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Abstract
The alternating normal form of braids is a well-known normal form on standard braid monoids. This
normal form is regular: the language it identifies with is regular. We give a characterisation of the
minimal automaton of this language and compute its size, both in terms of number of states and of
transitions, depending on the number of generators of the monoid.
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1 Introduction

The group of braids with n strands, commonly denoted by Bn, is the group of isotopy classes
of geometric braids with n strands. In [2], E. Artin proved that this group enjoyed the
following finite presentation:

Bn =
〈

σ1, . . . , σn−1

∣∣∣∣ σiσj = σjσi when j ⩾ i + 2
σiσi+1σi = σi+1σiσi+1

〉
.

The relations σiσj = σjσi are called commutation relations; relations σiσi+1σi = σi+1σiσi+1
are called braid relations. They come with the simplification relations σiσ

−1
i = ε, where ε

denotes the neutral element of the group. These three kinds of relations are illustrated in
Figure 1. Braid elements σ1, . . . , σn−1 are called Artin generators.
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Figure 1 Commutation relation σ1σ3 = σ3σ1, braid relation σ1σ2σ1 = σ2σ1σ2 and simplification
relation σ1σ−1

1 = ε. The latter relation is valid only in the group Bn.

Braid groups enjoy numerous algebraic, combinatorial and geometric properties, many
of which are connected with the study of the (standard) braid monoid B+

n : this is the
monoid positively generated by the generators σi, i.e., the least subset of Bn containing
generators σ1, . . . , σn−1 (but not their inverses) and stable by product:

B+
n =

〈
σ1, . . . , σn−1

∣∣∣∣ σiσj = σjσi when j ⩾ i + 2
σiσi+1σi = σi+1σiσi+1

〉+

.

Here are some properties of the monoid B+
n [1, 4, 6, 8, 12, 14]:
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23:2 The Alternating Normal Form of Braids and Its Minimal Automaton

a) The braid monoid B+
n is simplifiable: whenever αβγ = αβ′γ, we have β = β′.

b) The left-divisibility ordering, defined by α ⩽L β whenever there exists a braid γ ∈ B+
n

(also denoted by α−1β) such that αγ = β, is a lattice: any two elements α and β have a
greatest common divisor α ∧ β and a least common multiple α ∨ β.

c) Similarly, the right-divisibility ordering, defined by β ⩾R α whenever there exists a
braid γ ∈ B+

n (also denoted by βα−1) such that β = γα, is a lattice.
d) The braid ∆n = σ1(σ2σ1)(σ3σ2σ1) · · · (σn−1σn−2 · · · σ2σ1), called the Garside element of

the monoid B+
n , is the least common multiple of the family of Artin generators for both

the left- and right-divisibility orderings. Both its left and its right divisors coincide with
the set of positive braids in which any two strands cross each other at most once; such
braids are called simple braids. Furthermore, ∆n obeys the relations ∆nσi = σn−i∆n,
which makes the inner automorphism ϕn : β 7→ ∆−1

n β∆n an involution of B+
n .

e) The function sn : β 7→ β ∧ ∆n, which selects the largest simple left divisor of a braid β,
obeys the identity sn(αβ) = sn(αsn(β)).

Properties a) to c) give rise to recursive decompositions, some of which we will focus on
below: Property a) allows factoring a braid into factors on which we will be able to work
independently, and Properties b) and c) will allow, under some conditions, to select the
largest divisor of a braid that belongs to a given set. For instance, the following result is a
consequence of Properties a) and b):
f) The submonoid B+

n−1, generated by σ1, . . . , σn−2 and called a parabolic submonoid of B+
n ,

is a sub-lattice of B+
n . Thus, each braid β ∈ B+

n has a largest left divisor in B+
n−1,

denoted by hn(β) and called the n-head of β: its left divisors are the left divisors of β

that belong to B+
n−1. The corresponding right divisor hn(β)−1β, denoted by bn(β), is

called the n-body of β.

The effect of the functions s4, h4 and b4 and of the automorphism ϕ4 on the
braid β = σ2σ3σ3σ1 is illustrated in Figure 2: s4 selects the largest simple left divisor
of β, which is not necessarily a prefix of the representation of β we started from; h4 selects
the largest left divisor of β that can be written without using the generator σ3, and b4 selects
the corresponding right divisor; finally, ϕ4 replaces each generator σi of β by σ4−i.
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Figure 2 Applying s4, h4, b4 and ϕ4 to the braid β = σ2σ3σ3σ1.

The above presentation identifies each braid β ∈ B+
n with an equivalence class of words

over the alphabet An = {σ1, . . . , σn−1}. A normal form is then a language containing exactly
one word NF(β) in each equivalence class β, which will be a preferred representative of β.
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For a normal form to be useful, the following tasks should be as easy as possible [8]:
deciding whether a word w belongs to the normal form;
transforming a word w representing a braid β into the word NF(β);
computing, given two words w = NF(β) and w′ = NF(β′), the word NF(ββ′).

In this article, we focus on the first question, for which a possible answer is: “the normal
form should be a regular set, and its minimal automaton should be small”.

In that context, among a plethora of other normal forms, let us mention three similar
normal forms on braids: the Garside normal form [7], the lexicographically minimal normal
form [13] and the alternating normal form [3, 5]: the Garside normal form is the most
well-known normal form on braid monoids, and all three are regular.

▶ Definition 1. The Garside normal form of a braid β ∈ B+
n is inductively defined as

the following factorisation of β into simple braids: we set Garn(β) = β when β is simple,
and Garn(β) = sn(β)Garn(sn(β)−1β) otherwise. If necessary, each simple divisor can then be
written as a product of generators σi.

▶ Definition 2. The lexicographically minimal normal form of a braid β ∈ B+
n is denoted

by LexMinn(β). It is the word representing the braid β ∈ B+
n that is minimal for the

lexicographic ordering induced by the ordering σ1 < σ2 < · · · < σn−1 on Artin generators.

Alternatively, the word LexMinn(β) may be inductively defined by LexMin2(σk
1 ) = σk

1 or,
if n ⩾ 3, by LexMinn(β) = LexMinn−1(β) when β ∈ B+

n−1, and

LexMinn(β) = LexMinn−1(hn(β))σn−1LexMinn((hn(β)σn−1)−1β)

otherwise.

▶ Definition 3. The alternating normal form of a braid β ∈ B+
n is denoted by Altn(β). It is

inductively defined by Alt2(σk
1 ) = σk

1 or, if n ⩾ 3, by Altn(β) = Altn−1(β) when β ∈ B+
n−1,

and Altn(β) = Altn−1(hn(β))ϕn(Altn(ϕn(bn(β)))) otherwise1.

