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Abstract
Binary search trees (BST) are a popular type of structure when dealing with ordered data. They
allow efficient access and modification of data, with their height corresponding to the worst retrieval
time. From a probabilistic point of view, BSTs associated with data arriving in a uniform random
order are well understood, but less is known when the input is a non-uniform permutation.

We consider here the case where the input comes from i.i.d. random points in the plane with law
µ, a model which we refer to as a permuton sample. Our results show that the asymptotic proportion
of nodes in each subtree only depends on the behavior of the measure µ at its left boundary, while
the height of the BST has a universal asymptotic behavior for a large family of measures µ. Our
approach involves a mix of combinatorial and probabilistic tools, namely combinatorial properties of
binary search trees, coupling arguments, and deviation estimates.
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1 Introduction

1.1 Context and informal description of our results
A binary search tree (BST) is a rooted binary tree where nodes carry labels – which are real
numbers – and where, for each vertex v, all labels of vertices in the left-subtree (resp. right-
subtree) attached to v are smaller (resp. bigger) than that of v. Binary search trees are a
popular type of data structure for storing ordered data. One key feature is that the worst-case
complexity of basic operations (lookup, addition or removal of data) is proportional to the
height of the tree.

Given a BST T and a real number x distinct from the labels of T , there is a unique
way to insert x into T , i.e. there is a unique BST T +x obtained from T by adding a new
node with label x. Iterating this operation starting from the empty tree and a sequence
y = (y1, . . . , yn) of distinct values, we get a BST T ⟨y⟩ with n nodes. An example can be
found in Figure 1. The shape of T ⟨y⟩ (i.e. the underlying binary tree without node labels)
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21:2 Binary Search Trees of Permuton Samples

depends only on the relative order of the numbers y1, . . . , yn, and not on their actual values.
We can thus assume without loss of generality that the sequence y is a permutation σ of the
integers from 1 to n, and we write T ⟨σ⟩ = T ⟨σ1, . . . , σn⟩ in this case.
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Figure 1 Iterative construction of the BST associated with the sequence y = (2, 4, 1, 6, 3, 5).

In the worst case, the tree T ⟨σ⟩ has height n − 1 and further operations will have a
linear complexity, which is far from optimal. However it has been proven by Devroye [10]
that, if σ is a uniformly random permutation of {1, . . . , n}, then the height h (T ⟨σ⟩) is
asymptotically equivalent to c∗ logn for some constant c∗. Assuming that σ is uniformly
distributed means that the data used to construct our BST arrived in a completely random
order, which is in general unrealistic. It seems therefore natural to study BSTs associated
with non-uniform random permutations, and in particular to see how Devroye’s result is
modified when changing the distribution of σ.

A first step in this direction has been performed in the papers [1, 7], where the BSTs
associated with random Mallows and record-biased permutations are studied, showing
interesting phase transition phenomena. In the current paper, we will consider some geometric
models of random permutations, sampled via i.i.d. random points in the plane with some
common distribution µ. These models will be referred to here as permuton samples, and
denoted by σn

µ ; they appear naturally in a recently developed theory of limiting objects for
large permutations, called permutons [14]. The goal of studying such models is twofold.
First, it is a much larger but still tractable family of models than those considered before
(permuton samples are indexed by probability measures on the square, while Mallows and
record-biased permutations are one-parameter families of models). Second, since permutons
describe the “large-scale shape” of permutations, it enlightens the connection between this
“large-scale shape” and the associated BST.

Our first result (Theorem 1) shows that, for a large family of permuton samples, the
asymptotic behavior of the BST height is the same as the one found by Devroye for uniform
permutations, namely that h

(
T ⟨σn

µ⟩
)

is asymptotically equivalent to c∗ logn. Our second
result (Theorem 13) studies another type of limit for the sequence of BSTs, using the
formalism of subtree size convergence recently introduced by Grübel in [13]. In this setting
and under some mild assumption, we prove convergence of the BST associated with permuton
samples, where the limit object depends on the permuton only through its “derivative” at
the left edge {0} × [0, 1] of the unit square [0, 1]2.

In the remaining part of the introduction, we present the model of permuton samples
and introduce some notation. Our main results are then stated and proved in Sections 2
and 3, and extra results are discussed in Section 4.
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1.2 Our model: binary search trees of permuton samples
There is a natural way to map a (generic) finite set of points P ⊂ R2 to a permutation σ⟨P⟩ and
a binary search tree T ⟨P⟩, which we describe now. Let P = {(x1, y1), . . . , (xn, yn)} be a set of
points in R2 with distinct x- and distinct y-coordinates, and let {(x(1), y(1)), . . . , (x(n), y(n))}
be its reordering such that x(1) < . . . < x(n). Then there exists a unique permutation
σ = σ⟨P⟩ of {1, . . . , n} such that (y(1), . . . , y(n)) and (σ1, . . . , σn) are in the same relative
order. We let T ⟨P⟩ := T ⟨y(1), . . . , y(n)⟩ and note that the trees T ⟨P⟩ and T ⟨σ⟨P⟩⟩ have the
same shape since their underlying data have the same relative order. These constructions
are illustrated in Figure 2.
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Figure 2 A set of points in R2 and its associated permutation and binary search tree.

