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Abstract
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1 Introduction

Sums involving binomial coefficients occur frequently in enumerative and analytic combina-
torics. For example,

n∑
k=0

1
k + 1

(
n + k

n

)(
n

k

)
yields the large Schröder numbers, which count (among other things) many different types of
lattice paths and permutations. The sum

⌊n/2⌋∑
k=0

(
n

2k

)
(2k)!
2kk!

counts involutions, or matchings in complete graphs. There is a well-established toolkit
for dealing with such sums, based on techniques such as the (discrete) Laplace method,
the Stirling approximation of factorials and binomial coefficients, and the Mellin transform.
See [5] for a comprehensive account of these and many other tools. While these methods
are well known and in some sense mechanical, it is still not straightforward to implement
them in a computer as they often involve ad-hoc estimates and careful splitting into different
cases/regions of summation that are analyzed separately. Moreover, while a lot of the
complications can often be hidden in O-terms, things become more involved when explicit
error bounds are desired.
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19:2 Binomial Sums and Mellin Asymptotics with Explicit Error Bounds: A Case Study

This paper aims to make a contribution towards building a toolkit for asymptotic analysis
in the context of computer algebra, including guaranteed error bounds with explicit constants.
The example we use to illustrate the methods is based on a question from a recent paper by
Bóna and DeJonge [1]: let an be the number of 132-avoiding permutations of length n that
have a unique longest increasing subsequence, which is also the number of plane trees with
n + 1 vertices with a single leaf at maximum distance from the root, or the number of Dyck
paths of length 2n with a unique peak of maximum height. Moreover, let pn = an

Cn
, where

Cn = 1
n+1

(2n
n

)
is the n-th Catalan number. This can be interpreted as the probability that

a 132-avoiding permutation of length n chosen uniformly at random has a unique longest
increasing subsequence – equivalently, that a plane tree with n + 1 vertices has a single leaf
at maximum distance from the root, or that a Dyck path of length 2n has a unique peak of
maximum height.

▶ Problem 1 (Bóna and DeJonge [1]). Is it true that the sequence pn is decreasing for n ≥ 3?

While it would obviously be interesting to have a combinatorial proof, it turns out (as
we will explain in the following section) that the problem can be translated in a fairly
mechanical fashion (using generating functions) into a purely analytic problem: specifically,
the inequality

F (n) =
n∑

k=1
kσ(k)(k2 − 3n + 2)(2k2 − n)

(
2n

n − k

)
< 0 (1)

for all n ≥ 5, where σ(k) is the sum of divisors of k. The standard approach to deriving an
asymptotic formula for such a sum (cf. [4, Section 5]) involves the following steps:

Split the sum into “small” and “large” values of k.
Show that the contribution of large values is negligible.
Approximate the binomial coefficient

( 2n
n−k

)
, e.g. by means of Stirling’s formula, for small

values of k.
Turn the sum into an infinite sum, again at the expense of a negligible error term.
Apply the Mellin transform to obtain an integral representation for the resulting infinite
sum.
Use residue calculus to derive the final asymptotic formula.

As we will see, the problem is complicated in this particular instance by the occurrence
of nontrivial cancellations, making precise estimates challenging. The asymptotic formula
(that will be proven in this paper)

F (n) =
(

2n

n

)(
− n2

8 + n

24 + o(n)
)

(2)

shows that the answer to the question of Bóna and DeJonge is affirmative for sufficiently
large n. However, the o-notation hides an error term that is potentially huge for small values
of n, so it is not clear what “sufficiently large” means. In order to show that pn is increasing
for all n ≥ 3, we will have to prove a version of (2) with explicit error bounds. To this end,
we present a new package for the computer mathematics system SageMath [11] that enhances
the core implementation of asymptotic expansions, and in particular the arithmetic with
SageMath’s analogue of O-terms with explicit error bounds, called B-terms. See Section 3
for a guided tour through the features of our package. We then demonstrate the practical
usage of our package in Section 4 in which we derive the desired explicit bounds for F (n).
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2 Reducing the problem

One of the possible combinatorial interpretations of the sequence an is in terms of lattice
paths. Specifically, as it was mentioned before, an is the number of Dyck paths of length 2n

(i.e., lattice paths starting at (0, 0) and ending at (2n, 0) whose steps are either “up” (1, 1) or
“down” (1, −1)) with a unique peak of maximum height. Such a path can be decomposed
into two pieces: before and after the peak. The part before the peak needs to be a path that
finishes at its maximum height h (but does not reach it earlier, since the peak is unique), and
the path after the peak needs to be a path that starts at its maximum height h and never
returns to it (which can also be seen as the reflection of a path that finishes at its maximum
height but does not reach it earlier). Such paths were analyzed in [2] and [8]. Specifically, [8,
Proposition 2.1] states that the probability that a simple symmetric random walk of length n

never drops below 0 and finishes at its maximum height h (which can also be reached earlier)
is precisely

