
Finding the Minimum Cost Acceptable Element in
a Sorted Matrix
Sebastián Urrutia #

Molde University College, Norway

Vinicius dos Santos #

Federal University of Minas Gerais, Brazil

Abstract
In this work we introduce the problem of finding a minimum cost acceptable element in an n × n

matrix M whose columns and rows are sorted in non-decreasing order. More precisely, given a
sorted matrix M and access to a given oracle function f : N × N → {True, False}, one has to find
a pair (i, j) of indices such that f(i, j) returns True and the value M [i, j] is as small as possible.
Assuming the computation of f(i, j) takes time bounded by a constant, a naive algorithm scanning
all the positions of the matrix takes time O(n2). Another natural approach, based on a priority
queue, takes time O(z log z) in which z stands for the position of the first pair of indices for which
the oracle returns True in a sorted list of all elements of M . In the worst case, when z = n2, the
naive algorithm is better than the priority queue one. In this work we introduce different algorithms
with complexities depending on n and z, such as O(n

√
z) and O(min(n2, z2)), and compare them,

both theoretically and experimentally, in terms of running time and number of calls to the oracle.
Among other things, we find that in most cases our algorithms do not make a significantly larger
number of calls to the oracle than the priority queue-based algorithm, which achieves the minimum
of such call when all elements of the matrix are distinct, while being much faster in large instances.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Search, Sorted matrix, Oracle function, Algorithm complexity

Digital Object Identifier 10.4230/LIPIcs.SEA.2024.28

Funding Vinicius dos Santos: Partially funded by FAPEMIG grant APQ-01707-21 and CNPq grants
312069/2021-9, 406036/2021-7, 404479/2023-5.

1 Introduction

Consider two tasks to be performed simultaneously. Both of them need some resources (time,
space, devices, raw material, manpower, etc.) in order to be executed. Tasks may be done in
a given number n of modes and each of their n modes has an associated cost. Since resources
are shared by the two tasks, some pairs of modes of execution (one mode for each task) may
be incompatible. Then, it is natural to think on a problem in which one needs to assign an
execution mode to each task such that the assigned modes are compatible and the cost of
choosing both modes simultaneously is as small as possible.

We assume that the n execution modes for each task are given sorted in such a way that
mode (i, j), corresponding to the ith mode for the first task and the jth mode of the second
task, is as least as costly as modes (i− k, j), 0 ≤ k < i and (i, j − k), 0 ≤ k < j. Also, we are
given an oracle function f(i, j) that returns True if and only if the ith mode for the first
task is compatible with the jth mode of the second task.

As a real application consider a Berth and Crane Allocation Problem (BCAP) [6] in which
two vessels need to use port facilities to deliver a number of containers and pick-up some
others. Both vessels need space, time, manpower and equipment to complete their tasks.
The amount and quality of the resources assigned to the tasks (execution modes) determine
a financial cost that should be paid to the port operator and the resources available at the

© Sebastián Urrutia and Vinicius dos Santos;
licensed under Creative Commons License CC-BY 4.0

22nd International Symposium on Experimental Algorithms (SEA 2024).
Editor: Leo Liberti; Article No. 28; pp. 28:1–28:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sebastian.a.urrutia@himolde.no
https://orcid.org/0000-0002-7561-6825
mailto:viniciussantos@dcc.ufmg.br
https://orcid.org/0000-0002-4608-4559
https://doi.org/10.4230/LIPIcs.SEA.2024.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


28:2 Finding the Minimum Cost Acceptable Element in a Sorted Matrix

port must be shared by the two vessels. In this case, the vessels owner would like to find a
pair of compatible modes (one for each task) with minimum cost in the sorted matrix M

that stores the cost of every pair of execution modes.

2 Formalization

Let M be a non-decreasingly sorted matrix of size n × n and f : N × N → B a boolean
function (oracle function) that takes a pair of valid indices of the matrix as parameters. The
problem consists in determining a pair of indices (i, j) such that f(i, j) is True and M [i, j]
is as small as possible. If no such pair exists the problem has no solution. To the best of our
knowledge, such problem has not been previously studied in the literature.

Function f is treated here as a black box that indicates if a pair of elements, denoted by
their indices, is acceptable or not. There is no other way to determine if a pair of indexes is
acceptable, we assume no knowledge on the nature of f . For our theoretical results we will
assume that function f takes O(1) time to compute. Since in practice the time to compute f

can be of relevance, in our experimental analysis we will also consider oracle functions with
different computational costs.

Let us define s as an array of pairs of indices of M sorted non-decreasingly by M [i, j].
Then, we define z as an unknown parameter indicating the position of the first acceptable
pair of indexes in s, that is, f(s[z]) = True and f(s[ℓ]) = False for every 1 ≤ ℓ < z. If there
is no pair (i, j) with f(i, j) = True we set z = n2.

In the case of ties, z may take any value among the positions of the tied pairs. In that
case, the value of z is not well defined. This fact may complicate the theoretical analysis
of the algorithms performed in Section 4. For that reason, we assume in that section that
there are not repeated values in M , for simplicity. Observe that the situation can be handled
by using the indices i and j for tie breaking, or considering that in case of ties acceptable
elements occur after the non-acceptable ones of the same cost.

