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Abstract
In sparse Erdős–Rényi graphs, it is known that a linear-time algorithm of Karp and Sipser achieves
near-optimal matching sizes asymptotically almost surely, giving a law-of-large numbers for the
matching numbers of such graphs in terms of solutions to an ODE [9]. We provide an extension of this
analysis, identifying broad ranges of stochastic block model parameters for which the Karp–Sipser
algorithm achieves near-optimal matching sizes, but demonstrating that it cannot perform optimally
on general stochastic block model instances. We also consider the problem of constructing a matching
online, in which the vertices of one half of a bipartite stochastic block model arrive one-at-a-time, and
must be matched as they arrive. We show that, when the expected degrees in all communities are
equal, the competitive ratio lower bound of 0.837 found by Mastin and Jaillet for the Erdős–Rényi
case [14] is achieved by a simple greedy algorithm, and this competitive ratio is optimal. We then
propose and analyze a linear-time online matching algorithm with better performance in general
stochastic block models.
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1 Introduction

Real-life allocation problems, particularly those related to the display of ads in search engine
results, have motivated a substantial line of research investigating the problem of online
matching in random graphs. Most prior work on this problem assumes the vertices on one side
of a bipartite graph are drawn i.i.d. from an adversarially-chosen distribution. In that setting,
upper bounds on the competitive ratio are known [13]. However, in Erdős–Rényi graphs,
it is possible to exceed these bounds [14]. One might therefore hope that graphs arising in
nature tend to permit better online matching algorithms than adversarial distributions. In
this work, we consider matching problems in the stochastic block model, in which vertices
belong to one of a constant number of classes, and the probability of an edge between two
vertices depends only on their classes. This is a broad class of structured distributions on
graphs, which includes the Erdős–Rényi model as a special case. In stochastic block models,
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16:2 Matching Algorithms in the Sparse Stochastic Block Model

neither the optimal online matching algorithm nor the (offline) matching number are known.
We make progress on both of these questions, finding expressions for the matching number
in a number of regimes, and proposing and analyzing several heuristics for online matching.

1.1 Preliminaries
The idea of a population divided into a fixed number of distinct but internally-homogeneous
groups is captured by the stochastic block model, first proposed by Holland et. al. to
model social networks [6].

▶ Definition 1 (Stochastic block model). For fixed q, consider q disjoint sets of vertices
(classes) S1, . . . , Sq, and a symmetric probability matrix associating a value pij ∈ [0, 1] to each
pair i, j of classes. Given these parameters, the associated stochastic block model is the
distribution over graphs obtained by including each edge (u, v) independently with probability
pσuσv

, where σu and σv are the classes to which u and v, respectively, belong.

If q = 1, we recover the Erdős–Rényi graph G(n, p) on n vertices with edge probability p. If
q = 2, where each class has n vertices and p12 = p, p11 = p22 = 0, we recover the bipartite
Erdős–Rényi graph G(n, n, p).

We are interested in the number of vertices in a maximum-cardinality matching on a
graph drawn from this distribution, which we call the matching number . We are also
interested in the problem of constructing a matching online.

▶ Definition 2 (Online bipartite matching problem). Given a bipartite stochastic block model,
we can define an associated online matching problem. An algorithm is given the classes of
n right vertices, and knows a distribution over the left classes. For each of n time-steps, a
new left-node is revealed (a left label is drawn from the distribution, and coins are flipped
according to the block model probabilities to determine which edges it has to the right vertices)
– the algorithm then decides which, if any, of these edges to add to M . Once it has made this
decision, it is never allowed to revisit that vertex.

The most interesting range of stochastic block model parameters turns out to be the
sparse regime, when all probabilities pij are Θ(1/n). When pij grows faster than 1/n, as n

grows to infinity the graph becomes dense enough such that with high probability, there is a
near perfect matching between Si and Sj . On the other hand, when pij grows slower than
1/n, the graph becomes so sparse that we can include almost every edge in M . Therefore,
we consider the regime in which pij = cij/n for some constants cij .

1.2 Background
In 1981, Karp and Sipser demonstrated that a simple linear-time heuristic achieves matchings
within o(n) of the true matching number of Erdős–Rényi graphs with high probability [9].
By associating the performance of that algorithm with a Markov chain and examining the
limiting differential equation, they were able to prove a law of large numbers on the matching
number of such graphs. In 1998, Frieze, Pittel, and Aronson improved the error estimate
of the Karp–Sipser algorithm in Erdős–Rényi graphs from o(n) to n1/5+o(1) [1]. In 2011,
Bohman and Frieze extended analysis of the Karp–Sipser algorithm to the model of graphs
drawn uniformly over a fixed degree sequence, showing that a log concavity condition is
sufficient for the algorithm to find near-perfect matchings in such graphs [2]. Because of its
simplicity, the Karp–Sipser algorithm has also received attention as a practical method for
data reduction; some recent work investigates efficient implementations [11, 12].
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The online bipartite matching problem was first introduced by Karp, Vazirani and Vazirani
in 1990; they achieved a tight 1 − 1/e competitive ratio on worst-case inputs [10]. In 2009,
Feldman et. al. showed when the left vertices are instead drawn from an arbitrary known
distribution, with integral expected arrival rates, it is possible to get a competitive ratio
strictly better than 1−1/e [5]. For arbitrary distributions, the best known algorithm achieves
competitive ratio 0.716, and there is an upper bound of 0.823 [8, 13]. There has also been
work considering algorithms for specific left vertex distributions. Mastin and Jaillet found
that in G(n, n, p), the random bipartite graph where all edges are independent and equally
likely to exist, all greedy algorithms achieve competitive ratio at least 0.837 – they conjectured
that this lower bound is optimal, but were unable to compute the matching number [14].
Sentenac et. al. studied the problem in the 1-dimensional geometric model, where they
found expressions for both the matching number and the performance of a particular online
heuristic [16]. To the best of our knowledge, the only previous work that considers the
stochastic block model is by Soprano-Loto et. al., who consider the regime where the graph
is dense (i.e. all probabilities are constants not depending on n), and characterize when it is
possible to achieve an asymptotically near-perfect matching [17].

1.3 Main Contributions
We show that the Karp–Sipser algorithm achieves near-optimal matchings for probability
matrices pij satisfying any of the following conditions. However, the algorithm does not
achieve near-optimal matchings in general stochastic block models.

Equitable: We call a stochastic block model “equitable” if each vertex has the same
expected degree, i.e., for every i,

∑
j pij |Sj | =

∑
j cij |Sj |/n = c for some constant c. We

show that the asymptotic matching number for any such graph is αn + o(n) where α is
an explicit constant. See Theorem 5 for the full statement.
Sub-Critical: When

∑
j cij |Sj |/n < e for all i, we show that the model is in a sub-critical

regime similar to the one found for Erdős–Rényi graphs. We show that the asymptotic
matching number converges to the solution of an explicit ODE, see Theorem 9.
Bipartite Erdős–Rényi: We also determine, in terms of the solution of an explicit
ODE, the asymptotic matching number of G(kn, n, c/n), the bipartite graph with part
sizes kn and n and independent edge probability c/n; see Lemma 13. This case is of
particular interest as a simple example for which usual arguments about the Karp–Sipser
algorithm fail.

With regards to the online matching problem, we will first show that a simple strategy,
GREEDY, of matching to uniform random neighbours achieves the optimal 0.837 competitive
ratio in any equitable model. We then propose the more sophisticated heuristic, SHORT-
SIGHTED, of preferring the available class that maximizes the probability of finding a match
on the next step. While SHORTSIGHTED performs extremely close to the online optimal
in experiments, we are able to show analytically that it is not an asymptotically optimal
algorithm in general.

