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Abstract
It is a classic result in spectral theory that the limit distribution of the spectral measure of random
graphs G(n, p) converges to the semicircle law in case np tends to infinity with n. The spectral
measure for random graphs G(n, c/n) however is less understood. In this work, we combine and
extend two combinatorial approaches by Bauer and Golinelli (2001) and Enriquez and Menard (2016)
and approximate the moments of the spectral measure by counting walks that span trees.

2012 ACM Subject Classification Mathematics of computing → Generating functions; Mathematics
of computing → Spectra of graphs

Keywords and phrases Spectrum of random matrices, generating functions

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.11

Related Version Full Version: http://arxiv.org/abs/2405.08347 [12]

Funding This work was supported by the RandNET project, MSCA-RISE - Marie Skłodowska-Curie
Research and Innovation Staff Exchange Programme (RISE), Grant agreement 101007705.
Eva-Maria Hainzl: This work was partially founded by the Austrian Science Foundation FWF,
projects F50-02, F55-02.

Acknowledgements We thank Nicolas Curien and Laurent Ménard for encouraging us to work on
this topic, their availability and their insights on the spectrum of random graphs. We also thank the
Institut de Recherche en Informatique Fondamentale (IRIF), Université Paris Cité, for hosting us.

1 Introduction

Random matrix theory studies the spectrum of random matrices and has found many
applications, including in physics [22], wireless communication [19] and numerical analysis
[7]. A fundamental result of this field is that the limit distribution of the spectral measure of
so-called Wigner matrices converges to the semicircle law [20, 21] and it is worth mentioning
that a common proof of this theorem by the moment method relies on counting closed walks
on trees (e.g. [10]). This universal law has been extended to several other classes, such
as adjacency matrices of random regular graphs [13, 18] and Erdős-Rényi random graphs
G(n, p) when pn → ∞. In particular, Bauer and Golinelli [1] pointed out the importance of
the spectral measure of adjacency matrices of random graphs and explained how to compute
the moments by counting walks on trees. Zakharevich [24] picked up on the approach and
showed further that the spectral distribution of G(n, c/n) converges to a limit distribution
µc which has infinite support. However, for p = c/n, several technical conditions of classic
theorems in probability theory are not met such that one could apply standard techniques
and despite recent progress [3, 15, 4, 16, 6], µc remains an enigma. In [8], Enriquez and
Ménard returned to combinatorial methods and computed several terms of the asymptotic
expansion, as c tends to infinity, of the moments of the normalized spectral measures

µc
n = 1

n

∑
λ∈Sp(c−1/2A(G(n,c/n)))

δλ
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where A(G(n, c/n)) is the adjacency matrix of a random graph G(n, c/n). We go along the
steps in the computation of moments of this measure for clarity and start with

mℓ(µc
n) =

∑
G

P
[
G
(

n,
c

n

)
= G

]
· 1

n

∑
λ∈Sp(c−1/2A(G))

λℓ.

This formulation reduces to counting closed walks in G, since the sum of the eigenvalues to
the power ℓ is just the trace of the matrix to the power ℓ, and a value

(
Aℓ
)

i,i
on the diagonal

of this matrix is the number of closed walks of length ℓ starting at the vertex i. That is,

∑
λ∈Sp(c−1/2A(G))

λℓ =
(

1
c

)ℓ/2
tr
(
A(G)ℓ

)
=

∑
closed walk (v1,v2,...vℓ,v1)∈G

(
1
c

)ℓ/2
.

Thus, the moment equals

mℓ(µc
n) = 1

n

1
cℓ/2

∑
(v1,v2,...vℓ)∈[n]ℓ

E [Xv1,v2Xv2,v3 · · · Xvℓ,v1 ] ,

where Xvi,vj
is the random variable taking the value 1 if the edge (vi, vj) is in the graph

and 0 otherwise. Observe that if a closed walk (v1, . . . , vℓ, v1) contains e distinct edges, then
E [Xv1,v2Xv2,v3 · · · Xvℓ,v1 ] = (c/n)e. The number of closed walks on [n] of length ℓ with m

vertices is bounded by nmmℓ. Since the total number of vertices is bounded by the length,
we have nmmℓ ≤ nmℓℓ. The contribution to the moment of all such closed walks containing
e distinct edges is bounded by

1
n

1
cℓ/2 nmℓℓ

( c

n

)e

= ce−ℓ/2ℓℓnm−e−1.

