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Abstract
Lattice walks are used to model various physical phenomena. In particular, walks within Weyl
chambers connect directly to representation theory via the Littelmann path model. We derive
asymptotics for centrally weighted lattice walks within the Weyl chamber corresponding to A2 by
using tools from analytic combinatorics in several variables (ACSV). We find universality classes
depending on the weights of the walks, in line with prior results on the weighted Gouyou-Beauchamps
model. Along the way, we identify a type of singularity within a multivariate rational generating
function that is not yet covered by the theory of ACSV. We conjecture asymptotics for this type of
singularity.
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1 Lattice walks

Lattice walks have a rich history both as a model of phenomena throughout math and
science, and as a driving force for the development of new analytic techniques to extract
asymptotics from general combinatorial problems. For example, lattice walks have modeled
melting phenomena in statistical mechanics [13], diffusion and Brownian motion [1], queueing
systems [10], and Young diagrams [17, 22]. Additionally, lattice walks have pushed forward
the techniques of analytic combinatorics in several variables (ACSV), as the categorization of
increasingly many families of lattice walks has continually stretched the limits of generating
functions one can analyze [6, 7, 28].

This work continues the tradition, studying the asymptotics of reflectable weighted lattice
walks within a Weyl chamber. While this family of walks has direct connections to the
Littelmann path model and representation theory [26], the analysis here also reveals a type of
singularity within a generating function previously unseen in applications. Our main results
include leading term asymptotics for weighted walks in the Tandem and Double Tandem
models for almost all choices of central weightings, as defined in Section 1.2. Additionally,
Conjecture 8 predicts asymptotics generally for generating functions in the new singularity
regime we identified, based on merging the results on several related types of singularities.

A lattice model in d dimensions is defined by a finite stepset S ⊂ Zd. A lattice walk of
length n, or lattice path of length n, is a sequence w = (w1, w2, · · · , wn) of steps wj ∈ S.
After m steps, the walk is at the point given by

∑m
i=1 wi. We consider counting the number
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12:2 Asymptotics of Weighted Reflectable Walks in A2

of walks restricted to the Weyl chamber A2, defined in Section 1.3 below. As in Figure 1,
we will find that the walks we study could also be viewed as walks in the positive quarter
plane, although the Weyl chamber interpretation allows us to use the generalized reflection
principle [14] to derive a generating function encoding the walks.

1.1 Walks in restricted regions
Dyck paths form a prototypical one-dimensional lattice path enumeration problem with a
domain restriction: Dyck paths of length 2n start and end at 0, take 2n steps from {1, −1},
and always remain at or above the point 0. One way to show Dyck paths are enumerated by
the Catalan numbers is to use the reflection principle, where paths that do cross below 0 are
mapped bijectively to paths that are easier to count.

Natural extensions include counting walks in higher dimensions, with different stepsets,
or in other restricted regions. For one-dimensional walks, [2] provides a generating function
and asymptotic formula for restricted walks with general weighted stepsets, which assign a
positive weight to each step. Moving up one dimension, walks in the half plane Z × N can
sometimes be reduced to pairs of one-dimensional weighted walks by treating the horizontal
and vertical coordinates as independent walks.

When walks are otherwise restricted in multiple dimensions, the analysis is substantially
more involved. For walks in the quarter plane, [10, 6] provided a systematic approach for
deriving a generating function for broad classes of stepsets, instead of developing ad-hoc
methods for individual stepsets. Symmetry plays a major role in computing generating
functions, which we explore in Section 1.3. Many additional works have contributed to the
study of walks in the positive quadrant, including [25, 4, 24, 32].

In [27], asymptotics are found for walks in the positive d-dimensional orthant with highly
symmetric nontrivial stepsets using the kernel method. The authors of [27] express the
generating function as the diagonal of a multivariate rational function. They give asymptotics
for such unweighted walks as a function of the stepset and number of dimensions. By adding
one degree of freedom, work in [28] generalized these results and determined asymptotics for
stepset models which are symmetric over all but one axis.

Considering other domain restrictions, [8] gives asymptotic behavior of a multidimensional
random walk in a general cone, including in Weyl chambers. In this work, Denisov and
Wachtel provide a formula for counting the number of walks of length n between two specified
points in d-dimensional space. They show that such walks have asymptotics of the form
K · ρn · n−ℓ−d/2. The value of ℓ is given as a function of the smallest eigenvalue of the
Laplace-Beltrami operator, which can add a barrier to directly applying their theorem.
Furthermore, their approach can not give an explicit expression for the constant factor in the
asymptotics. The work of [9] extends these results to additional cases, where a parameter of
the weighted walks called the drift no longer needs to be zero.

