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Abstract
A fringe subtree of a rooted tree is a subtree that consists of a vertex and all its descendants. The
number of distinct fringe subtrees in random trees has been studied by several authors, notably
because of its connection to tree compaction algorithms. Here, we obtain a very precise result for
binary search trees: it is shown that the number of distinct fringe subtrees in a binary search tree
with n leaves is asymptotically equal to c1n

log n
for a constant c1 ≈ 2.4071298335, both in expectation

and with high probability. This was previously shown to be a lower bound, our main contribution is
to prove a matching upper bound. The method is quite general and can also be applied to similar
problems for other tree models.
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1 Introduction

A fringe subtree of a rooted tree is a subtree that consists of a vertex and all its descendants,
see for instance Figure 1. Fringe subtrees of random trees have been studied quite thoroughly
under different models of randomness. Typical results include limit theorems for the number
of fringe subtrees of a given size or shape (we will use those as an auxiliary tool in this
paper as well), see for example [12,14]. Fringe subtrees are intrinsically related to additive
functionals of rooted trees [14–16,19,24], which can in fact be seen as linear combinations
of fringe subtree counts. There are general limit theorems for additive functionals under
different assumptions, and many relevant quantities associated with trees can be expressed
as additive functionals.

v1

v2 v3

v4 v5 v6 v7

v8 v9 v10 v11 v12 v13

v14 v15

Figure 1 A binary tree. The fringe subtree rooted at v2 is indicated by the dashed rectangle.

© Stephan Wagner;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 13; pp. 13:1–13:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stephan.wagner@tugraz.at
https://orcid.org/0000-0001-5533-2764
https://doi.org/10.4230/LIPIcs.AofA.2024.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 On the Number of Distinct Fringe Subtrees in Binary Search Trees

It is clear that an n-vertex tree has n fringe subtrees, one corresponding to each of its
vertices. Usually, some of these will be identical/isomorphic as rooted trees, so the number
of distinct fringe subtrees is generally smaller. In most of this paper, fringe subtrees will
be considered identical if they are the same as plane trees (i.e., the order of the children of
a vertex matters). The vertex labels are ignored. Otherwise, we regard them as distinct.
There are however also other possible notions of distinctness that will be mentioned briefly
in the final section.

The number of distinct fringe subtrees is connected to tree compression: in a fundamental
algorithm to compress trees, vertices whose associated fringe subtrees have the same shape
are merged to form what is called the minimal directed acyclic graph (DAG). The precise
shape of the tree can be recovered from the minimal DAG. Consider the tree in Figure 1 for
a simple example: note that the fringe subtrees rooted at v2 and v6 are identical, so they
are merged. For the same reason, v4, v7, v10 are merged as their fringe subtrees are identical
in shape. Figure 2 shows the minimal DAG associated with the tree in Figure 1. Observe
that the number of vertices of the minimal DAG is precisely the number of distinct fringe
subtrees.

There are various applications of this compression technique by means of minimal DAGs.
Let us mention XML compression and querying [5, 11], symbolic model checking [4] and
compiler construction [1, Chapter 6.1 and 8.5] as notable examples. It is therefore of natural
interest in computer science to analyse the extent to which the number of vertices is reduced
by compressing a tree to its minimal DAG.

v1

v3

v2, v6

v4, v7, v10

v5, v8, v9, v11, v12, v13, v14, v15

Figure 2 The minimal DAG associated with the tree in Figure 1. The vertices of the original
tree that are compressed to a single vertex are listed.

For simply generated trees, it was shown by Flajolet, Sipala and Steyaert [10] that the
expected size of the minimal DAG is of order n√

log n
. For instance, the average number of

vertices in the minimal DAG associated with a uniformly random binary tree (a tree in
which every internal vertex has precisely two children) with n leaves is asymptotically equal
to 2n√

π log4 n
. It was also proven (see [22]) that this does not only hold in expectation, but

also with high probability: in other words, with probability tending to 1, the size of the
minimal DAG lies in an interval of the form [(1 − o(1)) 2n√