This normal form is tightly connected to the rotating normal form [11], a similar normal form
defined on the dual braid monoid B+∗

n , which is the sub-monoid of Bn positively generated
by braids of the form σuσu−1 · · · σv+1σvσ−1

v+1σ−1
v+2 · · · σ−1

u . Below, we study the alternating
normal form, by constructing explicitly its minimal automaton and counting its states and
transitions.

Figure 3 presents the three representatives of the braid β = σ3σ2σ2σ3σ1σ1σ3 that belong
to the Garside, lexicographically minimal and alternating normal forms, illustrating that
these three words may all differ from each other.

Property e) provides us with a co-deterministic automaton that, once given as input a
word w = w0w1 · · · wk−1 representing a braid β, computes at each step the braid sn(w⩾i),
where w⩾i = wiwi+1 · · · wk−1: indeed, it suffices to observe that sn(w⩾i) = sn(wisn(w⩾i+1)),
and to precompute sn on braids of the form σiγ, where σi is an Artin generator and γ is
simple. This automaton itself helps proving that the three above normal forms are regular:
we check that w is in
1) Garside normal form by verifying that it starts with a prefix w<i = w0w1 · · · wi−1

representing sn(w), and then that w⩾i is in Garside normal form;

1 One may often find a mirrored version of this normal form, in which, instead of extracting the largest
left divisor of β in B+

n−1, one extracts the largest right divisor. The languages induced by both versions
are mirrors of each other.

AofA 2024
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σ3
σ2 σ2

σ1

σ3

σ1

σ3 σ3
σ2 σ2

σ1 σ1

σ3 σ3 σ3
σ2 σ2

σ3 σ3

σ1 σ1

Gar4(β) LexMin4(β) Alt4(β)

Figure 3 Normal forms of the braid β = σ3σ2σ2σ3σ1σ1σ3. Vertical dashed bars separate the
simple braids σ3σ2, σ2σ3σ1 and σ1σ3 into which β was factored to give its Garside normal form.

2) lexicographically minimal normal form by verifying that each letter wi is the least Artin
generator that left-divides sn(w⩾i);

3) alternating normal form by finding the smallest index i such that wi = σn−1 (if any),
verifying that σn−1 is the only Artin generator left-dividing sn(w⩾i), and verifying that w<i

and ϕn(w⩾i) are in alternating normal form.
Similar arguments would prove that the rotating normal form is also regular.

Although such observations yield automata recognising the three above normal forms,
these automata are non-deterministic, and determinising them might result in unreasonably
large deterministic automata. Explicit minimal automata for the lexcicographically minimal
normal form were constructed in [9]; there, it is proved that the minimal automaton
recognising LexMinn(B+

n ) has 2F2n+1 − n(n + 1)/2 − 2 ≈ 2Φ2n+1/
√

5 states, where Fk

is the kth Fibonacci number and Φ = (1 +
√

5)/2 is the Golden Ratio. Non-necessarily
minimal automata for the rotating normal form were constructed in [11]. The minimal
automaton of the Garside normal form, viewed as a language over the alphabet sn(B+

n ) of
simple braids, has 2n−1 states and obn transitions, where obn is the nth ordered Bell number.
Finally, the minimal automata for the Garside normal form (viewed as a language over An,
choosing a canonical representative of each simple braid), for the alternating normal form
and for the rotating normal form have net yet been investigated.

In this article, we prove the following results.

▶ Theorems 19 & 20. The minimal automaton of the language Altn(B+
n ) is an explicit

automaton An with sn states and tn transitions, where s1 = 1, t1 = 0, and

sn = 25 × 22n−3 − 9n2 + 3n + 7
27 and tn = (225n − 290)22n−5 − 9n3 − 9n2 + 93n − 77

81

whenever n ⩾ 2.

In particular, An has asymptotically 25 × 22n−3/27 states and an average of 3n/4 − 29/30
transitions per state; this largely exceeds the growth rate of the monoid B+

n , which is
only 3.233636 . . . [10]. Like the minimal automaton of LexMinn(B+

n ), the size of An is
exponential in n; the exponent is larger, being 22 = 4 here instead of Φ2 ≈ 2.618.

2 Characterising words in alternating normal form

In this section, we briefly present key results paving the way for Theorem 10, which is an
“automata-flavoured” characterisation of words w ∈ A∗

n in alternating normal form. These
results are based on the ad hoc notions of chain, or chain containment and of rigid chain
containment, the latter two being braid invariants. Their full proofs are omitted in this
paper.



V. Jugé and J. Roupin 23:5

▶ Definition 4. Let u ⩾ v be two integers. The braid word σu→v = σuσu−1 · · · σv, which
is the only factorisation of the braid it represents, is called a (u, v)-chain. Then, we say
that a word w ∈ A∗

n contains a (u, v)-chain if σu→v is a subword of w, i.e., if w admits
a factorisation of the form w = w(u)σuw(u−1)σu−1 · · · w(v)σvw(v−1). If, furthermore, no
factor w(i) contains any occurrence of the letters σi or σi+1, we say that w rigidly contains
a (u, v)-chain.

Although the braid word σuσu+1 · · · σv is not a chain when u < v, it will also be denoted
by σu→v; considering such words may be useful since ϕn exchanges σu→v and σ(n−u)→(n−v).

▶ Lemma 5. Let u and v be two integers such that u ⩾ v, and let w and w′ be two words
representing the same braid β ∈ B+

n . If w contains a (u, v)-chain, so does w′. Similarly, if w

rigidly contains a (u, v)-chain, so does w′; in that case, we have β ⩾R σu→v.

Proof idea. It suffices to treat the case where w and w′ are related by a single commutation
or braid relation. Then, if w rigidly contains a (u, v)-chain, an induction on i shows
that β ⩾R σi→v whenever u ⩾ i ⩾ v. ◀

This generalises the property that containing a letter σu, i.e., a (u, u)-chain, is a braid
invariant.

▶ Lemma 6. Let v ⩽ n − 1 be an integer. A braid β ∈ B+
n contains an (n − 1, v)-chain if

and only if its n-body contains a letter σv.