2 Analysis of the Karp–Sipser Algorithm for Offline Matching

2.1 Karp–Sipser Algorithm and Outline of Analysis
Karp and Sipser proposed the following greedy algorithm: whenever there exists a vertex of
degree 1 in the graph, choose one uniformly at random, add its edge to the matching, and
remove the vertex and its neighbor from the graph. When there are no degree 1 vertices,
instead choose a uniform random edge to add to the matching, removing both of its incident
vertices from the graph.

AofA 2024
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When there exist degree 1 vertices it is always “safe” to add their edges in the sense that
there exists an optimal matching which includes these edges. Therefore, any “mistakes” the
algorithm makes can only happen after the first time the graph no longer contains any degree
1 vertices (we call the steps before this Phase 1 , and the steps after this Phase 2 ). The
analysis of this algorithm in the Erdős–Rényi graph setting proceeds as follows [9, 1]:
1. Conditioned on the state of a Markov process on small tuples of integers, the graph

maintains a simple distribution law even after several steps of the algorithm.
2. Estimating transition probabilities from the degree distribution, we can appeal to known

approximation theorems to conclude that the Markov process stays close to the solution
of a corresponding ODE as n → ∞ with high probability.

3. In Phase 2 of the algorithm, it is very likely that the algorithm finds a near-perfect
matching on the remaining graph. Since the algorithm makes only optimal decisions
in Phase 1, this means that overall it finds a matching within o(n) vertices of the true
optimal value, and so the matching number of the graph is described by solutions to the
ODE from step 2.

We apply steps analogous to 1 and 2 in the general stochastic block model. On the other
hand, we find that step 3 does not always hold – that is, there exist stochastic block models
in which Phase 2 does not find a near-perfect matching. We list some interesting cases in
which we can show Phase 2 does find a near-perfect matching, and give an example where a
precise analysis is possible even when it does not.

2.2 Convergence of Phase 1 Transitions to Continuous Approximation
In Appendix A, we show that to an observer tracking only the following values for all class
labels i, j: the number Eij of j-type half-edges (i.e. edges whose other endpoint lies in class
j) incident to label-i vertices, the number Ti of label-i vertices of degree exactly 1 (the “thin”
vertices), and the number Fi of label-i vertices of degree at least 2 (the “fat” vertices), the
system follows a Markov chain, whose transition probabilities we determine from the limiting
distribution of degrees in the block model. Letting Ēij = Eij

n , F̄i = Fi

n , and T̄i = Ti

n , where
n is the total number of vertices in the original graph, this analysis gives

E[∆Ēij ] =
−ωij − ωji −

∑
l ωliδij −

∑
l ωljδji

n

E[∆F̄i] = −
(
∑

l ωli)
(

h̄i−T̄i

h̄i

)
−
∑

j

∑
l ωjlδliθi

n

E[∆T̄i] = −
(
∑

l ωil) − (
∑

l ωli)
(

T̄i

h̄i

)
−
∑

j

∑
l ωjlδli

(
T̄i

h̄i
− θi

)
n

,

where hi =
∑

l Eil, ωij = Ti∑
l

Tl
· Eij

hi
, δij = hi−Ti

hi
· λi

1−e−λi
· Eij

hi
, and θi = hi−Ti

hi
· λi

eλi −1 , for

λi a solution to λi(eλi −1)
eλi −1−λi

= hi−Ti

Fi
. These values come from our degree distribution estimates

in Appendix A, where hi is the total number of half-edges attached to class i, ωij is the
probability that a random degree-1 vertex is in class i and has neighbour in class j, δij is
the expected number of (additional) j-type half edges shared by the endpoint of a random
class-i half-edge, and θi is the probability that a random class-i half-edge is incident to a
degree-2 vertex.

This is a process that takes order n time steps, and where the expected change at each
time step scales like 1

n . Informally, we can observe that in the limit of n, the many small
steps should average out and produce a process evolving according to their expectations; this
suggests looking at the following system of equations:
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d

dt
Ēij(t) = −ωij(t) − ωji(t) −

∑
l

ωli(t)δij(t) −
∑

l

ωlj(t)δji(t)

d

dt
F̄i(t) = −

(∑
l

ωli(t)

)(
h̄i(t) − T̄i(t)

h̄i(t)

)
−
∑

j

∑
l

ωjl(t)δli(t)θi(t)

d

dt
T̄i(t) = −

(∑
l

ωil(t)

)
−

(∑
l

ωli(t)

)(
T̄i(t)
h̄i(t)

)
−
∑

j

∑
l

ωjl(t)δli(t)
(

T̄i(t)
h̄i(t)

− θi(t)
)

with initial conditions Ēij(0) = cijS̄iS̄j , F̄i(0) = S̄i

(
1 −

(
1 +

∑
j cijS̄j

)
e

−
∑

j
cij S̄j

)
, and

T̄i(0) = S̄i

(∑
j cijS̄j

)
e

−
∑

j
cij S̄j , where cij and S̄i = |Si|/n are the connection probabilities

and label class sizes, respectively, of the stochastic block model instance. We justify this
passage to differential equations by Wormald’s theorem [19], which guarantees that, in
the limit of n, the evolution of Phase 1 stays close to the unique solution of this ODE
with probability approaching 1 (this is formally justified in Appendix B). This implies the
following:

▶ Lemma 3. If Y(t) = {Ēij , F̄i, T̄i} is a solution to the above ODE, with high probability the
total number of unmatched isolated vertices created in Phase 1 of the Karp–Sipser algorithm
is n

(
1 − 2τ −

∑
i F̄i(τ)

)
+ o(n), where τ is the first time such that T̄i(τ) = 0 for all i.

In the Erdős–Rényi case, studying Phase 2 of the Karp–Sipser algorithm reveals that
with high probability at most o(n) unmatched isolated vertices are created, meaning that the
algorithm is asymptotically optimal, and that the matching number is n

(
2τ + F̄i(τ)

)
+ o(n)

with high probability. However, this analysis turns out not to work for general stochastic block
model instances. We first illustrate a few examples (namely the equitable and sub-critical
cases) where, with a little bit of work, we can prove similar results; then, we examine where
the algorithm fails.

2.3 Equitable Case

▶ Definition 4. We call stochastic block model parameters equitable if there is some constant
c such that for all classes i,

∑
j

cij |Sj |
n = c.

In other words, although the edge density in some parts of the graph may be higher than
other parts, the expected degree of every vertex is c regardless of what label class it belongs
to. In these cases, we show that not only does the Karp–Sipser algorithm construct an
asymptotically-optimal matching, but that the matching size it constructs is asymptotically
the same as the matching number of the Erdős–Rényi graph G(n, c/n). The intuition behind
this claim is that, despite the nontrivial correlation between the edges of the graph, we expect
the degree distributions to look the same everywhere. The crucial point we need to justify to
make this intuition precise is that the degree distributions necessarily remain close to equal
across classes, given that they start that way.

▶ Theorem 5. With high probability, the matching number of an equitable stochastic block
model is

(
1 − x+ce−x+xce−x

2c

)
n + o(n), where x is the smallest solution to x = ce−ce−x , and

the Karp–Sipser algorithm achieves within o(n) of this value.

The theorem is proven with the help of the following three lemmas.

