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Abstract
It is celebrated that a simple random walk on Z and Z2 returns to the initial vertex v infinitely
many times during infinitely many transitions, which is said recurrent, while it returns to v only
finite times on Zd for d ≥ 3, which is said transient. It is also known that a simple random walk
on a growing region on Zd can be recurrent depending on growing speed for any fixed d. This
paper shows that a simple random walk on {0, 1, . . . , N}n with an increasing n and a fixed N can
be recurrent depending on the increasing speed of n. Precisely, we are concerned with a specific
model of a random walk on a growing graph (RWoGG) and show a phase transition between the
recurrence and transience of the random walk regarding the growth speed of the graph. For the
proof, we develop a pausing coupling argument introducing the notion of weakly less homesick as
graph growing (weakly LHaGG).
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1 Introduction

The recurrence or transience is a classical and fundamental topic of random walks on infinite
graphs, see e.g., [16]: let X0, X1, X2, . . . be a random walk (or a Markov chain) on an infinite
state space V , e.g., V = Z, with X0 = v for v ∈ V . The random walk is said to be recurrent
at the initial state v if

∞∑
t=1

Pr[Xt = v] = ∞ (1)

holds, otherwise it is said to be transient. Intuitively, (1) means that the random walk is
“expected” to return to the initial state infinitely many times. An interesting fact is that a
simple random walk on Z or Z2 is recurrent, while a simple random walk on Zd is transient
for d ≥ 3, cf. [16].

Analysis of random walks on dynamic graphs has been developed in several contexts.
Random walks in random environment is a popular subject in probability theory, where
self-interacting random walks including reinforced random walks and excited random walks
have been intensively investigated as a relatively tractable non-Markovian process, see e.g.,
[9, 5, 15, 29, 30, 21]. The recurrence or transience of a random walk in a random environment
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is a major topic there, particularly random walks on growing subgraphs of Zd or infinitely
growing trees are the major targets [11, 12, 18, 1]. In distributed computing, analysis of
algorithms including random walks on dynamic graphs attracts increasing attention because
networks are often dynamic [7, 22, 2, 28]. Searching or covering networks, related to hitting
or cover times of random walks, are major topics there [8, 3, 14, 4, 24, 6, 20].

Existing works. As we stated above, a simple random walk on the infinite integer grid Zd

is recurrent for d = 1 and 2, while it is transient for d ≥ 3. Dembo et al. [12] investigated
a random walk on an infinitely growing region of Zd and showed a phase transition, that
is roughly speaking a random walk is recurrent if and only if

∑∞
t=1 πt(0) = ∞ holds under

certain conditions, where πt denotes the stationary distribution of the transition matrix at
time t. Huang [18] extended the argument of [12] and gave a similar or essentially the same
phase transition for more general graphs. The proofs are based on the edge conductance and
the central limit theorem on the assumption that every vertex of the dynamic graph has a
degree at most constant to time (or the size of the graph). Those arguments are sophisticated
and enhanced using the argument of evolving set and the heat kernel by recent works [10, 13].

Kumamoto et al. [23] were concerned with a specific model called random walk on growing
graph (RWoGG), which is parametrized by d : Z≥0 → Z≥0 representing the growing (inverse)
speed of the graph. Then, they investigated a simple random walk on {0, 1}n with an
increasing n, and showed that the random walk is recurrent if

∑∞
n=1 d(n)/2n = ∞, otherwise

transient. Notice that the degree of every vertex of the {0, 1}n skeleton graph infinitely grows
as n → ∞. They introduced the notion of less-homesickness as graph growing (LHaGG)
and gave a proof by a coupling argument, which is easier than the arguments based on the
conductance or heat kernel, for this specific object. However, the proof technique is not
simply applicable to a simple random walk on {0, . . . , N}n with an increasing n (and a fixed
N), and it remained as future work.

Result. This paper is concerned with the RWoGG model (see Sec. 2.1), and shows a phase
transition by the growing speed regarding a random walk being recurrent/transient for a lazy
simple random walk on {0, . . . , N}n with an increasing n and a fixed N . For this purpose,
we introduce the notion of weakly less-homesick as graph growing (weakly LHaGG; see Sec. 3)
and show sufficient conditions for a weakly LHaGG RWoGG to be recurrent (Thm. 2) or
transient (Thm. 4). The notion of weakly LHaGG is quite intuitive and natural, but we
have to develop a new technique of pausing coupling to prove that a lazy simple RWoGG is
weakly LHaGG. Then, we give the threshold

∑∞
k=1 d(k)/(2N)k = ∞ of the phase transition

(Thm. 6).