Bostan, Raschel, and Salvy make explicit the results of Denisov and Wachtel in the case
d = 2 with the cone R = N2. They determine asymptotic formulas for excursions for all 79
small step models in the quarter plane [5]. Bogosel et al. [3] further extract results from
Denisov and Wachtel and make explicit the cases S ⊂ {−1, 0, 1}3 \{0} with the cone R = N3.
They study three-dimensional excursions by associating a spherical triangle to each model.

1.2 Weighted walks
Many discrete models require non-uniform probabilities on the steps. Assigning weights to
steps in a given model allows for a more detailed analysis of the asymptotic counting function.
Through asymptotic analyses with weights, we can discover relations between aspects of the
model and the asymptotic formula for the number of walks.
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If each step wi in a walk (w1, w2, · · · , wn) has associated weight ai, define the weight of
the walk as

∏n
i=1 ai. If the weights are positive integers, we can interpret the weighted model

as allowing colors or multisets of steps. Weights could represent probabilities when they sum
to 1. We restrict our attention to central weights, which are defined by the property that two
walks having same length and endpoints must have the same weight. Central weights can
equivalently be defined by assigning a weight to each orthogonal axis. We write α = (a, b)
for two-dimensional central weights.

One goal of the work here is to provide an explicit connection between the weights of the
steps in a walk and the subexponential asymptotic behavior of the walks. This relationship
is depicted in Figure 2, illustrating the transitions between various subexponential regimes.
Because this description may be difficult to extract from the general results of [8], we prove
the results directly.

Most similar to our results, a weighted version of the Gouyou-Beauchamps (GB) model
was studied in [7], following the work in [6, 4] on the unweighted model. Here, the stepset is
S = {(1, 0), (−1, 0), (−1, 1), (1, −1)}, and the coordinates of the steps are centrally weighted
with a, b > 0. In [7, Theorem 1], the authors showed asymptotics are always of the form
κV [n](i, j)ρnn−r for constants ρ and r that depend on the weights a and b, and a harmonic
function V [n](i, j) depending on the weights and parity of n. In particular, the exponential
growth ρ is a continuous function of a and b across boundaries, while r is not. We observe
this same behavior in Theorem 3 below.

In [7], the authors also give a diagram of the subexponential regimes for the Tandem
stepset without proof that matches our subexponential regimes in Theorem 3 below, but we
provide a complete description of the asymptotics with constant terms and additionally note
a particularly challenging regime and a possible solution in Conjecture 8 below.

Finally, in [30], the second author and a collaborator found results for weighted walks in
Ad

1 for arbitrary d. Much of the work there provides a scaffold for the asymptotic analyses
here, although the case of A2 turns out to be more complicated for several reasons. In
particular, when using the asymptotic integral estimate described in Theorem 9 below, the
leading term for A2 is sometimes difficult to find because many of the initial terms in the
asymptotic expansion are zero. The complexity in finding leading term asymptotics implies
that it would be even more challenging to find full asymptotic expansions in these cases.

1.3 Weyl chambers
Weyl groups allow us to generalize the notion of symmetric stepsets. For a broad treatment
of Weyl groups, see [21]. Some core results on walks in Weyl chambers appear in [14].

▶ Definition 1 (Reduced Root System). For vectors x, y ∈ Rd, let σx(y) be the reflection of
y through the hyperplane perpendicular to x. A reduced root system is a finite set of vectors
Φ ⊂ Rd such that for any x, y ∈ Φ: σx(y) ∈ Φ; y − σx(y) is an integer multiple of x; and
the only nontrivial scalar multiple of x in Φ is −x.

Root systems appear throughout math, especially in relation to Lie groups, and they
capture important symmetry. Given a root system Φ, a special subset of positive roots Φ+

can be chosen, where for each α ∈ Φ, exactly one of ±α is in Φ+, and also if α, β ∈ Φ+ and
α + β ∈ Φ, then α + β ∈ Φ+. Then, as one more refinement, the elements of Φ+ which
cannot be decomposed into sums of elements from Φ+ form a base for Φ.

