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Abstract
Computing a minimum path cover (MPC) of a directed acyclic graph (DAG) is a fundamental
problem with a myriad of applications, including reachability. Although it is known how to solve
the problem by a simple reduction to minimum flow, recent theoretical advances exploit this idea to
obtain algorithms parameterized by the number of paths of an MPC, known as the width. These
results obtain fast [Mäkinen et al., TALG 2019] and even linear time [Cáceres et al., SODA 2022]
algorithms in the small-width regime.

In this paper, we present the first publicly available high-performance implementation of state-of-
the-art MPC algorithms, including the parameterized approaches. Our experiments on random DAGs
show that parameterized algorithms are orders-of-magnitude faster on dense graphs. Additionally,
we present new fast pre-processing heuristics based on transitive edge sparsification. We show that
our heuristics improve MPC-solvers by orders of magnitude.
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1 Introduction

1.1 Motivation
A minimum path cover P (MPC) of a directed acyclic graph (DAG) G = (V, E) is a minimum-
sized set of paths covering V , that is, every vertex of V is present in at least one path of
P. Dilworth [19] proved that the number of paths in such a set, namely the width k, equals
the maximum number of pairwise non-reachable1 vertices. See Figure 1 for an illustration

1 A vertex u reaches a vertex v if there is a path from u to v.
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Figure 1 A DAG, an MPC shown as highlighted paths, and a maximum-sized set of non-reachable
vertices in a dashed oval. The width of this graph is k = 3.

of these concepts. Later, Fulkerson [25] showed that the problem of finding an MPC is
polynomially solvable with a reduction to maximum matching in a bipartite graph encoding
the reachability relation between the vertices.

Computing an MPC has applications in many areas of computer science such as bioin-
formatics [39, 15, 22, 47, 10], scheduling [14, 17, 5, 49], computational logic [4, 26], dis-
tributed computing [46, 28], evolutionary computation [30], programming languages [34],
databases [29], cryptography [38], and program testing [40]. Moreover, MPCs also encode
the reachability between the vertices, as formally shown by the constant-time reachability
index of Jagadish [29] as well as by the transitive closure algorithm of Simon [44]. As such,
MPCs are fundamental objects in the problem of reachability and the applications therein.

The results of Dilworth and Fulkerson were developed in the context of partially ordered
sets (posets) where the input object corresponds to a transitive DAG. The problem was later
defined on general DAGs (as in this manuscript) and solved by a simple and elegant reduction
to minimum flow [40], the folklore reduction. In this reduction, a minimum flow is computed
on a different graph G = (V, E), which is then decomposed to obtain the corresponding MPC.
Hence, an MPC can be found in time O(TMF (G) + ||P||), where TMF is the time to compute
a maximum flow2 and ||P|| is the total length of the paths in the computed MPC3.

On the one hand, by using the recent breakthrough result on flows [11, 48], we can
compute an MPC in almost-optimal O(|E|1+o(1) + ||P||)-time. Although this is an impressive
theoretical discovery, state-of-the-art flow algorithms rely on complex convex optimization
techniques, and are far from being competitive in practice against current high-performance
flow solvers (see e.g. [3] for progress in this line of research).

On the other hand, recent efforts further study the minimum flow reduction and de-
velop algorithms parameterized by the width k, obtaining running times of O(k(|V | +
|E|) log |V |) [23, 34, 39] and the first parameterized linear time algorithm running in time
O(k3|V | + |E|) [8] and later improved to O(k2|V | + |E|) [6]. Although these approaches
are beaten in the large-width regime, they have practical potential as 1) they are simple
combinatorial approaches, which also facilitates their implementation, 2) the expected width
of random DAGs is known to be upper-bounded by O( log (ρ·|V |)

ρ ) [2, 44], where ρ = |E|
(|V |

2 ) is
the density of the DAG, which was recently confirmed experimentally [35] and 3) the width
in several applications has been observed to be even smaller [37, 9, 43].

2 In this reduction, the minimum flow problem can be reduced to maximum flow as we will explain later.
3 The MPC can be decomposed from the flow in time O(||P||+ |E|) as we will explain later. Also note

that ||P|| = O(k|V |) is a simple bound.
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1.2 Contributions
We present the first open source implementations of different state-of-the-art MPC-solvers:

The folklore reduction, which is compatible with all maximum flow and minimum cost
flow solvers from the LEMON library [18] as well as our own implementations of classical
maximum flow algorithms.
The O(k(|V |+ |E|) log |V |)-time algorithm [23, 34, 39], which is also compatible with all
the flow solvers from the previous point.
The parameterized linear time algorithms O(k3|V |+ |E|) [8], O(k2|V |+ |E|) [7].

