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Abstract
Since its introduction in 1957, Lloyd’s algorithm for k-means clustering has been extensively studied
and has undergone several improvements. While in its original form it does not guarantee any
approximation factor at all, Arthur and Vassilvitskii (SODA 2007) proposed k-means++ which
enhances Lloyd’s algorithm by a seeding method which guarantees a O(log k)-approximation in
expectation. More recently, Lattanzi and Sohler (ICML 2019) proposed LS++ which further improves
the solution quality of k-means++ by local search techniques to obtain a O(1)-approximation. On
the practical side, the greedy variant of k-means++ is often used although its worst-case behaviour
is provably worse than for the standard k-means++ variant.

We investigate how to improve LS++ further in practice. We study two options for improving
the practical performance: (a) Combining LS++ with greedy k-means++ instead of k-means++,
and (b) Improving LS++ by better entangling it with Lloyd’s algorithm. Option (a) worsens
the theoretical guarantees of k-means++ but improves the practical quality also in combination
with LS++ as we confirm in our experiments. Option (b) is our new algorithm, Foresight LS++.
We experimentally show that FLS++ improves upon the solution quality of LS++. It retains its
asymptotic runtime and its worst-case approximation bounds.
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1 Introduction

In the vast area of clustering, one of the most popular approaches is min-sum-of-squared-
error clustering, as modeled by the k-means cost function. Given a set of vectors X =
{x1, . . . , xn} ⊂ Rd and a number of clusters k ∈ N, the aim of k-means clustering is to find a
set C = {c1, . . . , ck} of k centers that minimizes

∑n
i=1 minj=1,...,k ||xi − cj ||2, i.e., the sum

of the squared distances of all points to their respective closest center in C. For half a
century, the most known algorithm for minimizing the k-means cost function was a local
search heuristic often called k-means algorithm or Lloyd’s algorithm, developed in 1957. The
main steps of the algorithm are as follows:
1. Find an initial set of k centers, e.g., randomly chosen from X.
2. Repeat a given number s times or until convergence:

a. For every x ∈ X, find a closest center ϕ(x) (ties broken arbitrarily) and use this
information to form clusters C1, . . . , Ck by Ci = ϕ−1(ci).

b. For all Ci, compute the mean µ(Ci) = 1
|Ci|

∑
x∈Ci

x and then replace C by Cnew =
{µ(C1), . . . , µ(Ck)}.

Notice that this description ignores edge cases like clusters which “run empty” during step
2(a). We also do not discuss variations of other stopping criteria here. It is well documented
[7, 15, 26] that the implementation of the first step of Lloyd’s algorithm is crucial because
bad initial centers can lead to bad local optima. It is also easy to find theoretical worst case
examples where the local optimum is arbitrarily bad [20].

In 2007, Arthur and Vassilvitskii [4] proposed a method to significantly improve the first
step of Lloyd’s algorithm, leading to a new de-facto-standard algorithm for the k-means
problem. The core idea is to choose the initial centers by an adaptive sampling procedure
known as d2-sampling initialization (also see Algorithm 1 below):
1. Choose c1 uniformly at random from X.
2. For i = 2, . . . , k:

For all x ∈ X, compute p(x) := minc∈C ||x−c||2∑
y∈X

minc∈C ||y−c||2

Sample a point ci where every x ∈ X has probability p(x)
3. Return C = {c1, . . . , ck}

The algorithm proposed in [4] first computes C by this routine and then runs Lloyd’s
algorithm with C as the initial center set. This combination of d2-sampling and Lloyd’s
algorithm is called k-means++.

Let us consider some background to better understand the advantages of k-means++
(and the subsequent improvements): There are two main reasons why a clustering obtained
with Lloyd’s algorithm may be bad. Firstly, it may be that the underlying structure of the
data does not fit the k-means objective, e.g., because the points are not well-clusterable
with spherical clusters, or because we chose the wrong k. In this case, we should choose a
different clustering method like kernel k-means, hierarchical clustering methods or density
based clustering. But secondly, it may be that although optimal clusters with respect
to the k-means objective are indeed perfect for us, Lloyd’s algorithm does not find them
because it converges to a local optimum. Figure 1 gives a visual example for this: We see
a k-means based image compression with four colors (The input pixels are represented by
three-dimensional points based on the RGB-values, these points are clustered, and then the
color of every pixel is replaced by the mean color of its cluster. Clusters are not contiguous
within the picture). In this example, we can see how the difference in k-means cost is indeed
reflected by the different quality of the compressed image.



T. Conrads, L. Drexler, J. Könen, D. R. Schmidt, and M. Schmidt 7:3

(a) Original image. (b) A local optimum. (c) A better solution.

Figure 1 Compression of an image with k = 4 centers (i.e. colors). Subfigure (a) shows the
original image. Subfigure (b) shows a local optimum with a k-means cost of 55.18 · 108. We found
this local optimum in runs of Lloyd with uniform initialization and in single runs of k-means++.
Subfigure (c) shows a solution with a k-means cost of 43.09 · 108 (for example found by FLS++).

(a) A typical d2-sampling initialization. (b) Converging Lloyd’s algorithm on (a).

