
Asymptotics of Relaxed k-Ary Trees
Manosij Ghosh Dastidar
Institut für Diskrete Mathematik und Geometrie, TU Wien, Austria

Michael Wallner Ñ

Institut für Diskrete Mathematik und Geometrie, TU Wien, Austria

Abstract
A relaxed k-ary tree is an ordered directed acyclic graph with a unique source and sink in which
every node has out-degree k. These objects arise in the compression of trees in which some repeated
subtrees are factored and repeated appearances are replaced by pointers. We prove an asymptotic
theta-result for the number of relaxed k-ary tree with n nodes for n → ∞. This generalizes
the previously proved binary case to arbitrary finite arity, and shows that the seldom observed
phenomenon of a stretched exponential term ecn1/3

appears in all these cases. We also derive the
recurrences for compacted k-ary trees in which all subtrees are unique and minimal deterministic
finite automata accepting a finite language over a finite alphabet.
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1 Introduction and Main Result

The enumeration of directed acyclic graphs (DAGs) is an important and timely topic in
computer science [3], mathematics [2,13,16], and many related areas such as phylogenetics [15]
and theoretical physics [11, 12]. Several problems in this area have remained open for a long
time, with bounds sometimes differing by an exponential factor. One of those problems is
the enumeration of minimal deterministic finite automata (DFAs) with n states recognizing
a finite language over a finite alphabet [14]. In [6] Elvey Price, Fang, and Wallner solved
the corresponding asymptotic counting problem for a binary alphabet, and uncovered
the remarkable phenomenon of a stretched exponential term ec n1/3 . This term provides an
explanation for the previously encountered difficulties. For example, the associated generating
function cannot be algebraic, and it can only be D-finite (satisfy a linear differential equation
with polynomial coefficients) if it has an irregular singularity.

This phenomenon was first observed by the above-mentioned authors in [7] in the
asymptotic number of another class of DAGs: compacted binary trees of size n. These arise
in the compression of XML documents [3], in the common subexpression problem in, e.g.,
compiling [5], and in data structures of, e.g., computer algebra software [8]. Since then, this
phenomenon has also been shown in many classes of DAGs and related objects, such as
phylogenetic networks [4], permutation patterns [18], and Young tableaux [1]. In this paper,
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15:2 Asymptotics of Relaxed k-Ary Trees

we show that the examples of compacted binary trees and minimal DFAs are just single
cases of infinite families admitting a stretched exponential. Our main result is the following
asymptotics of a super-class of the latter two.

▶ Theorem 1. Let k ≥ 2 be an integer. The number of relaxed k-ary trees satisfies for
n → ∞
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where a1 ≈ −2.338 is the largest root of the Airy function Ai(x) defined as the unique function
satisfying Ai′′(x) = xAi(x) and limx→∞ Ai(x) = 0.

Figure 1 All 7 ternary relaxed ternary trees with 2 internal nodes.

2 Bijections and recurrences

In this paper, we consider a special class of DAGs, in which the outgoing edges (equivalently,
the children) are equipped with an order.

▶ Definition 2. An ordered DAG is a directed acyclic graph where there is a left to right
ordering among the children.

This brings us to the main object of this paper: the class of relaxed trees, a subclass of
ordered DAGs, defined as follows; see Figure 1 and 2. The word relaxed signifies that they
are a super-class of compacted trees, which are in bijection with trees after a compression
procedure; see [7, 8].

▶ Definition 3. A relaxed k-ary tree is an ordered DAG consisting of a unique source and a
unique sink such that every node except the sink has out degree exactly k. Its spine is the
spanning subtree created by the depth first search. The edges of the spine are called internal
edges, while the other edges are called external edges or pointers. All nodes except the unique
sink, are called internal nodes.

▶ Remark 4. Note that in the binary case, the previous definition is equivalent to the one
given in [7], in which relaxed trees are defined as trees enriched by pointers. Whereas here
we characterize relaxed trees as a subclass of ordered DAGs.
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Figure 2 Example of relaxed ternary tree with 7 internal nodes (circles) labelled in postorder.
The unique sink is depicted by a square. The black edges belong to the spine, the red ones are
so-called pointers.

