
Faster Treewidth-Based Approximations for
Wiener Index
Giovanna Kobus Conrado #

Hong Kong University of Science and Technology (HKUST), Clear Water Bay, New Territories,
Hong Kong

Amir Kafshdar Goharshady #

Hong Kong University of Science and Technology (HKUST), Clear Water Bay, New Territories,
Hong Kong

Pavel Hudec #

Hong Kong University of Science and Technology (HKUST), Clear Water Bay, New Territories,
Hong Kong

Pingjiang Li #

Hong Kong University of Science and Technology (HKUST), Clear Water Bay, New Territories,
Hong Kong

Harshit Jitendra Motwani #

Department of Computer Science and Engineering & Department of Mathematics, Hong Kong
University of Science and Technology (HKUST), Clear Water Bay, New Territories, Hong Kong

Abstract
The Wiener index of a graph G is the sum of distances between all pairs of its vertices. It is a
widely-used graph property in chemistry, initially introduced to examine the link between boiling
points and structural properties of alkanes, which later found notable applications in drug design.
Thus, computing or approximating the Wiener index of molecular graphs, i.e. graphs in which every
vertex models an atom of a molecule and every edge models a bond, is of significant interest to the
computational chemistry community.

In this work, we build upon the observation that molecular graphs are sparse and tree-like and
focus on developing efficient algorithms parameterized by treewidth to approximate the Wiener index.
We present a new randomized approximation algorithm using a combination of tree decompositions
and centroid decompositions. Our algorithm approximates the Wiener index within any desired
multiplicative factor (1 ± ϵ) in time O(n · log n · k3 +

√
n · k/ϵ2), where n is the number of vertices of

the graph and k is the treewidth. This time bound is almost-linear in n.
Finally, we provide experimental results over standard benchmark molecules from PubChem and

the Protein Data Bank, showcasing the applicability and scalability of our approach on real-world
chemical graphs and comparing it with previous methods.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Computational Chemistry, Treewidth, Wiener Index

Digital Object Identifier 10.4230/LIPIcs.SEA.2024.6

Funding The research was partially supported by the Hong Kong Research Grants Council ECS
Project Number 26208122. G.K. Conrado and P. Hudec were supported by the Hong Kong PhD
Fellowship Scheme (HKPFS).

Acknowledgements Authors are ordered alphabetically.

© Giovanna Kobus Conrado, Amir Kafshdar Goharshady, Pavel Hudec, Pingjiang Li, and
Harshit Jitendra Motwani;
licensed under Creative Commons License CC-BY 4.0

22nd International Symposium on Experimental Algorithms (SEA 2024).
Editor: Leo Liberti; Article No. 6; pp. 6:1–6:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gkc@connect.ust.hk
https://orcid.org/0000-0001-9474-6505
mailto:goharshady@cse.ust.hk
https://orcid.org/0000-0003-1702-6584
mailto:phudec@connect.ust.hk
https://orcid.org/0000-0003-1983-8009
mailto:pliav@connect.ust.hk
https://orcid.org/0009-0006-2792-9938
mailto:csemotwani@ust.hk
https://orcid.org/0000-0002-2142-4254
https://doi.org/10.4230/LIPIcs.SEA.2024.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Faster Treewidth-Based Approximations for Wiener Index

1 Introduction

Motivation

The Wiener index of a graph G is the sum of the distances between all pairs of vertices in
G. Besides being a natural problem to compute, it is also a well-studied graph invariant
with applications in computational chemistry and biology. Indeed, it is one of computational
chemistry’s oldest and most important topological indices [60].

History

In chemistry, the Wiener index was first considered by Harry Wiener in [63]. It was initially
studied to establish connections between alkanes’ boiling points and the underlying graphs’
structural properties. This study later motivated the development of other topological indices
in computational chemistry. Further development of QSAR (Quantitative Structure-Activity
Relationship) and QSPR (Quantitative Structure-Property Relationship) models led to the
discovery of positive correlations of even more chemical and physical properties to the Wiener
index [48, 60, 61, 65]. Due to its simplicity and usefulness, the Wiener index was also studied
by computer scientists and mathematicians [31, 57]. The use of neural networks in chemical
graph theory has led to a renewed interest in topological indices and their application in
molecular mining, toxicity detection, and computer-aided drug discovery. Several studies
have been conducted on this topic, such as [10, 30, 32, 44, 64]. Given the significance of
the Wiener index for chemists and the abundance of large molecules, it is imperative to
develop faster algorithms for computing it. Indeed, there are many previous works in this
direction [12, 22, 29, 40, 50].

Parameterized Algorithms

Parameterized algorithms aim to tackle computationally-intractable problems and identify
subsets of instances that can be solved efficiently [26]. In parameterized complexity, we
consider an additional parameter k along with the input size n for measuring the runtime.
This is in contrast to classical complexity theory, which only considers the input size of the
problem. Many parameterized algorithms focus on NP-hard problems and provide runtime
bounds that depend polynomially on the size of the problem but have non-polynomial
dependence on the parameter k. If we know that k is small in real-world instances, this leads
to solutions that are effectively polynomial-time, i.e. they take polynomial time on all the
real-world instances where this parameter is small.

Fixed-Parameter Tractable (FPT)

Given an input of size n and a parameter k, an algorithm with a running time of O(f(k)·nc), for
some constant c and computable function f , is called Fixed-Parameter Tractable (FPT) [26].
The intuition is the same as above. If the parameter k is small in all real-world instances of
the problem, then the algorithm would in practice have a polynomial runtime. Crucially, the
degree c of this polynomial does not depend on either k or n.

Treewidth

Treewidth is one of the most important structural parameters of graphs and has been
extensively studied in combinatorics and graph theory. Intuitively speaking, it measures the
tree-likeness of a graph [9]. Trees and forests have a treewidth of 1 and cliques on n vertices
have treewidth n − 1. The main advantage of treewidth in algorithm design arises when
we are designing parameterized algorithms for NP-hard problems by considering it as the

G. K. Conrado, A. K. Goharshady, P. Hudec, P. Li, and H. J. Motwani 6:3

parameter of the problem. Many families of commonly-studied graphs, such as trees, cacti,
series-parallel graphs, outer-planar graphs, control-flow graphs of structured programs, and
conflict graphs of Bitcoin transactions have bounded treewidth [7, 9, 26, 18, 59, 13, 49, 25].
This allows efficient dynamic programming techniques using the tree decomposition of the
graph [7, 37, 17, 3, 2, 39, 24]. See Section 2 for a formal definition.