One special case of sorted matrices are the so-called X + Y matrices [3, 4, 5]. Let X, Y

be two vectors of dimension n sorted in non-decreasing order. The matrix X + Y resulting
from the Cartesian sum of X and Y is the matrix A in which A[i, j] = Xi + Yj . In many
applications, including versions of BCAP [6], the cost associated with a pair of tasks is just
the sum of their individual costs, which can be modelled as X + Y matrices.

3 Related works

Sorted matrices have been considered in the literature and many natural problems have been
studied, including sorting, selection and search problems.

The complexity of sorting a sorted square matrix into a linear array has not been shown
lower than the complexity of sorting a general matrix, that is, the best known algorithms
take time Ω(n2 log(n)). For the special case of X + Y matrices, [3] gives a non-constructive
proof showing that the elements of these matrices can be sorted with just O(n2) comparisons.
In [5] an algorithm with such number of comparisons is presented, nevertheless the time
complexity of the algorithm is still Θ(n2 log(n)).

The computation of statistics such as the median value or, more generally, obtaining
the tth smallest value in a sorted matrix has been studied, and is sometimes called selection
problem. Algorithms for this problem have been presented in [2, 7] with time complexity
O(n). Simpler algorithms with the same complexity are obtained in [4].



S. Urrutia and V. dos Santos 28:3

The search problem consists in, given a value v, find a pair of indices (i, j) such that
M [i, j] = v. In [1] the authors show that the problem can be solved in Θ(n) and that the
complexity is optimal.

4 Algorithms

In this section we present six algorithms for the problem introduced in the previous sections.
We start from scratch with a naive algorithm and then we exploit the structure of the input
in order to find more efficient algorithms. It is important to remark that, since function
f is given as a black box, a time complexity Ω(n2) is unavoidable in some instances. For
instance, if there is a unique pair (i, j) for which f(i, j) is True, any algorithm that ignores
(i, j) could not be correct. Also, finding an acceptable pair does not ensure its optimality,
implying a lower bound of Ω(z). Hence, in many algorithms we will be interested in strategies
that could work well in practice, even if their worst case complexity are still as bad as the
naive algorithm.

4.1 A naive algorithm
The simplest way to deal with the problem is to evaluate all elements of M requiring Θ(n2)
operations.

One can evaluate f(i, j) for all the n2 pairs of valid indices and return the acceptable
pair with the smallest value in M . This algorithm takes Θ(n2) time.

The procedure can be easily modified by not testing any pair of indices dominated by an
already known acceptable pair. That is, if (i, j) is known to be acceptable, there is no need
to test the acceptability of any pair (ℓ, p) such that M [ℓ, p] ≥ M [i, j]. Depending on how
the pairs are scanned (fixing the first index first, fixing the second index first, etc) and the
distribution of acceptable pairs, the modification may not improve the computational time
of the algorithm and may worsen it. For that reason, this kind of modification will not be
further analysed.

4.2 A sort-based algorithm
The second natural approach to the problem would be to sort the elements of M in order to
evaluate them sorted by cost and stopping the evaluation when the first pair of acceptable
indices is found. As mentioned before, even using the best known algorithm for sorted
matrices, the sorting step would require Θ(n2 log n) time, which would dominate the time
complexity. Note that, after the sorting step, it is possible to stop the algorithm as soon as
the first acceptable pair is found.

Instead of sorting the whole input, it is possible to exploit the structure of the input,
which is partially sorted, in order to make use of the previous observation. Recall that we
denote by s the array containing pairs of indices sorted non-decreasingly by M [i, j] and that
z is the position in s for the first pair p for which f(p) is True. By using a priority queue,
it is possible to devise an algorithm requiring O(z log z) operations.

In the sort-based algorithm, the priority queue will ensure that the pairs are evaluated in
order of their value in M , to make it possible to stop the execution as soon as a viable pair
is found. The queue starts with the pair (1, 1) and every time the pair (i, j) is taken out
of the queue for testing its acceptability, the pairs (i + 1, j) and (i, j + 1) are added to the
queue if they are valid indices and were not previously inserted in the queue. Implementing
the priority queue with a binary heap, the algorithm runs in O(z log z).

SEA 2024



28:4 Finding the Minimum Cost Acceptable Element in a Sorted Matrix

A technical issue must be addressed in order to be able to check whether a pair was
already inserted in the queue without using too much additional space. By breaking ties
in the priority queue by the sum of the indices of the pairs, one can be sure that, if the
pair (i, j) is in the queue, no pair (i + t, j + u) with both t and u positive is in the queue.
Therefore, the elements on the queue form the border of an orthogonal convex region. Then,
no more than 2n− 1 pairs are in the priority queue at any point in the algorithm execution.
Also, note that due to this fact, in order to know if a pair (i, j) that is about to be added to
the queue is already there, we need only to compare j with the maximum value k such that
(i, k) is in the queue. In consequence the algorithm can be implemented using no more than
O(n) additional space: O(n) for the binary heap and O(n) for storing the maximum second
index in the queue for each possible value of the first index.

