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Abstract
We consider a synchronous process of particles moving on the vertices of a graph G, introduced by
Cooper, McDowell, Radzik, Rivera and Shiraga (2018). Initially, M particles are placed on a vertex
of G. In subsequent time steps, all particles that are located on a vertex inhabited by at least two
particles jump independently to a neighbour chosen uniformly at random. The process ends at the
first step when no vertex is inhabited by more than one particle; we call this (random) time step the
dispersion time.

In this work we study the case where G is the complete graph on n vertices and the number
of particles is M = n/2 + αn1/2 + o(n1/2), α ∈ R. This choice of M corresponds to the critical
window of the process, with respect to the dispersion time. We show that the dispersion time, if
rescaled by n−1/2, converges in p-th mean, as n → ∞ and for any p ∈ R, to a continuous and almost
surely positive random variable Tα. We find that Tα is the absorption time of a standard logistic
branching process, thoroughly investigated by Lambert (2005), and we determine its expectation. In
particular, in the middle of the critical window we show that E[T0] = π3/2/

√
7, and furthermore we

formulate explicit asymptotics when |α| gets large that quantify the transition into and out of the
critical window. We also study the random variable counting the total number of jumps that are
performed by the particles until the dispersion time is reached and prove that, if rescaled by n ln n,
it converges to 2/7 in probability.
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1 Introduction

The dispersion process introduced by Cooper, McDowell, Radzik, Rivera and Shiraga [2]
consists of particles moving on the vertices of a given graph G. A particle is said to
be happy if there are no other particles occupying the same vertex and unhappy otherwise.
Initially, M ≥ 2 (unhappy) particles are placed on some vertex of G. Subsequently, at discrete
time steps, all unhappy particles move simultaneously and independently to a neighbouring

© Umberto De Ambroggio, Tamás Makai, Konstantinos Panagiotou, and Annika Steibel;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 26; pp. 26:1–26:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:deambrog@math.lmu.de
mailto:makai@math.lmu.de
mailto:kpanagio@math.lmu.de
https://www.mathematik.uni-muenchen.de/~kpanagio/
mailto:steibel@math.lmu.de
https://doi.org/10.4230/LIPIcs.AofA.2024.26
https://doi.org/10.48550/arXiv.2403.05372
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


26:2 Limit Laws for Critical Dispersion on Complete Graphs

|ε−1| ln(ε2n) n1/2 ε−1 exp(Θ(ε2n))
Tn,M

ε
−Cn−1/2 0 Cn−1/2

Figure 1 The typical order of Tn,M when M = (1 + ε)n/2 and |ε| = o(1). Note that
|ε−1| ln(ε2n) and ε−1 exp(ε2n) are in Θ(

√
n) when |ε| = Θ(n−1/2), and so the transition

into and out of the critical window is smooth.

vertex selected uniformly at random, while the happy particles remain in place. The process
terminates at the first time step at which all particles are happy; we call this (random) time
step the dispersion time.

It is clear that if the number of particles is small – compared to the number of vertices in the
graph – then the dispersion time should be small as well. Intuitively, increasing the number of
particles makes it more and more difficult for the particles to disperse quickly. This transition
from ’fast’ to ’slow’ dispersion is quite well-understood and sharp when the underlying graph
is the complete graph on n vertices with loops, in which case we write Tn,M for the dispersion
time started with M particles at an arbitrary vertex. The typical order of Tn,M changes
rather abruptly around M = n/2. Indeed, if we write M = M(n) = (1 + ε)n/2 ∈ N for some
sequence ε = ε(n) ∈ [−1, 1], then in [2] it was established that Tn,M is typically

at most logarithmic in n when lim supn→∞ ε < 0 and
at least exponential in n when lim infn→∞ ε > 0.

The details of this apparent and abrupt transition from logarithmic to exponential time are
obviously of great interest and were investigated further in [3], where the authors studied
the typical order and the tails of Tn,M when ε = o(1), that is, when M = n/2 + o(n). In
this setting they showed that for any constant C > 0, if ε ≤ −Cn−1/2, then the process
typically finishes in Θ(|ε|−1 ln(ε2n)) steps, while if ε ≥ Cn−1/2, then a much larger number
ε−1 exp(Θ(ε2n)) of steps is required. Moreover, within the critical window corresponding
to the range |ε| = O(n−1/2), they showed that the process typically runs for Θ(n1/2) steps,
making the transition into and out of the critical window smooth, see also Figure 1.

