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Abstract
We prove that the number of fringe subtrees, isomorphic to a given tree, in uniformly random trees
with given vertex degrees, asymptotically follows a normal distribution. As an application, we
establish the same asymptotic normality for random simply generated trees (conditioned Galton-
Watson trees). Our approach relies on an extension of Gao and Wormald’s (2004) theorem to the
multivariate setting.
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1 Introduction and main results

In this paper, we consider fringe trees of random plane trees with given vertex statistics, i.e.,
a given number of vertices of each degree. As an application, we also give corresponding
result for random simply generated trees (or conditioned Galton–Watson trees). The main
results are laws of large numbers and central limit theorems for the number of fringe trees of
a given type.

Let T be the set of all (finite) plane rooted trees (also called ordered rooted trees); see
e.g., [9]. Denote the size, i.e. the number of vertices, of a tree T by |T |. The (out)degree of a
vertex v ∈ T , denoted dT (v), is its number of children in T ; thus leaves have degree 0 and
all other vertices have strictly positive degree. The degree statistic of a rooted tree T is the
sequence nT = (nT (i))i≥0, where nT (i) := |{v ∈ T : dT (v) = i}| is the number of vertices of
T with i children. We have

|T | =
∑
i≥0

nT (i) = 1 +
∑
i≥0

inT (i). (1)

A sequence n = (n(i))i≥0 is the degree statistic of some tree if and only if
∑

i≥0 n(i) =
1 +

∑
i≥0 in(i). For such sequences, we let |n| :=

∑
i≥0 n(i) be the size of n, and we write Tn

for the set of plane rooted trees with degree statistic n. We let Tn be a uniformly random
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1:2 Fringe Trees for Random Trees with Given Vertex Degrees

element of the set Tn, and we denote this by Tn ∼ Unif(Tn). It is also well known that the
total number of plane rooted trees with degree statistic n is given by (see [23, Exercise 6.2.1])

|Tn| = 1
|n|

(
|n|
n

)
= 1

|n|
|n|!∏

i≥0 n(i)! . (2)

For T ∈ T and a vertex v ∈ T , let Tv be the subtree of T rooted at v consisting of v and
all its descendants. We call Tv a fringe (sub)tree of T . We regard Tv as an element of T and
let, for T, T ′ ∈ T,

NT ′(T ) := |{v ∈ T : Tv = T ′}| =
∑
v∈T

1{Tv=T ′}, (3)

i.e., the number of fringe subtrees of T that are equal (i.e., isomorphic to) to T ′. A random
fringe subtree T fr of T ∈ T is the random rooted tree obtained by taking the fringe subtree
Tv at a uniform random vertex v ∈ T . Thus, the distribution of T fr is given by

P(T fr = T ′) = NT ′(T )
|T |

, for T ′ ∈ T. (4)

We prove an asymptotic result on the distribution of a random fringe subtree in a random
rooted plane tree with a given degree statistic. In order to state the theorem, we need a little
more terminology. (See also Section 1.2 for some notation.) For a degree statistic n, denote
by p(n) = (pi(n))i≥0 its (empirical) degree distribution, i.e.,

pi(n) := n(i)
|n|

, for i ≥ 0. (5)

In this paper, we assume for convenience the following condition.

▶ Condition 1. nκ = (nκ(i))i≥0, κ ≥ 1, are degree statistics such that as κ → ∞:
(i) |nκ| → ∞,
(ii) For every i ≥ 0, we have pi(nκ) → pi, where p = (pi)i≥0 is a probability distribution

on N0.

▶ Remark 2. The condition that p is a probability distribution is no restriction. In fact, the
degree distribution p(nκ) has mean∑

i≥0
ipi(nκ) = 1

|nκ|
∑
i≥0

inκ(i) = |nκ| − 1
|nκ|

< 1, (6)

and thus the sequence of distributions p(nκ) is always tight. Hence, if pi(nκ) → pi, for every
i ≥ 0, then p = (pi)i≥0 is a probability distribution. Note also that (ii) says that p(nκ)
converges weakly to p, as κ → ∞. (As is well known, this is equivalent to convergence in
total variation.)