Observe that the O(z log z) running time could be much better than the Θ(n2) time
of the naive approach, since z can be small when compared to n2 or even compared to n.
Indeed, if z = O(n2−ϵ) for any ϵ > 0, the sort-based approach would be asymptotically better.
However, if z = Θ(n2), the complexity of the algorithm becomes O(n2 log(n)) which can be
worse than the naive approach.

4.3 Exploiting the main diagonal of the matrix
The next two algorithms to be presented here exploit the main diagonal of M and require
O(n
√

z) operations. Asymptotically, these algorithms dominate the trivial algorithm as their
complexity is O(n2) even in the worst case when z = Θ(n2) and are better when the value of
z is small.

The algorithms are based on evaluating with function f up to iteration ℓ, at least all the
pairs of indices (i, j) such that M [i, j] ≤M [ℓ, ℓ].

The following simple theorem form the base of the two next algorithms.

▶ Theorem 1. Let i, j, k ∈ {1, . . . , n} such that i× j ≥ k. Then M [i, j] ≥M [s[k]]

Proof. Since M is sorted, M [i, j] ≥ M [i′, j′] for 1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j. There are
i× j ≥ k possible distinct values for i′ and j′. Then, the position of the pair (i, j) in s is at
least k. ◀

An immediate consequence of the theorem is that, when our following algorithms finish
iteration ⌈

√
z⌉ one can be sure that all the first z elements of s has been evaluated with

function f .

4.4 L-shape algorithm
As the name may suggest, L-shape algorithm will proceed by iterating through lines and
columns of M in increasing order. From now on, in all of our algorithms we will assume
that algorithms will be implemented with lazy-evaluation, meaning that if there are two or
more conditions in a loop of control sequence, they will be evaluated in order and only if all
previous conditions hold.

As shown in Algorithm 1 this approach evaluates in iteration ℓ all the not previously
evaluated elements of M in the line ℓ− 1 and in column ℓ− 1 that are better than the best
known acceptable pair, or all elements, if no acceptable element is known so far. By the end
of one iteration of the main loop, for an integer ℓ all elements in lines or columns smaller
than ℓ will have been visited (or ignored if a better acceptable solution was already found).

Note that the algorithm does not necessarily stop after the iteration in which it first finds
an acceptable pair. It stops when the element in the main diagonal is larger than the best
(smallest) acceptable pair found. At this point, we know that no better element would be
evaluated by continuing the algorithm execution, and the correctness follows.



S. Urrutia and V. dos Santos 28:5

Algorithm 1 L-shape algorithm. It evaluates a line and a column of M at each iteration.

Data: M, f

if f(1, 1) = True then
return (1,1)

i← 2, best← +∞
while i ≤ n + 1 and best > M [i− 1, i− 1] do

j ← i

while j ≤ n and M [i− 1, j] < best do
if f(i− 1, j) = True then

best←M [i− 1, j]
bestpair ← (i− 1, j)

j ← j + 1
j ← i

while j ≤ n and M [j, i− 1] < best do
if f(j, i− 1) = True then

best←M [j, i− 1]
bestpair ← (j, i− 1)

j ← j + 1
if M [i, i] < best and f(i, i) = True then

best←M [i, i]
bestpair ← (i, i)

i← i + 1
if best < +∞ then

return bestpair

return “no solution”

Let best be smallest cost of an acceptable element and let ℓ be the largest integer such
that M [ℓ, ℓ] < best. From Theorem 1, z ≥ ℓ2. Since bestpair have at least one coordinate
bounded by ℓ + 1, the algorithm main loop is executed at most ℓ + 1 = O(

√
z) times, with

each iteration performing O(n) steps, resulting in a O(n
√

z) running time. Also note that
this is an in-place algorithm, that is, it requires just constant extra space.

4.5 Contour-line algorithm
As in the previous algorithm the Contour-line algorithm exploits elements in the main
diagonal to bound its running time. However, instead of visiting a whole line (column)
at once, in iteration ℓ, only elements that are smaller or equal to M [ℓ, ℓ] are evaluated.
This way, at the end of iteration ℓ, the elements already evaluated form a contour line in
the matrix bounded by the value of M [ℓ, ℓ]. Let tℓ be the number of elements of M with
value at most M [ℓ, ℓ]. Then, by the end of iteration ℓ the algorithm has evaluated exactly
the first tℓ elements of s. Once an acceptable solution is found, which happens for the
smallest ℓ for which tℓ ≥ z, the algorithm stops. In that regard it is similar to the sort-based
algorithm, evaluating elements bounded by certain value at each step, while it avoids the
extra computations related to the upkeep of the heap.

Notice that, contrary to the previous algorithm, the Contour-line stops at the end of the
iteration in which an acceptable pair of indices is found as no better pair would be evaluated
in future iterations. Also, whenever the best acceptable pair is in the main diagonal of M , the
Contour-line algorithm performs as few evaluations of the oracle function as the sort-based
algorithm (assuming no ties), that is, as few as possible.