We are considering a fixed moment ℓ, so this tends to 0 with n whenever m < e + 1, that
is, whenever the graph (necessarily connected) induced by the closed walk is not a tree. In
particular, when ℓ is odd, the induced graph cannot be a tree, so the moment of order ℓ

tends to 0.
Let wm,2ℓ denote the number of closed walks of length 2ℓ spanning a tree with m vertices.

We now consider the even moment of order 2ℓ and split the sum according to the number m

of distinct vertices in the closed walk

m2ℓ(µc
n) = 1

n

1
cℓ

ℓ+1∑
m=1

(
n

m

)( c

n

)m−1
wm,2ℓ.

Let us define the limit distribution µc = limn→+∞ µc
n. Then its odd moments are zero and

its moment of order 2ℓ is

m2ℓ(µc) = lim
n→+∞

1
n

1
cℓ

ℓ+1∑
m=1

(
n

m

)( c

n

)m−1
wm,2ℓ =

ℓ+1∑
m=1

1
cℓ−m+1

wm,2ℓ

m! .

By identifying the generating functions of (wm,2ℓ)ℓ≥0, for m = ℓ+1 and m = ℓ, as the Stieltjes
transform of a specific measure, Enriquez and Ménard were able to derive an approximation
of the moments of the limit law and computational experiments showed that even the density
of this measure approximated the shape of the histograms of eigenvalues of sampled matrices
quite well. An extension of this approximation to the order c−2 took considerable effort on
several sides, including the combinatorics of closed walks on trees.
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The aim of this paper is to provide further insight into what we call tree walks, and
consequently an efficient way to compute the numbers wm,2ℓ, for all 2ℓ ≥ 0 and 0 ≤ m ≤ ℓ+1,
and their generating functions. But as we delve further into their connection with the spectral
measure, we come across surprising and beautiful identities involving the generating function
of the Catalan numbers.

Section 2 presents the formal definition of various tree walk families and our main results,
which are Theorem 3 and Theorem 4. Theorem 3 expresses the generating function of tree
walks as a rational function of the Catalan generating function. Theorem 4 gives several
error terms for an asymptotic approximation of µc as c tends to infinity. We also presents
Conjecture 5, which states that this asymptotic approximation could be extended to an
arbitrary order, turning it into a form of asymptotic expansion. This paper contains only the
main steps of the proofs, a complete version being available on arxiv [12]. The main steps of
the proof of Theorem 3 and Theorem 4 are given respectively in Sections 3 and 4. Numerical
experiments are provided in Section 5.

2 Main results

Before we state our main results, let us clarify some definitions.

▶ Definition 1 (Tree walks). A tree walk of size m is a walk on the complete labeled graph
of size m that visits every node, starts and ends at the same node, and induces a tree. More
formally, a tree walk W = (v1, v2, . . . , vℓ) is a sequence of vi ∈ [m] such that

V :=
⋃

j∈[ℓ]

{vj}, E :=
⋃

j∈[ℓ−1]

{(vj , vj+1)} ∪ {(vℓ, v1)}

define a labelled tree T (W ) with vertex set V = [m] and edge set E. Further, we define v1 to
be the root of the induced tree T (W ). Thus, we talk freely about the root and leaves of W ,
when referring to the root and leaves of T (W ). We further stick to the convention that if the
root has degree 1 it is also a leaf of T (W ).
In the following, we study the number wm,2ℓ of tree walks of length 2ℓ that span a tree of size
m and the generating function

W (v, z) =
∑

ℓ,m≥0
wm,2ℓ

vm

m! zℓ.

Since a walk of length 2ℓ spans a tree with at most ℓ + 1 vertices, we have wm,2ℓ = 0 if
ℓ < m − 1 and for ℓ ≥ 1, we define w0,2ℓ = w1,2ℓ = 0 and w1,0 = 1, w0,0 = 0.

The ordinary generating function of the moments of µc is therefore given by

Mµc(z) =
∑
ℓ≥0

m2ℓ(µc)z2ℓ =
∑
ℓ≥0

ℓ+1∑
m=0

wm,2ℓ
cm

m! c
−ℓ−1z2ℓ = 1

c
W

(
c,

z2

c

)
, (1)

where m0(µc) = 1 as always. However, we could have restructured Mµc(z) like Enriquez and
Ménard in [8] as well. We just sum over the negative exponent ξ = ℓ + 1 − m of c such that

Mµc(z) =
∑
ℓ≥0

m2ℓ(µc)z2ℓ =
∑
ℓ≥0

∑
m≥0

wm,2ℓ
cm

m! c
−ℓ−1z2ℓ =

∑
ℓ≥0

∑
ξ≥0

wℓ−ξ+1,2ℓ

(ℓ − ξ + 1)!
z2ℓ

cξ
. (2)

This expansion in turn motivates the following definition.

