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Abstract
We use a novel decomposition to create succinct data structures – supporting a wide range of
operations on static trees in constant time – for a variety of tree classes, extending results of Munro,
Nicholson, Benkner, and Wild. Motivated by the class of AVL trees, we further derive asymptotics
for the information-theoretic lower bound on the number of bits needed to store tree classes whose
generating functions satisfy certain functional equations. In particular, we prove that AVL trees
require approximately 0.938 bits per node to encode.
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Introduction

AVL trees [1] (named for their discoverers, G. Adelson-Velsky and E. Landis) are a subclass
of binary search trees with logarithmic height, a property they maintain with updates during
insertions and deletions in logarithmic time. Indeed, AVL trees are the oldest class of binary
search trees maintaining logarithmic height and are characterized by the key property that
any pair of sibling subtrees differ in height by at most 1. In this paper, we examine the
amount of storage needed to encode AVL trees with n nodes, a property intimately related
to the number of AVL trees on n nodes. Odlyzko [13] gave a conjectural form for the number
of AVL trees on n nodes in the 1980s, anticipating a forthcoming proof, but this proof did
not appear in the literature.

If C =
⊔∞

n=0 Cn is a family of objects, with Cn denoting the objects of size n in C then
a representation of C is called succinct if it maps each object of Cn to a unique string of
length log2 |Cn| + o(log |Cn|). A succinct representation is thus one whose space complexity
asymptotically equals, up to lower-order terms, the information-theoretic lower bound. A
succinct data structure [11, 12] for C is a succinct representation of C that supports a range
of operations on C under reasonable time constraints.
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Figure 1 A binary tree and its level-order bitmap representation.

1 Representations of Trees

The theory of succinct data structures has a long history, much of it focused on representations
of trees. We first describe some important classes of trees in this context, and then discuss
our main results.

Binary Search Trees

Let B be the class of rooted binary trees, so that the number |Bn| of objects in B of size n is
the nth Catalan number bn = 1

n+1
(2n

n

)
. The class B lends itself well to storing ordered data

in a structure called a binary search tree. The general idea is that for each node in the tree,
the data stored in its left subtree will be smaller than the data at that node, and the data
stored in the right subtree will be larger. To retrieve elements, one can recursively navigate
through the tree by comparing the desired element to the current node, and moving to the
left or right subtree if the element is respectively smaller or larger than the current node. As
a result, it is desirable to efficiently support the navigation operations of moving to parent
or child nodes in whatever representation is used.

A naive representation of B gives each node a label (using roughly log2 n space) and
stores the labels of each node’s children and parent. The resulting data structure supports
operations like finding node siblings in constant time, but is not succinct as it uses Θ(n log n)
bits while the information-theoretic lower bound is only log2(bn) = 2n + o(n). Somewhat
conversely, a naive space-optimal representation of B is obtained by listing the objects of
Bn in any canonical order and referencing a tree by its position {1, . . . , bn} in the order,
but asking for information like the children or parents of a node in a specific tree is then
expensive as it requires building parts of the tree.

Practical succinct representations of binary trees supporting efficient navigation date back
to Jacobson [6], who encoded a tree by storing the binary string of length 2n + 1 obtained by
adding external vertices so that every node has exactly two children, then taking a level-order



J. Chizewer, S. Melczer, J. I. Munro, and A. Pun 2:3

traversal of the tree and recording a 1 for each original internal node encountered and a 0
for each external node encountered (see Figure 1). If each node is labelled by its position
in a level-order traversal then, for instance, the children of the node labelled x in the tree
encoded by the string σ have labels 2 rankx(σ) and 2 rankx(σ) + 1, where rankx(σ) is the
number of ones in σ up to (and including) the position x. By storing o(n) bits, the rank
operation (and similar supporting operations used to retrieve information about the trees)
can be implemented in O(1) time. Jacobson’s results allow finding a parent or child using
O(log2 n) bit inspections; Clark [2] and Munro [8] improved this to O(1) inspections of log2 n

bit words.