We start as in [7] by drawing a bijection between relaxed k-ary trees and Dyck paths
with weights on their horizontal steps. This is done so that we can convert internal nodes
into vertical steps and pointers into horizontal steps.

Every internal node u in the spine of a relaxed tree has a k-ary tree T (u) associated with
it where the nodes are traversed in postorder.

▶ Definition 5. A compacted k-ary tree is a special case of a relaxed k-ary tree where for
any arbitrary two nodes u, v in the spine, the k-ary trees associated with them T (u), T (v) are
not identical.

In order to count relaxed k-ary trees, we will now describe a bijection to a class of paths,
which are easier to enumerate. Let us first define the specific paths.

▶ Definition 6. A horizontally k-decorated path P is defined as a lattice path consisting of
up steps U = (0, 1) and horizontal steps H = (1, 0) from (0, −1) with decorations such that:

The first step is a U step, and its removal leaves a path never crossing the diagonal
y = x

k−1 .
Below each H step, there is exactly one cross in one of the unit boxes below this H step
and y = −1.

The following lemma describes the bijection between relaxed k-ary trees and horizontally
k-decorated paths. An example is shown in Figure 3.

▶ Lemma 7. There is a bijection between horizontally k-decorated paths ending at ((k−1)n, n)
and relaxed k-ary trees of size n + 1.

Proof. Let R be a relaxed k-ary tree of size n + 1. We transform this tree uniquely into a
k-decorated path ending at ((k − 1)n, n). We traverse the spine of R in post-order and label
nodes from 1 to n + 1. During the traversal when we move up (i.e., traverse a spine edge the
second time) we add a U step and when crossing a pointer for the last time (i.e., circling
around its parent) we add a H step. Thereby, we associate each U step with the node we
leave, and each H step with the parent of its pointer. Moreover, below each H step we draw
a cross in the unit box that intersects the column of this H step with the row of the U step
that is associated with the target of the pointer of this H step.

Observe now, that the first step is always a U step, as the unique sink is processed first
in post-order and has no pointers. Thus, after removing this step, we start at the origin
(0, 0). Furthermore, note that R consists of n spine edges, and (k − 1)n pointers. Hence, the
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Figure 3 Example of the bijection described in Lemma 7 between relaxed ternary trees and
horizontally 3-decorated paths.

path consists of n U steps and (k − 1)n H steps, and after attaching a final U step, the path
ends at ((k − 1)n, n). It remains to show that the path never crosses y = x

k−1 . Note that
before a U step is added, the relaxed subgraph of which the associated node is the root has
been traversed. The subgraph consisting only of the node 1 is treated by the fact that we
start at (0, −1). Now we proceed by induction on the depth of the subgraph. We need to
distinguish, whether the node is on the left-branch from the root or not. First, we assume
it is not. The minimal cases is a single pointer, which leads to a step H and increases the
distance to the diagonal y = x

k−1 by one unit. Now assume that a subgraph with i > 0
nodes is given. The root has k children, which all have size less than i. Thus by induction,
each part does not cross y = x

k−1 and moves one unit further to the right from the diagonal.
Therefore, processing the k children moves the path k steps to the right from x

k−1 , while
(after that) processing the root, moves the path one unit up. Thus the path stays below
y = x

k−1 and is one unit further to the right. Second, we assume that the node is on the
diagonal. Then, the first child does not move the path one unit to the right, but the other
k − 1 do. By induction, the path still does not cross the diagonal x

k−1 but the distance now
also stays the same.

Now in the reverse direction, let us take a horizontally k-decorated path ending at
((k − 1)n, n). We want to recover a relaxed k-ary tree from this path. We start by noting
that the number of up steps in the path is n and therefore the number of nodes is n + 1.
Our first step is a horizontal step.