The isometries defined by {σx : x ∈ Φ} form a group under composition, called a Weyl
group. Additionally, the collection of hyperplanes associated to all of the isometries of the
Weyl group partition Rd into regions called Weyl chambers, as illustrated on the left in

AofA 2024



12:4 Asymptotics of Weighted Reflectable Walks in A2

α

β α + β

-α

β-α - β

σα+β

σα

σβ

b1

b2
b2

b1

Figure 1 The root system Φ = {±α, ±β, ±(α + β)} ⊂ R2 appears on the left with a colored
choice of positive roots. The dotted lines illustrate the hyperplanes defining the Weyl group of
reflections, A2. The fundamental Weyl chamber is shaded. On the right, a walk in the chamber
using the Tandem model stepset (colored), and the corresponding walk in the positive quadrant of
Z2. The Double Tandem stepset additionally includes the dashed lines.

Figure 1. One of the chambers consists of points v ∈ Rd such that ⟨γ, v⟩ > 0 for all γ ∈ Φ,
and this chamber is called the fundamental or principal Weyl chamber. The root system,
group of isometries, and principal Weyl chamber for A2 are shown on the left in Figure 1.
Finally, we define a reflectable stepset with respect to the Weyl group.

▶ Definition 2. Let W be a Weyl group acting on a real inner product space V with a
distinguished basis B = (b1, . . . , bd) and Weyl chamber C. We say that a nonempty set of
vectors S is a (W, B)-reflectable stepset if for all g ∈ W and s ∈ S, we have g(s) ∈ S, and for
all s ∈ S and 1 ≤ i ≤ d, there is an integer ci such that the dot product ⟨s, bi⟩ ∈ {−ci, 0, ci}.

For A2, there are exactly two non-equivalent reflectable stepsets up to change of basis:
the Tandem and Double Tandem stepsets illustrated in the middle in Figure 1. If the basis
{b1, b2} is chosen as unit vectors along the edge of the cone, then we can stretch the cone to
a quadrant with axes corresponding to these basis vectors. In this way, we can identify the
walks within A2 as walks in the positive quadrant of Z2. Define ST = {(1, 0),(−1, 1),(0, −1)}
for the Tandem model, and SDT = {(1, 0), (−1, 1), (0, −1), (0, 1), (1, −1), (−1, 0)} for the
Double Tandem model.

Crucially, while ST and SDT do not appear symmetrical in the quarter plane, they are
reflectable when considered within A2. Thus, the generalized reflection principle can be used
to analyze the number of walks within the chamber [14, Theorem 1].

Grabiner and Magyar gave exact results for walks in Weyl Chambers [18]. Their formulas
are for walks between two points staying within the designated chamber. They obtain these
formulas using determinants. A number of their formulas include the hyperbolic Bessel
function of the first kind of order m.

Grabiner later gave asymptotics for a number of Weyl Chambers including the region
defined by x1 ≥ x2 ≥ · · · ≥ xd, which corresponds to the d-candidate ballot problem
[15, 16, 17]. Here, the problem was interpreted as distributions of subtableaux in order to
appeal to known formula for computing and manipulating Young tableaux.

Krattenthaler [23] completed the asymptotic analysis for the number of random walks
in a Weyl chamber and random walks on a circle, noting that computing the multiplicative
constants remains a challenge. Feierl extends this work by giving asymptotics for the zero
drift reflectable walks in type A Weyl chambers [12]. This work uses Taylor approximations
and the saddle-point method to obtain asymptotics from known determinant formulas. Here,
we derive results without using determinants, which leads to asymptotics of a simpler form.
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2 Results

Here, we state our results for our asymptotic counts of weighted walks within A2. For the
Tandem model, we recover the universality classes as found in [7], while also computing the
asymptotic constants for almost all classes. We extend this to the Double Tandem model. In
the exceptional cases when a = 1, b < 1 or a < 1, b = 1, we offer conjectured asymptotics and
Conjecture 8, a prediction for general asymptotics in such a regime.