2[zn+1] 1
Uh+1(1/z) ,

where Uh+1 is the Chebyshev polynomial of the second kind of degree h + 1. A path that
finishes at its maximum height h without reaching that height before is obtained from a path
that finishes at its maximum height h − 1 by adding one more step up. Since every path of
length n has probability 2−n to occur under the model of a simple symmetric random walk,
it follows that the (ordinary) generating function for paths of maximum height h that finish
at the maximum and do not reach it earlier is∑

n≥0
2nxn+1 · 2[zn+1] 1

Uh(1/z) = 1
Uh(1/(2x)) .

For example,

1
U3(1/(2x)) = x3

1 − 2x2 = x3 + 2x5 + 4x7 + · · ·

is the generating function for paths that finish at their maximum height 3 and do not reach
this height before the final step. The formula is even true for h = 0: 1

U0(1/(2x)) = 1 is indeed
the correct generating function in this case.

Since the paths we are interested in can be seen as pairs of paths that finish at their
maximum height and do not reach this height before, we find that the generating function of
an is

A(x) =
∞∑

n=0
anx2n =

∞∑
h=0

1
Uh(1/(2x))2 .

We can simplify the expression by means of the substitution x =
√

t
1+t . Note that this yields

1
2x = 1+t

2
√

t
= cosh( 1

2 log t). Since Uh(cosh w) = sinh((h+1)w)
sinh w , this implies that

Uh(1/(2x)) =
sinh( h+1

2 log t)
sinh( 1

2 log t)
= t−h/2 · 1 − th+1

1 − t
.

Thus

A(x) =
∞∑

h=0

th(1 − t)2

(1 − th+1)2 .
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Now we can obtain an alternative expression for an by applying Cauchy’s integral formula to
the generating function A(x). For suitable contours C and C′ around 0, we have

an = 1
2πi

∮
C

A(
√

z)
zn+1 dz = 1

2πi

∮
C′

∞∑
h=0

th(1 − t)2

(1 − th+1)2 · (1 + t)2n+2

tn+1 · (1 − t) dt

(1 + t)3

=
∞∑

h=0

1
2πi

∮
C′

(1 − t)3(1 + t)2n−1

tn+1−h(1 − th+1)2 dt,

using the substitution
√

z =
√

t
1+t (or equivalently z = t

(1+t)2 ). It follows that

an =
∞∑

h=0
[tn−h] (1 − t)3(1 + t)2n−1

(1 − th+1)2 = [tn+1]
∞∑

h=0

th+1

(1 − th+1)2 (1 − t)3(1 + t)2n−1

= [tn+1]
∞∑

k=1
σ(k)tk(1 − t)3(1 + t)2n−1 =

∞∑
k=1

σ(k)[tn+1−k](1 − t)3(1 + t)2n−1

=
n+1∑
k=1

σ(k)
((

2n − 1
n + 1 − k

)
− 3

(
2n − 1
n − k

)
+ 3

(
2n − 1

n − 1 − k

)
−

(
2n − 1

n − 2 − k

))
=

n+1∑
k=1

4kσ(k)(2k2 − 3n − 2)(2n − 1)!
(n + 1 − k)!(n + 1 + k)! .

We remark here that the identity [ta](1 + t)b =
(

b
a

)
that we are using even remains true for

negative a or for a > b if the binomial coefficient is considered to be 0 then. The manipulation
in the final step is consistent with this.

Problem 1 is equivalent to the inequality Cn+1an > Cnan+1 for n ≥ 3, and since
Cn+1 = 4n+2

n+2 Cn, it can also be expressed as (4n + 2)an > (n + 2)an+1. Hence we are left to
consider the inequality

n+1∑
k=1

4kσ(k)(2k2 − 3n − 2)(4n + 2)(2n − 1)!
(n + 1 − k)!(n + 1 + k)! >

n+2∑
k=1

4kσ(k)(2k2 − 3n − 5)(n + 2)(2n + 1)!
(n + 2 − k)!(n + 2 + k)! ,

which reduces to
n+2∑
k=1

8kσ(k)(k2 − 3n − 4)(2k2 − n − 2)(2n + 1)(2n − 1)!
(n + 2 − k)!(n + 2 + k)! < 0

after some manipulations. After multiplication by

n(n + 1)(n + 2)(2n + 3) = (2n)(2n + 2)(2n + 3)(2n + 4)
8 ,

this can be expressed as
n+2∑
k=1

kσ(k)(k2 − 3n − 4)(2k2 − n − 2)
(

2n + 4
n + 2 − k

)
< 0.