In this paper we will perform a fine analysis of the dispersion process within the critical
window, that is, when M = n/2+O(

√
n). Our first main result establishes that the dispersion

time, scaled by n−1/2, converges in distribution to some continuous and almost surely positive
random variable. For a sequence of real-valued random variables (Zn)n∈N and a random
variable Z we write Zn

d−→ Z to denote that the sequence (Zn)n∈N converges to Z in
distribution.

▶ Theorem 1. Let α ∈ R and M = M(n) = n/2 + α
√

n + o(
√

n) ∈ N. Then there is a
continuous and almost surely positive random variable Tα such that, as n → ∞,

n−1/2Tn,M
d−→ Tα .

Within the proof of Theorem 1 we derive an explicit description of the distribution of Tα. In
order to specify it at this point we need to step back a bit and introduce some notation and
present some facts about the process. Let us write Ut for the (random) number of unhappy
particles at the end of step t, so that U0 = M , and let us fix some δ > 0. As we will argue
in Section 3, Ut drops rather quickly to Θ(n1/2) particles. In particular, with probability
at least 1 − δ, after t∗ ∼ 4

7 δn1/2 steps we have that Ut∗ ∼ n1/2/δ; here and everywhere else
“∼” will stand for “= (1 + o(1))” and asymptotic statements are, unless stated explicitly
otherwise, with respect to n → ∞ and uniform in all other parameters. After t∗ the process
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Figure 2 Three sample runs of the dispersion process with n = 107 and M = n/2,
where we depict the number of unhappy particles Ut, divided by 1000, at each step t. The
trajectory is revealed only after t′ = 500, where Ut′ ≈ 104 ≈ 3

√
n in all cases. The dotted

line represents the iterated mean of Ut. For the asymptotics of E[Tn,M ] see (4).

(Ut)t≥t∗ of unhappy particles starts fluctuating significantly, see Figure 2 for outcomes of
a simulation study when M = n/2. In order to get a grip on it, we scale time and space
by a factor of n1/2 and establish that (n−1/2Ut∗+⌊s

√
n⌋)s≥0 converges weakly to a diffusion

process. Here weak convergence denotes, as usual, convergence in D([0, T ], R) for all T < ∞,
where D([0, T ], R) represents the space of all right-continuous functions from [0, T ] to R with
left-limits.

▶ Lemma 2. Let α ∈ R and M = M(n) = n/2 + α
√

n + o(
√

n) ∈ N. Let δ > 0 and let

Tn,M,δ := inf{t > 0 : Ut ≤ n1/2/δ}

be the first step at which there are at most n1/2/δ unhappy particles. Then, as n → ∞, weakly(
n−1/2 UTn,M,δ+⌊sn1/2⌋

)
s≥0

→ X,

where X is a logistic branching process starting from X0 = δ−1. In particular, if we denote
by B a standard Brownian motion, then X uniquely satisfies the SDE

dXs =
(

2αXs − 7
4X2

s

)
ds +

√
XsdBs, s > 0, and X0 = δ−1. (1)

For more background on SDEs in general and the specific equation encountered here we refer
to Section 2. Let us mention only that stochastic processes satisfying (1) are well-studied
and are also called in the literature logistic Feller diffusions or Feller diffusions with logistic
growth. Generally, such processes satisfy an SDE of the form

dXs = (aXs − cX2
s )ds +

√
γXsdBs, s > 0, with initial condition X0 = x ≥ 0, (2)

AofA 2024



26:4 Limit Laws for Critical Dispersion on Complete Graphs

where a ∈ R and c, γ > 0. They appear in the context of population dynamics and
stochastically extend the deterministic logistic growth model that describes the evolution of a
population under the influences of natural birth, mortality and inter-individual competition.
A prime source on the topic is Lambert [7], who provides a thorough and detailed discussion
of the properties of solutions to (2).

With Lemma 2 at hand we show in Section 3, see Lemma 13 there, that the first step
at which the unhappy particles vanish, divided by n1/2, converges in distribution to the
absorption time of X, that is, the first time when X hits zero. Letting δ → 0 then yields the
claimed statement. In particular, Tα in Theorem 1 is the absorption time of the limiting
solution of (1) when the initial condition X0 → ∞; this limiting process, called standard
logistic branching process, is well-defined and well-studied, see for example [7] and Section 2.2.