π log4 n
, (1 + o(1)) 2n√

π log4 n
]. The

result of Flajolet, Sipala and Steyaert was further extended to Σ-labelled unranked trees
in [3]. Moreover, an extension to the number of fringe subtrees that occur more than once
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or generally at least a fixed number of times was considered in [20]. Interestingly, periodic
fluctuations start to occur in the asymptotics: the average number of trees that occur at
least r times (r ≥ 2) as a fringe subtree is asymptotically

ψr(logn) n

(logn)3/2 +O
( n

(logn)5/2

)
(1)

for a positive periodic function ψr (see [20, Theorem 5.1] for the precise statement).
In this paper, we will be concerned with the model of random binary search trees. We

consider binary trees where all internal vertices have two children: a left child and a right
child. In the following, the size of a binary tree will always be the number of leaves; the
number of internal vertices is always one less. In the probabilistic model that we study, a
binary search tree is built from a random permutation of the numbers 1, 2, . . . , n. These
numbers are stored in the internal vertices of the tree in such a way that all numbers less
than the root label are in the left branch, while all numbers greater than the root label are
in the right branch. See Figure 3 for an example.

5

2 8

41 7 9

3 6

Figure 3 The binary search tree resulting from the permutation (5, 2, 8, 4, 1, 7, 9, 3, 6). Internal
vertices are indicated by circles, leaves by squares.

It is well known that this model is also essentially equivalent to that of binary increasing
trees (binary trees with vertex labels that are increasing from the root to the leaves),
see [7, Section 1.4.1]. For this and other types of increasing trees, the typical number of
distinct fringe subtrees is of the order n

log n rather than n√
log n

. The main reason for this
difference is the fact that the number of fringe subtrees with k vertices in an n-vertex tree is
on average n

k3/2 (asymptotically, up to a constant factor) for simply generated trees and n
k2

for increasing trees.
The first result on binary search trees is due to Flajolet, Gourdon, and Martínez [9].

Letting Fn be the number of distinct fringe subtrees in a random binary search tree of size
n, they proved that

E(Fn) ≤ (4 log 2)n
logn +O

(n log logn
(logn)2

)
.

Devroye [6] provided a lower bound of the same order of magnitude (and also reproved the
upper bound of Flajolet, Gourdon, and Martínez), showing that

E(Fn) ≥ (log 3)n
2 logn (1 + o(1)).

AofA 2024
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The constant in the lower bound (i.e., log 3
2 ≈ 0.5493061443) was improved to 0.6017824584 by

Seelbach Benkner and Lohrey [21]. Seelbach Benkner and the present author [22] presented
a general approach to proving results of this form. Specifically, it is shown in [22] that the
number of distinct fringe subtrees is of order n√

log n
, both in expectation and with high

probability, for simply generated trees/conditioned Bienaymé–Galton–Watson trees under
various notions of what “distinct” means (e.g., distinct as plane trees, nonisomorphic as
rooted trees). An analogous result for increasing trees holds with an order of magnitude of

n
log n rather than n√

log n
. As a special case of the general approach, one obtains the following

bounds with c1 ≈ 2.4071298335 and c2 = 4 log 2 ≈ 2.7725887222:
c1n

logn (1 + o(1)) ≤ E(Fn) ≤ c2n

logn (1 + o(1)),

which further improves the lower bound (the upper bound is identical with that of Flajolet,
Sipala and Steyaert). These inequalities hold not only for the expected value, but also with
high probability. Even though upper and lower bound are of the same order of magnitude
and the constants c1 and c2 in the upper and lower bound are fairly close to each other, it
is clear that there is still a gap. The aim of this paper is to close the gap and show that
the constant c1 = 4

∑
k≥1

log k
(k+1)(k+2) in the lower bound is in fact best possible. We will

specifically prove the following theorem.

▶ Theorem 1. For the constant c1 = 4
∑

k≥1
log k

(k+1)(k+2) , we have

E(Fn) ∼ c1n

logn

as n → ∞. Moreover, we also have convergence in probability:

Fn

n/ logn
p→ c1.