Now consider a probability measure µ on R2 and take a set Pn
µ of n i.i.d. points in R2

with distribution µ. In order to make sure that the associated permutation and BST are
well-defined, we need the coordinates of the points to be all distinct. To this extent, we
assume for the rest of this work that the projections of µ on both axes have no atom.
Moreover, since the permutation and the shape of the tree only depend on the relative
positions of the points, without loss of generality we can re-scale µ so that its support is in
[0, 1]2 and both its marginals are uniform (see [5, Remark 1.2] for details). Such measures are
called permutons, and are natural limit objects for large permutations (see e.g. [2, 14]). The
associated model of random permutations σ⟨Pn

µ ⟩ will then simply be denoted by σn
µ . This is a

broad generalization of the uniform measure on permutations of size n, which corresponds to
µ = Leb[0,1]2 . Such models have been considered in the literature under various perspectives,
see e.g. [5, 9, 11, 12, 15].

In the current paper, we are interested in the binary search tree T ⟨σn
µ⟩ of this random

permutation model. Since we will be interested only in the shape of this tree (height in
Section 2, subtree size convergence in Section 3), we may and will equivalently consider the
tree T ⟨Pn

µ ⟩ instead of T ⟨σn
µ⟩. Furthermore, for convenience, we shall work with a Poisson

point process PN
µ with intensity nµ, instead of the point process Pn

µ . This new process has
random size N ∼ Poisson (n), and conditionally given N it contains i.i.d. points distributed
under µ. This enables useful independence properties, which make the proofs of our results
easier. In the full paper [8], we explain in great detail how to “de-Poissonize” our results.

1.3 Some probabilistic notation
Throughout this paper, “with high probability” (w.h.p.) means “with probability tending to
1, as n tends to ∞”. We also use the notation Xn = oP(Yn) to say that Xn/Yn converges
to 0 in probability, and we write X ⪯ Y (resp. X ⪰ Y ) to denote that X is stochastically
smaller (resp. larger) than Y .

AofA 2024
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2 First main result: universal behavior of the BST height

2.1 Statement of the result and proof strategy
We denote by h(T ) the height of a tree T , i.e. the maximal distance from a leaf to the root.
As mentioned in Section 1.1, Devroye [10] proved that for uniformly random permutations
σn of size n, the quantity h (T ⟨σn⟩) / logn converges in probability and in Lp (for all p ≥ 1)
to a constant c∗, defined as the unique solution to c log(2e/c) = 1 with c ≥ 2. We provide a
sufficient condition on a permuton µ, under which the same result holds for h

(
T ⟨PN

µ ⟩
)
. In

the following, a permuton µ is said to satisfy assumption (A1) if µ has a bounded density ρ
on the unit square [0, 1]2, which is continuous and positive on a neighborhood of {0} × [0, 1].

▶ Theorem 1 (Universality of BST height for permuton samples). Let µ be a permuton
satisfying assumption (A1), and let PN

µ be a Poisson point process with intensity nµ. Then,
as n → ∞, the following convergence holds in probability and in Lp for all p ≥ 1:

h
(
T ⟨PN

µ ⟩
)

c∗ logn −→ 1 .

Let us briefly overview the proof strategy of Theorem 1. We shall decompose the BST
drawn from a permuton sample as a top tree, to which hanging trees are attached. To this
end, consider β ∈ (0, 1) and set P(β) := PN

µ ∩ ([0, β] × [0, 1]). Then set Kβ := |P(β)| and let
y(1) < · · · < y(Kβ) be the ordered y-coordinates of the points in P(β). For each 0 ≤ k ≤ Kβ ,
define Ik = (y(k), y(k+1)) with the convention y(0) = 0 and y(Kβ+1) = 1. Finally, for each k,
define Pk(β) := PN

µ ∩
(

(β, 1] × Ik

)
. We call T ⟨P(β)⟩ and

(
T ⟨Pk(β)⟩

)
0≤k≤Kβ

respectively
the top tree and the hanging trees of T ⟨PN

µ ⟩. One can see that the top and hanging trees are
indeed subtrees of T ⟨PN

µ ⟩. Furthermore, the entire tree can be reconstructed by grafting the
hanging trees to some nodes of the top tree. In particular, this yields the following lemma:

▶ Lemma 2. For any β ∈ (0, 1):

h (T ⟨P(β)⟩) ≤ h
(
T ⟨PN

µ ⟩
)

≤ h (T ⟨P(β)⟩) + 1 + max
0≤k≤Kβ

{
h (T ⟨Pk(β)⟩)

}
.