The explicit descriptions of X and Tα pave the way to obtain further bits of information.
To achieve this we will exploit the following bounds, stating that n−1/2Tn,M has exponential
tails, that are an immediate consequence of the main theorems in [3].

▶ Theorem 3. Let α ∈ R and M = n/2 + α
√

n + o(
√

n) ∈ N. Then there is a constant
cα > 0 such that for all sufficiently large n

P
(
Tn,M ≤ n1/2/Acα

)
≤ e−A and P

(
Tn,M > Acαn1/2)

≤ e−A, A ≥ 1.

Together with our Theorem 1 this implies that for any p ∈ R we even obtain convergence in
Lp, in particular

n−p/2E
[
T p

n,M

]
∼ E

[
T p

α

]
, p ∈ R. (3)

We also obtain, without including the proof here, for M = n/2 + α
√

n + o(
√

n) the series
representation

E[Tα] = lim
n→∞

E
[
n−1/2Tn,M

]
= π3/2

√
7

+ 1√
7

∑
m≥1

Γ( m+1
2 )

m!

(
8α√

7

)m

tm, α ∈ R,

where Γ(·) is the Gamma function and

tm :=
∑
k≥0

2
( m+1

2 + 2k)( m+3
2 + 2k)

= H(m−1)/4 − H(m−3)/4, m ∈ N0,

and Hx =
∑

k≥1
( 1

k − 1
k+x

)
denotes the “x-th harmonic number”. Let us highlight the specific

case α = 0: when we are essentially at the critical point, then we obtain the beautiful formula

E[T0] = lim
n→∞

E
[
n−1/2Tn,n/2+o(

√
n)

]
= π3/2

√
7

, (4)

which is in the interval 2.104 ± 0.001, see also Figure 2. Our methods also allow us to study
the behavior of the transition in and out of the critical window, that is, E[Tα] when α → −∞
or α → ∞. Indeed we are able to show the following asymptotics

E[Tα] α→−∞∼ ln |α|
|α|

and E[Tα] α→∞∼
√

7π

8
e16α2/7

α2 .

So, when α gets big, then E[Tα] behaves (up to polynomial corrections) quadratic exponential
in α; already for α = 3 we obtain the enormous value E[T3] ≈ 5.894 · 107. On the other hand,
for negative α we get a moderate polynomial behavior with logarithmic corrections. Note



U. De Ambroggio, T. Makai, K. Panagiotou, and A. Steibel 26:5

that the large |α| asymptotics presented here are in perfect accordance with the transition in
and out of the critical window, see also Figure 1 and the discussion at the beginning of the
introduction.

Our second main result addresses the total number of jumps
∑

t≥0 Ut performed by the
particles. In contrast to the dispersion time, the total number of jumps, scaled by n ln n,
converges to a fixed quantity.

▶ Theorem 4. Let α ∈ R and M = M(n) = n/2 + α
√

n + o(
√

n) ∈ N. Then

1
n ln n

∑
t≥0

Ut
d−→ 2

7 .

In particular, each of the M ∼ n/2 particles performs on average typically ∼ 4
7 ln n jumps

before everybody settles, and this is independent of α. Indeed, our aforementioned analysis
of the early steps in Section 3, that is, the first o(n1/2) steps, shows that there are already
∼ 2

7 n ln n jumps in those steps of the process. With Lemma 2 and Theorem 1 in mind, it
is not surprising that the remaining Θ(n1/2) steps only contribute an additional of O(n)
number jumps, as n−1/2Ut is typically bounded for t = Θ(n1/2).

Theorem 1 and Lemma 2 actually suggest that a much stronger statement should be true.
We know that (n−1/2UTn,M,δ+⌊sn1/2⌋)s≥0 converges weakly to a logistic branching process X,
and so the total number of jumps should be close to n1/2A, where A :=

∫ ∞
0 Xsds, plus the

additional 2
7 n ln n jumps from the first Tn,M,δ steps. Thus the variations in the total number

of jumps should be linear in n; that is, there should be a (non-trivial) random variable S

such that

n−1
( ∑

t≥0
Ut − 2

7n ln n

)
d→ S.

We leave it as an open problem to prove this conjecture.