SEA 2024



28:6 Finding the Minimum Cost Acceptable Element in a Sorted Matrix

Algorithm 2 Contour-line Algorithm. Evaluates just pairs with value smaller than or
equal to pair (ℓ, ℓ) up to iteration ℓ.

Data: M, f

for j ← 1 to n do
contourline[j]← 1

i← 1, best← +∞
while i ≤ n and best = +∞ do

for j ← 1 to n do
while contourline[j] ≤ n and M [j, contourline[j]] ≤M [i, i] do

if M [j, contourline[j]] < best and f(j, contourline[j]) = true then
best←M [j, contourline[j]]
bestpair ← (j, contourline[j])

contourline[j]← contourline[j] + 1
i← i + 1

if best < +∞ then
return bestpair

else
return “no solution”

Let ℓ be the number of iterations of the main loop of the algorithm. As in the analysis
of Algorithm 1, no more than ℓ = O(

√
z) iterations are needed. The cost of iteration i, is

proportional to n plus the number of times that an element of contourline is incremented.
But notice that the value of contourline[j] cannot exceed i when j > i, implying that by the
end of the algorithm elements of contourline were incremented at most ℓn + (n− ℓ)ℓ times,
resulting in a O(n

√
z) complexity.

In contrast to L-Shape algorithm, Contour-line requires Θ(n) additional space to store
the contour line.

4.6 Expanding Square Algorithm

The next algorithm consists in two stages.
In the first stage, only elements in the square defined by the pairs (1, 1) and (k, k) are

evaluated up to iteration k. This first stage ends after finishing an iteration in which an
acceptable pair is found. Let (i, j) be the best pair for which f(i, j) tested true during this
first stage. If there is an acceptable pair better than (i, j), it must be of the form (i− t, j + u)
or (i + t, j − u) with both t and u positive.

In the second stage, just elements outside of the sub-matrix already evaluated that are
smaller than the best pair found are evaluated.

Let ℓ = max{i, j} and suppose first that the pair in position z of vector s is not in the
ℓ× ℓ sub-matrix the algorithm visited. Let (iopt, jopt) = s[z] and ℓopt = max{iopt, jopt}.

The number of positions of M visited during the execution of Algorithm 3 is bounded by
ℓ2 in the first stage, plus a maximum of 2(ℓ(ℓopt − ℓ)) until finding (iopt, jopt), plus at most z

elements that are smaller than M [iopt, jopt] and are evaluated after (iopt, jopt) is found.
We have that ℓ2 + 2(ℓ(ℓopt− ℓ)) + z = ℓ2 + 2ℓℓopt− 2ℓ2 + z− = 2ℓℓopt− ℓ2 + z < 2ℓℓopt + z.

Since s[z] is not in the ℓ × ℓ submatrix, ℓopt > ℓ. Clearly, we also have z ≥ ℓopt. Then,
2ℓℓopt + z ≤ min{3n2, 3z2}.



S. Urrutia and V. dos Santos 28:7

Algorithm 3 Expanding square algorithm.

Data: M, f

if f(1, 1) = true then
return (1,1)

i← 2, best← +∞
while i ≤ n and best = +∞ do

for j ← 1 to i do
if M [i, j] < best and f(i, j) = true then

best←M [i, j]
bestpair ← (i, j)

if M [j, i] < best and f(j, i) = true then
best←M [j, i]
bestpair ← (j, i)

i← i + 1
if best = +∞ then

return “no solution”
if i ≤ n then

ℓ← i− 1
while i ≤ n and (M [i, 1] < best or M [1, i] < best) do

j ← 1
while j < ℓ and (M [i, j] < best or M [j, i] < best) do

if M [i, j] < best and f(i, j) = true then
best←M [i, j]
bestpair ← (i, j)

if M [j, i] < best and f(j, i) = true then
best←M [j, i]
bestpair ← (j, i)

j ← j + 1
i← i + 1

return bestpair

When the pair (i, j) found in the first stage is the best acceptable pair, the value of
ℓ = max{i, j} equals the size of the square. Since z ≥ ℓ, the number of elements visited by
the algorithm during the first stage is ℓ2 ≤ z2. In the second stage only elements smaller than
M [i, j] are visited and those are limited by z. Then the total number of elements evaluated
are limited by 2z2.

The algorithm never evaluates a position more than once and then the complexity of this
in-place algorithm is O(min{n2, z2}). Also, the algorithm requires just constant additional
space.

4.7 Level curves algorithm
One implication of Theorem 1 is that if the cheapest acceptable pair is in position (iopt, jopt),
then z ≥ iopt× jopt. The algorithm presented in this subsection explores this idea by splitting
elements in sets S1, . . . , Sn such that Sk = {(i, j) | (k − 1)n < ij ≤ kn} and evaluating these
sets in order. Once an acceptable pair is found, its cost is used to prune the exploration,
similarly as in the contour-line algorithm.