Other related works. It is another celebrated fact that a simple random walk on an infinite
k-ary tree is transient for k ≥ 2 [26, 27]. Amir et al. [1] introduced a random walk in a
changing environment model and investigated the recurrence and transience of random walks
in the model. They gave a conjecture about the conditions of the recurrence and transience
regarding the limit of a graph sequence and proved it for trees. Huang’s work [18] implicitly
implies a phase transition between the recurrence and transience of the random walk on
a growing k-ary tree regarding the growing speed of the graph, based on the conductance
arguments. Kumamoto et al. [23] explicitly showed the phase transition for a growing k-ary
tree under the RWoGG model, where they employ a coupling argument.
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There is a lot of work on the recurrence or transience of random walks on growing trees in
the context of self-interacting random walks including reinforced random walks and excited
random walks, e.g., [19, 17]. They are non-Markovian processes, and in a bit different line
from [12, 1, 18, 23] and this paper.

Related to the cover time, which is another major topic on random walks, Cooper and
Frieze [8] investigated the covering rate of a random walk on the “web-graph” model, where
the graph grows at a constant speed. Kijima et al. [20] introduced the RWoGG model,
where the growing (inverse) speed of a graph is parameterized by d : Z≥0 → Z≥0, and they
investigated its covering rate.

Organization. As a preliminary, we describe the model of random walk on growing graph
(RWoGG) in Section 2. Section 3 introduces the notion of weakly LHaGG, and presents some
general theorems for sufficient conditions that a weakly LHaGG RWoGG is recurrent/transient.
Section 4 shows a phase transition between the recurrence and transience of a lazy simple
random walk on {0, . . . , N}n with an increasing n.

2 Preliminaries

2.1 Model
A growing graph is a sequence of (static) graphs G = G0, G1, G2, . . . where Gt = (Vt, Et) for
t = 0, 1, 2, . . . denotes a graph1 with a finite vertex set Vt and an edge set Et ⊆

(Vt

2
)
. For

simplicity, this paper assumes2 Vt ⊆ Vt+1 and Et ⊆ Et+1. In this paper, we assume |V∞| = ∞,
otherwise the subject is trivial; that is always recurrent. A random walk on a growing graph
is a Markovian series Xt ∈ Vt (t = 0, 1, 2, . . .).

In particular, this paper is concerned with a specific model, described as follows, cf. [20].
A random walk on a growing graph (RWoGG), in this paper, is formally characterized by a
3-tuple of functions D = (d, G, P ). The function d : Z>0 → Z≥0 denotes the duration. For
convenience, let T d

n :=
∑n

i=1 d(i) for n = 1, 2, . . . and T d
0 = 0. We call the time interval3

[T d
n−1, T d

n) phase n for n = 1, 2, . . .; thus T d
n−1 =

∑n−1
i=1 d(i) is the beginning of the n-th phase,

but we also say that T d
n−1 is the end of the (n − 1)-st phase, for convenience. The function

G : Z>0 → G represents the graph G(n) = (V (n), E(n)) for the phase n, where G denotes
the set of all (static) graphs, i.e., our growing graph G satisfies Gt = G(n) for t ∈ [T d

n−1, T d
n).

Similarly, the function P : Z>0 → M is a function representing the “transition probability”
of a random walk on graph G(n) where M denotes the set of all transition matrices.

In summary, a RWoGG Xt (t = 0, 1, 2, . . .) characterized by D = (d, G, P ) is temporally
a time-homogeneous finite Markov chain according to P (n) with the state space V (n) during
the time interval [T d

n−1, T d
n). Suppose X0 = o for o ∈ V (1). We define the return probability

at o by

Rd(t) = Pr[Xt = o] (= Pr[Xt = o | X0 = o]) (2)

at each time t = 0, 1, 2, . . .. We say o is recurrent by RWoGG D = (d, G, P ) if
∞∑

t=1
Rd(t) = ∞ (3)

holds, otherwise, i.e.,
∑∞

t=1 Rd(t) is upper bounded, o is transient by D.

1 Every static graph is simple and undirected in this paper, for simplicity of the arguments.
2 Thus, the current position does not disappear in the next step.
3 Let [Td

n−1, Td
n ) = {Td

n−1, Td
n−1 + 1, . . . , Td

n − 1}, for convenience. Notice that |[Td
n−1, Td

n )| = d(n).