AofA 2024
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▶ Definition 2 (Excess of a tree walk). If an edge is traversed 2k times in a tree walk, then
the excess of the edge e is defined as ξ(e) = k − 1. The excess of a tree walk W is the sum
over the excess of all edges in the induced tree T (W ) = (V, E). Hence, it is half its length
minus the number of edges of the tree, ξ(W ) = ℓ − |E|. An edge with positive excess is
called an excess edge and an edge without excess a simple edge. We denote the generating
function of tree walks with excess ξ by

Wξ(z) =
∑
ℓ≥0

wℓ−ξ+1,2ℓ

(ℓ − ξ + 1)! zℓ,

where wm,2ℓ is the number of tree walks of length 2ℓ that span a tree of size m.

Thus, the relation between the generating functions we have defined so far is

Mµc(z) = 1
c

W

(
c,

z2

c

)
=
∑
ξ≥0

1
cξ

Wξ

(
z2) .

Bauer and Golinelli [1] introduced in the sequence wm,2ℓ an additional parameter d

counting the number of times the walk leaves the root. This approach allowed them to
compute the values wm,2ℓ for 2ℓ and m up to 120 [17], and they conjectured a particular
form for wm,2ℓ that we prove in the next theorem. When we translate this decomposition in
generating functions, an equation for W (x, v, z) is obtained, where x marks the parameter d.
Unfortunately, this equation is not particularly amenable to classic analysis with complex
analytic methods as it involves a Laplace transform. Our approach on the other hand is
reminiscent of the decomposition of graphs with given excess by Wright [23]. Not only do we
prove a well founded recursion in z and v, but we provide more insight into the structure of
tree walks and their generating function. Most importantly, we compute closed expressions
for wm,2ℓ, ℓ ≥ 0 for fixed (small) m and prove a conjecture from [1].

▶ Theorem 3. Let C(z) = 1−
√

1−4z
2z denote the generating function of the Catalan numbers,

and Wξ(z) denote the generating function of tree walks of excess ξ from Definition 2. Then
W0(z) = C (z) and for any ξ ≥ 1, there are polynomials (Kξ,s(x))0≤s≤2ξ−2 with non-negative
coefficients of degree 2ξ + s such that

Wξ(z) = C (z)
2ξ−2∑
s=0

Kξ,s

(
zC(z)2)(

1 − zC(z)2
)s+1 .

In particular, denoting by Cat(n) the n-th Catalan number, we have

Kξ,2ξ−2(x) = Cat(ξ − 1)x4ξ−2 and Kξ,2ξ−3(x) = (3ξ − 1) Cat(ξ − 1)x4ξ−3.

We establish a recursion for the polynomials Kξ,s(x) in Section 3. This enables the
successive computation of three quantities. First, the generating function Wξ(z) for any ξ,
then the series Mµc(z) up to an arbitrary degree in c, given sufficient computational power,
and finally the moments m2ℓ.

Our next theorem significantly extends Theorem 3 from [8]. It approximates µc for large
c. There are many notions of convergence for measures. The one we consider here is the
convergence of all moments (restricting to the even ones since the odd ones vanish). Further,
when looking at the limit of a sequence of random variables, it is common to rescale them by
their mean and standard deviation. Here, the rescaling takes the form of a dilation operator
Λα, for α > 0. This operator transforms a measure µ into the measure Λα(µ) satisfying for
every Borel set A

Λα(µ)(A) = µ(A/α).
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▶ Theorem 4. Let mℓ(µ) denote the ℓ-th moment of a measure µ and Λα the dilation
operator defined above. Then as c → ∞, it holds for all ℓ ≥ 0 that

m2ℓ(µc) = m2ℓ

(
Λf(1/c)

(
σ +

5∑
i=1

1
ci

σi

))
+ O

(
1
c6

)

where f(1/c) = 1+ 1
2c + 3

8c2 + 29
16c3 + 1987

128c4 + 47247
256c5 , σ is the semicircle law and all σ1, σ2, . . . σ5

are signed measures explicitly given in Section 5, with total mass 0.

This approximation entails some curious identities concerning the generating functions
Wξ(z) and prompts us to state the following conjecture which we discuss in more detail in
Section 4.