Figure 2 This data set is by Fritzke [16], the illustration by Conrads [9]. The left side shows nine
centers sampled by one run of k-means++ and the corresponding induced clusters are illustrated by
colors. The right side shows how the clusters and centers look after running Lloyd’s algorithm to
convergence with the nine centers from the left as input.

Provided that the cost can actually guide us to a good solution, we know that there
are hidden optimal clusters which we desire to find, and that we should improve upon
the k-means cost to find them. The idea of k-means++ is to find one point from each
optimal cluster. This point should be “relatively” good, in the sense that it should allow
Lloyd’s algorithm to find a good center for the optimum cluster later. We call an optimum
cluster covered when the d2-sampling sampled one of its points. Now, observe that clusters
that are not covered induce a high cost. By basing the d2-sampling probabilities on the
cost of points, the algorithm strives to find good points from uncovered optimum clusters.
Indeed, k-means++ succeeds with this goal most of the time, but it can miss some of the
optimum clusters – which then remain uncovered because the subsequent Lloyd steps are
(in general) unable to shift a mean point from one optimum cluster to another. However,
k-means++ still computes a Θ(log k)-approximation on expectation, and it improves the
practical performance of Lloyd’s algorithm vastly. Figure 2 illustrates how k-means++ can
end up in a local optimum. We see that out of the nine natural clusters in the data set,
k-means++ has covered eight – the upper middle cluster was hit by two samples, and thus
there was no center left in the end to cover the lower right cluster. Running Lloyd’s algorithm
on this center set then results in nicely placed centers which capture the natural clusters
perfectly in seven of nine cases. However, Lloyd’s algorithm cannot repair the mistake of not
finding the lower right cluster.

SEA 2024
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(a) Initial converged clustering (without the circle-
shaped green point). The circle-shaped green point
is sampled, the crossed out center is removed.

(b) After performing the center swap, Lloyd’s iter-
ations will converge to the optimal clustering.

Figure 3 Improving solutions with local search steps.

It is now around fifteen years after the development of k-means++, and there has been
increasing interest in the question of improving upon its theoretical and practical properties.
There are two main ways to improve the behaviour explained in Figure 2. Option A is to try
to avoid missing clusters. It was already proposed in [4] to improve k-means++ by adding a
greedy procedure: When choosing ci, compute ℓ candidates, all chosen according to the same
probability distribution, and then out of these, pick the point which decreases the current
cost the most. This variant of k-means++ is called greedy k-means++. Although it has
been observed as performing better in practice in some instances (as in [4] and in [7]), greedy
k-means++ actually has a worse worst-case behavior than k-means++. Bhattacharya et al.
[6] give a family of point sets where the expected quality of solutions computed by greedy
k-means++ is lower bounded by Ω(ℓ log k). This is because points which look beneficial to
the greedy procedure may actually be very bad centers, for instance, if points lie “on the
boundary” between clusters. If two clusters are uncovered and there is a point in the middle,
then choosing this point decreases the overall cost more than any point closer to the mean
of the two clusters. However, a point in the middle of two clusters and far away from their
means is certainly a bad choice for a cluster center. Recently, [17] showed a better lower
bound of Ω(ℓ3 log3 k/ log2(ℓ log k)) while also giving an upper bound of O(ℓ3 log3 k). Still,
greedy k-means++ is for example the default initialization method in Python’s scikit learn
package [25] and our experiments confirm that this is a justified choice.

Another option is to perform improvement steps on the k-means++ solution before
running Lloyd’s algorithm. A prominent technique in the theoretical analysis of the k-means
problem (and other clustering problems) is to do local search by swapping in and out centers.
A solution set C is improved by taking out a constant number t of centers and replacing
them by t points from X. [20] show that this approach with sufficiently large t leads to a
(9 + ϵ)-approximation for the k-means problem. However, the approach is fairly slow since
even for t = 1, checking if there is an improving swap takes a lot of time. Lattanzi and Sohler
[21] combine local search for t = 1 with adaptive sampling. Instead of checking all x ∈ X

for improving swaps, they (multiple times) sample a point from X by adaptive sampling
and check if exchanging it for a center in C improves the solution. They show that starting
from an initial k-means++ solution, this yields a O(1)-approximation after O(k log log k)
steps. The resulting algorithm is called LS++. The analysis has since been improved by
Choo et al. in [8], where it is shown that, for any ε > 0, performing εk steps yields a
O(1/ε3)-approximation. Figure 3 shows an idealized visualization of how improvement steps
shall work: In a solution where one optimum cluster got covered twice and other clusters
have been clustered together, one wants to find a point from an uncovered optimal cluster
with d2-sampling and then converge to an optimum solution with Lloyd’s algorithm.
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Figure 4 An example with eight optimal clusters (green). When swapping in a new center, the
best center to delete is the one in the middle: without it, Lloyd’s algorithm can repair the solution.