AofA 2024
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2.2 Mixing time
Next, we briefly introduce some terminology for random walks on static graphs, or time-
homogeneous Markov chains, according to [25]. Suppose that X0, X1, X2, . . . is a random
walk on a static graph G = (V, E) characterized by a time-homogeneous transition matrix
P = (P (u, v)) ∈ RV ×V

≥0 where P (u, v) = Pr[Xt+1 = v | Xt = u]. A transition matrix P

is irreducible if ∀u, v ∈ V , ∃t > 0, P t(u, v) > 0. A transition matrix P is aperiodic if
gcd{t > 0 ; P t(v, v) > 0} = 1 for any v ∈ V . A Markov chain is ergodic if it is irreducible
and aperiodic. A probability distribution π over V is a stationary distribution if it satisfies
πP = π. It is well known that an ergodic P has a unique stationary distribution [25].

Let

d(t) := max
x∈V

∥P t(x, ·) − π∥T V . (4)

Then, the mixing time of P is given by

tmix(ϵ) := min {t ; d(t) ≤ ϵ} (5)

for ϵ ∈ (0, 1). We will use the following fact in the proof of Lemma 3 appearing later.

▶ Lemma 1. Suppose P is ergodic. Let πv denote the probability of v ∈ V in the stationary
distribution of P . If t ≥ tmix( πv

4 ) then d(t) ≤ πv

2 holds.

Proof. Let

d(t′) := max
x,y∈V

∥∥∥P t′
(x, ·) − P t′

(y, ·)
∥∥∥

T V
.

It is known that d(t) ≤ d(t) ≤ 2d(t) holds (cf. Lemma 4.10 in [25]). For convenience, let
t = tmix( πv

4 ) + s for s ≥ 0. Then,

d(t) ≤ d(t) (by Lem. 4.10 in [25])
≤ d

(
tmix( πv

4 )
)

d(s) (by the submultiplicativity of d (cf. Lem. 4.11 in [25]))
≤ d

(
tmix( πv

4 )
)

(since d(s) ≤ 1)
≤ 2d

(
tmix( πv

4 )
)

(since d(t) ≤ 2d(t) (cf. Lem. 4.10 in [25]))

≤ 2πv

4 (by (5))

and we obtain the claim. ◀

3 Recurrence and Transience

This section presents sufficient conditions that RWoGG D = (d, G, P ) is recurrent/transient.
Let t

G(k)
mix (ϵ) denote the mixing time of P (k) and let π

G(k)
o denote the probability of a vertex

o ∈ V in the stationary distribution of P (k) in the following. In this paper, we are mainly
concerned with RWoGG D = (d, G, P ) satisfying

∞∑
k=1

τ∗(k)p(k) < ∞ (6)

where p(k) := π
G(k)
o and τ∗(k) := t

G(k)
mix

(
p(k)

4

)
. Roughly speaking, the condition (6) means

that the mixing times of D are not very large.
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3.1 Recurrence
This section gives a sufficient condition that o is recurrent by D.

▶ Theorem 2. Suppose D = (d, G, P ) satisfies (6). If d satisfies

∞∑
k=1

d(k)p(k) = ∞ (7)

then the initial vertex o is recurrent by D where p(k) = π
G(k)
o .

To prove Theorem 2, we prove the following lemma.

▶ Lemma 3. Any RWoGG D = (d, G, P ) satisfies

Td
n∑

t=1
Rd(t) ≥ 1

2

n∑
k=1

d(k)p(k) − 1
2

n∑
k=1

τ∗(k)p(k) (8)

for any n ≥ 1, where recall τ∗(k) := t
G(k)
mix

(
p(k)

4

)
and p(k) := π

G(k)
o .

Proof. We prove the claim by an induction with respect to n. For n = 1, we prove

d(1)∑
t=1

Rd(t) ≥ 1
2 (d(1) − τ∗(1)) p(1) (9)

holds, where recall T d
1 = d(1) by definition. We consider two cases whether d(1) ≤ τ∗(1) or

not. If d(1) ≤ τ∗(1) then the right hand side of (8) ≤ 0. Clearly the left hand side of (8) ≥ 0,
and we obtain (8). Suppose d(1) > τ∗(1). Notice that∣∣∣Rd(t) − πG(1)

o

∣∣∣ ≤ 2p(1)
4 = 1

2p(1)

holds for t ≥ τ∗(1) by Lemma 1. It implies

Rd(t) ≥ πG(1)
o − 1

2p(1) = 1
2p(1)

for t ≥ τ∗(1), where recall p(1) = π
G(1)
o by definition. Then,

d(1)∑
t=1

Rd(t) ≥
d(1)∑

t=τ∗(1)

