Lam, P. Sadayappan, and Rephael Wenger. On optimizing a class of multi-
dimensional loops with reductions for parallel execution. Parallel Process. Lett., 7(2):157–168,
1997. doi:10.1142/S0129626497000176.

13 Ling Liang, Jianyu Xu, Lei Deng, Mingyu Yan, Xing Hu, Zheng Zhang, Guoqi Li, and Yuan
Xie. Fast search of the optimal contraction sequence in tensor networks. IEEE J. Sel. Top.
Signal Process., 15(3):574–586, January 2021. doi:10.1109/JSTSP.2021.3051231.

14 Igor L. Markov and Yaoyun Shi. Simulating quantum computation by contracting tensor
networks. SIAM J. Comput., 38(3):963–981, 2008. doi:10.1137/050644756.

15 Eli A. Meirom, Haggai Maron, Shie Mannor, and Gal Chechik. Optimizing tensor network
contraction using reinforcement learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, International Conference on Machine
Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 15278–15292. PMLR, 2022. URL: https://proceedings.
mlr.press/v162/meirom22a.html.

16 Román Orús. Tensor networks for complex quantum systems. Nature Reviews Physics,
1(9):538–550, September 2019. doi:10.1038/s42254-019-0086-7.

17 Feng Pan, Keyang Chen, and Pan Zhang. Solving the sampling problem of the sycamore
quantum circuits. Phys. Rev. Lett., 129:090502, August 2022. doi:10.1103/PhysRevLett.129.
090502.

18 Feng Pan and Pan Zhang. Simulating the Sycamore quantum supremacy circuits, March 2021.
URL: https://arxiv.org/abs/2103.03074v1.

19 Taylor L. Patti, Jean Kossaifi, Anima Anandkumar, and Susanne F. Yelin. Variational
quantum optimization with multibasis encodings. Phys. Rev. Res., 4:033142, August 2022.
doi:10.1103/PhysRevResearch.4.033142.

20 Robert N. C. Pfeifer, Jutho Haegeman, and Frank Verstraete. Faster identification of optimal
contraction sequences for tensor networks. Physical Review E, 90(3):033315, September 2014.
arXiv:1304.6112 [cond-mat, physics:physics, physics:quant-ph]. doi:10.48550/arXiv.1304.
6112.

21 J. Rapin and O. Teytaud. Nevergrad - A gradient-free optimization platform. https://GitHub.
com/FacebookResearch/Nevergrad, 2018.

22 Frank Schindler and Adam S. Jermyn. Algorithms for tensor network contraction ordering.
Mach. Learn. Sci. Technol., 1(3):35001, July 2020. Publisher: IOP Publishing. doi:10.1088/
2632-2153/ab94c5.

23 Sebastian Schlag, Tobias Heuer, Lars Gottesbüren, Yaroslav Akhremtsev, Christian Schulz,
and Peter Sanders. High-quality hypergraph partitioning. ACM J. Exp. Algorithmics, 27:1.9:1–
1.9:39, February 2022. doi:10.1145/3529090.

24 Daniel G. A. Smith and Johnnie Gray. opt_einsum - A python package for optimizing
contraction order for einsum-like expressions. J. Open Source Softw., 3(26):753, 2018. doi:
10.21105/joss.00753.

SEA 2024

https://doi.org/10.1038/s43588-021-00119-7
https://doi.org/10.1109/HPEC55821.2022.9926353
https://doi.org/10.48550/arXiv.1805.00475
https://doi.org/10.1142/S0129626497000176
https://doi.org/10.1109/JSTSP.2021.3051231
https://doi.org/10.1137/050644756
https://proceedings.mlr.press/v162/meirom22a.html
https://proceedings.mlr.press/v162/meirom22a.html
https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1103/PhysRevLett.129.090502
https://doi.org/10.1103/PhysRevLett.129.090502
https://arxiv.org/abs/2103.03074v1
https://doi.org/10.1103/PhysRevResearch.4.033142
https://doi.org/10.48550/arXiv.1304.6112
https://doi.org/10.48550/arXiv.1304.6112
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad
https://doi.org/10.1088/2632-2153/ab94c5
https://doi.org/10.1088/2632-2153/ab94c5
https://doi.org/10.1145/3529090
https://doi.org/10.21105/joss.00753
https://doi.org/10.21105/joss.00753