By (6) and Fatou’s lemma, if Condition 1 holds, then
∑

i≥0 ipi ≤ 1. Conversely, it is
easily seen that any such probability distribution p is the limit of p(nκ) for some sequence
of degree statistics nκ. In other words, the set of probability distributions p that can appear
as limits in Condition 1 is precisely the set of probability distributions p on N0 with mean∑

i≥0 ipi ≤ 1; we denote this set by P1(N0).
For a probability distribution p = (pi)i≥0 ∈ P1(N0), let Tp be a Galton–Watson tree with

offspring distribution p, and define πp as the distribution of Tp, i.e., (with 00 := 1 as usual)

πp(T ) := P(Tp = T ) =
∏
i≥0

p
nT (i)
i =

∏
i∈D(T )

p
nT (i)
i , for T ∈ T, (7)
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where

D(T ) := {i : nT (i) > 0} = {dT (v) : v ∈ T}, (8)

the set of degrees that appear in T . Note that πp(T ) = 0 ⇐⇒ pi = 0 for some i ∈ D(T ).
In particular, if nκ and p are as in Condition 1, then πp(T ) = 0 if and only if nκ(i) = o(|nκ|)
for some i ∈ D(T ).

We first give a law of large numbers for the number of fringe trees of a given type in a
random rooted plane tree with a given degree statistic. The proofs of this and the following
theorem are given in later sections.

▶ Theorem 3. Let nκ, κ ≥ 1, be some degree statistics that satisfy Condition 1, and let
Tnκ ∼ Unif(Tnκ). For every fixed T ∈ T, as κ → ∞:

(i) (Annealed version) P(T fr
nκ

= T ) = E[NT (Tnκ)]
|nκ|

→ πp(T ).

(ii) (Quenched version) P(T fr
nκ

= T | Tnκ
) = NT (Tnκ

)
|nκ|

→ πp(T ) in probability.

In other words, the random fringe tree converges in distribution as κ → ∞: (i) says
T fr

nκ

d−→ Tp, or equivalently L(T fr
nκ

) → L(Tp), and (ii) is the conditional version L
(
T fr

nκ
|

Tnκ

) p−→ L(Tp).

▶ Remark 4. Similar results are known for several other models of random trees. In particular,
a version of Theorem 3 was proved by Aldous [2] for conditioned Galton–Watson trees with
finite offspring variance; this was extended to general simply generated trees in [19, Theorem
7.12]. In those cases, the degree statistic is random, but Condition 1 holds in probability,
with a non-random limiting probability distribution p. We return to simply generated trees
in Section 5. Another standard example is family trees of Crump–Mode–Jagers branching
processes (which includes e.g. random recursive trees, binary search trees and preferential
attachment trees); see e.g. [2] and [17, Theorem 5.14].

Theorem 3 is thus a law of large numbers for the number of fringe trees of a given type.
In this work, we also study the fluctuations and prove a central limit theorem for this number;
we furthermore show that this holds jointly for different types of fringe trees.

For a probability distribution p = (pi)i≥0 ∈ P1(N0) and T, T ′ ∈ T, let

ηp(T, T ′) := (|T | − 1)(|T ′| − 1) −
∑
i≥0

nT (i)nT ′(i)
pi

, (9)

where we interpret 0/0 := 0, and, for T ̸= T ′,

γp(T, T ) := πp(T ) + ηp(T, T )(πp(T ))2, (10)
γp(T, T ′) := NT ′(T )πp(T ) + NT (T ′)πp(T ′) + ηp(T, T ′)πp(T )πp(T ′). (11)

Note that ηp(T, T ′) = −∞ if pi = 0 for some i ∈ D(T ) ∩ D(T ′). In this case, πp(T ) =
πp(T ′) = 0, and we interpret ∞ · 0 := 0 in (10)–(11); thus γp(T, T ′) is always finite.

▶ Theorem 5. Let nκ, κ ≥ 1, be some degree statistics that satisfy Condition 1 and let
Tnκ

∼ Unif(Tnκ
). For a fixed m ≥ 1, let T1, . . . , Tm ∈ T be a fixed sequence of rooted plane

trees. Then, as κ → ∞,

ENTi
(Tnκ

) = πp(Ti)|nκ| + o(|nκ|), (12)
Var(NTi(Tnκ)) = γp(Ti, Ti)|nκ| + o(|nκ|), (13)

Cov
(
NTi(Tnκ), NTj (Tnκ)

)
= γp(Ti, Tj)|nκ| + o(|nκ|), (14)
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1:4 Fringe Trees for Random Trees with Given Vertex Degrees

for 1 ≤ i, j ≤ m, and(
NTj

(Tnκ
) − E[NTj

(Tnκ
)]√

|nκ|

)m

j=1

d−→ N(0, Γp), (15)

where the covariance matrix is defined by Γp := (γp(Ti, Tj))m
i,j=1. Furthermore, in (15), we

can replace E[NTi
(Tnκ

)] by |nκ|πp(nκ)(Ti).
If T ∈ T with πp(T ) > 0 and |T | > 1, then γp(T, T ) > 0 and thus (13) and (15) (with

m = 1) show that NT (Tnκ
) is asymptotically normal, with

NT (Tnκ
) − E[NT (Tnκ

)]√
Var(NT (Tnκ

))
d−→ N(0, 1), κ → ∞. (16)

The case |T | = 1 is trivial, with NT (Tnκ) = nκ(0) non-random. Ignoring this case,
Theorem 5 shows that NT (Tnκ

) is asymptotically normal when πp(T ) > 0. On the other
hand, if πp(T ) = 0, then also γp(T, T ) = 0, and the theorems above do not give precise
information on the asymptotic distribution of NT (Tnκ). In this case, [3, Theorem 1.7] in the
full version is more precise.