AofA 2024



16:6 Matching Algorithms in the Sparse Stochastic Block Model

▶ Lemma 6. Given an equitable stochastic block model, after Phase 1 of the Karp–Sipser
algorithm, with high probability for every i, Fi (number of vertices of degree at least 2; note
that this is the same as total number of vertices because at the end of Phase 1 there are no
vertices of degree 1) and hi (total number of incident edges) differ by at most o(n) from the
corresponding values in G(n, c

n ).

Proof. This follows directly from our application of Wormald’s theorem. Observe that(
hi(t)

Si
, Fi(t)

Si
, Ti(t)

Si

)
satisfy a symmetric system of equations, and have a symmetric initial

condition, so the symmetry will be preserved by a solution. Since Wormald’s theorem
guarantees that with high probability the result of Phase 1 differs by at most o(n) from a
solution to this ODE, we have the desired statement. ◀

▶ Lemma 7. Fix a constant ϵ > 0, and suppose, at the start of Phase 2 of the Karp–Sipser
algorithm, the values of Fi/S̄i and hi/S̄i each differ by at most o(n) between classes. If the
Karp–Sipser algorithm is run until some class has average degree less than 2 + ϵ, with high
probability at most o(n) isolated vertices will have been produced since the start of Phase 2,
and all classes will have average degree 2 + ϵ + o(1)

Proof. In the regime where the average degree hi/Fi > 2 + ϵ for all classes i, we want to
argue that the number of steps between the times when the graph is free of thin vertices is
small, so that by bunching those runs of degree-1 stripping together we can again control
the evolution by an ODE. The following is a high-level treatment of the argument; formal
justification from Wormald’s theorem is given in Appendix B:

When we first remove a random edge, this may create some vertices of degree 1. In
removing those, we may create more vertices of degree 1. In general, the expected number of
new degree-1 vertices created when a degree-1 vertex of class i is removed is

∑
j

Eij

hi
δiθj ≤

(maxi δi) (maxj θj), where δi is the expected number of half-edges sharing a vertex with a
random class-i half-edge, and θi is the probability that a random class-i half-edge is attached
to a degree-2 vertex. Now, when we have that the average degree in each class is at least
2 + ϵ, and that the difference in average degree between any pair of classes i and j is very
small (say, less than γ), then we know by our degree estimates (see Appendix A) that
δiθj = λi

1−e−λi
· λj

eλj −1
< 1 − η for any pair i, j of classes, where η depends on γ and ϵ (the

existence of some γ > 0, η > 0 in terms of ϵ with this property is guaranteed by a continuity
argument, see Appendix B). So, the expected number of degree-1 vertices created for each
degree-1 vertex removed is at most a constant, 1 − η, that is bounded away from 1. The
size of a subcritical Galton–Watson tree with 1 − η expected offspring is very unlikely to
exceed O(1/η) – by a Chernoff bound, we can argue that it is exponentially unlikely in n to
achieve size nΩ(1). Thus, while we are within the region where average degrees are γ-close
and greater than 2 + ϵ, the duration of a “run” of degree-1 stripping is w.h.p. much smaller
than n, and we can appeal to the law of large numbers to claim the process evolves like its
expectation. Whenever the average degree is the same in all classes, the expected change in
the number of edges of a given type is proportional to the number of edges currently of that
type (all edges in the graph are equally likely to be chosen as the first edge removed, equally
likely to be the edge chosen one step into the run, etc). So, since average degrees start out
o(1) away from each other, we expect them to remain that way up until one of them drops
below 2 + ϵ.

Now, note that the rate of creation of isolated vertices on a given step is always proportional
to the fraction of thin vertices in the graph: when we remove a vertex (the neighbour of a
thin vertex), it has δi other neighbours in expectation, and by the Markov property shown
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in Appendix A, we know that those neighbour edges are equally likely to be any of the edges
leaving the class. So, the number of vertices isolated at each step is in expectation at most δi

v

times the total number of degree-1 vertices, where v is the total number of vertices remaining
(i.e. not matched or isolated) in the graph. For a run of length no(1), there can only ever be
no(1) thin vertices present at any given moment, so we expect to create o(1) isolated vertices
in any given run. Thus, the total number created while we’re in this regime is o(n) with high
probability. ◀

▶ Lemma 8. If the Karp–Sipser algorithm is run to completion, starting from average degree
2 + ϵ + o(1) in every class, with high probability at most 2ϵn (1 − 2 log(2ϵ)) isolated vertices
are produced.

Proof. We’re no longer guaranteed that individual runs are short, so can’t argue that each
run isolates only o(1) vertices in expectation. Instead, we will bound the number of isolated
vertices by controlling the number of degree-1 vertices that are ever produced in this regime.
The only way to remove a thin vertex and create more than one in its place is to have its
neighbour have degree greater than 2. Since no class has average degree more than 2 + 2ϵ, we
know that the entire graph has at most 2nϵ edges associated with vertices of degree greater
than 2. Those edges are the only places we can branch out and create more degree-1 things
than we consume, so, throughout the course of the rest of the algorithm, there can never be
more than 2nϵ thin vertices in the graph at once.

As in Lemma 7, we observe that the expected number of vertices isolated in a single step
is at most δi

v ≤ 2
v times the total number of degree-1 vertices in the graph, where v is the

total number of remaining remaining. Using our bound on the number of degree-1 vertices,
and a law-of-large numbers argument, we can upper bound the number of isolated vertices
created in all remaining steps by 2ϵn +

∫ n

2ϵn
2
v 2ϵndv = 2ϵn (1 − 2 log(2ϵ)) . ◀

Proof of Theorem 5. In Phase 1, the Karp–Sipser algorithm is guaranteed to perform
optimally, and Lemmas 6, 7, and 8 gurantee that, for any constant choice of ϵ, with high
probability Phase 2 isolates only o(n) + 2ϵn (1 − 2 log(2ϵ)) vertices. We can make this
arbitrarily small by choice of ϵ; so, with high probability the total number of vertices isolated
in Phase 2 is o(n), meaning that overall the algorithm is within o(n) of optimal. Since
the ODE determining the evolution of Phase 1 evolves the same as in an Erdős–Rényi
graph with parameter c/n, the total number of lost vertices must be within o(n) of the
number that would be lost in G(n, c/n). The matching number of G(n, c/n) is known to be(

1 − x+ce−x+xce−x

2c

)
n + o(n), where x is the smallest solution to x = ce−ce−x [9, 1], so that

must also be the matching number in this case. ◀

2.4 Sub-Critical case
In the Erdős–Rényi case, Karp and Sipser proved that the number of unmatched non-isolated
vertices remaining in the graph after Phase 1 (which we follow recent literature in calling the
“Karp–Sipser core” [3]) is o(n) with high probability if c < e, and Θ(n) with high probability
if c > e [9]. Our above analysis implies that any equitable stochastic block model also follows
this critical transition at c = e. In this section, we examine criticality in the non-equitable
case. We prove the following theorem:

▶ Theorem 9. If
∑

j cijS̄j < e for all i, then the Karp–Sipser core has size o(n) with high
probability.

AofA 2024



16:8 Matching Algorithms in the Sparse Stochastic Block Model

Interestingly, however, we find that the converse is not true – in fact, it’s possible for the
model to be subcritical even when

∑
j cijS̄j > e for all i. We note the following facts:

▶ Fact 10 (Karp and Sipser [9]). The set of vertices removed by Phase 1 is fixed, regardless
of the order in which degree-1 vertices are stripped. So, if there exists some valid sequence of
degree-1 strippings that removes a given vertex v from the graph (either matching or isolating
it), that vertex is not in the Karp–Sipser core.

