
Multicoloured Hardcore Model: Fast Mixing and
Its Applications as a Scheduling Algorithm
Sam Olesker-Taylor # Ñ

Department of Statistics, University of Warwick, UK

Abstract
In the hardcore model, certain vertices in a graph are active: the active vertices must form an
independent set. We extend this to a multicoloured version: instead of simply being active or not,
the active vertices are assigned a colour; active vertices of the same colour must not be adjacent.

This models a scenario in which two neighbouring resources may interfere when active – eg,
short-range radio communication. However, there are multiple channels (colours) available; they only
interfere if both use the same channel. Other applications include routing in fibreoptic networks.

We analyse Glauber dynamics. Vertices update their status at random times, at which a uniform
colour is proposed: the vertex is assigned that colour if it is available; otherwise, it is set inactive.

We find conditions for fast mixing of these dynamics. We also use them to model a queueing
system: vertices only serve customers in their queue whilst active. The mixing estimates are applied
to establish positive recurrence of the queue lengths, and bound their expectation in equilibrium.
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1 Introduction and Main Results

We extend the hardcore model, used for sampling independent sets, to a multicoloured
version. Given a graph G = (V, E), our objective is to colour a subset U ⊆ V of the vertices
such that if u, u′ ∈ U satisfy {u, u′} ∈ E, then u and u′ are painted with different colours. If
there is only one colour, then this condition requires that there is no pair of mutually adjacent
vertices. This is the definition of an independent set, so we recover the usual hardcore model.

We allow an arbitrary number K ∈ N of possible colours. If we required all vertices to
be selected – ie, U = V – then the condition is that no edge in the graph is monochromatic:
the endpoints must receive different colours. We thus recover the proper colouring model.
Our model models these two, sampling a properly coloured subset of vertices, or subgraph.

The motivation for this model comes from a desire for a decentralised (and randomised)
algorithm for resource sharing. Two examples of this are short-range radio communication,
where nearby agents on the same frequency interfere, and routing in fibreoptic networks.
Both K and G are given parameters, depending on the particular engineering set-up.

A popular method for sampling proper colourings or independent sets is via Glauber
dynamics. Our main result is on the mixing time of Glauber dynamics for the multicoloured
hardcore model, defined precisely below. We then use the system to model a queueing system.

Customers (eg, data packets) arrive to vertices at some (vertex-dependent) rate.
Coloured vertices are active: they serve their customers at some (vertex-dependent) rate.
Uncoloured vertices are inactive: they do not serve, but their queue can still grow.

We apply the mixing-time result to control the queue lengths, under certain conditions.
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20:2 Multicoloured Hardcore Model: Fast Mixing and Application

A Glauber Dynamics
Let G = (V, E) be a graph and K ∈ N. Let n := |V |; write [K]0 := {0, 1, ..., K}. The state
space Ω of the system is a subset of configurations [K]V0 = {(ωv)v∈V | ωv ∈ [K]0 ∀ v ∈ V }.

▶ Definition A.1 (State Space). Let Ω := {ω ∈ [K]V0 | ω is proper}, where ω ∈ [K]V0 is
proper if

ωu ̸= ωv whenever {u, v} ∈ E and ωu + ωv > 0.

In a proper configuration, the colour of one vertex must be different to that of all its
neighbours, except that colour 0 is exempt from this condition. We view colour 0 as inactive.
A configuration is proper if the subgraph induced by its active vertices is properly coloured.

▶ Definition A.2 (Glauber-Type Dynamics). Let λ = (λv) ∈ (0, ∞)V and p = (pv) ∈ [0, 1]V .
We analyse the following continuous-time Markov chain, which we denote MCHΩ(λ, p).

Choose vertex v ∈ V to update at rate λv, simultaneously over all vertices.
Once vertex v ∈ V is chosen, toss a pv-biased coin: C ∼ Bern(pv).

If C = 1, then choose a (non-zero) colour k ∈ [K] uniformly at random. If colour k is
available for v – ie, no neighbour of v has colour k – then paint v with colour k.
Otherwise, deactivate v – ie, colour 0 – whether or not it was active before.

Denote the equilibrium distribution by π. The equilibrium active time, or service rate, is

sv :=
∑

ω∈Ω:ωv ̸=0 π(ω) for v ∈ V.

The usual Glauber dynamics for proper colourings proposes a colour chosen uniformly
amongst available colours. However, this requires whoever is making the colour choice to
know which colours are available for that vertex. This is unreasonable in the context of
routing algorithms in fibreoptic networks, for example. It is often much faster to check if a
single proposed colour is available than to find out which colours are available.

Our main theorem establishes fast mixing. First, we define mixing times precisely.