Our aim in this paper is to improve the practical quality of both greedy k-means++ and
LS++. We start with LS++, but our idea is to combine it with the strength of Lloyd’s
algorithm instead of simply running local improvement steps ahead of it. We propose
Foresight-LS++ (FLS++) combining steps of Lloyd’s algorithm and local search: When
exchanging centers, it is not at all clear which centers should be swapped because we do not
know the effect of the swap when Lloyd’s algorithm runs later. Does a particular swap really
enable Lloyd’s algorithm to find good centers? The best way to answer this question is to
actually perform one step of Lloyd’s algorithm for a potential swap. This way, instead of
comparing the cost of the solution before and after the swap directly, we add some foresight:
We perform one step of Lloyd’s algorithm and see how the solution develops depending on
the swaps. The candidates for new centers are also found with d2-sampling, so the centers
we sample follow the same distribution. With our procedure, we may avoid putting in
unfavorable centers. However, the biggest impact of our change is finding the best center
to remove in a more informed way. More precisely, some of the swaps take out superfluous
centers in clusters that were hit multiple times. However, there are also beneficial swaps of a
different type: Here, we swap out a center that is actually the only one covering a cluster,
just to better distribute the centers in that area. Figure 4 shows a schematic illustration
of situations where this can be indeed helpful. By running one step of Lloyd’s algorithm,
FLS++ can identify both (and potentially more) types of beneficial swaps.

Further related work. 0The k-means problem is NP-hard even for k = 2 [10] and d = 2 [23],
but there exist different constant-factor approximation algorithms. The currently best
approximation ratio is 6.357, achieved by Ahmadian et al. [2] with an LP rounding based
approach. Prior to their work, the best known approximation ratio of 9 + ϵ was achieved
via a local search approach analyzed by Kanungo et al. [20]. Awasthi et al. [5] show that
for general k and d there exists some c > 0 such that it is NP-hard to approximate k-means
with factor c. The constant c is at least 1.0013 as shown by Lee et al. [22]. The problem gets
easier when bicriterial solutions are allowed, i.e., when we may select more than k centers
and still compare to the cost of a solution with k centers. There are multiple bicriterial
approximations, and Wei [27] indeed shows that for any constant β > 1, selecting βk centers
with D2-sampling gives a constant factor approximation (where the constant depends on β).

There is a vast literature on Lloyd’s algorithm and various speed-up techniques. A good
survey on initialization methods is due to Celebi et al. [7] who give an extensive evaluation
of different heuristics to initialize Lloyd’s algorithm, including k-means++ and a greedy
variant of it. LS++ was developed after that survey, so it is not included in the comparison.
Examples for speed-up techniques are the works by Elkan [12] and Hamerly [18]. These
speed up the execution of Lloyd’s algorithm but do not change the outcome.

SEA 2024
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Notation. The distance of a point p to a set of centers C is d(p, C) = minc∈C ||p − c||, and
for a set of points P we define the distance to a set of centers as d(P, C) =

∑
p∈P d(p, C) =∑

p∈P minc∈C ||p − c||. We refer to the cost of P with respect to center set C as Φ(P, C) =
d2(P, C) =

∑
p∈P d2(p, C) =

∑
p∈P minc∈C ||p−c||2. For an arbitrary assignment ϕ′ : P → C

we define Φ(P, C, ϕ′) =
∑

p∈P d2(p, ϕ′(p)) as the cost of a clustering C using assignment ϕ′.

2 Algorithms

We first describe the k-means++ algorithm. It is stated in Algorithm 2 and explained below.

Algorithm 1 d2-sampling-init.

Input: Point set P ⊂ Rd, number k ∈ N
Output: Center set C ⊂ Rd

1 C = ∅
2 for i = 1 to k do
3 c = SampleCenter(P, C)
4 C = C ∪ {c}
5 end
6 return C

Algorithm 2 k-means++.

Input: Point set P ⊂ Rd,
numbers k, s ∈ N

Output: Center set C ⊂ Rd

1 C = d2-sampling-init(P, k)
2 C, ϕ = Lloyd(P, C, s)
3 return C

The k-means++ algorithm consists of sampling k initial centers with d2-sampling and then
heuristically refining the solution by Lloyd’s method. For ease of notation in Algorithm 3,
the method LLoyd(P, C, s) also outputs the optimal assignment of the points to the centers
before the final centroids are computed, see the description of Lloyd’s algorithm at the
beginning of the introduction. For the sampling part, we assume that we have access to a
function SampleCenter(P, C) which, given a point set P and center set C, returns a point
p from P that is sampled with probability d2(p, C)/d2(P, C) (unless C = ∅, in which case
the probability is 1/|P |). This is the original k-means++ sampling, also referred to as
d2-sampling. Notice that a sample can be obtained in time O(n) if all distances d2(p, C) are
already known: First, add d2(p, C) for all p ∈ P to obtain the sum S. Second, draw a uniform
sample r from [0, 1]. Third, iterate through P and add up the distances again until the sum
exceeds r · S for the first time; take the point before the point for which this happened. It
is important that one needs all values of d2(p, C) to do so; one can compute them in time
O(ndk) when needed but it is beneficial to store values. Repeating SampleCenter(P, C) for
k iterations yields the initialization part of k-means++, see Algorithm 1. We also assume
that we have access to a subroutine for Lloyd’s method. Given a set P of input points, a set
C of initial centers and a maximum number of steps s, the method Lloyd(P, C, s) runs the
loop in Step 2 of Lloyd’s algorithm as described on page 2 to compute and return a set Cout
of centers. We define Φ(Lloyd(P, C, s)) = Φ(P, Cout). Given these subroutines, k-means++
can be described by the pseudo code in Algorithm 2.