▶ Fact 11 (Implied by a result of Mossel, Neeman and Sly [15] for 2 classes; Sly and Chin [4]
for greater than 2 classes). For any constant d, in the limit of n the d-neighbourhood of any
vertex of G (i.e., the subgraph obtained by a BFS of depth d from the vertex) converges in
distribution to the first d levels of a multitype branching process, where nodes of type i have
independently Pois(cijS̄j) children of type j, and the root class corresponds to the class of
the vertex in G.

If we can show that, under certain conditions, with probability tending to 1 with d, there
exists a sequence of valid Karp–Sipser vertex removals in this tree, all of which are at depth
at most d, and which result in the root being removed, this then implies that the Karp–Sipser
algorithm is subcritical. This is because we know that, in the limit of n, any structure that
appears in the first d levels of the tree is equally likely to appear in the d-neighbourhood of
a given vertex in G; so, if with probability at least 1 - ϵ there is a way to remove the root of
such a tree for any root class, the expected number of vertices remaining in G after Phase 1
is at most ϵn. The following characterizes these conditions:

▶ Lemma 12. The probability of removing the root of this branching process tends to 1 in

the limit of d whenever the system xi = e
−
(∑

j
cij S̄je

−(
∑

k
cjkS̄kxk))

has no more than one
solution (x1, . . . , xq) in [0, 1]q.

The proof of Lemma 12 is given in the extended version of the paper, where it is derived as
a corollary of results about winning probabilities of games on multitype branching processes
(those results are an extension of work of Holroyd and Martin on Galton–Watson trees [7],
and may be of independent interest). We now prove the forward (true) direction of our claim.

Proof of Theorem 9. By the above analysis, it suffices to show that whenever
∑

j cijS̄j < e

for all classes i, the function

x1
. . .

xq

 7→


e

−
(∑

j
c1j S̄je

−(
∑

k
cjkS̄kxk))

. . .

e
−
(∑

j
cqj S̄je

−(
∑

k
cjkS̄kxk))

−

x1
. . .

xq

 has only one

root on [0, 1]q. Denoting e
−
(∑

j
cij S̄je

−(
∑

k
cjkS̄kxk))

as fi, the Jacobian of this function
looks like

f1

(∑
j

(
c1j S̄j

) (
cj1S̄1

)
e

−
(∑

k
cjkS̄kxk

))
− 1 . . . f1

(∑
j

(
c1j S̄j

) (
cjqS̄q

)
e

−
(∑

k
cjkS̄kxk

))
. . . . . . . . .

fq

(∑
j

(
cqj S̄j

) (
cj1S̄1

)
e

−
(∑

k
cjkS̄kxk

))
. . . fq

(∑
j

(
cqj S̄j

) (
cjqS̄q

)
e

−
(∑

k
cjkS̄kxk

))
− 1

 .

The sum of the entries in the ith row of this matrix is
fi

(∑
j

(
cijS̄je−(

∑
k

cjkS̄kxk) ·
∑

l

(
cjlS̄l

)))
− 1. By assumption, we know

∑
l

(
cjlS̄l

)
< e.

So, the above expression is strictly less than efi log fi − 1. For any value of fi, efi log fi is at
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most 1 (taking the derivative, we find a unique maximum at fi = 1/e). So, we have shown
that the sum of every row of the Jacobian is negative everywhere. Now, suppose that this
function has two distinct roots, x = (x1, . . . , xq) and y = (y1, . . . , yq). Let i be the index
where yi − xi is maximal. We have increased xi by (yi − xi), and increased all the other
coordinates of x by at most (yi − xi). We know that the directional derivative of the ith
coordinate in the [1, . . . , 1]⊤ direction is negative, and that the partial derivative with respect
to every j ̸= i is positive; this implies that the ith coordinate of the function at y must be
smaller than the ith coordinate of the function at x, so they cannot both be roots. ◀

As a consequence of this, since it is guaranteed to be optimal in Phase 1, we know the
Karp–Sipser algorithm gives a near-optimal matching whenever

∑
j cijS̄j < e for all i. By

examining the system given in Lemma 12, however, we find that this is not a necessary
condition for subcriticality – the phase transition boundary is much more complicated.

2.5 Failure of the Karp–Sipser algorithm
In the previous sections we gave two instances where we can guarantee that the Karp–Sipser
algorithm achieves a near-optimal matching, both which use essentially the same framework
as the Erdős–Rényi case (i.e., showing that it can achieve within o(n) of a perfect matching
during Phase 2, either because all degrees are close to 2 in the equitable case, or because the
entire remaining graph has o(n) vertices in the subcritical case). However, the algorithm
does not return a near-optimal matching in general, and even when it does, this analytical
framework does not always work. For example, consider a stochastic block model with 4
classes, all of size n/4, and the following probability matrix:

0 100
n 0 0

100
n 0 10000

n 0
0 10000

n 0 100
n

0 0 100
n 0

 .

The matching number is very close to perfect. Even ignoring the edges between classes 2 and
3 entirely, we are left with two copies of G(n/4, n/4, 100

n ), on which our equitable analysis
guarantees a matching containing more than a .99 fraction of vertices. However, directly
analyzing the Karp-Sipser algorithm, we find that Phase 1 finishes very quickly, because the
graph is dense enough that very few degree 1 vertices are created. Then, in Phase 2, for a
long time we are in the regime of short runs as described in our analysis of the equitable
case; in this regime, the algorithm chooses many of its edges uniformly at random, and so
likely choose many of them from between classes 2 and 3. Every edge choosen between
classes 2 and 3, however, effectively decreases the matching number by 2. Formalizing this
argument reveals that the Karp–Sipser algorithm on this graph finds a matching containing
only slightly more than 1/2 of the vertices; an illustration is given in Figure 1.

This suggests the need for a modified version of the Karp–Sipser algorithm that is given
the stochastic block model parameters, and takes into account the label classes of the vertices.
We propose the following: whenever the algorithm must choose a random edge, instead of
choosing uniformly over all edges it instead chooses uniformly from the edge type that we
estimate will create the fewest degree-1 vertices on this step. This algorithm performed well
in our experimental simulations for a range of block model parameters; we conjecture that it
performs near-optimally asymptotically. We have been unable to prove this, however. Part
of the reason for the difficulty of analysis lies in the fact that we no longer expect a perfect
matching to be possible in Phase 2 – the following section illustrates this with a simple
example.
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(a) Karp–Sipser. (b) Optimal.

Figure 1 A stochastic block model on which the Karp–Sipser algorithm performs suboptimally.

2.6 Bipartite Erdős–Rényi case
The bipartite graph G(n, n, c/n) with equal part sizes and i.i.d. edges corresponds to an
equitable stochastic block model: each vertex on the left and each vertex on the right has c

expected neighbours. So, with high probability, the Karp–Sipser algorithm performs optimally
and returns a matching the same size as that of G(2n, c/2n). However, the asymmetric case
G(kn, n, c/n) where k ̸= 1 is not equitable, because left vertices have c expected neighbours
while right vertices have kc of them. It is this case that we analyze in this section. Note
that, as before, the algorithm is guaranteed to be optimal for Phase 1; we need to show that
it’s also near optimal for Phase 2. However, now even the optimal algorithm on Phase 2 is
not guaranteed to find a near-perfect matching. Consider a graph with very unequal part
sizes, and very high c; for example, G(n, 10n, 1000/n). This graph is dense enough that we
expect at least 5n vertices to remain on the right after Phase 1, however we know that the
matching number of this graph is at most n – so, we can’t actually expect Phase 2 to find
a near-perfect matching. Thus, this is an example where the typical analytical framework
does not apply [9, 1]. However, we can still use the Karp-Sipser algorithm to determine the
matching numbers of such graphs. We sketch the argument.