Our experiments on random DAGs show that the parameterized approaches are orders-
of-magnitude faster than the folklore reduction on the fastest flow-solvers. In fact, our
implementations of the parameterized approaches are able to compute MPCs on graphs with
more than 108 edges in less than 2 minutes. In particular, the parameterized linear time
algorithms shine on dense and small-width instances and outperform all its competitors,
running in less than 5 seconds. We also present new fast pre-processing heuristics based on
the concept of transitive sparsification [29, 44]. By removing transitive edges, our heuristics
reduce the running time of solvers by up to an order-of-magnitude.

The rest of the paper is organized as follows. Section 2 explains the algorithms in our
implementations. Section 3 shows our proposed pre-processing heuristics based on transitive
sparsification. Section 4 presents our experimental setup and results.

2 Flow-based MPC algorithms

All state-of-the-art MPC-algorithms are based on a simple and elegant reduction to minimum
flow. Analogous to the maximum flow problem, in minimum flow [13] we are given a graph
G = (V, E) with a source s ∈ V and a sink t ∈ V, and demands on the edges d : E → N0.
The goal is to compute an st-flow (or just flow) f∗ : E → N0 of minimum size |f∗| (net flow
exiting s), which satisfies flow conservation (the flow entering and exiting a non-source nor
sink vertex is the same) and respects the demands (f∗(e) ≥ d(e) for all edges). For a more
formal definition of these concepts we refer to [1].

2.1 The Folklore reduction
The reduction from MPC to minimum flow has been discovered and re-discovered many
times in the literature (see e.g. [8]), but it can be attributed to its first public appearance in
the paper of Ntafos and Hakimi [40]. Given a DAG G = (V, E), we build its flow reduction
as the pair G = (V, E), d : E → N0, where V contains two copies vin, vout of each vertex
v ∈ V connected by an edge with demand d(vin, vout) = 1, every other edge in E has demand
0. The set V also contains a global source s connected to every vin and a global sink t

connected from every vout. Finally, E replicates E by having an edge (uout, vin) for every
edge (u, v) ∈ E. Note that |V| = O(|V |), |E| = O(|V |+ |E|). A flow f corresponds to a path
cover P of G with |f | paths. See Figure 2 for an illustration of these concepts.

Each of these paths can be obtained by decomposing one unit of flow at a time from f .
The decomposition can be naively performed with |f | graph searches in O(|f |(|V |+ |E|))
time. We implement a faster algorithm running in time O(||P||+ |E|) (see Section 2.4).

As every path cover can be interpreted as a flow, an MPC corresponds to a minimum
flow f∗ in this network. Minimum flow on the flow reduction can be reduced to maximum
flow by also providing an initial flow f , that is, a path cover. For every edge e ∈ E , we place
it in the maximum flow instance only if f(e) > d(e), in which case we define its capacity to

SEA 2024
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Figure 2 A feasible flow of size 4 in the flow reduction of the graph shown in Figure 1. Flow
values are shown on top of the corresponding edges (0 if not present). Vertices s and t are not shown
for simplicity. A decomposition of this flow produces a path cover with 4 paths, i.e. not minimum.

Figure 3 Residual graph of the flow in Figure 2. Direct edges are shown as solid arrows, while
reverse edges as dashed arrows. A residual path is highlighted. From s and to t only the path edges
are shown. Flow values on the edges are the result of using the residual path.

be c(e) = f(e)− d(e). Moreover, for every edge (u, v) ∈ E , we place its reverse edge (v, u) in
the maximum flow instance with capacity c(u, v) = |f |. It can be shown [39] that if f ′ is a
maximum flow of this instance, then f∗ = f ′ − f is a minimum flow of G, d.4

A more direct interpretation of the minimum flow problem [8] defines the residual graph
R(G, f), by placing every reverse edge (used to increase the flow in the opposite direction)
and placing direct edges whenever f(e) > d(e) (used to decrease the flow). An st-path in
R(G, f) (residual path) can then be used to decrease the flow size by one unit. See Figure 3.

In both interpretations of the problem, a minimum flow of the reduction can be obtained
in time O(|f |(|V |+|E|)) by a simple Ford-Fulkerson approach [24], which finds O(|f |) residual
paths. Since there is always a path cover that uses |V | paths to cover every vertex (one path
per vertex, the naive solution), the previous approach runs in O(|V |(|V |+ |E|)) time.

