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Abstract
A B-tree is a type of search tree where every node (except possibly for the root) contains between
m and 2m keys for some positive integer m, and all leaves have the same distance to the root. We
study sequences of B-trees that can arise from successively inserting keys, and in particular present
a bijection between such sequences (which we call histories) and a special type of increasing trees.
We describe the set of permutations for the keys that belong to a given history, and also show how
to use this bijection to analyse statistics associated with B-trees.
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1 Introduction and main results

B-trees, since their inception in [4], have become a popular data structure. Regarding their
mathematical analysis, there were some early results by Yao [13] and Odlyzko [11] for the
special case of 2-3-trees, but despite Knuth posing a natural open question in [7], progress
has been scarce. Perhaps most notable is the approach using Pólya urns as in [1–3,6], which
yielded results especially for the fringe analysis of B-trees. In this paper, we propose a novel
way of investigating B-trees, by focussing on what we call histories.

1.1 B-trees and their insertion algorithm
By a search tree, we mean a rooted plane tree whose nodes contain keys, which we think of as
pairwise distinct real numbers, in such a way that (1) the keys are stored in increasing order
from left to right (including within a single node), and (2) every non-leaf node containing k

keys has exactly k + 1 children, where we think of the i-th child as being attached between
the (i − 1)-th and the i-th key of its parent node. For i = 1 we interpret this as being
attached to the left of the first key, and analogously for i = k + 1, the child is attached to
the right of the last key in the node. Note that we explicitly allow leaves to contain keys,
and will refer to the intervals between consecutive keys in a leaf as gaps; thus we do not
follow the convention of [10] where the leaves really take the place of our gaps, and therefore
cannot contain keys.
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10:2 A Bijection for the Evolution of B-Trees

Let m ≥ 1. Following Knuth [10, Section 6.2.4], a B-tree of order 2m + 1 is a search tree
satisfying the following properties: Every node contains at least m and at most 2m keys,
except for the root which contains at least 1 and at most 2m keys. Moreover, the tree is
balanced in the sense that all leaves have the same distance to the root. We remark that
some authors (e.g. [4]) refer to such a tree as a B-tree of order m instead.

B-trees can be constructed via the following insertion algorithm: Given a B-tree and
a key that is not already stored in the tree, place the key in the appropriate leaf and the
appropriate position within the keys of the leaf. If, after this placement, the leaf still contains
at most 2m keys, then we are done. Otherwise, we split the node containing 2m + 1 keys by
moving the median key up into the parent node and grouping the lowest m keys and the
largest m keys each in their own node. By doing this, it might now happen that the parent
node contains 2m + 1 keys, in which case we again split it into two nodes of m vertices and
move the median key (of the parent node) up. This process may propagate all the way along
the path from the leaf where we inserted the key to the root vertex, in which case we create
a new root vertex above the old root, containing only a single key (the one that was the
median among the 2m + 1 keys of the old root), and split the old root in two. Note that the
latter case of splitting the root is the only situation in which the height of the B-tree can
increase.

For the purpose of this article, we are interested in B-trees up to isomorphism of rooted
plane trees. Equivalently, we can represent an isomorphism class by replacing all keys by
dots, as in Figure 1(left). For brevity’s sake, we will henceforth use B-tree to mean such an
isomorphism class. An alternative way to think about these isomorphism classes is to fix
the keys instead, e.g. by saying the keys are the set {1, . . . , n} – the disadvantage of this
approach being that inserting another key means having to reassign the values of some of
the old keys. Nonetheless, we will make use of both of these representations.

1.2 Main results
Let Tn be a B-tree of order 2m + 1 containing n keys. A history of Tn is a finite sequence
(T1, . . . , Tn) of B-trees of order 2m + 1 such that for all i = 2, . . . , n, the tree Ti is obtained
from Ti−1 through inserting a single key using the insertion algorithm outlined above. In
particular, Ti contains i keys. We denote by Hm(Tn) the set of all histories of Tn, and by
Hm(n) the set of all histories of any B-tree of order 2m + 1 with n keys. In other words,
Hm(n) =

⋃
Tn

Hm(Tn), where the union is taken over all (non-isomorphic) B-trees of order
2m + 1 with n keys.

We can now state our main result:

▶ Theorem 1. Let n, m ≥ 1. There is a bijection between Hm(n) and the set of all trees Hn

satisfying the following properties:
(i) Hn is a rooted plane tree on n vertices, labelled by {1, . . . , n}, such that along each path

from the root to a leaf, the labels are increasing.
(ii) The vertices of Hn at heights 2m, 3m + 1, 4m + 2, . . . have up to two children, all other

vertices have at most one child.

We will call trees Hn satisfying properties (i) and (ii) in the theorem (2m + 1)-historic
(or just historic, if it is not ambiguous) in the interest of brevity. Given a historic tree H

on n vertices, it will be useful throughout to consider all potential positions for attaching
a vertex n + 1 that lead to another historic tree. We think of these positions as external
vertices, and call the vertices in H internal to tell them apart. We also write H̄ to denote
H together with the external vertices. Furthermore, we call the internal vertices at height
2m, 3m + 1, 4m + 2, . . . branchings (irrespective of how many internal children they have).
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▶ Proposition 2. Let Hn be the historic tree corresponding to a history (T1, . . . , Tn) of
B-trees of order 2m + 1 under the bijection in Theorem 1. Then, the following holds:

(i) For any n ≥ 1, the number of external vertices of Hn equals the number of leaves of Tn.
(ii) For any n ≥ 1, the number of branchings in Hn equals the number of keys in Tn that

are not stored in leaves.
(iii) Let n ≥ 2m + 1. Consider the i-th external vertex v of Hn from the left, and let s be the

number of internal vertices in Hn strictly between v and the closest branching above v.
Then, the i-th leaf of Tn from the left contains exactly m + s keys.