I0
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I4
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I6

y(1)

y(2)

y(4)

y(3)

y(5)

y(6)

top tree hanging trees

Figure 3 A sample of points and its associated BST, decomposed as top and hanging trees. The
BST has been rotated of 90 degrees to the left, so that it can be drawn directly on the set of points.
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See Figure 3 for an illustration. Thus, controlling the height of T ⟨PN
µ ⟩ amounts to

controlling the heights of its top and hanging trees. This is done via different approaches: in
Sections 2.2 and 2.3 we prove that the top tree has height (c∗ + oP(1)) logn for well chosen β,
and in Sections 2.4 and 2.5 we prove that the hanging trees all have height oP(logn). Finally,
we combine these estimates in Section 2.6 to conclude the proof of Theorem 1.

2.2 Height modification by adding/removing points
We rely on comparison arguments to prove our results: the basic idea is to (locally) compare
the density of our permuton to a constant density, for which we can apply Devroye’s result.
However, while Poisson point processes possess nice monotonicity properties with respect to
their intensities, BSTs are much trickier to handle. Indeed, one can see that adding a single
point to a point set may halve the height of the associated BST. In this section, we develop
adequate tools for such comparison arguments.

We start with a simple lemma about genealogies in a BST, easily derived by construction.

▶ Lemma 3. Let y = (y1, . . . , yn) be a list of distinct numbers and T = T ⟨y⟩ be the associated
BST. If i < j are two indices then the following are equivalent:

yi is an ancestor of yj in T (the converse cannot hold);
there is no k < i such that yk is between yi and yj, i.e. such that (yi − yk)(yj − yk) < 0.

A chain in a tree T is a subset C of its nodes such that for every pair (v, w) in C, either
v is an ancestor of w, or the converse. We note that the height of T is the maximal size of a
chain, minus 1. By extension, if P = {(x1, y1), . . . , (xn, yn)} is a generic point set, we say
that C ⊆ P is a chain of T ⟨P⟩ if the corresponding nodes form a chain. Using Lemma 3, the
following result is proved immediately.

▶ Lemma 4. Let P− ⊆ P+ be two point sets with distinct x- and distinct y-coordinates.
Then, for any chain C of T ⟨P+⟩, the set C ∩ P− is a chain of T ⟨P−⟩. Consequently, if C is
a chain of maximal size in T ⟨P+⟩, we have

h (T ⟨P−⟩) ≥ h (T ⟨P+⟩) −
∣∣C ∩ (P+ \ P−)

∣∣ .
Combining the above lemma with standard thinning properties of Poisson point processes,

we get the following useful proposition.

▶ Proposition 5. Let ρ− ≤ ρ+ be two intensity functions defined on the same support S ⊆ R2,
and P−,P+ be two Poisson point processes with intensities ρ− and ρ+. Then, we have

h (T ⟨P−⟩) ⪰ Binomial
(

1 + h (T ⟨P+⟩) , inf
(x,y)∈S

ρ−(x, y)
ρ+(x, y)

)
− 1.

Proof. Write r := inf(x,y)∈S
ρ−(x,y)
ρ+(x,y) where, by convention, ρ−(x,y)

ρ+(x,y) = 1 if ρ+(x, y) = 0. We
couple P+ and P− according to the classical thinning process, meaning that P− is constructed
by keeping each point (x, y) of P+ independently with probability ρ−(x, y)/ρ+(x, y) ≥ r.

Let C be a chain of maximal size in P+, and set K := |C ∩ P−|. By Lemma 4:

h (T ⟨P−⟩) ≥ h (T ⟨P+⟩) −
∣∣C ∩ (P+ \ P−)

∣∣ = |C| − 1 −
∣∣C ∩ (P+ \ P−)

∣∣ = K − 1 .

Conditionally given P+ we have K ⪰ Binomial (|C|, r), and this concludes the proof. ◀

AofA 2024
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2.3 Controlling the height of the top tree
We can now use our tools to compare the BST of Poisson point processes with the BST of
uniformly random permutations.

▶ Proposition 6. Let R = [x1, x2] × [y1, y2] be a rectangle with non-empty interior and
ρ : R → (0,∞) be a continuous, positive intensity function. For each integer n, let PN

ρ be a
Poisson point process with intensity nρ. Let 0 < m ≤ M < ∞ be such that m ≤ ρ ≤ M , and
write η := M−m

m . Then for any ε > 0 we have:

lim
n→∞

P

[∣∣∣∣∣h
(
T ⟨PN

ρ ⟩
)

c∗ logn − 1

∣∣∣∣∣ > η + ε

]
= 0 . (1)

Moreover, for any p > 0, the sequence
(

h(T ⟨PN
ρ ⟩)

log n

)p

is uniformly integrable.