2.2 Greedy solution
Felsner et al. [23] proposed a greedy heuristic to compute a chain decomposition of a poset.
They iteratively extract the longest chain of elements from the remaining poset. They proved,
with analogous arguments to those of the greedy set cover logarithmic approximation [12],
that the number of chains extracted is bounded by O(k log |V |). Later, Kowaluk et al. [34]
showed that the same principle can be applied to general DAGs by finding the path covering
the most uncovered vertices. They showed that these paths can be found in a DAG by a
reduction to shortest path, which was later simplified by Mäkinen et al. [39] with a dynamic
programming solution. As such, computing the greedy solution and using it in the flow
reduction derives a O(k(|V |+ |E|) log |V |)-time algorithm for MPC.

4 Flow in reverse edges is interpreted as negative flow in the opposite direction.
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2.3 Parameterized linear time algorithms
Recently, Cáceres et al. [8] proposed a slightly different method to compute an MPC using
the flow reduction. In their method, the vertices are processed one by one in topological
order [31, 45]5 and an MPC of the (graph induced by the) already processed vertices is
computed at each step. More specifically, if P is an MPC of the first vertices in topological
order and v is the next vertex to process, the solution T = P ∪{(v)} is used as initial solution
of the flow reduction. A nice property of this incremental framework is that the size of an
MPC of the current iteration is either |T | = |P|+ 1 or |P|, and thus only one traversal of the
residual suffices to compute it. Note that this a simplification of the framework. In practice,
the algorithms maintain a flow f∗ on the flow reduction of the first vertices (representing
the MPC P). When the next vertex v is processed, the flow reduction is updated by adding
vertices vin and vout, and their corresponding edges (see Section 2.1). The flow f∗ is also
updated to f∗(s, vin) = f∗(vin, vout) = f∗(vout, t) = 1 (representing T ), which is then used
to look for a residual path, possibly modifying f∗ again.

By considering simple graph traversals of the residual, this approach runs in time
O(|V |(|V |+ |E|)). However, Cáceres et al. [8] combine transitive sparsification of edges with
a special layered traversal of the residual to obtain a linear dependency in the number of
edges and a factor k3 dependency in the number of vertices for a total running time of
O(k3|V |+ |E|).

Layered traversal. The algorithm assigns a level ℓ : V → {0, . . . , |P|} to every vertex in the
flow reduction. The level assignment maintains the property that paths in the residual graph
are sequences of vertices with non-increasing levels, which allows to perform the traversal for
the search of a residual path in a layered6 manner. The residual graph is traversed from the
highest reachable layer until the lowest reachable layer (or until a residual path is found). To
perform this layered traversal, the algorithm uses |P|+ 1 FIFO queues (one per layer), each
of which performs a BFS from the highest-reachable layer down to the lowest-reachable layer.
Algorithm 4 in the Appendix shows the corresponding pseudocode of the traversal.

After the layered traversal finishes, the algorithm updates the flow and level assignment
to maintain the algorithm’s invariants [8]. The flow is only updated if the traversal finds a
residual path, in such a case, the flow in direct edges of the path is decreased by one and
the flow in (the reverse of) reverse edges is increased by one, which decreases the total flow
by one. As for the level assignment, if the lowest visited level is l, then all visited vertices
change their level to l while the level of vout is set to l + 1. Additionally, if there is no flow
from layer l exiting directly to t, then the algorithm performs a merge of layer l. For an
explanation of the merge procedure, we refer to the original publication [8] and our code.

Transitive sparsification. An edge (u, v) is transitive if there exists another path from u

to v. Transitive edges can be safely removed from the DAG when computing an MPC, as
removing these edges preserves the reachability relation between the vertices and hence,
by Dilworth’s theorem, the width. A transitive sparsification is both a spanning subgraph
with the same reachability relation as G as well as the process to obtain such a subgraph.
The O(k3|V |+ |E|)-time algorithm sparsifies the number of incoming edges to each vertex
to O(k). The authors use a simple idea first proposed by Jagadish [29] and Simon [44] on

5 As topological sorting algorithms run in linear time, we assume that such order is given as input. In our
implementation we use the faster DFS-based algorithm of Tarjan [45].