Rd(t) ≥
d(1)∑

t=τ∗(1)

1
2p(1) = 1

2(d(1) − τ∗(1))p(1)

holds. We obtain (9).
Inductively assuming (8) holds for n, we prove it for n+1. Noting that T d

n+1 = T d
n +d(n+1),

Td
n+1∑

t=1
Rd(t) =

Td
n∑

t=1
Rd(t) +

d(n+1)∑
t=1

Rd(T d
n + t)

≥ 1
2

n∑
k=1

d(k)p(k) − 1
2

n∑
k=1

τ∗(k)p(k) +
d(n+1)∑

t=1
Rd(T d

n + t) (10)

AofA 2024
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holds since
∑Td

n+1
t=1 Rd(t) ≥ 1

2
∑n

k=1 d(k)p(k) − 1
2

∑n
k=1 τ∗(k)p(k) holds by the inductive

assumption. Concerning the third term of (10), we can prove

d(n+1)∑
t=1

Rd(T d
n + t) ≥ 1

2(d(n + 1) − τ∗(n + 1))p(n + 1)

in a similar way as (9). Therefore,

(10) ≥ 1
2

n∑
k=1

d(k)p(k) − 1
2

n∑
k=1

τ∗(k)p(k) + 1
2 (d(n + 1) − τ∗(n + 1)) p(n + 1)

= 1
2

n+1∑
k=1

d(k)p(k) − 1
2

n+1∑
k=1

τ∗(k)p(k)

holds. We obtain the claim. ◀

Now, we prove Theorem 2.

Proof of Theorem 2. Recall the assumption (6),

Td
n∑

t=1
Rd(t) ≥ 1

2

n∑
k=1

d(k)p(k) − 1
2

n∑
k=1

τ∗(k)p(k) (by Lemma 3)

≥ 1
2

n∑
k=1

d(k)p(k) − 1
2

∞∑
k=1

τ∗(k)p(k) (τ∗(k)p(k) ≥ 0 for any k)

= 1
2

n∑
k=1

d(k)p(k) − C1 (by (6)) (11)

hold, where C1 is a positive constant. Thus, the hypothesis
∑∞

k=1 d(k)p(k) = ∞ implies∑∞
t=1 Rd(t) = ∞, which is what we want. ◀

Even if (6) does not hold, Lemma 3 implies that the weaker condition

lim
n→∞

n∑
k=1

(d(k) − τ∗(k))p(k) = ∞

guarantees the recurrence.

3.2 Weakly less homesick as graph growing
Before giving a sufficient condition for transience, we introduce the notion of weakly less-
homesickness as graph growing, which is a relationship between RWoGGs and plays an
important role in our analysis. Let Df = (f, G, P ) and Df ′ = (f ′, G′, P ′) be RWoGGs, and
let Rf (t) and Rf ′(t) respectively denote their return probabilities at time t = 1, 2, . . .. We
say Df ′ = (f ′, G′, P ′) is weakly less-homesick than Df = (f, G, P ) at time t if

t∑
k=1

Rf (k) ≥
t∑

k=1
Rf ′(k) (12)

holds.
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In particular, this paper is mainly concerned with the weakly less-homesick relation
between Df = (f, G, P ) and Dg = (g, G, P ) with the same P (and G). We say P : Z>0 → M
is weakly less-homesick as graph growing (weakly LHaGG)4 if Dg = (g, G, P ) is weakly
less-homesick than Df = (f, G, P ) whenever

n∑
k=1

f(k) ≥
n∑

k=1
g(k) (13)

holds for any n ∈ Z>0, where we remark that G and P are common in Df and Dg. The
condition (13) implies the graph in Dg grows faster than Df , intuitively.

3.3 Transience
Next, we give a sufficient condition that o is transient by D.

▶ Theorem 4. Suppose RWoGG D = (d, G, P ) is weakly LHaGG and satisfies (6). If d

satisfies
∞∑

k=2
d(k)p(k − 1) < ∞ (14)

then the initial vertex o is transient by D where p(k) = π
G(k)
o .

To prove Theorem 4, we prove the following lemma.