We dedicate Section 2 to the proof of Theorem 1 and Proposition 2. That section will
also contain the description of the bijection. In Section 3, we exhibit a recursive construction
of π(Hn), the set of all permutations π ∈ Sn that, when used as key sequence for a B-tree,
lead to the history described by the historic tree Hn. As part of this description, we obtain
the following result:

▶ Proposition 3. Let Hn be a (2m+1)-historic tree having b ≥ 1 branchings. Let s1, . . . , sb+1
be the number of internal vertices in Hn strictly between the i-th external vertex and its
closest branching. Then

|π(Hn)| =
(

(2m + 1)!
(m!)2

)b

·
b+1∏
i=1

(m + si)!. (1)

This formula is somewhat reminiscent of the classical hook length formula, see e.g. [10,
Section 5.1.4, Exercise 20]: the number of increasing labellings of a tree with n vertices is
given by

n!
∏

v

1
Nv

,

where the product is over all vertices and Nv is the number of vertices in the subtree consisting
of v and all its descendants.

▶ Remark 4. It is possible to consider B-trees of order 2m as well, where a node splits
whenever it is assigned 2m keys. In that case, the smallest m − 1 keys end up in the left
node, the m-th key is pushed into the parent node, and the largest m keys end up in the
right node. It is still possible to define suitable (2m)-historic trees, but the distance between
a branching and the next branching below will depend on whether we go to the left or to the
right in Hn.

2 The bijection

The purpose of this section is to prove Theorem 1.
We begin by describing the bijection; see Figure 1 for an example. If n = 1, there is only

one B-tree and only one corresponding H1. For an arbitrary history (T1, . . . , Tn) ∈Hm(n),
construct the corresponding Hn as follows: Assume we already constructed Hk corresponding
to the history (T1, . . . , Tk) ∈Hm(k) for some 1 ≤ k < n. Then Tk+1 is obtained from Tk by
inserting a single new key. If this insertion takes place in the i-th leaf (counted from left to
right) of Tk before accounting for possible splits, then we attach the vertex labelled k + 1
to Hk at the i-th external vertex of Hk (counted from left to right). This gives Hk+1, and
inductively, Hn.

AofA 2024
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•

T1

−→ • •

T2

−→
•

•

•

T3

−→
•

•

• •

T4

−→
• • •

• •

T5

−→
• • • •

• •

T6

−→
•

• •

• • • •

T7

−→

• • • • •

• •

•

T8

−→

• • • • •

• • •

•

T9

1

2

3

4

5

6

9

7

8

Figure 1 A history of B-trees of order 2m + 1 = 3 on the left, with the corresponding historic
tree H9 shown on the right. The external vertices of H9 are shown in white, and are connected by
dotted lines. The vertices 3, 5, 8, and 9 are the branchings of H9.

Conversely, given some historic Hn, we can construct trees H1, . . . , Hn−1 such that Hk

is the subtree consisting of the vertices with label ≤ k. Suppose that the vertex k + 1 is
attached to Hk ⊆ Hk+1 in the i-th external vertex of Hk, and suppose we have already
constructed the history (T1, . . . , Tk) corresponding to Hk. Then we can extend this history
to the one corresponding to Hk+1 by inserting a key into the i-th leaf from the left of Tk,
and let Tk+1 be the B-tree obtained by this (possibly after performing the necessary splits).

It is clear from the description that this gives inverse maps between Hm(n) and (2m + 1)-
historic trees on n vertices, provided the constructions are at all well-defined. This is the
case if the number of external vertices on Hk equals the number of leaves of Tk, which is
exactly claim (i) in Proposition 2. Thus we proceed by proving Proposition 2, which will
imply Theorem 1.

Proof of Proposition 2. We first note that (i) is equivalent to (ii). Indeed, since all non-
branchings have outdegree 1 in Hn, and the branchings have outdegree exactly 2, the number
of branchings is one less than the number of external vertices. Similarly, it is a simple
consequence of the insertion algorithm for B-trees that every key that gets moved out of a
leaf by a split increases the number of leaves by one, so that the number of keys not stored
in leaves is one less than the number of leaves.

Next, we observe that (i) holds for n ≤ 2m. This is the case since any B-tree of order
2m + 1 for those values of n only has a single node (which is simultaneously root and leaf),
and all vertices with these labels in Hn necessarily have outdegree 1. We proceed by induction
on n.

For n = 2m + 1, we see the first split in Tn, leading to a root node containing a single
key, and two leaves containing m keys each. For Hn, we have now reached height 2m, and
thus have two external vertices – these are the children of a branching in Hn, thus there are
no internal vertices between them and the branching. This establishes both (i) and (iii) for
n = 2m + 1.