▶ Theorem 3. Let R = N2 and let α = (a, b). For ST = {(1, 0),(−1, 1),(0, −1)} (the Tandem
model) and SDT = {(1, 0), (−1, 1), (0, −1), (0, 1), (1, −1), (−1, 0)} (the Double Tandem model),
the number of weighted walks of length n which stay in R satisfies

q(a,b)(n) ∼ γρnn−r

where the exponential growth ρ and subexponential growth r for each of ST and SDT are
given in Figure 2, with the starred case conjectured. The constant terms are given in [34,
Tables 5.3, 5.4].
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Figure 2 The Tandem and Double Tandem model have the same growth rate regimes with
different exponential growth rates. The regimes for the Tandem model are pictured on the left, with
the subexponential growth (in red) and exponential growth (in black). The exponential growth is
continuous across boundaries, and is unmarked on the boundaries. On the right, the same regimes
are listed with the corresponding exponential growth rates for the Double Tandem model. Starred
cases are conjectured.

We verified the results given in Theorem 3 numerically by computing q(a,b)(n) exactly for
specific choices of (a, b) in each regime and some large values of n (see [34, Table 5.4]). In
particular, we use the gfun Maple package provided by Salvy and Zimmermann [33].

AofA 2024
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3 Extracting asymptotics

In many instances, analytic combinatorics in several variables (ACSV) provides a quick
pipeline from a combinatorial description of a problem to asymptotics. Once a generating
function is obtained, the singularities of the generating function can be classified. Existing
libraries of results (as in [31]) describe the asymptotics of the array for many of the most
common types of singularities.

We represent a d-variate multivariate rational GF as F (z) := G(z)/H(z) =
∑

anzn,
where z = (z1, . . . , zd) and zn = zn1

1 · · · znd

d . The zero set V := {z : H(z) = 0} determines
the singular variety of F . We seek asymptotics for [zn]F (z) as n → ∞ in a prescribed
direction r̂ ∈ Rd

>0, so that n ≈ r̂n with n → ∞. In most combinatorial cases, finitely many
critical points determine the asymptotics of a generating function. To find the critical points,
consider representing the coefficients via the Cauchy integral formula,

[zn]F (z) =
(

1
2πi

)d ∫
T

F (z)z−n−1dz, (1)

where T is a d-dimensional torus enclosing the origin but no singularities of F . Heuristically,
the critical points are determined by expanding T until it reaches points on the singular
variety closest to the origin that minimize the exponential growth z−n within the integrand.

A critical point p is called smooth if V is a smooth manifold in a neighborhood of
p. This means that if V is d-dimensional, then in a neighborhood of p there is a smooth
parameterization of V using only d−1 variables. For rational generating functions, smoothness
is easily checked using the implicit function theorem (see [31, Lemma 7.6]).

For many lattice path enumeration problems, there are also transverse multiple points,
where V can locally be smoothly deformed into the intersection of perpendicular hyperplanes.
For rational GFs, these types of critical points satisfy systems of polynomial equations in
terms of the denominator H and its partial derivatives (see Section 4.2).

Call a critical point p = (p1, . . . , pd) minimal when there are no other points q ∈ V where
|qi| ≤ |pi| for each coordinate with at least one inequality strict. Smooth minimal critical
points always contribute to asymptotics. However, for transverse minimal critical points,
an additional technical condition must be met (Definition 6). A highlight of the analysis
of weighted walks in A2 is that there is a case where the technical condition is almost met.
Conjecture 8 predicts this halves the contribution of the critical point to the asymptotics.

4 Proof sketch

We obtain the asymptotics in Theorem 3 with the following steps:
1. Encoding as a diagonal. Using the symmetry group corresponding to the stepset,

represent the generating function as a diagonal of a rational function.
2. Computing critical points. Find the solutions to the critical point equations.
3. Finding contributing critical points. Determine which critical points are contributing

as a function of the weights.
4. Evaluating the Cauchy integral. Simplify the Cauchy integral (Equation (1)) to a

Fourier-Laplace integral and then use existing results.
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4.1 Encoding as a diagonal
For both ST and SDT , the reflection group is generated by the involutions Ψ(x, y) = (y/x, y)
and Φ(x, y) = (x, x/y). Using either the generalized reflection principle (as in [27]) or
evaluations of the unweighted generating functions in [28, Examples 6.5.1 and 6.5.2], we find
that weighted walks starting at the origin of length n are encoded as coefficients of xnyntn

in the following functions.