Treewidth of Molecules

Extending this idea, computational chemists and biologists have also explored the treewidth
of various important classes of molecules [66, 68]. In our experimental results (Section 4),
we observe that a significant majority of molecules in the PubChem repository [34] have
a treewidth of at most 10. Even large proteins from the Protein Data Bank [54] are
observed to have a treewidth of at most 5. Since a significant fraction of molecules have
bounded treewidth, exploring and designing treewidth-based parameterized algorithms for
computational problems in chemistry and biology is a natural step. In fact, the same has
been done in several works in the literature [4, 12, 23, 62, 67]. We extend this line of research
by presenting significantly faster treewidth-based approaches for approximating the Wiener
index.

Our Contribution

In this paper, we introduce a novel randomized algorithm that approximates the Wiener
index of a graph using its tree decomposition. The unique aspect of our algorithm is the
incorporation of both tree and centroid decompositions. This idea significantly enhances
efficiency in answering distance queries within the graph. This is then plugged directly into
an established randomized algorithm to approximate the Wiener index, obtaining the same
approximation guarantees by an asymptotically faster method. Both theoretical analysis
and experimental results demonstrate that our algorithm outperforms current methods in
calculating the Wiener index for molecular graphs, which are commonly encountered in
computational chemistry and biology.

Comparison with Previous Results

Table 1 compares the runtime complexity of our algorithm with previous methods. Here,
n is the number of vertices in the graph, k is the treewidth, and ϵ is the error in the
approximation, i.e. we are reporting the runtime for a (1 ± ϵ)-approximation of the Wiener
index. We refer to Section 4 for a detailed experimental evaluation of our algorithm on
datasets from PubChem [34] and the Protein Data Bank [54].

The most classical approach to compute the Wiener index is simply performing an all-pairs
shortest path computation using Floyd-Warshall and then summing up the distances. This
will lead to a time complexity of O(n3). In [12], the authors provided the first parameterized
algorithm for the Wiener index based on treewidth. Their algorithm is a divide-and-conquer
method based on orthogonal range searching and repeatedly finds small cuts using the tree
decomposition. They achieve a runtime bound of O(n · logk−1 n). Note that this is not
FPT. In [21], an FPT algorithm was provided based on dynamic programming on the tree
decomposition. This algorithm has a quadratic dependence on n. For unweighted graphs,
given that a graph with n vertices and treewidth k has O(n · k) edges, running a BFS from
each vertex would lead to a total runtime of O(n2 · k). Finally, [40] provides an algorithm on
general graphs, not using any parameters, that approximates the average pairwise distance
within a factor of (1 ± ϵ) with a probability of at least 2/3 by taking a random sample of
the distances between pairs of vertices. Note that the Wiener index is n2 times the average

SEA 2024

6:4 Faster Treewidth-Based Approximations for Wiener Index

Table 1 Comparison of Different Algorithms for Computing the Wiener Index. Here, n denotes
the number of vertices, k denotes the treewidth, and ϵ represents the error of approximation.

Algorithm Time Complexity Type Ref.
Floyd-Warshall O(n3) Exact [33]

Orthogonal Range Searching O(n · logk−1 n) Exact
Parameterized [12]

Treewidth-based
Dynamic Programming O(n2 · k2) Exact

Parameterized [21]

BFS O(n2 · k) Exact
Parameterized [51, 69]

Classical Approximation O(n5/2/ϵ2) Randomized
Approximation [40]

Our Algorithm O(n · log n · k3 +
√

n · k/ϵ2)
Parameterized
Randomized

Approximation
Sec. 3

distance. Thus, this algorithm is directly applicable to our setting, as well. Our algorithm
builds upon the classical approximation of [40] and uses a tree decomposition and a centroid
decomposition to speed up the sampling.

Similar Works

Our distance query results are similar to those of [53, 41, 6, 1, 15, 19, 20, 14, 16]. However,
unlike previous works that obtain a balanced tree decomposition, i.e. a tree decomposition with
height O(log n), our approach looks at the centroid decomposition of a tree decomposition.
This centroid decomposition is not necessarily a valid tree decomposition of the original
graph, but it has the same set of bags as the tree decomposition. Hence, unlike several
previous works, our approach does not increase the width in order to obtain a balanced tree.

2 Preliminaries

In this section, we introduce the Wiener index and define some basic concepts of parameterized
complexity. We refer to [26] for more details. This is followed by a short presentation of the
classical approximation algorithm of [40], which forms the basis of our approach.

Wiener Index [63]

The Wiener Index of an undirected graph G = (V, E) is defined as the all-pairs sum of
distances among vertices of the graph. Formally,

W (G) :=
∑

u,v∈V

d(u, v).

Additionally, we define the average distance between pairs of vertices in G as d(G) :=
W (G)/n2.
▶ Remark 1. In this work we assume that our graphs are connected, unweighted, and
undirected. In the context of molecular graphs, all types of covalent bonds – be they single,
double, or triple – are represented as a single undirected edge in the corresponding graph.
For a disconnected graph, the Wiener index is simply +∞. However, in some applications,
the Wiener index of a disconnected graph is defined as the sum of the Wiener indices of its
connected components. In such cases, each connected component can be processed separately.
Our algorithm can easily be extended to weighted graphs, as well.

G. K. Conrado, A. K. Goharshady, P. Hudec, P. Li, and H. J. Motwani 6:5

Tree Decomposition (TD) [43, 55, 56]

A tree decomposition of a given graph G = (V, EG) is a tree T = (B, ET) satisfying the
following conditions:

Every node b ∈ B of T , which is called a bag, contains a subset of vertices Vb ⊆ V .
The bags cover the entire vertex set V of G, i.e.

⋃
b∈B Vb = V. In other words, every

vertex appears in at least one bag.
For every edge in the original graph G, there exists a bag that contains both endpoints of
the edge. More formally, for every e = {u, v} ∈ EG, there is a bag b ∈ B, s.t. u, v ∈ Vb.

Every vertex v ∈ V appears in a connected subtree of T , meaning that the set Bv =
{b ∈ B | v ∈ Vb} forms a connected subgraph of T .

▶ Remark 2. An equivalent statement of the last condition above is that for every three bags
b1, b2, b3 ∈ B, if b3 is on the unique path from b1 to b2 in T , then Vb1 ∩ Vb2 ⊆ Vb3 .

Treewidth [55]

The width of a tree decomposition T is defined as w(T) := maxb∈B |Vb| − 1, i.e. the size of
the largest bag minus one. Furthermore, the treewidth of the graph G, denoted as tw(G), is
defined as the minimum width amongst all possible tree decompositions of G.

