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Abstract
The height of a random PATRICIA tree built from independent, identically distributed infinite
binary strings with arbitrary diffuse probability distribution µ on {0, 1}N is studied. We show that
the expected height grows asymptotically sublinearly in the number of leaves for any such µ, but
can be made to exceed any specific sublinear growth rate by choosing µ appropriately.
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1 Introduction and results

The PATRICIA tree is a space efficient data structure for strings which improves on the trie.
For the purpose of this note it is sufficient to introduce these tree structures for binary strings:
Label the nodes of the complete infinite rooted binary tree by the elements of ∪∞

k=0{0, 1}k,
starting at the root with ∅ and left and right child of a node labelled v ∈ {0, 1}k with v0 and
v1, respectively. Here, for v ∈ {0, 1}k with v = (v1, . . . , vk) we abbreviate v as v = v1 . . . vk

and denote vi := v1v2 . . . vki for i = 0, 1.
The coming definitions are depicted in Figure 1. For distinct infinite binary strings

x1, . . . , xn ∈ {0, 1}N a finite tree called a trie (or radix search tree) to represent the strings
x1, . . . , xn is constructed by first associating with each xi the infinite path in ∪∞

k=0{0, 1}k

consisting of the nodes whose labels are the prefixes of xi. The node labelled with the
shortest such prefix that is not a prefix of any xj with j ∈ {1, . . . , n} \ {i} becomes a leaf in
the trie representing string xi for i = 1, . . . , n. The resulting tree, which is a finite binary
tree with n leaves, is the trie representing x1, . . . , xn. Next, starting from the trie, all vertices
with out-degree 1 (i.e. with exactly one child) are deleted and the resulting gaps are closed
by merging the two nodes which formed a deleted edge. This results in the PATRICIA
tree, which was introduced independently by Morrison [21] and Gwehenberger [12] and first
systematically analysed by Knuth [17]. The PATRICIA tree contains all the information
needed to retrieve the strings and to perform operations such as sorting, searching and
selecting; for broad expositions, see [18, 20, 25].
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25:2 Patricia’s Bad Distributions

PATRICIA trees have been analysed assuming various probabilistic models for the input
strings; where usually the infinite strings are assumed to be independent and identically
distributed over {0, 1}N. Note that atoms of such a distribution result in identical strings
with positive probability, and in this case the construction of the trie does not lead to a
finite tree. Hence, the law of the strings is usually assumed to be diffuse (non-atomic).
Special cases of such diffuse probability distributions have been considered in the analysis of
algorithms on strings such as the Bernoulli models, Markov model, dynamical sources or the
density model; see [23, 24, 6, 4, 14, 11, 19, 1, 15, 13] and the references given in these papers.
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Figure 1 On the left the trie for the strings 00000 . . ., 00001 . . ., 0100 . . ., 0101 . . ., 1100 . . ., and
1101 . . . is shown. Its leaves are the full black vertices, the indicated children of the full black vertices
do not belong to the trie. Vertices with out-degree 1 within the trie are indicated by arrows. On the
right the resulting PATRICIA tree by deleting corresponding edges is shown.

In the present note we focus on the height of a PATRICIA tree, which is the maximal
(graph) distance of any leave from the root. The asymptotic behavior of the height of tries and
PATRICIA trees under the Bernoulli models is covered by Pittel [23, 24] and Devroye [5, 7].
For example, for the height HsyB

n of the PATRICIA tree constructed from n independent
strings under the symmetric Bernoulli model, i.e. all bits being independent and Bernoulli( 1

2 )
distributed, Pittel [23] obtained as n → ∞ that

HsyB
n

log2 n
→ 1 almost surely.

This shows an asymptotic 50% improvement of the PATRICIA tree over the trie, for which
the limit constant for the same probabilistic model is 2 instead of 1. For general diffuse laws
concentration of the height of PATRICIA trees is studied (assuming only independence of
the infinite strings not necessarily identical distribution) by Devroye [8] based on results
from [2]; see also [16] for concentration of the height of PATRICIA trees in the Bernoulli
model.

While such studies aim to show that the height behaves well with respect to applications
from algorithms, Evans and Wakolbinger [9, 10] studied these random tree structures as
tree-valued transient Markov chains from the perspective of Doob–Martin boundary theory.
They asked (private communication) how high PATRICIA trees can grow for arbitrary diffuse
probability distributions of the strings (see [10, Section 5] for specific examples). The subject
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of the present note is to answer this question by Theorems 1 and 2: The expected height
grows always sublinearly, but can be made to exceed any fixed sublinear growth rate by the
choice of an appropriate diffuse law.