▶ Definition A.3 (Mixing Times). The total-variation distance between distributions µ and
π is

∥µ − π∥TV := maxA⊆Ω |µ(A) − π(A)| = 1
2

∑
ω∈Ω|µ(ω) − π(ω)|.

The mixing time of a Markov chain X = (Xt)t≥0 on Ω with invariant distribution π is

tmix(ε) := inf{t ≥ 0 | maxx∈Ω ∥Px[Xt ∈ ·] − π∥TV ≤ ε} for ε ∈ (0, 1).

▶ Theorem A (Fast Mixing). Suppose that there exists β > 0 such that

1
K

∑
u∈V :{u,v}∈E puλu/λv ≤ 1 − β for all v ∈ V.

Let λmin := minv∈V λv. If X, Y ∼ MCHΩ(λ, p), then

max
x,y∈Ω

∥∥Px[Xt ∈ ·] − Py[Y t ∈ ·]
∥∥

TV ≤ min
{

2ne−βλmint, 1
}

.

In particular,

tmix(ε) ≤ (βλmin)−1 log(2n/ε) for all ε ∈ (0, 1).
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Remark A (Fast-Mixing Condition). The condition in Theorem A arises from requiring the
Wasserstein distance between X and Y to contract in a single step, uniformly. Distance is
measured vertex-wise: d(x, y) :=

∑
v∈V 1{xv ̸= yv} for x, y ∈ Ω. Namely, we prove that if

configurations x and y differ only in that vertex v is active in one but not the other, then
d
dtE(x,y)[d(Xt, Y t)]

∣∣
t=0 ≤ λv

( 1
K

∑
u∈V :{u,v}∈E puλu/λv − 1

)
under some coupling. The given condition ensures this is negative, uniformly in x, y ∈ Ω. A
standard application of path coupling [6] extends this uniform contraction to all x, y ∈ Ω. △

The graph G and number K of colours are given by the application. In contrast, the
parameters (λv, pv)v∈V may be chosen by the operator. There are good heuristics for taking

λv ∝ dv and pv ∝ (K/dv) ∧ 1.

In short, high-degree nodes have more impact on their neighbours, and hence should be
updated faster: so, take λv ∝ dv. Further, if v is active with probability p′

v, then it remove a
total of p′

vdv colour choices in expectation (from its neighbours). There are K colours, so
vertices shouldn’t remove more than K in expectation: hence, svdv ∝ K; so, take pv ∝ K/dv.

We work in continuous time, so scaling all the rates λ inversely scales the mixing time.
We choose the normalisation

∑
v∈V λv = n; so, vertices each update at rate 1 on average.

▶ Corollary A (Heuristic-Driven Choice). Suppose that λv = dv/d̄ and pv ≤ 2
3 K/dv for all

v ∈ V , where d̄ := 1
n

∑
v∈V dv is the average degree. Let X, Y ∼ MCHΩ(λ, p). Then,

max
x,y∈Ω

∥∥Px[Xt ∈ ·] − Py[Y t ∈ ·]
∥∥

TV ≤ min
{

2ne−(δ/d̄)t/3, 1
}

,

where δ := minv∈V dv. In particular,

tmix(ε) ≤ 3(d̄/δ) log(2n/ε) for all ε ∈ (0, 1).

It is standard, or, at least, very common, in the hardcore-model (K = 1) literature to
require pv = p < 1/∆ for all v, where ∆ := maxv∈V dv is the maximum degree; see, eg,
[2, 15, 7] or [14, Theorem 5.9]. We take more care, requiring only pv < K/dv for each v; [10]
have a similar improvement, but restricted to the usual hardcore model (K = 1).

A consequence of requiring pv = p < 1/∆ is that the mixing time is often proportional
to ∆. Ours is proportional to d̄/dmin, which is often significantly smaller.

The bound p < 1/∆ is natural, up to a factor e. Indeed, for the (usual) hardcore model,
it has been known since Kelly [13] that the infinite ∆-regular tree has a critical threshold
at pc(∆) ≈ e/∆, for large ∆: the corresponding Gibbs distribution is unique if and only if
p < pc(∆). When p < pc(∆), known as the uniqueness regime to physicists, the “influence”
of one vertex on another decays exponentially in their relative distance. On the other hand,
long-rage correlations persist when p > pc(∆). See [1, §1.2] for more discussion on this.

Based on this, it appears that we should be able to only require pv ≤ (1 − η)eK/dv

and still obtain fast mixing. This would be a natural extension of the critical threshold:
pc(∆, K) := eK/∆. We demonstrate this via some simulations at the end of the paper.

We also investigate the proportion of time that vertices are active in equilibrium.