Intuitively speaking, treewidth measures the structural likeness of a graph to a tree.
Specifically, the smaller the treewidth of a graph, the more tree-like it appears, in the sense
that a graph of treewidth k can be decomposed into small parts (bags), each of size at most
k + 1, which are connected to each other in a tree-like manner T . Figure 1 showcases an
illustration containing two distinct tree decompositions of a graph G, each having a different
width. Since only forests have treewidth of 1, the tree decomposition on the right is optimal,
and tw(G) = 2.

A

B

C D

E F G
–

A,B

B,C,D,F

C,E,F D,F,G

A

B

C D

E F G
–

A,B

B,C,D

C,D,F

C,E,F D,F,G

Figure 1 A Graph G and Two Tree Decompositions of G of Width 3 (left) and 2 (right).

Treewidth is a parameter indicating graph sparsity, providing an upper bound on the
number of edges. Specifically, in a graph with n vertices and treewidth k, the number of edges
is O(n ·k). More precisely, the number of edges is less than or equal to n ·k −k · (k +1/2) [52].
Additionally, we have the following ubiquitous lemma:

▶ Lemma 3 (Cut Lemma [26]). Let T = (B, ET) be a tree decomposition of G = (V, EG).
Consider two vertices u, v ∈ V and two arbitrary bags bu, bv ∈ B such that u ∈ bu and v ∈ bv.

If b ∈ B is a bag on the unique path from bu to bv in T, then any path from u to v in G will
intersect Vb. Additionally, if e = {b1, b2} ∈ ET is an edge on the unique path from bu to bv

in T, then any path from u to v in G will intersect Vb1 ∩ Vb2 .

SEA 2024

6:6 Faster Treewidth-Based Approximations for Wiener Index

Computing Tree Decompositions

In general, computing the treewidth of a given graph is an NP-hard problem. However, for
small values of k, it is well-known that we can decide whether the treewidth of a given graph is
at most k and also compute as an optimal tree decomposition with O(n) bags by a linear-time
FPT algorithm (parameterized by the treewidth itself and depending exponentially on k) [8].
Additionally, there are many well-optimized tools for this task. Thus, in the sequel, we
assume without loss of generality that an optimal tree decomposition of our graph is given
as a part of the input.

Centroid [45]

Consider a tree T = (VT , ET) with n vertices. We define a centroid node of T as a node
whose removal breaks the tree down into several subtrees such that no resulting subtree has
a size greater than n/2. In other words, a centroid is a 1/2-separator of T . It is well-known
that every tree has at least one centroid node, which can be obtained in linear time by
dynamic programming.

Centroid Decomposition (CD) [11, 27]

A centroid decomposition of T is another tree T ′ on the same set of vertices as T , recursively
defined as follows:

When |VT | = 1, we simply have T ′ = T .
For a more complex tree, we first identify a centroid node r of T , then position this node
as the root of T ′.
Once we have selected a centroid node r and removed it from T , we end up separating
the original tree into several connected subtrees. Let us denote these as T1, T2, . . . , Tm.
For each subtree Ti, we find a centroid decomposition T ′

i with a root ri. We make each
ri a child of r.

Figure 2 shows the steps of computing a centroid decomposition. Each color corresponds
to a distinct layer of the centroid decomposition, with the node representing the centroid
of the similarly colored dotted subtree. In this illustration, the node 4 is identified as the
centroid of the initial tree. Following the removal of node 4, nodes 2, 7, and 12 are selected
as the centroids of each resulting subtree. Subsequent centroids are determined in a recursive
manner. The final centroid decomposition is shown in Figure 3.

1

2 3 4

5 6 7 8

9 10 11 12

13 14 15

1

2 3 4

5 6 7 8

9 10 11 12

13 14 15

1

2 3

5 6 7 8

9 10 11 12

13 14 15

1

3

5 6 8

9 10 11

13 14 15

Figure 2 A Graph G and the Steps of Building its Centroid Decomposition. Each step highlights
the centroid vertex of each of the current components of the graph.

G. K. Conrado, A. K. Goharshady, P. Hudec, P. Li, and H. J. Motwani 6:7

4

2 7 12

5 6 1 11 8 13 14 15

39 10

Figure 3 The Resulting Centroid Decomposition of G.

Properties of CDs

The height of a CD is bounded by O(log n), where n is the number of vertices in the
original tree. This is because with every new layer added to the centroid decomposition,
each connected component splits into several parts, each no larger than 1/2 the size of the
original component. Consequently, we can append at most O(log n) layers to the centroid
decomposition. Additionally, CDs satisfy the following useful lemma:

▶ Lemma 4 (Proof in Appendix A). Let u, v ∈ VT be two vertices of the original tree T

and l be their lowest common ancestor in the centroid decomposition T ′. The unique path
connecting u and v in T must visit l.

Computing Centroid Decompositions

Given a tree T with n vertices, there are a variety of algorithms in the literature that compute
a centroid decomposition T ′ of T in O(n). Examples include [11, 27].

Lowest Common Ancestor Queries

Consider a rooted tree T with n vertices. Suppose we have q offline queries, each providing
two vertices u, v ∈ T and asking for their lowest common ancestor. The classical algorithm
of Gabow and Tarjan [35] solves this problem and answers all queries in O(n + q).

Approximation Algorithm of [40]

The work [40] provides an elegant and simple approximation algorithm for the average
distance d(G) between pairs of vertices. Since the Wiener index is simply n2 · d(G), the same
algorithm can be reused for our problem. Given a graph G and an error bound ϵ as the
input, the algorithm in [40] works as follows:
1. Uniformly select Θ(

√
n/ϵ2) pairs of vertices.

2. Find the distance between each selected pair of vertices.
3. Output the average of the computed distances.
Surprisingly, this algorithm provides a (1 ± ϵ)-approximation of d(G) with probability 2/3.

▶ Theorem 5 ([40], Theorem 5.1). Given G and ϵ as input, the algorithm above outputs a
(1 ± ϵ)-approximation of d(G) with probability at least 2/3.

As a direct corollary, a (1 ± ϵ)-approximation of the Wiener index can be computed in the
same time complexity by simply multiplying the result of this algorithm by n2.

SEA 2024

6:8 Faster Treewidth-Based Approximations for Wiener Index

Complexity Analysis

For general graphs, each distance query can take O(n2) time. Thus, the total runtime of the
algorithm above is O(n5/2/ϵ2). However, if the underlying graph G is guaranteed to have
small treewidth k, then it can have at most O(n · k) edges. Thus, each distance query can be
answered in O(n · k) by a BFS. This reduces the runtime to O(n3/2 · k/ϵ2).

In this work, we build upon this simple and classical randomized algorithm and use the
treewidth to obtain a faster algorithm for distance queries. This allows us to reduce the
runtime dependence on n to almost-linear.