AVL Trees
Because the time taken to access elements in a binary search tree typically depends on the
height of the tree, many data structures balance their trees as new data is added. The balance
operation requires rearranging the tree while preserving the underlying property that, for
each node, the elements in the left subtree are smaller and the elements in the right subtree
are larger. One of the most popular balanced tree structures – for theoretical study and
practical application – are AVL trees [1]. Roughly speaking, AVL trees have balancing rules
that force the subtrees rooted at the children of any node differ in height by at most one.
Throughout this paper we let A denote the class of AVL trees, so that An consists of all
binary trees on n vertices such that the subtrees of any vertex differ in height by at most
one (including empty subtrees).

Due to the way they are constructed, AVL trees have mainly been enumerated under
height restrictions, and enumeration by number of vertices (which is crucial for determining
space-efficient representations, but not as important for other applications) is less studied.
A 1984 paper [13] of Odlyzko describes the behaviour of a family of trees whose generating
functions satisfy certain equations. It ends by stating that the generating function of AVL
trees “appears not to satisfy any simple functional equation, but by an intensive study. . . it
can be shown” that |An| ∼ n−1α−nu(log n) where α = 0.5219 . . . is “a certain constant” and
u is a periodic function, referencing for details a paper that was planned to be published but
was never written.1

Efficiently Representing Tree Classes
Let B be a function satisfying B(n) = Θ(log n). In [9] the authors give a method to construct
a succinct encoding, and corresponding data structure, for any class of binary trees T
satisfying the following four conditions.
1. Fringe-hereditary: For any tree τ ∈ T and node v ∈ τ the fringe subtree τ [v], which

consists of v and all of its descendants in τ , also belongs to T .
2. Worst-case B-fringe dominated: Most nodes in members of T do not generate large fringe

subtrees, in the sense that∣∣∣{v ∈ τ :
∣∣τ [v]

∣∣ ≥ B(n)}
∣∣∣ = o(n/ log B(n))

for every binary tree τ in the subset Tn ⊂ T containing the members of T with n nodes,
where |τ | denotes the number of nodes in τ .

1 The current authors thank Andrew Odlyzko for discussions on the asymptotic behaviour of AVL trees
and the growth constant α.
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2:4 Enumeration and Succinct Encoding of AVL Trees

Figure 2 The six types of AVL trees with n = 5 nodes.

3. Log-linear : There is a constant c > 0 and a function ϑ(n) = o(n) such that

log |Tn| = cn + ϑ(n). (1)

4. B-heavy twigged: If v is a node of any τ ∈ T with |τ [v]| ≥ B(n), and τℓ[v] and τr[v] are
the left and right subtrees of v in τ , then |τℓ[v]|, |τr[v]| = ω(1).

We present a new construction that gives a succinct encoding for all classes of trees
satisfying only the first three conditions. By using constant time rank and select operations
already supported by a succinct encoding for binary trees, we can also eliminate the use of
so-called “portal nodes” and thus relax the second condition to the following.
2′. Worst-case weakly fringe dominated: Most nodes in members of T do not generate large

fringe subtrees, in the sense that there is a B′(n) satisfying B′(n) = d log n + o(log n) for
some d < 1 such that∣∣∣{v ∈ τ :

∣∣τ [v]
∣∣ ≥ B′(n)}

∣∣∣ = o(n) (2)

for every binary tree τ ∈ Tn.

Adopting terminology similar to that of [9], we call a class of binary trees weakly tame if
it is fringe-hereditary, worst-case weakly fringe dominated, and log-linear.

▶ Theorem 1. If T is a weakly tame class of binary trees then there exists a succinct encoding
for T that supports the operations in Table 1 in O(1) time using the (log n)-bit word RAM
model.

▶ Remark 2. We support operations on static trees, leaving extensions to trees with updates
(such as in [10]) to future work.