FT (x, y, t) = GT (x, y)
HT (x, y, t) = (b2x − ay2)(bx2 − a2y)(xy − ab)

(1 − txy( a
x + bx

ay + y
b ))a3b3(1 − x)x(1 − y)y

, (2)

FDT (x, y, t) = GDT (x, y)
HDT (x, y, t)

= (b2x − ay2)(bx2 − a2y)(xy − ab)
(1 − txy( a

x + x
a + bx

ay + ay
bx + y

b + b
y ))a3b3(1 − x)x(1 − y)y

. (3)

4.2 Computing critical points
First, we compute all possible critical points for all values of the weights (a, b). Then, in
Section 4.3, we determine which critical points contribute to asymptotics. We focus on the
Tandem case here, as the Double Tandem case follows a similar analysis.

Weighted walks are encoded as the main diagonal of the functions in Equation (2), so
we search for critical points in the 1 = (1, 1, 1) direction. By definition, smooth critical
points satisfy {H = 0, xHx = yHy = tHt}, where H = HT . Next, to rule out non-smooth,
non-transverse points, we verify that the factorization of HT given in Equation (2) is a
transverse polynomial factorization (as in [29, Definition 9.3]): define the inventory S(x, y) =
ax+by/ax+1/by, and label the factors H0 = (1−txyS(1/x, 1/y)), H1 = (1−x), H2 = (1−y).
At any point w where a factor Hi(w) = 0, its gradient ∇Hi(w) is nonzero, and also at any
point where the factors are simultaneously zero, their gradients are linearly independent. (In
fact, this applies broadly to GFs encoding other types of walks.) This implies there are no
non-smooth, non-transverse points.

To find the transverse multiple points, we must consider all 7 combinations of whether
H0, H1, and H2 are zero, and use [29, Definition 9.7] to compute the transverse critical points
for each such stratum individually. Conveniently, the technical definition of transverse critical
points simplifies greatly in these lattice walk cases where all but one of the factors are of the
form 1 − x and 1 − y. For example, to compute the transverse critical points for V0,1 (where
H0, H1 = 0 and H2 ̸= 0), the equations simplify to using the smooth critical point equations
on H0(1, y, t) to compute the y and t critical point coordinates. Ultimately, we obtain the
critical points in Table 1 for each stratum.

4.3 Finding contributing critical points
We now refine to contributing critical points, starting by checking minimality. The form of
the generating function here is close enough to the Gouyou-Beauchamps generating function
that we can reuse a result from [7].

▶ Lemma 4 (Lemma 3 of [7]). For the rational function F (x, y, t) described by (2), when G

and H are coprime the point (x, y, t) ∈ V is minimal if and only if

|x| ≤ 1, |y| ≤ 1, |t| ≤ 1
|xy|S(| 1

x |, | 1
y |)

,

where the three strict inequalities do not occur simultaneously.

AofA 2024
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Table 1 Critical points for each stratum, corresponding to every possible non-trivial choice of
setting some of the factors {H0, H1, H2} to zero.

Stratum x y t

V0 a b 1
3ab

aei(2π/3) bei(4π/3) ei(4π/3)

3ab

aei(4π/3) bei(2π/3) ei(2π/3)

3ab

V0,1 1 b/
√

a a5/2−2a
b(a3−4)

1 −b/
√

a − a5/2+2a
b(a3−4)

V0,2 a/
√

b 1 2b3−b3/2

(4b3−1)a

−a/
√

b 1 2b3+b3/2

(4b3−1)a

V0,1,2 1 1 1
a+ b

a
+ 1

b

Next, we filter to minimal points minimizing the height function |xyt|−1.

▶ Lemma 5. For each value of a, b, the unique positive minimal point that minimizes the
height function |xyt|−1 is given in Table 2.

Table 2 Positive minimal critical points for choices of the weights a and b.

CP Conditions on weights Positive minimal critical point Exponential growth

1 1 <
√

b < a < b2 x = 1, y = 1, t = 1
b+a/b+1/a

a + b
a

+ 1
b

2 a > 1, b ≤
√

a x = 1, y = b√
a

, t = a5/2−2a
b(a3−4) a + 2√

a

3 b > 1, a ≤
√

b x = a√
b
, y = 1, t = 2b3−b3/2

4ab3−a
2
√

b + 1
b

4 a ≤ 1, b ≤ 1 x = a, y = b, t = 1
3ab

3

Proof (sketch). Minimizing the height |xyt|−1 is equivalent to minimizing |S(1/x, 1/y)|,
which we can accomplish using calculus. Both here and in arbitrary dimension, the contrib-
uting critical points display a non-obvious boolean lattice structure in the following sense.
Any given critical point is minimal when each of its coordinates (except the t coordinate) is
at most 1. If there is a minimal critical point with coordinate xi ≠ 1 and another minimal
critical point with coordinate xj ̸= 1, then there must also be a minimal critical point where
xi ̸= 1 and xj ̸= 1. This greatly simplifies the problem of finding contributing critical points
because it is easy to show that the more coordinates are equal to one in a critical point,
the less the corresponding exponential growth is. Then, from the boolean structure, there
is never a need to compare the contributions of two different critical points with the same
number of non-one coordinates. ◀