▶ Lemma 13. Let Fl, Fr and E denote the number of non-isolated unmatched vertices on the
left, non-isolated unmatched vertices on the right, and edges in the graph after Phase 1 of the
Karp–Sipser algorithm. With high probability, there exists a matching of size min(Fl, Fr)−o(n)
on this graph. As a consequence, the asymptotic behavior of the matching numbers of bipartite
Erdős–Rényi graphs can be determined from solutions to the ODEs described in Section 2.2.

Proof. Assume without loss of generality that Fl ≤ Fr. We would like to show that there
exists a matching of size Fl − o(n). To do so, we recall by the Markov property (see
Appendix A) of the Karp-Sipser algorithm that the distribution of the graph G at this
point in the process is a uniform random configuration model with E edges on Fl + Fr

vertices, conditioned on being bipartite with part sizes Fl and Fr, and having min degree 2.
We’ll couple G with a graph G′ that’s drawn from a bipartite configuration model with E

edges, min degree 2, and parts both of size Fr. The way the coupling will work is to first
generate G′, then delete all but the first Fl vertices on the left (where “first” refers to some
arbitrary ordering), and redistribute the half-edges connected to the deleted vertices among
the remaining vertices on the left. Note there must exist some such randomized redistribution
process that causes the resulting graph to be distributed as G, since degree sequences of the
first Fl left vertices in a graph distributed as G′ are dominated by degree sequences of the
left vertices in a graph distributed as G.
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To show that G with high probability contains a matching of size Fl − o(n), we draw
(G′, G) according to this coupling. By our analysis of Phase 2 of the Karp–Sipser algorithm
in equitable block models, we know that with high probability G′ contains a near-perfect
matching. So, in particular, there exists a matching in G′ that contains Fl − o(n) of the
first Fl vertices on the left. By construction of the coupling, all the edges involved in that
matching are also present in G, so this implies the existence of a matching of size Fl − o(n)
in G.

This shows a lower bound on the matching number of G(kn, n, c/n). Since Phase 1 of
the Karp–Sipser algorithm is optimal, and once Phase 1 ends the matching number is clearly
bounded by min(Fl, Fr), this lower bound is tight (up to o(n)). ◀

This analysis works because, even though the Karp–Sipser core does not admit a perfect
matching, we have an upper bound on its true matching number (namely, the size of the
smaller of the two parts) that we can show is nearly achieved. This is a natural approach
to analyzing the matching number of a random graph: try to show an upper bound on the
matching number of the Karp–Sipser core, and then show a variation of the Karp–Sipser
algorithm that achieves close to that upper bound on the core. It would be interesting to
find other block models where this approach is successful. A simple case we note as an open
direction is the bipartite setting where there is only one class on the left (i.e., the class graph
is “star shaped”). On such graphs, Label-Aware Karp–Sipser simplifies to “prefer edges to
the available right class with minimum average degree” – it seems conceivable that some
form of analogous argument could show that this is optimal.

3 Analysis of Online Matching Heuristics

In this section, we consider the problem of online matching in bipartite stochastic block
models with q left and q right classes. We assume that vertices are assigned classes uniformly
and independently at random, with classes of the right vertices known to the algorithm
ahead of time, and vertices on the left (along with all the edges incident to them) arriving
one-at-a-time. Uniformity of the class distribution is roughly without loss of generality;
variations could be approximated by further subdividing the classes.

Before discussing algorithms for online matching in stochastic block models, we recall
the simpler setting of G(n, n, c/n). First, note that any online algorithm that chooses not to
match a left vertex when it is adjacent to at least one available right vertex is sub-optimal.
Since, in this setting, all right vertices are indistinguishable, any online algorithm that always
matches when possible is optimal. This gives the following:

▶ Fact 14 (Mastin and Jaillet [14]). In the online setting, the expected size of a matching in
G(n, n, c/n) produced by an optimal online algorithm is given by

(
1 − ln(2−e−c)

c

)
n.

The stochastic block model setting allows for more nuance; designing optimal algorithms
is nontrivial in general. While it is possible to brute-force compute an optimal online strategy
in time Θ(nq+1) using dynamic programming, we leave open the question of whether such an
optimum can be achieved asymptotically in constant time per decision. Instead, we first show
that in the restricted class of equitable stochastic block models, a simple greedy heuristic
still achieves asymptotically optimal matchings. We then propose a more sophisticated
heuristic with good experimental performance, but demonstrate a case where it can be shown
analytically to be asymptotically sub-optimal.
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3.1 Analysis of GREEDY
First, consider the simplest possible matching heuristic. For each left vertex that arrives,
GREEDY chooses uniformly at random one of the available edges adjacent to that vertex to
add to the matching. While GREEDY is sub-optimal in general, we can show that it returns
an asymptotically optimal matching in any equitable block model.

▶ Lemma 15. In the equitable case, i.e. when all of the vertices have the same expected
degree c = 1

q

∑
i cij, GREEDY returns a matching of expected size

(
1 − ln(2−e−c)

c

)
n (as in

the bipartite Erdős-Rényi case; see Fact 14).

Proof. Let Rj denote the set of vertices in right class j, and R
(t)
j ⊆ Rj denote the subset

that remain unmatched after t steps. If the next left vertex to arrive has class i, the
probability that it has no available matches is

(∏q
j=1(1 − pij)|R(t)

j
|
)

. Conditional on at
least one available match, the probability that GREEDY chooses to match to a vertex of Rj

is pij |R(t)
j

|∑q

l=1
pil|R(t)

l
|

+ O
(

1∑
l

|R(t)
l

|

)
– this can be seen by replacing the selection process with

“repeatedly choose a random right vertex and match with probability pij”, which has the

same distribution up to O
(

1∑
l

|R(t)
l

|

)
replacement error. So, we have

|R(t+1)
j | ≈


|R(t)

j | − 1 with probability
∑q

i=1
1
q

(
1 − e−

∑q

l=1
pil|R(t)

l
|
)

pij |R(t)
j

|∑q

l=1
pil|R(t)

l
|

|R(t)
j | with probability 1 −

∑q
i=1

1
q

(
1 − e−

∑q

l=1
pil|R(t)

l
|
)

pij |R(t)
j

|∑q

l=1
pil|R(t)

l
|

.

Letting xj(τ) = |R(τn)
j

|
n , we can appeal to Wormald’s theorem to argue that this process

is controlled in the limit n → ∞ by the following ODE:

x′
j(τ) = −

q∑
i=1

1
q

(
1 − e−

∑q

l=1
cilxl(τ)

) cijxj(τ)∑q
l=1 cilxl(τ)

j ∈ {1, 2, . . . q},

with initial conditions xj(0) = 1
q for all j ∈ {1, 2, . . . q}. If we guess that the solution is

symmetric – that is, that xj(τ) = x(τ)
q for some x and all j, τ – then these equations simplify

to

x′(τ) = −
q∑

i=1

(
1 − e

−
∑q

l=1
cilx(τ)/q

)
cijx(τ)/q∑q

l=1 cilx(τ)/q
= −

q∑
i=1

(
1 − e−cx(τ)) cij

c
= 1 − e−cx(τ),

since when all the xj(τ) are equal, we also have all the x′
j(τ) equal. Solving this ODE yields

x(1) =
(

ln(2−e−c)
c

)
, meaning by Wormald’s that the expected matching size converges to(

1 − ln(2−e−c)
c

)
n. ◀

Note that, unlike in G(n, n, c/n), it is not the case that any strategy for matching
available vertices achieves this value – for example, the strategy of always preferring to match
class R1 will perform worse in general. It was important that we chose a strategy that evenly
distributed matches across right classes. We’ll now show that this lower bound is tight; i.e.,
that no algorithm can do asymptotically better than GREEDY on an equitable block model.