Proof. See Section 2. ◀

▶ Corollary 3. There exists a succinct encoding for AVL trees that supports the operations
in Table 1 in O(1) time using the (log n)-bit word RAM model.

Proof. AVL trees are weakly tame (see [9, Example F.2]) so the result follows immediately
from Theorem 1. ◀

▶ Remark 4. In [9] the log-linearity of AVL trees is inferred from the stated exponential
growth of an in Odlyzko [13]. This growth is proven in Theorem 6 below.
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A minor modification of the arguments in [9] show that Left-Leaning AVL (LLAVL)
Trees, which are AVL trees with the added restriction that at every node the height of the left
subtree is at least the height of the right subtree, are also weakly tame, giving the following.

▶ Corollary 5. There exists a succinct encoding for LLAVL trees that supports the operations
in Table 1 in O(1) time using the (log n)-bit word RAM model.

Table 1 Operations discussed in [5, 9] which can be done in O(1) time in the (log n)-bit word
RAM model in a succinct encoding of a binary tree.

parent(v) the parent of v, same as anc(v, 1)
degree(v) the number of children of v

left_child(v) the left child of node v

right_child(v) the right child of node v

depth(v) the depth of v, i.e., the number of edges between the root and v

anc(v, i) the ancestor of node v at depth depth(v) − i

nbdesc(v) the number of descendants of v

height(v) the height of the subtree rooted at node v

LCA(v, u) the lowest common ancestor of nodes u and v

leftmost_leaf(v) the leftmost leaf descendant of v

rightmost_leaf(v) the rightmost leaf descendant of v

level_leftmost(ℓ) the leftmost node on level ℓ

level_rightmost(ℓ) the rightmost node on level ℓ

level_pred(v) the node immediately to the left of v on the same level
level_succ(v) the node immediately to the right of v on the same level
node_rankX(v) the position of v in the X-order, X ∈ {PRE, POST, IN},

i.e., in a preorder, postorder, or inorder traversal of the tree
node_selectX(i) the ith node in the X-order, X ∈ {PRE, POST, IN}
leaf_rank(v) the number of leaves before and including v in preorder
leaf_select(i) the ith leaf in preorder

To characterize how much space is required by a succinct encoding, we derive an asymptotic
bound on the number of AVL trees using techniques from analytic combinatorics [4, 7]. To
this end, let an = |An| be the counting sequence of A and let A(z) =

∑
n≥0 anzn be its

associated generating function. The key to enumerating AVL trees is to let Ah(z) be the
generating function for the subclass of AVL trees with height h. The balance condition on
subtrees implies that an AVL tree of height h + 2 is a root together with a subtree of height
h + 1 and a subtree of height either h + 1 or h, giving rise to the recursive equation

Ah+2(z) = Ah+1(z)(Ah+1(z) + 2Ah(z)) (3)

for all h ≥ 0, where the factor of 2 indicates that the shorter subtree can be on the left or
right side. This recursion, along with the initial conditions A0(z) = z (encoding the only
AVL tree with height zero, which is a single vertex) and A1(z) = z2 (encoding the only AVL
tree with height one, which is a root with two children) uniquely determines Ah(z) for all h.
Summing over all possible heights gives the generating function

A(z) =
∞∑

h=0
Ah(z)

for AVL trees.

AofA 2024



2:6 Enumeration and Succinct Encoding of AVL Trees

Figure 3 Values αh converging to α = 0.5219 . . . monotonically from below among even h (red)
and monotonically from above among odd h (blue).

Equation (3) implies that Ah(z) is a non-constant polynomial with positive coefficients for
all h, so the equation Ah(z) = 1/3 has a unique positive solution for all h ∈ N (see Figure 3
for values of these solutions). We prove the following.

▶ Theorem 6. If αh is the unique positive solution to Ah(z) = 1/3 then the limit

α = lim
h→∞

αh = 0.5219 . . .

exists. Furthermore,

log2(an) = n log2(α−1)︸ ︷︷ ︸
n(0.938...)

