
Separator Based Data Reduction for the Maximum
Cut Problem
Jonas Charfreitag #

Institute of Computer Science, University of Bonn, Germany

Christine Dahn #

Institute of Computer Science, University of Bonn, Germany

Michael Kaibel #

Institute of Computer Science, University of Bonn, Germany

Philip Mayer #

Institute of Computer Science, University of Bonn, Germany

Petra Mutzel #

Institute of Computer Science, University of Bonn, Germany

Lukas Schürmann #

Institute of Computer Science, University of Bonn, Germany

Abstract
Preprocessing is an important ingredient for solving the maximum cut problem to optimality on
real-world graphs. In our work, we derive a new framework for data reduction rules based on vertex
separators. Vertex separators are sets of vertices, whose removal increases the number of connected
components of a graph. Certain small separators can be found in linear time, allowing for an efficient
combination of our framework with existing data reduction rules. Additionally, we complement
known data reduction rules for triangles with a new one.

In our computational experiments on established benchmark instances, we clearly show the
effectiveness and efficiency of our proposed data reduction techniques. The resulting graphs are
significantly smaller than in earlier studies and sometimes no vertex is left, so preprocessing has
fully solved the instance to optimality. The introduced techniques are also shown to offer significant
speedup potential for an exact state-of-the-art solver and to help a state-of-the-art heuristic to
produce solutions of higher quality.
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1 Introduction

The maximum cut problem (MaxCut) asks for a vertex-bipartition of a given edge-weighted
input graph G maximizing the value of the cut. The cut is defined as the set of edges
connecting vertices from different partitions and its value is the sum over all weights of edges
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4:2 Separator Based Data Reduction for the Maximum Cut Problem

forming the cut. MaxCut is a fundamental problem in computer science and is one of the
NP-hard problems on Karp’s famous list [28] of 21 problems. The research on MaxCut
is strongly motivated by its applications in, e.g., image processing [37] or VLSI design [5],
and its importance for quantum annealing [25]. To tackle general graphs encountered in
these applications, exact state-of-the-art solvers like McSparse [8] and QuBowl [35] employ a
multitude of different techniques. One of those is preprocessing (also called presolving).

Preprocessing algorithms make use of decomposition techniques and data reduction
rules without sacrificing optimal solutions. The former split the given input into several
independent smaller instances, and the latter reduce the input size. Efficient and effective
data reduction rules for MaxCut have been designed in e.g. [29], [14] and [35]. They have
been proven to play a crucial role in solving difficult instances for MaxCut.

MaxCut, as a combinatorial optimization problem on graphs, allows for a natural de-
composition of the input into its biconnected components [21]. More sophisticated techniques
based on divide-and-conquer algorithms using vertex separators have been used for special
cases such as graphs with bounded treewidth [43] or graphs not contractible to K5 [4] or
to K3,3 [10]. We call a set of vertices a vertex separator of a graph if its removal from the
graph increases the number of connected components.

Our Contribution

We derive new exact data reduction techniques for MaxCut and evaluate their performance
in a sophisticated experimental study. In detail:
1. We design a framework for exact data reduction, making use of vertex separators, which

have not been made practical use of in the context of data reduction for MaxCut before.
Given a vertex separator, we provide a general characterization of when and how it can
be exploited for data reduction.

2. For small separators, which can be found efficiently, we derive concrete and effective rules
through our framework. For certain structures in the input, our framework also allows to
generalize existing rules.

3. For triangles in the input graph we introduce a new data reduction rule, complementing
two existing ones.

4. We carefully engineer an algorithm consisting of state-of-the-art techniques and our new
ones. We evaluate it on well-established benchmark graphs and compare the results
with the state-of-the-art. Additionally, we investigate the influence of our algorithm’s
individual components and their influence on the solution quality of a state-of-the-art
heuristic and runtime of a state-of-the-art exact solver.

Outline

The remainder of the paper is structured as follows: In Section 2 we introduce some basic
notation relevant for the theory of our paper, along with an overview of the related literature
in the area of data reduction and MaxCut. Section 3 first describes existing data reduction
rules that exploit weights of edges in detail. Afterwards, our new one for triangles is presented.
Section 4 focuses on vertex separators and generalizes existing data reduction rules through
the lens of the new framework and presents our new rules derived from this framework. The
algorithm we engineered is described in Section 5 and evaluated extensively in Section 6.
Section 7 concludes our findings and results.
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2 Preliminaries

2.1 Notation

Throughout the paper, we consider simple undirected graphs G = (V, E, w) with edge weights
w : E → R. For better readability we write w(e) = we and w({u, v}) = wuv. N(v) for v ∈ V

denotes the neighborhood of v in G and d(v) its degree, so d(v) = |N(v)|. For sets S ⊂ V we
write N(S) to capture the union of all neighborhoods of vertices in S excluding all vertices
in S. For a set of vertices V ′ ⊂ V we denote by G[V ′] the subgraph induced by V ′. We
define the contraction of an edge e = {u, v} as replacing u and v by a new vertex a. For
every vertex b ∈ N({u, v}) an edge {a, b} is added with weight wub + wvb if both u and v

are adjacent to b and the same weight as the edge between u or v and b otherwise.
A connected component of a graph G is a maximal subgraph of G in which any pair of

vertices can reach each other by a walk. If a graph has exactly one connected component, it
is called a connected graph. A graph with more than k ≥ 1 vertices is called k-connected if it
is connected, and the deletion of an arbitrary set of up to k − 1 vertices does not change this
property. For a graph G a (non-empty) set of vertices S ⊂ V , whose removal increases the
number of connected components by at least one, is called a k-separator with k = |S|.

A bipartition P of the vertices of a graph G = (V, E) is a pair P = (S1, S2), with
S1 ∩ S2 = ∅ and S1 ∪ S2 = V . We also define a partial bipartition P ′ = (S′

1, S′
2) of the

vertices, with again S′
1 ∩ S′

2 = ∅, but S′
1 ∪ S′

2 ⊂ V . Every vertex bipartition P = (S1, S2)
induces a set of edges, called a cut δG(P ) = {{u, v} ∈ E | u ∈ S1 ∧ v ∈ S2}. If the underlying
graph is clear from the context, we write δ(P ). The value of a cut δ(P ) in graph G = (V, E, w)
is given by

∑
e∈δ(P ) we. We write ∆(G) for the value of a maximum cut in G. For a given

partial bipartition P ′ = (S′
1, S′

2) we write ∆(G, P ′) to denote the maximum value of all cuts
in G respecting P ′. A cut respects a partial bipartition if none of its edges connects vertices
from the same partition in P ′.

Data Reduction. A data reduction rule is applied to a weighted graph G = (V, E, w) in
order to reduce its size or complexity. Independent of the concrete technique, a data reduction
rule is said to be valid if the new instance G′ = (V ′, E′, w′) retains an optimal solution of the
original instance. We call a valid data reduction feasible if it can be applied in polynomial
time. To capture the validity of graph transformations more formally, we introduce the
following condition:

▶ Condition 2.1 (Valid Data Transformation). Let G = (V, E, w) be a simple undirected
weighted graph. Any MaxCut-valid data transformation transforms an input graph G

into G′ and outputs some constant offset β ∈ R. The MaxCut-value in G has to be the
same as in G′, apart from the offset β: ∆(G) = ∆(G′) + β.