▶ Conjecture 5. Let Mµc(z) be the ordinary moment generating function of µc as defined
in (1). Then there exists a unique power series P (x) with non-negative integer coefficients
such that all Vi(z) which are given by

Vi(z) :=
[
c−i
]

Mµc

(√
z

P (1/c)

)
, i ≥ 0

are the product of C (z) and a polynomial in zC (z)2.

Let us denote by fk(x) the truncation of order k of
√

P (x). If the previous conjecture
holds, there exist signed measures σ1, . . . , σk explicitly computable from V1(z), . . . , Vk(z)
such that for any ℓ, the moment of order 2ℓ of µc is

m2ℓ(µc) = m2ℓ

(
Λfk(1/c)

(
σ +

k∑
i=1

c−iσi

))
+ O(c−k−1).

Thus, Conjecture 5 provides a form of asymptotic expansion for µc as c tends to infinity.

3 Decomposition of tree walks

Our proof of Theorem 3 involves reducing a tree walk with excess ξ by most of its simple
edges to its kernel walk and subsequently reversing the contraction by blowing it up to an
arbitrary tree walk with excess ξ. The following subsection is focused on this decomposition
process and the subsequent subsection on the proof of Theorem 3 and a recursion enumerating
kernel walks.

3.1 Kernel walks
Recall that an edge of a tree walk W is simple if it is traversed exactly twice, and is an excess
edge otherwise.

▶ Definition 6 (Kernel walks). Given a tree walk W , we define the kernel of the tree walk or
simply the kernel walk WK as the tree walk we obtain by the following procedure.
1. Set W ′ = W and let T (W ′) be its induced tree.
2. While there exists a simple edge e incident to a leaf in T (W ′) which is not the root, delete

both occurrences of e in W ′.
3. While the root u of the tree is a leaf and incident to a simple edge {u, v}, delete this edge

in W ′ and choose v as the root of T (W ′).

AofA 2024



11:6 Tree Walks and the Spectrum of Random Graphs

4. While there exists a vertex v in T (W ′) that is not the root and only incident to two simple
edges ei = ej+1 = {u, v} and ei+1 = ej = {v, w}, replace both consecutive pairs ei, ei+1
and ej , ej+1 with {u, w} in W ′.

5. Set WK = W ′.
Naturally, a tree walk W with kernel WK = W is itself called a kernel walk. Further, we
define kξ,s,2ℓ to be the number of kernel walks of length 2ℓ with excess ξ, where the induced
tree has s simple edges and we define the corresponding generating function

Kξ(u, v, z) =
∑

s,ℓ≥0
kξ,s,2ℓ us vℓ−ξ+1

(ℓ − ξ + 1)!z
ℓ,

where u counts the number of simple edges, v the number of vertices in the induced tree and
z the half-length of the walk.

This procedure is illustrated below. Note that the variable v in the generating function of
kernel walks is superfluous since its exponent is fully determined by the length and the excess
of the walk. However, we choose to keep it to explain the factorial in the denominator. If
we consider the generating function K(u, v, z) =

∑
ξ≥0 Kξ(u, v, z), we can reconstruct the

individual generating functions by

Kξ(u, v, z) =
[
yξ−1]K

(
u,

v

y
, yz

)
.

Example. Reducing a tree walk W and its induced tree T (W ) to its kernel.

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

(a) Step 1: Set T (W ′).
Excess edges and the
root in T (W ′) are
marked red.

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

(b) Step 2: Identify
all leaves which are not
incident to an excess
edge.

1

2

3
4

5

6

7

8

9

(c) Step 2: Remove
blue vertices and up-
date T (W ′) by rela-
beling the vertices.

1

2

3
4

5

6

7

8

9

(d) Repeat Step 2.

3
2

6

5

4

8

7

1

(e) Step 3: The root is
a leaf.

1

2

3

4

5

6

7

(f) Step 3: Choose new
root and relabel ver-
tices.

1

2

3

4

5

6

7

(g) Step 4: Find adja-
cent simple edges.

1

2

3

4

5

6

(h) Step 4: Update
T (W ′) by deleting ver-
tex 4 and relabeling the
vertices.

Tree walks of a given excess ξ can be arbitrarily large. However, our next result establishes
that there are only finitely many kernel walks of excess ξ. This is reminiscent of the result of
Wright [23] on the enumeration of connected graphs.
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▶ Lemma 7. Let WK be a kernel walk with excess ξ. Then its induced tree T (WK) = (V, E)
satisfies |V | ≤ 3ξ − 1 and the number of its simple edges is at most 2ξ − 2. These bounds are
tight. Thus, Kξ(u, v, z) is a polynomial of degree 2ξ − 2 in u, 3ξ − 1 in v and 4ξ − 2 in z.