Proof. Write ζ := (x2 − x1)(y2 − y1) > 0 for the area of R. Also note that M/m = 1 + η

and m/M ≥ 1 − η. Using Proposition 5 with ρ− = nρ and ρ+ = nM on R, we obtain

h
(
T ⟨PN

ρ ⟩
)

⪰ Binomial
(

1 + h (T ⟨P+⟩) , m
M

)
− 1 ,

where T ⟨P+⟩ is the BST of a uniform permutation of random size Poisson (nζM). According
to [10, Theorem 5.1], h (T ⟨P+⟩) then behaves as c∗ log(|P+|) as n → ∞ in probability, which is
itself close to c∗ logn. Since Binomial (a logn, m/M) is concentrated around (am/M) logn,
we deduce:

h
(
T ⟨PN

ρ ⟩
)

≥ m

M

(
c∗ logn− oP(logn)

)
≥

(
1 − η − oP(1)

)
c∗ logn .

Similarly, using Proposition 5 with ρ− = nm and ρ+ = nρ we obtain

h (T ⟨P−⟩) ⪰ Binomial
(

1 + h
(
T ⟨PN

ρ ⟩
)
,
m

M

)
− 1 , (2)

where T ⟨P−⟩ is the BST of a uniform permutation of random size Poisson (nζm). We
proceed as before to conclude the proof of Equation (1).

For the uniform integrability claim, it suffices to establish boundedness of E
[

h(T ⟨PN
ρ ⟩)p

log(n)p

]
in n, for all p > 0. Conditionally given h

(
T ⟨PN

ρ ⟩
)
, write Sn+1 for a random variable with

distribution Binomial
(
1+h

(
T ⟨PN

ρ ⟩
)
, m

M

)
. Then, using Hoeffding’s inequality:

P
[
Sn <

m

2M
(
1+h

(
T ⟨PN

ρ ⟩
))

−1
∣∣∣ h (

T ⟨PN
ρ ⟩

)]
≤ e− m2

2M2 (1+h(T ⟨PN
ρ ⟩))

and therefore, by discriminating according to this event for any n ≥ e:

E

[
h

(
T ⟨PN

ρ ⟩
)p

log(n)p

]
≤ E

[
h

(
T ⟨PN

ρ ⟩
)p
e− m2

2M2 (1+h(T ⟨PN
ρ ⟩))

]
+ E

[(
(2M/m) · (Sn+1)−1

)p

log(n)p

]
.

Since the function x 7→ xpe− m2
2M2 (1+x) is bounded over R+, the first term is bounded in n.

For the second term, we use (a+ b)p ≤ 2p−1(ap + bp) along with (2) to deduce:

E

[(
(2M/m) · (Sn + 1)

)p

log(n)p

]
≤ 2p−1

(
2M
m

)p (
E

[
h (T ⟨P−⟩)p

log(n)p

]
+ 1

log(n)p

)
which is bounded in n by [10, Lemma 3.1] and Poisson estimates (indeed, recall that T ⟨P−⟩
is the BST of a uniform permutation of random size Poisson (nζm)). This concludes the
proof. ◀
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The weakness of the previous proposition is that η, which depends on the rectangle under
consideration, might be large. In the next statement we show that, for continuous positive
densities ρ, it is possible to choose rectangles for which the corresponding η is small.

▶ Corollary 7. Let D be a compact domain in the plane and ρ : D → (0,∞) be a continuous,
positive intensity function. Then for any ε > 0, there exists β > 0 such that for any rectangle
R = [x1, x1 + β] × [y1, y2] with non-empty interior contained in D:

lim
n→∞

P

[∣∣∣∣∣h
(
T ⟨PN

ρ ∩R⟩
)

c∗ logn − 1

∣∣∣∣∣ > ε

]
= 0 .

In particular, taking x1 = y1 = 0 and y2 = 1, the tree T ⟨PN
ρ ∩R⟩ is the top tree T ⟨P(β)⟩

defined in Section 2.1. This top tree therefore has height (c∗ + ε) logn, for small enough β

and under assumption (A1).

Proof. Let ε > 0 and assume that ε < minD ρ. By uniform continuity of ρ, we can find
β > 0 such that for any (x, y), (x′, y′) ∈ D, the inequality |x − x′| + |y − y′| ≤ β implies
|ρ(x, y) − ρ(x′, y′)| ≤ ε. Then consider R = [x1, x1 + β] × [y1, y2] contained in D. Define

f : y ∈ [y1, y2] 7→
∫ y

y1

ρ(x1, t)dt and g : y ∈ [y1, y2] 7→ y1 + (y2 − y1)f(y)/f(y2).