Proof idea. Let hn(β) and bn(β) be represented by two braid words w ∈ A∗
n−1 and w′ ∈ A∗

n.
If their concatenation ww′ contains an (n − 1, v)-chain, the leftmost letter of that chain must
already belong to w′, and so must its rightmost letter σv. Conversely, if bn(β) contains a
letter σv, so does w′, and each occurrence of a letter σi ̸= σn−1 in w′ must be preceded by
an occurrence of the letter σi+1, thereby proving that w′ contains an (n − 1, v)-chain. ◀

To obtain the desired characterisation, we introduce the notions of left and right sets of a
braid.

▶ Definition 7. The left set of a braid β is defined as the set L(β) = {i : σi ⩽L β}, and the
right set of β is defined as the set R(β) = {i : β ⩾R σi}.

▶ Lemma 8. Let v ⩽ n − 1 be an integer and β ∈ B+
n be a braid such that L(β) = {n − 1}.

Either β is a chain or there exists an integer v ⩽ n − 1 such that σ(n−1)→vσv is a prefix of
each word representing β.

Proof idea. Assuming that β is not a chain, let σ(n−1)→vσu be a left divisor of β in which v

is chosen minimal. If u ⩾ v + 1, then u − 1 ∈ L(β), which is impossible; Lemma 6 proves
that u ⩾ v − 1, and the minimality of v forbids the case u = v − 1. ◀

The interest of these notions arises from the following result, which relates each
braid β ∈ B+

n with braids βσn→v ∈ B+
n+1:

▶ Proposition 9. Let v ⩽ n be an integer. A braid β ∈ B+
n contains an (n − 1, v − 1)-chain

if and only if L(β) = L(βσn→v).

Proof idea. If β contains no (n − 1, v − 1)-chain, bn(β) contains no letter σv−1: it is
the commutative product of two braids γ and γ′, with generators in {σ1, . . . , σv−2}
and {σv, . . . , σn−1}, respectively. But then, βσn→v = hn(β)σn→vγϕ↑(γ′), where the
morphism ϕ↑ maps each generator σi such that i ⩾ v to the generator σi+1. Since hn(β)
belongs to B+

n−1, it commutes with σn, which ends up left-dividing βσn→v, but not β.

AofA 2024
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Conversely, if β contains an (n − 1, v − 1)-chain, every word w representing βσn→v

both contains an (n − 1, v − 1)-chain and rigidly contains an (n, v)-chain. However, we
can prove that each occurrence of a letter σi of the former chain lies to the left of the
occurrence of the letter σi+1 of the latter chain. Thus, w⩾1 rigidly contains an (n, v)-chain,
and Lemma 5 proves that the braid β′ represented by w⩾1 is right-divided by σn→v. This
means that β = w0(β′σ−1

n→v) is left-divided by w0, this reasoning being valid for each
letter w0 ∈ L(βσn→v). ◀

From these results, we can derive the following characterisation of the alternating normal
form Altn(B+

n ).

▶ Theorem 10. A word w ∈ A∗
n belongs to Altn(B+

n ) if and only if n = 2 or n ⩾ 3 and w

has a (necessarily unique) factorisation w = w(0)ϕn(w(1))ϕ2
n(w(2)) · · · ϕk

n(w(k)) such that:
1. each of the words w(0), w(1), . . . , w(k) belongs to Altn−1(B+

n−1);
2. each of the words ϕn−1(w(1)), ϕn−1(w(2)), . . . , ϕn−1(w(k)) belongs to Altn−1(B+

n−1) and
starts with the letter σn−2;

3. for all i ⩾ 1 and v ⩾ 1, if σ(n−1)→v is a prefix of ϕn(w(i+1))ϕ2
n(w(i+2)) · · · ϕk−i

n (w(k)),
the word w(i) contains an (n − 2, v − 1)-chain.

Proof idea. Given a braid β ∈ B+
n such that w = Altn(β), the factors w(i) are the n-heads

of the braids β(0), β(1), . . . given by β(0) = β and β(i+1) = ϕn(bn(β(i))). Statement 1 is true
by induction on n. Then, for all i ⩾ 1, we have L(hn(β(i))) ⊆ L(β(i)) = {1}; thus, w(i) starts
with the letter σ1, and ϕn exchanges the alternating normal forms of the braids hn(β(i))
and ϕn(hn(β(i))). In other words, ϕn−1(w(i)) starts with the letter σn−2 and coincides with
the word Altn−1(ϕn−1(hn(β(i)))), which proves statement 2. Finally, when i ⩾ 1, an induction
on k proves that w(i)ϕn(w(i+1)) · · · ϕi+k

n (w(i+k)) = Altn(β(i)), and since L(β(i)) = {1}, it
must coincide with its (non-empty) subset L(w(i)), thereby making statement 3 a consequence
of Lemma 6 and Proposition 9.

Conversely, given a factorisation w(0)ϕn(w(1)) · · · ϕk
n(w(k)) of a word w ∈ A∗

n that makes
statements 1 to 3 valid, we prove by induction on n and k that each word w(i) is the
alternating normal form of the n-head of the braid β(i), where β(0) is the word represented
by w and β(i+1) = ϕn(bn(β(i))). The induction hypothesis proves that both words w′ = w(0)

and w′′ = w(1)ϕn(w(2)) · · · ϕk−1
n (w(k)) are the alternating normal forms of braids β′ ∈ B+

n−1
and β′′ ∈ B+

n , and it remains to prove that L(β′′) ⊆ {1}, which we do by induction on k.
This is vacuously true when k = 0 and, when k ⩾ 1, the induction hypothesis ensures

that w(1) and w(2)ϕn(w(3)) · · · ϕk−2
n (w(k)) are the alternating forms of hn(β′′) and ϕn(bn(β′′)).

Since L(bn(β′′)) ⊆ {n − 1}, Lemma 8 proves that sn(bn(β′′)) coincides with a chain σn−1→v

that is a prefix of each word representing bn(β′′), including ϕn(w(2))ϕ2
n(w(3)) · · · ϕk−1

n (w(k)).
Thus, statement 3 proves that w(1), or, equivalently, hn(β′′), contains an (n − 2, v − 1)-chain.
Consequently, since L(β′′) = L(hn(β′′)bn(β′′)) = L(hn(β′′)sn(bn(β′′))) = L(hn(β′′)σn−1→v),
Proposition 9 proves that L(β′′) = L(hn(β′′)). But ϕn−1(w(1)) is the alternating normal form
of a braid that must coincide with ϕn−1(hn(β′′)), and its first letter is σn−2, which means
that the (n − 1)-head of ϕn−1(hn(β′′)) is empty, i.e., that L(ϕn−1(hn(β′′)) ⊆ {n − 2}. It
follows, as desired, that L(hn(β′′)) ⊆ {1}. ◀

3 Minimal automata

In this section, we explicitly build the minimal automaton of the language Ln = Altn(B+
n ).