27:18 Improved Cut Strategy for Tensor Network Contraction Orders

25 Christoph Staudt. Hybrid Contraction Tree Optimizer. Software, swhId: swh:1:dir:
72b3334932a79d590af0d303cb339bd8fc93abe6, (visited on 13/05/2024). URL: https://
github.com/ti2-group/hybrid_contraction_tree_optimizer.

26 Shi-Xin Zhang, Jonathan Allcock, Zhou-Quan Wan, Shuo Liu, Jiace Sun, Hao Yu, Xing-Han
Yang, Jiezhong Qiu, Zhaofeng Ye, Yu-Qin Chen, Chee-Kong Lee, Yicong Zheng, Shao-Kai Jian,
Hong Yao, Chang-Yu Hsieh, and Shengyu Zhang. Tensorcircuit: a quantum software framework
for the NISQ era. Quantum, 7:912, February 2023. Publisher: Verein zur Förderung des Open
Access Publizierens in den Quantenwissenschaften. doi:10.22331/q-2023-02-02-912.

A Comparison of hyperoptimizers

In the following Figure 13 we compare different hyperoptimizers on the max-cut and Sycamore
(m = 20) networks. While randomly choosing hyperparameters for the CTG greedy algorithm
outperforms the other hyperoptimizers on the Sycamore network, optimizing the hyperpara-
meters with optuna pays off for the Max-Cut network. Optimizing the hyperparameters for
CTG kahypar always leads to better contraction orders. Overall optuna is the better choice in
this case as well. Note that on the Max-Cut network we only report a runtime of 6h since,
smaller run times lead to too much variance in the results.

60.0 120.0 600.0 21600.0
5.3× 1013

5.4× 1013

5.5× 1013

5.6× 1013

5.7× 1013

5.8× 1013

fl
op

s

Max-cut

60.0 120.0 600.0 10800.0

4× 1018

5× 1018

6× 1018

7× 1018

8× 1018

9× 1018
Sycamore m = 20

21600.0

run time (s)

1014

4× 1013

6× 1013

fl
op

s

60.0 120.0 10800.0

run time (s)

1019

5× 1018

6× 1018

7× 1018

8× 1018

9× 1018

method

CTG nevergrad-greedy

CTG optuna-greedy

CTG random-greedy

CTG nevergrad-kahypar

CTG optuna-kahypar

CTG random-kahypar

Figure 13 Comparison of hyperoptimizers on the max-cut and Sycamore m = 20 networks.

https://archive.softwareheritage.org/swh:1:dir:72b3334932a79d590af0d303cb339bd8fc93abe6;origin=https://github.com/ti2-group/hybrid_contraction_tree_optimizer;visit=swh:1:snp:43cd970f4096efa2f95c1f4cf7b1c164a5d1dd51;anchor=swh:1:rev:dcf3c162f4d532634350e83cbf7af54c9b745ded
https://archive.softwareheritage.org/swh:1:dir:72b3334932a79d590af0d303cb339bd8fc93abe6;origin=https://github.com/ti2-group/hybrid_contraction_tree_optimizer;visit=swh:1:snp:43cd970f4096efa2f95c1f4cf7b1c164a5d1dd51;anchor=swh:1:rev:dcf3c162f4d532634350e83cbf7af54c9b745ded
https://github.com/ti2-group/hybrid_contraction_tree_optimizer
https://github.com/ti2-group/hybrid_contraction_tree_optimizer
https://doi.org/10.22331/q-2023-02-02-912

C. Staudt, M. Blacher, J. Klaus, F. Lippmann, and J. Giesen 27:19

B Extended result tables

Table 4 Number of flops for the sycamore networks aggregated over 10 independent runs.