LS++ and FLS++. Algorithm 3 shows the pseudo code of FLS++. Without Lines 2,
5 and 7 and with directly comparing Φ(P, (C \ {cold}) ∪ {cnew}) to Φ(P, Cmin) in Line 8,
the code describes LS++. The core idea of LS++ is to further improve the initial solution
by local search steps before running Lloyd’s algorithm. LS++ first samples k centers with
d2-sampling-init(P, k). Then it does the following Z times: Pick another point cnew with
d2-sampling, then find the best way to swap out a center cold and replace it with cnew. The
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Algorithm 3 Foresight-LS++.

Input: Point set P ⊂ Rd, numbers k, s ∈ N
Parameters : Z ∈ N0
Output: Center set C ⊂ Rd

1 C = d2-sampling(P, k)
2 C, ϕ = Lloyd(P, C, 1)
3 for i = 1 to Z do
4 cnew = SampleCenter(P, C)
5 Cmin, ϕmin = Lloyd(P, C, 1)
6 for cold ∈ C do
7 C ′, ϕ′ = Lloyd(P, (C \ {cold}) ∪ {cnew}, 1)
8 if Φ(P, C ′, ϕ′) < Φ(P, Cmin, ϕmin) then
9 Cmin, ϕmin = C ′, ϕ′

10 end
11 end
12 C = Cmin

13 end
14 C, ϕ = Lloyd(P, C, s)
15 return C

parameter Z is assumed to be at least 100000k log log k in the theoretical analysis in [21],
but set to values ≤ 25 in the practical evaluation [21]. After Z improvement steps, LS++
calls Lloyd’s algorithm.

LS++ does indeed improve the solution quality. But the strength in the original k-
means++ algorithm lies in the fact that it uses the power of Lloyd’s to quickly do local
refinements: d2-sampling itself would not be competitive, it is the combination of finding
clusters and refining the centers that makes k-means++ such a success in practical applic-
ations. Consequently, we believe that increasing the symbiosis of sampling and Lloyd’s
algorithm is the key to improving LS++.

The additional lines of FLS++ call Lloyd’s algorithm for one iteration, which means
that all centers are replaced by the centroids of their clusters. Line 2 uses this to refine
the initial sampling solution, Line 5 makes sure that we always keep centroids (instead of
mixing in input points into the center set), and Line 7 is the step that gave the algorithm
the prefix foresight: Instead of checking the cost of (C\{cold}) ∪ {cnew}, we run a Lloyd’s
step to evaluate how the solution cost will develop after updating the centers. This makes it
much easier for FLS++ to identify swaps that remove a superfluous center like the extra
center in the upper cluster in Figure 2a.

One can view FLS++ either as a modified LS++ algorithm or as a modified Lloyd’s
algorithm. Viewed as a modified Lloyd’s algorithm one can think of FLS++ as performing
Lloyd’s algorithm but doing a center swap in every iteration to avoid running into local
optima. Viewed as a LS++ modification, one can think of it as running Lloyd’s algorithm
for 1 step between the local search improvement steps.

Why do we run exactly one step of Lloyd’s algorithm? The reason is that this can be
done very efficiently. Running multiple Lloyd’s steps for each cold would incur a running time
of O(ndk2) for each local search step. But recomputing the centroids can be done cleverly
for all points together such that one local seach step in Algorithm 3 takes O(ndk) just as for
LS++.

SEA 2024
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▶ Lemma 1. One iteration of the For-Loop in Lines 3-13 of Algorithm 3 can be implemented
such to run in time O(ndk).

Proof. First we compute the distances of every point p to its closest center ϕ1(p) and second-
closest center ϕ2(p) in time O(ndk). With this information, we can sample a point cnew
with d2-sampling in time O(n). Next, we compute the distances of all points to the sample
point cnew. Then we check all k current centers whether we want to swap it out. For one
candidate cold, we run through all n points p, and determine which is its closest center. We
can do this in time O(1) in the following way: if ϕ1(p) ̸= cnew, then we compare d(p, ϕ1(p))
with d(p, cnew). If ϕ1(p) = cnew, then we compare d(p, ϕ2(p)) with d(p, cnew). After doing
this for all cold and all p, we have determined the cluster membership of all points in time
O(kn). Finally, we want to recompute the centroids and costs of all clusters which we can
do in time O(nd). It is important to note that we do not recompute the reassignment of
all points to the new set of centers as this would increase the overall running time O(ndk2).
This is delayed until the next iteration and thus only done for the chosen Cmin. ◀

The approximation guarantee is also not affected.

▶ Corollary 2. FLS++ with Z ≥ 100000k log log k computes an O(1)-approximation.

Proof. [21] shows that for any C with cost larger than 500 · OPT and a cnew sampled by
d2-sampling, there is a cold such that the cost of (C\{cold}) ∪ {cnew} compared to the cost
of C is smaller than that of C by a fraction of (1/100k) with probability 1/1000 (Lemma
3 in [21]). The analysis of the algorithm follows from this fact. Lloyd’s steps are always
improving, since the centroid is always the best center for a cluster. Thus Lemma 3 in [21]
still holds and thus does the approximation guarantee. ◀

3 Experimental Results

Setup. The computations were performed on an Intel(R) Xeon(R) E3-1240 running at
3.7Ghz and 8 cores. The code is written in C++. The code and datasets used can be
found at https://github.com/lukasdrexler/flspp_code. In the following we abbreviate
k-means++ with KM++. We refer to the greedy variant of KM++ as GKM++ (analogously
for (G)LS++ and (G)FLS++).