▶ Proposition A (Equilibrium Service Rates). Suppose that pv ≤ 1
3 K/d̃v for all v ∈ V , where

d̃v := max{du | u ∼ v or u = v} is the maximal degree in the neighbourhood of v ∈ V . Then,
1
3 pv ≤ sv ≤ pv for all v ∈ V.

Our proof is quite flexible, allowing more general pv. We discuss how to generalise it, and
tighten the bounds, after its proof. Again, we expect that we only need pv ≤ (1 − η)eK/dv.

AofA 2024
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B Queueing Network
Our next results concerns queue length in a network. The proof relies on fast mixing.

▶ Definition B (Queueing Network). Let λ, ν, µ ∈ (0, ∞)V and p ∈ [0, 1]V . Let X ∼
MCHΩ(λ, p). The state space of the queueing network is NV . For q ∈ NV and v ∈ V , let

qv,±
u := qu ± 1{u = v} for u ∈ V ;

that is, qv,± adds/removes one from the v-th queue. The transition rates given X = x are

q →

{
qv,+ at rate νv

qv,− at rate µv1{xv ̸= 0}
for each v ∈ V ;

that is, the v-th queue has arrivals at rate νv always and services at rate µv provided v is
active. We denote the law of this queueing network by QMCHΩ(λ, p; ν).

We show that the queues are jointly positive recurrent – ie, the expected time until all
queues are simultaneously empty is finite – under the fast-mixing conditions of Theorem A
and the assumption that the arrival rate νv is smaller than the equilibrium service rate sv.

▶ Theorem B (Stable Queues). Suppose that there exists β > 0 such that

1
K

∑
u∈V :{u,v}∈E puλu/λv ≤ 1 − β for all v ∈ V.

Suppose also that νv < sv for all v ∈ V . If Q ∼ QMCHΩ(λ, p; ν), then Q is positive recurrent:

τ := inf{t ≥ 0 | Qt = 0} satisfies Eq[τ ] < ∞ for all q ∈ NV .

Moreover, if Q0 is in equilibrium, then, writing λmin := minv∈V λv,

E[Q0
v] ≤ 6n log(2n/e)

βλmin(sv − νv)2 for all v ∈ V.

We now evaluate this under the heuristic-driven choice from Corollary A.

▶ Corollary B (Heuristic-Driven Choice). Suppose that λv = dv/d̄ and pv ≤ 2
3 K/dv for all

v ∈ V , where d̄ := 1
n

∑
v∈V dv is the average degree. Let δ := minv∈V dv. Suppose also that

νv < sv for all v ∈ V . Let Q ∼ QMCHΩ(λ, p; ν). Then, in equilibrium,

E[Q0
v] ≤ 18d̄n log(2n/e)

δ(sv − νv)2 for all v ∈ V.

A related result was proved by Jiang et al [10] for the usual hardcore model (one colour).
Also, they restrict to the special case pv = p < 1/∆, where ∆ is the maximum degree.

2 Motivation and Related Work

Fibreoptic Routing Application
Our original motivation was to create a fully decentralised random access scheme for resource
sharing in fibreoptic routing networks. There, nodes are connected by links, and they
communicate with each other along routes, which are sequences of links. Multiple routes may
share a subset of links; such routes interfere. Each link has a collection of frequencies available.
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A naive approach has the source node send the data to the first intermediary node on the
route, along with instructions of where to send on. That intermediary node processes the data
and sends it onto the next node. This continues until the data reaches its target destination.

It is possible for different frequencies to be used along the route, due to the intermediary
processing. When checking whether it is possible for a certain collection of routes to be
active simultaneously, it is enough to check that no individual link is overloaded. However,
the intermediary processing adds overhead. If the time it takes to transmit the data along
the link is larger than the processing time, then the overhead is unimportant. However, in
fibreoptic networks, data is sent along links extremely quickly, and the processing overhead
becomes the performance bottleneck.

Instead of processing and resending the data at an intermediary node, an optical switch is
configured. This switch is like a prism: light coming from a single source is sent in different
directions, depending on its colour. This allows a light path to be set up, removing the
processing overhead; however, the same frequency must be used throughout the entire route.

The difficulty is in choosing the frequency (colour) of the light path. Now, it is not enough
to simply check that each link is not overloaded marginally, as the colours are correlated. In
the set-up of the multicoloured hardcore model, the vertices correspond to routes, and two
routes (vertices) are adjacent, forming an edge, if they interfere – ie, share a link. Certainly,
not all routes will be able to be on simultaneously; an access scheme must be devised.

I originally learnt of this model from a talk by Walker [22] at the Algorithms and Software
for Quantum Computers event at the Isaac Netwon Institute. There, the speaker was looking
to quantum computation for solutions. I, as a probabilist, took a randomised approach.