Finally, replacing n + 2 by n, what we have to prove in order to settle Problem 1 is that
n∑

k=1
kσ(k)(k2 − 3n + 2)(2k2 − n)

(
2n

n − k

)
< 0

for all n ≥ 5, which is precisely (1).
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3 B-terms and asymptotics with explicit error bounds

In this section, we provide the necessary background on B-terms and their software imple-
mentation. We base our work on the module for computing with asymptotic expansions [7]
in SageMath [11]. While this module presently also offers some basic support for B-terms,
we have extended its capabilities to add support for computations involving an additional
monomially bounded variable (e.g., k with nα ≤ k ≤ nβ for some 0 ≤ α < β where n → ∞),
as well as Taylor expansions with explicit error bounds. These improvements are not yet
included in the module directly, but can be made available to your local installation of
SageMath simply by running

sage -pip install dependent_bterms

from your terminal. Alternatively, the module can be installed by executing a cell containing

!pip install dependent_bterms

from within a SageMath Jupyter notebook.
We will now briefly walk through the core functionalities of our toolbox. The central

interface is the function

AsymptoticRingWithDependentVariable,

which generates a suitable parent structure for our desired asymptotic expansions. Listing 1
demonstrates how it is used to instantiate the structure that will be used throughout the
following examples. We consider 1 = n0 ≤ k ≤ n4/7, i.e., α = 0 and β = 4/7.

Listing 1 Setup of the modified AsymptoticRing.
sage: import dependent_bterms as dbt
sage: AR, n, k = dbt.AsymptoticRingWithDependentVariable(
....: 'n^QQ', 'k', 0, 4/7, bterm_round_to =3, default_prec =5
....: )
sage: AR
Asymptotic Ring <n^QQ> over Symbolic Ring

The arguments passed to the interface are, in order,
growth_group – the (univariate) growth group1 modeling the desired structure of the
asymptotic expansions. For example, ’n^QQ’ represents terms like 42n9/13 or O(n7/42).
dependent_variable – a string representation of the symbolic variable being endowed
with asymptotic growth bounds, e.g., ’k’.
lower_bound_power – a real number α ≥ 0 representing the power to which the ring’s
independent variable is raised to obtain the lower monomial power.
upper_bound_power – a real number β > α ≥ 0, analogous to lower_bound_power, just
for the upper bound,
bterm_round_to – a non-negative integer or None (the default), determining the number
of floating point digits to which the coefficients of B-terms are automatically rounded. If
None, no rounding is performed.

1 See SageMath’s documentation on asymptotic expansions and the AsymptoticRing for an introduction
to the algebraic terminology used here.

AofA 2024
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Any other keyword arguments (like default_prec in Listing 1 above) are passed to the
constructor of AsymptoticRing.

In this structure, arithmetic with asymptotic expansions in n can be carried out as
usual, see Listing 2. The default_prec parameter specified above controls the order of the
automatic expansions.

Listing 2 Arithmetic and automatic expansions in AsymptoticRing.
sage: (1 + 3*n) * (4*n^( -7/3) + 42/n + 1)
3*n + 127 + 42*n^(-1) + 12*n^( -4/3) + 4*n^( -7/3)
sage: prod ((1 + n^(-j)) for j in srange(1, 10)) * (1 + O(n^( -10)))
1 + n^(-1) + n^(-2) + 2*n^(-3) + 2*n^(-4) + 3*n^(-5) + 4*n^(-6)
+ 5*n^(-7) + 6*n^(-8) + 8*n^(-9) + O(n^( -10))
sage: n / (n - 1)
1 + n^(-1) + n^(-2) + n^(-3) + n^(-4) + O(n^( -5))

In the implementation of the AsymptoticRing shipped with SageMath, asymptotic
expansions internally rely on ordering their summands with respect to the growth of the
independent variable(s), regardless of attached coefficients.

In the extension of our dependent_bterms module, expansions are aware of the growth
range contributed by the dependent variable appearing in coefficients. In fact, in our modified
ring, expansions are ordered with respect to the upper bound of the coefficient growth
combined with the growth of the independent variable. This explains the – at first glance
counterintuitive – ordering of the summands in Listing 3. The individual growth ranges of
the summands are printed at the end of the listing.