SEA 2024



28:8 Finding the Minimum Cost Acceptable Element in a Sorted Matrix

More precisely, in the k-th iteration the algorithm evaluates elements of Sk, in increasing
order of coordinates. As in previous algorithms, there is a variable best containing the cost
of the best acceptable pair found so far. Whenever evaluating a pair (i, j), if M [i, j] > best,
no further elements in the same line are considered in the current iteration or in further ones.
We remark that Θ(n) information is stored to make this pruning possible, by storing a list of
indices i (lines of the matrix M) which can still be searched.

Let (iopt, jopt) be the optimal pair and let kopt = ⌈iopt.jopt/n⌉. By construction, the pair
(iopt, jopt) will be found in iteration kopt. Up to that point, exactly ⌊kopt.n/i⌋ elements with
first coordinate i are visited. So, the number of visited pairs is bounded by

n∑
i=1

min(kopt.n

i
, n) ≤

n∑
i=1

kopt.n

i
= kopt.n

n∑
i=1

1
i

= O(kopt.n log n).

Since (kopt − 1)n < iopt.jopt and iopt.jopt ≤ z, then the running time up to iteration kopt

can be bounded by O(z log n) when kopt > 1 and by O(n log n) in the first iteration. Putting
everything together, we get an upper bound of O((n + z) log n). In case kopt is very large,
this bound is not tight, since the min operation in the inequality becomes more relevant. It
is not hard to see that the algorithm never performs more than O(n2) operations.

Notice, however, that the algorithm has no way to identify that the desired acceptable
element has been found. It remains to bound the running time of the rest of the execution.

During further iterations, we still consider sets Sk in order. Whenever visiting a pair
(i, j), either it has smaller cost than (iopt, jopt), or we update a auxiliary data structure to
never consider elements with the same first coordinate. Hence, the total number of steps
after finding the solution is bounded by O(n + z).

Putting all together, we have a O(min((n + z) log n), n2)-time Θ(n)-space algorithm.

4.8 Comparison and summary of the algorithms
With the exception of the sort-based algorithm, none of the algorithms we discussed have
asymptotically worse running time than the Naive algorithm, as illustrated in Table 1.
As for space, three algorithms can be implemented using only additional constant space.
Contour-line, keeps a vector of n positions to track the contour line, the sort-based, that
requires a heap or another non-trivial data structure and the level curves algorithm stores a
linear array indicating where to stop the evaluation in each line of M .

Table 1 Comparison of the algorithms in terms of time and space complexity.

Algorithm Complexity Space
Naive O(n2) O(1)
S-based O(z log z) O(n)
L-shape O(n

√
z) O(1)

Contour-line O(n
√

z) O(n)
Expanding square O(min(n2, z2)) O(1)
Level curves O(min((n + z) log n), n2) O(n)

Many of the times complexities are incomparable. Besides, it is not reasonable to assume
the value of z is known beforehand. If some estimation of the value of z is available in a
specific setting, one algorithm can be preferable over another. But besides the worst-case
analysis, the algorithms present differences and subtleties, some of which are not captured
by Table 1, and the number of steps performed for a given instance could be much smaller
than the worst case analysis suggests. We discuss a few of them in the rest of this section
and other aspects will be brought to light when analysing the experiments, in Section 5.



S. Urrutia and V. dos Santos 28:9

L-shape and contour-line have the same worst-case time complexity, but different space
complexity. But it is not hard to conceive instances for which contour-line would run faster
than L-shape, implying that the extra space bring advantages in some cases. On the other
hand L-shape could make best use of cache, by visiting long sequences of consecutive elements,
in particular in the case of X + Y matrices, stored implicitly.

Expanding square algorithm shares many similarities with contour-line algorithm, in
the sense that in both cases there is a value ℓ such that all elements “inside the ℓ-square”,
i.e. elements (i, j) with i, j ≤ ℓ, are evaluated and all other elements considered satisfy
min(i, j) ≤ ℓ. Among elements outside the square, while contour-line only considers elements
smaller than M [ℓ, ℓ], Expanding square consider elements smaller than the element found,
which is potentially smaller. However, this implicit square could be different in each algorithm:
Contour-line is able to find an acceptable element outside the square, aborting the execution
of the algorithm with a much smaller value of ℓ. Finally, as the complexity analysis suggests,
Expanding square may be fast when the cheapest acceptable element is close to the main
diagonal, since most of the calls to oracle function f were made to pairs of smaller cost the
the optimal, and hence unavoidable.

As the previous discussion suggests, the position of the optimal element, in addition
to the value of k, may impact the running time of the algorithms. Another instance of
this can be observed when comparing algorithms L-shape and level curves. It is not hard
to convince oneself that, after k iterations of the main loop of both algorithms, the set of
positions considered by L-shape is a subset of the ones considered by level curves. Besides,
L-Shape is a simpler algorithm and it is likely that in any implementation it would have
smaller constants. Consider the optimal element is in position (c, n− d) for small constants c

and d. Then both algorithms will visit this element around the same iteration and, from the
previous discussion, L-Shape would find it faster. On the other hand, if the element is close
to the main diagonal, level curves algorithm has a chance to be much faster than L-Shape.
Suppose, for example, that the desired element is in position (

√
n,
√

n). Level curves would
find it in the first iteration and spend at most O(n + z) additional steps before finishing
its execution, to a total of O(n log n + z) steps, while L-Shape run

√
n iterations, possibly

spending O(n
√

n) steps, which could be much bigger if z = o(n
√

n).