The multicoloured hardcore model has the significant benefit of decentralisation. All
decisions made can be made by the individual vertices, without any need for synchronisation or
knowledge of the state of the other routes. A vertex can even request a light path blindly [11]:
the path is set up if it does not conflict with any other already-active paths; otherwise, an
error is returned to the initiator. Moreover, optical-switch reconfiguration is fast and easy.

The hardcore model is a popular and well-studied model for random access schemes where
there is only a single frequency: on or off. A toy model for this is local radio communication:
vertices represent pairs of agents who wish to communicate; nearby pairs of agents cannot
communicate simultaneously. Quite separately, Glauber dynamics are used to sample proper
colourings on a graph. It seems natural to combine these two, yielding a multicoloured
hardcore model which can model more complex interference situations, such as when multiple
independent radio frequencies are available. However, to the best of my knowledge, this
multicoloured hardcore set-up has not been studied before in the context of routing.

Multihop Wireless Networks

Another application of this type of random routing scheme is to multihop wireless networks.
In cellular and wireless local area networks, wireless communication only occurs on the last
link between a base station and the wireless end system. In multihop wireless networks,
there are one or more intermediate nodes along the path; these receive and forward packets
via the wireless links. There are several benefits to the multihop approach, including
extneded coverage and improved connectivity, higher transfer rates and the avoidance of wide
deployment of cables. Unfortunately, protocols, particularly those for routing, developed
for fixed or cellular networks, or the Internet, are not optimal for these, more complicated,
multihop wireless networks; see, eg, [5].

AofA 2024
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A highly prominent example of multihop wireless networks is in the development and
deployment of 5G cellular networks [21]. Conventional cellular networks employ well-planned
deployment of tower-mounted base stations. They are undergoing a fundamental change to
deployment of smaller base stations. Multihop relaying can be instrumental for tation. See
[8, §4.1] for more details, from which part of this paragraph was paraphrased.

A multihop network with a single transmission frequency falls precisely into the framework
of the (usual) hardcore model. Glauber dynamics is a powerful tool used to generated
randomised, approximate solutions to combinatorially difficult problems. Moreover, it often
has natural decentralised implementation. It has already been used in the past to design and
analyse distributed scheduling algorithms for multihop wireless networks; see, particularly,
[10, 4], from which this paragraph was paraphrased, as well as [16, 17, 3, 9, 19].

Multihop wireless networks with multiple transmission frequencies correspond precisely
to our model. To the best of our knowledge, it has received little attention. However, with
technological and engineering advances, it may become an important extension in the future.

(A)synchronicity
One aspect to point out is our lack of synchronicity: we use continuous time, so sites update
one at a time. In practice, engineering implementations often prefer synchronised updates.
This is the case in [10], where the (usual) hardcore model is analysed and an independent set
of vertices – ie, a set of vertices with no edges between them – is updated simultaneously. It
is crucial that it is an independent set: the changes to one vertex in the set do not affect the
other vertices, and the updates can be done independently, in a parallel, distributed manner.

The (independent) set of vertices still needs to be chosen in each step. In [10], the authors
simply prescribe a distribution q over the collection of all independent sets; no comment is
made on how to sample one. In principle, this distribution is very complicated, and perhaps
even needs approximating – eg, via Glauber dynamics for the (usual) hardcore model.

The path coupling technique that we use, and is used in [10], is robust to parallel updates,
provided one update does not affect the others – as for updating an independent set of
vertices. If N is the expected size of the independent set chosen – ie, N := ES∼q[|S|] – then
the mixing bound behaves as if time is sped up by a factor N . We consider single-site,
continuous-time updates for simplicity; but, our analysis extends to the parallel set-up, too.

Spin Systems in Statistical Mechanics
Spin systems are widely studied in statistical mechanics, crossing combinatorics, probability
and physics: these involve a graph G = (V, E) and a discrete set K of spins; each vertex
v ∈ V is assigned a spin k ∈ K. Adjacent vertices interact with each other. A zoo of examples
of spin systems is discussed extensively in the very recent paper by Peled and Spinka [18].

In proper colourings, K = {1, ..., K} and the constraint is hard: adjacent vertices must
not have the same colour. The hardcore model is similar with K = {0, 1}.
In the Ising model, K = {±1} and the constraint is soft: vertices prefer to be aligned
with their neighbours, with strength controlled by the inverse temperature β ≥ 0.

The multicoloured hardcore model is discussed in [18, §3.2.2]. It was originally introduced
by Runnels and Lebowitz [20] in the context of lattice gases.