Datasets. Our experiments are based on datasets used in [21], image RGB-data used in [13],
some datasets where the optimal solution is known for specific values of k, and some new
synthetically generated datasets similar to rectangles.

dataset number of points dimension d source

rectangles 1296 2 [14]
circles 10000 2 -

close circles 10000 2 -
pr91 2392 2 [24]
D31 3100 2 [14]
s3 5000 2 [14]
A3 7500 2 [14]

dataset number of points dimension d source

Tower 4915200 3 [13]
Clegg 716320 3 [13]

Frymire 1235390 3 [13]
Body measurements 507 5 (reduced) [19]
Concrete strength 1030 9 [28]
KDD Bio Train 145751 74 [1]
KDD Phy Test 100000 78 [1]

For some datasets, the choice of k is obvious, as there exists a clear ground truth clustering:
rectangles from Figure 2 consist of k = 36 clusters; likewise, the two generated datasets
circles and close circles consist of k = 100 separated clusters as visualized in Figure 9 in
the Appendix. For other datasets, we evaluated several values of k: e.g. on pr91 where the
optimum k-means cost is known for several values of k (see [3]).

https://github.com/lukasdrexler/flspp_code
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Figure 5 Comparison on two large datasets, for R = 50 repetitions. GLS++ always performs 25
local search steps. For GFLS++, we display the results for performing 5, 10 and 15 such steps.

Overall performance on big data sets. To get an idea of the algorithms’ strengths and
weaknesses, we compare the results of all four algorithms on three large data sets, KDD Bio
Train, KDD Phy Test, and Tower. In Figure 5, we compare KM++, GKM++, GLS++ with
25 local search steps (which is the number chosen in [21]) and GFLS++ with 5, 10, and
15 steps. Since GFLS++ performs one Lloyd iteration in every local search step, 25 such
steps take longer than 25 steps in GLS++. Hence, we would like to compare how GFLS++
performs when using fewer local search steps. We take a more detailed look at the trade-off
between runtime and cost further below. We perform 50 runs of each configuration, i.e.,
each algorithm is called 50 times with a specific k on each dataset. The initial centers for
GLS++ and GFLS++ are chosen by greedy d2-sampling. We execute GKM++, GLS++
and GFLS++ with the same initial set of centers.

As is to be expected, a larger value of Z increases runtime but decreases cost. On both
Phy Test and Tower, GFLS++ with Z = 15 obtains the overall minimum cost at the expense
of a longer runtime, while outperforming GLS++ slightly at Z = 10 in terms of cost and
runtime. Table 1 shows the maximum, average and minimum cost that the algorithms
produced on each data set with k = 100. While the overall differences are not too big,
GFLS++ consistently obtains the lowest values. Runtimes and performance comparisons
for different values of k and for the KDD Bio Train dataset can be seen in Section C in the
appendix.

Best of repeated runs within a time limit. As we have seen in the previous section,
solutions computed by GFLS++ have a smaller cost than GKM++ or GLS++ on average,
but need more time to terminate. In the following we want to analyze if running KM++
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7:10 Local Search k-means++ with Foresight

or LS++ multiple times can yield better results than GFLS++ in the same time. Thus,
we repeat each algorithm until a time limit is reached and for each algorithm only the best
solution is returned.

We choose some iteration value B ∈ N and report the best solution found by exactly B

repetitions of GFLS++. We then repeat (G)KM++ and GLS++ as long as their respective
elapsed time is less or equal to the time used by FLS++; again, we return the best solution
found.

The result of this comparison is shown in Table 2. It shows the numerical values of the
final average cost of each algorithm. Additionally we evaluated the relative cost difference
when compared to GFLS++. For two algorithms A1, A2 ∈ {KM++, LS++, FLS++} and
their respective average costs cA1 , cA2 ∈ R>0 we define their respective percentage cost
difference as C(A1, A2) := (1 − cA1/cA2) · 100%. On data set circles the cost difference was
the highest with approximately 22.37% and 8.8% when we compare the final average cost of
FLS++ to KM++ and LS++. This large difference also shows that even if clusters are well
separated, LS++ might still fail to find an improvement if the optimal center centroids are
not close to the actual data points. In contrast, FLS++ can more often find an improvement
because it evaluates the actual optimal centers for a new choice of centers, which brings
the new centers closer to the actual optimal centroids. For the other datasets the relative
difference in cost is not large, but a positive amount which, if we take into account the
number of times each algorithms returned the smallest cost, can be achieved with large
success probability.

Performance over time. We compare the best solutions found by all three algorithms and
their average cost progression over the time. We test this procedure R ∈ N times, where the
r-th run being defined as:

Run GFLS++ B times, let tr
B be the used time until termination in run r.

Repeat GKM++ and GLS++ each as long as their respective elapsed time is at most tr
B .

For run r ∈ [R] let cr t
A for A ∈ {KM++, LS++, FLS++} be the current minimum cost

of algorithm A at time t ∈ R≥0 and run r. Let tmin be the first point in time where A

did terminate in every run r ∈ [R], i.e., rct
A is always defined for every time t ≥ tmin.