Now assume that (i) and (iii) hold for some n ≥ 2m + 1, and that we obtain Tn+1 from
Tn by adding a key to the i-th leaf, which held m + s keys in Tn. We distinguish two cases
for s:

For 0 ≤ s ≤ m−1, we end up with m+s+1 keys in the i-th leaf of Tn+1, and the number
of leaves does not change. For Hn, we need to append the vertex labelled n + 1 in place of
the i-th external vertex. Denote by w the closest branching to n + 1 (i.e., the most recent
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predecessor that is a branching; such a vertex exists since n ≥ 2m + 1). By assumption,
there are exactly s vertices strictly between w and n + 1, so n + 1 is not a branching, and
only has a single external child (and the path from that external vertex to w is one vertex
longer). Thus, properties (i) and (iii) hold for n + 1.

If, on the other hand, s = m, then adding the key splits the i-th leaf; producing two leaves
in its stead that each hold m keys. For Hn, we denote again by w the closest branching to
the i-th external vertex which becomes the position of the new vertex n + 1. Invoking (iii)
for Hn shows that there are m vertices between n + 1 and w, so n + 1 is another branching
and therefore has two new external vertices as children, replacing the old one. The closest
branching to the new external vertices is now n + 1, and there are no internal vertices strictly
between them, which again corresponds to the number of keys in the new vertices. This
shows that splits in the B-tree correspond to branchings in the historic tree and asserts (i)
and (iii) for n + 1, finishing the induction argument. ◀

3 The permutations associated with a history

Let T be a B-tree of order 2m + 1, containing n keys. We denote by π(T ) the set of all
permutations π ∈ Sn that, when used as a key sequence for the insertion algorithm, yield
the tree T . The aim of this section is to give a recursive description of π(T ) in terms of the
“trimmed” tree T (1) that is obtained from T by deleting all leaves. For this purpose, write n1
for the number of keys stored in T (1). We will rely on the following observation:

Consider a history (T1, . . . , Tn = T ). Let i1 < i2 < · · · < in1 be those i where Ti was
obtained from Ti−1 by inserting a key that led to a split (note that this is consistent with the
indexing). Then

(
T

(1)
i1

, . . . , T
(1)
in1

)
is a valid history of T (1). We remark that this is a purely

combinatorial statement: If we instead looked at i.i.d. keys sampled from some continuous
probability distribution, then the processes (Tn)n≥1 and

(
T

(1)
in

)
n≥1 would be quite different!

As a consequence, suppose we are given a permutation π ∈ π(T ). This π produces
a history (T1, . . . , Tn). Moreover, keeping track of the actual keys, we obtain a sequence
Ki1 , . . . , Kin1

of those keys that ascend above the leaves at times i1, . . . , in1 . Forgetting
about their actual values and only keeping track of the relative size of the Kij then produces a
new permutation π(1) ∈ π(T (1)), where, moreover, π(1) produces the history

(
T

(1)
i1

, . . . , T
(1)
in1

)
.

This defines a map ΨT : π(T )→ π(T (1)), π 7→ π(1), and our goal will be to invert this: Given
a π(1), we want to find all π ∈ Sn that lead to such π(1).

This inversion will come in the form of a 3-step algorithm, described in detail below, in
Section 3.2. However, we will give a high-level overview now:
1. In the first step, we start from a given π(1) ∈ π(T (1)), and lift it to a sequence

(Ki1 , . . . , Kin1
) as above.

2. In the second step, we use π(1) and Proposition 2 to construct an acyclic digraph
G = G(T, π(1)). Lemma 7 states that the set of topological labellings of G corresponds
bijectively to the set of historic trees of T that produce π(1).

3. Therefore, in the third step, we can fix a historic tree H obtained from step 2, and restrict
our attention to π(H). The algorithm given will produce an arbitrary element of π(H)
after making a sequence of choices; different choices will lead to different permutations,
and going over all permitted choices produces the entire set, see Lemma 8. In more
concrete terms, we start step 3 with an “empty” permutation consisting of n blank
symbols, and by recursively comparing it against Ki1 , . . . , Kin1

and H we will replace
the blanks by entries from {1, . . . , n}.

AofA 2024



10:6 A Bijection for the Evolution of B-Trees

3.1 Preparatory lemmas
To ensure well-definedness at a later point (Lemma 7), we need the following lemma:

▶ Lemma 5. There is a well-defined map Ψ̂T : Hm(T )→ π(T (1)) that assigns to a history
(T1, . . . , Tn = T ) the π(1) constructed above, where π ∈ π(T ) is any permutation producing
the history.

Proof. We will assume that the keys in Tj are exactly 1, . . . , j (labelled from left to right,
since Tj is a search tree) for 1 ≤ j ≤ n, and relabel them accordingly whenever we insert
a new key. We show inductively that we can (a) determine uniquely which key moved up
from the leaves at the times i1, i2, . . . and (b) keep track of how the keys in T

(1)
j−1 change

as we go to T
(1)
j . For T1, . . . , T2m, there is nothing to show. In T2m+1, we know that the

unique key in the root node has label m + 1. Suppose we have verified (a) and (b) for some
j ≥ 2m + 1. If j + 1 is not one of i1, i2, . . . , in1 then no splits happen, and comparing Tj+1

with Tj reveals which leaf grew by one. All keys in T
(1)
j to the right of that leaf are increased

by 1 for T
(1)
j+1, all other keys in T

(1)
j remain the same. If on the other hand j + 1 is one of

i1, i2, . . . , in1 then comparing Tj+1 and Tj reveals which leaf of Tj split. As before, all keys
in T