For a diffuse probability distribution µ on {0, 1}N and (Ξ(j))j∈N a sequence of independent
and identically distributed random strings with law µ we denote by Hµ

n the height of the
PATRICIA tree constructed from Ξ(1), . . . , Ξ(n).

▶ Theorem 1. For all diffuse probability distributions µ on {0, 1}N we have, as n → ∞, that

E[Hµ
n ]

n
→ 0, and Hµ

n

n
→ 0 almost surely.

▶ Theorem 2. For any sequence α = (αn)n∈N of positive numbers with αn → ∞ as n → ∞
there exists a diffuse probability distribution ν = ν(α) on {0, 1}N such that for all n sufficiently
large

E[Hν
n ]

n/αn
→ ∞, and Hν

n

n/αn
→ ∞ almost surely.

We call a law ν on {0, 1}N causing large expected heights E[Hν
n ] bad since such laws are

undesirable from the point of view of the efficiency of algorithms based on PATRICIA trees.
The remaining part of the present note contains proofs of these two theorems.
▶ Remark 1. For the density model, which is a subclass of the diffuse distributions on {0, 1}N,
the asymptotics of Theorem 1 were obtained by Devroye [6, page 419]. There, also bad
distributions with asymptotic properties as in our Theorem 2 are constructed for sequences
αn = nε with 0 < ε < 1.

2 Proofs

2.1 Proof of Theorem 1
We start with a technical observation:

▶ Lemma 3. Suppose µ is a diffuse probability distribution on {0, 1}N, and let Ξ = (ξi)i∈N
be random with law µ. Then for all ε there exists k = k(ε) ∈ N such that for any string
v = v1 . . . vk ∈ {0, 1}k, P(ξ1 . . . ξk = v1 . . . vk) < ε.

Proof. Suppose for a contradiction that there exists ε > 0 such that for all k ∈ N there
is a string v1 . . . vk ∈ {0, 1}k such that P(ξ1 . . . ξk = v1 . . . vk) ≥ ε. Then by a compactness
argument shown below there exists an infinite string v = (vi)i∈N ∈ {0, 1}N such that for all
k ∈ N, P(ξ1 . . . ξk = v1 . . . vk) ≥ ε. The events {ξ1 . . . ξk = v1 . . . vk} are decreasing in k, so
this implies that

P(Ξ = v) = lim
k→∞

P(ξ1 . . . ξk = v1 . . . vk) ≥ ε ,

which contradicts the assumption that µ is diffuse.
It remains to show the existence of the infinite string v = (vi)i∈N ∈ {0, 1}N such that

for all k ∈ N, P(ξ1 . . . ξk = v1 . . . vk) ≥ ε. Consider {0, 1} as a topological space with the
discrete topology (all subsets being open) and {0, 1}N as the product space with the product
topology. As a product of compact spaces {0, 1}N is compact. It is also a Hausdorff space.
The projections Πk : {0, 1}N → {0, 1}k given by

(vi)i∈N
Πk7−→ v1 . . . vk

AofA 2024
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are continuous for all k ∈ N. Hence, the set

Vk := {(vi)i∈N ∈ {0, 1}N |P(ξ1 . . . ξk = v1 . . . vk) ≥ ε}

=
⋃

v1...vk∈{0,1}k

P(ξ1...ξk=v1...vk)≥ε

Π−1
k ({v1 . . . vk})

is closed and thus compact in {0, 1}N. This implies that (Vk)k∈N is a nested sequence of
non-empty, compact sets. Now, Cantor’s intersection theorem implies

∞⋂
k=1

Vk ̸= ∅.

Any element v of
⋂∞

k=1 Vk has the desired property. ◀

Proof of Theorem 1. Fix a diffuse probability distribution µ on {0, 1}N. Let Ξ(j) = (ξ(j)
i )i∈N

for j ∈ N be independent, identically distributed with law µ and denote by Tn the PATRICIA
tree built from Ξ(1), . . . , Ξ(n).