A (valid) data transformation is called a (valid) data reduction, if it reduces the number of
vertices or edges of the input graph. Note: We clearly distinguish between kernelization and
data reduction. Kernelization in the standard literature is only defined in the context of a
problem specific input parameter (like treewidth, see e.g. [15]) and a kernelization algorithm
is required to produce a so-called kernel, whose size is bounded by a polynomial function
in the parameter. As the algorithms considered here do not rely on any input-dependent
parameter, we will solely use the term data reduction.

SEA 2024



4:4 Separator Based Data Reduction for the Maximum Cut Problem

2.2 State-of-the-Art
The literature on the three main topics of this paper, namely MaxCut, data reduction and
separators, is extensive. Therefore we will only present the most relevant related work in
this section, starting with MaxCut.

For general graphs MaxCut is NP-hard [28] and APX-hard [34], even if all edge weights
are restricted to 1. For graphs with only non-negative edge weights Goemans and Willi-
amson [16] suggest an algorithm with an approximation guarantee of 0.87856. Polynomial
time algorithms for MaxCut have been designed for certain classes of input graphs, e.g.,
planar graphs [20, 4, 30] and graphs not contractible to K5 [4] or K3,3 [10]. Other tractable
classes of graphs require specific edge weight distributions (see, e.g., [32]). For some of those
divide-and-conquer paradigms have been used. E.g., for a given planar graph, Barahona [4]
suggested transforming the maximum cut problem into a Chinese postman problem in the
dual, which was then solved using the planar separator theorem. For the more general
class of graphs not contractible to K5, Barahona [4] suggested a recursive approach based
on the so-called k-sum decomposition for k ≤ 3, which has been shown to exist for this
class by Wagner [41]. For graphs with bounded treewidth and a given tree decomposition,
Wimer [43] has shown that a bottom-up approach based on dynamic programming will solve
the maximum cut problem in linear time.

Vertex separators and k-connected components for small k have been studied in many
publications. For k ≤ 3, k-connected components can be identified in linear time. While
the decomposition of a graph into its biconnected components can be computed running
a modified depth-first-search [40], the algorithm for decomposition into its triconnected
components is more involved [22, 19]. Using Tarjan’s decomposition algorithm [40] and the
data structure of SPQR-trees [39], the set of all vertex separators of sizes k ≤ 2 can be
enumerated efficiently. There are also theoretical approaches for identifying 4-connected
components, however, they admit no clear definition [18]. Still, vertex-separators of size 3 can
be found in O(n2) [27] and for general k techniques based on maximum flow algorithms have
been employed [13, 26]. Vertex separators have been made use of to speed up algorithms
in the past: E.g. Iwata and Shigemura [24] employ a vertex separator-based pruning in a
dynamic programming approach for Steiner trees. Hüffner et al. [23] developed reduction
rules for signed graph balancing based on vertex separators. We will discuss the differences
to our approach in Section 4.

The most recent and well-performing data reduction techniques for MaxCut from the
literature will be covered in the next two sections. We refer to [1] for a general overview of
recent progress in data reduction algorithms for problems in NP and P.

3 Edge Weight Based Reduction

One type of data reduction rules for MaxCut considers the edges (and their weights)
with exactly one endpoint in a set of vertices S. We present them here with our new rule,
complementing two existing ones. All rules of this type (implicitly) make use of the following
observations.

▶ Observation 3.1. Let G = (V, E, w) be a simple undirected weighted graph. If for an
edge e = {u, v} ∈ E in G we can prove the existence of a maximum cut δ̂ with e /∈ δ̂, the
contraction of u and v is a valid data transformation (with β = 0).

In some cases, we find a proof for an edge e ∈ E that there exists a maximum cut δ̂ with
e ∈ δ̂. Here we can not make use of the above Observation 3.1 right away, but Fact 2 and
Definition 4 in the work of Lange et al. [29] still allow to derive a data reduction rule. We
restate their observations, for self-containedness:
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▶ Proposition 3.2. Let G be an undirected weighted graph G = (V, E, w) and δ∗ any cut
in G. Transforming G into H = (V, E, w′), by negating all weights of edges in δ∗ is a valid
data reduction with β =

∑
e∈δ∗ we. If an edge e is part of an optimal cut δ̂G and also of δ∗,

there exists an optimal cut δ̂H , which does not contain e.

With this, if a maximum cut δ̂ with {u, v} ∈ δ̂ is guaranteed to exist, we can either use
δ∗ = δ({u}) or δ∗ = δ({v}) as the cut for the transformation from G to H and then make
use of Observation 3.1 for a contraction in H. See Appendix A.1 for a proof.

Dominating Edges

Lange et al. [29] derived data reduction rules for edges with relatively high absolute weight:

▶ Proposition 3.3 (Dominating Edge). Let G = (V, E, w). If for any edge e = {u, v} ∈ E

and a subset U ⊂ V with e ∈ δ(U) the inequality

|we| ≥
∑

e′∈δ(U)\{e}

|we′ |

holds, then there exists a cut δ̂ with maximum value with e /∈ δ̂ if we ≤ 0 and e ∈ δ̂ if we ≥ 0.

Proposition 3.3 naturally extends into a data reduction rule with Observation 3.1 and Pro-
position 3.2. For vertices with degree one or two, the condition is always true, therefore
they can always be removed. Finding candidate sets U for data reduction can be done via
Gomory-Hu trees [17]. As already in previous work [29, 35], in our experiments we opt for
the faster approach and only consider U = {u} and U = {v} for an edge {u, v}, resulting in
O(|E|) time.

Similar Vertices

For vertices with similar neighborhoods, one can identify cases in which both end up in the
same / opposite partitions of an optimal solution, as Rehfeldt et al. [35] showed.

▶ Proposition 3.4 (Similar Vertices). Let G = (V, E, w). If two vertices u, v ∈ V have the
same neighborhood (excluding each other) N(u) \ {v} = N(v) \ {u} and there exists an α ̸= 0
with wux = αwvx∀x ∈ N(u) \ {v}, then, if

α > 0 and ({u, v} /∈ E or wuv ≤ 0), there is an optimal solution with u and v in same
partition
α < 0 and ({u, v} /∈ E or wuv ≥ 0), there is an optimal solution with u and v in different
partitions

As also described in [35] candidates for this rule can be found quickly by making use of
hashing techniques and we follow their suggestion in our implementation.

Triangles

For triangles in the input graph, the literature [29, 35] suggests two closely related data
reduction rules. We complement them with a third and new one.

▶ Proposition 3.5 (Triangles). Let the edges {v1, v2}, {v1, v3} and {v2, v3} form a triangle
in G. Additionally, let U1 ⊂ V such that {{v1, v2}, {v1, v3}} ⊆ δ(U1) and U2 ⊂ V such that
{{v1, v2}, {v2, v3}} ⊆ δ(U2).