In the case of critical conditioned Galton–Watson trees with finite offspring variance,
(joint) normal convergence of the subtree counts in analogy to (15) was proved in [20,
Corollary 1.8] (together with convergence of mean and variance). Indeed, [20, Theorem 1.5]
proved, more generally, asymptotic normality of additive functionals that are defined via toll
functions (under some conditions); see [3, Section 8] in the full version for further discussion
on additive functionals.

▶ Remark 6. Results on asymptotic normality for fringe tree counts have also been proved
earlier for several other classes of random trees. For example, for binary search trees see [7],
[8], [6], [12], [16]; for random recursive trees see [11], [16]; for increasing trees see [13]; for
m-ary search trees and preferential attachment trees see [18]; for random tries see [21].

Our approach relies on a multivariate version of the Gao–Wormald theorem [14, The-
orem 1]; see [3, Theorem A.1]. The original Gao–Wormald theorem [14] provides a way to
show asymptotic normality by analysing the behaviour of sufficiently high factorial moments.
(Typically, factorial moments are more convenient than standard moments in combinatorics.)
The multivariate version [3, Theorem A.1] extends this by considering joint factorial moments.
In our framework, this is very convenient since we can precisely compute the joint factorial
moments of the subtree counts in (3) for random trees with given degree statistics. (Another,
closely related, multivariate version of the Gao–Wormald theorem has independently been
shown recently by Hitczenko and Wormald [15].)

The (one dimensional) Gao–Wormald theorem has been used before by Cai and Devroye [5]
to study large fringe trees in critical conditioned Galton–Watson trees with finite offspring
variance. Indeed, they considered fringe subtree counts of a sequence of trees instead of a
fixed tree. In particular, they showed that asymptotic normality still holds in some regimes,
while in others there is a Poisson limit. In a forthcoming work, we will study the case of not
fixed fringe trees in the framework of random trees with given degrees.

1.1 Organization of the paper
In Section 2 we provide exact formulas for factorial moments of NT (Tn). These formulas
are then used in Sections 3–4 to prove our main results. An application to simply generated
trees is given in Sections 5.
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1.2 Some notation
In addition to the notation introduced above, we use the following standard notation.

We let Z := {. . . , −1, 0, 1, . . . }, N := {1, 2, . . . }, N0 := {0, 1, 2, . . . }. We let 0 denote also
vectors and matrices with all elements 0 (the dimension will be clear from the context). We
use standard o and O notation, for sequences and functions of a real variable.

1E is the indicator function of an event E , and δij := 1{i=j} is Kronecker’s delta.
For x ∈ R and q ∈ N0, we let (x)q := x(x−1) · · · (x−q +1) denote the qth falling factorial

of x. (Here (x)0 := 1. Note that (x)q = 0 whenever x ∈ N0 and x − q + 1 ≤ 0.)
We interpret 0/0 = 0 and 0 · ∞ = 0.
We use d−→ for convergence in distribution, and p−→ for convergence in probability, for

a sequence of random variables in some metric space. Also, L(X) denotes the distribution
of X, and d= means equal in distribution. We write N(0, Γ) for the multivariate normal
distribution with mean vector 0 and covariance matrix Γ := (γij)m

i,j=1, for m ∈ N. (This
includes the case Γ = 0; in this case X ∼ N(0, Γ) means that X = 0 ∈ Rm a.s.)

Unspecified limits are as κ → ∞.

2 Moment computations

In this section, we compute the joint factorial moments of NT1(Tn), . . . , NTm
(Tn), for m ≥ 1

and a sequence of distinct rooted plane trees T1, . . . , Tm ∈ T, where Tn is a uniformly random
tree of Tn, for a degree statistic n. Before that, we need to introduce some notation. For
1 ≤ i, j ≤ m, let

τij := NTi(Tj)1{i ̸=j} (17)

be the number of proper fringe subtrees of Tj that are equal to Ti. (Note that many of
these terms are 0. In particular, if we order T1, . . . , Tm according to their sizes, the matrix
(τij)m

i,j=1 is strictly triangular.)
For q1, . . . , qm ∈ N0, note that the product (NT1(Tn))q1 · · · (NTm