In order to do so, a crucial step lies in building the minimal automaton of the
language Altn(bn(B+

n )). Noting that bn(B+
n ) coincides with the set of braids β ∈ B+

n
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Figure 4 Minimal automata A ′
1 to A ′

3 .

such that L(β) ⊆ {σn−1}, it turns out that ϕn(Altn(β)) = Altn(ϕn(β)) whenever β ∈ bn(B+
n ).

Thus, we also look at the language L ′
n = Altn(ϕn(bn(B+

n ))), which is connected to Ln by
the relation Ln = Ln−1ϕn(L ′

n). In particular, L ′
n is the language of alternating normal

forms of braids β ∈ B+
n such that L(β) ⊆ {σ1}; viewing B+

n as a subset of B+
n+1 proves

that L ′
n ⊆ L ′

n+1, which is the reason why we chose to study L ′
n and not its conjugate ϕn(L ′

n).
Both languages Ln and L ′

n are prefix-closed: when they contain a word w, they
also contain all its prefixes. Thus, we identify the minimal automaton of Ln with a
tuple An = (Vn,An, δn, ın), in which Vn denotes the set of states, all of which are accepting;
An is the alphabet; δn : Vn × An 7→ Vn denotes the transition function; and ın ∈ Vn

denotes the initial state of the automaton. Similarly, we identify the minimal automaton
of L ′

n with a tuple A ′
n = (V ′

n,An, δ′
n, ı′

n), and we shall first focus on constructing the
automata A ′

n. However, in order to define this latter automaton, we will first define an
auxiliary automaton A ′′

n = (V ′′
n ,An, δ′′

n, ı′′
n) that will recognise L ′

n but not be minimal; the
automaton A ′

n will be built by minimising A ′′
n .

The languages L ′
1 and L ′

2 consist of the empty word and of all words on the
alphabet A2 = {σ1}, respectively. Then, when n ⩾ 3, we focus on building the automata An

and A ′
n based on the automata An−1 and A ′

n−1. Of course, we may use Theorem 10 directly
to compute any automaton An; for instance, L ′

3 consists of words of the form (σ1σ∗
1σ2

2σ∗
2σ1)∗

and their prefixes, from which we deduce the automaton A ′
3 given in Figure 4.

Below, we proceed in four steps: first, we present a few preliminary results; second,
we construct an automaton A ′′

n that recognises the language L ′
n; third, we construct the

minimal automaton A ′
n of L ′

n; fourth, we construct the minimal automaton An of Ln itself.

3.1 Preliminary results
When n ⩾ 3, and due to Theorem 10, a word w ∈ A∗

n belongs to L ′
n if and only if w has a

factorisation w = w(0)ϕn(w(1)) · · · ϕk
n(w(k)) such that:

2.’ each word w(i) belongs to L ′
n−1;

3.’ for all i ⩾ 0 and v ⩾ 1, if σ(n−1)→v is a prefix of ϕn(w(i+1))ϕ2
n(w(i+2)) · · · ϕi+k

n (w(k)), the
word w(i) contains a (n − 2, v − 1)-chain.

These are variants of criteria 2 and 3. Criterion 3’ also requires, while reading a
word w ∈ L ′

n−1, recalling the least integer v (if any) for which w contains an (n − 2, v)-
chain. This integer is denoted by chn−1(w); when w contains no (n − 2, v)-chain at all, i.e.,
when w ∈ A∗

n−2, we set chn−1(w) = n − 1. In particular,
i) if k = 0, we simply have chn−1(w) = n − 1;
ii) if k = 1, the integer chn−1(w) may vary between 2 and n − 2;
iii) if k ⩾ 2, the word w contains the (n − 2, 1)-chain σ(n−2)→1, and chn−1(w) = 1.

The following results allow determining chn−1(w) in case ii).
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▶ Lemma 11. Let w be a word belonging to Ln, and let σu be its rightmost letter, or σu = σ1
if w is empty. For all v ⩽ n − 1, the word wσu→v also belongs to Ln; furthermore, if w

belongs to L ′
n, so does wσu→v. Finally, if n ⩾ 2 and w is a non-empty word in L ′

n, there
exist at least two integers x and y such that wσx and wσy belong to L ′

n+1.

Proof. We prove both statements of Lemma 11 separately. First, let ℓ be the length of w,
and let w′ = wσu→v. The first statement being immediate when ℓ = 0, we assume that ℓ ⩾ 1.
Since the braid word σuσu→v is the only representative of its braid, we have sn(σuσu→v) = σu.
A backward induction on i proves then that sn(w⩾i) = sn(w′

⩾i) for all i ⩽ ℓ − 1. It follows
from the remark 3) of page 4 that wσu→v ∈ Ln, and that L(wσu→v) = L(w), thereby proving
that wσu→v ∈ L ′

n if w ∈ L ′
n.

We prove the last statement by induction on n. If n = 2, the word w is of the form w = σℓ
1,

and wσ1 and wσ2 belong to L ′
3. If n ⩾ 3, let w = w(0)ϕn(w(1)) · · · ϕk

n(w(k)) be the
factorisation of w given in Theorem 10. If k = 0, the word w belongs to L ′

n−1, and
the induction hypothesis also proves that there exist two integers x and y for which wσx

and wσy belong to L ′
n. Otherwise, k ⩾ 1, and w both ends with some letter σu and contains

the letter σn−1, which proves that both wσu and wσn belong to L ′
n+1. ◀

▶ Lemma 12. Let w be a word belonging to both L ′
n−1 and L ′

n−2ϕn(L ′
n−2), and let w(0) be

its longest prefix belonging to A∗
n−2:

if w has a factorisation of the form w = w(0)σ(n−2)→v, then chn−1(w) = v;
otherwise, let v be the least integer such that wσv ∈ L ′

n−1: we have chn−1(w) = v + 1.

Proof. The first part of Lemma 12 being immediate, we focus on the second part. In that
case, let w(1) be the suffix of w such that w = w(0)w(1), and let β ∈ B+

n−1 be the braid
represented by w. By construction, w(1) belongs to ϕn−1(A∗

n−2), and w(1) = Altn−1(bn−1(β)).
Furthermore, by Lemma 6, chn−1(w) is simply the least letter of w(1), say, y.