SEA 2024



4:6 Separator Based Data Reduction for the Maximum Cut Problem

1) (introduced in [29]) If the two inequalities

−wv1v2 − wv1v3 ≥
∑

e′∈δ(U1)\{{v1,v2},{v1,v3}}

|we′ |

−wv1v2 − wv2v3 ≥
∑

e′∈δ(U2)\{{v1,v2},{v2,v3}}

|we′ |

hold, there exists a cut δ̂ with maximum value with {v1, v2} /∈ δ̂.
2) (introduced in [35]) If the two inequalities

wv1,v2 + wv1,v3 ≥
∑

e′∈δ(U1)\{{v1,v2},{v1,v3}}

|we′ |

wv1v2 − wv2v3 ≥
∑

e′∈δ(U2)\{{v1,v2},{v2,v3}}

|we′ |

hold, there exists a cut δ̂ with maximum value with {u, v} ∈ δ̂.
3) (new) If the two inequalities

−wv1v2 + wv1v3 ≥
∑

e′∈δ(U1)\{{v1,v2},{v1,v3}}

|we′ |

−wv1v2 + wv2v3 ≥
∑

e′∈δ(U2)\{{v1,v2},{v2,v3}}

|we′ |

hold, there exists a cut δ̂ with maximum value with {v1, v2} /∈ δ̂.

Proof. For the proof of 1) see [29]. For 2) [35] present a proof, but we suggest a more compact
one based on Proposition 3.2, which also shows the correctness of our new implication, 3):

If we apply the technique from Proposition 3.2 to G, by choosing δ∗ = δ(v1) for the
transformation, resulting in G′ and 1) holds for G′, we see that there is maximum cut δ̂′

in G′ with {v1, v2} /∈ δ̂′ and therefore, because of Proposition 3.2, a maximum cut δ̂ in G

with {v1, v2} ∈ δ̂. But for 1) to hold in G′, 2) needs to hold in G proving the correctness of
2). Following the same pattern, 3) can be derived from 2). Just choose δ∗ = δ(v2) for the
transformation from G′ to G′′ and 2) holds in G′′ iff 3) holds in G. ◀

As for Proposition 3.3, Proposition 3.5 also extends into data reduction rules with
Observation 3.1 and Proposition 3.2. We again follow [35] who consider {v1} and {v2, v3}
for U1 and {v2} and {v1, v3} for U2 in their implementation.

4 Vertex Separator Based Reduction

Vertex separators of size one split the graph into its biconnected components, which can
be solved independently from each other. Vertex separators of larger sizes also allow for
preprocessing to be effective, as we will show in this section. Some of the data reduction
rules for MaxCut discussed in the literature already make implicit use of vertex separators.
We introduce a generalized framework, show how and which new and existing rules can be
derived through it, and formalize all cases for which the rules derived from our framework
are valid.
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a

b

c

d

e

f

g

wab

wbc wac

H

(a)

a

b

c

w′
ab

w′
bc w′

ac

(b)

Figure 1 Example of a reduction rule of type vertex separator. (a) Original graph G with vertex
separator S = {a, b, c} separating H from the rest of the graph. (b) The resulting reduced graph G′

with adapted edge weights, i.e., H has been deleted from the remaining graph clearly reducing the
size of the instance.

The Vertex Separator Framework

We consider vertex separator-related data reduction rules, captured by the following definition.
See Figure 1 for an example.

▶ Definition 4.1 (Data reduction rule type Separator). For a vertex separator S in G =
(V, E, w) separating H ⊂ V from the rest of the graph, a rule is of type Separator, if it
reduces G to G′ = G[V \ H], effectively deleting all vertices in H from G. All edges keep
their original weight, apart from those in G′[S].

Note: For simplicity we assume G[S] to always be fully connected. If this is not the
case, the missing edges can be added with a weight of zero (as this is a MaxCut-valid data
transformation with β = 0). Edges in G′[S] (may) get their weights updated, to encode
the MaxCut values of G[H ∪ S] for all possible bipartitions of S. The goal is to ensure
Condition 2.1 for every bipartition P of vertices in G′[S], i.e., the maximum cut value in
G′[S] needs to be the same (plus some constant β) as the one in G[H ∪ S] when fixing the
partition of the vertices in P .

Hüffner et al. [23] developed a concept for the signed graph balancing problem, which
is related to Definition 4.1. In their work, a set of vertices, only connected to the graph
by a separator, gets replaced by a gadget. This introduces new vertices and edges to the
graph. Our rules of type Separator only remove and never add vertices. In the following
we provide a sufficient condition, that allows us to safely apply data reduction rules based
on vertex separators.

▶ Theorem 4.2. Let S be a vertex separator in G = (V, E, w) separating H ⊂ V from the
rest of the graph, and PS be the set of all possible bipartitions of vertices in S. Then a data
reduction rule of type Separator is valid for G if the system of equations∑

e∈δG[S](P )

(we + γe) + β = ∆(G[H ∪ S], P ) ∀P ∈ PS

has a feasible solution for the variables γe and β.

SEA 2024



4:8 Separator Based Data Reduction for the Maximum Cut Problem

Proof. Let G′ = G[V \ H] and all edges in G′[S] get their weight updated by adding the
corresponding γe. This transformation fulfills Condition 2.1 and is a valid data reduction as:
1) For any bipartition (U ′, Ū ′) in G′ with MaxCut value c′ we can find a bipartition (U, Ū)

in G with a cut value of c ≥ c′ + β, because by construction of G′ combining (U ′, Ū ′)
with the optimal partitioning of the vertices in V (G) \ V (G′) we get one for G with a cut
value of exactly c′ + β.

2) For any bipartition P = (U, Ū) in G with MaxCut value c we can make sure we can map
it to a bipartition (U ′, Ū ′) in G′ with a cut value c′ + β ≥ c, as again by construction of
G′ the bipartition resulting from removing all vertices from P which are not in G′ results
in a bipartition whose cut value in G′ is at least as high as the one of P in G. ◀

Small Separators
We now explicitly consider small vertex separators of size k = 2 and k = 3 and derive concrete
and valid rules of type Separator. These two rules are known in theory, where they have
been introduced in the context of polynomial algorithms for K5 and K3,3 minor-free graphs
[4, 10]. To the best of our knowledge, they have not been considered for general graphs
before and also have not been used in practice up to now. We start with separators of size 2:

▶ Corollary 4.3. Let G = (V, E, w) be a graph and S = {a, b} a 2-separator in G sep-
arating H ⊂ V from the rest of the graph. For more compact notation define H̃ :=
H ∪ S. Then the data reduction rule of type Separator is valid with the following values:
β = ∆(G[H̃], ({a, b}, ∅)) and γab = ∆(G[H̃], ({a}, {b})) − ∆(G[H̃], ({a, b}, ∅)) − wab.

Proof. There are two possible bipartitions for vertices in S and G[S] contains one edge
(e = {a, b}). Therefore the equation system of Theorem 4.2 gives two equations and two
variables.