Listing 3 Arithmetic involving the dependent variable.
sage: k*n^2 + O(n^(3/2)) + k^3*n
k^3*n + k*n^2 + O(n^(3/2))
sage: for summand in expr.summands.elements_topological ():
....: print(f"{summand}␣->␣{summand.dependent_growth_range ()}")
O(n^(3/2)) -> (n^(3/2) , n^(3/2))
k*n^2 -> (n^2, n^(18/7))
k^3*n -> (n, n^(19/7))

Automatic power series expansion (with an O-term error) also works natively in our
modified ring, see Listing 4. Observe that the error term O(n−15/7) would actually be able
to partially absorb some of the terms in the automatic expansion like (k/2 + 1/6)n−3. This
partial absorption is, however, not carried out automatically due to performance reasons.
Using the simplify_expansion function included in our module expands the symbolic
coefficients and enables the error terms to carry out all allowed (partial) absorptions.

Listing 4 Automatic expansions and manual simplifications.
sage: auto_expansion = exp ((1 + k)/n)
sage: auto_expansion
1 + (k + 1)*n^(-1) + (1/2*(k + 1)^2)*n^(-2) + (1/6*(k + 1)^3)*n^(-3)
+ (1/24*(k + 1)^4)*n^(-4) + O(n^( -15/7))
sage: dbt.simplify_expansion(auto_expansion)
1 + (k + 1)*n^(-1) + (1/2*k^2 + k + 1/2)*n^(-2)
+ (1/6*k^3 + 1/2*k^2)*n^(-3) + 1/24*k^4*n^(-4) + O(n^( -15/7))

Now let us turn to the core feature of our extension: B-terms. In a nutshell, B-terms are
O-terms that come with an explicitly specified constant and validity point. For example, the
term Bn≥10(42n3) represents an error term that is bounded by 42n3 for n ≥ 10.
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Listing 5 demonstrates basic arithmetic with B-terms. It is worth spending a moment to
understand how the resulting constants are determined. In the first example, the B-term
Bn≥10(5/n) absorbs the exact term 3/n2 of weaker growth. It does so by automatically
estimating 3

n2 ≤ 3
10n (as the term is valid for n ≥ 10) and then directly absorbing the upper

bound; 53
10 = 5 + 3

10 .
The same mechanism happens in the second example. In order to avoid the (otherwise

rapid) accumulation of complicated symbolic expressions in the automatic estimates, we have
specified (via the bterm_round_to-parameter that we have set to 3) that B-terms should
automatically be rounded to three floating point digits. This is why the constant is given as
⌈(1 + 10−1/3) · 103⌉ · 10−3 = 293

200 .

Listing 5 Arithmetic with B-terms and the dependent variable.
sage: 7*n + AR.B(5/n, valid_from =10) + 3/n^2
7*n + B(53/10*n^(-1), n >= 10)
sage: AR.B(1/n, valid_from =10) + n^( -4/3)
B(293/200*n^(-1), n >= 10)
sage: AR.B(3*k^2/n^3, valid_from =10) + (1 - 2*k + 3*k^2 - 4*k^3)/n^5
B(3373/1000* abs(k^2)*n^(-3), n >= 10)

The third example in Listing 5 illustrates arithmetic involving the dependent variable,
which requires additional care. With 1 ≤ k ≤ n4/7 in place, the growth of the given B-term
ranges from Θ(n−3) to Θ(n−13/7). The growth of the explicit term that is added ranges
from Θ(n−5) to Θ(n−23/7). In this setting, we consider the explicit term to be of weaker
growth, as the lower bound of the B-term is stronger than the lower bound of the explicit
term, and likewise for the upper bound. Thus we may let the B-term absorb it. We do so by
first estimating∣∣∣∣1 − 2k + 3k − 4k3

n5

∣∣∣∣ ≤ (1 + 2 + 3 + 4)k3

n5 = 10k3

n5 .

As the power of k in this bound is larger than the maximal power of k in the B-term, we
may not yet proceed as above (otherwise we would increase the upper bound of the B-term,
which we must avoid). Instead, we use first use k ≤ n4/7, followed by n ≥ 10, to obtain

10k3

n5 ≤ 10k2n4/7

n5 = 10k2

n31/7 ≤ 10k2

1010/7 · n3 = 10−3/7 · k2

n3 ,

which the B-term can now absorb directly. Hence the value of the B-term constant is
determined by ⌈(3 + 10−3/7) · 103⌉ · 10−3 = 3373

1000 .
Finally, our module also provides support for B-term bounded Taylor expansion (again,

also involving the dependent variable) in form of the taylor_with_explicit_error function.
An example is given in Listing 6: we first obtain a Taylor expansion of f(t) = (1 − t2)−1

around t = (1 + k)/n + Bn≥10(k3/n3). Using the simplify_expansion function rearranges
the terms and lets the B-term absorb coefficients (partially) as far it is able to. Observe
that it may happen that the attempted simplification produces summands with a smaller
upper growth bound that the implementation cannot absorb (Bn≥10(k3/n3) vs. n−2 in this
case). The expansion is still correct; just not as compact as it could be. We can also use the
simplify_expansion function with the simplify_bterm_growth parameter set to True to
collapse the dependent variables in all B-terms by replacing them with their upper bounds,
resulting in a single “absolute” B-term.