When there are only finitely many smooth minimal critical points, we can use existing
results to compute asymptotics, but we need an additional definition and criterion in the
presence of transverse multiple points.

▶ Definition 6 (Definition 9.8 of [29]). Let H(z) = H1(z) · · · Hm(z) be a square-free factoriz-
ation of H. Fix K = {k1, · · · , kq} ⊆ {1, . . . , m}, and let w ∈ Cd be a solution to the critical
point equations for the stratum where Hi = 0 if and only if i ∈ K. For each 1 ≤ j ≤ q let
bj ∈ {1, · · · , d} be an index such that the partial derivative (∂Hkj /∂zbj )(w) ̸= 0. The vector
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vkj
=

(∇logHkj )(w)
wbj

(∂Hj/∂zbj
)(w) =

(
w1(∂Hkj

/∂z1)(w)
wbj

(∂Hj/∂zbj
)(w) , · · · ,

wd(∂Hkj
/∂zd)(w)

wbj
(∂Hj/∂zbj

)(w)

)
has real coordinates. The normal cone of H at w is the set

N(w) =


q∑

j=1
ajvkj : aj > 0

 ⊂ Rd. (4)

The point w is called a contributing point if w is minimal, w minimizes |z|−1 among all
minimal points, and 1 ∈ N(w).

In some regimes below, it turns out that 1 is in the boundary of N(w) (i.e. some aj

must be 0). Although w then does not meet the requirements to be a contributing point, it
may still determine asymptotics. The following lemma applies to both the critical points in
Table 2, and also to the critical points more generally for reflectable walks in Ad

2.

▶ Lemma 7. Let w be a minimal critical point. If w has a coordinate of 1 and w satisfies
the smooth critical point equations for H0 = 1 − txyS( a

x , b
y ) in the direction 1, then 1 is on

the boundary of the normal cone N(w) (see Definition 6). Otherwise, 1 is on interior of
N(w).

Proof (sketch). For HT factored as in Equation (2), we can compute ∇logHi(w) for i = 0, 1, 2
explicitly. When i = 1 or 2, the logarithmic gradient is a basis vector. For i = 0,

∇logH0(w) =
(

−1 − xyt

(
− a

x
+ bx

ay

)
, −1 − xyt

(
− bx

ya
+ y

b

)
, −1

)
.

In cases where H1(w) = 0, 1 is in the interior cone if and only if −a/x + bx/ay < 0, and it
is on the boundary if −a/x + bx/ay = 0. A similar statement can be made for H2. It is then
a matter of algebra to show that equality occurs exactly when the critical point equations
for H0 = 1 − txyS(1/x, 1/y) are met. ◀

From Lemma 7, we find that the critical points from Table 2 always contribute except
perhaps when a = 1 or b = 1. In these exceptional cases, we note that [31, Theorem 10.65]
indicates that when the numerator of a GF is nonzero at the critical point, the direction
being on a facet of N(w) cuts the asymptotic contribution in half. Here, the numerator is
zero, but we conjecture the idea is still true regardless.

▶ Conjecture 8. When a direction r is on a facet of the normal cone N(w) defined by a
minimal transverse critical point w, then w contributes half as much to the asymptotics as
when r is in the interior.

As with all of the other regimes for the Tandem and Double Tandem model, we have verified
this conjecture numerically when a = 1 or b = 1, and our conjectured subexponential growth
aligns with Figure 7 of [7]. In particular, we looked at the weights a = 1/8 and b = 1 and
found that for walks of length 2000, the error between the asymptotic estimate and the exact
number of walks is less than 1%. For weights a = 1 and b = 1/4 and walks of length 2000,
the error was approximately 1.2%.