The function g is a C1 increasing map from [y1, y2] onto itself. Let P̃ denote the set of points
obtained after applying the transformation (x, y) 7→ (x, g(y)) to PN

ρ ∩R. This transformation
does not change the relative orders of points, therefore T ⟨P̃⟩ and T ⟨PN

ρ ∩R⟩ have the same
shape. Additionally, P̃ follows the law of a Poisson point process with intensity

n
ρ(x, g−1(y))
g′(g−1(y)) = n

f(y2)
y2 − y1

ρ(x, g−1(y))
ρ(x1, g−1(y))

on R. Thus we can apply Proposition 6 with η = 2ε
minD ρ−ε to obtain:

lim
n→∞

P

[∣∣∣∣∣h
(
T ⟨P̃⟩

)
c∗ logn − 1

∣∣∣∣∣ > η + ε

]
= 0 .

Since this holds for any small enough ε > 0, and η → 0 as ε → 0, the result follows. ◀

2.4 Extreme deviation bounds, via monotone subsequences
It remains to argue that the hanging trees simultaneously all have height oP(logn). A
“typical” horizontal band in Figure 3 contains O(1) points, but their maximum is actually
O(logn) (Proposition 11). The hanging trees are themselves BSTs of point processes, and
therefore they individually have height O(log logn) ≪ logn. To have this bound for all O(n)
hanging trees simultaneously, we need adequate deviation estimates for the BST height of
point processes. Such estimates are provided by Devroye for uniform BSTs [10], but the
monotonicity properties of BSTs are not good enough to use direct comparison arguments.
We solve this by relating the BST height of a point set to its longest monotone subsequences,
for which we have good monotonicity properties and deviation bounds.

Let σ be a permutation of {1, . . . , n}. An increasing subsequence of σ is a sequence of
indices i1 < · · · < ik such that σ(i1) < · · · < σ(ik). The maximum length of an increasing
subsequence of σ is then denoted by LIS (σ). We define similarly LDS (σ), the maximum
length of a decreasing subsequence of σ.

AofA 2024



21:8 Binary Search Trees of Permuton Samples

▶ Lemma 8. For any permutation σ, we have h (T ⟨σ⟩) ≤ LIS (σ) + LDS (σ).

Proof. Let i1 < · · · < ik be a sequence of integers such that σ(i1), . . . , σ(ik) label nodes on a
chain C of T ⟨σ⟩. Define IR (resp. IL) as the family of ij ’s such that the node following σ(ij)
in C lies in its right subtree (resp. left subtree). By construction, IR ∪ {ik} and IL ∪ {ik}
form respectively an increasing and a decreasing subsequence of σ. The lemma follows. ◀

Combining this lemma with [6, Proposition 3.2], we get that if ρ is an integrable function
then h

(
T ⟨PN

ρ ⟩
)

= oP(n). We will need a more quantitative version of this, valid only for
bounded functions ρ. We start with the following lemma, proved by a straightforward
application of the first moment method.

▶ Lemma 9. For each integer n, let σn be a uniform permutation of {1, . . . , n}. Then:

P
[
LIS (σn) ≥ n

logn

]
≤ exp (−n+ o(n)) .

Using the previous two lemmas and standard techniques, we obtain a useful corollary:

▶ Corollary 10. For any M > 0 and ε > 0, there exists n0 = n0(M, ε) such that the following
holds. For any 0 < ζ ≤ 1, any function ρ : [0, 1]2 → [0,∞) bounded by M and supported on
some rectangle [a, b] × [c, d] with (b− a)(d− c) ≤ ζ, and for any integer n > n0/ζ:

P
[
h

(
T ⟨PN

ρ ⟩
)
> 2εζn

]
≤ 4 exp

(
− ε

2ζn log(ζn)
)
.

We refer to [8] for the full proof. The key argument is that LIS and LDS are, unlike
the height of BSTs, monotone in their arguments: if P− ⊆ P+ are generic point sets,
then LIS (σ⟨P−⟩) ≤ LIS (σ⟨P+⟩), and likewise for LDS. We can thus compare PN

ρ to a
homogeneous Poisson point process with higher intensity, and use extreme deviation bounds
for the monotone subsequences of the latter.

2.5 Controlling the height of the hanging trees
Throughout the rest of this section, we use the notation of Section 2.1. For each integer
0 ≤ k ≤ Kβ , we let ζk := |Ik| be the vertical length of the band (β, 1] × Ik.