The results of [20, 18] are specialised to Zd. The latter is most interested in the case where
the dimension d is much larger than the number K of colours. The motivating example for
this paper is the fibreoptic routing, for which the lattice Zd – particularly in high dimensions
– is not an appropriate model. Our results appear to be the first on general graphs.
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Notation
We briefly recall some notation which is used throughout the paper.

The underlying graph is G = (V, E). Let n := |V | denote its number of vertices, and write
u ∼ v if {u, v} ∈ E. The degree of v ∈ V is dv :=

∑
u∈V 1{u ∼ v} = |{u ∈ V | u ∼ v}|.

There are K ∈ N colours, and we abbreviate [K]0 := {0, 1, ..., K}.
The update rates and probabilities are λ ∈ (0, ∞)V and p ∈ [0, 1]V , respectively.
The state space is Ω := {ω ∈ [K]V0 | ω is proper}, where ω ∈ [K]V0 is proper if

ωu ̸= ωv whenever {u, v} ∈ E and ωu + ωv > 0.

The multicoloured hardcore model is denoted MCHΩ(λ, p); its equilibrium distribution π.
For QMCHΩ(λ, p; ν), the arrival rates are ν ∈ (0, ∞)V and equilibrium service rates

sv :=
∑

ω∈Ω:ωv ̸=0 π(ω) for v ∈ V.

3 Proofs of Main Theorems

A Mixing
In this section, we use the classical path coupling argument of Bubley and Dyer [6] to upper
bound the mixing time. Throughout, X, Y ∼ MCHΩ(λ, p), under the “natural” coupling:

the vertex-update clocks are coupled, so the same vertex is chosen at the same time;
the subsequent coin toss and colour selection are also coupled.

This coupling is clearly coalescent:

Xt = Y t implies Xs = Y s for all s ≥ t.

Proof of Theorem A. We use path coupling, so must define a path space. We say that
x, y ∈ [K]V0 are adjacent if there is a unique v ∈ V such that xv ≠ yv and 0 ∈ {xv, yv}. In
other words, our path space is generated by activating an inactive vertex or deactivating an
active vertex; changing the colour of an already active vertex is not permitted. This space
is connected: let d(x, y) denote the distance between two configurations x, y ∈ [K]V0 ; then,
1{x ̸= y′} ≤ d(x, y) ≤ 2n for all x, y ∈ [K]V0 , going via the empty configuration (0, ..., 0) ∈ Ω.

For v ∈ V and x ∈ [K]V0 , denote the available colours at v in x by

Av(x) := {1, ..., K} \ ∪u∈V :{u,v}∈E{xu} = {k ∈ {1, ..., K} | xu ̸= k ∀ u ∼ v}.

Suppose that (X0, Y 0) = (x, y) ∈ Ω2 with d(x, y) = 1; say, 0 = xv ̸= yv. Consider the
first step of the process from these states. Suppose that vertex u ∈ V updates.

Suppose that u ̸∼ v. Then, Ax(u) = Ay(u), since xw = yw for all w ∼ u. Hence, we can
perform the same update in both X and Y . The relative distance is unchanged, unless
u = v, in which case the two coalesce.
Suppose that u ∼ v; in particular, u ̸= v. We may not have Au(x) = Au(y), but always

Au(x) ∪ {xu} = Au(y) ∪ {yu}.

Hence, |Au(x) △ Au(y)| ≤ 1. So, the probability that a proposed colour is valid for one
and not the other is at most 1/K. If this is the case, then the relative distance increases
by 1; otherwise, it remains unchanged. The probability some colour is proposed is pu.

AofA 2024



20:8 Multicoloured Hardcore Model: Fast Mixing and Application

It is in this last step that the assumption 0 ∈ {xv, yv} is used: without it, the symmetric
difference could be of size 2, giving a probability 2/K. Summing over u ∈ V , the relative
distance increases by 1 at rate at most 1

K

∑
u:u∼v puλu and decreases by 1 at rate λv. Hence,

d
dtEx,y[d(Xt, Y t)]

∣∣
t=0 ≤ λv

( 1
K

∑
u:u∼v puλu/λv − 1

)
≤ −βλv,

with the last inequality using the (main) assumption of the theorem. This can be extended to
general x, y ∈ [K]V0 – ie, not requiring d(x, y) = 1 – by looking at contraction along geodesics,
in the usual manner for path coupling. Hence, recalling that λmin = minv λv,

max
x,y∈[K]V

0

d
dtEx,y

[
d(Xt, Y t)

]∣∣
t=0 ≤ −βλmin.

By the Grönwall inequality, integrating this and using 1{x ̸= y} ≤ d(x, y) ≤ 2n, we obtain

max
x,y∈[K]V

0

Px,y[Xt ̸= Y t] ≤ max
x,y∈[K]V

0

Ex,y[d(Xt, Y t)] ≤ 2ne−βt.