6 A layer is a maximal set of vertices with the same level.
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Figure 4 A path P is highlighted (path edges were removed by simplicity). The figure shows
(dashed arrows) the transitive edges incoming to a vertex v as well as outgoing from a vertex u.

posets7: if several incoming edges to v come from the same path P , then all these edges,
except maybe the last, are transitive. Conversely, if several outgoing edges from u go to the
same path P , then all these edges, except maybe the first, are transitive. See Figure 4. The
algorithm of Cáceres et al. [8] uses this idea and the MPC P from the previous iteration to
sparsify the edges to the current vertex v to at most |P| ≤ k. To perform this sparsification
efficiently, the algorithm requires that every vertex stores the id of one path that contains
such vertex, which is achieved by maintaining a path decomposition of the minimum flow f∗,
that is P.

The O(k2|V | + |E|)-time algorithm. The same authors later improved the running time
of their algorithm [7] by shaving a k-factor from the dependency on the number of vertices.
They noted that is not necessary to maintain the ids of all paths containing a vertex during
the algorithm, but that it suffices to maintain only one of those ids, and the MPC can be
retrieved at the end by performing only one decomposition. To achieve this, they identified a
set of antichain vertices separating consecutive layers: as these vertices form an antichain,
each of those must be covered by a different path, and in fact the algorithm covers each of
these vertices with exactly one path (we refer to the original publication [7] for details). As
such, it suffices that every vertex points back to (one of) the corresponding antichain vertex
on its layer, these pointers are called back links (bl in the pseudocode for short). As opposed
to an entire decomposition, back links can be maintained by only decomposing the vertices
in layer l (lowest visited level), and then fixing the back links of vertices in lower layers (in
constant time per vertex of level > l). Algorithm 1 implements the ideas in [8, 6].

2.4 The decomposition algorithm
As mentioned earlier, the last step of all MPC-solvers, as well as intermediate steps of the
parameterized linear time algorithms, require to decompose the flow f∗ into an MPC. A naive
solution extracts one path at a time in total O(|f∗|(|V |+ |E|)) running time. We instead
implement an algorithm that runs in time O(||P||+ |E|)8. Such an improvement was first
described by Kogan and Parter [32]. Here we use the version of Cáceres [6]. The algorithm
first removes all 0-flow edges in time O(|E|) and then processes the vertices in topological
order. When processing vertex v, it iterates through each in-neighbor u and places v after u

in f∗(u, v) different paths9. The total running time is
∑

v∈V,(u,v)∈E f∗(u, v) = O(||P||).

7 While Jagadish presented the idea on transitive DAGs, Simon worked on general DAGs but using a
path decomposition/partition instead of a path cover.

8 Note that ||P|| = O(|f∗| · |V |), and thus this approach removes a factor |f∗| from |E|.
9 This can be done in constant time per path by iterating through the list of paths of u.
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Algorithm 1 One iteration of the O(k2|V |+ |E|)-time algorithm. The pseudocode shows
the steps of the algorithm when processing vertex v. Function id returns the path id stored
in an antichain vertex. Function bl returns the corresponding antichain vertex (back link).
Notation uPw indicates the decomposed path connecting antichain vertices u and w. For
more details we refer to the original publication [7] and our code.

// Add v to flow reduction
1 V ← V ∪ {vin, vout}
2 E ← E ∪ {(s, vin), (vin, vout), (vout, t)}

// Create initial solution T
3 f∗(s, vin), f∗(vin, vout), f∗(vout, t)← 1

// Sparsify edges incoming to v

4 sur← (⊥)|f∗|

5 for u ∈ N−(v) in G do
6 sur[id(bl(u))]← max(sur[id(bl(u))], u)
7 for u ∈ sur, u ̸= ⊥ do

// Add (u, v) to flow reduction
8 E ← E ∪ {(uout, vin)}, f∗(uout, vin)← 0

// Layered traversal with Algorithm 4
9 D, S ← layeredTraversal(G, f∗, ℓ, v)

10 l← min{ℓ(u) | u ∈ S}
11 if D ̸= ∅ then // Update flow values
12

13 for (u, w) ∈ D do
14 if (u, w) ∈ E then

f∗(u, w)← f∗(u, w)− 1
15 else f∗(w, u)← f∗(w, u) + 1
16 else // Update path and backlink info

17

18 id(v)← |f∗|, bl(v)← v

// Update levels
19 ℓ(vout)← l + 1
20 ℓ(u)← l, for u ∈ S

// Decompose vertices in layer l

21 for Decomposed path uPw do
// Update links and path ids

22 id(w)← id(u)
23 for x ∈ uPw do
24 if x ̸= u then bl(x)← u

25 nl(x)← w

// Fix backlinks in higher layers
26 for u ∈ V, ℓ(uin) > l ∨ ℓ(uout) > l in top.