β = ∆(G[H̃], ({a, b} : ∅)) wab + γab + β = ∆(G[H̃], ({a} : {b}))

Solving the system for β and γab yields the stated equations. ◀

This general concept for vertex separators of size 2 covers some existing rules, like rule 2
and 6 of [14] as special cases. Vertex separators of size 3 allow for a generalized data reduction
rule in a similar way:

▶ Corollary 4.4. Let G = (V, E) be a graph and S = {a, b, c} a 3-separator in G separating
H from the rest of the graph. For more compact notation define H̃ := H ∪ S. Then the data
reduction rule of type Separator is valid with the following constant offset β and values
for γ:

c0 :=∆(G[H̃], ({a, b, c} : ∅)) β = c0

c1 :=∆(G[H̃], ({a, b} : {c})) γac = 1/2 · (c1 + c3 − c0 − c2) − wac

c2 :=∆(G[H̃], ({a, c} : {b})) γab = 1/2 · (c2 + c3 − c0 − c1) − wab

c3 :=∆(G[H̃], ({b, c} : {a})) γbc = 1/2 · (c1 + c2 − c0 − c3) − wbc

Proof. There are four possible bipartitions for vertices in S and G[S] contains three edges.
Therefore the equation system of Theorem 4.2 gives four equations and four variables. The
constants c0, . . . , c|P|, introduced for better readability, represent the right hand sides of the
equation system. Solving this system for the constant offset β and the edge weights gives
the presented equations. ◀
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Separators of Arbitrary Size
For separators larger than three the above techniques only work in specific cases, as the
number of potential bipartitions outgrows the number of possible edges in G[S], resulting in
an overdetermined system of equations. For a 4-separator we already get eight partitions
(resulting in eight equations), but only seven variables (six for edges and β). Nevertheless
for graphs with unit weights special rules have been described, for which their proof can
be simplified through the lens of our framework and a new and more general one can be
deduced. This new rule generalizes rule 1 and extends 5 and 7 from Ferizovic et al. [14] into
a less restrictive and therefore more often applicable rule.

▶ Proposition 4.5 (Same Neighborhood Clique). Let G = (V, E, w). If for a clique C ⊂ V

in G, for which we = 1 for all edges e incident to at least one vertex in C, |C|+1 ≥ |N(C)| ≥ 1
and N(C) = N(u) \ C ∀u ∈ C, removing vertices in C from the graph and updating weights
of edges between vertices in N(C) is a valid data reduction of type Separator. The constant
offset is β = ⌊(|N(C)| + |C|)/2⌋ ∗ ⌈(|N(C)| + |C|)/2⌉. All weights of edges in G[N(C)] get
reduced by 1.

Proof. The vertex set S := N(C) forms a vertex separator of G with C on one side. Recall,
we assume w.l.o.g. G[S] to be fully connected. Consider the equations from Theorem 4.2:
Subtracting the weight of edges contributing to the value of the cut from both sides,
leaves

∑
δG[S](P )(γe)+β as the left-hand side. The resulting right-hand side ∆(G[S ∪C], P )−∑

δG[S](P )(we) can be interpreted as the value of the maximum cut in G′: ∆(G′, P ), where
G′ is G[S ∪ C], except all edges incident to two vertices in S have a weight of 0. Because
of |S| ≤ |C| + 1, no matter how vertices in G′[S] get partitioned, ∆(G′, P ) can always
be maximized by partitioning vertices in S ∪ C into two partitions, whose sizes differ by
at most one. Therefore, for the partial bipartition P = (S, ∅), the value of ∆(G′, P ) is
β = ⌊(|S| + |C|)/2⌋ ∗ ⌈(|S| + |C|)/2⌉. For general P this value has to be reduced by the
number of edges cut in G′[S], as they have a weight of 0 in G′: β − |δG[S](P )|. With γe = −1
this is equal to the left-hand side of the equation (β +

∑
δG[S](P )(−1)). ◀

If G[N(C)] is fully connected with weight 1 edges, then G[C ∪ N(C)] forms a clique and
thus Proposition 4.5 leads to the same reduction as rule 1 of [14]. Rule 5 and 7 of their work
have the same type of clique as their nucleus, but only allow the removal of vertices from C

until |C| = |N(C)|. Candidates for the rule resulting from Proposition 4.5 can be found fast
exactly as described by Ferizovic et al. [14].

Misc. Of the seven rules of Ferizovic et al. [14], two (rule 3 and 4) do not exactly fit into
our Separator framework. Their rule 4 removes an edge from a clique, which creates
candidates for Proposition 3.4 and their rule 3 adds an edge to the graph, which might lead
to candidates for Proposition 4.5, hence we restate them here:

▶ Proposition 4.6 (Near Clique -). Let G = (V, E, w) and C ⊆ V be a clique where all
edges connecting two vertices in C have weight 1. Define Cin ⊆ C as the set of vertices with
neighbors in C only. If |C| is odd or |Cin| > 2, removing one edge connecting vertices in Cin

is a valid data transformation with β = 0.

▶ Proposition 4.7 (Near Clique +). Let G = (V, E, w) and C ⊆ V be a subgraph missing
only one edge e = {u, v}, where all edges connecting two vertices in C have weight 1. Define
Cin ⊆ C as the set of vertices with neighbors in C only. If u, v ∈ Cin and |C| is odd or
|Cin| > 2, adding e is a valid data transformation with β = 0.
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5 Algorithmic Framework

We now present the algorithm we derived from the existing and our new data reduction rules
presented in the preceding sections. The algorithm consists of two components, decomposition
and data reduction.

Decomposition

Let G be the input graph for our algorithm. We keep a queue of tuples (g, l). The first
element of the tuple is a subgraph of G and the second is a lower bound on the size of any
vertex separator in g. In the beginning, we insert the tuple (G, 0) into the queue. We pop
elements (g, l) one by one from the queue. We first check if MaxCut is easy to solve on g

(for example because g is small or has a special structure) and if so we solve g immediately.
Otherwise if l ≤ 1 we first check if g is (bi-)connected. If not we compute the (bi-)connected
components and add them to the queue with the lower bound on vertex separators of l + 1.
If neither of these steps worked we attempt to reduce the graph as much as possible using
the core data reduction algorithm.

In more detail, the outer / decomposition part of our algorithm removes a tuple (g, l)
from the queue and checks in order:

If g has ≤ k vertices, we calculate ∆(g) by complete enumeration right away. If all edges
of g have weight 1, we make use of a linear time algorithm (see Appendix A.2 for details),
which either outputs an optimal MaxCut value or reports that the special structure it is
designed for is not present. In the latter case, we just continue.
If l = 0 we test whether or not the graph is connected and add each connected component
gi as the tuple (gi, 1) to the queue.
If l = 1 we test whether or not the graph is biconnected and add each biconnected
component gi to the queue, as the tuple (gi, 2).
If the graph is at least biconnected, we apply the core data reduction algorithm.

Data Reduction

The core data reduction algorithm is based on all data reduction rules presented earlier:
i If the graph has unit weights we first reduce based on the data reduction rules of Ferizovic

et al. [14] designed for this special case and our new one (Proposition 4.5).
ii For the resulting graph we apply: The dominating-edge rule from Proposition 3.3, the rule

for similar vertices from Proposition 3.4, and all three triangle rules of Proposition 3.5,
including our new one. Additionally, we use the Separator rule for vertex separators of
size 3 (Corollary 4.4) by deleting vertices of degree three and updating the edge weights
between their neighbors.

iii Finally we turn to our rule of type Separator for 2-separators: We calculate the
SPQR-tree of the remaining graph to remove small subgraphs based on Corollary 4.3.
Leaves of the SPQR-tree can be contracted recursively into the edge of the 2-separator,
by calculating the solutions for two MaxCut problems on the leaf. For finding exact
solutions we again use our enumeration algorithm and therefore only apply this for
SPQR-tree leaves of size ≤ k.