Finally, the coupling representation of total-variation distance implies that

max
x,y∈Ω

∥Px[Xt ∈ ·] − Py[Y t ∈ ·]∥TV ≤ min
{

2ne−βλmint, 1
}

. ◀

Remark. If preferred, instead of using a continuous-time version of path coupling, discretise
time: let X̃ℓ := Xδℓ and Ỹ ℓ := Y δℓ, where δ is some very small real number. Then,

Ex,y[d(X̃1, Ỹ 1)] ≤
(
1 − βλminδ + o(δ)

)
d(x, y) uniformly,

using the fact that the diameter is finite to obtain a uniform o(δ) term. Path coupling gives

Ex,y[d(X̃ℓ, Y ℓ)] ≤ 2n
(
1 − βλminδ + o(δ)

)
ℓ ≤ 2ne−βλminδℓ+o(δℓ)n.

Given t ≥ 0, let ℓ := ⌊t/δ⌋ ≥ t/δ − 1. Then,

Ex,y[d(Xt, Y t)] ≤ Ex,y[d(X̃ℓ, Ỹ ℓ)] ≤ 2ne−βt+o(1).

Finally, taking δ ↓ 0, we deduce the same bound as before.

We close this section with a discussion of the equilibrium service rates. Here, we assume

pv ≤ 1
3 K/d̃v where d̃v := max{du | u ∼ v or u = v} for v ∈ V.

Proof of Proposition A. The quantity we estimate is the proportion of colours available at
a vertex. This allows estimation of the probability an attempted colouring is successful.

Clearly, in equilibrium, each neighbour u of v is active with probability at most pu =
1
3 K/d̃u; in particular, sv ≤ pv. Hence, if Nv is the number of colours available at v, then

Nv ≲ Bin(dv, 1
3 K/dv) in equilibrium.

It can be shown that P[Bin(d, 1
3 k/d) ≥ 1

2 k] ≤ 1
3 whenever k ≤ 3d. This implies that

P[Nv ≥ 1
2 K] ≤ 1

3 .

Hence, upon refreshing, at least 1
2 of the colours are available with probability at least 2

3 . So,
the probability that the proposed colour is accepted is at least 1

3 . Thus, sv ≥ 1
3 pv. ◀
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We discuss briefly extensions of this proof, including heuristics for an upper bound on sv.

Remark. If we require pv ≤ (1 − δ)K/d̃v, then the above argument says that at least a
proportion δ of the colours are free in expectation. If K (and d̃v) are large, then the Binomial
concentrates. There is then a probability δ that a uniformly proposed colour is available.

We can extend this, heuristically at least. If u, u′ ∼ v, then the colours at u and u′

should be approximately independent if K is large and the graph has few triangles. If
k1, ..., kK ∼iid Unif([K]), then 1

K |{k1, ..., kK}| ≈ 1/e, suggesting that, in fact, a proportion
1/e are available after K choices. This would suggest sv ≥ pv/e.

We can also try to iterate this argument. Instead of upper bounding the expected number
of colours taken by

∑
u:u∼v pu, we can bound by

∑
u:u∼v su. Suppose that sv does not vary

much over the vertices: sv ≈ s̄ := 1
n

∑
u su, the average of s; see, eg, Figure 2 later. Also,

assume graph regularity: dv = d, and pv = p, for all v. Then,
∑

u:u∼v su ≈ ds̄. This imposes

s̄ ≤ p(1 − ds̄/K); ie, s̄ ≤ p/(1 + pd/K).

Including the factor 1/e from the previous heuristic improves this to s̄ ≈ p/(1+e−1pd/K). △

B Queues
Next, we investigate the stability of the queueing network: ie, its positive recurrence (or
lack thereof) and expected queue length in equilibrium. The end goal is Theorem B. Similar
properties for a related model are established in [10, §V], using the usual Lyapunov function

Lt :=
∑

v∈V (Qt
v)2 for t ≥ 0 where Q = (Qt)t≥0 ∼ QMCHΩ(λ, p; ν).

There, the model is slightly simpler, with unit service times, rather than Exponentials.
Moreover, they require pv = p ≤ 1/∆ for all v ∈ V , where ∆ := maxv dv is the maximum
degree of the graph G = (V, E), and treat ∆ as a constant, which is absorbed into a final,
unquantified constant. For a sequence (Gn)n∈N of graphs, this implicitly assumes bounded
degrees: supn∈N ∆n < ∞. We allow much greater generality, both in G and in p.

We denote by τ the first time the queue is empty:

τ := inf
{

t ≥ 0 | Qt = 0, ∪s∈[0,t] Qs ̸= {0}
}

.