(1)
j to the right of that leaf are increased by 1 for T

(1)
j+1, all other keys in T

(1)
j remain the

same. Moreover, let K be the largest key in T
(1)
j to the left of the splitting leaf. Then the

new key introduced to T
(1)
j+1 will be K + m + 1, and it will be the unique key in Tj+1 that is

placed between the two leaves coming from the split leaf.
Thus, only from the history of Tn we can keep track of which keys were introduced to

T
(1)
j in which order, which yields Ki1 , . . . , Kin1

after updating all the keys and thus π(1). ◀

We also note the following simple fact about the bijection from Theorem 1:

▶ Lemma 6. Let Hn be the historic tree for (T1, . . . , Tn). Suppose that vertex i of a historic
tree H is a branching, and suppose that the key that is pushed upwards from the splitting
leaf at that time is Ki ∈ {1, . . . , n} in Tn. Let j ∈ {i + 1, . . . , n} be another vertex of H,
and let kj denote the key added at time j in the history. Then, kj > Ki if and only if j is
positioned to the right of i in H (not necessarily as a descendant of i), and kj < Ki otherwise.
Moreover, if j > i is another branching of H, then also Kj > Ki if and only if j is to the
right of i, and Kj < Ki otherwise.

Proof. This follows from the observation that after the split pushes Ki upwards, the leaves
of the B-tree can be partitioned into those containing keys < Ki, which are therefore to
the left, and those containing keys > Ki, which are further to the right, as well as from the
description of the bijection given in Section 2. ◀

3.2 The algorithm
We now turn our attention to the promised “inverse” of ΨT . Denote by h the height of T .

For h = 0, the tree T only consists of the root node, and then π(T ) = Sn. For h > 0,
suppose we know π(T (1)).

Step 1. By performing an in-order traversal of the keys in T , we can see which of the
numbers 1, . . . , n correspond to the keys in T (1). In other words, in-order traversal gives a
monotone injection ι : {1, . . . , n1} ↪→ {1, . . . , n}, by sending i to the j that is the i-th key
from the left among those not in a leaf node of T . This injection in turn allows us to write
any π(1) ∈ π(T (1)) as a sequence πι =

(
Ki1 , . . . , Kin1

)
.
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Step 2. We construct a rooted digraph G = G(T, π(1)) in the following way: First, construct
a binary search tree from π(1). Then, subdivide the edges (and move the root up) in such a
fashion that the nodes of the binary search tree become the branchings of a historic tree and
append extra vertices to match with the leaves of T , according to Proposition 2(iii). We then
direct all edges away from the root, and consider the directed path π(1)(1) −→ · · · −→ π(1)(n1).
Merge this path into the (mostly empty) historic tree by identifying the vertex π(1)(i) in the
path with the vertex containing π(1)(i) in the tree, for all i = 1, . . . , n1. For bookkeeping,
we colour the edges coming from the path red, and the edges from the tree black. Finally,
delete all labels/keys from the resulting digraph G.

▶ Lemma 7. The digraph G = G(T, π(1)) constructed in this fashion is acyclic. Furthermore,
any topological labelling of G (that is, any labelling such that all edges point towards the
higher label) induces a historic tree H for T on the black edges. Such H corresponds to those
histories of T that are obtained by π ∈ Sn such that π(1) is the associated history of T (1). In
other words, we have

{topological labellings of G(T, π(1))} 1:1←→ Ψ̂−1(π(1)),

where the bijection is the one from Theorem 1 after removing the red edges from G.

Step 3. It remains to give the actual description of π(T ). Specifically, writing π(H) for the
set of π ∈ Sn that produce the history encoded by the historic tree H, we can pick an H

coming from a topological labelling of G(T, π(1)) and describe the corresponding π(H). We
are given the key sequence πι = (Ki1 , . . . , Kin1

) from Step 1, as well as a fixed topological
labelling of G, with the induced historic tree H.

In what follows, p will be a sequence of distinct integers which is to be determined,
thought of as a map onto some range R. Furthermore H will be a historic tree on |R| vertices,
and K is a subsequence of πι containing (in the same order) all those Kij

that appear in R.
Moreover, we demand that the length of the sequence K equals the number of branchings in
H. Then, the following recursive procedure constructs all desired π:

Step 3.0. Initialize p = π as a yet undetermined permutation in Sn, thus R = {1, . . . , n}.
Further, set H = H and K = πι.

Step 3.1. If |R| ≤ 2m, let p be an arbitrary bijection onto R. Otherwise, choose an arbitrary
position 1 ≤ j1 ≤ 2m + 1 to place K1, the first element of K (i.e., fix p(j1) = K1), mark m

additional positions among the first 2m + 1 of p as small, and the remaining m as large.
For j > 2m + 1, mark the j-th entry of the permutation as small if the vertex labelled j

is positioned to the left of the topmost branching in H, and as large otherwise.

Step 3.2. Define new undetermined bijections p±, where p+ contains all the large positions
of p, and p− all the small ones. These bijections will have the ranges R+ := R ∩
{K1 + 1, . . . , n} and R− := R ∩ {1, . . . ,K1 − 1}, respectively. Moreover, let K± be the
subsequences of K containing, in the same order, the entries strictly larger/smaller than
K1. Also split H into H± such that H− contains the vertices labelling the small positions
in π and such that H− below the m-th vertex is equal to the left subtree of H from Step
3.1. Construct H+ analogously, then relabel H± with integers from 1, . . . , |H±| while
maintaining the relative order.

Step 3.3: Repeat steps 3.1–3.3 for both (p±,R±,K±,H±).