Variations on the Theme

Our work opens up opportunities for studying a variety of models that are related to the
dispersion process or extensions of it. In a general setting, happiness can be defined as
a property of individual vertices and particles. More specifically, each vertex may have a
capacity, which, if exceeded, deems all particles on that vertex as unhappy. On the other
side, each particle p may have a stress level, which dictates an upper bound on the particles
that share a vertex with p so that p is still happy. We leave it as an open problem to study
the precise behavior in a general setting, where for example the empirical distributions of
the capacities and the stress levels fulfill appropriate convergence properties.

In a different line of research it would be challenging to provide detailed studies of
dispersion processes on graphs different than the complete graph. We believe, for example,
that our results also hold if the underlying graph is a sufficiently dense Erdős-Rényi random
graph Gn,p, which is obtained by retaining independently each edge of the complete graph
on n vertices with probability p. In particular, if, say, p = ω(n−1/2), guaranteeing that the
minimum degree is much larger than

√
n, then similar results as in Theorem 1 should hold,

as the process finishes after O(
√

n) rounds if the graph is complete. However, it might be
the case that even on much sparser graphs the behavior does not change (since, for example,
in most steps just an O(

√
n) number of particles move). We consider it as an important and

eminent challenge to study the effect of the edge probability p on the distribution of the
dispersion time.

AofA 2024
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Related work

The dispersion process was also studied by Frieze and Pegden [6], who, apart from the
dispersion time, also considered the dispersion distance on the infinite line. They showed
that the dispersion distance is Θ(n) when there are n particles in the system, improving
upon previous results in [2]. A similar setup was considered by Shang [10], who studied the
dispersion distance on the infinite line in a non-uniform dispersion process.

Processes where particles move on the vertices of a graph have been widely studied over
the past decades; we refer the reader to [2] for references. Concerning processes whose scope
is to disperse particles on a discrete structure, arguably the best known such model is Internal
Diffusion Limited Aggregation (IDLA), see [1, 4, 8]. In this model, particles sequentially
start (one at a time) from a specific vertex designated as the origin. Each particle moves
randomly until it finds an unoccupied vertex; then it occupies it forever, meaning that it
does not move at subsequent process steps.

Another related and well-studied class of models are Activated Random Walks (ARWs)
that evolve on the d-dimensional lattice, see [9] for an extensive review. Roughly speaking,
we place particles on Zd, and some of them are initially active while others are asleep. The
rules of the process are then as follows. Whenever a particle is alone on a vertex, it falls
asleep with a certain rate. On the other hand, active particles jump according to independent
random choices, and whenever they encounter a particle that is asleep, they wake it up.

Outline

In Section 2 we present the main tool used during our proof, namely diffusion approximation,
and then in Section 3 we include a brief derivation of some of the aforementioned results,
primarily Lemma 2 and Theorem 1. The full paper containing all proofs is available at
arXiv:2403.05372.

2 Probabilistic Preliminaries

2.1 Diffusion Approximation
A main tool that we will use in the proof of Theorem 1 is the concept of diffusion approximation,
which allows us to approximate a Markov chain (Y (n))n∈N with values in R, by a continuous-
time stochastic process. More specifically, we examine convergence properties of (Y (n))n∈N

to a process satisfying a stochastic differential equation (SDE)

dXs = b(Xs)ds + σ(Xs)dBs, s > 0, (5)

where b, σ : R → R are suitable functions and B is a 1-dimensional standard Brownian
motion. In this section we provide an overview of the necessary results from stochastic
calculus. Additionally, we collect some properties of the limit process that will emerge within
the proof of Theorem 1. In what follows we denote discrete time by t ∈ N0 (so, for example,
Y (n) = (Y (n)

t )t∈N0), whereas s ≥ 0 represents continuous time.
Let us consider (5). A (weak) solution to (5) with initial value X0 = x ∈ R is a triple

(X, B,P), where P = (Ω, F , (Fs)s≥0, P) is a filtered probability space with the filtration
satisfying the usual conditions, i.e. (Fs)s≥0 is right-continuous and complete. Further,
X = (Xs)s≥0 and B = (Bs)s≥0 are continuous stochastic processes that are adapted to
(Fs)s≥0 such that

B is a standard 1-dimensional Brownian motion with respect to (Fs)s≥0, i.e. B is a
standard Brownian motion and Bs − Br is independent of Fr for any 0 ≤ r < s;

https://arxiv.org/abs/2403.05372
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Xs satisfies (5) and the initial condition, i.e.