3 Our Algorithm

In this section, we present our treewidth-based algorithm. Our algorithm follows the same
steps as the approximation algorithm of [40], except that we exploit the tree decomposition
to perform distance queries faster. Our main novel idea is to look not only at a tree
decomposition of the underlying graph but also at a centroid decomposition of this tree
decomposition. Thus, our algorithm exploits the desirable properties of both types of
decomposition, as formalized by the lemma below:

▶ Lemma 6. Let G = (V, EG) be a graph, T = (B, ET) a tree decomposition of G and
T ′ = (B, ET ′) a centroid decomposition of T. Consider two vertices u, v ∈ V and arbitrary
bags bu, bv ∈ B such that u ∈ bu and v ∈ bv. Let l be the lowest common ancestor of bu and
bv in the centroid decomposition T ′. Any path that goes from u to v in G intersects Vl.

Proof. Consider a path πT from bu to bv in the tree decomposition T. By Lemma 4, we
have l ∈ πT . By Lemma 3, any bag in πT intersects every path from u to v in G. This is
illustrated in Figure 4. ◀

Based on the lemma above, if we precompute the distances from each vertex appearing
in a bag l of the centroid decomposition T ′ to the vertices appearing in descendants of l in
T ′, then we can answer distance queries in O(k). In other words, to find the distance from u

to v, we first find two bags bu and bv containing them, then compute l = lca(bu, bv). Now,
we know that every path from u to v has to go through l, thus

dG(u, v) = min
w∈Vl

(dG(u, w) + dG(w, v)) .

Here, dG denotes the distance in our graph G.

Our Algorithm for Wiener Index

Based on the discussion above, given ϵ > 0, a graph G = (V, EG) and a tree decomposition
T = (B, ET) of G with width k, our algorithm turns G into a weighted graph and takes the
following steps:

Step 1 (Centroid Decomposition). Compute a centroid decomposition T ′ of the tree
decomposition T.

Step 2 (Local Precomputation). For every two vertices u, v ∈ V, if there is a bag
b ∈ B that contains both of them, i.e. u, v ∈ Vb, then compute the distance dG(u, v) and
add a direct edge with weight dG(u, v) between u and v.

Step 3 (Ancestor-Descendant Precomputation). Let b1, b2 ∈ B be two bags such
that b1 is an ancestor of b2 in the centroid decomposition T ′. For every u ∈ Vb1 and
v ∈ Vb2 , compute the distance dG(u, v) and add a direct edge with weight dG(u, v) between
u and v.

G. K. Conrado, A. K. Goharshady, P. Hudec, P. Li, and H. J. Motwani 6:9

1
2

3
4

5

6
7

8

9

10

11

12

(a) A Graph G and Two Ver-
tices u = 1 and v = 11.

1,2,3

2,3,7

3,7,8

3,8,9 7,12

1,3,6

6, 10 3,5,6

3,4,5

4,11

(b) A Tree Decomposition T
of G. We choose bu = {1, 3, 6}
and bv = {4, 11}.

1,2,3

3,5,6

6, 10

1,3,6

3,4,5

4,11

3,7,8

2,3,7 3,8,9 7,12

(c) A Centroid Decomposition
T ′ of T. The lowest common
ancestor of bu and bv in T ′ is
l = {3, 5, 6}.

1,2,3

2,3,7

3,7,8

3,8,9 7,12

1,3,6

6, 10 3,5,6

3,4,5

4,11

(d) The path from bu to bv in T
goes through l.

1
2

3
4

5

6
7

8

9

10

11

12

(e) Every path from u to v in G
must intersect Vl.

1
2

3
4

5

6
7

8

9

10

11

12

(f) Every path from u to v in G
must intersect Vl.

Figure 4 An Illustration of Lemma 6.

Step 4 (Sampling). Uniformly select Θ(
√

n/ϵ2) pairs of vertices of G as in the algorithm
of [40].
Step 5 (Distance Queries). For each pair of vertices (u, v) ∈ V 2 selected in the
previous step, compute dG(u, v).
Step 6 (Output). Output the average of all the distances obtained in the previous step.

For Step 1, we can rely on previous algorithms that compute centroid decompositions,
such as [11, 27]. Steps 4 and 6 are straightforward. We now provide details of Steps 2, 3,
and 5, followed by correctness proofs and runtime analyses.

Details of Step 2

This step is inspired by and similar to [21, 5, 36, 38]. Given the graph G = (V, EG) and its
tree decomposition T = (B, ET), our goal is to create shortcut edges between any pair of
vertices that appear in the same bag. We provide a recursive procedure as follows:

i. Choose a leaf bag ℓ of the tree decomposition T.

ii. Perform an all-pairs shortest-path algorithm, such as Floyd-Warshall, in G[Vℓ], i.e. only
on the vertices and edges in ℓ. If a path of length d is found between u and v, add a
direct {u, v} edge with weight d to G.

iii. Let T ∗ = T − ℓ and G∗ = G − {v ∈ Vℓ | ̸ ∃b ∈ B b ≠ ℓ ∧ v ∈ Vb}. In other words, we
are removing the leaf bag ℓ from our tree decomposition and also removing any vertex
that appeared only in this bag from the graph G.

iv. Run the algorithm recursively on (G∗, T ∗). This causes more shortcut edges to be added
in G.

v. Repeat Step ii, i.e. perform another all-pairs shortest-path in G[Vℓ] and add the resulting
shortcut edges to G.

Figure 5 provides an example of this step.

SEA 2024

6:10 Faster Treewidth-Based Approximations for Wiener Index

1,2,3

2,3,7

3,7,8

3,8,9 7,12

1,3,6

6, 10 3,5,6

3,4,5

4,11

(a) We choose the leaf bag ℓ =
{3, 8, 9}.

3
8

9

(b) Shortest paths are found
within G[Vℓ]. Dashed lines rep-
resent newly added edges.

1,2,3

2,3,7

3,7,8

7,12

1,3,6

6, 10 3,5,6

3,4,5

4,11

(c) Bag ℓ is removed from T to
form T ∗.

1
2

3
4

5

6
7

8

10

11

12

(d) G∗ is formed by remov-
ing vertex 9 from G, since
it only appears in bag ℓ in
T .

1
2

3
4

5

6
7

8

10

11

12

9

(e) After recursively run-
ning the algorithm on
(G∗, T ∗), new edges are ad-
ded to G.

1
2

3
4

5

6
7

8

10

11

12

9

(f) Shortest paths are again
found within G[Vℓ] and any
new edges found are added
to G. In this example, no
new edges were found.

Figure 5 An Example of Step 2 on the Graph and Decomposition of Figure 4.