We first show that Hµ
n /n → 0 almost surely. Fix any ε ∈ (0, 1/4). Let k = k(ε) be as

in Lemma 3, so that for any string v = v1 . . . vk ∈ {0, 1}k, if Ξ = (ξi)i∈N has law µ then
P(ξ1 . . . ξk = v1 . . . vk) < ε. To prove Hµ

n /n → 0 almost surely we first show that

P(∃ n0 ∀ n ≥ n0 : Hµ
n ≤ k + 2εn) = 1. (1)

Note that if the event

En,k :=
⋃

v1...vk∈{0,1}k

{|{1 ≤ j ≤ n : ξ
(j)
1 . . . ξ

(j)
k = v1 . . . vk}| ≥ 2εn}

does not occur then the subtrees of Tn rooted at nodes v ∈ {0, 1}k all have at most 2εn

leaves and so height less than 2εn; thus if En,k does not occur then Hµ
n ≤ k + 2εn. It follows

that

P(∃ n0 ∀ n ≥ n0 : Hµ
n ≤ k + 2εn)

≥ P(En,k occurs for at most finitely many values n)

= P
((

lim sup
n→∞

En,k

)c)
,

so to prove (1) it suffices to show that the probability of lim supn→∞ En,k is 0. For this,
simply note that

P(En,k) ≤
∑

v1...vk∈{0,1}k

P(|{1 ≤ j ≤ n : ξ
(j)
1 . . . ξ

(j)
k = v1 . . . vk}| ≥ 2εn)

≤ 2kP(Yn ≥ 2εn) ,

where Yn has the Binomial distribution Bin(n, ε); the second inequality holds since the events
that ξ

(j)
1 . . . ξ

(j)
k = v1 . . . vk are independent for distinct 1 ≤ j ≤ n, and each has probability

at most ε. A Chernoff bound then gives

P(En,k) ≤ 2ke−εn/2.

Since this is summable, it follows by the first Borel–Cantelli lemma that

P
(

lim sup
n→∞

En,k

)
= 0,
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hence we obtain (1). Now, note that for any m0 ∈ N,{
Hµ

n

n
→ 0

}
=

∞⋂
m=m0

∞⋃
n0=1

∞⋂
n=n0

{
Hµ

n

n
≤ 3

m

}
.

Thus, for ε = 1
m with fixed m ≥ m0 we can choose n sufficiently large so that k(ε)/n ≤ ε

and obtain

{Hµ
n ≤ k(ε) + 2εn} ⊂

{
Hµ

n

n
≤ 3

m

}
and see that (1) implies Hµ

n /n → 0 almost surely.
Finally, note that by construction of the PATRICIA tree we deterministically have

Hµ
n ≤ n − 1, thus Hµ

n /n ≤ 1. Hence, we obtain from Hµ
n /n → 0 almost surely and dominated

convergence that E[Hµ
n ]/n → 0. ◀

2.2 Proof of Theorem 2
As building blocks for our bad distributions we first define a set of auxiliary probability
distributions (µN , N ∈ N), on {0, 1}N as follows. For fixed N ∈ N we choose T uniformly
at random from {1, . . . , N2}. Independently of T , let (Bi)i∈N be independent Bernoulli( 1

2 )-
distributed random variables. Then define a sequence (ϑi)i∈N by

ϑi =


0, if i < T,

1, if i = T,

Bi−T , if i > T.

(2)

Now, µN is defined as the law of the string Θ = (ϑi)i∈N. Note that by definition µN is diffuse
for all N ∈ N. We use the notation

⟨Θ⟩ := min{i ∈ N | ϑi = 1}

for the index of the first entry of Θ equal to 1.

▶ Lemma 4. For any n ∈ {1, . . . , N} we have E[HµN
n ] ≥ n − 2.

Proof. Let 1 ≤ n ≤ N ∈ N and Θ(1), . . . , Θ(n) be i.i.d. with law µN . We consider the set
A := {⟨Θ(1)⟩, . . . , ⟨Θ(n)⟩} ⊂ {1, . . . , N2}. By construction of the PATRICIA tree we have

HµN
n ≥ |A| − 1, (3)

where |A| denotes the cardinality of A, i.e., the number of distinct elements within the set
{⟨Θ(1)⟩, . . . , ⟨Θ(n)⟩}. For all 1 ≤ i < j ≤ n we have P(⟨Θ(i)⟩ = ⟨Θ(j)⟩) = 1/N2. Hence, we
obtain