order do
27 if ℓ(bl(u)out) ̸= ℓ(uin) then

bl(u)← nl(bl(u))
28 if ℓ(uin) ̸= ℓ(uout) then

id(u)← id(bl(u))

29 if No flow from layer l to t then
// Merge of layer l

3 Fast pre-processing sparsification heuristics

In this section, we present two transitive sparsification heuristics. Recall that a transitive
sparsification removes transitive edges, making the input graph sparser. These heuristics are
intended to be used as pre-processing steps of MPC-solvers to speed up their computation. As
such, it is very important that they run fast compared to the MPC-solver. In fact, we ensure
that their worst-case running time is upper-bounded by the running time of state-of-the-art
solvers. Both of our heuristics use paths to sparsify the incoming/outgoing edges to/from a
vertex as done by the parameterized linear time algorithms.

DFS sparsification. Our first sparsification heuristic uses the root-to-leaf paths of a DFS-
spanning tree. A first naive implementation of this idea processes each of these paths
to sparsify the incoming edges. However, this approach runs in time proportional to the
total length of the root-to-leaf paths, which can be Ω(|V |2). Instead, our simple solution
runs in time O(|V |+ |E|) as it is implemented on top of a normal recursive DFS traversal.
Algorithm 2 shows the corresponding pseudocode.

The main idea behind this algorithm is to use the DFS recursion itself as DFS paths.
For this, it stores the preorder of each vertex visited (in dfs_pre) as well as the maximum
preorder value observed of an in-neighbor (in last_reach). When processing an edge (v, w)

SEA 2024
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Algorithm 2 DFS sparsification heur-
istic.

1 E′ ← ∅
2 S ← ∅
3 dfs_pre[v]← 0 for v ∈ V

4 next_pre← 1
5 last_reach[v]← 0 for v ∈ V

6 for v ∈ V in top. order do
7 if v ̸∈ S then dfsSp(v)
8 return G′ = (V, E′)

9 Function dfsSp(v):
10 S ← S ∪ {v}
11 dfs_pre[v]← next_pre
12 next_pre← next_pre + 1

13 for w ∈ N+(v) in top. order do
14 if w ̸∈ S then
15 dfsSp(w)
16 if last_reach[w] < dfs_pre[v]

then
17 E′ ← E′ ∪ {(v, w)}
18 last_reach[w]← dfs_pre[v]

Algorithm 3 Greedy sparsification
heuristic.

1 E′ ← E

2 P ← ∅

3 while P is not a path cover do
4 P ∗ ← path of (V, E′) with most

uncovered
5 P ← P ∪ {P ∗}
6 R← ∅
7 for v ∈ P ∗ do
8 for u ∈ N−(v) in (V, E′) do
9 if u ∈ R ∧ (u, v) ̸∈ P then

10 E′ ← E′ \ {(u, v)}
11 R← R ∪ {u}
12 return G′ = (V, E′),P

(after traversing w), if the observed preorder value of an in-neighbor of w is bigger than the
preorder of v (last_reach[w] > dfs_pre[v]), then the edge is transitive and it is not added
to the sparsification, as there is a vertex further down the DFS-tree also with an edge to
w (the one with preorder value last_reach[w]). Conversely, among all vertices in a DFS
root-to-leaf path with an edge to w, the only edge that is not sparsified is the one with the
largest preorder value, that is, the one closest to the leaf.

Greedy sparsification. Our second sparsification heuristic also outputs the greedy initial
solution explained in Section 2.2. It uses the O(k log |V |) paths from the greedy solution to
sparsify outgoing edges. As such, this heuristic sparsifies the edges to |E′| = O(k|V | log |V |).
Since this algorithm computes the greedy solution, its worst-case running time is also
O(k(|V |+ |E|)). However, we implemented a non-trivial practical improvement where each
extracted path is immediately used to sparsify, and thus the following paths are extracted
from a sparser graph. Algorithm 3 shows the corresponding pseudocode. The main novelty
of this approach is that greedy paths are computed at the same time that the DAG is being
sparsified, resulting in a faster initial solution computation. Note that the algorithm does
not sparsify an edge if this is present in the greedy path cover, however, there are at most
||P|| = O(k|V | log |V |) such edges.