In particular, when z ⩽ y − 2, the word wσz contains no (n − 2, z)-chain, and Lemma 6
prevents it from belonging to L ′

n−1. Conversely, the word ϕn−1(w(1)σy−1) = ϕn−1(w(1))σn−y

satisfies both criteria 2’ and 3’ that mark it as a member of L ′
n+1−y, and thus of L ′

n−1.
Moreover, w(1) is not a chain, so that the maximal chains that are prefixes of w(1) and
of w(1)σy−1 coincide with each other. Consequently, wσy−1 itself belongs to L ′

n−1. ◀

As a consequence of Lemma 12, for each word w in L ′
n−1, the integer chn−1(w) depends

only on whether σn−2σ1 is a subword of w and, if not, on the residual of w (i.e., on the
set {x ∈ A∗

n−1 : wx ∈ L ′
n−1}). For each automaton A = (V,An−1, δ, ı) recognising the

language L ′
n−1, the residual of a word w ∈ L ′

n−1 depends only on the state s = δ(ı, w) of A

to which w is mapped. Thus, below, for each state s of A ′
n−1, we simply note chn−1(s) the

common value of the integers chn−1(w) when δ′(ı′
n−1, w) = s and σn−2σ1 is not a subword

of w; if no such word w exists, we set chn−1(s) = 1.

3.2 Construction and correctness of the automaton A ′′
n

Here, we give a construction of an automaton A ′′
n that recognises the language L ′

n. This
automaton looks like its minimal equivalent A ′

n represented in Figure 5 when n = 4. The
semantics of its states is given in the beginning of the proof of Proposition 13.

▶ Proposition 13. Given an integer n ⩾ 4, let A ′
n−1 = (V ′

n−1,An−1, δ′
n−1, ı′

n−1) be the
minimal automaton recognising L ′

n−1. The language L ′
n is recognised by the (deterministic,

non-minimal) automaton A ′′
n = (V ′′

n ,An, δ′′
n, ı′′

n) defined as follows. The state set of A ′′
n is

given by V ′′
n = ((V ′

n−1×{⊤, ⊥}) ∪ P ′′
n )×{Idn, ϕn}, where we set P ′′

n = {pj
i : 2 ⩽ j ⩽ i ⩽ n−1};

its initial state is ı′′
n = (ı′

n−1, ⊥, Idn); and its transition function δ′′
n is given by:
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a. δ′′
n((s, f, Idn), σi) = (δ′

n−1(s, σi), f, Idn) when chn−1(s) ̸= 2 or i ̸= 1;
b. δ′′

n((s, f, Idn), σ1) = (δ′
n−1(s, σ1), ⊤, Idn) when chn−1(s) = 2;

c. δ′′
n((pj

i , Idn), σn+1−i) = (pj
i−1, Idn) when pj

i−1 ∈ Pn;
d. δ′′

n((pj
i , Idn), σn−i) = (δ′

n−1(ı′
n−1, σ1→(n−i)σn−i), ⊥, Idn) when pj

i ∈ Pn;
e. δ′′

n((s, ⊥, Idn), σn−1) = (pj
n−1, ϕn) when 3 ⩽ j ⩽ n − 1 and chn−1(s) = j − 1;

f. δ′′
n((s, ⊤, Idn), σn−1) = (p2

n−1, ϕn);
g. δ′′

n((s, f, ϕn), σi) = (s′, f′, ϕk+1
n ) when δ′′

n((s, f, Idn), σn−i) = (s′, f ′, ϕk
n);

h. δ′′
n((s, f, ϕk

n), σi) is not defined in all other cases.

Proof. Let w = w(0)ϕn(w(1)) · · · ϕk
n(w(k)) be the factorisation a word w ∈ L ′

n given in
Theorem 10. Here is the intended semantics of the state δ′′

n(ı′′
n, w) to which w is sent. The

state δ′′
n(ı′′

n, w) shall be of the form (s, f, ϕk
n) or (pj

i , ϕk
n), thereby indicating whether the

factorisation of w contains an odd or an even number of factors. In general, i.e., when k = 0
or when ϕn(w(k)) is not a chain, we shall set s = (δ′

n−1(ı′
n−1, w(k)), f, ϕk

n), where f is a boolean
flag set to f = ⊤ (i.e., f = true) if w(k) contains an (n−2, 1)-chain, and f = ⊥ (i.e., f = false)
otherwise. However, if k ⩾ 1 and ϕn(w(k)) is an (n − 1, v) chain, let x = chn−1(w(k−1)): the
state δ′′

n(ı′′
n, w) shall be the pair (px+1

v , ϕk
n), thereby indicating that w(k) is an (n − 1, v)-chain

that can be extended to form an (n − 1, x + 1)-chain, but not more.
We can now prove by induction on ℓ that, for each word w ∈ L ′

n of length ℓ, the
state δ′′

n(ı′′
n, w) has the intended semantics, thereby demonstrating that A ′′

n recognises the
language L ′

n. The base case ℓ = 0 follows from our choice for ı′′
n; now, assuming that ℓ ⩾ 1

and that ℓ − 1 satisfies the inductive property, we wish to prove that ℓ also satisfies this
property, by considering the cases a and h separately.

Case a is the general case obtained when facing a state δ′′
n(ı′′

n, w) for which k is even:
reading a letter σi will just let the word w(k) grow inside the language L ′

n−1, without
changing the flag f or parity of k. By contrast, case b happens when f changes from ⊥ to ⊤:
indeed, the word w(k) already contained an (n − 2, 2)-chain, and adding a letter σ1 yields
an (n − 2, 1)-chain. Thus, the transition labelled σ1 targets the state (δ′

n−1(s, σ1), ⊤, Idn)
instead of the state (δ′

n−1(s, σ1), ⊥, Idn) that might otherwise have been expected.
Then, cases c and d focus on transitions leaving a state (pj

i , Idn): either we read
the letter σn+1−i (in case c) and we just transformed the (n − 2, i)-chain ϕn(w(k)) into
an (n − 2, i − 1)-chain ϕn(w(k))σi−1, or we read the letter σn−i (in case c), in which
case w(k)σn−i stops being a chain, and we should just remember the same amount of
information as if we were reading the word w(k)σn−i instead of w(0)ϕn(w(1))w(2) · · · w(k)σn−i.

Cases e and f focus on transitions labelled σn−1: they target the state (px+1
n−1s, ϕn),

where x is the least integer such that w(k) contained an (n − 2, x)-chain; that integer x is
given by Lemma 12 in case e, where w(k) contains no (n − 2, 1)-chain; it is just 1 in case f.