The average cost of any algorithm A after R runs in time step t ≥ tmin is defined as
AVG(A, t) := 1

R

∑R
r=1 cr t

A. As before, each algorithm starts in the r-th run with the same
set of centers from the initialization process.

Table 1 Average cost comparison on large data sets with k = 100 and 50 runs.

Datasets
Algorithms

KM++ GKM++ LS++ FLS++ 5 FLS++ 10 FLS++ 15

Bio Train
Min 1.6292E+11 1.6258E+11 1.6244E+11 1.6116E+11 1.6116E+11 1.6110E+11

Mean 1.6487E+11 1.6311E+11 1.6302E+11 1.6162E+11 1.6162E+11 1.6160E+11
Max 1.6937E+11 1.6379E+11 1.6357E+11 1.6240E+11 1.6219E+11 1.6219E+11

Phy Test
Min 7.4898E+08 7.2525E+08 7.1975E+08 7.2427E+08 7.2348E+08 7.1773E+08

Mean 8.0406E+08 7.4972E+08 7.3942E+08 7.3905E+08 7.3400E+08 7.3128E+08
Max 8.5367E+08 7.7058E+08 7.5988E+08 7.5721E+08 7.5032E+08 7.4630E+08

Tower
Min 1.6500E+08 1.6296E+08 1.6228E+08 1.6073E+08 1.6036E+08 1.6036E+08

Mean 1.6802E+08 1.6477E+08 1.6385E+08 1.6182E+08 1.6169E+08 1.6164E+08
Max 1.7524E+08 1.6755E+08 1.6685E+08 1.6365E+08 1.6365E+08 1.6365E+08
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Table 2 Average cost. Last two columns show (1 − cFLS++/cB) · 100% for B ∈ {KM++, LS++}.

data set cKM++ cLS++ cFLS++ C(FLS++, KM++) C(FLS++, LS++)

pr91 9.5637E+08 9.5276E+08 9.4696E+08 0.98% 0.61%
bio train features 2.3918E+11 2.3885E+11 2.3864E+11 0.23% 0.09%

concrete 3.2724E+06 3.1775E+06 3.1308E+06 4.33% 1.47%
circles 3.1913E+05 2.7164E+05 2.4773E+05 22.37% 8.8%
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(d) circles, k = 100.

Figure 6 Comparison of average cost decrease depending on the runtime of FLS++.

Figure 6 shows the progress of each algorithm over time. For LS++, we use Z = 25 as
number of repeat steps, as in the original experiments in [21]. We use the same value for
FLS++ in the following experiments if not specified otherwise. We repeat Lloyd steps, i.e.,
computing memberships of all points to their closest center and recomputing the new optimal
centers for this clustering, until two consecutive iterations produce solutions C1, C2 with
1 − Φ(P,C2)

Φ(P,C1) < 0.0001. All plots are averaged over 100 iterations, i.e., R = 100, except for (b)
which is averaged over 20 iterations. In all plots, FLS++ achieves the smallest final average
cost and often beats the other algorithms over the entire time frame. Similarly, LS++ is
consistently better than KM++. In (c) we also compare with the known optimal solution
OPT: Despite the FLS++ improvements, there is still a significant gap.

Number of best solutions found. Table 3 shows how many times KM++, LS++ or FLS++
computed the overall best solution for a given dataset within the time limit; most of the
time FLS++ did return the smallest solution. Despite FLS++ having the fewest average
number of iterations due to its longer running time, we can see that most of the time it
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7:12 Local Search k-means++ with Foresight

Table 3 Respective number of times each algorithm returned the smallest solution for the
respective image in Figure 6 and how many iterations we could repeat the algorithm until the time
limit was reached. We only count a win if the respective algorithm returned the strictly smallest
cost compared to the other two algorithms in this run.

data set #Wins KM++ #Avg. iterations KM++ #Wins LS++ #Avg. iterations LS++ #Wins FLS++ #Avg iterations FLS++

pr91 5 160.49 8 64.42 87 50
bio train features 2 19.3 6 13.7 12 10

concrete 0 357.02 4 103.22 96 50
circles 0 103.73 0 29.13 94 20

did report the best solution. In the remaining cases, the best solution was mostly found by
LS++, while KM++, having the most number of average iterations for each dataset, could
only report the smallest solution twice, namely in the large dataset bio train features.

3.1 Greedy vs. non-greedy d2-sampling
Although greedy d2-sampling yields a bad theoretical approximation ratio [6], it is commonly
used in practice, e.g. it is the default in the scikit-learn-library with parameter ℓ = 2+⌊ln(k)⌋.
In this section, we investigate whether the practical choice is justified and how LS++/FLS++
changes when using greedy sampling.

In Figure 7 we compare the average performance of all algorithms when using greedy
d2-sampling vs. standard d2-sampling. Here, on almost all evaluated data sets, the average
cost decrease is larger when using greedy d2-sampling regardless of which algorithm is chosen
afterwards. Especially KM++ benefits from using greedy d2-sampling. LS++ and FLS++
benefit from greedy d2-sampling most of the time, and by roughly the same amount. Using
greedy d2-sampling on dataset concrete in (c) brings each algorithm closer to the optimal
solution but a gap remains. An analysis of the greedy initialization presented in the same
way as in Section 3 as well as an analysis how the initialization process did improve the
average cost of the returned solution can be found in section B in the Appendix.