Note: The restriction to only process small (≤ k) leaves of the SPQR-tree is necessary,
to guarantee the data reduction is feasible (has polynomial runtime in the input size).
Between any of the above steps, we make sure the graph is still (bi-)connected. If it loses
its (bi-)connectivity, we add the (bi-)connected components to the queue and break. The
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procedure could be augmented to search for general 3-separators, but the quadratic running
time of finding 3-separators [26] might not be suitable for big graphs, so we restrain the
algorithm to vertices of degree three here.

To make steps (i) and (ii) efficient, we employ queues and markers to keep track of vertices
for which the neighborhood has changed and who might be candidates for one of the data
reduction rules. Similar techniques have been suggested by e.g. Ferizovic et al. [14].

6 Computational Experiments

We extensively evaluate the practical impact of our new techniques in multiple ways and
compare them against the state-of-the-art. First, we showcase the effectiveness of our rules,
measured by the number of vertices and edges removed from the original graph. Second, we
highlight the usefulness of our new rules for solving MaxCut in practice. We show that
our rules not only result in smaller graphs than the current state-of-the-art, but also help
to further speed up an exact state-of-the-art solver and improve the solution quality of a
state-of-the-art heuristic. Our rules are therefore not only effective but also efficient. Finally,
we perform an ablation study, investigating the influence each of our new components has.

Setup and Solvers. The system we employed for the experiments is equipped with an AMD
Ryzen Threadripper 3960X CPU, 128GB of RAM, and has Ubuntu 22.04. as its operating
system. Our code is written in C++20, compiled with GCC 11.3. and the “-O3” flag. We
make use of multiple open-source libraries, especially NetworKit [38] and OGDF [9] for graph
algorithms and simexpal [2] for our experiments. On this system our naive enumeration
algorithm takes clearly below one second to calculate the MaxCut value for graphs up to 21
vertices, therefore we set k to 21 in our algorithmic framework (see Section 5).

We use Gurobi 10 for experiments with an exact solver, as recent benchmarks by Hans
Mittelmann [33] show Gurobi to be the solver, solving the second most instances to optimality
before reaching the timelimit. The only solver with a better result is the non-publicly available
QuBowl [35]. To allow Gurobi to efficiently solve MaxCut, we convert the problem to an
unconstrained binary quadratic problem, which is a well-known transformation (see e.g. [6]).
We restrict Gurobi to the use of one thread and set the MIP-Gap to 10−6. To make the
comparison more interesting, we also give Gurobi a hint on the reducibility of the instances,
by setting the presolve parameter to aggressive.

For experiments with a state-of-the-art heuristic we use the implementation of Dunning
et al. [12] of the algorithm of Burer et al. [7]. This algorithm did not only perform very
well in the study of Dunning et al. [12], but is also employed in the state-of-the-art solver
QuBowl [35].

For all our benchmarks, we run the same experiment with multiple different random
seeds. This is to compensate for performance variability [31]. The seed is used to shuffle
and relabel all vertices, as this change can lead to different orders of data reduction rule
applications and therefore the resulting graphs differ. In experiments involving Gurobi, the
seed is also passed to the solver.

Instances. We collected all instances from the most recent purely data reduction dedicated
study we are aware of by Ferizovic et al. [14]. We also added publicly available instances
Rehfeldt et al. [35] report results of their preprocessing on, for which preprocessing is effective,
but the remaining graph does not become extremely small. The resulting set has no instances
with 10 000 ≤ |V | ≤ 200 000. We fill this gap with graphs of the same structure and from the
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4:12 Separator Based Data Reduction for the Maximum Cut Problem

Table 1 Characteristics of the benchmark instances considered in our study. The columns d and
d capture the min and max degree, w and w show the min and max edge weight.

set instance |V | |E| d d w w

easy soc-firm-hi-tech 33 91 1 16 1 1
easy g001207 84 149 1 5 1 100 000
easy g000981 110 188 2 6 1 100 000
easy ENZYMES_g295 123 139 1 5 1 1
easy g000292 212 381 2 4 5 13
easy g000302 317 476 1 4 5 13
easy ca-netscience 379 914 1 34 1 1
easy bio-diseasome 516 1 188 1 50 1 1
easy rt-twitter-copen 761 1 029 1 37 1 1
easy g001918 777 1 239 1 4 5 13
easy imgseg_271031 900 1 027 1 518 93 839 059 285 968 046 836
easy road-euroroad 1 174 1 417 1 10 1 1
easy imgseg_35058 1 274 1 806 1 587 -55 510 850 118 112 271 093 673
easy bio-yeast 1 458 1 948 1 56 1 1
easy imgseg_106025 1 565 2 629 1 902 93 981 365 136 834 528 589
easy ca-CSphd 1 882 1 740 1 46 1 1
easy ego-facebook 2 888 2 981 1 769 1 1
easy imgseg_105019 3 548 4 325 1 2 753 109 623 218 236 593 516 427
easy imgseg_374020 5 735 8 722 1 2 213 -46 639 208 299 407 957 172 555
medium web-google 1 299 2 773 1 59 1 1
medium inf-power 4 941 6 594 1 19 1 1
medium ca-Erdos992 5 094 7 515 1 61 1 1
medium g000677 17 127 27 352 1 4 1 126
medium g001075 27 019 39 407 1 4 1 228 668
medium imgseg_147062 28 552 65 453 1 925 -1 567 963 186 67 209 950 110
medium g000087 38 418 71 657 2 4 1 198
medium road-luxembourg-osm 114 599 119 666 1 6 1 1
big web-Stanford 281 903 1 992 636 1 38 625 1 1
big ca-MathSciNet 332 689 820 644 1 496 1 1
big web-it-2004 509 338 7 178 413 1 469 1 1
big ca-coauthors-dblp 540 486 15 245 729 1 3 299 1 1
big ca-IMDB 896 305 3 782 446 1 1 590 1 1
big inf-road_central 14 081 816 16 933 413 1 8 1 1
torus t2g10∗ 100 200 4 4 -294 541 301 004
torus t2g15∗ 225 450 4 4 -294 541 375 001
torus t2g20∗ 400 800 4 4 -294 541 375 001
torus t3g5∗ 125 375 6 6 -294 541 290 339
torus t3g6∗ 216 648 6 6 -294 541 375 001
torus t3g7∗ 343 1029 6 6 -298 103 375 001

∗For every type of torus graph, there are three instances of the same size. Values are aggregated.

same source as Ferizovic et al. [14]. We group the instances in four sets, based on their type,
size, and difficulty. Instances from the “easy” set can be solved in (sometimes significantly)
less than ten seconds by the state-of-the-art exact solver Gurobi and are mainly included
for comparability to earlier studies (they form the “medium” set of [14] and stem from [36]
and [12]). Instances from our set “medium” require roughly ten seconds or more to solve by
Gurobi and contain two of the “hard” instances of [14] as well as instances from the Network
Repository [36] and the MQLib [12]. Large instances, too challenging for Gurobi as an exact
solver, get assigned to the “big” set. The torus instances [42] from statistical physics get
their own category, as these graphs have grid structure and therefore differ heavily from the
real-world graphs in other sets. Table 1 summarises our set of benchmark instances.