We start by adding a H step which corresponds to the left most leaf labelled 1. Then
along with the path P, we create the spine of the the relaxed k-ary tree. Thus along the up
steps we create nodes of the spine as the ith up step creates the (i + 1)th node in post-order.
Along the horizontal steps we say that we add a pointer from the existing node that we
are in to a node j + 1 which is indicated by the cross placed on the level j below the path
(counting from the bottom up). Completing this process we get a relaxed k-ary tree with its
nodes labelled in post-order. ◀

This bijection allows directly to derive the following recurrence relations, following the
step-by-step construction of the paths. In Table 1 we give the initial terms for k = 2, . . . , 5.
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▶ Proposition 8. Let rn,m be the number of horizontally decorated paths ending at (n, m)
and ∀k ∈ Z, k > 1.

rn,m = rn,m−1 + (m + 1)rn−1,m, for 1 ≤ m ≤ n

k − 1 , (1)

rn,m = 0 for m >
n

k − 1 ,

rn,0 = 1 for n ≥ 0.

Thus, by Lemma 7, the number of relaxed k-ary trees with n internal nodes is equal to
r(k−1)n,n.

Table 1 Number of relaxed k-ary trees. Also the number of unlabeled acyclic single-source
automata with n transient states on a k-letter input alphabet. The matrix consisting of these rows
is given by A128249.

k Relaxed k-ary trees (rk) OEIS

2 (1, 3, 16, 127, 1363, 18628, 311250, 6173791, . . .) A082161
3 (1, 1, 7, 139, 5711, 408354, 45605881, 7390305396, . . .) A082162
4 (1, 1, 15, 1000, 189035, 79278446, 63263422646, 86493299281972, . . .) A102102
5 (1, 1, 31, 6631, 5470431, 12703473581, 68149976969707, . . .) —

In a next step, we will also state the respective recurrences for compacted k-ary trees
and minimal DFAs accepting a finite language on an alphabet of size k. These results
generalize [7, Proposition 2.11] and [6, Proposition 5], respectively.

In a relaxed k-ary tree an internal node will be called a cherry if all its children are
pointers.

▶ Theorem 9. A relaxed k-ary tree C is a compacted k-ary tree if and only if no internal
nodes u, v have the same children in the same order. Moreover, if C is not a compacted
k-ary tree there exists a pair (u, v) with identical children and v is a cherry.

Proof. Let us take C to be a compacted k-ary tree. Let two internal nodes u, v have the
same children in the same order. This implies that the k-ary trees associated with u and v

are isomorphic, which violates the definition of a compacted tree.
Conversely, let us assume that C is not a compacted tree. Therefore from the definition

of a compacted tree it follows that we can find at least one pair of internal nodes (u, v) such
that the k-ary trees associated with them are the same. At this point if v is a cherry then we
are done. But if v is not a cherry then we take the first child of both nodes, say u1 and v1,
respectively, and note that T (u1) = T (v1). Now, if v1 is not a cherry then we can continue
this process. Therefore by infinite descent we see that there has to be two nodes u, v such
that v is a cherry. ◀

In order to continue, we need the following concept. First, recall that in each horizontally
k-decorated path, each step H is decorated by a marked box below. Further, each up step U

corresponds to an internal node in the k-ary tree. Thus, we assign to each step U a k-tuple
(u1, u2, . . . , uk) corresponding to the nodes of its children. (This will help us to construct the
compacted trees from the relaxed ones.) Let us define a Ck-decorated path as a horizontally
decorated path with the restriction that for consecutive steps HkU (k steps H followed
by U) the k-tuple (h1, h2, . . . hk) corresponding to the labels below the H steps, we have
(h1, h2, . . . hk) ̸= (u1, u2, . . . uk) for all preceding steps U .

AofA 2024
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▶ Proposition 10. There is a bijection between the number of compacted k-ary trees of size
n and Ck-decorated paths of length kn.

Proof. Note that the Ck-decorated paths are a subset of the horizontally k-decorated paths
and the previous bijection sends the relaxed k-ary trees to horizontally k-decorated paths.
The Ck-decorated paths have been constructed in this way to reinforce the condition that the
relaxed trees corresponding to these decorated paths are such that the k-ary trees associated
with any two arbitrary nodes can never be identical. ◀

This allows us, again by a direct step-by-step construction, to derive the following bivariate
recurrence for Ck-decorated paths; see Table 2.