Positive recurrence is equivalent to having Eq[τ ] < ∞ for some, and hence all, q ̸= 0.

Proof of Theorem B. We establish negative drift for an appropriate Lyapunov function L:

Lt := 1
2

∑
v∈V (Qt

v)2 for t ≥ 0. (1)

We fix some notation and conventions. By the memoryless property of the service times,
we may assume that the vertices are always providing service, but that a service attempt is
rejected if the vertex is inactive at the time of the attempt. Then, the arrivals and attempted
services form Poisson processes, independent of each other and the underlying MCH process.

Fix v ∈ V and t, T ≥ 0. Write Ŝv[T, T + t) for the number of attempted services by
vertex v between times T and T + t, and write ŝv := ŝv[T, T + t) := 1

t Ŝv[T, T + t) for
the average (attempted) service rate in this interval. Similarly, write Âv[T, T + t) and
âv := âv[T, T + t) := 1

t Âv[T, T + t) for the number of arrivals and average service rate,
respectively, between T and T + t.

Using these definitions, we have the following simple inequality:

QT +t
v ≤

[
Qt

v − Ŝv[T, T + t)
]

+ + Âv[T, T + t) = [Qt
v − tŝv]+ + tâv,
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where [α]+ := max{α, 0} for α ∈ R. Hence, using [Qt
v − tŝv]+ ≤ Qt

v,

(QT +t
v )2 ≤ (QT

v − tŝv)2 + 2t[QT
v − tŝv]+âv + t2â2

v

≤ (QT
v )2 + 2tQT

v (âv − ŝv) + t2(â2
v + ŝv)2.

(2)

Plugging this into the definition (1) of L bounds its random increment:

LT +t − LT ≤ t
∑

v∈V QT
v (âv − ŝv) + 1

2 t2 ∑
v∈V (â2

v + ŝ2
v). (3)

Now, if τ̂v is the proportion of time during [T, T + t) that vertex v is active, then

tâv = Âv[T, T + t) ∼ Pois(tνv) and tŝv = Ŝv[T, T + t) ∼ Pois(tτ̂v).

To emphasise, the implicit Poisson variables are independent of the MCH process. Recall that

if P ∼ Pois(µ), then E[P ] = µ and E[P 2] = µ + µ2.

Now, νv < sv, by assumption, and sv ≤ pv ≤ 1; also, τ̂v ≤ 1. Hence,

E[âv] = νv, E[â2
v] ≤ 2, E[ŝv] ≤ 1 and E[ŝ2

v] ≤ 2.

Plugging these into (3) bounds the (expected) drift:

E[LT +t − LT | (XT , QT )] ≤ t
∑

v∈V QT
v (νv − E[ŝv | XT ]) + 3

2 nt2; (4)

the (attempted) service rate ŝv[T, T + t) depends only on XT , not QT .
It remains to handle E[ŝv | XT ]. The attempted services are a thinned Poisson process. So,

E[ŝv | XT ] = E[τ̂v | XT ] and τv = 1
t

∑T +t
T 1{Xs

v ̸= 0}ds.

So, if we write µx,s for the law of Xs given X0 = x, then

E[ŝv | XT ] = 1
t

∫ T +t

T
P[Xs ̸= 0 | XT ]ds 1

t

∫ t

0 µXT ,s({ω ∈ Ω | ωv ̸= 0})ds.

This is very similar to the equilibrium (attempted) service rate

sv =
∑

ω∈Ω:ωv ̸=0 π(ω) = π({ω ∈ Ω | ωv ̸= 0});

in fact, by the ergodic theorem, ŝv[T, T + t) → sv as t → ∞. Quantitatively,

|E[ŝv | XT ] − sv| =
∣∣ 1

t

∫ t

0 µXT ,s({ω ∈ Ω | ωv ̸= 0})ds − π({ω ∈ Ω | ωv ̸= 0})
∣∣

≤ 1
t

∫ t

0 |µXT ,s({ω ∈ Ω | ωv ̸= 0}) − π({ω ∈ Ω | ωv ̸= 0})|

≤ 1
t

∫ t

0 ∥µXT ,s − π∥TVds.

It is here that we apply the mixing result, Theorem A: for any x ∈ Ω and s ≥ 0,

∥µx,s − π∥TV ≤ min{2ne−βλmins, 1};

note that the first hypothesis of Theorem B is precisely that required for Theorem A. Then,∫ t

0 ∥µXT ,s − π∥TVds ≤ t0 + n
∫ t∨t0

t0
e−βλminsds

≤ t0 + (βλmin)−1 =: t1 where t0 := (βλmin)−1 log(2n).
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In particular, this is independent of t, so vanishes once divided by t and t → ∞:

|E[ŝv | XT ] − sv| ≤ t1/t → 0 as t → ∞.