6.1 Effectiveness and Efficiency
We start off by comparing the effectiveness of our data reduction algorithm with the current
state-of-the-art in Table 2. In the following, we choose our implementation of the state-of-
the-art algorithm of Rehfeldt et al. [35] as the baseline, because: 1) we wanted to rule out
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side effects, resulting from applying rules in different orders and other implementation details
and 2) the only publicly available data reduction code for MaxCut by Ferizovic et al. [14] is
not competitive with our state-of-the-art baseline (see Appendix A.3 for details).

Table 2 Average effectiveness of our implementation of the state-of-the-art (sota) preprocessing
of [35] and our new algorithm. Percentage of remaining vertices / edges, as well as average runtime
in seconds (pr [s]). The improvement columns show, how many vertices / edges relative to the
sota algorithm could be removed additionally.

sota our improvement
|V | [%] |E| [%] pr [s] |V | [%] |E| [%] pr [s] |V | [%] |E| [%]

set
easy 10.20 13.73 0.02 1.59 3.93 0.02 84.44 71.35
medium 19.64 27.16 0.09 8.95 14.65 0.11 54.43 46.08
big 37.41 53.31 39.71 30.30 47.57 67.94 19.01 10.76
torus 78.32 85.02 0.00 75.11 82.43 0.00 4.10 3.04

Table 3 Runtime comparison on the “medium” instances. The runtimes refer to pure Gurobi
(gurobi) and to Gurobi with our implementation of the state-of-the-art (sota) preprocessing and
our preprocessing. tr [s] is the total runtime it took, to calculate the optimal solution. For sota and
our, the remaining columns report the percentage of vertices / edges left after the preprocessing and
pr [s] is the reduction runtime only. The speedup (spd) is sota total runtime divided by our total
runtime. All values are averages over 5 seeds per instance. Timeout refers to more than 3600 s.

gurobi sota our spd
tr [s] |V | [%] |E| [%] pr [s] tr [s] |V | [%] |E| [%] pr [s] tr [s]

instance
web-google 9.08 5.60 11.18 0.08 0.30 0.00 0.00 0.18 0.18 1.70
inf-power 9.25 16.15 23.47 0.02 8.23 5.49 11.40 0.02 2.58 3.18
ca-Erdos992 1152.01 14.92 36.43 0.01 667.82 10.48 33.41 0.01 397.62 1.68
g000677 58.07 22.04 28.94 0.03 26.68 7.51 11.73 0.03 7.85 3.40
g001075 45.08 11.38 15.93 0.04 17.35 1.73 2.95 0.04 1.67 10.41
imgseg_147062 2757.79 49.65 56.78 0.22 1855.78 27.04 32.96 0.24 804.97 2.31
g000087 timeout 32.99 38.08 0.05 1341.55 19.03 24.00 0.06 455.03 2.95
road-luxembourg-osm 40.19 4.39 6.51 0.27 23.14 0.32 0.72 0.28 1.75 13.25

Table 4 Solution value comparison on the “big” instances. The heuristic (burer) of Burer et
al. [7] was run for 1800 s. When paired with the state-of-the-art (sota) or our preprocessing, the
runtime was reduced by the time the preprocessing took (pr [s]). The bv column shows the best
value found when no preprocessing is employed. bvi is the absolute improvement over pure burer.
The remaining columns report the percentage of vertices / edges left after the preprocessing. All
values are averages over 5 seeds per instance.

burer sota our
bv |V| [%] |E| [%] pr [s] bvi |V| [%] |E| [%] pr [s] bvi

instance
web-Stanford 1584791 52.15 61.47 15.30 13169 44.68 58.47 30.57 15469
ca-MathSciNet 600010 30.82 52.58 2.53 3347 22.38 46.14 4.28 3856
web-it-2004 4052029 4.11 4.94 2.56 1043 3.64 3.67 2.89 1049
ca-coauthors-dblp 8219970 70.31 85.77 35.69 6068 67.10 84.04 222.35 6237
ca-IMDB 3361135 46.74 87.18 10.07 25215 40.86 86.96 32.70 39354
inf-road_central 15349816 20.30 27.90 172.12 749600 3.12 6.15 114.88 843518
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The effectiveness of our proposed algorithmic framework can clearly be seen, as we
improve upon the state-of-the-art on every instance set. For the “easy” set the most
significant improvement can be observed; On average only 3.93 % of edges remain after
applying our data reduction algorithm. For 15 out of the 19 instances, our algorithm fully
solves the input to optimality, resulting in an empty transformed graph. This is only the case
for 8 instances with the sota algorithm. The torus set profits the least from preprocessing,
because of the special structure of those graphs. Still, applying our rules does not increase
the runtime and helps to remove some additional vertices / edges.

Next, we show the effect of our preprocessing on the runtime of an exact state-of-the-art
solver. Instances in the “easy” set can be solved extremely fast by state-of-the-art solvers like
Gurobi. They require 0.32 s with our implementation of the state-of-the-art preprocessing
and 0.29 s with our preprocessing on average. For the “torus” set, the overall speedup over
the state-of-the-art is about 1.5 %, which is to be expected considering the small difference in
effectiveness. The “big” instances seem too challenging for exact solvers like Gurobi, hence
we will consider this set separately.

Table 3 shows the results for the “medium” set. For all instances Gurobi is faster when
external preprocessing is employed and the total solving time is the smallest if our algorithm
reduces the input. Directly comparing the total runtime of the state-of-the-art approach and
our algorithm, shows speedups of up to one order of magnitude: For road-luxembourg-osm
the solving time decreases from 23.14 s to as little as 1.75 s, a speedup of 13x. Overall the
additional time required by our new rules, easily makes up for it, when solving real-world
MaxCut instances to optimality. To investigate the efficiency on the “big” set, we compare
the best solution values the heuristic of [7] finds on these graphs with a timelimit of 1800
seconds. Table 4 shows the results. Again, our preprocessing strictly improves over the
state-of-the-art. For every instance, the additional time spent in our preprocessing pays
off. Even in the case of ca-coauthors-dblp, where the preprocessing is slower by quite a
bit (leading to a reduced runtime of the heuristic in our setting), the best solution found
is on average better by 169. Also, relatively small differences in objective values (e.g. for
web-it-2004) can matter greatly, if the instances get within reach of exact solvers.

6.2 Ablation study
As our preprocessing algorithm turns out quite powerful, we also investigate the influence of
each component in more detail. Although our data reduction algorithm is useful for exact
and heuristic solving, we restrict the analysis in the following to the exact solving of the
“medium” set.

Cliques and Triangles. The rule for cliques introduced in Proposition 4.5 is relevant for
graphs, where all edges have the same positive weight. For these graphs, we experimented
with turning off our rule and reverting to the version of Ferizovic et al. [14], as well as
not applying rules for cliques of this type altogether. Similar to Ferizovic et al. in their
experimental study we did not notice big differences in the sizes of the resulting graphs in
general. Nevertheless, for web-it-2004 the setting has a significant impact. Without our
generalized rule, 4.9 % of all edges remained after applying our full data reduction algorithm.
If we also included our new clique rule, only 3.7 % of all edges remained, a 24 % improvement.