+ log θ(n)

for a function θ growing at most sub-exponentially (meaning θ(n) = o(κn) for all κ > 1).

Proof. The result follows immediately from applying Theorem 13 below with f(x1, x2) =
x2

1 + 2x1x2, since the unique positive solution to f(C, C) = C is C = 1/3. ◀

▶ Remark 7. A full proof of the claimed asymptotic behaviour an ∼ n−1α−nu(log n) in
Odlyzko [13], which characterizes sub-dominant asymptotic terms for the bitsize, requires
a more intense study of the recursion (3) and is outside the scope of this discussion. It is
postponed to future work.

Our approach derives asymptotics for a family of generating functions satisfying recursive
equations similar to (3). For instance, if Lh(z) is the generating function for LLAVL trees
with height h then

Lh+2(z) = Lh+1(z)(Lh+1(z) + Lh(z)) (4)

for all h ≥ 0, as an LLAVL tree of height h + 2 is a root together with a left subtree of height
h + 1 and a right subtree of height h + 1 or h. Note that the only difference between this
recurrence and the recursive equation (3) for AVL trees is the coefficient of Lh(z), since there
is now only one way to have an unbalanced pair of subtrees.
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▶ Theorem 8. If γh is the unique positive solution to Lh(z) = 1/2 then the limit

γ = lim
h→∞

γh = 0.67418 . . .

is well-defined. Furthermore, the number ℓn of LLAVL trees on n nodes satisfies

log2(ℓn) = n log2(γ−1)︸ ︷︷ ︸
n(0.568...)

+ log θ(n)

for a function θ growing at most sub-exponentially.

Proof. The result follows by applying Theorem 13 below with f(x1, x2) = x2
1 + x1x2, since

the unique positive solution to f(C, C) = C is C = 1/2. ◀

2 A New Succinct Encoding for Weakly Tame Classes

We now prove Theorem 1, first describing our encoding and then showing it has the stated
properties.

2.1 Our encoding
Let E denote a succinct data structure representing all binary trees that supports the
operations in Table 1, and denote the encoding of a binary tree τ in this data structure by
E(τ). We now fix a weakly tame class of binary trees T and, given a binary tree τ ∈ T of
size n, define the upper tree

τ ′ =
{

v ∈ τ :
∣∣τ [p(v)]

∣∣ ≥ d log n
}

where p(v) denotes the parent of a vertex v in the tree τ and d is a constant such that
B′(n) = d log n + o(log n) satisfies (2) in the definition of worst-case weakly fringe dominated.

Our succinct data structure for T is constructed as follows.
1. We simply copy the encodings E(τ ′) for upper trees.
2. For every 1 ≤ j < d log n we write down a lookup table mapping the trees in Tj (with j

nodes) to their corresponding E encoding. We can do this, for example, by enumerating
the Tj in lexicographic order by the E encoding using integers of bitsize log |Tj | = cj +o(j),
where c is the constant in the definition of log-linearity (1).

3. For each leaf node ℓ ∈ τ ′ the fringe subtree τ [ℓ] has size |τ [ℓ]| < d log n by definition of τ ′.
We call these trees lower trees, and write them down using their encoding in a lookup
table in leaf_rank order of their roots in τ ′, storing the root locations in an indexable
dictionary.

4. Lastly, we store additional information in (fully) indexable dictionaries to support opera-
tions like node_rank/select, level_succ/pred, and leaf_rank/select. For instance,
for node_rank/select we store a fully indexable dictionary that maps the node_rank
for a node in τ ′ to the node_rank of the node in τ . The techniques to support the other
operations are similar, and are analogous to constructions used in [5, 3].