The approach taken in [22, 23] leading to the lower bound will be briefly described in
Section 3. The proof of the upper bound that is required for Theorem 1 will be presented
afterwards in Section 4. Before that, we require some technical results on fringe subtrees
in binary search trees as well as an important invariant that is called the shape functional.
These auxiliary results will be outlined in the following section. The paper concludes with a
brief discussion and an outlook to other problems to which the same method applies.

2 Preliminaries

Let us first fix some notation. We let Bn be the set of binary trees of size n (for instance,
Figure 4 shows the set B4), and let Tn be a random binary tree of size n constructed
according to the random binary search tree model. In this section, we gather some results on
the distribution of different random variables associated with Tn.

2.1 The binary search tree distribution and the shape functional
We first need some auxiliary results related to the probability distribution of the shape of
binary search trees. Let T be a binary tree of size n, and let Nv be the number of internal
vertices in the fringe subtree rooted at v. We say that a binary search tree has shape T if
the binary tree obtained by ignoring all labels is T . It is well known that the probability
that the shape of a random binary search tree of size n is exactly T can be expressed as

p(T ) =
∏

v

1
Nv

,
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the product being over all internal vertices, see for example Fill [8]. The quantity

(n− 1)!
∏

v

1
Nv

is also the number of ways to label the internal vertices with labels 1, 2, . . . , n − 1 in an
increasing fashion, i.e., in such a way that each vertex other than the root has a greater label
than its parent [18, Section 5.1.4, Exercise 20].

Consider for example Figure 4: there are five possible shapes for binary search trees of
size 4, occurring respectively with probability 1

6 ,
1
6 ,

1
6 ,

1
6 and 1

3 . The negative logarithm of
p(T ), which can be expressed as

− log p(T ) =
∑

v

logNv,

is called the shape functional of T [8] – to be more precise, it is the shape functional of the
tree formed by the internal vertices.

1
6

1
6

1
6

1
6

1
3

Figure 4 The five different binary trees with four leaves and their respective probabilities.

The distribution of the shape functional in random binary search trees was first studied
by Fill in [8]. One can also obtain the following central limit theorem from an application of
a general theorem on additive functionals due to Holmgren and Janson [14].

▶ Lemma 2. Let the random variable Ln be defined by Ln = − log p(Tn). We have

E(Ln) = µn+O(logn),

where µ =
∑∞

k=1
2 log k

(k+1)(k+2) . Moreover, V(Ln) = σ2n + O(1) for a constant σ2 > 0, and
the centred and normalised random variable Ln−µn

σ
√

n
converges in distribution to a standard

normal distribution.

For our purposes, the asymptotic formulas for mean and variance will already be sufficient,
since all we actually need is that the random variable Ln is concentrated around its mean.

2.2 The total number of fringe subtrees of a given shape or size
The second key ingredient concerns fringe subtrees that belong to a specific set. As mentioned
earlier, there are many results on the number of fringe subtrees of a specific shape or size.
The following lemma, which is specifically geared towards our needs, was proven (in greater
generality) in [22], see also [23, Lemma 2].

▶ Lemma 3. Let a, ε be two fixed positive real numbers with ε < 1
2 . For every positive integer

k, let Sk ⊆ Bk be a set whose elements are binary trees of size k. Let pk =
∑

B∈Sk
p(B) be

the probability that a random binary search tree Tk of size k has a shape that belongs to Sk.
Now let Zn,k denote the (random) number of fringe subtrees of size k in a random binary

search tree Tn of size n whose shape belongs to Sk. Moreover, let Yn,ε denote the total
number of arbitrary fringe subtrees of size greater than nε. Then

AofA 2024
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(a) E(Zn,k) = 2npk

k(k+1) for all k < n,
(b) V(Zn,k) = O(pkn/k

2) for all k with a logn ≤ k ≤ nε,
(c) E(Yn,ε) = O(n1−ε), and
(d) with high probability, the following statements hold simultaneously:

(i) |Zn,k − E(Zn,k)| ≤ p
1/2
k k−1n1/2+ε for all k with a logn ≤ k ≤ nε,

(ii) Yn,ε ≤ n1−ε/2.