Finally, case g replicates all cases a to f, but when k is odd instead of even. And
case h consists in observing that cases a to g already cover all possible transitions of the
automaton A ′′

n . ◀

3.3 Construction, correctness and minimality of the automaton A ′
n

When n ⩾ 4, the automaton A ′′
n is not minimal. A first reason is that some states have the

same residuals, and should thus be merged; we recall that the residual of a state s ∈ V ′′
n

is the language L ′
n(s) of those words w ∈ A∗

n for which δ′′
n(s, w) exists and is accepting. A

second reason is that, when n ⩾ 5, some states of A ′′
n are not even accessible. Thus, we shall

transform A ′′
n into the minimal automaton A ′

n of L ′
n.
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▶ Definition 14. Given an integer n ⩾ 4, let A ′′
n = (V ′′

n ,An, δ′′
n, ı′

n) be the automaton built
in Proposition 13. The automaton A ′

n = (V ′
n,An, δ′

n, ı′
n) is defined from A ′′

n by
merging the states (ı′

n−1, ⊥, ϕk
n) and (pn−1

n−1, ϕk
n) for each ϕk

n ∈ {Idn, ϕn}; this amounts to
deleting the state (pn−1

n−1, ϕk
n) and redirecting toward (ı′

n−1, ⊥, ϕk
n) those transitions of A ′′

n

that were targeted toward (pn−1
n−1, ϕk

n);
deleting states of the form ((pj

i , Idn−1), ⊥, ϕk
n), where pj

i ∈ P ′
n−1 and ϕk

n ∈ {Idn, ϕn}.
In particular, the actual state set of A ′

n is V ′
n = ((V ′

n−1×{⊥})∪(V ′
n−1×{⊤})∪P ′

n)×{Idn, ϕn},
where P ′

n = P ′′
n \ {pn−1

n−1} and V
′
n−1 = V ′

n−1 \ (P ′
n−1 × {Idn−1}).

The reason why we shall merge the states ı′′
n = (ı′

n−1, ⊥, Idn) and (pn−1
n−1, Idn) is that

both states have only one outgoing transition, labelled by σ1, and whose target state
is δ′′

n(ı′′
n, σ1). Similarly, we shall merge the states (ı′

n−1, ⊥, ϕn) and (pn−1
n−1, ϕn). Below, we

will consider (pn−1
n−1, ϕk

n) as an alias for (ı′
n−1, ⊥, ϕk

n).
Then, we shall also delete states of the form ((pj

i , Idn−1), ⊥, ϕk
n) because they are not

accessible. Indeed, by construction of δ′′
n−1, every path in A ′′

n−1 (or in A ′
n−1) and ending

in such a state (pj
i , Idn−1) must have previously visited a state of the form (s, ϕn−1).

Thus, every word w for which δ′
n−1(ı′

n−1, w) = (pj
i , Idn−1) already contains an (n − 2, 1)-

chain, thereby proving that δ′′
n(ı′

n, w) = ((pj
i , Idn−1), ⊤, Idn). It follows, as announced,

that ((pj
i , Idn−1), ⊥, Idn) is inaccessible, and we prove similarly that ((pj

i , Idn−1), ⊥, ϕn) is
also inaccessible.

An example of this construction, when n = 4, is given in Figure 5, where we start from
the 4-state automaton A ′

3 , whose states are denoted by s1 to s4, and obtain the 20-state
automaton A ′

4 . We wish we had represented the automaton A ′
5 , thereby showing why

replacing V ′
n−1 by V

′
n−1 is important, but A ′

5 contains 86 states, which is difficult to read.
For the sake of readability, each state (si, f, ϕk

n) is denoted by sf
i, with a bar when ϕk

n = ϕn,
i.e., when k is odd. We added the dangling states (pj

i , ϕk
n), which are also denoted by pj

i ,
with a bar when ϕk

n = ϕn.
While the above paragraphs prove that the automaton A ′

n recognises the same language
as A ′′

n , i.e., the language L ′
n, we shall now prove that its states are accessible and have

pairwise distinct residuals. Once again, we proceed by induction and, since this result is
clear when n ⩽ 3, we assume that n ⩾ 4 and that A ′

n−1 is already known to be minimal.
In Lemma 15, we prove not only that each state of A ′

n is accessible, but also most states
can be reached via a word that does not contain any (n − 1, 1)-chain. This will be crucial
toward proving, in Lemma 16, that for any two distinct states s and s′, there exists a word
that can be read from s but not from s′, or from s′ but not from s.

▶ Lemma 15. The automaton A ′
n is strongly connected. Furthermore, for each state s in V

′
n,

i.e., each state s distinct from the states (pj
i , Idn) for which pj

i ∈ P ′
n, there exists a word w

that does not contain any (n − 1, 1)-chain and such that δ′
n(ı′

n, w) = s.

Proof. The result being visibly correct when n ⩽ 3, let us assume that n ⩾ 4. Given
a state s ∈ V ′

n−1, the induction hypothesis ensures that there exists a word w ∈ L ′
n−1

without (n − 1, 1)-chain for which δ′
n−1(ı′

n−1, w) = s. Since A ′
n−1 is strongly connected, it

also tells us that there exists a non-empty word w′ ∈ L ′
n−1 for which δ′

n−1(ı′
n−1, σ1w′) = ı′

n−1;
it follows that δ′

n(ı′
n, w′′) = (ı′

n−1, ⊤, Idn), where w′′ = σ1→(n−2)σ(n−2)→1w′.
Finally, for each state pj

i ∈ P ′
n, the word wj

i = σ1→(n−2)σ(n−2)→(j−1)σ(n−1)→i obeys the
relation δ′

n(ı′
n, wj

i ) = (pj
i , ϕn); identifying the states (ı′

n−1, ⊥, ϕn) and pn−1
n−1 also makes this

construction valid when pj
i = pn−1

n−1. We complete the proof by observing that:
(s, ⊥, Idn) = δ′

n(ı′
n, w);

(s, ⊤, Idn) = δ′
n(ı′

n, w′′w);
(pj

i , ϕn) = δ′
n(ı′

n, wj
i ), including when pj

i = pn−1
n−1, i.e., when (pj

i , ϕn) = (ı′
n−1, ⊥, ϕn);
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Figure 5 Automaton A ′
4 , which contains four copies of A ′

3 (circled in gray, two of which miss an
edge) and a few dangling states pj

i . Erasing dashed edges gives us an automaton that recognises the
language L ′

4 ∩ (L ′
3ϕ4(L ′

3)), in which p2
2 and p2

3 are no longer accessible, and whose states have been
split into four classes, coloured in brown, blue, green and red: a state s lies in the blue (resp., green,
red) class when ch4(w) = 2 (resp., 3, 4) for all the words w ∈ L ′

3ϕ4(L ′
3) such that δ′

4(ı′
4, w) = s. Once

a dashed edge has been taken, we just have ch4(w) = 1. Similarly, we have ch3(w) = 1 (resp., 2, 3) for
all the words w ∈ L ′

3 such that δ′
4(ı′

4, w) = s when s ∈ {s⊤
1 , s⊤

2 , s⊤
3 , s⊤

4 } (resp., {s⊥
3 , s⊥

4 }, {s⊥
1 , s⊥

2 }).