2.2 Proof of Size and Operation Time Bounds
Navigation through the upper tree follows standard navigation using E , which supports the
desired operations in constant time. When a leaf node ℓ is reached in the upper tree, the
operation x = leaf_rank(ℓ) gives the index of the child tree in the indexable dictionary.

AofA 2024



2:8 Enumeration and Succinct Encoding of AVL Trees

Then the operation select(x) gives the location of the string encoding the child tree. Finally,
using the table mapping our encoding to the E encoding gives us the ability to perform all
the navigation operations on the smaller tree. In order to perform the lookup using the
mapping, it is necessary to know the size of the tree. This can be inferred from the space in
memory allocated to the naming, which can be calculated by the operation select(x + 1)
in the indexable dictionary to find the starting location of the next child tree. To navigate
back to the upper tree from a child tree, we use the reverse operations of y = rank(x) in the
indexable dictionary followed by select_leaf(y) in the upper tree.

To get the node_rank of a node in τ ′ we use the fully indexable dictionary, and to get
the node_rank of a node not in τ ′ we simply get the node_rank of the root of the child tree
and the node_rank of the node within the child tree and perform the appropriate arithmetic
depending on the desired rank order (pre, post, in). For node_select, if the node is in
τ ′ then selecting using the indexable dictionary is sufficient. Otherwise, the node is in a
child tree and the initial node_select will return the predecessor node in τ ′ which will be
the root of the child tree when using preorder (the argument is similar for postorder and
inorder). Using the rank of this root and appropriate arithmetic, we can then select the
desired node in the child tree. Implementing the other operations is analogous. It is clear
that all of these operations are supported in constant time, since they involve a constant
number of calls to the constant-time operations in the existing data structures, and lookups
using (log n)-bit words.

Space Complexity

The space used by E(τ ′) is o(n) by the weakly tame property. The space used by the lookup
tables is O(nd log n) = o(n) by definition of τ ′ and d, and the space used by all of the
encodings of the child trees is cn + o(n) by log-linearity. Lastly, the space needed for the
indexable dictionaries is o(n) for each [3, Lemmas 1 and 2]. Summing these requirements
shows that the total storage required is cn + o(n) many bits, so the encoding is succinct. ◀

3 Asymptotics for a Family of Recursions

We derive the asymptotic behaviour of a family of generating functions which includes
Theorem 6 as a special case. Let F be a combinatorial class decomposed into a disjoint
union of finite subclasses F =

⊔∞
h=0 Fh whose generating functions Fh(z) are non-constant

and satisfy a recursion

Fh(z) = f(Fh−1(z), Fh−2(z), . . . , Fh−c(z)) for all h ≥ c, (5)

where c is a positive integer and f is a multivariate polynomial with non-negative coefficients.

▶ Remark 9. The elements of Fh are usually not the objects of F of size h (in our tree
applications they contain trees of height h, not trees with h nodes). The fact that each Fh is
finite implies that the Fh(z) are polynomials with non-negative coefficients. The coefficient
of zn in Fh(z) counts the number of objects of size n within the subclass indexed by h.

We assume that there exists a (necessarily unique) positive real solution C to the equation
C = f(C, C, . . . , C), and for each h ≥ 0 we let αh be the unique positive real solution to
Fh(z) = C. In order to rule out degenerate cases and cases where the counting sequence has
periodic behaviour, we need another definition.
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Figure 4 Values αi converging with uis shown in blue and ℓjs shown in red.

▶ Definition 10 (recursive-dependent). We call the polynomial f recursive-dependent if there
exists a constant k (depending only on f) such that for any indices i, j ≥ c with i ≥ j + k

there exists a sequence of applications of the recurrence (5) resulting in a polynomial P with
Fi = P (Fℓ1 , . . . , Fℓm

) for some 0 ≤ ℓ1 < · · · < ℓm ≤ i where ∂P
∂Fj

̸= 0.

▶ Example 11. The polynomial f(x, y) = y is not recursive-dependent because it leads
to the recursion Fh(z) = Fh−2(z), meaning that the values of Fh when h is even can be
independent of those where h is odd.