Xs = x +
∫ s

0
b(Xr)dr +

∫ s

0
σ(Xr)dBr, s ≥ 0.

Moreover, we say that there is (weak) uniqueness if whenever (X, B,P) and (X̃, B̃, P̃) solve (5)
weakly and satisfy X0 = X̃0, then X and X̃ have the same law.

In order to get the diffusion approximation to work, we construct a sequence of right-
continuous and continuous-time stochastic processes from the given sequence (Y (n))n∈N

of discrete time Markov chains by using constant interpolation between the time points.
Then, under appropriate conditions specified in the subsequent theorem, (Y (n))n∈N converges
weakly to the solution of an SDE. With the necessary concepts at hand we are now ready to
present our main tool, and we refer for example to [5, Ch. 8] for an extensive treatment.

▶ Theorem 5 (Diffusion Approximation). Let b, σ : R → R be continuous functions and assume
that for any x ∈ R the SDE (5) possesses a unique solution such that X0 = x. Furthermore,
let h : N → R+ be a sequence with limn→∞ h(n) = 0 and for all n ∈ N let Y (n) = (Y (n)

t )t∈N0

be a discrete-time Markov chain with values in S(n) ⊆ R. Define, for all t ∈ N0, x ∈ S(n)

b(n)(x) :=
E

[
Y

(n)
t+1 − x | Y

(n)
t = x

]
h(n) , a(n)(x) :=

E
[
(Y (n)

t+1 − x)2 | Y
(n)

t = x
]

h(n) ,

and γ
(n)
p (x) := E

[
|Y (n)

t+1 − x|p | Y
(n)

t = x
]
/h(n) for p ≥ 2. Let a := σ2 and assume that for

all R < ∞

lim
n→∞

sup
x∈S(n),|x|≤R

|b(n)(x) − b(x)| = 0, lim
n→∞

sup
x∈S(n),|x|≤R

|a(n)(x) − a(x)| = 0,

and

lim
n→∞

sup
x∈S(n),|x|≤R

γ(n)
p (x) = 0 for some p ≥ 2.

Finally, assume that Y
(n)

0 → x as n → ∞. Then (Y (n)
⌊s/h(n)⌋)s≥0 converges weakly to a strong

Markov process X that satisfies the SDE (5) with X0 = x.

2.2 The (Standard) Logistic Branching Process
We already discussed in the introduction that the processes that will be relevant here are the
so-called logistic branching processes, given by the solution of

dXs = (aXs − cX2
s )ds +

√
γXsdBs, s > 0,

with X0 = x ≥ 0, a ∈ R and c, γ > 0, see also (2) (and (1) for the particular case that will
appear here). In the remainder of this section we collect some key properties that will be
handy. The first one is about the existence and uniqueness of solutions, see [7].

▶ Lemma 6. For all initial states x ≥ 0 and for all a ∈ R and c, γ > 0, there exists a unique
solution (Xa,c,γ,x, Ba,c,γ,x,Pa,c,γ,x) to (2). Moreover, Xa,c,γ,x is non-negative.

In what follows it will be convenient to consider a specific choice of the filtered probability
space Pa,c,γ,x = (Ω′, F ′, (F ′

s)s≥0, P′) (where all components depend on the parameters
a, c, γ, x) from the previous lemma that we construct as follows. Let Ω be the space of all
continuous maps [0, ∞) → R and let X be the coordinate process given by Xs(ξ) = ξ(s) for

AofA 2024



26:8 Limit Laws for Critical Dispersion on Complete Graphs

all s ≥ 0 and ξ ∈ Ω. Additionally, consider the σ-algebra F = σ{Xs | s ≥ 0} and equip the
measurable space (Ω, F) with the filtration (Fs)s≥0 given by Fs = σ{Xr | 0 ≤ r ≤ s} for
all s ≥ 0, which we may complete and right-continuously extend in order to fulfil the usual
conditions. Via the map Ω′ ∋ ξ′ 7→ Xa,c,γ,x(ξ′) ∈ Ω it is possible to switch from Pa,c,γ,x

to the canonical probability space (Ω, F , (Fs)s≥0, Pa,c,γ,x), where Pa,c,γ,x is the probability
measure given by Pa,c,γ,x(A) = P′((Xa,c,γ,x)−1(A)) for all A ∈ F . By this particular choice
we obtain that the coordinate process X on (Ω, F , (Fs)s≥0, Pa,c,γ,x) has the same law as
Xa,c,γ,x under P′, i.e. under Pa,c,γ,x the process X satisfies (2). The following corollary is
now an immediate consequence of Lemma 6, and a similar construction was also performed
in [7].