(Tn))qm
is the number of

sequences of q := q1 + · · · + qm distinct fringe subtrees of Tn, where the first q1 are copies of
T1, the next q2 are copies of T2, and so on. Given such a sequence of fringe subtrees, we say
that these fringe subtrees are marked. Furthermore, for each such sequence of marked fringe
subtrees of Tn, say that a tree in the sequence is bound if it is a fringe subtree of another
tree in the sequence; otherwise it is free. Note that the free trees are disjoint. Furthermore,
each bound tree in the sequence is a fringe subtree of exactly one free tree. For a sequence
b = (b1, . . . , bm) ∈ Nm

0 , let Sb(Tn) be the number of such sequences of q fringe trees such that
exactly bi of the fringe trees Ti are bound, for 1 ≤ i ≤ m. We thus have

E
[
(NT1(Tn))q1 · · · (NTm(Tn))qm

]
=
∑

b∈Nm
0

E[Sb(Tn)]. (18)

The sum is really only over b = (b1, . . . , bm) ∈ Nm
0 such that 0 ≤ bi ≤ qi for 1 ≤ i ≤ m, since

otherwise Sb(Tn) = 0. This sum can be computed by the following lemma.

▶ Lemma 7. Let n be a degree statistic and let Tn ∼ Unif(Tn). For m ≥ 1 and q1, . . . , qm ∈ N,
let T1, . . . , Tm ∈ T be a sequence of distinct rooted plane trees such that |n| ≥

∑m
j=1(qj −

bj)(|Tj | − 1) + 1. Then E[Sb(Tn)] is equal to

|n|
(|n|)1+

∑m

j=1
(qj−bj)(|Tj |−1)

∏
i≥0

(n(i))∑m

j=1
(qj−bj)nTj

(i)

m∏
j=1

(qj)bj
(
∑m

k=1(qk − bk)τjk)
bj

bj ! ,

(19)

for every b = (b1, . . . , bm) ∈ Nm
0 such that 0 ≤ bi ≤ qi, for 1 ≤ i ≤ m.

AofA 2024



1:6 Fringe Trees for Random Trees with Given Vertex Degrees

Proof. If
∑m

j=1(qj − bj)nTj (i) > n(i) for some i ≥ 0, then both E[Sb(Tn)] and (19) are 0.
We may thus assume that

∑m
j=1(qj − bj)nTj

(i) ≤ n(i) for all i ≥ 0.
First, let us consider the case when all fringe trees are free, that is, the case b = 0 =

(0, . . . , 0) ∈ Nm
0 . Replace each marked fringe subtree in Tn by a single leaf; moreover, mark

this leaf and order all marked leaves into a sequence, corresponding to the order of the fringe
subtrees. This yields another tree T̃ , which we call a reduced tree, with a sequence of q

marked leaves. Since Tn has n(i) vertices of degree i, for i ≥ 0, and we have replaced qj

copies of Tj by leaves, the degree statistic ñ = (ñ(i))i≥0 of T̃ is given by

ñ(i) :=
{

n(i) −
∑m

j=1 qjnTj
(i), i ≥ 1,

n(0) −
∑m

j=1 qjnTj (0) +
∑m

j=1 qj , i = 0,
(20)

and has size

|ñ| :=
∑
i≥0

ñ(i) = |n| −
m∑

j=1
qj(|Tj | − 1). (21)

There is a one-to-one correspondence between trees in Tn with a sequence of marked fringe
subtrees as above, and reduced trees with the degree statistic (20) and a sequence of q marked
leaves. If we ignore the marks, the number of possible reduced trees is given by (2) with the
degree statistic ñ in (20). In each unmarked reduced tree, the number of ways to choose
sequences of marked leaves is (ñ(0))q1+···+qm

. Thus, the number of trees in Tn with marked
sequences of free fringe subtrees is the product of these numbers, i.e.,

(|ñ| − 1)!∏
i≥0 ñ(i)! (ñ(0))∑m

j=1
qj

= (|ñ| − 1)!∏
i≥0(n(i) −

∑m
j=1 qjnTj

(i))!
. (22)

By dividing with |Tn|, which is given by (2), and using (21), we find

E[S0(Tn)] = 1
(|n| − 1)∑m

j=1
qj(|Tj |−1)

∏
i≥0

(n(i))∑m

j=1
qjnTj

(i). (23)

Now consider the general case with a sequence b = (b1, . . . , bm) telling the number of
bound fringe subtrees. There are thus qj − bj free trees of type Tj . The number of ways to
choose the positions of the bound trees in the sequences of fringe trees is

∏m
j=1

(
qj

bj

)
, and for

each choice of free trees, there are
∑m

k=1(qk − bk)τjk possible bound trees of type Tj ; thus
the number of choices of the bound trees is

m∏
j=1

(qj)bj
(
∑m

k=1(qk − bk)τjk)
bj

bj ! . (24)

The number of trees in Tn with sequences of qj − bj free trees Tj , for 1 ≤ j ≤ m, is given by
replacing qj by qj − bj in (20)–(22). Hence, we obtain (19), extending (23). ◀

We record two important special cases of Lemma 7 (see the proof of [3, Lemma 3.3] in
the full version for details).