Varying the number of local search steps. Running LS++ and FLS++ with the same
number of local search steps expectedly leads to FLS++ performing better in terms of cost,
but worse in terms of runtime. But Figure 5 already hints at the possibility that using fewer
local search steps in FLS++ might lead to better cost and better runtime. To this end, we
fix the number of local search iterations of LS++ to 25 (guided by the experiments in [21]),
while trying out different values for FLS++.

More precisely, we let the algorithms perform 50 runs in total, where one run consists
of the following calls. First, we call LS++ with Z = 25, and afterwards FLS++ for all
Z ∈ {5, . . . , 20}. Importantly, we again ensure that each call in the run starts with the same
set of initial centers. After completing all 50 runs, we compute the average cost and runtime
of the LS++ calls across all runs, and similarly the averages for all FLS++ calls. The results
are shown in Figure 8. The red line indicates the average cost (resp. time) of LS++ with
Z = 25 over all 50 runs. Each point on the blue curve corresponds to the average cost (resp.
time) of 50 calls to FLS++ with a certain number of local search iterations. We see that for
FLS++ even very small values of Z already suffice to beat LS++ in terms of average cost.
At the same time, these small Z lead to a shorter runtime, making it possible to beat LS++
both in terms of cost and time simultaneously.

To ensure that LS++ could not theoretically improve by, given some time limit, rerunning
it multiple times we use a similar setup as in Section 3 to analyze the average performance
for some given time bound in the Appendix, see Figure 12. In this case we use the time limit
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Figure 7 Comparison of average cost decrease depending on the runtime of FLS++. Dotted lines
corresponds to the greedy variant of the original algorithm.

given by FLS++ for B = 25 for all algorithms. We also fixed Z = 25 for LS++ and GLS++
but varied the number of local search steps for FLS++ and GFLS++ as Z ∈ {5, 10, 15, 20}.
Even with fewer local search steps in FLS++ or GLS++ we get on average a smaller cost
compared to LS++ or GLS++. For two considered datasets concrete and pr91, choosing
Z = 15 was always enough to get approximately the same cost. For pr91, even choosing
Z = 5 did result in a better solution than LS++ or GLS++ on average for the specified time
limit.

4 Conclusion

We propose the new algorithm FLS++ for the k-means problem: The algorithm uses foresight
by combining local search with d2-sampling and can outperform the established methods of
k-means++ and LS++ in terms of both quality and running time. Even though FLS++
only differs slightly from LS++, our experiments suggest that performing just one Lloyd
iteration in each local search step often leads to better performance in terms of cost as well as
runtime. Additionally, we investigate if the popularity of greedy d2-initialization in practice
is justified even though it performs poorly in theory. Surprisingly, it turns out that on most
data sets considered here, all standard algorithms (as well as our new algorithm) perform
substantially better when using greedy initialization.

On the other hand, running our algorithm without greedy initialization offers a robust
way to recover the quality of the greedy initialization without sacrificing running time.
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Figure 8 Impact on cost and time of increasing the number of local search steps in FLS++. The
dashed red line shows average cost (resp. time) of 50 runs of LS++ with 25 local search steps.
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Appendix

A Further datasets and cumulative costs

In the following we also show the performance of each algorithm with normal d2-sampling
and greedy d2-sampling for some other datasets. Like in sections 3 and 3.1 we evaluate
the performances of each algorithm using only normal d2-sampling and then with greedy
d2-sampling by checking f.e. which algorithm did return the best solution in every run or
the cost factors between the algorithms. Figure 10 shows the development of the average
found minimum cost for each algorithm for 6 other datasets. Each dataset was averaged over
100 iterations, except for the dataset frymire, which is averaged over 20 iterations.
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(a) Circles dataset.
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(b) Close circles dataset.

Figure 9 Two artificially generated datasets also used in the experiments.

Table 4 Respective number of times each algorithm returned the smallest solution for the
respective image in Figure 10 and how many iterations we could repeat the algorithm until the time
limit was reached. We only count a win if the respective algorithm returned the strictly smallest
cost compared to the other two algorithms in this run.

data set #Wins KM++ #Avg. iterations KM++ #Wins LS++ #Avg. iterations LS++ #Wins FLS++ #Avg iterations FLS++

close circles 0 134.27 0 57.68 100 50
D31 0 229.98 2 73.55 3 50

frymire 0 42.6 5 14.05 15 10
rectangles 0 453.67 0 88.66 0 50

s3 0 127.15 3 58.58 97 50
Body measurements 0 401.23 0 108.15 100 50

We can see in Figure 10 almost the same image as for the previous cases in section 3.
For datasets D31 and rectangles we additionally see that all algorithms except for KM++
almost never fail to find the optimal solution in a short amount of time.

B Cost improvement through greedy initialization

Now we want to consider how using greedy d2-sampling did improve the average costs after
reaching the time limits in section 3.1.