▶ Lemma 7 (Proof in Appendix B). The procedure above runs in time O(n · k3). After its
execution, T is still a valid tree decomposition of G, and for every pair of vertices u, v ∈ V,

if there exists a bag b ∈ B containing both of them, then there is a direct (shortcut) edge from
u to v with weight dG(u, v).

▶ Remark 8. Throughout our algorithm, we always keep at most one edge, i.e. the edge with
minimum weight, between every pair {u, v} of vertices.

Details of Step 3

In this step, we process our centroid decomposition T ′ in a bottom-up manner. For every bag
b ∈ B, we consider the subtree T ′

b of the centroid decomposition T ′, consisting of b and all of
its descendants in T ′. Let Gb be the induced subgraph of G that contains all the vertices in
T ′

b, i.e.

Gb = G

 ⋃
b′∈T ′

b

Vb′

 .

For every vertex v ∈ Vb that appears in the bag b, our algorithm runs a shortest-path
computation, such as Dijkstra’s algorithm [28], from b in the graph Gb and finds its distances
to all other vertices of Gb, adding the corresponding shortcut edges. See Figure 6 for an
example.

▶ Lemma 9. The procedure above runs in O(n · log n · k3) time. After its execution, for
every two bags b1, b2 ∈ B such that b1 is an ancestor of b2 in the centroid decomposition T ′

and every two vertices u ∈ Vb1 and v ∈ Vb2 , we have a shortcut edge from u to v with weight
dG(u, v).

G. K. Conrado, A. K. Goharshady, P. Hudec, P. Li, and H. J. Motwani 6:11

1,2,3

3,5,6

6, 10

1,3,6

3,4,5

4,11

3,7,8

2,3,7 3,8,9 7,12

(a) Let b = {3, 7, 8}. The subtree T ′
b of T ′

is highlighted.

2

3

7

8

12

9

(b) The figure above shows
Gb. We now run Dijkstra’s
algorithm from vertices in
{3, 7, 8}.

2

3

7

8

12

9

(c) After running Dijk-
stra’s algorithm in Gb, we
add the new shortcut edges
picutred above to G.

Figure 6 An Example of Step 3 on the Graph and Decompositions of Figure 4.

Proof. Let αb and δb be the number of ancestors and descendants of b in T ′, respectively.
The graph Gb has O(δb · k) vertices and thus O(δb · k2) edges. Moreover, we perform O(k)
Dijkstras over this graph, one for each vertex in the bag b. Our graph is weighted at this
point, but all edge weights and distances are non-negative integers less than n. Thus, Dijkstra
runs in linear time on the number of vertices and edges. Intuitively, instead of keeping a
priority queue of vertices in our Dijkstra, we can simply keep an array A[n] of queues where
A[i] contains all vertices of distance i to the source. When we find that a particular vertex
has distance i to the source, we simply add it to A[i]. We then process the vertices in each
A[i] in the order of increasing i and make sure not to process a vertex more than once.

Based on the points above, our total runtime is∑
b∈B

O(δb · k3) =
∑
b∈B

O(αb · k3) = O(n · log n · k3).

The latter equality is because every vertex has O(log n) ancestors.
For the second part, consider a shortest path π from u to v in G. Let πT be the path from

b1 to b2 in the tree decomposition T. By Lemma 3, π intersects the vertices of every bag b in
πT . Without loss of generality, we can assume that π stays in these bags, i.e. it only visits
vertices in

⋃
b∈πT

Vb. Note that if π leaves πT , then it has to reenter it, but the exit and entry
vertices are in the same bag and, by Lemma 7, there is already a shortcut edge between
them. Additionally, since b1 is an ancestor of b2 in the centroid decomposition T ′, there was a
point in the construction of T ′ when b1 was chosen as the centroid of a connected component
containing b2. Thus, all the bags in πT were also in the same connected component. Hence,
every b is a descendant of b1. Therefore, the entire path π is included in Gb and the Dijkstra
from u finds the shortest path to v and adds the corresponding shortcut edge. ◀

Details of Step 5

Suppose our goal is to compute dG(u, v). We first pick two bags bu and bv such that u ∈ bu

and v ∈ bv. We then find the lowest common ancestor l = lca(bu, bv). By Lemma 4, every
path from u to v has to intersect Vl. Thus, we compute

dG(u, v) = min
w∈Vl

(dG(u, w) + dG(w, v)) .

Note that since l is an ancestor of both bu and bv, we have the distances needed on the RHS
as weights of direct shortcut edges. This is illustrated in Figure 7

▶ Lemma 10. The procedure above returns the correct distances in time O(n + k ·
√

n/ϵ2).

SEA 2024

6:12 Faster Treewidth-Based Approximations for Wiener Index

1
2

3
4

5

6
7

8

9

10

11

12

(a) Let u = 5 and v = 7.

1,2,3

3,5,6

6, 10

1,3,6

3,4,5

4,11

3,7,8

2,3,7 3,8,9 7,12

(b) We select bu = {3, 4, 5} and
bv = {3, 7, 8}. Their lowest common
ancestor l in T ′ is {1, 2, 3}, thus any
shortest path from 5 to 7 has to go
through vertices 1, 2, or 3.

1
2

3
4

5

6
7

8

9

10

11

12

(c) Since l is an ancestor of bu

and bv, the vertices u and v
have shortcut edges to every
vertex in l.

Figure 7 An Example of Step 5 on the Graph and Decompositions of Figure 4.

Proof. Correctness is already argued above. Since the centroid decomposition T ′ has O(n)
bags, preprocessing and answering offline lowest common ancestor queries takes O(n +√

n/ϵ2) [35]. For each of the
√

n/ϵ2 queries generated in Step 4, we should compute the
minimum of O(k) values since |Vl| ≤ k + 1. ◀

Finally, the following is our main theorem in this work:

▶ Theorem 11. Given an ϵ > 0, an undirected unweighted graph G = (V, EG) with n vertices
and a tree decomposition T = (B, ET) of G with O(n) bags and width k, our algorithm runs
in time O(n · log n · k3 +

√
n · k/ϵ2) and produces a (1 ± ϵ)-approximation of the Wiener index

W (G) with probability at least 2/3.