▶ Lemma 8. Let n be a degree statistic and let Tn ∼ Unif(Tn).
(i) For q ∈ N and T ∈ T such that |n| ≥ q|T | − q + 1,

E[(NT (Tn))q] = |n|
(|n|)q|T |−q+1

∏
i≥0

(n(i))qnT (i). (25)
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(ii) For distinct T, T ′ ∈ T such that |n| ≥ |T | + |T ′| − 1,

E[NT (Tn)NT ′(Tn)] = NT (T ′)E[NT ′(Tn)] + NT ′(T )E[NT (Tn)]

+ |n|
(|n|)|T |+|T ′|−1

∏
i≥0

(n(i))nT (i)+nT ′ (i). (26)

3 Proof of Theorems 3

In this section we prove Theorem 3. In what follows we will frequently use the following
well-known estimate (see for example, [3, Lemma 4.1]).

▶ Lemma 9. If x ≥ 1 is a real number and 0 ≤ k ≤ x/2 is an integer, then

(x)k = xk exp
(

−k(k − 1)
2x

+ O

(
k3

x2

))
. (27)

We start by proving the following theorem.

▶ Theorem 10. Let T ∈ T be a fixed tree. Then, uniformly for all degree statistics n =
(n(i))i≥0,

ENT (Tn) = |n|πp(n)(T ) + O(1), (28)
Var NT (Tn) = |n|γp(n)(T, T ) + O(1). (29)

More generally, if T, T ′ ∈ T, then

Cov
(
NT (Tn), NT ′(Tn)

)
= |n|γp(n)(T, T ′) + O(1). (30)

Proof. Note first the trivial bound

NT (Tn) ≤ n(i)
nT (i) ≤ n(i), i ∈ D(T ), (31)

since the copies of T in Tn are distinct. Furthermore, by (7) and (5),

|n|πp(n)(T ) ≤ |n|pi(n) = n(i), i ∈ D(T ). (32)

Hence, (28) is trivial if n(i) = O(1) for some i ∈ D(T ). In particular, we may in the sequel
assume n(i) ≥ 2nT (i) for every i ≥ 0, and thus |n| ≥ 2|T |. Then, by (25) (with q = 1) and
Lemma 9,

ENT (Tn) = |n|1−|T |
∏

i∈D(T )

n(i)nT (i)

× exp

 |T |(|T | − 1)
2|n|

−
∑

i∈D(T )

nT (i)(nT (i) − 1)
2n(i) + O

( ∑
i∈D(T )

1
n(i)2

)
= |n|πp(n)(T )

× exp

 |T |(|T | − 1)
2|n|

−
∑

i∈D(T )

nT (i)(nT (i) − 1)
2n(i) + O

( ∑
i∈D(T )

1
n(i)2

) ,

(33)

which implies (28) by (32).
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1:8 Fringe Trees for Random Trees with Given Vertex Degrees

Similarly, taking q = 2 in (25), and now assuming as we may n(i) ≥ 4nT (i) for every
i ≥ 0,

E(NT (Tn))2 = |n|
(|n|)2|T |−1

∏
i∈D(T )

(n(i))2nT (i)

= |n|2−2|T |
∏

i∈D(T )

n(i)2nT (i)

× exp

 (2|T | − 1)(2|T | − 2)
2|n| −

∑
i∈D(T )

2nT (i)(2nT (i) − 1)
2n(i) + O

( ∑
i∈D(T )

1
n(i)2

)
=
(
|n|πp(n)(T )

)2

× exp

 (2|T | − 1)(|T | − 1)
|n| −

∑
i∈D(T )

nT (i)(2nT (i) − 1)
n(i) + O

( ∑
i∈D(T )

1
n(i)2

) ,

(34)

Hence, using also (33),

E(NT (Tn))2 =
(
ENT (Tn)

)2

× exp

 (|T | − 1)2

|n|
−

∑
i∈D(T )

nT (i)2

n(i) + O
( ∑

i∈D(T )

1
n(i)2

) . (35)

Consequently, using (28) and noting that ENT (Tn) = O(n(i)) for i ∈ D(T ) by (28) and (32),

Var[NT (Tn)] = E(NT (Tn))2 + ENT (Tn) −
(
ENT (Tn)