(s, ⊥, ϕn) = δ′
n((ı′

n−1, ⊥, ϕn), ϕn(w));
(s, ⊤, ϕn) = δ′

n((ı′
n−1, ⊥, ϕn), ϕn(w′′w));

(pj
i , Idn) = δ′

n((ı′
n−1, ⊥, ϕn), ϕn(wj

i )), including when (pj
i , Idn) = (ı′

n−1, ⊥, Idn) = ı′
n. ◀

▶ Lemma 16. The states of A ′
n have pairwise distinct residuals.

Proof. Let s and s′ be distinct states of A ′
n, and let w and w′ be non-empty words in L ′

n

such that δ′
n(ı′

n, w) = s and δ′
n(ı′

n, w′) = s′. In addition, let w(0)ϕn(w(1)) · · · ϕk
n(w(k))

and w′ (0)ϕn(w′ (1)) · · · ϕℓ
n(w′ (ℓ)) be their factorisations given by Theorem 10; we assume

that w and w′ were chosen so that k and ℓ are minimal.
We first prove that the states of the form (t, f, Idn) or (pj

i , Idn) have pairwise distinct
residuals. We call such states “Idn-states”, as opposed to “ϕn-states”:

If s is of the form (pi
i, Idn), including if i = n − 1, the only letter in L ′

n(s) is σn−i. On the
contrary, L ′

n(s′) contains at least two letters, both if s′ is of the form (pj
i , Idn) with i ̸= j,

since two such letters are σn−i or σn+1−i, or if s′ is of the form (t′, f′, Idn), because of
Lemma 11 (which we can use because we forced w and w′ to be non-empty). Thus, each
state (pi

i, Idn) has a residual distinct from all other Idn-states.
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If s is of the form (pj
i , Idn), it is the only state such that δ′

n(s, σ(n+1−j)→(n−i)) = (pi
i, Idn).

Thus, the state δ′
n(s′, σ(n+1−j)→(n−i)) either fails to exist or does not coincide with (pi

i, Idn):
in both cases, s and s′ have distinct residuals.
If both s and s′ are of the form (t, f, Idn) and (t′, f ′, Idn), either t ̸= t′, in which case the
induction hypothesis proves that L ′

n(s) ∩ L ′
n−1 = L ′

n−1(t) ̸= L ′
n−1(t′) = L ′

n(s′) ∩ L ′
n−1,

or f ̸= f ′, in which case the chain σ(n−1)→2 belongs to exactly one of the residuals L ′
n(s)

and L ′
n(s′).

Similarly, all ϕn-states have distinct residuals.
Finally, assume that s is an Idn-state and that s′ is a ϕn-state. Let σu be the last letter of w,

with u ⩽ n−2, and let z = chn−1(s). We have δ′
n(s, σu→(n−1)) = (pz+1

n−1, ϕn). On the contrary,
either the state s1 = δ′

n(s′, σu) is a ϕn-state, in which case the state s2 = δ′
n(s′, σu→(n−2)) is

also a ϕn-state and δ′
n(s′, σu→(n−1)) = δ′

n(s2, σn−1) differs from (pz+1
n−1, ϕn), or s1 is an Idn-

state of the form (pi
n−1, Idn), in which case δ′

n(s′, σu→(n−1)) = δ′
n(s1, σ(u+1)→(n−1)) is also

an Idn-state. ◀

As a consequence of Lemmas 15 and 16, we obtain the following result.

▶ Proposition 17. The automaton A ′
n is the minimal automaton of the language L ′

n.

3.4 Construction, correctness and minimality of the automaton An

We finally construct the automata An as follows.

▶ Definition 18. First, A1 = A ′
1 is the automaton with one unique (necessarily initial) state

and no transition, and A2 = A ′
2 is the automaton with one unique state and one loop labelled

by σ1. Then, when n ⩾ 3, the state set and initial state of An are defined by Vn = Vn−1 ∪ V ′
n

and ın = ın−1, and the transition function δn is defined as follows:
δn(s, σu) = δn−1(s, σu) when s ∈ Vn−1 and u ⩽ n − 2;
δn(s, σn−1) = δ′

n(ı′
n, σ1) when s ∈ Vn−1;

δn(s, σu) = δ′
n(s, σn−u) when s ∈ V ′

n

The relation Ln = Ln−1ϕn(L ′
n) proves that this automaton recognises the set Ln. Then,

we prove by induction that each state s of An is accessible: when s ∈ Vn−1, this is just the
induction hypothesis, and when s ∈ V ′

n, Lemma 15 proves that s is accessible from δ′
n(ı′

n, σ1),
which is itself accessible via the one-letter word σn−1.

Our last task consists in proving that any two states s and s′ of An have pairwise
distinct residuals. When s and s′ belong to Vn−1, this is the induction hypothesis, and
when s and s′ belong to V ′

n, this is the irreducibility of A ′
n. Finally, when s ∈ Vn−1

and s′ ∈ V ′
n, let w be a word such that δn(ın, w) = s, and let σu be its last letter,

or σu = σ1 in case w is empty. Then, let w′ = σu→1. Lemma 11 proves that ww′

belongs to Ln−1, so that δn(s, w′σn−1) = δ′
n(ı′

n, σ1); this is a state of A ′
n that differs from

all states (pj
i , Idn). By contrast, if they ever exist, the state δn(s′, w′) = δ′

n(s′, ϕn(w′)) is
a ϕn-state, so that δn(s′, w′σn−1) = δ′

n(δ′
n(s′, ϕn(w′)), σ1) is a state (pi

n−1, Idn) – which may
be the state (pn−1

n−1, Idn) = ı′
n. From the above discussion results the following theorem.