▶ Proposition 11. Let cn,m denote the number of Ck-decorated paths ending at (n, m). Then

cn,m = cn,m−1 + (m + 1)cn−1,m − (m − 1)cn−k,m−1 for 1 ≤ m ≤ n

k − 1 ,

cn,m = 0 for m >
n

k − 1 ,

cn,0 = 1 for n ≥ 0.

The number of compacted k-ary trees with n internal nodes is c(k−1)n,n.

Table 2 Number of compacted k-ary trees, which are defined as relaxed k-ary trees with the
additional constraint that each fringe subtree is unique.

k Compacted k-ary trees (ck) OEIS

2 (1, 1, 3, 15, 111, 1119, 14487, 230943, 4395855, . . .) A254789
3 (1, 1, 7, 133, 5299, 371329, 40898599, 6561293893, . . .) —
4 (1, 1, 15, 975, 182175, 75961695, 60422966655, 82450320955455, . . .) —
5 (1, 1, 31, 6541, 5373571, 12458850121, 66790559866471, . . .) —

We have a similar recursion for the minimal DFAs over a k-ary alphabet. We use the same
scheme for the bijection with the H steps having a decoration. Since we have accepting and
rejecting states, the U steps are colored either red or green. We call such paths 2-coloured.
Again, we summarize the first values of Table 3.

▶ Proposition 12. Let bn,m denote the number of 2-coloured horizontally decorated paths
corresponding to DFAs ending in (n, m). Then

bn,m = 2bn,m−1 + (m + 1)bn−1,m − m bn−k,m−1 for 1 ≤ m ≤ n

k − 1 ,

bn,m = 0 for m >
n

k − 1 ,

bn,0 = 1 for n ≥ 0.

The number of minimal DFAs accepting a accepting a finite language on an alphabet of size k

with n + 1 states is b(k−1)n,n.

http://oeis.org/A254789
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Table 3 Number of minimal deterministic finite automata recognizing a finite k-letter language.

k DFA (mk) OEIS

2 (1, 1, 6, 60, 900, 18480, 487560, . . .) A331120
3 (1, 1, 14, 532, 42644, 6011320, 1330452032, . . .) —
4 (1, 1, 30, 3900, 1460700, 1220162880, . . .) —
5 (1, 1, 62, 26164, 43023908, 199596500056, . . .) —

3 Asymptotics of relaxed k-ary trees

The goal of this section is to prove our main Theorem 1 on relaxed k-ary trees. As the proof
is rather technical and complex, we will begin with an overview of the main steps.

First, in Section 3.1 we transform the recurrence (1) into a new recurrence (di,j)i,j≥0
by changing the used steps and extracting the super-exponential and certain exponential
and polynomial contributions. Second, in Section 3.2 we perform a heuristic analysis of the
asymptotics of (di,j)i,j≥0, and guess the shape for a rigorous proof. Using this shape, we build
and prove in Section 3.3 explicit sequences (X̃i,j)i,j≥0 and (X̂i,j)i,j≥0 that satisfy the same
recurrence as (di,j)i,j≥0 but with the equality sign replaced by the inequality signs ≤ and ≥,
respectively. This is the most technical part in which we heavily rely on computer algebra.
Finally, in Section 3.4 we use these explicit sequences to prove inductively asymptotically
tight upper and lower bounds, which yield our main theorem.

3.1 Transformation into a Dyck-like recurrence
We start from recurrence (1) and our goal is to determine the asymptotics of r(k−1)n,n. First,
we observe that the path closest to the diagonal given by (Hk−1V )n has a weight (n!)k−1

as there are n H steps at height 0, 1, . . . , n − 1. All other paths will get smaller weights.
Therefore, after rescaling with this weight, all paths have a weight bounded by one. Note that
it is technically easier to work with the rescaling ((k − 1)n)!, which has by Stirling’s formula
the same super-exponential growth. The difference in the exponential growth is a factor
(k − 1)(k−1)n, which we will take into account later in (5). Thus, we set r̃n,m = rn,m

((k−1)n)! and
get the new recurrence

r̃n,m = m + 1
n

r̃n−1,m + r̃n,m−1, m ≤ n

k − 1 .