Mean ± std Median ± mad
m = 10 12 14 20 10 12 14 20

Scale 1010 1012 1014 1018 1010 1012 1014 1018

MLA-DP 1min 2.80 ± 0.13 12.0 ± 0.82 2.15 ± 0.14 9.59 ± 0.45 2.76 ± 0.09 12.3 ± 0.33 2.11 ± 0.05 9.67 ± 0.33
CTG greedy 1min 3.24 ± 0.31 13.4 ± 2.43 2.80 ± 0.45 5.34 ± 0.55 3.30 ± 0.16 13.5 ± 0.99 2.71 ± 0.28 5.40 ± 0.52
CTG kahypar 1min 2.47 ± 0.43 31.3 ± 9.67 4.09 ± 1.63 8.31 ± 0.64 2.46 ± 0.36 31.7 ± 10.3 3.61 ± 0.85 8.51 ± 0.25
this paper 1min 1.79 ± 0.10 6.05 ± 0.15 1.59 ± 0.06 2.76 ± 0.16 1.78 ± 0.05 6.05 ± 0.03 1.61 ± 0.04 2.79 ± 0.09

MLA-DP 10min 2.59 ± 0.08 10.9 ± 0.46 2.00 ± 0.05 8.85 ± 0.52 2.60 ± 0.03 10.7 ± 0.31 2.00 ± 0.04 8.95 ± 0.38
CTG greedy 10min 2.78 ± 0.26 9.67 ± 1.45 2.41 ± 0.18 4.87 ± 0.36 2.80 ± 0.21 9.41 ± 0.90 2.39 ± 0.12 4.96 ± 0.16
CTG kahypar 10min 2.34 ± 0.29 16.0 ± 2.87 2.19 ± 0.15 7.34 ± 0.26 2.34 ± 0.27 16.0 ± 1.12 2.14 ± 0.06 7.40 ± 0.20
this paper 10min 1.60 ± 0.09 5.79 ± 0.16 1.42 ± 0.04 2.57 ± 0.11 1.58 ± 0.06 5.76 ± 0.14 1.43 ± 0.02 2.56 ± 0.06

MLA-DP 1h 2.47 ± 0.04 10.7 ± 0.36 1.93 ± 0.03 8.24 ± 0.50 2.45 ± 0.00 10.7 ± 0.36 1.94 ± 0.03 8.32 ± 0.25
CTG greedy 1h 2.35 ± 0.23 8.58 ± 0.87 2.20 ± 0.07 4.48 ± 0.17 2.34 ± 0.16 8.61 ± 0.63 2.21 ± 0.04 4.51 ± 0.09
CTG kahypar 1h 2.25 ± 0.33 11.1 ± 1.16 2.14 ± 0.29 6.51 ± 0.82 2.20 ± 0.27 10.9 ± 0.26 2.06 ± 0.09 6.87 ± 0.37
RL-TNCO 1h N/A N/A N/A N/A N/A N/A N/A 6.81 ± N/A
this paper 1h 1.50 ± 0.04 5.73 ± 0.13 1.34 ± 0.08 2.45 ± 0.07 1.52 ± 0.01 5.76 ± 0.08 1.37 ± 0.03 2.46 ± 0.03

CTG greedy 3h 2.24 ± 0.21 7.92 ± 0.49 2.18 ± 0.05 4.15 ± 0.27 2.24 ± 0.15 7.77 ± 0.30 2.20 ± 0.04 4.09 ± 0.07
CTG kahypar 3h 2.21 ± 0.29 11.6 ± 2.20 2.05 ± 0.14 6.00 ± 1.02 2.15 ± 0.25 11.0 ± 1.00 2.01 ± 0.05 5.97 ± 0.93
RL-TNCO 3h N/A N/A N/A N/A 5.44 ± N/A 7.4 ± N/A 2.63 ± N/A 3.5 ± N/A
this paper 3h N/A N/A N/A 2.41 ± 0.04 N/A N/A N/A 2.40 ± 0.03

Table 5 Number of flops for the max cut networks aggregated over 10 independent runs.