AofA 2024



10:8 A Bijection for the Evolution of B-Trees

▶ Lemma 8. If H comes from a topological ordering of G(T, π(1)) and πι is constructed from
T and π(1) as in step 1, then the following holds for step 3.2:

(i) K± consists of those entries of πι that are contained in R±.
(ii) |H±| = |R±| ≥ m, and each of R± is a set of consecutive integers.
(iii) The lengths of K± are equal to the number of branchings in H±.

Moreover, the set of permutations constructible with step 3 is π(H).

▶ Remark 9. Since we have π(T ) =
⋃

H π(H), where the union is disjoint and to be taken
over all histories leading to T , this means we can construct π(T ) out of π(T (1)) by performing
steps 1–3 for all π(1) in π(T (1)).

3.3 An example

We give an example to illustrate the procedure: Suppose m = 1, n = 9, and consider the
permutation π = (6, 1, 2, 4, 7, 5, 9, 8, 3). This permutation produces a B-tree T of the form
given in Figure 2a – in fact, this permutation gives the history shown in Figure 1. Thus T (1)

contains 4 keys, and π(1) = (1, 3, 4, 2) ∈ π(T (1)).

Step 1. The in-order traversal of T reveals that the keys in T (1) correspond to the keys
2, 4, 6, 8 in T . Then the injection on the keys is given by {1, 2, 3, 4} ∋ i 7→ 2i ∈ {1, . . . , 9},
and applying this to the entries of π gives πι = (2, 6, 8, 4).

Step 2. Constructing a binary search tree from π(1) gives the one shown in Figure 2b which
is then turned into the DAG G = G(T, π(1)) shown in Figure 2c (the remaining labels are
there to indicate how it connects to the binary search tree and to π(1)). This graph has three
distinct topological labellings, one of which induces the H depicted in Figure 2d.

Step 3. We initialize p = (_, _, _, _, _, _, _, _, _), R = {1, . . . , 9}, K = (2, 6, 8, 4) and
H = H. After step 3.1, we have e.g. p = (ℓ, s, 2, ℓ, ℓ, ℓ, ℓ, ℓ, ℓ), where we write s for a small
position, and ℓ for a large. Here, the assignment of ℓ, s, 2 to the first 3 positions can be done
arbitrarily (but we choose the options that will reconstruct π from above), the remainder
is given by comparing it to H: the vertices labelled 4, 5, . . . are all positioned to the right
of the top-most branching in H. This leads to p− = (_) with R− = {1}, which in the
next round of the recursion simply becomes p = (1), and to p+ = (_, _, _, _, _, _, _) with
R+ = {3, . . . , 9}, K+ = {6, 8, 4}, and an H+ = H ′ given by Figure 2e.

In the second round of the recursion (using the “+”-branch, as the other one is trivial),
we have e.g. p = (6, s, ℓ, s, ℓ, ℓ, s), where the assignment of ℓ, s, 6 to the first 3 positions
can again be done arbitrarily, and the rest is governed by H ′. This gives p± = (_, _, _)
with R− = {3, 4, 5},K− = (4) and R+ = {7, 8, 9},K+ = (8), respectively. Due to the small
number of entries, both H± are given by the unique 3-historic tree on 3 vertices. In the
next two rounds of the recursion, the p± will then be filled by arbitrary assignments of the
numbers in their range, say p+ = (7, 9, 8) and p− = (4, 5, 3).

Finally, we can put everything back together by embedding a pair of p± into the previous
p according to the assignment of s and ℓ. Thus, p+ = (7, 9, 8) and p− = (4, 5, 3) together
yield (6, 4, 7, 5, 9, 8, 3). This in turn was p+ from the first iteration of step 3, and together
with the corresponding p− = (1), we regain π = (6, 1, 2, 4, 7, 5, 9, 8, 3).
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(a) The B-tree T .

1

3

2 4

(b) Binary search
tree.

1
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2 4

(c) G(T, π(1)).

1

2

3

4

5

6

9

7

8

(d) H.

1

2

3

4

7

5

6

(e) H ′.

Figure 2 Steps in the algorithm of Section 3, as performed in Subsection 3.3.

3.4 Proofs
Proof of Lemma 7. For G to contain a directed cycle, we need two vertices vi = π(1)(i) and
vj = π(1)(j) such that vi is a descendant of vj in the tree (i.e., according to the black edges),
but vj is a descendant of vi according to the red edges. However, the latter only means that
i < j. Accordingly, π(1)(i) was the first to be used for the binary search tree’s construction,
and hence vi cannot be below vj in the tree. Thus G is acyclic.

Trivially, any topological ordering of G yields an increasing labelling for the tree, so the
induced H is historic. By construction of H, the final tree in the corresponding history
(T1, . . . , Tn) will have the same leaves as T (according to Proposition 2(iii)), and thus the
same set of keys in T

(1)
n as in T (1). Moreover, by Lemma 6, these keys are moved upwards

from the leaves in the relative order described by π(1), hence T
(1)
n = T (1) and H is a history

of T that belongs to Ψ̂−1(π(1)).
Conversely, consider now a history (T1, . . . , Tn) ∈ Ψ̂−1(π(1)) with the associated historic

tree Hn. As in step 1, we obtain from π(1) and Tn a sequence πι = (Ki1 , . . . , Kin1
), where the

ij are precisely the times in the history when a leaf was split. The historic tree Hn therefore
must have its branchings labelled by the ij (and this forces the labelling to be increasing
along the red edges in G), and to be consistent with Lemma 6, the left/right-positioning
of the branchings has to correspond to the one in a binary search tree obtained from πι or
equivalently π(1). Thus, such an Hn is of the type constructed in Step 2, and its labelling is
a topological labelling of G. ◀

Proof of Lemma 8. Claim (i) is evident from the construction. For (ii), the equality |H±| =
|R±| follows from Lemma 6, we have |R±| ≥ m since |R| ≥ 2m + 1, and consecutivity is
again immediate from the construction. Claim (iii) again follows from Lemma 6. Taken
together, these three claims ensure that the recursion in step 3 is well-defined whenever we
initialize as in step 3.0.