Next, as we are interested in the asymptotics of r̃(k−1)n,n, we will transform this recurrence
from North and East steps, to Dyck-like up and down steps. For this purpose, we define the
new variables{

i = n + m,

j = n − (k − 1)m,
equivalently

{
n = (k−1)i+j

k ,

m = i−j
k .

The idea behind this choice, is that i tracks the length of the walk, i.e., the number of steps,
and j the distance to the diagonal. By this choice, we have i, j ≥ 0. This gives the following
generalized Dyck-like recurrence:

d̃i,j = Ũ(i, j)d̃i−1,j−1 + d̃i−1,j+k−1, i > 0, j ≥ 0, (2)

with the initial condition d̃0,0 = 1 and the weight Ũ(i, j) = i−j+k
(k−1)i+j . Thus, we have the new

steps (1, 1) and (1, −k +1). This is a simple directed lattice path model with space-dependent

AofA 2024
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weights. Note that as the change in the x-direction is one unit per step, a path of length n

consists of n steps, and it suffices therefore to track the current altitude. Therefore, from now
on we consider only the changes in the y-direction, which we call jumps +1 and −(k − 1).

Let us now look at the drift of this new model. For now, we assume that i is large and
that j = o(i). The drift δ̃(i, j) at a point (i, j) is defined as the expected next jump size
when leaving (i, j). Therefore, at (i, j) the jump +1 gets weight Ũ(i + 1, j + 1) and the
jump −(k − 1) weight 1 for j ≥ k − 1 and 0 otherwise. Hence, we get that δ̃(i, j) = 1 for
0 ≤ j ≤ k − 2 and

δ̃(i, j) = i − j + k

(k − 1)(i + 1) + j + 1 − (k − 1) = −k(k − 2)
k − 1 + O

(
1
i

)
, for j > k − 2.

Note that in the binary case (k = 2), the first term is zero and therefore the drift is converging
to zero for large i. However, in the general case the drift is negative for large i. But we can
define the following transformation to achieve the same behavior: di,j = (k − 1)2nd̃i,j where
n = (k−1)i+j

k . This gives the final Dyck-like recurrence

di,j = U(i, j)di−1,j−1 + di−1,j+k−1, i > 0, j ≥ 0, (3)

with the initial condition d0,0 = 1 and the following weight for the up step

U(i, j) = (k − 1)2(i − j + k)
(k − 1)i + j

= (k − 1)
(

1 − k(j − k + 1)
(k − 1)i + j

)
. (4)

The drift δ(i, j) in this model is again δ(i, j) = 1 for 0 ≤ j ≤ k − 2 but now we have

δ(i, j) = −k(k − 1)(j − k + 2)
k(i + 1) − i + j

= −k(j − k + 2)
i

+ O
(

1
i2

)
, for j > k − 2,

and therefore converges to zero. In this final model (3), we are interested in dkn,0 since

r(k−1)n,n = ((k − 1)n)!r̃(k−1)n,n = ((k − 1)n)!d̃kn,0 = ((k − 1)n)!
(k − 1)2(k−1)n

dkn,0

∼
√

k − 1(2π)1−k/2 (n!)k−1

(k − 1)(k−1)n
n1−k/2dkn,0,

(5)

where the last equality follows by Stirling’s formula.

3.2 Heuristic analysis
In the next step, we will now heuristically analyze the recurrence (3). Inspired by the binary
case and numerical experiments, we use the ansatz

di,j = h(i)f
(

j + 1
i1/3

)
. (6)

The function h(i) captures a macroscopic amplitude that is independent of j, while the
function f(x) captures the local behavior around the origin. The rescaling by i1/3 is motivated
by an analogy to pushed Dyck path and the binary case [7].