AofA 2024
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Listing 6 B-term bounded Taylor expansions.
sage: arg = (1 + k)/n + AR.B(k^3/n^3, valid_from =10)
sage: ex = dbt.taylor_with_explicit_error(
....: lambda t: 1/(1 - t^2), arg ,
....: order=3, valid_from =10)
sage: ex
1 + ((k + 1)^2)*n^(-2)
+ B((abs (7351/250*k^3 + 30*k^2 + 30*k + 10))*n^(-3), n >= 10)
sage: dbt.simplify_expansion(ex)
1 + k^2*n^(-2)
+ B((abs (7351/250*k^3 + 30*k^2 + 30*k + 10))*n^(-3), n >= 10)
+ (2*k + 1)*n^(-2)
sage: dbt.simplify_expansion(ex , simplify_bterm_growth=True)
1 + k^2*n^(-2) + B(41441/1000*n^(-9/7), n >= 10)

4 Asymptotic analysis

In the following, we provide the steps of the analysis of the sum F (n), aided by the software
package that was presented in the previous section. We will verify (1) for n ≥ N = 10000 by
means of an asymptotic analysis with explicit error terms. For n < N , one can verify the
inequality with a computer by determining F (n) explicitly in all cases.

All computations carried out in this section can be found in the SageMath notebook
located at

https://arxiv.org/src/2403.09408/anc/2024-bona-dejonge.ipynb,

and a corresponding static version (containing computations and results) is available at

https://arxiv.org/src/2403.09408/anc/2024-bona-dejonge.html.

4.1 Approximating the binomial coefficients
It is useful to divide the entire sum by

(2n
n

)
and to approximate the quotient. Note that we

have( 2n
n−k

)(2n
n

) = n(n − 1) · · · (n − k + 1)
(n + 1)(n + 2) · · · (n + k) = n

n − k

k∏
j=1

n − j

n + j
= n

n − k

k∏
j=1

1 − j/n

1 + j/n
.

This can be rewritten as( 2n
n−k

)(2n
n

) = n

n − k
exp

( k∑
j=1

log(1 − j/n) − log(1 + j/n)
)

= n

n − k
exp

(
−

k∑
j=1

∞∑
r=1

r odd

2jr

rnr

)
, (3)

an expression that will also be used later. It follows from it that( 2n
n−k

)(2n
n

) ≤ n

n − k
exp

(
−

k∑
j=1

2j

n

)
≤ n

n − k
exp

(
−k2

n

)
. (4)

For small enough k, we can also obtain an asymptotic expansion. This will be discussed
later.

https://arxiv.org/src/2403.09408/anc/2024-bona-dejonge.ipynb
https://arxiv.org/src/2403.09408/anc/2024-bona-dejonge.html
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4.2 The tails
In order to replace the binomial coefficient by a simpler expression that is amenable to a
Mellin analysis, we first have to handle the tails of the sum. For this purpose, we require an
explicit bound for the divisor function σ(k) in form of a constant A > 0 such that

σ(k) ≤ A · k · log log n (5)

for 1 ≤ k ≤ n when n ≥ N . Assume temporarily that N ≤ k ≤ n. Then, using an inequality
due to Robin [10],

σ(k)
k

≤ eγ log log k + 0.6483
log log k

≤ eγ log log n + 0.6483
log log N

≤
(

eγ + 0.6483
log log N

)
log log n.

For N = 10000, we can choose A = 52/25 ≥ eγ + 0.6483/ log log N , and we can let the
computer verify that (5) also holds for 1 ≤ k ≤ n = N .

For k > n
2 , (4) combined with the fact that the binomial coefficients

( 2n
n−k

)
are decreasing

in k gives us( 2n
n−k

)(2n
n

) ≤ 2e−n/4.