)2

=
(
ENT (Tn)

)2

 (|T | − 1)2

|n|
−

∑
i∈D(T )

nT (i)2

n(i)

+ ENT (Tn) + O(1)

=
(
|n|πp(n)(T )

)2

 (|T | − 1)2

|n|
−

∑
i∈D(T )

nT (i)2

n(i)

+ |n|πp(n)(T ) + O(1),

(36)

which yields (29) by the definitions (10), (9) and (5).
For the proof of (30) we use (26). The first two terms are handled by (28), and the final

term is treated as in (34)–(36) with mainly notational differences; we omit the details. ◀

Proof of Theorem 3. By Condition 1, we have pi(nκ) → pi for every i ≥ 0, and thus
πp(nκ)(T ) → πp(T ). Hence, (i) follows from (28).

Moreover, it follows from (9)–(10) that γp(nκ)(T, T ) = O(1) (for a fixed T ), and thus (29)
yields Var NT (Tnκ

) = O(|nκ|). Therefore, (ii) follows from (i) and Chebyshev’s inequality. ◀

4 Proof of Theorems 5

We have now all the ingredients to prove Theorem 5.

Proof of Theorem 5. First note that Condition 1 implies

πp(nκ)(Ti) → πp(Ti) and γp(nκ)(Ti, Tj) → γp(Ti, Tj), for 1 ≤ i, j ≤ m. (37)

Hence, (12)–(14) follow from (28)–(30) in Theorem 10.



G. Berzunza Ojeda, C. Holmgren, and S. Janson 1:9

We next prove the asymptotic normality result in (15). Note first that (28) implies that
it does not matter whether we use E[NTi

(Tnκ
)] or

µnκ
(T ) := |nκ|πp(nκ)(T ) = |nκ|

∏
i≥0

pi(nκ)nT (i) = |nκ|
∏

i∈D(T )

pi(nκ)nT (i). (38)

in (15).
If πp(Ti) = 0, for some 1 ≤ i ≤ m, then it follows from (10) that γp(Ti, Ti) = 0, and thus

(13) yields Var[NTi
(Tnκ

)] = o(|nκ|); consequently, (28) and Chebyshev’s inequality yield, as
κ → ∞,

NTi
(Tnκ

) − E[NTi
(Tnκ

)]√
|nκ|

p−→ 0. (39)

Hence, convergence of the i-th component in (15) is trivial in this case. Furthermore,
πp(Ti) = 0 also implies γp(Ti, Tj) = 0 for every 1 ≤ j ≤ m by (11), noting that if
NTi

(Tj) > 0 then also πp(Tj) = 0. Thus, we may ignore all i in (15) with πp(Ti) = 0 and
show (joint) convergence for the remaining ones, because then (15) in general will follow
from [4, Theorem 3.9 in Chapter 1]. Consequently, we henceforth assume that πp(Ti) > 0
for all 1 ≤ i ≤ m. Equivalently, pk > 0 for every k ∈

⋃m
i=1 D(Ti). We may also assume that

T1, . . . , Tm are distinct.
To see the main idea of the proof, we consider only the univariate case m = 1. The

general case follows similarly by a multidimensional version of the Gao–Wormald theorem
[3, Theorem A.1] in the full version. The main complication in the multivariate case is
the possibility that fringe trees of type Tj may contain fringe trees of type Tk for some
1 ≤ j, k ≤ m; we thus use the decomposition in (18) and estimate the terms separately; we
refer to the proof of [3, Theorem 1.5] in the full version for details.

We then consider m = 1 and omit the index 1 and write T instead of T1. In this case,
we can use the Gao–Wormald theorem [14, Theorem 1] and the following estimate. For any
qκ = O(|nκ|1/2), (25) and Lemma 9 yield, recalling the definitions (5), (7), (9), (10), and
(38) of pi(n), πp(T ), ηp(T, T ), γp(T, T ), and µnκ

(T ),

E[(NT (Tnκ ))qκ ] =
∏

i≥0 nκ(i)qκnT (i)

|nκ|qκ(|T |−1) exp

((
qκ(|T | − 1)

)2

2|nκ| −
∑
i≥0

(
qκnT (i)

)2

2nκ(i) + o(1)

)

= |nκ|qκ
∏
i≥0

pi(nκ)qκnT (i) exp

((
qκ(|T | − 1)

)2

2|nκ| −
∑
i≥0

(
qκnT (i)

)2

2nκ(i) + o(1)

)

=
(
|nκ|πp(nκ)(T )

)qκ exp
(

q2
κ

2|nκ|ηp(nκ)(T, T ) + o(1)
)