Proof. Consider a kernel walk WK of excess ξ, with m vertices, ℓ1 leaves, ℓ2 vertices of degree
2 that are not the root, and outdegree sequence (d1, . . . , dm). Each leaf is incident to an
excess edge, so ℓ1 ≤ ξ. Each vertex of degree 2 is incident to an excess edge, so ℓ2 ≤ 2ξ − ℓ1.
The sum of the outdegrees is m − 1, so

m − 1 =
∑

j

dj ≥ 2 (m − ℓ1 − ℓ2) + ℓ2

which implies m ≤ 3ξ − 1. The number of simple edges is bounded by m − 1 − ξ ≤ 2ξ − 2.
The kernel walk has at most 2ξ − 2 half-steps along the simple edges, and 2ξ half-steps along
the excess edges, so the half-length is bounded by 4ξ − 2. Any binary tree on 2ξ − 1 vertices,
with additional edges of excess 1 attached to each leaf, reaches those bounds. ◀

Although expressing Kξ(u, v, z) directly is challenging, some subfamilies of kernel walks
have a simple expression. A kernel walk of excess ξ is said to be optimal if it contains 2ξ − 2
simple edges, and near-optimal if it contains 2ξ − 3 simple edges.

▶ Lemma 8. Let Cat(n) denote the n-th Catalan number. There are (3ξ − 1)! Cat(ξ − 1)
optimal kernels of excess ξ for ξ ≥ 1, and (3ξ − 1)! Cat(ξ − 1) near-optimal kernels of excess
ξ for ξ ≥ 2. Let Kξ,s (z) denote the generating function of kernel walks with excess ξ and s

simple edges in the induced tree, where z marks the half-length of the walk. This implies
(a) Kξ,2ξ−2(z) = Cat(ξ − 1)z4ξ−2, for ξ ≥ 1
(b) Kξ,2ξ−3(z) = (3ξ − 1) Cat(ξ − 1)z4ξ−3, for ξ ≥ 2.

Given a kernel walk WK with excess ξ, we reconstruct a tree walk W by substituting
every simple edge by a sequence of back and forth steps, adding a sequence of steps at the
root of T (WK), moving the root to the leaf of this attached path and adding a tree walk
without excess at the beginning and after each step in this extension of WK .

▶ Lemma 9. Let Wξ(z) be the generating function of the number of tree walks with excess
ξ ≥ 1 and Kξ(u, v, z) the generating function of kernel walks with excess ξ and where u marks
the number of simple edges, v the number of vertices and z the half-length of the walk. Then

Wξ(z) = C(z)
1 − zC(z)2 Kξ

(
1

1 − zC(z)2 , 1, zC(z)2
)

.

The proof of Theorem 3 is now straightforward.

3.2 A recursion for the generating function of tree walks of excess ξ

Theorem 3 raises the question of the computation of the generating function Kξ,s(z) of
kernel walks of excess ξ with s simple edges, where z marks the half-length. There exists a
recurrence, but we prefer to decompose the tree walks further and enumerate simpler objects.
This path also alleviates the work of the computer algebra system when computing Kξ,s(z).

▶ Definition 10. A superreduced walk is a tree walk where no edge is simple. Denoting by
sm,2ℓ the number of such walks of length 2ℓ on m vertices, their generating function is

S(v, z) =
∑
ℓ≥0
m≥0

sm,2ℓ
vm

m! zℓ.

AofA 2024
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Figure 2 Decomposing kernel walks by isolating the superreduced component including the
root (red).

The following lemma reduces the enumeration of kernels to the enumeration of super-
reduced walks. The main idea is to consider the induced tree of a kernel walk and isolate
the component which contains the root after deleting all simple edges (see Figure 2). The
restriction of the kernel walk to this component is a superreduced walk and the restriction of
the kernel walk to all of the other components are kernel walks again.

▶ Lemma 11. Let S(v, z) be the generating function of superreduced walks, that is, kernel
walks without simple edges, where v counts the number of vertices in the induced tree and
z the half-length of the walk. Then for the generating function of kernel walks K(u, v, z) =∑

ξ≥0 Kξ(u, v, z) it holds that

K(u, v, z) = 1(
1 − uz(K(u, v, z) − v)

)S

(
v,

z(
1 − uz(K(u, v, z) − v)

)2

)
−uvz(K(u, v, z)−v).