So we have

0 ≤ 1(2n
n

) ∑
n/2<k≤n

kσ(k)(k2 − 3n + 2)(2k2 − n)
(

2n

n − k

)
≤

∑
n/2<k≤n

4Ak6(log log n)e−n/4

≤ (A log log n)n7e−n/4,

since it is easily verified that
∑

n/2<k≤n k6 ≤ n7

4 for n > 5. Thus, the contribution of the
sum in this range is

1(2n
n

) ∑
n/2<k≤n

kσ(k)(k2 − 3n + 2)(2k2 − n)
(

2n

n − k

)
= Bn≥N

(52
25e−n/4n7 log log n

)
. (6)

Next, fix a constant α ∈ ( 1
2 , 3

4 ); the precise value is in principle irrelevant if one is only
interested in an asymptotic formula. However, for our computations with explicit error
bounds it is advantageous to take a value close to 3

4 , so we choose α = 7
10 . We bound the

sum over all k ∈ [nα, n/2]. Here, we have( 2n
n−k

)(2n
n

) ≤ 2e−k2/n

by (4), thus (assuming that N is large enough that k2 ≥ n2α ≥ 3n whenever n ≥ N , which
we can easily verify for N = 10000 and α = 7/10)

0 ≤ 1(2n
n

) ∑
nα≤k≤n/2

kσ(k)(k2 − 3n + 2)(2k2 − n)
(

2n

n − k

)
≤

∑
nα≤k≤n/2

4Ak6(log log k)e−k2/n

≤ (4A log log n)
∑

nα≤k≤n/2

k6e−k2/n.
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The function t 7→ t6e−t2/n is decreasing for t ≥
√

3n, thus in particular for t ≥ nα under our
assumptions. This implies that (by a standard estimate for sums in terms of integrals)∑

nα≤k≤n/2

k6e−k2/n ≤ n6αe−n2α−1
+

∫ ∞

nα

t6e−t2/n dt.

The integral can be estimated by elementary means: for T = nα,∫ ∞

T

t6e−t2/n dt ≤ 1
T

∫ ∞

T

t7e−t2/n dt = n

2T

(
6n3 + 6n2T 2 + 3nT 4 + T 6)

e−T 2/n.

For large enough n ≥ N , this is negligibly small. This can be quantified with the help of
some explicit computations with B-terms. We find that

1(2n
n

) ∑
nα≤k≤n/2

(
2n

n − k

)
kσ(k)(k2 −3n+2)(2k2 −n) = Bn≥N

(25073
5000 e−n2/5

n
9
2 log log n

)
. (7)

4.3 Approximating the summands
So we are left with the sum over k < nα. Here, we can expand the exact expression in (3):
this can be done by cutting the sum over r at some point (we choose the cutoff at R = 9)
and estimating

0 ≤
k∑

j=1

∞∑
r=R
r odd

2jr

rnr
≤

k∑
j=1

2jR

RnR(1 − j2/n2)

by means of a geometric series (observe that the factor 1 − j2/n2 in the denominator stems
from the fact that we are only summing over odd r), and then further

k∑
j=1

2jR

RnR(1 − j2/n2) ≤ 2
RnR(1 − k2/n2)

(
kR +

∫ k

0
tR dt

)
= 2

RnR(1 − k2/n2)

(
kR + kR+1

R + 1

)
R=9= Bn≥N

(( 239
10000k10 + 2223

10000k9
)

n−9
)

,

followed by a Taylor expansion of the exponential multiplied with the expansion of n
n−k ,

cf. (3). The full and sufficiently precise asymptotic expansion can be found in our auxiliary
SageMath notebook. It reads( 2n

n−k

)(2n
n

) = e−k2/n
(

1 − k4 + k2

6n3 + k8

72n6 + k2

n2 − k12

1296n9 − 3k6

20n5 + k16

31104n12

+ · · · + Bn≥N

( k24

10000n18

)
+ Bn≥N

( 9k21

10000n16

)
+ · · ·

)
,

where the summands are ordered based on their individual upper growth bound (found from
substituting k = nα). The ellipses · · · indicate terms that are left out as the expression
would otherwise be very long. If it were required, this expansion could also be made more
precise. Let us now split the expression inside the brackets: let S(n, k) denote the sum of all
“exact” terms, and SB(n, k) the sum of all B-terms. We want to evaluate∑

1≤k<nα

kσ(k)
(
S(n, k) + SB(n, k)

)
(k2 − 3n + 2)(2k2 − n)e−k2/n.
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Let us first deal with the error estimate: since |(k2 − 3n + 2)(2k2 − n)| ≤ 2k4 + 3n2 for all k

and n, it suffices to bound∑
1≤k<nα

kSB(n, k)σ(k)(2k4 + 3n2)e−k2/n

≤ (A log log n)
∑

1≤k<nα

SB(n, k)(2k6 + 3n2k2)e−k2/n

≤ (A log log n)
∑
k≥1

SB(n, k)(2k6 + 3n2k2)e−k2/n.

For a positive function f(t) that is increasing up to some maximum t0 and decreasing
thereafter, it is well known that

∑
k≥1 f(k) ≤ f(t0) +

∫ ∞
0 f(t) dt. This can now be applied

to t 7→ tje−t2/2 to find, with the help of computer algebra,∑
1≤k<nα

kSB(n, k)σ(k)(2k4 + 3n2)e−k2/n = Bn≥N

(146718899
10000

√
n log log n

)
. (8)

While this error is not quite as small as those collected so far, for n = 10000 it is still only
about 26.1% of the eventual main term.