▶ Lemma 16. In an equitable stochastic block model, if there are a total of |R(t)| unmatched
vertices on the right, the probability of matching on the next step is maximized when those
|R(t)| vertices are equally distributed among all classes (that is, each right class r has
|R(t)

r | = |R(t)|
q unmatched vertices).
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Proof. Let ρr = |R(t)
r |

|R(t)| denote the fraction of unmatched right vertices belonging to class r at
time t. The probability of there being no available edge in the next step of the algorithm is,

as n → ∞, 1
q

∑
l e−

∑
r

clrρr . By AM-GM inequality, this is at least
(∏

l e−
∑

r
clrρr

)1/q

=

e−
∑

l

1
q

∑
r

clrρr = e−
∑

r

1
q (
∑

l
clr)ρr = e−c, which is precisely the value obtained by setting

all ρr = 1
q . ◀

From this fact, we see that no algorithm can do asymptotically better than GREEDY.

▶ Theorem 17. The optimal competitive ratio for any online algorithm in an equitable
stochastic block model is matchingsize c−ln(2−e−c)

(2c−x+ce−x+xce−x) , where x is the smallest solution of
x = ce−ce−x .

Proof. First, note that this value is precisely what we’ve shown for the competitive ratio of
GREEDY; this can be found by dividing the asymptotic matching size we proved in that case
by the offline matching number we proved in Theorem 5. Therefore, it is left to establish that
no algorithm can do better than GREEDY. We proceed by contradiction - assume there is a
better algorithm, and consider the expected values of ρi as in Lemma 16 in this algorithm.
If the ρi’s stay within o(1) of equal over all time, then the algorithm looks asymptotically
identical to GREEDY. If at some point they become unequal, then at that time the algorithm
must fall behind GREEDY and never catch up, by Lemma 16. ◀

Note that this value is the competitive ratio lower bound conjectured by Mastin and Jaillet
to be tight for Erdős–Rényi graphs; as a special case, we have shown that conjecture [14].

3.2 A Less Greedy Algorithm

Although GREEDY is optimal in equitable models, it’s not difficult to describe non-equitable
models where it’s very far from optimal. For example, if pij < pil for all l, it is always strictly
better to match to vertices of class j than class l if possible (i.e. if one class is very rare to
match to, it’s good to take those matches when the chance arises), but GREEDY does not do
this. To correct this, one might consider always matching to the right class with the lowest
expected degree – however it’s easy to see that this is not optimal, since when all classes have
close to the same expected degree, it’s better to distribute matches more evenly across classes
than to focus on the one with the smallest expected degree. Determining the appropriate
extent to prefer rare classes versus trying to keep class sizes balanced is a non-trivial task.

A reasonable heuristic – which we’ll term SHORTSIGHTED– is to, at each step, minimize
the probability of being unable to match the next vertex (i.e., the probability that the next
left vertex to arrive has no available edges). That is, SHORTSIGHTED always chooses to
match to the available class l that minimizes

∑q
i=1

1
q

∏q
j=1(1 − pij)|R(t)

j
|−1j=l .

One might hope that looking a single step into the future is sufficient to determine the
optimal class to match to, and so SHORTSIGHTED is an asymptotically optimal approach.
Indeed, in a range of computer experiments we found that SHORTSIGHTED found a matching
of almost the same size as a brute-force optimal online algorithm. However, it turns out that
SHORTSIGHTED is not asymptotically optimal.
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L1

L2

R1

R2

p1,2 = 5
n

p1,2 = 1
n

p2,2 = 1
n

Figure 2 An example of stochastic block model parameters in which BRUTE-FORCE beats
SHORTSIGHTED. Here all classes are of size n

2 , and p2,1 = 0.

In the model shown in Figure 2, SHORTSIGHTED prefers class 1 whenever the number of
unmatched vertices of class R1 is at least 2 ln 2

5 n. By associating SHORTSIGHTED’s behaviour
in the limit n → ∞ with an ODE, we obtain that the expected size of the matching is
≈ 0.574946n (this analysis is outlined in Appendix B). To show this is suboptimal, consider the
following algorithm: prefer class R1 until .88n vertices have arrived, then thereafter prefer R2.
With essentially the same differential equation analysis as above, we find that the expected
size of the matching is ≈ 0.575597n. This algorithm out-performs SHORTSIGHTED by a
linear factor in n (albeit small, ≈ .0006n), implying that SHORTSIGHTED is asymptotically
sub-optimal.
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A Karp–Sipser Transition Probabilities

A.1 Passing to a Configuration Model
For analytical purposes, we consider the Karp–Sipser algorithm on multigraphs drawn from
a configuration model, and then justify why the results translate to stochastic block models.

▶ Definition 18 (Blocked configuration model). Let G be a graph drawn from a stochastic
block model. For each pair of labels i, j, let Eij denote the total number of edges between
vertices of label i and vertices of label j in G (when i = j, we let Eij denote twice the number
of edges lying within class i = j, so that Eij always refers to the number of j-type half-edges
attached to label-i vertices). Construct a random multigraph as follows: if i ̸= j, distribute
Eij half-edges among the i vertices and Eij half-edges among the j vertices uniformly at
random (à la balls-in-bins), then define edges by a uniform random pairing between the half
edges on the i and j sides. This process defines a distribution over multigraphs, because in
the process of “reshuffling” the half-edges of G we introduce the possibility of multiple edges
and self-loops.

Note that any result which holds with high probability in the blocked configuration model
also holds with high probability for the stochastic block model, so we are justified in proving
our results for this model instead (this is formally justified in the extended version of the
paper).

A.2 Markov Property of Karp–Sipser Algorithm
As we run the Karp–Sipser algorithm on a random multigraph, the distribution changes,
since the earlier steps of the algorithm have produced some effects conditional on the previous
states of the graph. Fortunately, it turns out that these effects have a simple description.

▶ Lemma 19. Suppose we generate a graph from the blocked configuration model and run the
Karp–Sipser algorithm for an arbitrary number of steps. Then conditioned on the following,
the resulting graph is still distributed according to the blocked configuration model.
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For each pair of (i, k) of block model labels, the number Eij of edges between label class i

and j.
For each label class i, the number Ti of label-i vertices of degree exactly 1 (the “thin”
vertices).
For each label class i, the number Fi of label-i vertices of degree at least 2 (the “fat”
vertices).

Thus, if we collect all of these values into a tuple Y = (Eij , Ti, Fi), the algorithm’s progress
can be described by a Markov chain on Y .

The proof of this lemma is a relatively straightforward counting argument; it is described in
detail in the extended version of the paper.