▶ Lemma 5. Suppose RWoGG D = (d, G, P ) is weakly LHaGG. Let

g(k) := max (d(k), τ∗(k)) (15)

for k ≥ 1. Then, the sum of return probabilities of the RWoGG Dg = (g, G, P ) satisfies

T g
n+1∑

t=1
Rg(t) ≤ g(1) + 3

2

n+1∑
k=2

g(k)p(k − 1) (16)

for n ≥ 1.

Proof. We prove the claim for each fixed n = 1, 2, . . .. Let

f(k) :=
{

g(k) (k ≤ n − 1)
∞ (k = n).

(17)

Let Zt (t = 0, 1, 2, . . .) denote a RWoGG Df = (f, G, P ) with Z0 = o. Let Rf (t) denote the
return probability of Zt, i.e., Rf (t) = Pr[Zt = o] = Pr[Zt = o | Z0 = o]. Clearly, T f

n ≥ T g
n

holds for any n ≥ 1, hence the weakly LHaGG assumption implies

T∑
t=1

Rg(t) ≤
T∑

t=1
Rf (t) (18)

for any T .

4 Strictly speaking, weakly LHaGG should be a property of the sequence of transition matrices
P (1), P (2), P (3), . . .. For convenience of the notation, we say D = (f, G, P ) is weakly LHaGG, in
this paper.

AofA 2024
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Suppose ZT g
n−1

= v. Then, Zt for t ∈ (T g
n , T g

n+1] is nothing but a time-homogeneous
random walk according to P (n) with the “initial state” ZT g

n−1
= v. For convenience, let

t = T g
n−1 + t′, then

t′ ≥ g(n) ≥ τ∗(n) (19)

by (15) and (17). This implies

T g
n+1∑

t=1
Rg(t) =

n+1∑
k=1

T g
k∑

t=T g
k−1+1

Rf (t)

=
T g

1∑
t=1

Rf (t) +
n+1∑
k=2

T g
k∑

t=T g
k−1+1

Rf (t)

≤ g(1) +
n∑

k=1

T g
k+1∑

t=T g
k

+1

Rf (t)

= g(1) +
n∑

k=1

T g
k+1∑

t=T g
k

+1

∑
v∈V (k−1)

Pr
[
Zt = o | ZT g

k−1
= v

]
Pr

[
ZT g

k−1
= v | Z0 = o

]

= g(1) +
n∑

k=1

g(k+1)∑
t′=1

∑
v∈V (k−1)

Pr
[
ZT g

k
+t′ = o | ZT g

k−1
= v

]
Pr

[
ZT g

k−1
= v | Z0 = o

]

≤ g(1) +
n∑

k=1

g(k+1)∑
t′=1

max
v∈V (k−1)

Pr
[
ZT g

k
+t′ = o | ZTk−1 = v

]

≤ g(1) +
n∑

k=1

g(k+1)∑
t′=1

(
p(k) + p(k)

2

)
(by (19))

= g(1) +
n∑

k=1

g(k+1)∑
t′=1

3
2p(k)

= g(1) + 3
2

n∑
k=1

g(k + 1)p(k)

= g(1) + 3
2

n+1∑
k=2

g(k)p(k − 1) (20)

holds. The claim is clear by (18) and (20). ◀

Now, we are ready to prove Theorem 4.

Proof of Theorem 4. Let

g(k) := max (d(k), τ∗(k))

for k ≥ 1. Notice that g(k) ≤ d(k) + τ∗(k) holds. We calculate
∑∞

t=1 Rd(t) using Lemma 5:
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∞∑
t=1

Rd(t) = lim
n→∞

T g
n+1∑

t=1
Rd(t) ≤ lim

n→∞

T g
n+1∑

t=1
Rg(t) (since weakly LHaGG)

≤ lim
n→∞

{
g(1) + 3

2

n+1∑
k=2

g(k)p(k − 1)
}

(by Lemma 5)

= g(1) + 3
2

∞∑
k=2

g(k)p(k − 1) (21)

≤ d(1) + τ∗(1) + 3
2

∞∑
k=2

d(k)p(k − 1) + 3
2

∞∑
k=2

τ∗(k)p(k − 1)

≤ 3
2

∞∑
k=2

d(k)p(k − 1) + C (by (6))

holds with some constant C. Now it is easy to see that (14) implies
∑∞

t=1 Rd(t) < ∞,
meaning that D = (d, G, P ) is transient. ◀

4 Random Walk on Growing Dimension Boxes

This section is concerned with a random walk on growing dimension boxes D = (d, G, P ).
Let G(n) = (V (n), E(n)) be a graph given by