Note that this situation does not occur in the analysis of the Gouyou-Beauchamps walks
in [7]. This is because in the transitional cases for the Gouyou-Beauchamps walks, the
corresponding generating function has a factor of 1 − y in the numerator and denominator
that cancels and makes these cases among the easier cases to analyze. This is notable in
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12:10 Asymptotics of Weighted Reflectable Walks in A2

particular because the factor of 1 − y in the numerator is independent of the weights in this
regime. Although we too find cancellation of factors in the numerator and denominator for
some regimes (see Section 4.5 below), there is no cancellation in the transitional cases for
the Tandem or Double Tandem models, and indeed there is no factor in the numerator that
is independent of the weights.

4.4 Evaluating the Cauchy integral
The final step is to set up the integral to compute asymptotics. Note that the textbook [31]
includes results for transverse critical points that could be applied directly at this point, but
for a more complete and elementary viewpoint, we include a residue approach. Beginning
with the Cauchy integral equation (Equation (1)), we expand the torus T until it nears the
minimal critical points in Table 2. When different minimal points from Table 2 end up being
equal at certain weight values, the analysis differs in these cases because it causes cancellation
between factors of G and H. Ultimately, we are left with the 9 cases as described in Figure 2.
We outline here an overview of the process of extracting asymptotics. The details for each
of the 9 cases can be found in [34], with an example in Section 4.5 below. We also include
SageMath code at the following URL illustrating how to compute asymptotics in each of
these cases.

https://github.com/TorinGreenwood/AofA-A2Walks

The overall goal is to simplify the integral until it is a Fourier-Laplace type integral where
the following result applies:

▶ Theorem 9 (Theorem 7.7.3 of [20]; Lemma 5.16 of [31]). Suppose that the functions A(θ)
and ϕ(θ) in r variables are smooth in a neighborhood N of the origin and that the gradient
∇ϕ(0) = 0; the Hessian H of ϕ at 0 is non-singular; ϕ(0) = 0; and the real part of ϕ(θ) is
non-negative on N . Then for each M > 0 there are complex constants C0, . . . , CM such that∫

N
A(θ)e−nϕ(θ)dθ =

(
2π

n

)r/2
det (H)−1/2 ·

M∑
j=0

Cjn−j + O(n−M−1). (5)

The constants Cj are given by the formula:

Cj = (−1)j
∑
ℓ≤2j

Dℓ+j(Aϕℓ)(0)
2ℓ+jℓ!(ℓ + j)! , with ϕ := ϕ − ⟨θ, Hθ⟩ (6)

where D is the differential operator D :=
∑

u,v(H−1)u,v
∂

∂θu

∂
∂θv

.

The computational obstacle in using Theorem 9 is determining the first j for which Cj is
nonzero, as this gives the subexponential growth. If G vanishes to order k at the critical
point, then Cj = 0 for 0 ≤ j ≤ ⌈k/2⌉ − 1. Whenever the critical point is not smooth, we first
take residues to reduce the number of variables in the integral and also make the singular
variety smooth. Because the non-smoothness comes from factors of the form (1 − x) or
(1 − y), it is typically straightforward to compute residues.

For example, when a critical point has x coordinate equal to 1, we can compare the value
of the integral over the circle |x| = 1 − ϵ to the integral at |x| = 1 + ϵ and add a term which
has smaller exponential growth, so it does not contribute to the dominant asymptotics. Then
we compute the difference of the two integrals using the residue theorem, which corresponds
to removing the factor of (1 − x) in the denominator and evaluating the remaining function

https://github.com/TorinGreenwood/AofA-A2Walks
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at x = 1. After applying the residue, we check to see if factors between G and H now cancel,
which can impact the order to which G vanishes. Then, we do a change of variables to
set the integral to use Theorem 9. Lastly, we compute the Cj to obtain the asymptotics,
which is completed using code. We incorporate portions of the code available in the online
supplement to the textbook, [29].

4.5 Example analysis: axial regime
Here, we compute the asymptotics in the case where a = b2 > 1. Equivalently, by expanding
the generating function in Equation (2) as a geometric series in t, we aim for an asymptotic
expression for the following:

q(a,b)(n) := [x0][y0]
(

a(x − y2)(a1/2x2 − a2y)(a3/2 − xy)
a9/2(x − 1)x(y − 1)y

(
a

x
+ x

a1/2y
+ y

a1/2

)n)
.