A.3 Estimates on Degree Distributions
In order to determine transition probabilities of this Markov process, we first note the
following straightforward lemma about the degree distribution (whose proof we will again
defer to the extended version):

▶ Lemma 20. Fix a description tuple Y . Let nY be the tuple obtained by scaling every
element of Y by n, and let Gn be a multigraph drawn from a blocked configuration model
conditional on tuple nY . Choose a uniform half-edge incident to class i, and let v be its
incident vertex. In the limit as n → ∞, the degree of v converges in distribution to

P[d(v) = k] =


Ti∑
l

Eil
for k = 1

(
∑

l
Eil)−Ti∑

l
Eil

· λk−1
i

(k−1)!eλi(1−e−λi) for k > 1,

where λi is a solution to λieλi −λi

eλi −1−λi
= (
∑

l
Eil)−Ti

Fi
.

This allows us to determine the probability that a random edge is adjacent to a degree 2
vertex, which is important for understanding the evolution of the algorithm.

▶ Corollary 21. In particular, as n → ∞, the probability that a random edge into class i

connects to a vertex of degree exactly 2 tends to (
∑

l
Eil)−Ti

(
∑

l
Eil) · λi

eλi −1 .

The above lemma also allows us to determine the label distribution in the neighborhood
of a randomly chosen edge.

▶ Corollary 22. Let uv be a randomly chosen edge where u has label i and v has label j. As
n → ∞, the number of neighbors of u with label k tends to (

∑
l

Eil)−Ti∑
l

Eil
· λi

1−e−λi
· Eik

(
∑

l
Eil) .

A.4 Computing Transition Probabilities
From these degree distribution estimates, we produce estimates on the transition probabilities
of the Markov process. On each step of the algorithm, if there exist degree 1 vertices, the
algorithm chooses one of them and removes it and its neighbour. So, the graph loses one
edge from between class i and j whenever that degree 1 vertex has its edge between i and
j. When the neighbour vertex is in class i, the graph also loses edges equal to however
many neighbours it had in class j. Similar accounting can be made for the number of fat or
thin vertices in a class: the graph loses a fat vertex either by having it as the neighbour of
the degree 1 vertex we removed, or by having it initially have degree 2 and appear as the
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neighbour of a removed neighbour, so that it’s then reduced to degree 1. A thin vertex is lost
whenever its the removed degree 1 vertex, whenever its the neighbour of the removed vertex,
or whenever its a neighbour of the neighbour of a removed vertex, but gain one whenever
a degree 2 vertex is a neighbour-of-the-neighbour. To make these expressions explicit, we
define the notation:

Let hi denote the total number of half-edges in class i, hi =
∑

l Eil.

Let ωij denote the probability that a randomly selected degree-1 vertex is in class i and
has its neighbour in class j, ωij = Ti∑

l
Tl

· Eij

hi
.

Let δij denote expected number of other j-type half-edges attached to the vertex a random
half-edge in class i is attached to. If λi is a solution to λi(eλi −1)

eλi −1−λi
= hi−Ti

Fi
, then, by our

degree estimates, δij = hi−Ti

hi
· λi

1−e−λi
· Eij

hi
.

Let θi denote the probability that a random half-edge attached to class i is attached to a
degree 2 vertex. Again, letting λi(eλi −1)

eλi −1−λi
= hi−Ti

Fi
, we have θi = hi−Ti

hi
· λi

eλi −1 .

Now, while there are degree-1 vertices remaining in the graph, we can write the expected
change in the description tuple after one step of the algorithm as

E[∆Eij ] = −ωij − ωji −
∑

l

ωliδij −
∑

l

ωljδji

E[∆Fi] = −

(∑
l

ωli

)(
hi − Ti

hi

)
−
∑

j

∑
l

ωjlδliθi

E[∆Ti] = −

(∑
l

ωil

)
−

(∑
l

ωli

)(
Ti

hi

)
−
∑

j

∑
l

ωjlδli

(
Ti

hi
− θi

)
.

On the other hand, when there are no degree 1 vertices remaining, we choose an edge
uniformly at random, so, by similar reasoning,

E[∆Eij ] = −
(

2Eij∑
k hk

)
−
(

2hi∑
k hk

)
δij −

(
2hj∑

k hk

)
δji

E[∆Fi] = −
(

2hi∑
k hk

)
−
∑

l

(
2hl∑
k hk

)
δliθi

E[∆Ti] =
∑

l

(
2hl∑
k hk

)
δliθi.

An important point to note is that the expected transitions above are “scale-invariant”,
meaning that they remain the same upon re-scaling all entries in Y by the same amount. So,
letting Ēij = Eij/n, T̄i = Ti/n, F̄i = Fi/n, we can write (for Phase 1 – Phase 2 is similar):

E[∆Ēij ] =
−ωij − ωji −

∑
l ωliδij −

∑
l ωljδji

n

E[∆F̄i] = −
(
∑

l ωli)
(

h̄i−T̄i

h̄i

)
−
∑

j

∑
l ωjlδliθi

n

E[∆T̄i] = −
(
∑

l ωil) − (
∑

l ωli)
(

T̄i

h̄i

)
−
∑

j

∑
l ωjlδli

(
T̄i

h̄i
− θi

)
n

.
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B Conditions of Wormald’s Theorem

We on several occasions in this paper claim that particular Markov processes remain close to
a limiting system of differential equations. In this section, we step through for each of those
instances the justification of those claims. The key tool is a theorem of Wormald, restated in
its general form below. Here, n indexes a family of discrete time random processes, each of
which has “history” sequence Hn ∈ S+

n . The notation Yt is shorthand for y(Ht).

▶ Theorem 23 (Wormald [19]). Let a be fixed. For 1 ≤ l ≤ a, let y(l) :
⋃

n S+
n → R and

fl : Ra+1 → R, such that for some constant C and all l, |y(l)(ht)| < Cn for all ht ∈ S+
n for

all n. Suppose also that for some function m = m(n):
1. for some functions w = w(n) and λ = λ(n) with λ4 log n < w < n2/3/λ and λ → ∞ as

n → ∞, for all l and uniformly for all t < m,

P
[
|Y (l)

t+1 − Y
(l)

t | >

√
w

λ2√
log n

∣∣∣Ht

]
= o(n−3);

2. for all l and uniformly over all t < m, we always have

E(Y (l)
t+1 − Y

(l)
t |Ht) = fl(t/n, Y

(1)
t /n, . . . , Y

(a)
t /n) + o(1);

3. for each l, the function fl is continuous and satisfies a Lipschitz condition on D, where D is
some bounded connected open set containing the intersection of {(t, z(1), . . . , z(a)) : t ≥ 0}
with some neighbourhood of {(0, z(1), . . . , z(a)) : P(Y (l)

0 = z(l)n, 1 ≤ l ≤ a) ̸= 0 for some
n}.

Then,
1. For (0, ẑ(1), . . . , ẑ(a)) ∈ D, the system of differential equations

dzl

ds
= fl(s, z1, . . . , za), l = 1, . . . , a,

has a unique solution in D for zl : R → R passing through

zl(0) = ẑ(l), 1 ≤ l ≤ a

and which extends to points arbitrarily close to the boundary of D.
2. Almost surely,

Y l
t = nzl(t/n) + o(n)

uniformly for 0 ≤ t ≤ min{σn, m} and for each l, where zl(t) is the solution in (i) with
ẑ(l) = Y

(l)
0 /n, and σ = σ(n) is the supremum of those s to which a solution can be

extended.

For a simple proof of Wormald’s theorem, we refer the reader to Warnke’s recent exposi-
tion [18].