Once given the generating function S(v, z) of superreduced walks, we compute K(u, v, z)
by Lagrange inversion (see e.g. [11]). Our next lemma provides an equation characterizing
S(v, z). The proof relies on the idea from [1] to mark the number of times the walk leaves
the root (see Figure 3). Applying the symbolic method [2, 9] to translate it into generating
functions results in a series S(x, v, z) for superreduced walks, where a new auxiliary variable
x marks how often the walk leaves the root.

▶ Lemma 12. Let sj,m,2ℓ denote the number of superreduced walks on m vertices, length 2ℓ

and leaving the root j times. Let

S(x, v, z) =
∑

j,m,ℓ≥0
sj,m,2ℓ

xj

j!
vm

m! zℓ

denote the generating function of superreduced kernel walks, where z marks the half-length of
the walk, v the number of vertices in the induced tree and x how often the walk leaves the
root. Then

S(x, v, z) = v exp
(

Lt=1

(
D (t, xz) S(t, v, z)

))
where D(t, x) =

∑
k≥1

xk+1

(k+1)!
tk

k! and Lt=1 (A(t)) =
∑

k≥0 k! [tk]A(t).

By implementing this well founded recursion in v and z it is easy to compute S(v, z) up
to order ξ + 1 in v and 2ξ in z, then we compute [us]K(u, v, z) for s ∈ [1, ξ] by Lagrange
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12 1

1

2

3

4

6

5

Figure 3 Decomposition of a superreduced walk.

inversion from Lemma 11, and finally Wξ(z). For example for ξ = 1, 2, 3, we obtain the
generating functions

W1(z) = z2C (z)5

1 − zC (z)2 , W2(z) = C (z) z3C (z)6 + 4z4C (z)8 − 6z5C (z)10 + 2z6C (z)12(
1 − zC (z)2

)3

W3(z) = z4C (z)9 1+16zC(z)2+11z6C(z)12+95z4C(z)8−54z5C(z)10−62z3C(z)6−5z2C(z)4

(1−zC(z)2)5 ,

recovering and extending the results of [1] and of [8] (except for W2(z) where our calculation
differs from [8] and agree with [1]).

4 A refined normalisation of the spectral measure and some curious
identities

In this section, we return to our initial motivation to describe the moments of the spectral
measure µc by the identity

Mµc(z) = 1
c

W

(
c,

z2

c

)
=
∑
ξ≥0

1
cξ

Wξ

(
z2) .

As Zacharevich [24] pointed out, µc is fully determined by its moments and if µc were a
continuous measure, we could compute its density by the inversion formula of Stieltjes-Perron.
This is not the case (µc has a dense set of atoms [5, 4]), but nonetheless a better understanding
of the Stieltjes transform of µc would entail a better understanding of the measure itself.

In combinatorial terms, the Stieltjes transform Sµ(z) of a measure µ with finite moments
is simply the ordinary generating function of moments evaluated at z−1 multiplied by z−1.
That is,

Sµ(z) =
∑
ℓ≥0

mℓ(µ)z−(ℓ+1).

In turn, under some conditions, the Stieltjes-Perron formula expresses the density ρ of the
measure µ by

ρ(z) = lim
ε→0

− 1
π

Im (Sµ(z + iε)) . (3)

For example, the Stieltjes transform of the limit law µ of the normalized spectral measure of
G(n, p) with p constant, and its density, are respectively

Sµ(z) = 1
z

C

(
1
z2

)
, lim

ε→0
− 1

π
Im (Sµ(z + iε)) =

√
4 − z2

2π
1(−2,2)(z).
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The distribution given by this density is called after its shape, the semicircle distribution.
The Stieltjes transform of µc equals

Sµc(z) = 1
z

Mµc

(
1
z

)
=
∑
ξ≥0

1
zcξ

Wξ

(
1
z2

)
.

Given the structure of Wξ(z) from Theorem 3, Sµc(z) is a sum of rational functions in Sµ(z)

Sµc(z) = Sµ(z) + 1
c

· Sµ(z)5

1 − Sµ(z)2 + 1
c2 · Sµ(z)7 + 4Sµ(z)9 − 6Sµ(z)11 + 2Sµ(z)13

(1 − Sµ(z)2)3 + . . .