E[|A|] ≥ n − E

 ∑
1≤i<j≤n

1{⟨Θ(i)⟩=⟨Θ(j)⟩}

 ≥ n − n2

2N2 ≥ n − 1, (4)

since n ≤ N . Now, (3) and (4) imply the assertion. ◀

Proof of Theorem 2. Without loss of generality we may assume that αn = o(n). There
exists an n0 ∈ N such that αn ≥ 8 for all n ≥ n0. We define βn := ⌊log2 αn⌋ − 2 and a
sequence (A(n))n∈N as a generalized inverse of (βn)n∈N by

A(n) := max{m ∈ N | βm ≤ n}, n ∈ N. (5)

AofA 2024
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First, a probability distribution µ(α) on {0, 1}N is obtained in two stages. Let G be a random
variable with geometric distribution with parameter 1

2 , i.e., with P(G = k) = ( 1
2 )k for k ∈ N.

Then define a sequence (λi)i∈N by

λi =


0, if i < G,

1, if i = G,

ϑi−G, if i > G,

(6)

where Θ = (ϑi)i∈N, conditional on {G = k}, has law µA(k) defined in (2) with A(·) defined
in (5). We then define µ = µ(α) as the law of Λ = (λi)i∈N. Since the µA(k) are diffuse, we
obtain that µ is diffuse.

Now, let Λ(j) = (λ(j)
i )i∈N for j ∈ N be independent with law µ. For n ≥ n0, by

construction,

Xn :=
∣∣∣{1 ≤ j ≤ n :

(
λ

(j)
1 , . . . , λ

(j)
βn

)
= (0, . . . , 0, 1)

}∣∣∣
is Bin(n, 2−βn)-distributed. To get rid of the floors in the definition of βn denote by X ′

n a
Bin(n, 4/αn)-distributed random variable. Note that 2−βn ≥ 4/αn. By Okamoto’s inequality,
see [22] or [3, Exercise 2.12] we have

P
(

Xn <
2n

αn

)
≤ P

(
X ′

n − 4n

αn
< − 2n

αn

)
≤ exp

(
− n(2/αn)2

2(4/αn)(1 − 4/αn)

)
≤ exp

(
− n

2αn

)
.

Hence, with high probability at least ⌈2n/αn⌉ of the n strings start with the prefix (0, . . . , 0, 1)
of length βn and thus have suffixes (λ(j)

βn+1, λ
(j)
βn+2, . . .) drawn independently from µA(βn)

for the respective j. For all n ≥ n0 we have ⌈2n/αn⌉ ≤ n ≤ A(βn). Hence, by Lemma 4,
⌈2n/αn⌉ such strings cause an expected height of at least 2n/αn − 2. Together we obtain for
all sufficiently large n, note also αn = o(n), that

E[Hµ
n ] ≥ P

(
Xn ≥ 2n

αn

)
E

[
Hµ

n

∣∣∣Xn ≥ 2n

αn

]
≥

(
1 − exp

(
− n

2αn

)) (
2n

αn
− 2

)
≥ n

αn
.

Since the sequence (log αn) tends to infinity the present proof implies the existence of a
diffuse probability distribution ν = ν(α) on {0, 1}N such that E[Hν

n] ≥ n/ log αn for all
sufficiently large n ∈ N, hence

E[Hν
n ]

n/αn
→ ∞.

To prove the second statement of Theorem 2 we use the following bound from Devroye
[8, page 21]: for any diffuse probability distribution µ on {0, 1}N and any t > 0,

P (Hµ
n ≤ E[Hµ

n ] − t) ≤ exp
(

− t2

2E[Hµ
n + 1]

)
≤ exp

(
− t2

2n

)
. (7)

We now consider the probabilities

P
(

Hν
n ≤ n

log2 αn

)
= P

(
Hν

n ≤ E[Hν
n ] −

(
E[Hν

n ] − n

log2 αn

))
(8)
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and note that for all sufficiently large n we have

E[Hν
n ] − n

log2 αn

≥ n

log αn
− n

log2 αn

= n
log(αn) − 1

log2 αn

≥ n

log2 n
. (9)

Combining (7)–(9) we obtain

P
(

Hν
n ≤ n

log2 αn

)
≤ exp

(
− n

2 log4 n

)
for all sufficiently large n. Since these upper bounds are summable it follows from the first
Borel–Cantelli Lemma that lim infn→∞ Hν

n/(n/ log2 αn) ≥ 1 almost surely, hence

Hν
n

n/αn
→ ∞ almost surely.

Thus, ν has the properties claimed in Theorem 2. ◀
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