B.1 Phase 1 of the Karp–Sipser algorithm
The first time we make use of this differential equations method is in the analysis of the
first phase of the Karp–Sipser algorithm. We will outline how to apply Wormald’s theorem
in this case. Here, we take Y as we defined it, f as the derivative we wrote down for the
corresponding ODE, and note that with high probability, y(l)(ht) < 100(maxij cij)n for all
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sufficiently large n (the Fi and Ti components of y(l)(ht) are clearly bounded by n; w.h.p.
the edge counts are all initially within a factor of 100 of their expectations, and once they
start that way they never increase). We take the stopping time m to be the first time all of
the Ti entries of Y drop below n0.01. Now,
1. Take for instance w = n0.5 and λ = log n. The probability that any vertex in the initial

graph has degree polynomial in n decays exponentially in n, and it can be observed that
the magnitude of a transition is bounded by twice the maximum degree, so we certainly
have the desired condition.

2. This convergence of expected transition size of the Markov process to f is precisely what
is guaranteed by the convergence of our degree estimates. Note that this convergence
holds as the total number of thin vertices, fat vertices, and edges is going to infinity, so
taking our stopping time to be m prevents border cases once these values drop down to
constant sizes.

3. To show that f is Lipschitz in the neighbourhood of solutions, it suffices to show that
solutions to z′(t) = f(t, z) always maintain constant average degree in each label class. To
do so, note that with high probability the initial average degrees are at most 100(maxij cij)
in each class, and then observe from the equations that whenever the average degree in a
given class i is more than 100 at some time t, −

∑
j Ē ′

ij(t) > F̄ ′
i(t) + T̄ ′

i (t).
Note that we have only shown that the conditions of the theorem hold with high probability
over initial graph configurations; clearly, this is sufficient for our desired result.

B.2 Phase 2 of the Karp–Sipser algorithm (equitable case)

We also use Wormald’s theorem to justify our analysis of the second phase of the algorithm
in the equitable case. Here, Yi is the state of the tuple after the ith run of the algorithm –
i.e., the ith time where there are no thin vertices. We define fl to be the expected change
in the tuple that one of these runs would incur if the transition probability estimates from
Appendix A held exactly and did not change throughout the run.

In order for this process to have the desired Lipschitz properties, we will need to define a
more restricted domain than the entire possible space of tuples. In particular, we will fix
some constants γ and ϵ, and consider the domain of Y to consist only of tuples where the
average degree into each class differs by at most γ, and is at least 2 + ϵ. The value of ϵ is
chosen in the analysis; to determine γ, we observe the following:

λi is defined such that λi(eλi −1)
eλ

i
−1−λi

is equal to the average degree of class i. This is
monotonically increasing in the average degree of class i; so there is some constant λ > 0
such that if the average degree in class i is at least 2 + ϵ, then λi > λ.
The function δiθi = λi

1−e−λi
· λi

eλi −1 is bounded above by 1 and monotonically decreasing
for λi > 0. So, there exists some constant η > 0 such that λ

1−e−λ · λ
eλ−1 < 1 − 2η.

λi, λj 7→ λi

1−e−λi
· λj

eλj −1
is uniformly continuous, so there exists some constant κ such

that |λi − λj | < κ implies that |
(

λi

1−e−λi
· λj

eλj −1

)
−
(

λi

1−e−λi
· λi

eλi −1

)
| < η – which, if

λi > 2 + ϵ, implies
(

λi

1−e−λi
· λj

eλj −1

)
< 1 − η.

When defined on the domain [2 + ϵ, ∞), λi is uniformly continuous as a function of
the average degree of i. So, we can define γ such that |average degree in class i −
average degree in class j| < γ implies |λi − λj | < κ whenever average degrees are greater
than 2 + ϵ.
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We will define the stopping time m of the process to be the first time it leaves this domain.
Note that, as in Phase 1, the value of |Y | is bounded by 100cmaxn with probability 1 − o(1),
since it is initially and can only decrease. We’re now ready to verify the criteria of Wormald’s
theorem.
1. Take again w = n0.5 and λ = log n. We can describe a single run of the algorithm as a

branching process: each degree-1 vertex created by the algorithm corresponds to a node
that has children according to the number of degree-2 vertices adjacent to its neighbour;
this corresponds to expected offspring number of δiθj < 1 − η. After each removal we are
uniform over graphs with the remaining statistics; so, as long as the branching process
size is o(n), we can treat the treat these offspring distributions roughly independently for
each node (in particular, as long as the branching process is o(n) with high probability,
all offspring distributions have expectation at most 1 − η

2 regardless of the values for the

other nodes). To prove that P
[
|Y (l)

t+1 − Y
(l)

t | >
√

w

λ2
√

log n

∣∣∣Ht

]
= o(n−3), we therefore just

need to show that the probability that a Galton–Watson tree with µ < 1 − η
2 reaches size

n0.25

(log n)5/2 is o
( 1

n3

)
; this follows from a standard Chernoff bound.

2. The reason that E(Y (l)
t+1 − Y

(l)
t |Ht) = fl(t/n, Y

(1)
t /n, . . . , Y

(a)
t /n) + o(1) holds is because

we expect a constant run duration, and we know our initial degree estimates will hold
with small error terms when we remove a constant portion of the graph.

3. Continuity of fl is clear from continuity of our degree estimates and the fact that small
changes in the edge densities of the graph can’t bias the branching process too heavily.
Similar justification that it’s Lipschitz on the given domain can be found by examining
the degree estimate functions.

Since Y0/n is with high probability o(1) from having equal average degrees, and this
ODE keeps equal average degrees equal, with high probability the degrees stay within o(1)
of equal until the stopping time.

B.3 Analysis of SHORTSIGHTED
Define the 2-D Markov Chain Zt, where the first coordinate represented the number of
unmatched R0 vertices while the second coordinate represents the number of unmatched R1
vertices at time t during a run of SHORTSIGHTED. We have that Z0 = (|R0|, |R1|). If we
are in the regime where we prefer class 0, we have transition probabilities as follows:

P(Zt+1 = (x − 1, y)|Zt = (x, y)) = 1
2 (1 − (1 − p0,0)x) + 1

2 (1 − (1 − p1,0)x)

→ 1
2
(
1 − e−c0,0x/n

)
+ 1

2
(
1 − e−c1,0x/n

)
P(Zt+1 = (x, y − 1)|Zt = (x, y)) = 1

2 (1 − p0,0)x (1 − (1 − p0,1)y) + 1
2 (1 − p1,0)x (1 − (1 − p1,1)y)

→ 1
2e−c0,0x/n

(
1 − e−c0,1y/n

)
+ 1

2e−c1,0x/n
(
1 − e−c1,1y/n

)
P(Zt+1 = (x, y)|Zt = (x, y)) = 1

2 (1 − p0,0)x (1 − p0,1)y + 1
2 (1 − p1,0)x (1 − p1,1)y

→ 1
2e−c0,0x/ne−c0,1y/n + 1

2e−c1,0x/ne−c1,1y/n

We now verify the three conditions of Wormald’s:
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1. This simply comes from the fact that at each time step, each coordinate of Zt can change
by at most 1.

2. We use the following fact from [14]: for n > 0, c ≤ n/2, and x ∈ [0, 1], we have∣∣∣∣e−cx −
(

1 − c

n

)nx
∣∣∣∣ ≤ c

ne

We can apply this term-wise to each of our probabilities, giving us the desired condition.
3. ex is Lipschitz continuous on [0, 1], therefore we have the third condition as well.
An essentially identical proof follows for the Markov chain where we prefer class 1. Therefore
we may apply Wormald’s theorem to treat these expect transitions as exact in the continuous
limit, and solve to determine the matching size. Verification of these conditions is similar for
GREEDY.
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