4 Experiments and Results

4.1 Implementations
Our code was written in C++ and it can be found at https://github.com/algbio/
PerformanceMPC under the GNU General Public License v3.0. The code is compatible
with all maximum flow and minimum cost flow solvers from the LEMON library [18], which

https://github.com/algbio/PerformanceMPC
https://github.com/algbio/PerformanceMPC
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are known to be the fastest publicly available flow solvers. For an input, we provide the best
times among the solvers in the library as lemon. For a cleaner and fairer comparison, we
re-implemented the following well-known maximum flow solvers:

DFS: Ford-Fulkerson [24] approach that finds residual paths using depth-first search.
BFS: Edmonds-Karp algorithm [21], which finds residual paths using breath-first search.
Blocking: Dinitz’ algorithm [20], which uses blocking flows.

All solvers can start from one of the following initial solutions (path covers):
naive: |V | paths, each covering a different vertex.
greedy: O(k log |V |) paths based on greedy set cover [23, 34, 39].

After running the flow solver all our implementations run the same O(||P||+ |E|)-time
decomposition routine to obtain the corresponding MPC P (see Section 2.4).

Our code also implements the parameterized linear time algorithms:
k3: The first parameterized linear time algorithm running in time O(k3|V |+ |E|) [8].
k2: A later improvement over k3 running in time O(k2|V |+ |E|) [7].

All these implementations constitute the state-of-the-art algorithms for MPC. To the best
of our knowledge there are no other publicly available fast MPC-solver’s implementations.
Most publicly available MPC-solvers use the slower reduction to bipartite maximum matching,
and thus also need to compute the transitive closure10. Mäkinen et al. [39] were the first to
implement the greedy-based approach, which was later improved by Ma et al. [37] using Dinitz’
algorithm for finding residual paths: these implementations correspond to our DFS greedy
and Blocking greedy, respectively. Finally, for all our MPC-solvers we also implemented
our two sparsification heuristics from Section 3: dfs-sp and greedy-sp.

4.2 Setup
The experiments ran on an isolated Intel(R) Xeon(R) CPU E5-2670 @ 2.6 GHz with 64GB
of RAM, running Almalinux 8.4 (64bit, kernel 4.18.0). The code was compiled using gcc
version 8.5.0 with optimization flag -O3. We measure user time using the sys/resource.h
Unix library. We report the average value of 10 repetitions of each experiment. We used a
timeout of 10 minutes for each experiment.

4.3 Datasets
Random DAG. For a fixed value of N and M , we generate a random DAG with N vertices
and M edges. The generation procedure first fixes a topological order of the N vertices. Then,
it generates M different pairs of vertices and interprets them as edges directed according to
the topological order. We vary N ∈ 10, 000× {1, 2, . . . , 5}. For space constraints reasons, we
show the results for N = 50, 000 and vary M ∈ {32, 768 = 215, 216, . . . , 227 = 134, 217, 128} to
observe the behavior at different densities (other values of N can be found in the Appendix).
This dataset corresponds to the random DAG model proposed by Barak and Erdös [2]. We
use this dataset to compare general performance. Table 1 in the Appendix shows the width
of DAGs in this dataset. Note that the width decreases with the number of edges of the
Random DAG. Indeed, the expected width of a Random DAG of parameters N and M , is upper
bounded by O( log (ρ·N)

ρ ) [44], where ρ = M

(N
2 ) is the density of the DAG. Moreover, Kritikakis

and Tollis [35] recently showed that experimentally the width is proportional to 1/ρ.

10 The densest spanning supergraph having the original graph as a transitive sparsification.
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Figure 5 Running time of MPC-solvers in Random DAG. Note the log-scale in the y-axis.

Path Partition. For a fixed value of N , M and K, we generate the previously described
Random DAG with N vertices and M edges. Then, we divide the N vertices into K parts by
placing each vertex on a uniformly random chosen part. Finally, we add the corresponding
N −K edges (in topological order) so that each part is a path in the DAG. As such, the
graph’s width is at most K. We fix N = 50, 000 and vary M ∈ {32, 768 = 215, 216, . . . , 227 =
134, 217, 128} as before and , K = {21 = ⌊21 · ln N⌋, . . . , ⌊24 · ln N⌋ = 173}, we only show
the results for K = 173 due to space constraints (other values of K can be found in the
Appendix). We use this dataset to study the performance on small-width instances. Table 2
in the Appendix shows the number of edges and width of DAGs in this dataset. We note that
our Path Partition dataset is equivalent to the “Path-Based Model” of Lionakis et al. [36]
and a generalization of the “Random arcs k-path Model” of Paavilainen [42].

Transitive Closure. For a fixed value of N and M , we generate a Random DAG with N

vertices and M edges. Then, we compute its transitive closure. We fix N = 10, 000 and vary
M ∈ {8, 192 = 213, . . . , 223 = 8, 388, 608}. We use this dataset to study the performance on
posets and the behavior of transitive sparsification heuristics. Table 2 in the Appendix shows
the number of edges and width of DAGs in this dataset. Note that the width distribution of
Random DAG is not affected as adding transitive edges does not change the width.