V (n) := {0, . . . , N}n0+n−1

E(n) := {(x, y) ; x, y ∈ V (n), ∥x − y∥1 = 1}

where n and N are (fixed) positive integers. Let o ∈ V (n) denote the origin vertex. Let
P G(n) for n ≥ 1 denote the transition probability of a lazy simple random walk on the static
graph G(n), which is given by

P G(n)
x,y =


1
2 (if x = y)

1
4(n0+n−1) (if ∥x − y∥1 = 1, xk ̸= yk and xk ̸∈ {0, N})

1
2(n0+n−1) (if ∥x − y∥1 = 1, xk ̸= yk and xk ∈ {0, N})
0 (otherwise)

for x, y ∈ V (n). Then, we are concerned with a RWoGG Xt (t = 0, 1, 2, . . .) according
to D = (d, G, P ). If the graph grows at time t, we assume Xt = (x1, . . . , xn0+n−1) =
(x1, . . . , xn0+n−1, 0).

▶ Theorem 6. If D = (d, G, P ) satisfies
∞∑

k=1

d(k)
(2N)k

= ∞

then o is recurrent, otherwise o is transient.

We will prove Theorem 6 based on Theorems 2 and 4. As a preliminary step, we remark
two facts. One is about the stationary distribution of P G(n), and it is not difficult to observe
that

p(n) = 1
(2N)n0+n−1 (22)
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holds. The other is about the mixing time of P G(n), and we can prove

τ∗(n) ≤ 8N2 log2 (2N) (n0 + n − 1)3 (23)

by a standard coupling technique. Therefore, random walk on growing boxes satisfies (6).
Then, it is not difficult to see that Theorem 6 follows from the following Lemma 7.

▶ Lemma 7. Random walk on growing dimension boxes is weakly LHaGG.

Before the proof of Lemma 7, we prove Theorem 6.

Proof of Theorem 6. Notice that D satisfies (23) and it is weakly LHaGG by Lemma 7,
meaning that D satisfies the hypotheses of Theorems 2 and Theorem 4. By (22),

p(n) = 1
(2N)n0−1

1
(2N)n

where remark that 1
(2N)n0−1 is a constant since N and n0 are constants. If

∑∞
k=1

d(k)
(2N)k = ∞

then
∞∑

k=1
d(k)p(k) = 1

(2N)n0−1

∞∑
k=1

d(k)
(2N)k

= ∞

holds, which implies o is recurrent by Theorem 2. Similarly, if
∑∞

k=1
d(k)

(2N)k ≤ C holds for
some constant then

∞∑
k=2

d(k)p(k − 1) = 1
(2N)n0−2

∞∑
k=2

d(k)
(2N)k

≤ 1
(2N)n0−2 C

holds, which implies o is transient by Theorem 4. ◀

4.1 Proof of Lemma 7
We prove Lemma 7 by an artificial coupling. Due to the page limitation, we here explain a
proof sketch.

Let X = X0, X1, . . . be a RWoGG according to Df = (f, G, P ), and let Rf (t) (t =
0, 1, 2, . . .) denote its return probability. Similarly, let Y = Y0, Y1, . . . be a RWoGG according
to Dg = (g, G, P ), and let Rg(t) (t = 0, 1, 2, . . .) denote its return probability. Note that
X0 = Y0 = o. Suppose that

n∑
k=1

f(k) ≥
n∑

k=1
g(k) (24)

holds for any n ≥ 1. Then, we couple X and Y time asynchronously, so that Xt ≤ Yt holds
for any t = 0, 1, 2, . . ., which is established in three steps by the following Lemmas 8–10.

▶ Lemma 8. Suppose X and Y satisfy

Xt = o, Yt′ = o,

for t ≤ t′. Then, there is a coupling of X and Y such that

min {r ; r ≥ 0, Xt+r ̸= o} = min {r ; r ≥ 0, Yt′+r ̸= o} , (25)

i.e., X and Y stay at the origin vertex o for exactly the same r steps, where we define
min ∅ = ∞ for convenience.
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Proof. Notice that each of X and Y remains at the origin vertex o with probability 1
2 , and

leaves the origin vertex o with probability 1
2 independent of dimensions. Then, we can

construct a coupling of X and Y . ◀

▶ Lemma 9. Suppose that |Xt| = |Yt′ | = 1, where t ≤ t′. Then, there is a coupling of X

and Y such that

min {r ; r > 0, Xt+r = o} ≤ min {r ; r > 0, Yt′+r = o} , (26)

i.e., X returns to the origin vertex o in a fewer steps than Y .