Equipped with this and the previous lemma, we now have the necessary tools to prove
both a lower bound and an upper bound that will ultimately yield Theorem 1. The interval
from a logn to nε in Lemma 3 is such that it covers the asymptotically relevant range in the
proof of Theorem 1, where we split into several parts according to the fringe subtree size.

3 The lower bound

In this section, we give a brief account of the proof of the lower bound, see [22, 23], slightly
adapted to our specific situation to provide more explicit error terms than in those papers.

The key idea to bound the number of distinct fringe subtrees from below is to only
consider trees that are relatively “large”. Specifically, we set k0 := 1

µ (logn+ (logn)3/4), with
µ as defined in Lemma 2, and only count fringe subtrees whose size is at least k0, while all
smaller fringe subtrees are ignored. It is clear that this will give us a lower bound on the
total number of distinct fringe subtrees. It turns out that for this particular choice of k0,
most fringe subtrees of size k ≥ k0 only occur once in the tree.

In the setting of Lemma 3, let us choose Sk to be the subset of Bk consisting of those
trees B for which p(B) ≤ exp(−µk + k2/3), or equivalently − log p(B) ≥ µk − k2/3. We can
apply Lemma 2 to show that this condition is satisfied with high probability for random
binary trees. Indeed, the Chebyshev inequality yields

P(Lk ≤ µk − k2/3) ≤ V(Lk)
(E(Lk) − µk + k2/3)2 ,

which by Lemma 2 becomes

P(Lk ≤ µk − k2/3) = O(k−1/3).

Thus we can conclude that pk in Lemma 3 is 1 −O(k−1/3) for our specific choice of Sk.
So the expected contribution of trees in Sk for k ≥ k0 to the total fringe subtree count

is, by part (a) of Lemma 3,∑
k≥k0

E(Zn,k) =
∑

k≥k0

2npk

k(k + 1) = 2n
∑

k≥k0

k−2(
1 −O(k−1/3)

)
= 2n
k0

(
1 −O(k−1/3

0 )
)

= 2µn
logn

(
1 −O

(
(logn)−1/4))

. (2)

Moreover, part (d.i) of Lemma 3 guarantees that this is also valid not just in expectation,
but also with high probability.

Now we show that there are very few duplicates (identical fringe subtrees) among these.
For every k ≥ k0, let Z(2)

n,k be the number of pairs of identical fringe subtrees in a random
binary search tree of size n whose shape is in Sk. We condition on the total number of fringe
subtrees of size k, which we denote by Xn,k. Since every fringe subtree follows, conditioned
on its size k, the probability distribution of a random binary search tree Tk, we have

E(Z(2)
n,k | Xn,k = N) =

(
N

2

) ∑
B∈Sk

p(B)2.
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By the definition of Sk, this gives us

E(Z(2)
n,k | Xn,k = N) ≤

(
N

2

)
e−µk+k2/3 ∑

B∈Sk

p(B) ≤
(
N

2

)
e−µk+k2/3

.

Clearly, Xn,k ≤ n, so the law of total expectation gives us

E(Z(2)
n,k) ≤

(
n

2

)
e−µk+k2/3

.

Summing over all k ≥ k0, we finally find that∑
k≥k0

E(Z(2)
n,k) ≤

(
n

2

) ∑
k≥k0

e−µk+k2/3
= O

(
n2e−µk0+k

2/3
0

)
= O

(
ne−(log n)3/4+O((log n)2/3)

)
.

This shows that
∑

k≥k0
Z

(2)
n,k is (in expectation) negligible compared to

∑
k≥k0

Zn,k (see (2)).
By a standard application of the Markov inequality, this also applies with high probability.

Note that Zn,k − Z
(2)
n,k is a lower bound on the number of distinct fringe subtrees whose

shape is in Sk: a shape that occurs r times contributes r−
(

r
2
)

= r(3−r)
2 ≤ 1 to this quantity.

Moreover, the number of distinct fringe subtrees whose shape belongs to Sk for some k ≥ k0
clearly provides a lower bound on the overall number of distinct fringe subtrees Fn, so we
can conclude that

Fn ≥
∑

k≥k0

(
Zn,k − Z

(2)
n,k

)
= 2µn

logn
(
1 −O

(
(logn)−1/4))

,

both in expectation and with high probability.