▶ Theorem 19. The automaton An is the minimal automaton of the language Altn(B+
n ).

4 Size of the minimal automata

This final section is devoted to evaluate the size of the minimal automaton An of the
language Altn(B+

n ), both in terms of states and of transitions.
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▶ Theorem 20. The automaton An has sn states and tn transitions, where s1 = 1, t1 = 0,
and

sn = 25 × 22n−3 − 9n2 + 3n + 7
27 and tn = (225n − 290)22n−5 − 9n3 − 9n2 + 93n − 77

81

whenever n ⩾ 2.

Proof. Below, let s′
n and t′

n denote the number of states and of transitions of the
automaton A ′

n. First, we have s′
1 = s′

2 = 1, s′
3 = 4 and t′

1 = 0, t′
2 = 1, t′

3 = 6. Then,
when n ⩾ 3, note that |P ′

n| = |P ′
n−1| + (n − 2). It follows that

s′
n = |V ′

n| = 2((|V ′
n−1| − |P ′

n−1|) + |V ′
n−1 + |P ′

n|) = 4s′
n−1 + 2(n − 2),

and an immediate induction proves that s′
n = (25 × 22n−5 − 6n + 4)/9 for all n ⩾ 3.

Furthermore, each state (pj
i , ϕk

n) is of out-degree 2 when i > j, and 1 when i = j; the
latter cases occurs n − 3 times, and thus, 2|P ′

n| − (n − 3) transitions leave a state (pj
i , Idn). In

addition, those Idn-states of A ′
n from which one can read a letter σn−1 are the states (s, f, Idn)

for which f = ⊤ or s is a ϕn−1-state of A ′
n−1; there are s′

n−1 states in the first family,
and s′

n−1/2 states in the second family but not in the first one. Consequently, in total, there
are

(t′
n−1 − (2|P ′

n−1| − (n − 4))) + t′
n−1 + (2|P ′

n| − (n − 3)) + 3s′
n−1/2

transitions leaving Idn-states, and t′
n = 4t′

n−1 + 3s′
n−1 + 2(2n − 5). Hence, another induction

proves that t′
n = ((25n − 35)22n−7 − 2n + 4)/3 for all n ⩾ 3.

Finally, s1 = s2 = 1, t1 = 0 and t2 = 1, whereas sn = sn−1 +s′
n and tn = tn−1 +sn−1 + t′

n

for all n ⩾ 3. Thus, an easy induction proves once again that sn = (25×22n−3−9n2+3n+7)/27
and tn = ((225n − 290)22n−5 − 9n3 − 9n2 + 93n − 77)/81 whenever n ⩾ 2. ◀

5 Open problems and perspectives

The above study of the minimal automaton leaves wide open a few questions, which we
intend to explore in follow-up work.

Linear-time recognition algorithm

Precomputing in time O(sn + tn) = O(n2n) the automaton An gives us an algorithm that
will then detect in time O(ℓ) whether an ℓ-letter word w ∈ A∗

n is in alternating normal form.
However, when ℓ is small, this precomputation may seem prohibitively costly. Instead, our
recursive description of the automata An and A ′

n also provides us with a simple algorithm
that will run in time O(nℓ). Indeed, we can simulate the execution of a path in An as follows:
1. a pointer indicates which is the largest letter σk−1 we have read so far, which means that

we are currently reading a word in the automaton A ′
k ;

2. each state of A ′
k can be represented by a list of the form s = (pv

u, ϕ?
i , fi+1, ϕ?

i+1, . . . , fk, ϕ?
k),

where pv
u ∈ P ′

i , each flag fj is a boolean ⊥ or ⊤, and each morphism ϕ?
j is either Idj or ϕj ;

3. our recursive description of the transition function δn makes it easy to compute in
time O(n) the list that represents the state δn(s, σa) for all letters σa ∈ An, provided
that this state is well-defined.

AofA 2024
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Automaticity

Another natural question concerns the automaticity of the alternating normal form, which
can be summarised as follows. For each generator σi ∈ An, we wish to recognise those pairs
of words (w, w′) representing braids β and β′ such that β = σiβ

′ (this is left automaticity)
or β = β′σi (this is right automaticity). In practice, the words w and w′ having distinct
lengths, the pair (w, w′) shall be represented as a word on the alphabet (An ∪{•})2, where • is
a padding symbol; synchronous automaticity requires that the only padding symbol should be
the rightmost symbol of w′, and asynchronous automaticity allows placing padding symbols
wherever we want. It is shown in [5, Proposition 6.10] that the alternating normal form
is not asynchronously left-automatic. It might still be right-automatic; this should be the
subject of a subsequent article.

Rotating normal form

A close cousin to the alternating normal form is the rotating normal form, already mentioned in
the introduction. This normal form is not defined on the standard braid monoid B+

n itself, but
on the dual braid monoid B+∗

n positively generated by the generators σi,j = (σ(i+1)→j)−1σi→j .
This monoid enjoys properties similar to the properties a) to e) of page 2. However, there,
the Garside element is a braid δn for which the inner automorphism φn : β 7→ δ−1

n βδn is not
an involution of B+∗

n when n ⩾ 3, but is of order n.
Local criteria similar to Theorem 10 were found in [11], which help characterising words in

rotating normal form and proving that this normal form is regular. Nevertheless, the resulting
automaton is not yet guaranteed to be minimal, being analogous to our automaton A ′′

n rather
than to its minimal variant A ′

n. Thus, we intend to replicate our study of the alternating
normal form to the rotating normal form, possibly studying its right automaticity as well.

Random generation

In [13], V. Gebhardt and J. González-Meneses focus on the problem of generating uniformly at
random a braid β ∈ B+

n of length ℓ ⩾ 0. By identifying each braid β with the word MinLexn(β),
they reduce this problem to that of generating a word of length ℓ in a regular language,
whose minimal automaton they computed. A crucial step is then to compute the number
of paths of length ℓ, in the automaton, that may leave a given state s. Doing so efficiently
requires:

identifying the set of minimal forbidden patterns, i.e., the minimal words (for the prefix
ordering) that do not label a path leaving the state s;
applying inclusion-exclusion formulas based on that set;
using structural properties of that set to perform only polynomially many (and not
exponentially many) calls to inclusion-exclusion formulas.

As a result, they obtain an algorithm that generates β in time O(n4 log(n)ℓ3 log(ℓ)). It might
be possible to adapt this approach to efficiently count paths leaving a state of An, thereby
obtaining another sampling algorithm, with a similar complexity.
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