▶ Corollary 7. For all initial states x ≥ 0 and for all a ∈ R and c, γ > 0, there is a unique
solution (X, Ba,c,γ,x,Pa,c,γ,x) to (2), where X is the coordinate process and thus independent
of a, c, γ, x. Moreover, X is non-negative Pa,c,γ,x-almost surely, where Pa,c,γ,x denotes the
probability measure of Pa,c,γ,x.

For the rest of this paper we will adopt the above procedure and consider solutions to (2) only
with respect to the canonical probability space (Ω, F , (Fs)s≥0, Pa,c,γ,x). Our main object
of interest will be the time at which the logistic Feller diffusion X hits zero, which under
Pa,c,γ,x is given by the stopping time

T (ξ) = inf{s ≥ 0 : ξ(s) = 0}, ξ ∈ Ω.

The author of [7] establishes that T is finite Pa,c,γ,x-almost surely. Moreover, Xs = 0 for all
s ≥ T under Pa,c,γ,x, i.e. upon hitting zero the process becomes constant, which is why we
also refer to T as absorption time.

Within our context, it will be necessary to consider solutions to (2) with initial value
x → ∞. The required results are covered by the following statement, whose proof can be
found in [7] and for which we define the function θ : [0, ∞) → R by

θ(λ) :=
∫ λ

0
exp

( γ

4c
v2 − a

c
v
)

dv, λ ≥ 0. (6)

▶ Lemma 8. For all x ≥ 0, a ∈ R and c, γ > 0, the expectation of T under Pa,c,γ,x is finite
and

Ea,c,γ,x [T ] = 1
c

∫ ∞

0

θ(λ)
λθ′(λ) (1 − exp(−xλ)) dλ.

In addition, the measures (Pa,c,γ,x)x≥0 converge weakly, as x → ∞, to the law Pa,c,γ,∞ of
the so-called standard logistic branching process. Under Pa,c,γ,∞, the hitting time T is a
continuous random variable which is finite almost surely and has finite expectation given by

Ea,c,γ,∞ [T ] = sup
x≥0

Ea,c,γ,x [T ] = 1
c

∫ ∞

0

θ(λ)
λθ′(λ) dλ.

3 Proof Strategy & Some Details

In the following lemma we investigate the early phase of the process. In particular we are
interested in the number of steps and the number of jumps until the number of unhappy
particles drops to Θ(n1/2).
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▶ Lemma 9. Let ϵ, δ > 0, α ∈ R and M = n/2 + α
√

n + o(
√

n) ∈ N. Let

Tn,M,δ := inf
{

t > 0 : Ut ≤ n1/2/δ
}

.

Then, for all sufficiently small δ > 0 and all sufficiently large n, with probability at least 1 − δ,∣∣∣∣Tn,M,δ − 4
7δn1/2

∣∣∣∣ ≤ ϵδn1/2 and

∣∣∣∣∣∣
∑

0≤t≤Tn,M,δ

Ut − 2
7n ln n

∣∣∣∣∣∣ ≤ ϵn ln n.

In particular, (roughly) 4
7 δn1/2 steps are required to drop below n1/2/δ unhappy particles,

and at this step the accumulated number of unhappy particles, which corresponds to the
total number of jumps, is (roughly) 2

7 n ln n. The lemma is established by considering the
number of unhappy particles for a relatively short number of steps, where the change of
the process can be precisely controlled by means of martingale concentration, exploiting the
subgaussian nature of the increments. We omit the details due to space limitations.

We focus on the late phase, which uses the diffusion approximation toolbox. We write

Ut+1 − Ut = Xt+1 − Yt+1,

where Xt+1 stands for the number of particles that were happy at step t but become unhappy
in step t + 1 (because some particle which was unhappy at time t moved onto their vertex)
and Yt+1 is the number of unhappy particles at time t that become happy at step t + 1
(because at time t + 1 they are alone on the vertex that they occupy). Moreover, define

Xt+1,h := 1[h ∈ Ut+1] and Yt+1,u := 1[u ∈ Ht+1]

where Ht+1/Ut+1 is the set of happy/unhappy particles at time t + 1 and, so that we can
write

Xt+1 =
∑

h∈Ht

Xt+1,h and Yt+1 =
∑

u∈Ut

Yt+1,u.