The new rule for triangles from Proposition 3.5 has a noticeable impact on the graph
size and the solving time of Gurobi, as shown in Figure 2. Making use of all three rules
for triangles helps to reduce 6 out of the 8 graphs even further (web-google is fully reduced
anyways and for ca-Erdos992 triangles have no effect). Especially for the weighted g00 and
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imgseg instances, the rules tend to remove many edges. Also, including our new rule for
triangles (”all-tri”) always improves over deactivating it individually (”wo3-tri”). Sometimes
the benefit seems small, but we clearly observed diminishing returns for all triangle rules.
When activating triangle rules, independent of the order, every additional rule yields less
benefit. As it also requires very little code to implement an additional triangle rule, if one is
there already, we strongly suggest implementing all of them (including our new one).
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Figure 2 Effectiveness and efficiency of our full algorithm, with certain triangle-related rules
turned on / off on the “medium” set. The variant with all triangle rules deactivated is no-tri and
all-tri has all rules activated. In wo3-tri only our new rule is deactivated. Left: Relative number
of remaining edges. Right: Total runtime in seconds (data reduction + Gurobi, logarithmic scaling).
All values are averaged over five seeds per instance.

Vertex Separator. We now turn to our rules for 2- and 3-separators. To investigate their
impact, we compare three settings of our algorithm in Figure 3. While most of the time the
use of 2-separators only slightly reduces the size of the graph, also considering 3-separators
has an impact on all graphs. We also see the total runtime (preprocessing + exact solving
via Gurobi) does not always improve when 2-separators are considered; the extra effort for
enumerating them is not always worth it. Our rule for 3-separators on the other hand, is
not only extremely fast and effective but also attributes for much of the speedups over the
state-of-the-art seen earlier in Table 2. E.g. for g000677 the total solving time decreases
significantly, from about 24 s to 8 s, when 3-separators are also considered.

7 Conclusion

Our new vertex separator-based data reduction framework for MaxCut allows for the
derivation of fast rules for separators of size 2 and 3 and additionally covers some known
rules from the literature. The new separator-based rules and our new rule for triangles
prove to be highly effective and efficient when paired with well-performing techniques from
the literature and tested on established benchmarks. Even when purely employed as a
preprocessing, our data reduction algorithm already fully solves 15 out of 19 instances from

SEA 2024



4:16 Separator Based Data Reduction for the Maximum Cut Problem

ca-
Erd

os9
92

inf
-po

wer

roa
d-l

uxe
mbo

urg
-os

m

web
-go

og
le

g0
01

07
5

g0
00

67
7

g0
00

08
7

im
gse

g_1
47

06
2

0
10
20
30
40
50

re
m

ai
ni

ng
 e

dg
es

 [%
]

variant
con1
con2
con3

ca-
Erd

os9
92

inf
-po

wer

roa
d-l

uxe
mbo

urg
-os

m

web
-go

og
le

g0
01

07
5

g0
00

67
7

g0
00

08
7

im
gse

g_1
47

06
2

100

101

102

103

to
ta

l r
un

tim
e 

[s
]

Figure 3 Effectiveness and efficiency of different settings of our algorithm: The full algorithm
including rules for 2- and 3-separators is con3. The version of our algorithm, where only the rule
for 3-separators is turned off is con2. For con1, the data reduction making use of 2-separators via
the SPQR-tree decomposition is disabled as well. Left: Relative number of remaining edges. Right:
Total runtime in seconds (data reduction + Gurobi, logarithmic scaling) for each instance of the
“medium” set. All values are averaged over five seeds per instance.

a common benchmark data set to optimality. When paired with a state-of-the-art heuristic,
our preprocessing helps to find strictly better solutions and when combined with an exact
state-of-the-art solver we see solving times improving by up to an order of magnitude.
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A Appendix

A.1 Proof of Proposition 3.2

▶ Proposition 3.2. Let G be an undirected weighted graph G = (V, E, w) and δ∗ any cut
in G. Transforming G into H = (V, E, w′), by negating all weights of edges in δ∗ is a valid
data reduction with β =

∑
e∈δ∗ we. If an edge e is part of an optimal cut δ̂G and also of δ∗,

there exists an optimal cut δ̂H , which does not contain e.

Proof. We first show, why the transformation from G = (V, E, w) to H = (V, E, w′) with
β =

∑
e∈δ∗ we is a valid data transformation: As the only difference between G and H are

edge weights, any cut in G is a cut in H and vice versa. The symmetric difference between
all cuts in G and δ∗ is a bijection from cuts in G to cuts in H. This bijection maps any cut
with value c in G to one in H with the exact same value (because of the definition of β).
Therefore ∆(G) = ∆(H) + β and the transformation is valid. Let e be any edge in G part of
an optimal cut δ̂G and also present in δ∗. By transforming G into H with δ∗, the symmetric
difference of δ̂G and δ∗ gives a cut with optimal value in H, which does not contain e. ◀

A.2 Solving certain unit weight graphs in linear time

In the decomposition part of our algorithm (see Section 5) we detect special graph structures,
allowing for a linear-time algorithm for MaxCut. The following algorithm calculates ∆(G)
for graphs G from two classes of graphs, for which all edges have the same positive weight, in
time O(n + m). The basic idea for the second case was described by Arbib [3]. 1) Bipartite
graphs and 2) graphs containing a K⌊ n

2 ⌋,⌈ n
2 ⌉ subgraph.

Proof. A check if a graph is bipartite can be implemented in O(n + m) and using the
bipartition as the MaxCut solution all edges are included in the cut, clearly making this
the optimal solution.
If the graph is not bipartite we check if m ≥ ⌊ n

2 ⌋ · ⌈ n
2 ⌉. If not the graph can not have a

K⌊ n
2 ⌋,⌈ n

2 ⌉ subgraph. Otherwise, we check for the existence of a K⌊ n
2 ⌋,⌈ n

2 ⌉ subgraph by using
the following observation about the connected components of the complement graph G:
There is a K⌊ n

2 ⌋,⌈ n
2 ⌉ subgraph in G iff there is a bipartition (V1, V2) of V with |V1| =

⌊ n
2 ⌋, |V2| = ⌈ n

2 ⌉ such that in G there is no edge connecting vertices from V1 to vertices in V2.
We can check for the existence of such a bipartition, by solving the SubsetSum Problem.
The input is a list of the sizes of every connected component in G. We use the fact that
SubsetSum reduces to Knapsack by making one item per given number xi, which has
wi = pi = xi. Then we can use the dynamic programming algorithm for Knapsack by [11],
which runs in time O(nC) where C is the capacity. As there are at most n inputs for the
SubsetSum problem and our target sum is n this yields an O(n2) algorithm to check if a
graph has a K⌊ n