5 Experiments

In this section we discuss our computational tests of the algorithms developed in the
previous sections. We first describe how we constructed our benchmark instances and the
computational environment in which the experiments were run. Then, we show the results
from the experiments.

5.1 Instances
For constructing instances we define a set of parameters detailed in Table 2. By combining
different values of the parameters we defined a set of 60 problem instances for which the
algorithms where tested.

The instances created are denoted by the value of their parameters. The first number
corresponds to the size of the matrix, the second and third refer to the pair of indexes
reporting the position of the optimal acceptable element, the forth indicates which is the
probability of elements with cost larger than the optimal to be acceptable, the fifth defines the
matrix construction method and the last the oracle speed. For example, an instance named
I.500.300.310.1.0.1 is an instance with a 500× 500 matrix in which the optimal acceptable
pair is (300, 310), elements with larger cost have probability of 1/500 of being acceptable,
the matrix is constructed with the 0 method and a slow oracle is used.

SEA 2024



28:10 Finding the Minimum Cost Acceptable Element in a Sorted Matrix

Table 2 Parameters for instance construction.

Parameter Domain Description
n Positive integer Matrix M is of size n × n.

(i∗, j∗) Pair of valid indices of M Position of the optimal acceptable element.
e {0, 1, 2} Probability p of a pair (i, j) such that M(i, j) >

M(i∗, j∗) being acceptable:
0: p = 0,
1: p = 1/n,
2: p = 1.

v {0, 1, 2, 3} Construction of M :
0: X + Y , X and Y with elements increasing by a
random amount between 0 and 10 (inclusive) from one
element to the next.
1: X + Y , X and Y with each element being twice the
previous one.
2: X + Y , X and Y where the difference between
consecutive elements at positions i + 1 and i is half the
difference between elements at positions i and i − 1.
3: all elements have the same value.

t {0, 1} Complexity of oracle:
0: Fast oracle, returns the answer in O(1) time.
1: Slow oracle, perform O(n) dummy operations before
returning the answer.

We notice that all matrices we use in our experiments are X + Y matrices. This allow us
to compute the cost of any position on the matrix as the sum of the two respective position
in the vectors. In that way we avoid dealing with very big matrices in memory, which would
be a bottleneck in some experiments. Another reason for the choice is that in real problems
(in particular in the one that inspired this work) the sorted matrix frequently is a X + Y

matrix.

5.2 Computation Enviroment
All algorithms were implemented in C and compiled with gcc distributed by Apple (Apple
clang version 14.0.0, clang-1400.0.29.102) with no compilation flags. The experiments were
run on a MacBook Air running a Mac OS 12.7.2, with a 2,2 GHz Intel Core i7 Dual-Core
processor and 8GB 1600MHz DDR3 memory.

5.3 Results
In Tables 3, 4 and 5 we show the obtained computational results for the algorithms developed
in this work. Tables 3 and 4 report on the number of evaluations of the oracle for all the six
algorithms using several instances with n = 50 in Table 3 and n = 500 in Table 4. Finally,
Table 5 shows computational times obtained for all the algorithms except for the naive one.
We show results with n = 5000 and a slow oracle and with n = 20000 and a fast oracle.
Computational time is displayed in seconds. In all the tables, best results are written in bold.

Several interesting facts regarding the number of evaluations of the oracle can be noted
from Table 3 and confirmed from Table 4:



S. Urrutia and V. dos Santos 28:11

Table 3 Number of calls of the oracle function for small instances.