It is clear that, given Ut, we can compute E[Xt+1,h], E[Yt+1,u] and E[Xt+1,hYt+1,u] for any
h ∈ Ht and u ∈ Ut; the details are omitted. With this at hand, we then establish asymptotics
of the drift and variation for the number of unhappy particles, which we describe in the
following two lemmas.

▶ Lemma 10. Let ε = ε(n) = o(1), u : N → N and M = M(n) := (1 + ε)n/2 ∈ N. Then,
uniformly,

E
[
Ut+1 − Ut | Ut = u

]
= εu − u2

n

(
7
4 + 3ε

4

)
+ O

(
u

n
+ u3

n2

)
.

▶ Lemma 11. Let ε = ε(n) = o(1) and u : N → N be such that u = o(n2/3) and M =
M(n) := (1 + ε)n/2 ∈ N. Then, uniformly,

E
[
(Ut+1 − Ut)2 | Ut = u

]
= u + o(εu2 + u).

To continue we introduce the (continuous) time-shifted process

U ′
s := U⌊s⌋+Tn,M,δ

, s ≥ 0.

By applying Theorem 5 we will show that (n−1/2U ′
s
√

n
)s≥0 converges weakly to a diffusion.

Note that the following lemma is just a reformulation of Lemma 2 in the Introduction, as (7)
corresponds to the SDE (1).
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▶ Lemma 12. Let δ > 0. As n → ∞, the process (n−1/2U ′
s
√

n
)s≥0 converges weakly to a

process X that satisfies

dXs =
(

2αXs − 7
4X2

s

)
ds +

√
XsdBs, s > 0, and X0 = δ−1. (7)

Proof. We will apply Theorem 5 with h = h(n) = n−1/2 and Y
(n)

t := n−1/2U ′
t for t ∈ N0.

First, note that it is necessary to extend the SDE (7) in a way that it has a unique solution
not only for all initial values x ≥ 0, but for all x ∈ R. To this end, write a+ = max{a, 0} for
a ∈ R and consider the SDE

dXs =
(

2αX+
s − 7

4(X+
s )2

)
ds +

√
X+

s dBs, s > 0, with X0 = x ∈ R. (8)

Note that if the initial value x is negative, then X = x uniquely satisfies this SDE. For x ≥ 0,
recall that Corollary 7 guarantees the existence of a unique solution (X, B2α,7/4,1,x,P2α,7/4,1,x)
to (7) with X0 = x and such that X ≥ 0 almost surely. Hence, if x ≥ 0, (8) coincides with
(7) with initial value X0 = x and we conclude that (8) possesses a unique solution for all
x ∈ R.

Next, we employ Lemmas 10 and 11 with ε(n) = 2αn−1/2+o(n−1/2), as M = n/2+αn1/2+
o(n1/2). For this purpose, let R < ∞ and consider x ∈ S(n) ⊆ {0, n−1/2, 2n−1/2, ..., n1/2}
with |x| ≤ R. Then, Lemma 10 with u = xn1/2 implies that

b(n)(x) =
E

[
n−1/2U ′

t+1 − n−1/2U ′
t | n−1/2U ′

t = x
]

n−1/2 = 2αx − 7
4x2 + o

(
R + R3)

.

Further, as xn1/2 = o(n2/3) due to |x| ≤ R, it follows from Lemma 11 with u = xn1/2 that

a(n)(x) =
E

[
(n−1/2U ′

t+1 − n−1/2U ′
t)2 | n−1/2U ′

t = x
]

n−1/2 = x + o
(
R2)

. (9)

We therefore obtain that for any R < ∞

lim
n→∞

sup
x∈S(n),|x|≤R

∣∣∣∣b(n)(x) −
(

2αx − 7
4x2

)∣∣∣∣ = 0 and lim
n→∞

sup
x∈S(n),|x|≤R

|a(n)(x)−x| = 0. (10)