▶ Proposition 11. Let µ be a permuton. Assume that there exists β > 0 such that µ/[0,β]×[0,1]
has a continuous and positive density ρ : [0, β] × [0, 1] → (0,∞). Then the following holds.
1. There exists α > 0 such that maxk ζk ≤ α log n

n w.h.p. as n → ∞.
2. All powers of 1

log n maxk

∣∣Pk(β)
∣∣ are uniformly integrable.

Sketch of proof. The first item can be derived using standard results on “maximal spacings”.
Indeed, by a thinning procedure, maxk ζk is bounded above by the largest gap among
Poisson (nβm) i.i.d. uniform variables in [0, 1], where m is a lower bound for ρ. This is
known to concentrate around log(n)/(nβm) [16], which proves the first item. To prove the
second item, we can use that conditionally given P(β), the number

∣∣Pk(β)
∣∣ has distribution

Poisson (n(1−β)ζk). Then, conclude with item (1) and Poisson estimates. ◀

▶ Proposition 12. Let µ be a permuton satisfying (A1). Then for any β ∈ (0, 1) we have
the following convergence in probability as n goes to infinity:

1
logn max

0≤k≤Kβ

{
h (T ⟨Pk(β)⟩)

}
−→ 0.
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Proof. From Proposition 11, item (1), there exists α > 0 such that w.h.p. maxk ζk < α log n
n .

Work under this event, and conditionally given P(β). Then for each k, Pk(β) is distributed
like a Poisson point process with intensity nρ/[β,1]×[y(k),y(k+1)]. For each k, Corollary 10
applies with ρ restricted to [β, 1] × [y(k), y(k+1)] and ζ = α log n

n . With a union bound, we
deduce:

P
[

max
0≤k≤|P(β)|

h (T ⟨Pk(β)⟩) > δ logn
]

≤ 4(|P(β)| + 1) exp
(
− δ

4αα logn log(α logn)
)

for ζn = α logn large enough. But w.h.p. we have maxk ζk < α log n
n and |P(β)| < n, so the

unconditioned probability tends to 0 as n → ∞. This proves the proposition. ◀

2.6 Concluding the proof of the height theorem
Proof of Theorem 1. Fix ε > 0. Let D be a compact neighborhood of {0} × [0, 1] on which
ρ is continuous and positive, and let β = β(ε) > 0 be given by Corollary 7 applied to ρ on D.
Therefore, if T ⟨P(β)⟩ := T ⟨PN

µ ∩ ([0, β] × [0, 1])⟩ denotes the top tree of T ⟨PN
µ ⟩:

lim
n→∞

P
[∣∣∣∣h (T ⟨P(β)⟩)

c∗ logn − 1
∣∣∣∣ > ε

]
= 0 .

Furthermore, by Proposition 12, the quantity

1
logn max

0≤k≤Kβ

{
h (T ⟨Pk(β)⟩)

}
converges in probability to 0. Combined with Lemma 2, this implies that 1

log nh
(
T ⟨PN

µ ⟩
)

converges in probability to c∗.
Together with Proposition 6 and Proposition 11, Lemma 2 also implies uniform integra-

bility of all powers of 1
log nh

(
T ⟨PN

µ ⟩
)
. Therefore the convergence holds in Lp for all p ≥ 1,

concluding the proof of Theorem 1. ◀

3 Second main result: subtree size convergence of the BSTs

3.1 Some definition, and statement of the result
Next, we state a limit theorem for T ⟨PN

µ ⟩, in the sense of the subtree size convergence recently
introduced by Grübel [13]. We start by recalling this notion of convergence.

Identify nodes in a binary tree with finite words in the alphabet {0, 1} as follows: the
empty word ∅ corresponds to the root, and for a node v encoded by w, the words w0 and w1
encode respectively the left and right children of v. Let V = {0, 1}∗ be the set of all finite
words on {0, 1}, representing all nodes of the complete infinite binary tree. A labeled tree is
then identified with a function from a subset of V to R, where the domain of the function is
the set of nodes in the tree, and a node is mapped to its label. In particular, T (v) denotes
the label of the node v in T . We also write v ∈ T to indicate that the node v is in T . Given
a finite tree T and a node v ∈ V, define

t(T , v) := 1
|T |

∣∣∣{u ∈ T : v ⪯ u
}∣∣∣,

where v ⪯ u means that v is a prefix of u. In words, t(T , v) is the proportion of nodes in T
which are descendants of v.
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Further write Ψ for the set of functions ψ : V → [0, 1] such that ψ(∅) = 1 and for any
v ∈ V, we have ψ(v) = ψ(v0) + ψ(v1). Then a sequence of binary trees (T n)n∈N is said to
converge to a function ψ ∈ Ψ if and only if t(T n, v) → ψ(v) for all v ∈ V. If that is the case,
we write Tn

ssc−→ ψ and refer to this as subtree size convergence.