4.4 Results
Figure 5 shows the running time of the MPC-solvers on the Random DAG dataset (for other
values of N see Figure 9 in the Appendix). Solvers starting from a naive solution are
depicted with a solid line joining the corresponding data points11. The maximum flow-based
solvers show a polynomial dependency in the number of edges of the input graph, with
Blocking naive being the fastest (as predicted by theory as it uses a faster flow algorithm)
followed by DFS naive and then by BFS naive. These results suggest that 1) the more
complex Blocking algorithm pays off, as each step significantly reduces the path cover size,
and that 2) although BFS ensures a polynomial running time for maximum flow, in the case

11We consider k3 and k2 “to start from a naive solution” since, at each step, these consider the next
vertex as a single path.
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Figure 6 Running time of MPC-solvers in Path Partition. Note the log-scale in the y-axis.

Figure 7 Running time of solver Blocking greedy in dataset Transitive Closure with different
combinations of pre-processings dfs-sp and greedy-sp. Note the log-scale in the y-axis.

of MPC this is unnecessary as k ≤ |V | and DFS performs better in practice as residual paths
are quickly found. Moreover, these solvers run out of time (> 10 mins.) after |E| = 224, 220

and 218, respectively. Solvers starting from a greedy solution are shown with a dotted line.
The solvers show a much faster running time, which stands below the 2 mins. irrespective of
the number of edges. As such, on dense graphs, these approaches are orders-of-magnitude
faster that their naive counterparts. In this case, the difference between the different solvers
is subtle, as substantially less residual paths must be found to transform the O(log |V |)-
approximation to an MPC, and indeed DFS beats the machinery of Blocking from |E| ≥ 222

and k ≤ 494. The running time of k3 decreases with the number of edges. This is explained
by the linear dependency on the number of edges: these algorithms process the edges, in
constant-time, only during the initial edge sparsification, whereas vertices are charged with
all the remaining machinery of the approach. This amounts to O(k3) and O(k2) per vertex,
respectively, which is known to decrease with increasing density [44, 35]. Both solvers run on
less than 2 mins. on every graph, and outperform the maximum flow-based solvers on dense
graphs, from |E| ≥ 220 in the case of k2 and from |E| ≥ 223 in the case of k3, being almost
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two orders of magnitude faster on the densest instance (|E| = 227). Finally, it is worth
mentioning that k2 outperforms k3 on every instance tested, which shows that the more
complex routines of the k2 algorithm, as implemented in this work, manage to effectively
shave a factor k from the running time. In practical terms, the time saved by avoiding the full
decomposition is larger that the time required to perform these savings. Finally, the best of
lemon dominates the naive versions of our solvers but it is dominated in the dense regime, by
both the greedy versions and the parameterized linear time algorithms. In the sparse regime
lemon corresponds to the implementations Preflow [27] and CapacityScaling [21], whereas
in the dense regime is dominated by CostScaling [41] as well as NetworkSimplex [16].

Figure 6 shows the running time of the solvers on the Path Partition dataset (for other
values of K see Figure 10 in the Appendix). The behavior is very similar to the Random DAG
dataset. In this case, DFS beats Blocking in sparse and very sparse graphs in greedy and
naive, respectively. For all graphs in the dataset, the solvers k3 and k2 run in no more than
15 secs. and 5 secs., respectively.

Pre-processing. We exclude k3 and k2 from this comparison as using a pre-processing edge
sparsification is counterproductive (perform internal sparsification). For space constraints we
only show the effect of pre-processing on one MPC-solver.

Figure 7 shows the running time of Blocking greedy on the Transitive closure
dataset and different combinations of pre-processings dfs-sp and greedy-sp (for other
MPC-solvers see Figure 8 in the Appendix). We note that for M ≥ 219 the number of edges
in the corresponding graphs is larger than in the densest instance of the previous datasets, as
such we call these graphs dense. On dense graphs, dfs-sp roughly decreases the running time
in half, while greedy-sp reduces the running time by one order-of-magnitude. When using
both heuristics greedy-sp and dfs-sp, we perceive a combined positive effect until M ≤ 219.
For denser graphs, performing both sparsifications does not pay off as greedy-sp is able to
sparsify more edges (recall that greedy-sp sparsifies the edges to |E′| = O(k|V | log |V |)),
but it does not affect the running time significantly either. On non-dense graphs (M < 219),
applying both sparsifications dominates and it is up to 4 times faster than plain greedy.