Proof. Correctness of the approximation ratio and success probability follows from Theorem 5
since our algorithm is the same as [40] except for how we answer distance queries. Step 1 takes
O(n) using well-known algorithms such as [11, 27]. Step 2 takes O(n · k3) based on Lemma 7.
Step 3 takes O(n · log n · k3) as shown in Lemma 9. Step 4 simply takes O(

√
n/ϵ2) samples

from the uniform distribution and Step 5 takes O(n + k ·
√

n/ϵ2) time as per Lemma 10.
Finally, Step 6 takes O(

√
n/ϵ2) time. Summing these up leads to the desired asymptotic

time complexity. ◀

4 Experimental Results

In this section, we present our experimental results, comparing the runtimes of our algorithm
with previous approaches. We implemented the main algorithms in C++ and provided the
same inputs, i.e. graph G, tree decomposition T and ϵ = 0.1 to all of them. To obtain this
input, we first used pysmiles [46], RDKit [47] and NetworkX [42] for preprocessing molecular
data and turning them into graphs. We employed the FlowCutter algorithm [58] for tree
decompositions, limiting iterations to 20 + log n, and obtained results in under 1 second. All
our experiments were conducted on an Intel Core i5 (2.3 GHz, Quad-core) Machine with 8
GB of RAM running MacOS. We enforced a time limit of 1000 seconds per instance.

Benchmarks

We used the following datasets for our experiments: (i) PubChem [34] and (ii) Protein Data
Bank (PDB). Specifically, we report results on 1049 randomly-selected protein molecules
from the PDB database and 1, 311, 229 molecules from PubChem.

G. K. Conrado, A. K. Goharshady, P. Hudec, P. Li, and H. J. Motwani 6:13

Table 2 Statistics of the PDB Benchmarks.

Minimum Maximum Average

Number of Vertices 132 90507 6651
Number of Edges 134 98828 6820
Treewidth 2 5 3.13

Table 3 Statistics of the PubChem Benchmarks.

Metric Minimum Maximum Average

Number of Vertices 2 568 21
Number of Edges 1 643 22
Treewidth 1 16 1.8

PDB

The Protein Data Bank (PDB) [54] is an extensive repository of three-dimensional structural
data for large biological molecules, including proteins, DNA and RNA. We randomly selected
1049 protein molecules from this database. Table 2 shows some statistics about these
molecules. We observed that even the large molecules in this dataset have small treewidth.

PubChem

PubChem [34] is an open chemistry database of the National Institutes of Health (NIH).
It includes information on chemical structures, identifiers, chemical and physical proper-
ties, and biological activities of small molecules. As benchmarks, we took the following
datasets from PubChem: Common Chemistry CAS, Nature Catalysis, Wikipedia, Nature
Communications, Wiley, Springer Nature, Nature Chemistry, Nature Portfolio
Journals, Springer Materials, Drug and Medication, Nature Synthesis, Nature
Chemical Biology, KEGG, DrugBank. Collectively, these datasets contained 1, 311, 229 mo-
lecules at the time of writing. See Table 3 for the statistics over this set of benchmarks.

Treewidth of the Molecules

As mentioned in Tables 2 and 3, we observed that the chemical compounds in both benchmark
suites exhibit small treewidth. Figure 8 provides a histogram for each benchmark suite.
Notably, the vast majority of PubChem compounds have a treewidth of less than 10, with
very few molecules having treewidths of up to 16. In addition, the large molecules in the
PDB dataset also have bounded treewidths of at most 5.

Results

Figure 9 compares the performance of our algorithm and previous methods over the PDB
dataset, whereas Table 4 provides the same comparison for PubChem. Our approach’s better
asymptotic complexity leads to significant gains in efficiency when considering the large
graphs in PDB. However, no benefit is observed over the PubChem molecules, since they are
all small and every algorithm can handle them in under 1 ms.

SEA 2024

6:14 Faster Treewidth-Based Approximations for Wiener Index

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Treewidth

100

101

102

103

104

105

106
Nu

m
be

r o
f M

ol
ec

ul
es

(a) PubChem (y-axis is in logarithmic scale).

2 3 4 5
Treewidth

0

200

400

600

800

Nu
m

be
r o

f M
ol

ec
ul

es

(b) PDB.

Figure 8 Treewidth Distribution in Our Benchmarks.

Figure 9 Runtime Comparison of the Algorithms of Table 1 over PDB Benchmarks. Each dot
corresponds to one benchmark molecule.

Table 4 Runtime Comparison of the Algorithms of Table 1 over PubChem Benchmarks. All
times are in milliseconds.

Algorithm Maximum Minimum Average

Our Algorithm 1.425 0.187 0.296454
Approximation Algorithm 1.283 0.203 0.297342
DP on Tree Decomposition 1.256 0.192 0.296152
Floyd-Warshall 2.261 0.199 0.288638
Orthogonal Range Searching 1.121 0.199 0.292404
BFS 1.097 0.205 0.290523

5 Conclusion

We considered the problem of computing the Wiener index, i.e. sum of all pairwise vertex
distances, of a graph with n vertices and treewidth k. We provided a novel algorithm using a
combination of tree decompositions and centroid decompositions, which achieves an almost-

G. K. Conrado, A. K. Goharshady, P. Hudec, P. Li, and H. J. Motwani 6:15

linear FPT runtime of O(n · log n · k3 +
√

n · k/ϵ2) and outputs a (1 ± ϵ)-approximation of the
Wiener index with probability at least 2/3. To our knowledge, this is the first sub-quadratic
time FPT algorithm for this problem. We also showed that many real-world molecular graphs
have small treewidth and thus our algorithm is applicable in practice.

References
1 Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato Fonseca F. Werneck. A

hub-based labeling algorithm for shortest paths in road networks. In SEA, volume 6630, pages
230–241, 2011.

2 Ali Ahmadi, Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer,
Roodabeh Safavi, and Ðorde Zikelic. Algorithms and hardness results for computing cores of
markov chains. In FSTTCS, volume 250, pages 29:1–29:20, 2022.

3 Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis. Efficient
approximations for cache-conscious data placement. In PLDI, pages 857–871, 2022.

4 Tatsuya Akutsu and Hiroshi Nagamochi. Comparison and enumeration of chemical graphs.
Computational and structural biotechnology journal, 5(6):e201302004, 2013.

5 Ali Asadi, Krishnendu Chatterjee, Amir Kafshdar Goharshady, Kiarash Mohammadi, and
Andreas Pavlogiannis. Faster algorithms for quantitative analysis of mcs and mdps with small
treewidth. In ATVA, pages 253–270, 2020.

6 Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner. Search-space size in
contraction hierarchies. Theor. Comput. Sci., 645:112–127, 2016.

7 Hans L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In ICALP,
volume 317, pages 105–118, 1988.

8 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996.

9 Hans L Bodlaender et al. A tourist guide through treewidth, 1992.
10 Danail Bonchev. Chemical graph theory: introduction and fundamentals, volume 1. CRC Press,

1991.
11 Gerth Stølting Brodal, Rolf Fagerberg, Christian N. S. Pedersen, and Anna Östlin. The

complexity of constructing evolutionary trees using experiments. In ICALP, volume 2076,
pages 140–151, 2001.