We now define two important objects before stating our result. For any complete BST
T : V → (0, 1), we define Tleft : V → R as follows. First, for any v ∈ {0}∗, let Tleft(v) := 0.
Then if v = v′10k for some k ≥ 0, let Tleft(v) := T (v′). Informally, Tleft(v) is the right-most
ancestor of v to its left. Define similarly Tright such that Tright(v) := 1 for any v ∈ {1}∗ and
Tright(v) := T (v′) whenever v = v′01k for some k ≥ 0. We note that this definition implies
that Tleft(v) < T (v) < Tright(v) for any v ∈ V.

Given a probability measure m on [0, 1] without atoms, write ψm ∈ Ψ for the following
random object. First, let Y = (Y1, Y2, . . .) be an i.i.d. variables distributed according to m
and write T m := T ⟨Y ⟩ for the corresponding (infinite) BST. Then, let ψm := T m

right − T m
left.

This is well-defined, since T m is a.s. complete [10, Theorem 6.1]. It is immediate to check
that indeed ψm ∈ Ψ (almost surely). See Figure 4 for an example.

0.73

0.33

0.28 0.35

0.25

0.68

0.87

0.75

0.67 0.72

1

0.73

0.33 0.40

0.28 0.05 0.02 0.38 ?

0.02

? 0.12 0.13

0.25

0.27

Figure 4 Example of realizations of T m and ψm. Note that we do not have enough data to
compute two of the values of ψm on nodes in the third level.

We can now state our second main result. A permuton is said to satisfy assumption
(A2) if there exists a probability measure µ0 on [0, 1], without atoms, such that

1
xµ

(
[0, x] × ·

)
−→
x→0

µ0 (3)

for the weak topology. Assumption (A2) is weaker than (A1): in particular, (A2) holds
whenever µ admits a continuous density on a neighborhood of {0} × [0, 1].

▶ Theorem 13 (Subtree size convergence of BSTs for permuton samples). Let µ be a permuton
satisfying (A2). The following convergence in distribution holds for the subtree size topology:

T ⟨PN
µ ⟩ ssc−→ ψµ0 .

Note that the limit depends on µ only through µ0. The assumption that µ0 does not have
atoms is important. A first difficulty when µ0 has some atom is that the BST T ⟨Y1, Y2, . . . ⟩
where Y1, Y2, . . . , are i.i.d. variables with distribution µ0 is ill-defined, since some of the
Yi’s are equal. We can also see that, in this case, the limit of T ⟨Pn

µ ⟩ may not depend only
on µ0. Indeed, consider the permutons µ1 and µ2 supported by the sets y ≡ 1

2 + x mod 1
and y ≡ 1

2 − x mod 1. They both satisfy (3) with µ0 = δ1/2, but it is easy to see that their
BSTs have different limits in the sense of subtree size convergence.
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3.2 Preliminaries to the proof
We start with a variant of the Glivenko–Cantelli theorem for triangular arrays.

▶ Proposition 14. Let µ be a probability measure with a finite fourth moment, and distribution
function F (x) := µ((−∞, x]). For each n ≥ 1, let (Xi,n)1≤i≤n be i.i.d. random variables with
common distribution µ and let Fn(x) := 1

n

∣∣{i ≤ n : Xi,n ≤ x}
∣∣ be their empirical distribution

function. Then Fn converges a.s. uniformly to F .

Proof. A classical fourth moment computation, together with Borel–Cantelli lemma – see
e.g. [4, Theorem 6.1] – shows that, for any fixed x, Fn(x) converges a.s. to F (x). The rest
of the proof is similar to that of the classical Glivenko–Cantelli theorem which considers
a single sequence Xi of i.i.d. random variables instead of a triangular array, but does not
require a fourth moment condition; see e.g. [4, Theorem 20.6]. ◀

Under assumption (A2), we can prove convergence in distribution of the leftmost points
in PN

µ . The proof of the following proposition is rather technical, and can be found in [8].

▶ Proposition 15. Let µ be a permuton satisfying (A2), and let PN
µ =

{(
XN

i , Y
N

i

)
, 1≤ i≤N

}
be a Poisson point process with intensity nµ. Let

((
XN

(i), Y
N

(i)

))
1≤i≤N

be its reordering such

that XN
(1) < · · · < XN

(N). Then, for any fixed K ≥ 1, we have the following convergence in
distribution:(

Y N
(1), . . . , Y

N
(K)

)
−→

n→∞
(Yk)1≤k≤K

where (Yk)1≤k≤K is a sequence of i.i.d. random variables distributed according to µ0.

Finally, with the notation of Section 3.1, we can use the functions Tleft and Tright to
describe the descendants of nodes in T . The proof is straightforward.