= µnκ (T )qκ exp
(

(γp(nκ)(T, T ) − πp(nκ)(T ))|nκ|
2µnκ (T )2 q2

κ + o(1)
)

= µnκ (T )qκ exp
(

γp(T, T )|nκ| − µnκ (T )
2µnκ (T )2 q2

κ + o(1)
)

. (40)

If γp(T, T ) > 0, we may now apply the Gao–Wormald theorem [14, Theorem 1] with
µκ := µnκ

(T ) and σ2
κ := γp(T, T )|nκ| and conclude (16), which by (13) is equivalent to (15)

(with m = 1). The case γp(T, T ) = 0 is trivial, since then (13) implies (39). Alternatively,
for any γp(T, T ), we may take the same µκ but σ2

κ := |nκ| in the case m = 1 of our version
[3, Theorem A.1] of the Gao–Wormald theorem. ◀
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5 Application to simply generated trees

Let Tn denote the (finite) subset of all plane rooted trees of size n ∈ N. Let w = (wi)i≥0 be
a sequence of non-negative real weights with w0 > 0 and wi > 0 for at least one i ≥ 2. For a
finite rooted plane tree T ∈ T, we define the weight of T to be

w(T ) :=
∏
v∈T

wdT (v) =
∏
i≥0

w
nT (i)
i . (41)

For n ∈ N, let Zn(w) =
∑

T ∈Tn
w(T ). If Zn(w) > 0, then we define the random tree Tw,n

by picking an element of Tn at random with probability proportional to its weight, i.e.,

P(Tw,n = T ) = w(T )
Zn(w) , for T ∈ Tn. (42)

The random tree Tw,n is called simply generated tree of size n and weight sequence w;
see e.g. [9] and [19]. If w is a probability distribution (i.e.,

∑
i≥0 wi = 1), then Tw,n is a

Galton–Watson tree with offspring distribution w conditioned to have n vertices.
Let Φw(z) =

∑
i≥0 wiz

i be the generating function of the weight sequence w, and let
ρw ∈ [0, ∞] be its radius of convergence. For 0 ≤ s < ρw, we let

Ψw(s) := sΦ′
w(s)

Φw(s) =
∑

i≥0 iwis
i∑

i≥0 wisi
. (43)

Furthermore, if Φw(ρw) < ∞, we define also Ψw(ρw) by (43); if Φw(ρw) = ∞ then we define
Ψw(ρw) := lims↑ρw Ψw(s); the limit exists by [19, Lemma 3.1 (i)]. Let νw := Ψw(ρw) ∈ [0, ∞],
and define

τw =
{

ρw if νw < 1,

Ψ−1
w (1) if νw ≥ 1.

(44)

It follows from [19, Lemma 3.1] that

ρw > 0 ⇐⇒ νw > 0 ⇐⇒ τw > 0. (45)

The following result from [19] shows that simply generated trees satisfy Condition 1 in
probability.

▶ Theorem 11 ([19, Theorem 7.1 and Theorem 7.11]). Let w be a sequence of non-negative
real weights with w0 > 0 and wi > 0 for at least one i ≥ 2. Define

θi(w) = wiτ
i
w

Φw(τw) , for i ≥ 0. (46)

Then, θ(w) = (θi(w))i≥0 is a probability distribution with expectation µw = min(1, νw) and
variance σ2

w = τwΨ′
w(τw) ∈ [0, ∞]. Moreover, for n ∈ N with Zn(w) > 0, let Tw,n be a simply

generated tree of size n and weight sequence w. Then, the (empirical) degree distribution
p(nTw,n

) of Tw,n satisfies, for every i ≥ 0, pi(nTw,n
) p−→ θi(w), as n → ∞ (along integers n

such that Zn(w) > 0).

Note that if ρw = 0, then θ0(w) = 1 and θi(w) = 0 for i ≥ 1; otherwise, τw > 0 and (46)
shows that θi(w) > 0 ⇐⇒ wi > 0 for i ≥ 0.

Using Theorem 11, we can show that Theorem 5 implies the following version for
conditioned Galton–Watson trees. The asymptotic normality (49) was proved in case (i) by
different methods in [20, Corollary 1.8]; (ii) and (iii) are new.
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▶ Theorem 12 (partly [20]). Let w be a sequence of non-negative real weights with w0 > 0
and wi > 0 for at least one i ≥ 2. Moreover, for n ∈ N with Zn(w) > 0, let Tw,n be a simply
generated tree of size n and weight sequence w. For fixed m ≥ 1, let T1, . . . , Tm ∈ T be a fixed
sequence of rooted plane trees. Then, as n → ∞ (along integers n such that Zn(w) > 0),(