4 The upper bound

Let us now move on to the upper bound. We can express the number of distinct fringe
subtrees as a sum of indicators. For every binary tree B, let In(B) be the indicator random
variable for the event that a random binary search tree of size n has a fringe subtree whose
shape is B. With this definition, it is clear that

Fn =
∑
k≥1

∑
B∈Bk

In(B).

The key to proving the upper bound that yields Theorem 1 is to split this sum into several
parts and analyse their contributions. Specifically, the three regions are defined as follows:

Small: k ≤ k1 := 1
2 log4 n;

Medium: k1 < k ≤ k2 := 1
µ (logn− (logn)3/4), with µ as defined in Lemma 2;

Large: k2 < k.
This cutting technique is also the main idea behind many of the previously mentioned results
on the quantity Fn. The novel contribution of this paper lies mainly in the middle region
and its precise analysis.

4.1 Bounding the contribution of small fringe subtrees
This part is the easiest: clearly the contribution of trees whose size is at most k1 = 1

2 log4 n

to the random variable Fn is no greater than the total number of distinct binary trees whose
size is at most k1. Since the number of possible trees for every given size k is a Catalan
number (thus |Bk| = 1

k

(2k−2
k−1

)
= O(4k)), we immediately obtain the (deterministic) upper

bound∑
k≤k1

∑
B∈Bk

In(B) ≤
∑

k≤k1

|Bk| = O(4k1) = O(
√
n),

which renders all these trees negligible.

AofA 2024
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4.2 Bounding the contribution of medium-sized fringe subtrees
In the medium region, we have to perform a more careful analysis, separating trees not only
by their size but also the value of their shape functional. We will split into trees with “large”
shape functional and thus (relatively) low probability to occur as a fringe subtree, and trees
with “small” shape functional, which have a comparatively high probability to occur. For
the former, we show that the expected total number of occurrences is too low to make a
significant contribution, while for the latter we prove that there are not enough distinct trees
with sufficiently small shape functional to contribute to the main term of the asymptotics.

Let us now make this precise. For an integer k in the range k1 < k ≤ k2, let us define a
partition of Bk into two subsets (depending on n) as follows:

B1
k contains all trees B ∈ Bk with the property that p(B) ≤ k3

n ,
B2

k contains all remaining trees in Bk.

Lemma 2 can be used to show that it is unlikely for the shape of a random binary
search tree Tk to be in B1

k: the inequality p(Tk) ≤ k3

n can be rewritten as e−Lk ≤ k3

n , or
Lk ≥ logn− 3 log k. This time, the Chebyshev inequality yields

P(Lk ≥ logn− 3 log k) ≤ V(Lk)
(logn− 3 log k − E(Lk))2 .

For k ≤ k2, we have logn − 3 log k − E(Lk) = logn − µk + O(log logn) ≥ (logn)3/4 +
O(log logn), thus (by Lemma 2)

P(Lk ≥ logn− 3 log k) = O
( k

(logn)3/2

)
.

So if we set Sk = B1
k in Lemma 3, then it follows that

pk =
∑

B∈B1
k

p(B) = O
( k

(logn)3/2

)
.

Consequently, by part (d.i) of Lemma 3, we have, with high probability,∑
k1<k≤k2

∑
B∈B1

k

In(B) ≤
∑

k1<k≤k2

Zn,k

≤
∑

k1<k≤k2

( 2npk

k(k + 1) +
p

1/2
k n1/2+ε

k

)
= O

( n

(logn)3/2

)
.

Observe that this also holds in expectation (even without the term p
1/2
k

n1/2+ε

k ) by part (a) of
Lemma 3.

For the remaining part, we prove that there are comparatively few trees in the set B2
k as

compared to B1
k, even though the majority of the probability mass lies with B2

k. Specifically,
we bound the contribution as follows: for every B ∈ B2

k, we have p(B) ≥ k3

n by definition
and thus∑

B∈B2
k

In(B) ≤
∑

B∈B2
k

1 ≤
∑

B∈B2
k

np(B)
k3 .
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Now by definition of p(B), we have
∑

B∈B2
k
p(B) ≤

∑
B∈Bk

p(B) = 1, thus∑
B∈B2

k

In(B) ≤ n

k3 .