12 Sergio Cabello and Christian Knauer. Algorithms for graphs of bounded treewidth via
orthogonal range searching. Computational Geometry, 42(9):815–824, 2009.

13 Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Ehsan Kafshdar Goharshady. The
treewidth of smart contracts. In SAC, pages 400–408, 2019.

14 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Prateesh Goyal, Rasmus Ibsen-Jensen,
and Andreas Pavlogiannis. Faster algorithms for dynamic algebraic queries in basic rsms with
constant treewidth. ACM Trans. Program. Lang. Syst., 41(4):23:1–23:46, 2019.

15 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and Andreas
Pavlogiannis. Algorithms for algebraic path properties in concurrent systems of constant
treewidth components. In POPL, pages 733–747, 2016.

16 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and Andreas
Pavlogiannis. Optimal and perfectly parallel algorithms for on-demand data-flow analysis. In
ESOP, volume 12075, pages 112–140, 2020.

17 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Nastaran Okati, and Andreas Pavlogiannis.
Efficient parameterized algorithms for data packing. Proc. ACM Program. Lang., 3(POPL):53:1–
53:28, 2019.

18 Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Andreas Pavlogiannis. JTDec: A
tool for tree decompositions in soot. In ATVA, pages 59–66, 2017.

SEA 2024

6:16 Faster Treewidth-Based Approximations for Wiener Index

19 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Amir Kafshdar Goharshady, and Andreas
Pavlogiannis. Algorithms for algebraic path properties in concurrent systems of constant
treewidth components. ACM Trans. Program. Lang. Syst., 40(3):9:1–9:43, 2018.

20 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. Optimal tree-
decomposition balancing and reachability on low treewidth graphs, 2014.

21 Shiva Chaudhuri and Christos D Zaroliagis. Shortest paths in digraphs of small treewidth.
part i: Sequential algorithms. Algorithmica, 27:212–226, 2000.

22 Victor Chepoi and Sandi Klavžar. The wiener index and the szeged index of benzenoid systems
in linear time. Journal of chemical information and computer sciences, 37(4):752–755, 1997.

23 Giovanna K Conrado, Amir K Goharshady, Harshit J Motwani, and Sergei Novozhilov.
Parameterized algorithms for topological indices in chemistry. arXiv preprint arXiv:2303.13279,
2023.

24 Giovanna Kobus Conrado, Amir Kafshdar Goharshady, Kerim Kochekov, Yun Chen Tsai, and
Ahmed Khaled Zaher. Exploiting the sparseness of control-flow and call graphs for efficient and
on-demand algebraic program analysis. Proc. ACM Program. Lang., 7(OOPSLA2):1993–2022,
2023.

25 Giovanna Kobus Conrado, Amir Kafshdar Goharshady, and Chun Kit Lam. The bounded
pathwidth of control-flow graphs. Proc. ACM Program. Lang., 7(OOPSLA2):292–317, 2023.

26 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 2015.

27 Davide della Giustina, Nicola Prezza, and Rossano Venturini. A new linear-time algorithm for
centroid decomposition. In SPIRE, pages 274–282, 2019.

28 E Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

29 Andrey A Dobrynin, Ivan Gutman, Sandi Klavžar, and Petra Žigert. Wiener index of hexagonal
systems. Acta Applicandae Mathematica, 72:247–294, 2002.

30 Alexander G Dossetter, Edward J Griffen, and Andrew G Leach. Matched molecular pair
analysis in drug discovery. Drug Discovery Today, 18(15-16):724–731, 2013.

31 Roger C Entringer, Douglas E Jackson, and DA Snyder. Distance in graphs. Czechoslovak
Mathematical Journal, 26(2):283–296, 1976.

32 Ernesto Estrada and Eugenio Uriarte. Recent advances on the role of topological indices in
drug discovery research. Current Medicinal Chemistry, 8(13):1573–1588, 2001.

33 Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345, 1962.
34 National Center for Biotechnology Information. Pubchem database. https://pubchem.ncbi.

nlm.nih.gov.
35 Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of

disjoint set union. In STOC, pages 246–251, 1983.
36 Amir Kafshdar Goharshady. Parameterized and Algebro-geometric Advances in Static Program

Analysis. PhD thesis, Institute of Science and Technology Austria, Klosterneuburg, Austria,
2020.

37 Amir Kafshdar Goharshady, Mohammad Reza Hooshmandasl, and M. Alambardar Meybodi.
[1, 2]-sets and [1, 2]-total sets in trees with algorithms. Discret. Appl. Math., 198:136–146,
2016.

38 Amir Kafshdar Goharshady and Fatemeh Mohammadi. An efficient algorithm for computing
network reliability in small treewidth. Reliab. Eng. Syst. Saf., 193:106665, 2020.

39 Amir Kafshdar Goharshady and Ahmed Khaled Zaher. Efficient interprocedural data-flow
analysis using treedepth and treewidth. In VMCAI, volume 13881, pages 177–202, 2023.

40 Oded Goldreich and Dana Ron. Approximating average parameters of graphs. Random
Structures & Algorithms, 32(4):473–493, 2008.

41 Siddharth Gupta, Adrian Kosowski, and Laurent Viennot. Exploiting hopsets: Improved
distance oracles for graphs of constant highway dimension and beyond. In ICALP, volume
132, pages 143:1–143:15, 2019.

https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov

G. K. Conrado, A. K. Goharshady, P. Hudec, P. Li, and H. J. Motwani 6:17

42 Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos,
NM (United States), 2008.

43 Rudolf Halin. S-functions for graphs. Journal of geometry, 8:171–186, 1976.
44 Christoph Helma. Predictive toxicology. CRC Press, 2005.
45 Camille Jordan. Sur les assemblages de lignes. Journal für die reine und angewandte Mathem-

atik, 70:185–190, 1869.
46 Peter C Kroon. pysmiles: A python library for parsing smiles strings. https://pypi.org/

project/pysmiles/.
47 Gregory Landrum. Rdkit: Open-source cheminformatics. https://www.rdkit.org.
48 Jerzy Leszczynski. Handbook of computational chemistry, volume 3. Springer Science &

Business Media, 2012.
49 Mohsen Alambardar Meybodi, Amir Kafshdar Goharshady, Mohammad Reza Hooshmandasl,

and Ali Shakiba. Optimal mining: Maximizing bitcoin miners’ revenues from transaction fees.
In Blockchain, pages 266–273, 2022.

50 Bojan Mohar and Tomaž Pisanski. How to compute the wiener index of a graph. Journal of
mathematical chemistry, 2(3):267–277, 1988.

51 Edward F Moore. The shortest path through a maze. In Proc. of the International Symposium
on the Theory of Switching, pages 285–292, 1959.