NTj (Tw,n) − E[NTj (Tw,n) | nTw,n ]
√

n

)m

j=1

d−→ N(0, Γθ(w)), (47)

where the covariance matrix Γθ(w) is defined by (10)–(11), and for 1 ≤ j ≤ m,

E[NTj
(Tw,n) | nTw,n

] = n

(n)|Tj |

∏
i≥0

(nTw,n
(i))nTj

(i). (48)

Furthermore, suppose that the weight sequence w satisfies one of the following conditions:
(i) νw ≥ 1 and σ2

w ∈ (0, ∞).
(ii) νw ≥ 1, σ2

w = ∞ and θ(w) belongs to the domain of attraction of a stable law of
index α ∈ (1, 2]. (The last condition is equivalent to that there exists a slowly varying
function L : R+ → R+ such that

∑k
i=0 i2θi(w) = k2−αL(k), as k → ∞ [10, Theorem

XVII.5.2].)
(iii) 0 < νw < 1 and θi(w) = ci−β + o(i−β), as i → ∞, with fixed c > 0 and β > 2.

Then, as n → ∞ (along integers n such that Zn(w) > 0),(
NTj

(Tw,n) − nπθ(w)(Tj)
√

n

)m

j=1

d−→ N(0, Γ̃θ(w)), (49)

where the covariance matrix Γ̃θ(w) = (γ̃θ(w)(Ti, Tj))m
i,j=1 is given by, for T, T ′ ∈ T such that

T ̸= T ′,

γ̃θ(w)(T, T ) = πθ(w)(T ) −
(
2|T | − 1 + ς−2

w
)

(πθ(w)(T ))2, (50)
γ̃θ(w)(T, T ′) = NT ′(T )πθ(w)(T ) + NT (T ′)πθ(w)(T ′)

−
(
|T | + |T ′| − 1 + ς−2

w
)

πθ(w)(T )πθ(w)(T ′), (51)

with ς2
w = σ2

w in case (i), and ς2
w = ∞ in cases (ii) and (iii).

▶ Remark 13. Recall that for any weight sequence w and any constants a, b > 0, the weight
sequence ŵ = (ŵi)i≥0 with ŵi := abiwi is equivalent to w, i.e., it satisfies that Tw,n

d= Tŵ,n
,

for all n for which either (and thus both) of the random trees are defined; this is a consequence
of (42). In the setting of Theorem 11, if ρw > 0, then the weight sequence w is equivalent to
the weight sequence θ(w) = (θi(w), i ≥ 0), which is a probability distribution with mean
µw = min(1, νw); see further [19, Section 7]. Thus, if ρw > 0 we can regard Tw,n as a
Galton–Watson tree Tθ(w),n with offspring distribution θ(w) conditioned to have n vertices.
This explains the appearance of θ(w) in Theorem 12, and it shows that there is no real loss of
generality to consider (as is often done) only the case τw = 1 when θ(w) = w. Note that the
conditioned Galton–Watson tree Tθ(w),n is critical if νw ≥ 1, and subcritical if 0 < νw < 1.

The complete proof of Theorem 12 is given in [3, Section 7] of the full version. Here, we only
comment on the main ideas. Indeed, for any fixed degree statistic n with P(nTw,n

= n) > 0,
(42) implies that conditionally given nTw,n

= n, Tw,n ∼ Unif(Tn); see e.g., [1, Proposition 8].
By the Skorohod coupling theorem [22, Theorem 4.30], we can assume that the convergence
in Theorem 11 holds a.s.; in other words, Condition 1 holds a.s. for the degree statistics nTw,n ,
with p = θ(w). Moreover, e.g. by resampling Tw,n conditioned on nTw,n

, we may assume

AofA 2024
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that also conditioned on the entire sequence of degree statistics (nTw,n)∞
n=1, the random trees

Tw,n, n ≥ 1, have the (conditional) distributions Unif(TnTw,n
). It follows that we may apply

Theorem 5 conditioned on the sequence of degree statistics (nTw,n
)∞
n=1; this shows that (47)

holds conditioned on (nTw,n)∞
n=1. Then, (47) also holds unconditionally by the dominated

convergence theorem. Furthermore, (48) follows from Lemma 8 (with q = 1). On the other
hand, the central idea to obtain the unconditional limit (49) is by combining the conditional
limit (47) with a limit result for the conditional expectations in (48). For this, one uses a
theorem on asymptotic normality of the degree statistics, which is proved in [20] and [24]
(see also [3, Theorem 7.6] for a different approach).

Theorem 12 gives a partial solution to [19, Problem 21.4], but the general case remains
open.

▶ Problem 14. Does (49) in Theorem 12 hold for any weight sequence w, with some
covariance matrix Γ̃θ(w) = (γ̃θ(w)(Ti, Tj))m

i,j=1?
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