Sketch of proof. Without loss of generality, we may assume5 that Xt = (X1
t , X2

t , . . . , Xnt
t ) =

(1, 0, . . . , 0) and Yt′ = (Y 1
t′ , Y 2

t′ , . . . , Y
mt′

t′ ) = (1, 0, . . . , 0), where we remark nt and mt respect-
ively denote the dimensions of Xt and Yt.

Let I(t) ∈ {1, . . . , nt} denote the index selected in the transition from Xt−1 to Xt, and let
J(t) ∈ {1, . . . , mt} denote the index selected in the transition from Yt−1 to Yt. For example,
when Xt−1 = (0, 0, 0), I(t) = 1 and X1

t = X1
t−1 + 1 then Xt = (1, 0, 0). Then, we couple

{I(t + r)}r=1,2,... and {J(t + r)}r=1,2,.... For θt+r ∈ {1, 2, . . . , nt+r}, let

Ψk(θt+r) :=
{

{ωt+r}r∈N
∣∣ ωk′ > nt+r for k′ < k and ωk = θt+r

}
and

Ψ̃(t + r) :=
{

{ωt+r}r∈N
∣∣ ωk′ > nt+r for k′ ≥ 1

}
for r ≥ 1. Let W = {Ws}s∈N satisfy Ws := J(t′ + s) for s ≥ 1. Suppose I(t + r) = θt+r.
Let s1 = k such that W ∈ Ψk(θt+1), and let S(1) := s1. Recursively, let sr = k′ such that
W ∈ Ψk′(θt+r) for r ≥ 2, and let S(r) := S(r − 1) + sr. Let Ψ(θt+r) :=

⋃∞
k=1 Ψk(θt+r).

Firstly, we claim that

Pr[I(t + r) = θt+r] = Pr [W ∈ Ψ(θt+r)] + 1
nt+r

Pr
[
W ∈ Ψ̃(t + r)

]
. (27)

Clearly,

Pr[I(t + r) = θt+r] = 1
nt+r

holds for the left-hand-side of (27). Notice that

t + r ≤ t′ + S(r) (28)

holds. Then, we can prove

Pr [W ∈ Ψ(θt+r)] + 1
nt+r

Pr
[
W ∈ Ψ̃(t + r)

]
= 1

nt+r
(29)

holds, which implies (27).
Next, we prove for any r and i ≤ nt+r that

Xi
t+r ≤ Y i

t′+s (30)

for S(r) ≤ s < S(r + 1). We consider two cases whether i ≤ nt+1 or not.

5 Suppose that |Yt| = |Y ′
t | = 1. Let Y i

t = Y ′j
t = 1. There is the coupling of Y and Y ′ such that Yt = o if

and only if Y ′
t = o.
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(i) Consider the case i ≤ nt+1. Recall that Xi
t = Y i

t′ for i ≤ nt. We inductively prove that

Xi
t+r = Y i

t′+s (31)

for S(r) ≤ s < S(r + 1) with respect to r. Notice that

Y i
t′+S(r) = Y i

t′+s (32)

for S(r) ≤ s < S(r + 1) since I(t′ + s) > nt+r+1 for S(r) < s < S(r + 1). Suppose i is
chosen l times for Xt, . . . , Xt+r in the r steps, i.e.,

|{r′ | I(t + r′) = i, 1 ≤ r′ ≤ r}| = l.

Notice that i is chosen l times for Yt′ . . . , Yt′+S(r′) in the S(r′) steps. Then,

Pr
[
Xi

t+r′ − Xi
t+r′−1 = z

∣∣ I(t + r′) = i
]

= Pr
[
Y i

t′+S(r′) − Y i
t′+S(r′)−1 = z

∣∣∣ J(t′ + S(r′)) = i
]

holds for z ∈ {−1, 0, 1}. The inductive assumption Xi
t+r′−1 = Y i

t′+S(r′)−1 implies

Xi
t+r′ = Y i

t′+S(r′). (33)