Instance Naive S-based L-shape C.-line E. Square Level curves
I.50.25.25.0.0.0 2500 1288 1825 1296 1309 1461
I.50.5.5.0.0.0 2500 45 385 45 48 115
I.50.5.50.0.0.0 2500 1323 1330 1314 2459 1330
I.50.25.25.1.0.0 2500 1288 1341 1296 1309 1340
I.50.5.5.1.0.0 2500 45 188 45 48 112
I.50.5.50.1.0.0 2500 1323 1330 1314 1416 1330
I.50.25.25.2.0.0 2500 1288 1303 1296 1309 1302
I.50.5.5.2.0.0 2500 45 48 45 48 48
I.50.5.50.2.0.0 2500 1323 1319 1314 1349 1319
I.50.25.25.0.1.0 2500 625 1825 625 648 1459
I.50.5.5.0.1.0 2500 25 385 25 28 109
I.50.5.50.0.1.0 2500 2411 2411 2410 2459 2411
I.50.25.25.1.1.0 2500 625 792 625 648 789
I.50.5.5.1.1.0 2500 25 186 25 28 106
I.50.5.50.1.1.0 2500 2411 2411 2410 2459 2411
I.50.25.25.2.1.0 2500 625 626 625 648 627
I.50.5.5.2.1.0 2500 25 26 25 28 27
I.50.5.50.2.1.0 2500 2411 2411 2410 2459 2411
I.50.25.25.0.2.0 2500 1825 1825 1825 1848 1826
I.50.5.5.0.2.0 2500 385 385 385 388 386
I.50.5.50.0.2.0 2500 474 475 474 2459 686
I.50.25.25.1.2.0 2500 1825 1825 1825 1848 1826
I.50.5.5.1.2.0 2500 385 385 385 388 386
I.50.5.50.1.2.0 2500 474 475 474 480 476
I.50.25.25.2.2.0 2500 1825 1825 1825 1848 1826
I.50.5.5.2.2.0 2500 385 385 385 388 386
I.50.5.50.2.2.0 2500 474 475 474 480 476
I.50.25.25.0.3.0 2500 1202 1825 1225 648 1459
I.50.5.5.0.3.0 2500 41 385 205 28 109
I.50.5.50.0.3.0 2500 1436 431 250 2459 677
I.50.25.25.1.3.0 2500 1202 1825 1225 648 1459
I.50.5.5.1.3.0 2500 41 385 205 28 109
I.50.5.50.1.3.0 2500 1436 431 250 2459 677
I.50.25.25.2.3.0 2500 1202 1825 1225 648 1459
I.50.5.5.2.3.0 2500 41 385 205 28 109
I.50.5.50.2.3.0 2500 1436 431 250 2459 677

1. The Naive algorithm as expected does n2 evaluations of the oracle for all instances.
2. In many of the instances the algorithms L-shape, contour-line and expanding square

perform a number of evaluations similar to the sort-based algorithm which makes exactly
z evaluations. Level curves algorithm is also competitive, but when the pair (i∗, j∗) have
small coordinates, the algorithm makes a number of unnecessary evaluations in its first
(unique) iteration.

3. In some cases, the last four algorithms performed fewer calls of the oracle than the
sort-based algorithm. This is only possible due to the presence of elements of the matrix
with the same value. This happens more often when method 3 (all elements on the matrix
have the same value) is used for the construction of the matrix.

SEA 2024



28:12 Finding the Minimum Cost Acceptable Element in a Sorted Matrix

Table 4 Number of calls of the oracle function for medium-sized instances.

Instance Naive S-based L-shape C.-line E. Square Level curves
I.500.250.250.0.0.0 250000 120771 187000 120757 120959 148483
I.500.5.5.0.0.0 250000 42 3985 42 44 1060
I.500.5.500.0.0.0 250000 136165 136152 136151 249535 136152
I.500.55.55.0.0.0 250000 6296 51085 6305 6348 16877
I.500.250.250.1.0.0 250000 120771 122390 120757 120959 122276
I.500.5.5.1.0.0 250000 42 1709 42 44 852
I.500.5.500.1.0.0 250000 136165 136152 136151 138425 136152
I.500.55.55.1.0.0 250000 6296 7363 6305 6348 6976

4. The L-shape algorithm gets bad results when the optimal acceptable pair of indices lay
in the main diagonal of the matrix and specially if that pair is the only acceptable pair.
In that case, until that pair is visited the algorithm evaluates entire lines and columns of
the matrix.

5. The expanding square algorithm gets bad results when the optimal acceptable pair of
indices lay far away from the main diagonal of the matrix and specially if that pair is the
only acceptable pair. In that case, the square in which each element is evaluated has to
be expanded to cover almost the whole matrix.

6. Level curves algorithm seems to deal better with the extreme cases of previous items:
when simultaneously compared to L-shape and expanding square, it is never worse than
both. In particular, in instances for which L-shape performs well among all algorithms,
Level curves has a slightly worse performance. However, for instances where L-Shape
performed badly, level curves had a much better result.

7. Parameter e controlling if other elements beside the optimal are acceptable only affects
algorithms L-shape, expanding square and level curves. By design, the sort-based
algorithm never evaluates elements with cost higher than the optimal. Contour-line may
evaluate elements higher than the optimal in rare occasions in the last iteration, but it
did not happen in our experiments.

8. With matrix construction methods 1 and 2 sort-based algorithm and contour-line perform
almost the exact same number of evaluations. The same is true for L-shape only for
construction method 2.

Table 5 shows that when checking the oracle is computationally expensive, the sort-based
algorithm and the contour-line algorithm are to be preferred. Sort-based algorithm guarantees
the lowest number of oracle calls if there are no elements with the same cost as the optimal
acceptable element. Contour-line, as shown in the previous tables, performs in practice
around the same number of calls to the oracle. The algorithms are basically tied in all
instances and are better than the rest.

For the large instances with a fast oracle the results are very different. In fact, the best
algorithms are L-shape and expanding square while level curves also performs very well.
Contour-line perform reasonably well when the optimal element is close to the main diagonal,
but is always slower than expanding square. Observe that as noticed in the previous tables,
L-shape is better when the optimal acceptable element is close to a border of the matrix while
expanding square is better when the acceptable element is the main diagonal. Level curves
performs reasonably well in most instances, outperforming L-shape when the optimal element
is close to the main diagonal and expanding square when one of the coordinates is large and
the other small. The best case for level curves is illustrated by instance i.20000.1000.20.0.0.0,
when the algorithm finds the optimal element in the first iteration, while L-shape requires
many, and the element is far from the diagonal, making expanding square waste time.