This inequality even holds deterministically. Finally, summing over all k in our range yields∑
k1<k≤k2

∑
B∈B2

k

In(B) ≤
∑

k1<k≤k2

n

k3 = O
( n

(logn)2

)
.

Both this and the previous error bound that we found for B1
k are negligible compared to the

term of order n
log n that we will obtain in the final case.

4.3 Bounding the contribution of large fringe subtrees
Finally, we look at large fringe subtrees whose size is greater than k2 = 1

µ (logn− (logn)3/4).
Here, we apply Lemma 3 with Sk = Bk for all k > k2 to show that the total number of such
subtrees (regardless of whether they are distinct or not) is equal to∑

k2<n≤nε

Zn,k + Yn,ε =
∑

k2<n≤nε

2n
k(k + 1) +O(n1−ε/2) = 2n

k2
(1 + o(1)) = 2µn

logn (1 + o(1)),

both in expectation and with high probability. This term dominates the contribution of the
two other cases, so we end up with

Fn =
∑

B

In(B) ≤ c1n

logn (1 + o(1)), (3)

both in expectation and with high probability. Since the matching lower bound was already
provided (see Section 3), this completes the proof of Theorem 1. ◀

5 Discussion and outlook

As the proof shows, the dominant contribution to the number of distinct fringe subtrees comes
from those fringe subtrees that are “large” – specifically, whose size is at least approximately
1
µ logn. The significance of this value is as follows: above this threshold, a typical binary
search tree B of size k satisfies p(B) = o(1/n); as a result, the number of duplicates among
the fringe subtrees of size k in Tn becomes insignificant, and the contribution to the number of
distinct fringe subtrees is essentially just the number of fringe subtrees. Below the threshold
of 1

µ logn, it is precisely the opposite: we have p(B) = ω(1/n) (i.e., np(B) → ∞) for a typical
binary search tree B of size k, which ultimately leads to a negligible contribution.

Further examples of the same kind are presented in [22]: in all these examples, there are
upper and lower bounds of the same order of magnitude, namely n√

log n
or n

log n . However,
in most of them the constants in the bounds do not quite match.

The same technique as presented in this paper can be applied to other examples of this
kind to determine the precise asymptotic behaviour of many similar quantities. To this end,
one needs sufficient information on the behaviour of the analogue of the quantity p(B) –
specifically, a result of the same type as Lemma 2 is required.

Let us give one concrete example: the number of nonisomorphic fringe subtrees in recursive
trees was studied recently by Bodini, Genitrini, Gittenberger, Larcher and Naima [2]. For
this quantity, the analogue of p(B) is the probability that a recursive tree of a given size

AofA 2024



13:10 On the Number of Distinct Fringe Subtrees in Binary Search Trees

is isomorphic to a fixed unlabelled tree. The general central limit theorem for additive
functionals of recursive trees due to Holmgren and Janson [14] can be applied to show that
the analogue of Lemma 2 does indeed hold. At the end of the procedure, we have the
following result:

▶ Theorem 4. The number of nonisomorphic fringe subtrees in a random recursive tree with
n vertices is asymptotically equal to c3n

log n , where the constant c3 is approximately equal to
0.9136401430, both in expectation and with high probability.

The constant c3 already appears in the lower bound in [22, Theorem 16]. The numerical
computation of this constant is discussed there as well. This and further examples will be
considered in the full version of this paper in a broader context.

Let us finally mention an interesting connection to the concept of entropy for random
tree models (compare [13,17]): recall that the constant µ in our main theorem stems from
the mean of the quantity Ln (the shape functional of a random binary search tree) as given
in Lemma 2. Note that we have

E(Ln) = E(− log p(Tn)) = −
∑

B∈Bn

p(B) log p(B),

which can be interpreted as the entropy of the random variable Tn. Thus the growth constant
for the number of distinct fringe subtrees is directly connected to the growth constant for
the entropy. A similar interpretation is possible in other examples, such as Theorem 4.
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