52 Jaroslav Nešetřil and Patrice Ossona De Mendez. Structural properties of sparse graphs. In
Building Bridges: Between Mathematics and Computer Science, pages 369–426. Springer, 2008.

53 Dian Ouyang, Dong Wen, Lu Qin, Lijun Chang, Xuemin Lin, and Ying Zhang. When hierarchy
meets 2-hop-labeling: efficient shortest distance and path queries on road networks. VLDB J.,
32(6):1263–1287, 2023.

54 RCSB. Protein data bank. https://www.rcsb.org.
55 Neil Robertson and Paul D Seymour. Graph minors. iii. planar tree-width. Journal of

Combinatorial Theory, Series B, 36(1):49–64, 1984.
56 Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-width.

Journal of algorithms, 7(3):309–322, 1986.
57 L’ubomír Šoltés. Transmission in graphs: a bound and vertex removing. Mathematica Slovaca,

41(1):11–16, 1991.
58 Ben Strasser and KIT algorithms group. Flowcutter: Software for computing flow-based

balanced graph cuts. https://github.com/kit-algo/flow-cutter-pace17.
59 Mikkel Thorup. All structured programs have small tree width and good register allocation.

Information and Computation, 142(2):159–181, 1998.
60 Nenad Trinajstic. Chemical graph theory. Routledge, 2018.
61 Stephan Wagner and Hua Wang. Introduction to chemical graph theory. CRC Press, 2018.
62 Pengfei Wan, Jianhua Tu, Shenggui Zhang, and Binlong Li. Computing the numbers of

independent sets and matchings of all sizes for graphs with bounded treewidth. Applied
Mathematics and Computation, 332:42–47, 2018.

63 Harry Wiener. Structural determination of paraffin boiling points. Journal of the American
chemical society, 69(1):17–20, 1947.

64 Jun Xu and Arnold Hagler. Chemoinformatics and drug discovery. Molecules, 7(8):566–600,
2002.

65 Ling Xue and Jurgen Bajorath. Molecular descriptors in chemoinformatics, computational
combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput
screening, 3(5):363–372, 2000.

66 Atsuko Yamaguchi, Kiyoko F Aoki, and Hiroshi Mamitsuka. Graph complexity of chemical
compounds in biological pathways. Genome Informatics, 14:376–377, 2003.

67 Atsuko Yamaguchi, Kiyoko F Aoki, and Hiroshi Mamitsuka. Finding the maximum common
subgraph of a partial k-tree and a graph with a polynomially bounded number of spanning
trees. Information Processing Letters, 92(2):57–63, 2004.

SEA 2024

https://pypi.org/project/pysmiles/
https://pypi.org/project/pysmiles/
https://www.rdkit.org
https://www.rcsb.org
https://github.com/kit-algo/flow-cutter-pace17

6:18 Faster Treewidth-Based Approximations for Wiener Index

68 Atsuko Yamaguchi and Kiyoko F Aoki-Kinoshita. Chemical compound complexity in biological
pathways. Quantitative Graph Theory: Mathematical Foundations and Applications, page 471,
2014.

69 Konrad Zuse. Der Plankalkül, 1972.

A Proof of Lemma 4

Proof. We prove this lemma through induction on the size n of the tree. If n is at most 3,
the lemma holds trivially. Now assume that the lemma holds for all trees with a size less than
n. Let us consider a general tree of size n. In the first step, we identify a centroid node of T ,
denoted as c. Removing c breaks T into several connected components. If any two vertices
u, v ∈ VT are in the same connected component Ti, then in the corresponding centroid
decomposition T ′, they will appear in T ′

i as per the definition of centroid decomposition. By
the induction hypothesis, their path must cross their lowest common ancestor in T ′

i . In case
they belong to different connected components, say T ′

i and T ′
j , any path from T ′

i and to T ′
j

must traverse the node c. In this scenario, their lowest common ancestor would be the root
c, as the remaining nodes on the path from u to v are either in Ti or Tj and, hence, cannot
be a common ancestor. ◀

B Proof of Lemma 7

u v

G∗

u v

G∗

(a) When u and v appear in G∗,
a shortcut edge will be calculated
during the recursive call on G∗.

u w v

G∗

u w

G∗

u w v

G∗

(b) If v is not in G∗, its path to u must contain a vertex w that
is in the same bag ℓ as u and v and that also appears in G∗. A
shortcut edge from u to w will be added during the processing of
G∗ and thus the path from u to v can be calculated in Step v.

Figure 10 An Illustration of Lemma 7.

Proof. We run the Floyd-Warshall algorithm twice on each bag of the tree decomposition,
once in Step ii and once in v. Since each bag has k + 1 vertices and the tree decomposition
has O(n) bags, the total runtime is O(n · k3). The procedure above adds new shortcut edges
only between pairs of vertices that were already in the same bag, thus the tree decomposition
remains valid.

We prove the last property by induction on |B|. If |B| = 1, then the first Floyd-Warshall
in Step ii adds all the necessary shortcut edges. Otherwise, let u, v ∈ Vℓ be two vertices that
appear in the leaf bag ℓ and let p ∈ B be the parent of ℓ in T. If there is a path between u

and v that is entirely within Vℓ, then Step ii adds a shortcut edge summarizing this path.
Thus, if u′, v′ ∈ G∗, then dG∗(u, v) = dG(u, v). Moreover, both u and v have to appear in p,
since they each appear in a connected subtree. Hence, by induction hypothesis, the recursive
call in Step iv adds the required shortcut edge between u and v. Now consider the case where
either u or v (or both) are not in G∗. Take a shortest path π from u to v in G. If π is entirely
within Vℓ, then Step ii adds the shortcut edge. Otherwise, we use Lemma 3 to break π down
as π = π1 · w1 · · · w2 · π2 where π1 is the longest prefix of π that only contains vertices from
Vℓ \ Vp and π2 is the longest such suffix. By Lemma 3, we have w1, w2 ∈ Vℓ ∩ Vp. Since they

G. K. Conrado, A. K. Goharshady, P. Hudec, P. Li, and H. J. Motwani 6:19

are both in Vp ⊆ VG∗ , Step iv adds a shortcut edge from w1 to w2. Hence, Step v adds a
shortcut edge from u to v with the correct weight. Finally, if u and v are vertices that appear
in the same bag b ̸= ℓ, then the recursive call on (G∗, T ∗) adds a shortcut edge between
them. ◀

SEA 2024

	1 Introduction
	2 Preliminaries
	3 Our Algorithm
	4 Experimental Results
	5 Conclusion
	A Proof of Lemma 4
	B Proof of Lemma 7