▶ Lemma 12. If f is recursive-dependent with non-negative coefficients and a positive fixed
point then the limit α = limh→∞ αh exists.

Proof. We start by defining two subsequences of αh to give upper and lower bounds on its
limit, then prove that these are equal. First, we let

u0 be the smallest index j ∈ {0, . . . , c − 1} such that αj = max{α0, . . . , αc−1}
and for all i ≥ 0 let

ui+1 be the smallest index j ∈ {ui + 1, . . . , ui + c} such that αj = max{αui+1, . . . , αui+c},
so that the ui denote the indices of the maximum values of the αh as h ranges over intervals
of size at most c. Conversely, we let

ℓ0 be the index j ∈ {0, . . . , c − 1} such that αj = min{α0, . . . , αc−1}
and for all j ≥ 0 let

ℓi+1 be the index j ∈ {ui + 1, . . . , ui + c} such that αj = min{αui+1, . . . , αui+c},
so that the ℓj denote the indices of the minimum values of the αh as h ranges over intervals
of size at most c.

We claim that the subsequence αui is non-increasing. To establish this, we fix i ≥ 1
and consider αui

. By definition, αui
≥ αuj

for all j ∈ {ui−1 + 1, . . . , ui−1 + c}. Thus,
if ui+1 ∈ {ui−1 + 1, . . . , ui−1 + c} then αui

≥ αui+1 as claimed. If, on the other hand,
ui+1 > ui−1 + c then repeated application of the recursion (5) implies

Fui+1(αui) = f
(

Fui+1−1(αui), . . . , Fui+1−c(αui)
)

...

= Q
(

Fui−1+1(αui), . . . , Fui−1+c(αui)
)

,

AofA 2024



2:10 Enumeration and Succinct Encoding of AVL Trees

where Q is a multivariate polynomial with non-negative coefficients such that Q(C, . . . , C) =
C. All the Fh are monotonically increasing as non-constant polynomials with non-negative
coefficients, so Fj(αui

) ≥ Fj(αuj
) = C for all j ∈ {ui−1 + 1, . . . , ui−1 + c} and

Fui+1(αui
) ≥ Q

(
C, . . . , C

)
= C.

Since Fui+1 is monotonically increasing and Fui+1(αui+1) = C, we once again see that
αui

≥ αui+1 . As i was arbitrary, we have proven that αui
is non-increasing. The same

argument, reversing inequalities, proves that the subsequence αℓj is non-decreasing.
As αℓj

is non-decreasing and αui
is non-increasing, either αℓj

≤ αui
for all i, j ≥ 0 or

αℓj > αui for all sufficiently large i and j. The second case implies the existence of indices
a, b > 0 such that αℓb

> αua
but ℓb ∈ {ua−1 +1, . . . , ua−1 +c} so that ua is not the maximum

index of αj in this range, giving a contradiction. Thus, αℓj
≤ αui

for all i, j ≥ 0 and the
limits

αu = lim
i→∞

αui
and αℓ = lim

j→∞
αℓj

exist. To prove that the limit of αh exists as h → ∞, it is now sufficient to prove that
αu = αℓ.

Suppose toward contradiction that αu ̸= αℓ, and define a = αu − αℓ > 0. For any ϵ > 0,
we pick i, j, k sufficiently large so that ℓj > ui > ℓk +c and |αui −αu|, |αℓj −αℓ|, |αℓk

−αℓ| < ϵ.
Then by recursive-dependence we can recursively decompose Fℓj

in terms of Fui
, and possibly

some other terms Fh1 , . . . , Fhr
where each |hn − ui| ≤ c, to get

C = Fℓj (αℓj ) = P (Fui(αℓj ), Fh1(αℓj ), . . . , Fhr (αℓj ))

where P (Fui
, Fh1 , . . . , Fhr

) is a polynomial with non-negative coefficients that depends on
Fui and satisfies P (C, . . . , C) = C. Because P is monotonically increasing in each coordinate,
and αℓk

+ ϵ > αℓ ≥ αℓj
, we see that

C ≤ P (Fui
(αℓk

+ ϵ), Fh1(αℓk
+ ϵ), . . . , Fhr

(αℓk
+ ϵ)).