▶ Lemma 16. Let y1, . . . , yn be distinct numbers and let T := T ⟨y1, . . . , yn⟩ be the corre-
sponding BST. Let u be a node in T and let k be such that T (u) = yk. Then:

t(T , u) = 1
|T |

∣∣∣{yk, . . . , yn

}
∩

(
Tleft(u), Tright(u)

)∣∣∣ .
3.3 Proof of subtree size convergence
Proof of Theorem 13. Write T N := T ⟨PN

µ ⟩. Since the subtree size topology is by definition
the pointwise convergence of the function (t(., u))u∈V, we need to prove the convergence
of finite-dimensional distributions. Namely we need to prove that, for any d ≥ 1 and
u1, . . . , ud ∈ V, we have the following convergence in distribution as n → ∞:(

t(T N , ui)
)

i≤d
−→

(
ψµ(ui)

)
i≤d

. (4)

Recall the notation of Proposition 15. Using Skorohod’s representation theorem [3, Section 6],
we might assume that the convergence(

Y N
(1), . . . , Y

N
(K)

)
−→

n→∞
(Yk)1≤k≤K (5)

holds almost surely. Since µ0 has no atoms, the numbers (Yk)k≥1 are a.s. distinct. Moreover
the tree T ⟨Y1, Y2, . . . ⟩ has a.s. shape V. Consequently, a.s. there exists a (random) threshold
K such that all nodes ui, i ≤ d belong to T ⟨Y1, . . . , YK⟩. Using (5), there exists a (random)
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threshold n0 such that for all n ≥ n0, the relative order of (Y N
(1), . . . , Y

N
(K)) is the same as

that of (Y1, . . . , YK). Hence the trees T N
K := T ⟨Y N

(1), . . . , Y
N

(K)⟩ and T ∞
K := T ⟨Y1, . . . , YK⟩

have the same shape TK . Moreover for any v in TK , the labels T N
K (v) and T ∞

K (v) equal Y N
(i)

and Yi respectively, for the same index i. Therefore T N
K (v) → T ∞

K (v) as n → ∞, a.s. in the
probability space created by the application of Skorohod’s representation theorem.

Now, using Lemma 16 and the fact that each ui is filled in T N before step K = OP(1):

t
(
T N , ui

)
= 1
N

∣∣∣ {
Y N

1 , . . . , Y N
N

}
∩

(
T N

left(ui), T N
right(ui)

)∣∣∣ + oP(1) .

Consider the empirical distribution function FN (y) := 1
N

∣∣{Y N
1 , . . . , Y N

N } ∩ (−∞, y)
∣∣. Then:

t
(
T N , ui

)
= FN

(
T N

right(ui)
)

− FN

(
T N

left(ui)
)

+ oP(1) .

The random variable N ∼ Poisson (n) is well-concentrated around n, and conditionally
given N , the points Y N

1 , . . . , Y N
N are i.i.d. random variables in [0, 1]. Since µ is a permuton,

their common (conditional) distribution is the uniform distribution. From Proposition 14,
we infer that Fn converges a.s. uniformly on [0, 1] to the identity function (the earlier use of
Skorohod’s representation theorem implies that the (Y n

i )1≤i≤n are coupled in a nontrivial
way for different values of n, but Proposition 14 applies nevertheless).

Moreover, the above discussion implies that T N
right(ui) and T N

left(ui) converge a.s. to
T ∞

right(ui) and T ∞
left(ui) respectively. Therefore, a.s. in the probability space created by the

application of Skorohod’s representation theorem, for all i ≤ d we have:

t
(
T N , ui

)
= T ∞

right(ui) − T ∞
left(ui) + oP(1) = ψµ0(ui) + oP(1).

Since a.s. (joint) convergence implies (joint) convergence in distribution, (4) is proved. ◀

4 Extra results

In this last section, we briefly discuss some additional results and open questions. More
details can be found in the full paper [8].
De-Poissonization. As mentioned in the introduction, it is possible to state Theorems 1

and 13 for Pn
µ (a set of n i.i.d. points under µ) instead of PN

µ (a Poisson point process
with intensity nµ). In other words, it is possible to “de-Poissonize” the random size N
into a deterministic size n. This is rather technical, and hinges on the comparison method
of Proposition 5 along with standard estimates on the Poisson law.

Optimality of hypotheses in Theorem 1. Assumption (A1) is in some sense optimal for the
upper bound on the BST height. Indeed, in [8] we exhibit two permutons which do not
quite satisfy (A1), and whose BSTs are much deeper.

Universality of the lower bound for the BST height. On the other hand, we could not
construct a permuton µ such that h

(
T ⟨Pn

µ ⟩
)

is asymptotically smaller than c∗ log(n).
This leads us to conjecture that the BSTs of permuton samples always satisfy this lower
bound. In [8], we prove a partial result in this direction.
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