Substituting this ansatz into the recurrence (3) and reordering we get

h(i)
h(i − 1) =

U(i, j)f
(

j
(i−1)1/3

)
+ f

(
j+k

(i−1)1/3

)
f
(

j+1
i1/3

) .
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As the left-hand side is independent of j, for large i both sides should have an expansion
in i with whose coefficients are independent of j. Let us now zoom into the region i1/3 by
binding the variables i and j using the transformation j = x i1/3 + 1. This gives

h(i)
h(i − 1) =

U(i, x i1/3 + 1)f
(

x i1/3+1
(i−1)1/3

)
+ f

(
x i1/3+k+1

(i−1)1/3

)
f(x) . (7)

Assuming now that f(x) has a convergent Taylor series expansion around x, we get

h(i)
h(i − 1) = k + k

2
(k − 1)f ′′(x) − 2xf(x)

f(x) i−2/3 + O(i−1).

Hence, in order to be consistent, the left-hand side needs to have an expansion in decreasing
powers of i1/3. In particular, it starts like

h(i)
h(i − 1) = k + c i−2/3 + O(i−1),

for a constant c ∈ R. Comparing coefficients, we see that f(x) has to satisfy the differential
equation

f ′′(x) = 2(kx + c)
k(k − 1) f(x).

This differential equation is, as in the binary case, solved by the Airy functions of the first
and second kind. Due to the combinatorial nature of the problem, we require f(x) ≥ 0 for
x ≥ 0 as well as limx→∞ f(x) = 0. Therefore, we get up to a multiplicative constant the
following solution

f(x) = Ai
(

21/3(kx + c)
k(k − 1)1/3

)
.

Now, note that due the boundary conditions dn,−1 = 0 we must have f(0) = 0. Together,
with f(x) ≥ 0 for x ≥ 0, this means that the argument of the Airy function must evaluate to
the largest zero a1 ≈ −2.338 of Ai(x). Therefore

c = k(k − 1)1/3

21/3 a1

and

f(x) = Ai (a1 + B x) , where B =
(

2
k − 1

)1/3
.

In order to capture the polynomial term, we need to use a more general ansatz than (6)
that includes a second function g(x) capturing the scale of order i−1/3. In particular, we use

di,j = h(i)
(

f

(
j + 1
i1/3

)
+

g
(

j+1
i1/3

)
i1/3

)
. (8)

Note that the function g(x) will influence the terms starting from order i−1 in (7). Analogous
computations as performed above for f(x) lead us to the ansatz

g(x) = −
(

(k + 2)x2

6(k − 1) + 22/3a1(k − 2)x
6(k − 1)2/3

)
f(x).

AofA 2024
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3.3 Explicit bounds

All these heuristic arguments above guide us to the following two results. These generalize [7,
Lemmas 4.2 and 4.4], whose results are recovered by setting k = 2. The proofs are analogous
to [4, 7]; for the details we refer to the accompanying Maple worksheet. In particular, this
shows that the method developed in [7] is powerful enough to analyze bivariate recurrences
that include parameters.

▶ Lemma 13. Let k ≥ 2 be an integer and B = ( 2
k−1 )1/3. For all i, j ≥ 0 let

X̃i,j :=
(

1 − 22/3a1(k − 2)
6(k − 1)2/3

j

i2/3 − k + 2
6(k − 1)

j2

i
+ 7k − 11

6(k − 1)
j

i

+ a2
1(k − 2)2B4

72
j2

i4/3 + a1(k2 − 4)2B5

72
j3

i5/3

)
Ai
(

a1 + B(j + 1)
i1/3

)
,

s̃i := k

(
1 + a1

Bi2/3 + 7k − 6
6i

− 1
i7/6

)
.

Then, for any ε > 0, there exists an ĩ0 such that

X̃i,j s̃i ≤ U(i, j)X̃i−1,j+1 + X̃i−1,j−1

for all i ≥ ĩ0 and for all 0 ≤ j < i2/3−ε, where U(i, j) is defined in (4).