Now one could hope that the inversion formula applied to each of the z−1Wξ(z−1) would
yield a density of a measure and the density of µc would turn out to be a weighted sum of
them. This hope is certainly too far fetched, as µc has a dense set of atoms. But Enriquez
and Ménard [8] found a way to still make use of this expansion by using a dilation operator
in their Theorem 3. The main idea is to scale the spectral measure and evaluate Mµc(z) at
z/(1 + 1

2c ) instead. This scaling entails a perturbation on the level of coefficients of 1/c. In

particular,
∑

ℓ≥0 m2ℓ

(
z

1+ 1
2c

)2ℓ

is equal to

∑
ℓ≥0

(
w0,2ℓz

2ℓ + 1
c (w1,2ℓ − ℓw0,2ℓ)z2ℓ + 1

c2

(
w2,2ℓ − ℓw1,2ℓ +

(
ℓ2

2 + ℓ
4

)
w0,2ℓ

)
z2ℓ + . . .

)
.

Now the generating functions at c−1 and c−2 are polynomials in z2C(z2)2 multiplied by
C(z2), and the corresponding densities can be computed with the inversion formula. We
expand their calculation to order 5 instead of 2.

Instead of using the dilation operator, we can rescale the adjacency matrix A(G(n, c/n))
of G(n, c/n) by 1√

c p(1/c)
instead of 1√

c
. We define

µp
n = 1

n

∑
λ∈Sp((c p(1/c))−1/2A(G(n,c/n)))

δλ,

where p(x) is a polynomial in x with constant term 1 which is yet to be determined, and µp

for the limit as n tends to infinity. This implies

µp
n = Λp(1/c)−1/2(µc

n) and Mµp(z) = Mµc

(
z√

p(1/c)

)
.

The original scaling factor 1/
√

c derives from the classical scaling of Wigner matrices, where
one scales the matrix by 1/

√
nV(X), where X is distributed as the individual matrix entries.

In the case of adjacency matrices of G(n, c/n) the variance of Bernoulli variables determining
the entries of the matrix is of course c/n(1− c/n) such that we obtain the scaling factor 1/

√
c

in the limit. We do not have a similar interpretation for our proposed alternative scaling.

▶ Proposition 13. Let p5(x) = 1 + x + x2 + 4x3 + 33x4 + 386x5 and Mµc(z) be the ordinary
moment generating function of µc as defined in (1). Then for Vi(z) =

[
c−i
]

Mµp (
√

z) we
have

Vi(z) = C(z)Qi

(
zC(z)2) , i = 0, 1, 2, . . . , 5,
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where

Q0(x) = 1, Q1(x) = −x, Q2(x) = −2x3,

Q3(x) = −
(
11x5 + x4 − 2x3 + 2x2 + 3x

)
,

Q4(x) = −
(
90x7 + 27x6 − 19x5 + 17x4 + 23x3 + 20x2 + 26x

)
,

Q5(x) = −
(
931x9 + 529x8 − 163x7 + 166x6 + 301x5 + 239x4 + 249x3 + 266x2 + 324x

)
.

The proof consists in computing the coefficients of p5(x) one by one, starting with
[x0]p(x) = 1. Then, for any k, let us assume the first k − 1 coefficients have been computed
and set [xk]p(x) as a variable. We observe in our computations that for the first few values
of k,

[c−k]Mµc

√ z∑k
j=0[xj ]p(x)c−j


is a fraction with denominator a power of 1 − zC(z)2, and the coefficient [xk]p(x) can be
chosen so that this fraction reduces to a polynomial.

Proof of Theorem 4. The generating function of the moments of Λf(1/c)(µc) is given by
Mµc

(
z

f(1/c)

)
. Note that

f(x)2 = 1 + x + x2 + 4x3 + 33x4 + 386x5 + O(x6)

such that we can expand

Mµc

(
z

f(1/c)

)
= Mµf2 (z) =

5∑
i=0

1
ci

Vi

(
z2)+

∑
i≥6

1
ci

[c−i]Mµf2 (z)

where the Vi(z) are given by Proposition 13. Applying the inversion formula to these functions
yield densities of signed measures with null mass. ◀

To illustrate why the existence of p5(x) is surprising, we observe that if

W̃2(z) := W2(z) + z3C(z)7

(1 − zC(z)2)3

is given instead of W2(z), then there is no choice for [x2]p(x) allowing this magical simplific-
ation between numerator and denominator and the reduction to a polynomial.

This example highlights the difficulty of proving the existence of P (x) in Conjecture 5.
A combinatorial approach seems reasonable, but we are not aware of any combinatorial
meaning of the generating functions Vi(z), nor do we have a combinatorial interpretation of
the differential equations which are satisfied by the generating functions Wξ(z), except for
the equation of V1(z). Nevertheless the next theorem sheds partial light on why the scaling
by p5(x) results in Proposition 13. It shows that keeping the same first two coefficients as in
p5(x) but changing the others gives fractions, in the expansion in c−1, with denominators
that are powers of 1 − zC(z)2 that are two less than expected.