S. Urrutia and V. dos Santos 28:13

Table 5 Computational time for large instances.

Instance S-based L-shape C.-line E. Square Level curves
I.5000.5.5.0.0.1 0.002 1.546 0.002 0.002 0.414
I.5000.41.500.0.0.1 6.316 19.422 6.157 9.523 9.622
I.5000.540.41.0.0.1 6.069 19.358 5.968 10.792 9.426
I.5000.541.541.0.0.1 22.220 189.546 22.627 22.456 60.554
I.5000.5.5.1.0.1 0.002 0.703 0.002 0.002 0.341
I.5000.41.500.1.0.1 6.141 7.129 6.109 9.600 7.090
I.5000.540.41.1.0.1 6.146 6.991 5.986 11.006 6.710
I.5000.541.541.1.0.1 22.698 34.331 21.984 22.003 30.392
I.20000.10000.10000.0.0.0 64.058 2.964 3.948 1.863 3.240
I.20000.10000.50.0.0.0 14.758 0.508 0.995 0.867 0.639
I.20000.5.10000.0.0.0 15.236 0.503 1.006 0.864 0.661
I.20000.250.250.0.0.0 0.026 0.097 0.003 0.001 0.008
I.20000.2400.10000.0.0.0 23.612 1.182 1.614 0.951 1.378
I.20000.2500.2500.0.0.0 3.411 1.009 0.329 0.136 0.482
I.20000.5000.5000.0.0.0 15.289 1.853 0.983 0.478 1.226
I.20000.1000.20.0.0.0 0.113 0.012 0.010 0.009 0.007

6 Conclusions

In this work we introduced a simple yet important problem in sorted matrices. The problem
asks to find an optimal element of the matrix that satisfies a test performed by a black box
oracle. The problem has applications in the assignment of resources to two tasks that must
be performed simultaneously.

We showed that an algorithm using the sorted property of the matrix to call the oracle
as few times as possible does not dominate in terms of computational complexity the naive
algorithm consisting in calling the oracle for each element of the matrix. This observation
motivated the development of other algorithms (L-shape, contour-line, expanding square and
level curves) that do dominate the naive algorithm having the same complexity in the worst
case but being strictly better in other cases.

Each algorithm was described and its complexity was analysed. Different properties
including space requirements were discussed.

The algorithms were implemented and computational results were used to compare the
number of evaluations of the oracle and the running time of each algorithm. By these
experiments we were able to recommend different algorithms depending on the computational
cost of the oracle, or on the position of the desired element, when prior knowledge is available.

An open question concerns the case of matrices X + Y in which case it might be possible
to use the special structure of those matrices to develop algorithms with lower computational
complexity. Also, for some of the proposed algorithms it may be not obvious how to generalize
them when the input matrix is not square. We plan to address this issue in a future work.

References
1 Michel Cosnard, Jean Duprat, and Afonso G Ferreira. The complexity of searching in X + Y

and other multisets. Information Processing Letters, 34(2):103–109, 1990.
2 Greg Frederickson and Donald Johnson. The complexity of selection and ranking in X + Y

and matrices with sorted columns. J. of Comput. and Syst. Sci., 24(2):197–208, 1982.

SEA 2024



28:14 Finding the Minimum Cost Acceptable Element in a Sorted Matrix

3 Michael L Fredman. How good is the information theory bound in sorting? Theoretical
Computer Science, 1(4):355–361, 1976.

4 Haim Kaplan, László Kozma, Or Zamir, and Uri Zwick. Selection from heaps, row-sorted
matrices, and X + Y using soft heaps. In Symposium on Simplicity in Algorithms, 2, pages
5:1–5:21, 2019.

5 Jean-Luc Lambert. Sorting the sums (xi + yj) in O(n2) comparisons. Theoretical Computer
Science, 103(1):137–141, 1992.

6 Frank Meisel and Christian Bierwirth. Heuristics for the integration of crane productivity in
the berth allocation problem. Transportation Research Part E: Logistics and Transportation
Review, 45(1):196–209, 2009. doi:10.1016/j.tre.2008.03.001.

7 Andranik Mirzaian and Eshrat Arjomandi. Selection in X + Y and matrices with sorted rows
and columns. Information Processing Letters, 20(1):13–17, 1985.

https://doi.org/10.1016/j.tre.2008.03.001

	1 Introduction
	2 Formalization
	3 Related works
	4 Algorithms
	4.1 A naive algorithm
	4.2 A sort-based algorithm
	4.3 Exploiting the main diagonal of the matrix
	4.4 L-shape algorithm
	4.5 Contour-line algorithm
	4.6 Expanding Square Algorithm
	4.7 Level curves algorithm
	4.8 Comparison and summary of the algorithms

	5 Experiments
	5.1 Instances
	5.2 Computation Enviroment
	5.3 Results

	6 Conclusions