Even though our sparsification heuristics show a clear improvement on dense graphs,
these improved versions are still outperformed by the parameterized approaches.

5 Conclusions and Future Work

We presented the first high-performance implementation of state-of-the-art MPC algorithms
and showed that approaches parameterized by the width dominate the practical performance
landscape on different kinds of random graphs. In particular, the parameterized linear time
algorithms [8, 7] shine on small-width instances, being orders-of-magnitude faster. Recent
works [33, 6] circumvent the Ω(k|V |) lower bound12 by computing a minimum chain cover
instead. In practice, it is interesting to test if these algorithms are effectively faster than our
MPC-solvers or if these ideas can be used to improve the performance of our implementations.
We also presented two new pre-processing fast heuristics based on transitive sparsification
and showed how they improve the running time by an order-of-magnitude.

An important application of MPC is reachability. In particular, it is known (see e.g. [35])
how to compute a constant-time reachability index of size O(k|V |) in time O(k|E′|), where
|E′| is the number of edges in the sparsest transitive sparsification, also known as transitive

12 There are instances with ||P|| = Ω(k|V |) [6].
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reduction. This result directly derives parameterized linear time solutions for the problems
of constant-time reachability, transitive closure and transitive reduction, which can be
implemented and compared against state-of-the-art solutions for those problems.

Finally, one algorithm we have not implemented is the O(k2|V | log |V |+|E|)-time approach
of Cáceres et al. [8, Theorem 1.1] as this was later outperformed by the O(k2|V | + |E|)-
time algorithm [7]. However, this divide-and-conquer approach is simple to parallelize [8,
Theorem 1.2] and thus it could outperform our implementations when run on multiple
processors.
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A Extra Algorithms and Figures

Algorithm 4 Layered traversal for the search of a residual path in R(G, f). The algorithm
returns a residual path (if one is found) as well as the set of visited vertices during the
traversal.

1 Function layeredTraversal(G, f, ℓ, v):

2 S ← {vin} // Visited vertices
// For each j ∈ {0, . . . , |f |}

3 Qj ← {uout | (u, v) ∈ E ∧ ℓ(uout) = j}
4 for j ← |f | down to 0 do
5 while Qj ̸= ∅ do
6 Remove u from the front of Qj

7 S ← S ∪ {u}
8 for v ∈ N+(u) in R(G, f) do
9 if v = t then

10 return Residual path D, S

11 if v ̸∈ S then
12 Add v to the back of Qℓ(v)

13 return ∅, S

B Additional Experimental Data and Results

Table 1 Width k for dataset Random DAG (N = 50, 000) and different values of parameter M .

M = |E| 215 216 217 218 219 220 221 222 223 224 225 226 227

Width k 31,282 22,586 13,913 7,418 3,768 1,922 980 494 260 134 75 39 22
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Table 2 Number of edges |E| and width k for datasets Path Partition and Transitive Closure
and different values of parameter M .

M

Path Partition Transitive Closure
N = 50, 000, K = 173 N = 10, 000
|E| k |E| k

213 — — 15,103 5,752
214 — — 66,725 3,971
215 82,595 173 930,242 2,346
216 115,363 173 11,609,355 1,214
217 180,899 173 28,629,499 614
218 311,971 173 39,559,611 311
219 574,115 173 45,288,626 161
220 1,098,403 171 47,910,591 87
221 2,146,979 165 49,121,619 46
222 4,244,131 140 49,647,821 26
223 8,438,435 111 49,869,260 14
224 16,827,043 79 — —
225 33,604,259 54 — —
226 67,158,691 34 — —
227 134,267,555 21 — —

Figure 8 Running time of other solvers in dataset Transitive Closure with different combina-
tions of pre-processings dfs-sp and greedy-sp.
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Figure 9 Running time of MPC-solvers in dataset Random DAG, for different N .
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Figure 10 Running time of MPC-solvers in dataset Path Partition, for different K.

SEA 2024


	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Flow-based MPC algorithms
	2.1 The Folklore reduction
	2.2 Greedy solution
	2.3 Parameterized linear time algorithms
	2.4 The decomposition algorithm

	3 Fast pre-processing sparsification heuristics
	4 Experiments and Results
	4.1 Implementations
	4.2 Setup
	4.3 Datasets
	4.4 Results

	5 Conclusions and Future Work
	A Extra Algorithms and Figures
	B Additional Experimental Data and Results