▶ Lemma 14. Let k ≥ 2 be an integer and B = ( 2
k−1 )1/3. Choose η > (k+2)2

72(k−1)2 fixed and for
all i, j ≥ 0 let

X̂i,j :=
(

1 − 22/3a1(k − 2)
6(k − 1)2/3

j

i2/3 − k + 2
6(k − 1)

j2

i
+ 7k − 11

6(k − 1)
j

i

+ a2
1(k − 2)2B4

72
j2

i4/3 + a1(k2 − 4)2B5

72
j3

i5/3 + η
m4

n2

)
Ai
(

a1 + B(j + 1)
i1/3

)
,

ŝi := k

(
1 + a1

Bi2/3 + 7k − 6
6i

+ 1
i7/6

)
.

Then, for any ε > 0, there exists an î0 such that

X̂i,j ŝi ≥ U(i, j)X̂i−1,j+1 + X̂i−1,j−1

for all i ≥ î0 and for all 0 ≤ j < i1−ε, where U(i, j) is defined in (4).

Note that in the binary case k = 2, many terms in the previous Lemmas 13 and 14 are
zero. These terms do not affect the final asymptotics, but they are needed for the proof
using generalized Newton polygons. In particular, they allow to set certain points on the
convex hull to zero, which then leads to the same behavior as in the binary case. For this
reason, the technical proofs follow nearly verbatim the binary ones and we omit them in this
extended abstract and refer to [7] and the accompanying Maple worksheet.

These explicit recurrences that satisfy the recurrence (3) with = replaced by ≤ and ≥,
are the key ingredient to prove our main theorem.
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3.4 Proof of Theorem 1 on relaxed k-ary trees
We start with the lower bound. First, we define a sequence Xi,j := max{X̃i,j , 0} which
satisfies the inequality of Lemma 13 for all j ≤ i

k−1 . Note that the factor of the Airy function
Ai becomes negative for large j. Then, we define an explicit sequence h̃i := s̃ih̃i−1 for i > 0
and h̃0 = s̃0. Using this we can prove by induction that di,j ≥ C0h̃iXi,j for some constant
C0 > 0 and all i ≥ ĩ0 and all 0 ≤ j ≤ i

k−1 . Therefore,

dkn,0 ≥ C0h̃knXkn,0

≥ C0

kn∏
i=1

k

(
1 + a1

Bi2/3 + 7k − 6
6i

− 1
i7/6

)
Ai
(

a1 + B

(kn)1/3

)
≥ C1kkne3a1(kn)1/3/Bn

7k−8
6 . (9)

Finally, combining this with (5) we get the lower bound.
We continue with the upper bound, whose proof is similar, yet more technical. The

starting point is Proposition 14 and, as in the lower bound, a function Xi,j that is valid
for all 0 ≤ j ≤ i

k−1 . For this purpose we define as in the binary case [7] a sequence d̃i,j

depending on some large integer parameter I > 0 such that

d̃i,j :=
{

di,j for 0 ≤ j ≤ i3/4 and i > I,

0 otherwise.
(10)

The missing key step is now to show that dkn,0 = O(d̃kn,0). Combining this with the
analogous computations performed for the lower bound above we get

d̃kn,0 ≤ Ĉ1kkne3a1(kn)1/3/Bn
7k−8

6 .

To complete the prove we show dkn,0 ≤ 2d̃kn,0 using lattice path theory and computer
algebra. We start from Equation (3) of di,j , which we interpret as a recurrence counting
lattice paths. They are composed of steps (1, 1) weighted by U(i, j) and (1, −k + 1) weighted
by 1 when the respective step ends at (i, j). The total weight of a path is the product of its
weights. Now, we are interested in the paths never crossing y = 0 and ending at (kn, 0). Let
now pℓ,k,kn be the number of such paths starting at (r, s) and ending at (kn, 0). From (3)
we directly get

pr,s,kn = (k − 1)2(r − s + k)
(k − 1)(r + 1) + s + 1pr+1,s+1,kn + pr+1,s−k+1,kn,

with pℓ,−1,kn = 0 and pkn,s,kn = δs,0, where the factor is U(r + 1, s + 1).
Now, we are able to show that
pr,s1,kn

s1 + 1 ≥ pr,s2,kn

s2 + 1 , (11)

for integers 0 ≤ s1 < s2 ≤ r ≤ kn such that k | s2 − s1. The proof is completely elementary
and uses reverse induction on r starting from r = kn. We refer to our accompanying Maple
worksheet.