We want to plug this bound into (4). Let εv := 1
2 (sv − νv) and tv := t1/εv. Then,

|E[ŝv | XT ] − sv| ≤ εv whenever t ≥ tv for all v ∈ V.

Set t⋆ := maxv tv, so t⋆ ≥ tv Plugging this into (4),

E[LT +t − LT | (XT , QT )] ≤ −t
∑

v∈V QT
v (sv − νv − εv) + 3

2 nt2

≤ − 1
2 t

∑
v∈V QT

v (sv − νv) + 3
2 nt2 whenever t ≥ t⋆. (5)

This expression is negative for large enough ∥QT ∥. This establishes negative drift of L. Hence,
by the Foster–Lyapunov criterion (eg, [12, Proposition D.1]), (Qt)t≥0 is positive recurrent.

It remains to control the expected queue length in equilibrium. We start in equilibrium
and take the expectation of the increment (Qtv

v )2 − (Q0
v)2. By stationarity and (2),

0 = E[(Qtv
v )2 − (Q0

v)2] ≤ −tvE[Q0
v](sv − νv − εv) + 3

2 nt2
v,

using the same manipulations as before. Rearranging,

E[Q0
v] ≤ 3

2 ntv/(sv − νv − εv) ≤ 6nt1/(sv − νv)2.

Finally, t1 = (βλmin)−1(log(2n) + 1) = (βλmin)−1 log(2n/e). ◀

4 Simulations: Queue Lengths and Equilibrium Service Rate

We close the paper with a short discussion of some simulations. Specifically, we investigate
the queue lengths and the proportion of time that a vertex is active as a rolling average –
namely,

Q̂t
v := 1

t

∑t−1
s=0 Qs

v and ŝt
v := 1

t

∑t−1
s=0 1{Xs

v ̸= 0} for t ≥ 0.

Then, Q̂t
v → Eπ[Q0

v] and ŝt
v → sv, the expected equilibrium queue length and service rate.

Our choice of parameters is driven by the same heuristics as for Corollaries A and B:

λv := dv/d̄, pv := min{ 4
5 eK/dv, 3

4 } and νv := 1
3 pv for v ∈ V.

Notice the prefactor in pv: it is 4
5 e > 2, rather than 1

3 or 2
3 . This is to emphasise the fact

that we really can take pv close to eK/dv, yet still get high, and stable, service rates sv.
Figure 1 show the time-averaged queue lengths and service rates when the underlying graph

is an Erdős–Rényi graph. Figure 2 show the same for a random regular graph. The average
degree is 30 and K = 10 colours are used; so, almost all vertices satisfy pv = 4

5 eK/dv ≈ 0.5.
A collection of 10 vertices with typical degrees to be displayed are chosen randomly. Time is
scaled so that the average vertex update-rate is 1 – ie, scaled by 1

n

∑
v(λv + νv + 1).

We see that the empirical service rates settle down really quite quickly, and appear to be
remain stable. Moreover, the values sv to which they converge appear to be on the same
order as the proposal probabilities pv. This suggests many proposals are accepted, but not
too many: if sv ≈ pv, then perhaps a higher proposal probability pv could have been used.
In particular, we found that the normalised difference |sv − pv|/pv averaged around 60%.
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Figure 1 The underlying graph is Erdős–Rényi with n = 500 vertices and edge probability 40/n.

Figure 2 The underlying graph is drawn uniformly over 40-regular graphs on n = 500 vertices.

The queue lengths, on the other hand, fluctuate a more. They are a bit more stable
in the random regular graph (Figure 2) compared with the Erdős–Rényi graph (Figure 1),
perhaps due to inhomogeneities. It is not even completely clear what they are converging to.

We suggest that this is likely caused by the inhomogeneities in the graph along with the
fact that we take νv = pv/3 ≈ 0.33pv, which is pretty close to sv ≈ 0.4pv. Indeed, the same
calculations (not shown) with νv = 0.2pv result in much more stable queues.

The primary objective is to get as large an equilibrium service rate sv as possible, or at
least its average s̄ = 1

n

∑
v sv. Since the 60% above is still quite a large rejection rate, we

also tested a slightly smaller value of pv: namely, we used pv = 2
3 eK/dv ≈ 0.45. However, we

found that s̄ was about 10% smaller for these parameters, for both random graph models.
A random d-regular graph locally looks like a d-regular tree, so it is not reasonable

to expect better than eK/d = pc(∆, K), the earlier critical threshold. Similarly, a sparse
Erdős–Rényi graph locally looks like a Bienaymé–Galton–Watson tree with Pois(d̄) degrees.
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