▶ Theorem 14. Let p(x) =
∑

i≥0 xi. Then V̂i(z) := [c−i]Mµp (
√

z) is a polynomial in zC(z)2

multiplied by C(z) for i = 0, 1, 2 and for i ≥ 3 there exist polynomials Q̂i(x) such that

V̂i(z) = C(z) Q̂i(zC(z)2)
(1 − zC(z)2)2i−3 .
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5 Computational experiments

As curious as Conjecture 5 is from a purely mathematical perspective, the alternative scaling
of the matrices of the spectral measure seems to have advantages in the approximation of
the limit measure µ̄c. There are certain important details to take into account though.

Since the Vi(z) in Corollary 13 are polynomials in zC(z)2 multiplied by C(z), the
evaluation 1

z Vi

( 1
z

)
is a polynomial in the Stieltjes transform of the semicircle law. The

inversion formula (3) therefore always yields densities of signed measures with zero mass for
these Stieltjes transforms. In particular, we obtain a sequence of densities fi(z) from the
Stieltjes transforms 1

z Vi

( 1
z

)
for 1 ≤ i ≤ 5 which are given by

f0(z) = 1
2π

√
4 − z2 1(−2,2)(z),

f1(z) = 1
2π

(
1 − z2)√4 − z2 1(−2,2)(z),

f2(z) = 1
2π

(
1 − 6z2 + 5z4 − z6)√4 − z2 1(−2,2)(z),

f3(z) = 1
2π

(
9 − 140z2 + 358z4 − 299z6 + 98z8 − 11z10)√4 − z2 1(−2,2)(z),

f4(z) = 1
2π

(
56 + 1602z2 − 8625z4 + 16004z6

− 13447z8 + 5624z10 − 1143z12 + 90z14)√4 − z2 1(−2,2)(z),

f5(z) = 1
2π

(
442 − 17946z2 + 171911z4 − 574676z6 + 904447z8

− 768354z10 + 373181z12 − 103622z14 + 15298z16 − 931z18)√4 − z2 1(−2,2)(z).

Now, it is easy to see that the coefficients of the polynomial factors of the fi(z) grow
rapidly and that these functions oscillate quite heavily. Hence, there exists a largest integer
t(c) depending on c such that

t(c)∑
ξ=0

1
cξ

fξ(z)

takes non-negative values on the interval (−2, 2) and is therefore the density of a probability
measure. Experiments for c = 5, 10, 20 show that this t(c) seems to be the right scaling
for µ̄c such that most of the eigenvalues are exactly in the interval (−2, 2). This is remin-
iscent of divergent asymptotic expansions (see e.g. the introduction of [14]). For example,
consider Stirling’s asymptotic expansion n! ≈ nne−n

√
2πn(s0 + s1n−1 + s2n−2 + · · · ) where

(s0, s1, s2, . . .) = (1, 1
12 , 1

288 , . . .). For any n, there exists t(n) such that the accuracy of the
approximation of order k improves for k from 0 to t(n), then decreases with k.

Further, the densities seem to approximate the histograms of eigenvalues of sampled
matrices quite well. In Table 1, we can see histograms of random matrices with p = 5/n.
In each row, we sampled N matrices of size n × n such that we always obtained 100000
eigenvalues. They were scaled by

√
c(1 + 1/c) such that we would expect a reasonable

approximation by the density f0(z) + 1/cf1(z) + 1/c2f2(z). Indeed, in the columns we see
the histograms of the eigenvalues in green and the densities given by the approximations of
f0(z), f0(z) + c−1f1(z) and f0(z) + c−1f1(z) + c−2f2(z). As n grows, the curve of the latter
fits the histogram best. Another example is illustrated in Table 2. In this case, c = 10 and
t(c) = 3 such that we consider the densities f0(z) + c−1f1(z), f0(z) + c−1f1(z) + c−2f2(z)
and f0(z) + c−1f1(z) + c−2f2(z) + c−3f3(z).
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Table 1 Histograms (100 bins) of eigenvalues of N random adjacency matrices of G(n, 5/n)
compared to the densities f0(z), f1(z) and f2(z).

sample
f0(z) f0(z) + 1

5 f1(z) f0(z) + 1
5 f1(z) + 1

25 f2(z)
size

n=40
N=2500

n=200
N=500

n=1000
N=100
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