For A ∈ {FLS++, LS++, KM++} we define their average costs cA, cG
A where the super-

script G indicates if we use greedy d2-sampling. In our case we compare both average costs
over all runs r ∈ [R] when using time limit tr

B. Lastly, similar to the analysis above, we
define the improvement factor as (1 − cG

A

cA
) · 100%. As we can see in Table 7 for most data

sets and algorithms the improvement is not below 0% and most of the time larger than 0%.

At last we analyse the number of times each algorihm did report the strictly best solution,
the number of iterations, average costs and cost factor when compared to GFLS++. Like in
the case when using normal d2-sampling we can see in Tables 5 and 8 that GFLS++ still on
average computes the solution with the smallest cost and does so with large probability. In
case of the dataset circles, now GLS++ and GFLS++ computed the optimal solution after
the timelimit in every round. But we can see in Figure 7 that GFLS++ does so faster than
GLS++.
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Table 5 Respective number of times each algorithm returned the smallest solution for the
respective image in Figure 7 and how many iterations we could repeat the algorithm until the time
limit was reached. We only count a win if the respective algorithm returned the strictly smallest
cost compared to the other two algorithms in this run.

data set #Wins GKM++ #Avg. iterations GKM++ #Wins GLS++ #Avg. iterations GLS++ #Wins GFLS++ #Avg. iterations GFLS++

pr91 5 160.39 8 62.4 87 48.14
bio train features 2 20.9 6 12.95 12 10.1

concrete 0 295.71 0 95.44 100 48.25
circles 0 109.96 0 29.33 0 19.86

close circles 3 127.14 2 55.47 95 48.46
D31 0 250.55 1 69.75 0 47.3

frymire 5 41.15 2 13.55 13 10
rectangles 0 442.31 0 83.12 0 48.12

s3 4 131 6 57.38 89 48.38
Body measurements 0 336.77 0 101.81 100 47.72
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(b) D31, k = 31.
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(c) frymire, k = 20.
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(d) rectangles, k = 36.
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(e) s3, k = 50.
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(f) Body measurements, k = 50.

Figure 10 Comparison of average cost decrease depending on the runtime of FLS++. Dotted
lines corresponds to the greedy variant of the original algorithm.

Table 6 Respective average cost of each algorithm. Last two columns show (1−cFLS++/cA) ·100%
for A ∈ {KM++, LS++}.

data set cKM++ cLS++ cFLS++ C(FLS++, KM++) C(FLS++, LS++)

close circles 6.0468E+05 6.0434E+05 5.9341E+05 1.86% 1.81%
D31 3447.57 3393.26 3393.26 1.58% 0%

frymire 1.3378E+09 1.3287E+09 1.3222E+09 1.17% 0.49%
rectangles 1.5 1.46 1.46 2.56% 0%

s3 6.2325E+12 6.1887E+12 6.1397E+12 1.49% 0.79%
Body measurements 14894.11 14652.64 14427.42 3.13% 1.54%

Table 8 Respective average cost of each algorithm. Last two columns show (1−cGFLS++/cA)·100%
for A ∈ {GKM++, GLS++}.

data set cGKM++ cGLS++ cGFLS++ C(GFLS++, GKM++) C(GFLS++, GLS++)

pr91 9.518E+08 9.5177E+08 9.4638E+08 0.57% 0.57%
bio train features 2.3902E+11 2.3877E+11 2.3866E+11 0.15% 0.05%

concrete 3.1772E+06 3.1591E+06 3.1138E+06 2% 1.43%
circles 2.5481E+05 2.4773E+05 2.4773E+05 2.78% 0%

close circles 6.0113E+05 6.0244E+05 5.9485E+05 1.04% 1.26%
D31 3393.26 3393.26 3393.26 0% −0%

frymire 1.33E+09 1.3321E+09 1.3244E+09 0.42% 0.58%
rectangles 1.46 1.46 1.46 0% 0%

s3 6.1786E+12 6.1742E+12 6.137E+12 0.67% 0.6%
Body measurements 14637.51 14584.68 14357.35 1.91% 1.56%
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7:18 Local Search k-means++ with Foresight

Table 7 Average cost decrease by using greedy d2-sampling.

data set C(GKM++, KM++) C(GLS++, LS++) C(GFLS++, FLS++)

pr91 0.48% 0.1% 0.06%
bio train features 0.07% 0.03% −0.01%

concrete 2.91% 0.58% 0.54%
circles 20.16% 8.8% 0%

close circles 0.59% 0.32% −0.24%
D31 1.58% 0% 0%

frymire 0.59% −0.26% −0.17%
rectangles 2.56% 0% 0%

s3 0.87% 0.23% 0.04%
Body measurements 1.72% 0.46% 0.49%

C Local search remaining Figures
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(a) cost developments LS++.
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(b) cost developments GLS++.
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(c) cost developments FLS++.
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(d) cost developments GFLS++.

Figure 11 Dataset concrete. Comparison of the average cost decrease for (G)LS++ and (G)FLS++
for k = 60, R = 100 and varying values of Z.
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(a) Dataset concrete, k = 60.
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(b) Dataset pr91, k = 50.

Figure 12 Fixing number of local seach steps for LS++ and GLS++ while using a variable
number for FLS++ and GFLS++. The number after either FLS++ or GFLS++ represents the
value Z for this algorithm.
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Figure 13 Performance boxplots for different values of k and one additional dataset.
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