Moreover, we show

lim
n→∞

sup
x∈S(n),|x|≤R

|γ(n)
3 (x)| = 0, (11)

and

U ′
0 = UTn,M,δ

∼ n1/2/δ with probability 1 − o(1). (12)

The last two facts, whose proof is omitted here, together with (10) and the existence of a unique
solution to (8) guarantee that we can apply Theorem 5 to conclude that (n−1/2U ′

s
√

n
)s≥0

converges weakly to a process X that satisfies (7) with X0 = 1/δ, and the proof is finished. ◀

Recall from Corollary 7 that (X, B2α,7/4,1,x,P2α,7/4,1,x) represents a solution of (7) with
initial value x ≥ 0 and that the corresponding hitting time of zero is given by

T = inf{s ≥ 0 : Xs = 0} (13)

under the probability measure P2α,7/4,1,x. The next statement asserts that n−1/2T ′
n,M,δ,

where T ′
n,M,δ := Tn,M − Tn,M,δ, converges in distribution to T under P2α,7/4,1,1/δ.
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▶ Lemma 13. Let δ > 0. Then, as n → ∞, n−1/2T ′
n,M,δ

d→ T , with T given by (13) under
the probability measure P2α,7/4,1,1/δ.

Proof. Let s ≥ 0 and recall from Section 2.1 that, under P2α,7/4,1,1/δ, Xs = 0 is equivalent
to T ≤ s. Similarly, U⌊s⌋ = 0 if and only if Tn,M ≤ s, from which we obtain that T ′

n,M,δ =
Tn,M − Tn,M,δ ≤ s if and only if U ′

s = U⌊s⌋+Tn,M,δ
= 0. Hence,

P2α,7/4,1,1/δ(Xs = 0) = P2α,7/4,1,1/δ(T ≤ s) and P(U ′
s = 0) = P(T ′

n,M,δ ≤ s).

As Lemma 12 entails limn→∞ P
(
n−1/2U ′

s
√

n
= 0

)
= P2α,7/4,1,1/δ(Xs = 0), we conclude

lim
n→∞

P(n−1/2T ′
n,M,δ ≤ s) = P2α,7/4,1,1/δ(T ≤ s). ◀

With the convergence in distribution shown in the previous lemma at hand, we are now in
the position to prove Theorem 1.

Proof of Theorem 1. Recall from Lemma 9 that Tn,M,δ ≤ δn1/2 with probability at least
1 − δ for δ sufficiently small and n large enough. As Tn,M,δ is non-negative, this implies that

n−1/2T ′
n,M,δ ≤ n−1/2Tn,M ≤ δ + n−1/2T ′

n,M,δ with probability at least 1 − δ.

Applying Lemma 13, we therefore obtain that for all s ≥ 0

lim
n→∞

P(n−1/2Tn,M ≤ s) ≤ lim
n→∞

P(n−1/2T ′
n,M,δ ≤ s) = P2α,7/4,1,1/δ(T ≤ s)

and

lim
n→∞

P
(
n−1/2Tn,M ≥ s

)
≤ lim

n→∞
P

(
n−1/2Tn,M ≥ s, Tn,M,δ ≤ δn1/2)

+ δ

≤ P2α,7/4,1,1/δ

(
T ≥ s − δ

)
+ δ.

Note that P2α,7/4,1,x1(T ≥ τ) ≥ P2α,7/4,1,x2(T ≥ τ) for all x1 > x2 ≥ 0 and τ ≥ 0, since X

is almost surely continuous and needs a positive and finite amount of time to drop from x1
to x2. So, since according to Lemma 8 we have limδ→0 P2α,7/4,1,1/δ = P2α,7/4,1,∞ and T is
continuous, it therefore follows that

lim
δ→0

P2α,7/4,1,1/δ

(
T ≥ s − δ

)
≤ lim

δ→0
P2α,7/4,1,∞

(
T ≥ s − δ

)
= P2α,7/4,1,∞

(
T ≥ s

)
,

which yields

lim
n→∞

P(n−1/2Tn,M ≤ s) = P2α,7/4,1,∞(T ≤ s), s ≥ 0.

Thus, n−1/2Tn,M
d→ Tα, where Tα satisfies

P(Tα ≤ s) = P2α,7/4,1,∞(T ≤ s), s ≥ 0.

Moreover, P2α,7/4,1,∞(T > 0) = 1 implies that Tα is positive almost surely, and this completes
the proof of Theorem 1. ◀
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