Finally, from (11) we directly get

pkx,ky,kn ≤ (ky + 1)pkx,0,kn. (12)

This allows to prove the following generalization of [7, Lemma 4.6] whose proof follows
exactly the same lines and we omit it here. For the following statement, recall that di,j is
the weighted number of paths ending at (i, j). Let d̃i,j be the number of these paths such
that no intermediate point (kx, ky) on the path satisfies x > Iε and y > x3/4.

AofA 2024
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▶ Lemma 15. For all ε > 0 there exists a constant Iε > 0 that acts as the parameter I in
the definition of d̃i,j in (10), such that dkn,0 ≤ (1 + ε)d̃kn,0 for all n > 0.

Proof. As in the binary case, we first rewrite the claimed inequality into 1 − d̃kn,0
dkn,0

≤ ε
1−ε .

The left-hand side here represents the proportion of walks that pass through at least one
point (kx, ky) such that x > Iε and y > x3/4. Let sx,y,n be the proportion of such walks
that pass through one fixed such point:

sx,y,n = dkx,kypkx,ky,kn

dkn,0
.

The idea is that the sum of these values over all violating points x, y is of course an upper
bound for our claim. So we want to prove that this sum is very small for large x.

By (12) combined with the fact that sx,y,n ≤ 1, we get

sx,y,n ≤ (ky + 1)pkx,0,kndkx,ky

dkn,0sx,0,n
= (ky + 1)dkx,ky

dkx,0

≤ ky + 1
C1kkxe3a1(kx)1/3/Bx

7k−8
6

(k − 1)(k−1)x+y

(
kx

x − y

)
where we also used the lower bound (9) for dkx,0 and the crude bound dkx,ky ≤ (k −
1)(k−1)x+y

(
kx

x−y

)
. The latter holds, as we may bound non-negative paths ending at (kx, ky)

by unconstrained paths with weights (k − 1) for the up step (1, 1) and 1 for down step
(1, −k + 1), since U(i, j) ≤ k − 1 for all i, j ≥ 0.

Now this last expression is completely explicit, and for large x one can see that it is of
order Θ(e−x1/2). Now, the proof of the binary case follows verbatim and the claim follows. ◀

Finally, this proves dkn,0 ≤ 2d̃kn,0 and ends the proof of our main Theorem 1.

4 Conclusion and Outlook

The aim of this paper was to show that the method from [7] developed for the asymptotics
of compacted binary trees can be applied to more general recurrences. Previously, in [4] we
showed how to handle more general weights including an integer parameter, while in this
paper we generalized the used steps. Instead of steps (1, 1) and (1, −1) of Dyck type we
studied a recurrence with larger steps given by (1, k − 1) and (1, −1), for an arbitrary fixed
positive integer k. In particular, we proved in Theorem 1 that in the class of relaxed k-ary
trees the phenomenon of a stretched exponential appears for any integer k ≥ 2.

In the long version, we will also prove the generalizations from the binary to the k-ary case
for compacted trees and minimal deterministic finite automata accepting a finite language
on an alphabet of size k for which we showed in Propositions 11 and 12 that their respective
recurrences have similar shapes. We expect that the phenomenon of a stretched exponential
persists also in these cases. In general, the presented method can be applied to more general
cases including several parameters in the weights and also recurrences with more than two
steps.

Another research direction is to generalize the previously studied relaxed binary trees of
bounded right height [9] to the k-ary case. In the binary case, this class has been proved to be
D-finite using exponential generating function methods. In the k-ary case, a similar rescaling,
as we used in Section 3.1 by n!k−1 should allow to analyze this class using generalized
exponential functions of the type

∑
n≥0 an

zn

(n!)k−1 . This class is also interesting, since the
binary case has rich combinatorial properties, such as bijection and closed-form enumeration
formulas [17], which are also worth to investigate in the k-ary case.
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