The critical point that is contributing is
(

1, b√
a

)
= (1, 1). However, we calculate that the

direction (1, 1) is not in the normal cone at this point, and is instead on the boundary. To get
around this, we take the term (x − y2) in the numerator and express it at (x − 1) − (y2 − 1).
Since coefficient extraction is linear, we have the following

q(a,b)(n) = [x0][y0]
(

a(a1/2x2 − a2y)(a3/2 − xy)
a9/2x(y − 1)y

(
a

x
+ x

a1/2y
+ y

a1/2

)n)
+ [x0][y0]

(
a(y + 1)(a1/2x2 − a2y)(a3/2 − xy)

a9/2(x − 1)xy

(
a

x
+ x

a1/2y
+ y

a1/2

)n)
.

The first function has critical point at (a, 1). The second function has critical point (1, 1).
Thus, the first function does not contribute to the asymptotics. The cancellation of factors
here is similar to [7].

In order to obtain asymptotics from the second function, we start by taking a residue at
x = 1. The next step is to do a change of variables to make it of Fourier-Laplace type so we
can use Theorem 9. We apply the change of variables y = eiθ, dy = ieiθdθ, so the region of
integration is over [−π/2, 3π/2). With this transformation the integral becomes∫

[−π/2,3π/2)

A(θ)e−nϕ(θ)dθ,

where

A(θ) = (a2eiθ − a1/2)(a3/2 − eiθ)(eiθ + 1)e−iθ

a7/2

and

ϕ(θ) = log
(

a + 2√
a

a−1/2e2iθ + aeiθ + a−1/2

)
.

Applying Theorem 9 gives the formula

q(a,b)(n) ∼ (a + 2a−1/2)n · n−1/2 · (a3 − 2a3/2 + 1)
√

a3/2 + 2√
πa3 .
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For the Double Tandem stepset we compute

q(a,b)(n) ∼
(

a2 + 2(a + 1)
√

a + 1
a

)n

· n−1/2

· (a7/2 − 2a2 +
√

a)
√

2a2 + (a2 + 1)
√

a + 2a
√

πa4
√

a + 1
.

5 Next steps

The results here merely scratch the surface of possible questions about walks within Weyl
chambers. An obvious next step would be to analyze the d-dimensional Tandem and Double
Tandem stepsets. For example, the d-dimensional Tandem stepset has steps given by

STd
= {ei − ei−1 : 2 ≤ i ≤ d} ∪ {e1} ∪ {−ed}

where ei is the ith elementary basis vector with a one in the ith coordinate and zeroes
elsewhere. The first steps in computing the asymptotics are not the main obstructions. We
can express the generating function for these walks as the diagonal of a rational function, and
solve the critical point equations in d dimensions. We additionally find a similar structure to
the contributing critical points as in the 2-dimensional case. However, there are more cases
where Conjecture 8 may apply and computing constants becomes increasingly difficult.

These difficulties appear largely because applying Theorem 9 involves solving for the
first nonzero Cj in Equation (5). This is in contrast to existing results for Ad

1, where the
functional form of the group sum in the Ad

1 case allowed the authors in [30] work through
the calculations in general. In particular, the first nonzero Cj was always the first term
where there are nonzero derivatives of order 2j. For Ad it is straightforward to determine the
degree to which the function vanishes at a critical point, but this is not sufficient. For A2
when a < 1 and b < 1, the function vanishes to degree three but the constant C2 is still zero
at the critical point. It is possible that there are aspects of the governing function, coming
from the Weyl denominator, that must be exploited in order to give a general statement.
Even for A3, computations can include taking 90 different mixed partial derivatives of order
24. Certainly, there are simplifications that can be made to obtain this, but it presents a
barrier to quickly getting results in higher dimensions to find a pattern.

While current work has focused on the Weyl chambers of Ad
1 and Ad, there are other

families of interest. In particular, there may still be room to use the approach here to derive
explicit asymptotic results for weighted reflectable walks for the family of Weyl groups Bd

for d > 2. In [11] Feierl counted weighted walks in Bd using determinants, while the case of
weighted reflectable walks in B2 has been covered in [7].

More generally, one goal is to have results for walks in the product of any Weyl chambers.
This would be the culmination of multiple projects, as there are not general results for all
Weyl chambers. This is a plausible project as the product of the chambers should decompose
in the same sense as the reflectable walks.
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