Now we can consider the remaining sum∑
1≤k<nα

kσ(k)S(n, k)(k2 − 3n + 2)(2k2 − n)e−k2/n.

To this end, we first add back the terms with k ≥ nα and estimate their sum.
For k ≤ n3/4 the expansion in S(n, k) can be bounded above, S(n, k) ≤ c1 ≈ 4.372, and

for k ≥ n3/4 we have S(n, k) ≤ k20/(10000n15). As for the other factors in our summands,
we can bound (k2 − 3n + 2)(2k2 − n) from above by 2k4. For an estimate of σ(k) we use (5)
in the range k < n3/4, and for the remaining case of k ≥ n3/4 we use the well-known weaker
bound σ(k) ≤ k2. This leaves us with∑

nα≤k<n3/4

kσ(k)S(n, k)(k2 − 3n + 2)(2k2 − n)e−k2/n

≤ 2Ac1 log log n
∑

nα≤k<n3/4

k6e−k2/n = Bn≥N

(
12553
5000 e−n2/5

n19/4 log log n

)
, (9)

and ∑
k≥n3/4

kσ(k)S(n, k)(k2 − 3n + 2)(2k2 − n)e−k2/n

≤ 2
10000 n15

∑
k≥n3/4

k27e−k2/n = Bn≥N

(
3

2000e−n1/2
n11/2

)
, (10)

where the sums have been bounded using the same integral estimate as before.

4.4 Mellin transform
Having estimated all error terms related to pruning and completing the tails of the sum, we
now want to evaluate∑

k≥1
kσ(k)S(n, k)(k2 − 3n + 2)(2k2 − n)e−k2/n. (11)
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This sum is a linear combination of sums of the form∑
k≥1

kanbσ(k)e−k2/n. (12)

In the precision chosen in our accompanying SageMath worksheet, there are 121 such
summands, to be precise. Set t = n−1, refer to the sum in (12) as ga,b(t) and let da,b denote
the coefficients such that the sum in (11) can be written as

∑
a,b da,bga,b(t). The Mellin

transform (see [4] for a general reference) of ga,b(t) is given by

g∗
a,b(s) =

∫ ∞

0
ts−1

∑
k≥1

kat−bσ(k)e−k2t dt = ζ(2s − 2b − a − 1)ζ(2s − 2b − a)Γ(s − b).

By the Mellin inversion formula, the original function ga,b(t) can be recovered from its
transform via

ga,b(t) = 1
2πi

∫ c+i∞

c−i∞
ζ(2s − 2b − a − 1)ζ(2s − 2b − a)Γ(s − b)t−s ds

for c > a
2 + b + 1. We may shift the line of integration further left as long as we collect all

corresponding residues. In a first step, we shift the line of integration to c = 3/4. While in
some summands poles occur as far right as s = 7/2, a straightforward computation reveals
that, as mentioned in the introduction of this article, nontrivial cancellations take place:
after summing all contributions, non-zero residues in the half-plane where ℜ(s) ≥ 3/4 can
only be found for s = 1 and s = 2, where we collect a contribution of

∑
s0∈{1,2}

∑
a,b

da,b Res(ga,b(s), s = s0) = − 1
8t2 + 1

24t
= −n2

8 + n

24 , (13)

which proves the asymptotic main term given in (2).
We now need to determine an explicit error bound for these shifted integrals. To do so,

we investigate, individually for each summand, how far we can shift the line of integration to
the left (in half-integer units) until ℜ(s) = ca,b without collecting any further residues.

In a central region of ca,b + iw for |w| ≤ 100 we use rigorous integration via interval
arithmetic to determine the value of the shifted integrals. Outside, for |w| > 100, we
determine a suitable upper bound of the integrand. For Γ(ca,b + iw) where ca,b > 0 we use [3,
(5.6.9)], and when ca,b < 0 we first shift the argument to the right via the functional equation
Γ(s) = 1

s Γ(s + 1) and then proceed as before. For ζ(ca,b + iw) we bound the modulus from
above by ζ(3/2) if ca,b ≥ 3/2. When ca,b ≤ −1/2 we first apply the reflection formula [3,
(25.4.1)]; the resulting factors can all be estimated directly. For the special case of ca,b = 1/2
we use the bound proved by Hiary, Patel, and Yang in [9, Theorem 1.1] to obtain

|ζ(1/2 + iw)| ≤ 0.618 t1/6 log t ≤ 0.618 t1/2

for t ≥ 100. Letting a computer collect and combine all of these contributions then yields∣∣∣∣ ∑
a,b