For the final assertion, we first define π± to be permutations obtained from p± in step 3.2
by mapping R± to {1, . . . , |R±|} in an order-preserving fashion. We now use strong induction
on n, where T, π(1), and H are arbitrary but coherent in the sense of Lemma 7. For n ≤ 2m,
there is nothing to show, as step 3.1 gives π(H) = Sn.

For all larger n, observe that if π ∈ π(H) then Ki1 is the median of π(1), . . . , π(2m + 1)
and π± ∈ π(H±). The first property is equivalent to Ki1 being moved upwards from the
leaves at the first branching of H and is ensured by step 3.1. The second property comes from
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10:10 A Bijection for the Evolution of B-Trees

Lemma 6: The large entries in π are precisely (except for the first m) those corresponding
to the right descendants of the first branching in H. This holds by step 3.2, and π± are
constructible by the induction hypothesis since |R±| < n. Thus, such π is constructible.

Conversely, suppose π is constructible. Then, by the recursion, π± are constructible,
and thus π± ∈ π(H±) by the induction hypothesis. The i-th entry of π± is simultaneously
the i-th large/small entry (according to step 3.1) of π. For i < m, this is chosen arbitrarily
among all possible configurations for the first 2m + 1 entries of π. For i > m, the entry in π

is dictated by H, but is not among the first 2m + 1. Thus, it corresponds to a descendant of
the first branching, and it follows from Lemma 6 that filling the large/small entries with the
entries from π± in order produces a π ∈ π(H). ◀

Proof of Proposition 3. This lemma follows from an analysis of step 3. Indeed, whenever
we are placing a K1 into the permutation in step 3.1, we have 2m + 1 choices for the exact
position, and then

(2m
m

)
choices for the location of the small positions within the first 2m + 1

slots of p. Placing such a K1 corresponds exactly to the branchings in H, and it is clear that
every possible choice will lead to a different π in the end. Whenever we have |R| ≤ 2m, we
have |R|! choices. Moreover, invoking Lemma 8, the corresponding K is the empty sequence,
hence the entries of R are the keys that end up in a joint leaf – say, the i-th leaf – of T .
Thus by Proposition 2(iii), |R| = m + si, and (1) follows. ◀

4 The number of histories

In this section, we will be interested in the number of possible histories that can arise, and
in particular the asymptotic behaviour of this number. We focus on the case m = 1. In this
case, a historic tree is a binary increasing tree where only vertices at even heights can have
two children. Vertex 2 is always the only child of vertex 1, and vertex 3 is always the only
child of vertex 2. It will be advantageous later to remove vertex 1 (and decrease all other
labels by 1); we call the result a reduced historic tree. In such a tree, only vertices at odd
heights can have two children.

If we remove the top two vertices (vertices 1 and 2, referred to in the following as the
stem) from a reduced historic tree with n vertices, then it decomposes into two smaller
reduced historic trees, each possibly only consisting of a single external vertex. On the
level of generating functions, this translates to a second-order differential equation for the
exponential generating function H(x) =

∑
n≥0

hn

n! xn, where hn is the number of reduced
historic trees with n internal vertices (equivalently, the number of histories of length n + 1).
We have

H ′′(x) = H(x)2, H(0) = H ′(0) = 1. (2)

One can compare this to the well-known differential equation T ′(x) = T (x)2 for the ex-
ponential generating function associated with arbitrary binary increasing trees, see for
example [8, Lemma 6.4]. We remark here that the tree consisting only of a single external
vertex is often not counted, in which case the equation becomes T ′(x) = (1 + T (x))2 instead.
The sequence hn (see [12, A007558]) and the associated differential equation (2) were analysed
in a different context in [5]: the differential equation has an explicit solution that can be
expressed in terms of the Weierstrass elliptic function. It has a dominant singularity at
ρ ≈ 2.3758705509 where

H(x) ∼ c

(1− x/ρ)2

for a constant c = 6ρ−2 ≈ 1.0629325375. This leads to the following asymptotic behaviour:
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hn

n! ∼ cnρ−n = 6nρ−n−2.

We would now like to generalise the differential equation to arbitrary m ≥ 1. We remove
the first m vertices from a (2m + 1)-historic tree to obtain a reduced (2m + 1)-historic tree,
which is now a binary increasing tree where only vertices at heights ≡ −1 mod m + 1 can
have two children. Removing the stem consisting of m + 1 vertices decomposes such a tree
into two smaller trees with the same property (each of them can also be a single external
vertex). So in analogy to (2), we obtain a differential equation of order m + 1, namely

H(m+1)(x) = H(x)2, H(0) = H ′(0) = · · · = H(m)(0) = 1. (3)

This higher-order differential equation can no longer be solved in an explicit fashion,
as it was the case for m = 1. If we assume that there is a dominant singularity ρm where
the behaviour of H is of the form cm(1− x/ρm)−am , then comparing the two sides of the
equation gives us

cm
am(am + 1) · · · (am + m)

ρm+1
m

(1− x/ρm)−am−m−1 = c2
m(1− x/ρm)−2am ,

thus am = m + 1 and cm = (2m+1)!
m! ρ−m−1

m . Applying singularity analysis would then yield

[xn]H(x) ∼ cm

m!n
mρ−n

m = (2m + 1)!
(m!)2 nmρ−n−m−1

m .