Mean ± std Median ± mad
Last steps 1000 2000 all 1000 2000 all

Scale 1012 1012 1012 1012 1012 1012

CTG greedy 10min 133 ± 4.06 176 ± 11.2 55.0 ± 0.53 133 ± 2.16 175 ± 7.37 54.9 ± 0.42
CTG kahypar 10min 72399 ± 1.92e+05 1.22e+06 ± 2.48e+06 6.49e+66 ± 2.05e+67 9087 ± 7480 42552 ± 31574 4.09e+11 ± 4.09e+11
this paper 10min 15.4 ± 0.25 10.3 ± 0.37 15.0 ± 4.55 15.4 ± 0.20 10.4 ± 0.25 14.1 ± 2.65
this paper (optimized) 10min 10.4 ± 0.00 7.49 ± 0.03 9.04 ± 1.22 10.4 ± 0.00 7.49 ± 0.01 8.88 ± 0.68

CTG greedy 30min 130 ± 6.92 168 ± 11.6 54.9 ± 0.55 133 ± 3.85 170 ± 8.41 54.9 ± 0.36
CTG kahypar 30min 796 ± 1549 162 ± 144 4347 ± 7686 81.2 ± 20.0 92.2 ± 37.9 486 ± 430
this paper 30min 15.0 ± 0.36 10.2 ± 0.27 11.5 ± 0.46 15.0 ± 0.18 10.2 ± 0.25 11.3 ± 0.25
this paper (optimized) 30min 10.4 ± 0.00 7.49 ± 0.01 8.07 ± 0.31 10.4 ± 0.00 7.49 ± 0.01 8.00 ± 0.09

CTG greedy 1h 125 ± 7.60 160 ± 8.85 54.7 ± 0.33 129 ± 2.87 158 ± 7.49 54.8 ± 0.24
CTG kahypar 1h 68.4 ± 21.7 64.4 ± 26.6 283 ± 526 56.7 ± 2.11 60.1 ± 14.5 82.3 ± 38.2
RL-TNCO 1.5h N/A N/A N/A 19.05 ± N/A N/A N/A
this paper 1h 14.9 ± 0.22 10.0 ± 0.32 11.4 ± 0.48 15.0 ± 0.16 10.1 ± 0.23 11.2 ± 0.23

CTG greedy 3h 123 ± 3.48 149 ± 9.58 54.4 ± 0.54 123 ± 1.39 148 ± 8.17 54.7 ± 0.31
CTG kahypar 3h 42.5 ± 7.53 33.1 ± 4.74 46.1 ± 14.4 41.5 ± 5.49 31.7 ± 2.25 41.2 ± 7.72
this paper 3h N/A 9.61 ± 0.34 10.8 ± 0.41 N/A 9.71 ± 0.14 10.8 ± 0.25

CTG greedy 6h N/A N/A 54.1 ± 0.54 N/A N/A 54.1 ± 0.42
CTG kahypar 6h N/A N/A 38.1 ± 11.5 N/A N/A 33.7 ± 0.71
RL-TNCO 5.5 N/A N/A N/A N/A 9.29 ± N/A N/A

SEA 2024

	1 Introduction
	2 Tensor Network Contractions
	3 Related Work
	4 Algorithmic Improvements
	4.1 Arbitrarily balanced contraction trees from balanced partitions
	4.2 Accounting for free indices in the cut size
	4.3 Contraction cost based node weights

	5 Experiments
	5.1 Datasets and baselines
	5.2 Implementation details
	5.3 Ablation study
	5.4 Contraction order quality, run time, and variance
	5.4.1 Synthetic random regular networks
	5.4.2 Sycamore networks

	5.5 Hyperparameter optimization and max-cut network

	6 Conclusions
	A Comparison of hyperoptimizers
	B Extended result tables