We obtain (31).
(ii) Consider the case i > nt+1. Suppose i is chosen l times for Xt, . . . , Xt+r in the r steps,

i.e.,

|{r′ | I(t + r′) = i, 1 ≤ r′ ≤ r}| = l,

and let r′′ denote the minimum satisfying I(t + r′′) = i for 1 ≤ r′′ ≤ r. Clearly,
Xi

t+r′′−1 ≤ Y i
t′+S(r′′)−1. If Xi

t+r′′−1 = Y i
t′+S(r′′)−1, we can prove (30) for any s satisfying

S(r) ≤ s < S(r + 1) in a similar way as the case (i).
Thus, we consider the case Xi

t+r′′−1 < Y i
t+S(r′′)−1. Then, we can couple the transitions

Xi
t+r′−1 7→ Xi

t+r′ and Y i
t+S(r′)−1 7→ Y i

t+S(r′) such that

Pr
[
Xi

t+r′ − Xi
t+r′−1 = 0

∣∣ I(t + r′) = i
]

= Pr
[∣∣∣Y i

t′+S(r′) − Y i
t′+S(r′)−1

∣∣∣ = 1
∣∣∣ J(t′ + S(r′)) = i

]
= 1

2
Pr

[∣∣Xi
t+r′ − Xi

t+r′−1
∣∣ = 1

∣∣ I(t + r′) = i
]

= Pr
[
Y i

t′+S(r′) − Y i
t′+S(r′)−1 = 0

∣∣∣ J(t + S(r′)) = i
]

= 1
2

hold. Recall that Xi
t+r′′−1 < Y i

t+S(r′′)−1 implies Xi
t+r′′−1 + 1 ≤ Y i

t+S(r′′)−1. Thus, the
coupling implies Xi

t+r′′ ≤ Y i
t′+S(r′′). For other r′′′ ∈ {r′ ; I(t + r′) = i, 1 ≤ r′ ≤ r},

we can inductively prove (30) in a similar way.
Therefore, if Y returns to the origin vertex o at time t′ + S(r) then X returns to the
origin vertex o before the time t + r by (30). Clearly t + r ≤ t′ + S(r) by (28). We
obtain the claim. ◀

▶ Lemma 10. Let

τo := min {r ; r > 0, Xt+r = o} ,

τ ′
o := min

{
r ; r ≥ 0, Yt′+S(τo)+r = o

}
.

If Yt′+S(τo) ̸= o then there is a coupling of X and Y such that Xt+τo = Yt′+S(τo)+τ ′
o

= o,
i.e., X stops its time until Y returns to the origin vertex o.
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Proof. Since

Pr
[
τ ′

o < ∞ or τ ′
o = ∞

∣∣ Yt′+S(τo) ̸= o
]

= 1

holds for any Yt′+S(τo) ∈ {0, 1, . . . , N}mt′+S(τo) . ◀

We prove Lemma 7 using Lemmas 8–10.

Proof of Lemma 7. Let

τx
o (n) := min {t ; t > τx

o (n − 1) , Xt = o} ,

τy
o (n) := min {t ; t > τy

o (n − 1) , Yt = o}

for n ≥ 1. For convenience, let τx
o (0) := 0 and τy

o (0) := 0. To begin with, we prove that
there is a coupling of X and Y such that

τx
o (n) ≤ τy

o (n) (34)

for any n ≥ 0. For n = 0, (34) is obvious. Inductively assuming that (34) holds for n, we
prove it for n + 1. If τy

o (n + 1) = ∞ then we have

τx
o (n + 1) ≤ τy

o (n + 1)

clearly, and we obtain (34) in this case. Then, we consider the case of τy
o (n + 1) < ∞. By

Lemma 10, X can stop at the vertex o at time τx
o (n) by the time τy

o (n). Therefore, we can
consider the coupling of Xτx

o (n) and Yτy
o (n). By Lemma 8, there exists tn ≥ 1 such that

Xτx
o (n)+s = o and Yτy

o (n)+s = o (35)

for any s satisfying 0 ≤ s < tn, and

Xτx
o (k)+tn

̸= o and Yτy
o (n)+tn

̸= o (36)

hold. If tn > 1 then (35) implies

τx
o (n + 1) = τx

o (n) + 1 and τy
o (n + 1) = τy

o (n) + 1.

This means that we have

τx
o (n + 1) ≤ τy

o (n + 1)

by the inductive assumption (34), and we obtain the equation (34) in the case tn > 1. Then,
we consider the case tn = 1. Notice that (35) and (36) imply

|Xτx
o (k)+tn

| = 1, |Yτy
o (k)+tn

| = 1,

and hence Lemma 9 implies that there is a coupling of X and Y such that

τx
o (n + 1) ≤ τy

o (n + 1) (37)

holds. Therefore, we obtain (34) in the case tn = 1. Thus, we obtain (34) for any n + 1. It is
not difficult to see from (34) that the random walk on growing dimension boxes is weakly
LHaGG. ◀
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