1
2πi

∫ 3/4+i∞

3/4−i∞
g∗

a,b(s)t−s ds

∣∣∣∣
≤ 1

2π

∑
a,b

nca,b

∫ ∞

−∞
|g∗

a,b(ca,b + iw)| dw = Bn≥N

(406531
100 n3/4

)
. (14)

https://dlmf.nist.gov/5.6.E9
https://dlmf.nist.gov/25.4.E1


B. Hackl and S. Wagner 19:13

6000 8000 10000 12000 14000 16000 18000 20000

1

2

3

4

5
1e7

6000 8000 10000 12000 14000 16000 18000 20000

0.4

0.6

0.8

1.0

1.2

1.4

Figure 1 Comparison of the absolute value of the asymptotic main term −n2/8 + n/24 (red)
against the accumulated total error (blue) on the left. The right plot depicts the ratio of the error
bound to the main term.

5 Conclusion

Throughout Section 4 we have accumulated several explicit error terms. They are given in (6),
(7), (8), (9), (10), and (14). Combining them using crude estimates such as log log n ≤ n1/10

for n ≥ N proves the following theorem.

▶ Theorem 2. For n ≥ 10000, the binomial sum F (n) satisfies the asymptotic formula

F (n) =
(

2n

n

)(
− n2

8 + n

24 + Bn≥N

(38755553
5000 n3/4

))
.

Observe that for n = 10000 the certified error is already only approximately 62.1% of the
absolute value of the exact main term. Together with the direct verification for 5 ≤ n < N

this settles Problem 1. See Figure 1 for an illustration of the behavior of the total error
compared to the main term.

To conclude this paper, we briefly discuss an alternative approach that was kindly pointed
out to us by a referee. Recall that the task is to prove the inequality (1), i.e.,

F (n) =
n∑

k=1
kσ(k)(k2 − 3n + 2)(2k2 − n)

(
2n

n − k

)
< 0.

Now one can use the well-known generating function identity

∞∑
n=k

(
2n

n − k

)
xn = xk

∞∑
m=0

(
2m + 2k

m

)
xm = xk 1√

1 − 4x
C(x)2k,

where C(x) = 1−
√

4x
2x is the generating function for the Catalan numbers, see e.g. [6,

(5.72)]. This gives an expression for F (n) in terms of coefficients of functions involving C(x).
Specifically, we have

F (n) = 3n2
n∑

k=1
kσ(k)

(
2n

n − k

)
− n

n∑
k=1

k(7k2 + 2)σ(k)
(

2n

n − k

)

+
n∑

k=1
2k3(k2 + 2)σ(k)

(
2n

n − k

)
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= 3n2[xn] 1√
1 − 4x

∞∑
k=1

kσ(k)(xC(x)2)k

− n[xn] 1√
1 − 4x

∞∑
k=1

k(7k2 + 2)σ(k)(xC(x)2)k

+ [xn] 1√
1 − 4x

∞∑
k=1

2k3(k2 + 2)σ(k)(xC(x)2)k

= 3n2[xn] 1√
1 − 4x

f1(H(x)) − n[xn] 1√
1 − 4x

f2(H(x)) + [xn] 1√
1 − 4x

f3(H(x)),

where H(x) = xC(x)2 = 1−2x−
√

1−4x
2x , and f1, f2, f3 are given by the series

f1(z) =
∞∑

k=1
kσ(k)zk, f2(z) =

∞∑
k=1

k(7k2 + 2)σ(k)zk, f3(z) =
∞∑

k=1
2k3(k2 + 2)σ(k)zk.

At the singularity x = 1
4 , H(x) has the expansion

1 − 2
√

1 − 4x + 2(1 − 4x) + · · · ,

so we need the behavior of f1(z), f2(z), f3(z) around z = 1. This can be determined by
means of the Mellin transform: setting z = e−t, we obtain for instance

f1(e−t) =
∞∑

k=1
kσ(k)e−kt,

whose Mellin transform is Γ(s)ζ(s − 1)ζ(s − 2). Applying the inverse Mellin transform in the
same way as in Section 4.4 (though now with complex parameter t) yields

f1(e−t) = π2

3t3 − 1
2t2 + O(tK)

for any positive real K. This and analogous asymptotic formulas for f2 and f3 give us the
behavior of f1(H(x)), f2(H(x)) and f3(H(x)) at the dominant singularity 1

4 , from which
the asymptotic formula (2) can be obtained by means of contour integration and singularity
analysis. Carrying all of this out with explicit error terms comes with its own challenges,
though, as one now has to deal with complex asymptotics.
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