Furthermore, each αhn ≥ αℓk
so

C ≤ P (Fui
(αℓk

+ ϵ), Fh1(αh1 + ϵ), . . . , Fhr
(αhr

+ ϵ))
≤ P (Fui

(αℓk
+ ϵ), C + poly(ϵ), . . . , C + poly(ϵ)).

Finally, αui − a ≥ αℓk
so

C ≤ P (Fui
(αui

− a + ϵ), C + poly(ϵ), . . . , C + poly(ϵ)).

Because a is fixed, P is monotonically increasing in each variable, and Fui
(αui

) = C,
taking ϵ → 0 shows that the right-hand side of this last inequality is strictly less than
P (C, . . . , C) = C, a contradiction. Thus, a = 0 and the limit α = αu = αℓ exists. ◀

▶ Theorem 13. If f is recursive-dependent with non-negative coefficients and a positive fixed
point, then the number an of objects in F of size n satisfies

an = α−n θ(n),

where α is the limit described in Lemma 12 and θ(n) is a function growing at most sub-
exponentially.
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Proof. We prove that the generating function F (z) is analytic for |z| < α by showing that
the series

∑∞
h=0 Fh(z) converges for these values of z. Because |F (z)| → ∞ as z → α, the

point z = α is then a singularity of F (z) of smallest modulus, and thus (by the root test for
series convergence) the reciprocal of the exponential growth of an.

First, assume that there exists some k ≥ 0 and 0 < λ < 1 such that Fh(z) < λC for every
h ∈ {k, k + 1, . . . , k + c − 1}. Let A be the sum of the coefficients of all degree 1 terms of f .
Since f has non-negative coefficients and a positive real fixed point, we must have A < 1.
Let g(x1, . . . , xc) be the function created by removing all degree one terms from f . Observe
that C = AC + g(C, . . . , C), and thus g(λC, . . . , λC) ≤ λ2g(C, . . . , C) = λ2(1 − A)C, so that

f(λC, . . . , λC) ≤ AλC + λ2(1 − A)C.

Algebraic manipulation shows that Aλ + λ2(1 − A) ≤ λ, and since f has non-negative
coefficients we can conclude that for every h ∈ {k + c, k + 1 + c, . . . , k + 2c − 1} we have
Fh(z) ≤ AλC + λ2(1 − A)C. Let λ0 = λ and define λi = λi−1(A + λi−1 − Aλi−1) for all
i ≥ 1. By the above argument we have

Fch+k(z) ≤ λhC,

so it remains to show that
∑∞

i=0 λi converges. We will show that λi ≤ λ(A + λ − Aλ)i by
induction on i. The result holds by definition for i = 1. If the result holds for some j ≥ 1
then

λj+1 = λj(A + λj − Aλj)
≤ λ(A + λ − Aλ)j(A + λj − Aλj)
≤ λ(A + λ − Aλ)j+1,

where the last inequality follows from the fact that λj < λ since A + λ − Aλ < 1. The sum∑∞
i=0 λ(A + λ − Aλ)i converges as a geometric series, and thus

∑∞
h=0 Fh(z) converges.

It remains to show that if |z| < α then such a k and λ exist. For any |z| < α there is
some N sufficiently large such |z| < αn for all n ≥ N . By the definition of αn, and since the
coefficients of Fn are all positive, we must have Fn(z) < C. Hence Fn(z) < λnC for some
0 < λn < 1. Taking k = N and letting λ be the largest λn for n ∈ {N, N + 1, . . . , N + c − 1}
proves our final claim. ◀
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