This leads us to the following conjecture:

▶ Conjecture 10. For every m ≥ 1, the number of reduced (2m + 1)-historic trees with n

vertices (corresponding to histories of length n + m) is asymptotically equal to

n! · (2m + 1)!
(m!)2 nmρ−n−m−1

m

for some positive constant ρm.

Numerical evidence for small values of m seems to support this conjecture, as the fit of
the asymptotic formula with the actual coefficients is excellent. Experimental values of the
exponential growth rate ρ−1

m are given in Table 1.

Table 1 Experimental values of ρ−1
m for 2 ≤ m ≤ 6.

m 2 3 4 5 6
ρ−1

m 3.7746 5.1792 6.5857 7.9928 9.3999

5 Statistics of B-trees via historic trees

Let us now study B-trees that are constructed by successive insertion of n random numbers.
Equivalently, we can think of them as being constructed from a random permutation of
1, 2, . . . , n. In order to apply the connection to historic trees, we need to take the number of
permutations associated with a specific history into account.

Again, we focus on the special case m = 1. Proposition 3 tells us that the number of
permutations corresponding to a specific historic tree T is in this case 6b(T )2i(T ), where b(T )
is the number of branchings and i(T ) the number of internal vertices that lie directly between
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a branching and an external vertex. This remains true if we consider reduced historic trees.
We associate this number as a weight w(T ) = 6b(T )2i(T ) with every reduced historic tree
T and consider the weighted exponential generating function (rather than the unweighted
one that was analysed in the previous section). In the recursive decomposition of a reduced
historic tree into its stem and two smaller trees T1 and T2, we have b(T ) = b(T1) + b(T2) + 1
and i(T ) = i(T1) + i(T2). This is even true if T1 or T2 (or both) only consist of a single
external vertex. Thus we obtain

w(T ) = 6b(T1)+b(T2)+1 · 2i(T1)+i(T2) = 6w(T1)w(T2). (4)

On the level of the weighted exponential generating function W (x), (2) becomes

W ′′(x) = 6W (x)2, W (0) = 1, W ′(0) = 2. (5)

Unlike (2), however, there is now a very simple explicit solution, namely W (x) = 1
(1−x)2 .

This is not unexpected, since the total weight of all reduced historic trees with n internal
vertices must be equal to the number of permutations of 1, 2, . . . , n + 1. Thus

W (x) =
∑
n≥0

(n + 1)!
n! xn = 1

(1− x)2 .

Recall that the number of external vertices in n-vertex reduced 3-historic trees is in
bijection with the number of leaves in 2-3-trees built from n + 1 keys. Thus, as a next
step, we incorporate the number of external vertices e(T ) as an additional statistic in our
generating function in order to prove the following theorem:

▶ Theorem 11. Let Ln be the number of leaves in a 2-3-tree built from n random keys. Then
we have E(Ln) = 3

7 (n + 1) and V(Ln) = 12
637 (n + 1) for n > 11. Moreover, the central limit

theorem

Ln − E(Ln)√
V(Ln)

d→ N(0, 1)

holds.

Proof. Let us consider the bivariate generating function in which the second variable u

marks the number of external vertices e(T ):

W (x, u) =
∑

T

1
|T |!x

|T |ue(T ).

Since e(T ) = e(T1)+e(T2), the differential equation (5) is actually unaffected by the additional
variable; the only change concerns the initial values. We have (where derivatives are taken
with respect to x)

W ′′(x, u) = 6W (x, u)2, W (0, u) = u, W ′(0, u) = 2u, (6)

which no longer has an equally simple explicit solution. Using the method described in [5], it
can, however, be expressed as the inverse function to

X(w, u) =
∫ w

u

1√
4t3 + 4u2(1− u)

dt.
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It follows that W (x, u) has a dominant singularity at ρ(u) =
∫ ∞

u
1√

4t3+4u2(1−u)
dt: as w →∞,

we have

X(w, u) = ρ(u)− 1√
w

+ O(w−7/2),

thus

W (x, u) ∼ 1
(ρ(u)− x)2

at the singularity. An application of the quasi-power theorem [9, Theorem IX.8] yields a
central limit theorem for the number of external vertices. Moreover, one can obtain explicit
expressions for the moments. Differentiating (6) with respect to u and plugging in u = 1, we
obtain the following differential equation for W1(x) = ∂

∂u W (x, u)
∣∣∣
u=1

:

W ′′
1 (x) = 12W (x, 1)W1(x) = 12

(1− x)2 W1(x), W1(0) = 1, W ′
1(0) = 2,

since we already know that W (x, 1) = W (x) = (1− x)−2. This linear differential equation
has the two linearly independent solutions (1− x)−3 and (1− x)4, and one obtains

W1(x) = 6
7(1− x)3 + (1− x)4

7 .