2 ⌋,⌈ n
2 ⌉ subgraph. As this case is only relevant, when m ∈ Ω(n2), the whole

algorithm runs in O(n + m). ◀

A.3 Additional Experiments

In our experiments in Section 6 we benchmark our new algorithm against our implementation
of the state-of-the-art. To show the validity of this decision, we compare the preprocessing
effectiveness of our implementation of the state-of-the-art and our new algorithm, with the
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publicly available code1 of Ferizovic et al. [14] in Table 5. All experiments were conducted
on the same machine (see Section 6). Because it was developed in parallel / earlier, the
implementation of Ferizovic et al. [14] does not incorporate the rules of Lange et al. [29] and
Rehfeldt et al. [35]. Hence, as expected, our state-of-the-art implementation (sometimes
significantly) outperforms the older implementation in preprocessing effectiveness. Please
note: Some results for FHLMSS reported here deviate from those in [14] for two main reasons.
For the “imgseg” instances, their paper mentions a scaling from floating point to integer via
multiplication with 10e6. In the publicly available code, values are scaled with 10e5. We
opted for 10e6, for higher precision. For the “g00” instances, we could only reproduce the
results of Ferizovic et al. [14] if unweighted versions of the original graphs are benchmarked.
We use the original, weighted versions of all instances of type “g00”, as this was also the
case in other studies [8, 35]. For some rules, the implementation of Ferizovic et al. [14]
uses gadgets, to transform weighted input graphs into unweighted ones. As a result, large
edge weights may lead to excessive RAM usage (in our experiments more than 128 GB) and
we were not able to collect results for the “torus” and some “g00” graphs. For these, our
state-of-the-art implementation did not require more than 27 MB of main memory.

1 We work with a public fork of the original code (https://github.com/Amtrix/fpt-max-cut), which
offers some quality of life changes like a simplified compile step: https://github.com/CharJon/
fpt-max-cut

https://github.com/Amtrix/fpt-max-cut
https://github.com/CharJon/fpt-max-cut
https://github.com/CharJon/fpt-max-cut
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Table 5 Effectiveness comparison of three different preprocessing implementations: Ferizovic
et al. [14] (FHLMSS), our baseline implementation of Rehfeldt et al. [35] state-of-the-art (sota)
preprocessing and our new algorithm. Percentage of remaining vertices (|V | [%]) and edges (|E| [%]),
as well as runtime in seconds (pr [s]). The na entries indicate the implementation of FHLMSS
required more RAM than available on the system (128 GB) and therefore the data is not available.

FHLMSS sota our
|V | [%] |E| [%] pr [s] |V | [%] |E| [%] pr [s] |V | [%] |E| [%] pr [s]

instance
soc-firm-hi-tech 63.64 73.63 0.00 63.64 73.63 0.00 0.00 0.00 0.06
g001207 na na na 0.00 0.00 0.00 0.00 0.00 0.00
g000981 na na na 0.00 0.00 0.00 0.00 0.00 0.00
ENZYMES_g295 13.82 23.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g000292 96.70 98.16 0.05 21.70 21.05 0.00 0.00 0.00 0.00
g000302 79.50 86.13 0.08 0.00 0.00 0.04 0.00 0.00 0.00
ca-netscience 22.43 22.65 0.00 17.89 20.81 0.03 0.00 0.00 0.02
bio-diseasome 6.20 7.91 0.00 6.40 9.48 0.00 0.00 0.00 0.00
rt-twitter-copen 14.59 31.29 0.01 14.06 30.61 0.00 9.20 26.43 0.00
g001918 87.64 92.25 0.18 23.22 25.00 0.00 1.03 1.58 0.00
imgseg_271031 8.33 7.89 0.14 0.00 0.00 0.00 0.00 0.00 0.00
road-euroroad 20.78 32.60 0.01 15.91 25.58 0.00 8.40 17.87 0.00
imgseg_35058 68.21 62.02 0.30 4.16 7.32 0.00 0.00 0.00 0.00
bio-yeast 18.38 33.26 0.02 17.56 32.19 0.00 11.54 28.87 0.00
imgseg_106025 34.50 50.59 0.14 8.29 13.04 0.02 0.00 0.00 0.00
ca-CSphd 0.96 1.49 0.01 0.00 0.00 0.00 0.00 0.00 0.00
ego-facebook 0.42 0.97 0.41 0.00 0.00 0.00 0.00 0.00 0.00
imgseg_105019 62.18 58.57 4.44 1.05 2.20 0.08 0.00 0.00 0.08
imgseg_374020 21.12 29.04 1.86 0.00 0.00 0.15 0.00 0.00 0.15
web-google 12.32 20.77 0.01 5.60 11.18 0.08 0.00 0.00 0.18
inf-power 22.57 32.03 0.03 16.15 23.47 0.02 5.49 11.40 0.02
ca-Erdos992 15.47 37.41 0.05 14.92 36.43 0.01 10.48 33.41 0.01
g000677 89.27 92.98 10.79 22.04 28.94 0.03 7.51 11.73 0.03
g001075 na na na 11.38 15.93 0.04 1.73 2.95 0.04
imgseg_147062 76.28 83.50 0.13 49.65 56.78 0.22 27.04 32.96 0.24
g000087 99.55 99.76 83.73 32.99 38.08 0.05 19.03 24.00 0.06
road-luxembourg-osm 6.14 8.98 0.54 4.39 6.51 0.28 0.32 0.72 0.28
web-Stanford 76.10 94.02 42.04 52.15 61.47 15.30 44.68 58.47 30.57
ca-MathSciNet 31.68 53.38 5.29 30.82 52.58 2.53 22.38 46.14 4.28
web-it-2004 8.17 11.33 11.03 4.11 4.94 2.56 3.64 3.67 2.89
ca-coauthors-dblp 73.56 89.34 38.80 70.31 85.77 35.69 67.10 84.04 222.35
ca-IMDB 46.92 87.30 20.22 46.74 87.18 10.07 40.86 86.96 32.70
inf-road_central 27.45 37.42 350.18 20.30 27.90 172.12 3.12 6.15 114.88
t2g10_5555 na na na 55.00 65.50 0.00 47.00 58.50 0.00
t2g10_6666 na na na 64.40 74.10 0.00 62.00 73.00 0.00
t2g10_7777 na na na 66.00 75.50 0.00 58.00 70.00 0.00
t2g15_5555 na na na 61.96 72.84 0.00 54.76 66.40 0.00
t2g15_6666 na na na 63.11 72.44 0.00 55.11 66.00 0.00
t2g15_7777 na na na 57.24 68.44 0.00 48.53 60.62 0.00
t2g20_5555 na na na 63.00 73.12 0.00 59.50 70.62 0.00
t2g20_6666 na na na 63.25 72.28 0.00 55.50 66.12 0.00
t2g20_7777 na na na 62.75 73.33 0.00 58.75 70.00 0.00
t3g5_5555 na na na 93.60 97.87 0.00 93.60 97.87 0.00
t3g5_6666 na na na 95.20 98.40 0.00 95.20 98.40 0.00
t3g5_7777 na na na 95.20 97.87 0.00 95.20 97.87 0.00
t3g6_5555 na na na 93.52 97.53 0.00 93.52 97.53 0.00
t3g6_6666 na na na 95.83 98.46 0.00 95.83 98.46 0.00
t3g6_7777 na na na 92.59 97.07 0.00 92.59 97.07 0.00
t3g7_5555 na na na 96.50 98.64 0.00 96.21 98.45 0.00
t3g7_6666 na na na 95.92 98.64 0.00 95.92 98.64 0.00
t3g7_7777 na na na 94.75 98.25 0.00 94.75 98.25 0.00
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