Thus for n > 4, we have [xn]W1(x) = 6
7 [xn](1− x)−3 = 6

7
(

n+2
2

)
. Consequently, the average

number of external vertices is

[xn]W1(x)
[xn]W (x) =

6
7
(

n+2
2

)
n + 1 = 3(n + 2)

7 .

In the same way, one can treat the second moment: to this end, we consider W2(x) =(
∂

∂u

)2
W (x, u)

∣∣∣
u=1

. Differentiating (6) twice with respect to u and plugging in u = 1 now
gives us

W ′′
2 (x) = 12W (x)W2(x) + 12W1(x)2

= 12
(1− x)2 W2(x) + 12

( 6
7(1− x)3 + (1− x)4

7

)2
, W2(0) = W ′

2(0) = 0.

The solution to this differential equation is given by

W2(x) = 54
49(1− x)4 −

108
91(1− x)3 −

24
49(1− x)3 + 4

7(1− x)4 + 2
637(1− x)10.

So for n > 10, [xn]W2(x) = 54
49

(
n+3

3
)
− 108

91
(

n+2
2

)
= 9(n+1)(n+2)(13n−3)

637 . It follows that the
variance of the number of external vertices is

[xn](W1(x) + W2(x))
[xn]W (x) −

( [xn]W1(x)
[xn]W (x)

)2
= 12(n + 2)

637 .

This completes the proof. ◀

The approach in our proof provides an alternative to the analysis via Pólya urns, see
[1–3, 13] (in particular, the mean was first determined by Yao [13] by explicitly solving a
recursion). Here, one can think of the leaves in a B-tree as balls in an urn of different types

AofA 2024



10:14 A Bijection for the Evolution of B-Trees

depending on the number of keys they hold. Adding a new key then corresponds to picking
a ball from the urn and replacing it by a new ball (of different type), or two new balls in the
case of a node split.

The same calculations for the moments as in Theorem 11 can also be carried out for
higher values of m, though the expressions become more complicated. For general m ≥ 1,
the differential equation becomes

W (m+1)(x, u) = (2m + 1)!
m!2 W (x, u)2,

with initial values

W (i)(0, u) = (m + i)!u, i = 0, 1, . . . , m.

In particular, we have W (x) = W (x, 1) = m!(1 − x)−m−1, and W1(x) = ∂
∂u W (x, u)

∣∣∣
u=1

satisfies the linear differential equation

W
(m+1)
1 (x) = 2(2m + 1)!

m! (1− x)−m−1W1(x).

Up to a trivial change of variables (substituting for 1−x), this is a linear differential equation
of Cauchy–Euler type that can be solved with standard tools. In fact, setting e−t = 1− x

turns it into a linear differential equation with constant coefficients. Functions of the form
f(x) = (1− x)−b with

bm+1 = b(b + 1) · · · (b + m) = 2(2m + 1)!
m! = (2m + 2)!

(m + 1)! (7)

are particular solutions to this differential equation. Note that b = m + 2 is always a solution
to (7). The general solution can be determined as linear combination of particular solutions,
taking the initial values into account. The term of the form c(1−x)−m−2 in W1(x) dominates
asymptotically.

To give one more concrete example, for m = 2 we have the differential equation

W ′′′(x, u) = 30W (x, u)2, W (0, u) = 2u, W ′(0, u) = 6u, W ′′(0, u) = 24u.

Thus W (x, 1) = 2(1− x)−3. The solutions to (7) are now b = 4 and b = −7±
√

71i
2 . Taking

the initial values into account, we obtain

W1(x) = 60
37(1− x)4 + 7

√
71 + 31i

37
√

71
(1− x)(7+

√
71i)/2 + 7

√
71− 31i

37
√

71
(1− x)(7−

√
71i)/2.

Thus the average number of external vertices in reduced 5-historic trees with n vertices is
10(n+3)

37 + O(n−13/2).
For general m, one finds from the differential equation that the function ℓ(t) = W1(1−e−t)

has Laplace transform

L(s) = m!((m + 1)m+1 − sm+1)
(s−m− 1)((m + 2)m+1 − sm+1)

,

where sh = s(s + 1) · · · (s + h − 1) is a rising factorial as in (7). The term κm

s−m−2 in the
partial fraction decomposition corresponds to the dominant term

W1(x) ∼ κm

(1− x)m+2 .
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Here we have, with Hk = 1 + 1
2 + · · ·+ 1

k denoting a harmonic number,

κm = m!
2(H2m+2 −Hm+1) .

Consequently, the average number of external vertices in reduced (2m + 1)-historic trees
with n vertices is asymptotically equal to κm

(m+1)! ·n = 1
2(m+1)(H2m+2−Hm+1) ·n. Some explicit

values of the constant κm

(m+1)! are given in Table 2.

Table 2 Values of the constant κm
(m+1)! = 1

2(m+1)(H2m+2−Hm+1) for 1 ≤ m ≤ 10.

m 1 2 3 4 5 6 7 8 9 10
κm

(m+1)!
3
7

10
37

105
533

252
1627

2310
18107

25740
237371

9009
95549

136136
1632341

11639628
155685007

10581480
156188887

6 Conclusion and perspective

The connection between B-tree histories and historic trees provides us with a novel way
to analyse B-trees and their evolution. Possible future directions include studying further
statistics of B-trees and historic trees and considering higher values of m. In particular, a
proof of Conjecture 10 would be desirable. It might even be interesting, at least from a
purely mathematical perspective, to allow m to grow with n.
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