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Abstract
For d ≥ 2 and i.i.d. d-dimensional observations X(1), X(2), . . . with independent Exponential(1)
coordinates, we revisit the study by Fill and Naiman (Electron. J. Probab., 25:Paper No. 92, 24
pp., 2020) of the boundary (relative to the closed positive orthant), or “frontier”, Fn of the closed
Pareto record-setting (RS) region RSn := {0 ≤ x ∈ Rd : x ̸≺ X(i) for all 1 ≤ i ≤ n} at time n,
where 0 ≤ x means that 0 ≤ xj for 1 ≤ j ≤ d and x ≺ y means that xj < yj for 1 ≤ j ≤ d. With
x+ :=

∑d

j=1 xj = ∥x∥1, let

F −
n := min{x+ : x ∈ Fn} and F +

n := max{x+ : x ∈ Fn}.

Almost surely, there are for each n unique vectors λn ∈ Fn and τn ∈ Fn such that F +
n = (λn)+ and

F −
n = (τn)+; we refer to λn and τn as the leading and trailing points, respectively, of the frontier.

Fill and Naiman provided rather sharp information about the typical and almost sure behavior of
F +, but somewhat crude information about F −, namely, that for any ε > 0 and cn → ∞ we have

P(F −
n − ln n ∈ (−(2 + ε) ln ln ln n, cn)) → 1

(describing typical behavior) and almost surely

lim sup F −
n − ln n

ln ln n
≤ 0 and lim inf F −

n − ln n

ln ln ln n
∈ [−2, −1].

In this extended abstract we use the theory of generators (minima of Fn) together with the first-
and second-moment methods to improve considerably the trailing-point location results to

F −
n − (ln n − ln ln ln n) P−→ − ln(d − 1)

(describing typical behavior) and, for d ≥ 3, almost surely

lim sup[F −
n − (ln n − ln ln ln n)] ≤ − ln(d − 2) + ln 2

and lim inf[F −
n − (ln n − ln ln ln n)] ≥ − ln d − ln 2.
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1 Introduction, background, and main results

Notation. Throughout this extended abstract we abbreviate the kth iterate of natural
logarithm ln by Lk and L1 by L, and we write x+ :=

∑d
j=1 xj and x× :=

∏d
j=1 xj for the

sum and product, respectively, of coordinates of the d-dimensional vector x = (x1, . . . , xd).
When 0 ≤ x the sum x+ equals the ℓ1-norm ∥x∥1, but we use the notation x+ more generally.
We denote coordinate-wise maximum and minimum of vectors by ∨ and ∧, respectively.

Unless otherwise noted, all results of this extended abstract hold for any dimension d ≥ 2.
The study of univariate records is well established ([1] is a standard reference), but

that of multivariate records remains under vigorous development. Fill and Naiman [6]
studied the stochastic process (Fn), where Fn is the boundary, or “frontier”, for Pareto
records (consult Definitions 1.1–1.2) in general dimension d when the observed sequence of
points X(1), X(2), . . . are assumed (as they are throughout this extended abstract, except
where otherwise noted) to be i.i.d. (independent and identically distributed) copies of a
d-dimensional random vector X with independent Exponential(1) coordinates Xj . Their
main goal was to sharpen (in various senses) the assertion in Bai et al. [2] “that nearly all
maxima occur in a thin strip sandwiched between [the] two parallel hyper-planes”

x+ = L n − L3 n − L[4(d − 1)] and x+ = L n + 4(d − 1) L2 n.

They did this largely by studying (separately) the maximum and minimum sums of coordinates
for points lying in Fn. The results for the maximum sum were rather sharp; less so for the
minimum sum. The main aim of this extended abstract is to use the theory of generators
(minima of Fn) and the first- and second-moment methods to improve considerably their
results about the minimum sum.

1.1 Pareto records and the record-setting region
For the reader’s convenience, and with the permission of the authors and the copyright
holder, this short subsection is excerpted largely verbatim from [6, Section 1.1].

We begin with some definitions. For a positive integer n, let [n] := {1, . . . , n}. Thus
[d][n] denotes the set of all functions from [n] into [d], or simply the set of all n-tuples with
each entry in {1, . . . , d}. For d-dimensional vectors x = (x1, . . . , xd) and y = (y1, . . . , yd),
write x ≺ y (respectively, x ≤ y) to mean that xj < yj (resp., xj ≤ yj) for j ∈ [d]. (We
caution that, with this convention, ≤ is weaker than ⪯, the latter meaning “≺ or =”; indeed,
(0, 0) ≤ (0, 1) but we have neither (0, 0) ≺ (0, 1) nor (0, 0) = (0, 1). This distinction will be
important for some of our later discussion of generators.) The notation x ≻ y means y ≺ x,
and x ≥ y means y ≤ x; the notation x < y means x ≤ y but x ̸= y, and y > x means x < y.

▶ Definition 1.1.
(a) We say that X(k) is a (Pareto) record (or that it sets a record at time k) if X(k) ̸≺ X(i)

for all 1 ≤ i < k.
(b) If 1 ≤ k ≤ n, we say that X(k) is a current record (or remaining record, or maximum)

at time n if X(k) ̸≺ X(i) for all 1 ≤ i ≤ n.

https://arxiv.org/abs/2402.17221
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For n ≥ 1 (or n ≥ 0, with the obvious conventions) let ρn (≡ ρd,n) denote the number of
remaining records at time n (when the dimension is d).

▶ Definition 1.2.
(a) The record-setting region at time n is the (random) closed set of points

RSn := {x ∈ Rd : 0 ≤ x ̸≺ X(i) for all 1 ≤ i ≤ n}.

(b) We call the (topological) boundary of RSn (relative to the closed positive orthant deter-
mined by the origin) its frontier and denote it by Fn.

Fn

x+ = F +
n

x+ = F −
n

λn

τn

x+ = F̂ −
n

x1

x2

Figure 1 Record frontier Fn based on n observations (for some n ≥ 10) resulting in 10 current
records (shown in red), with the three hyperplanes x+ = F +

n , x+ = F −
n , and x+ = F̂ −

n , the leading
point λn and the trailing point τn. Concerning the three hyperplanes, see Definition 1.4 and (1.2).
Generators (see Definition 4.1) are shown in green.

▶ Remark 1.3. The terminology in Definition 1.2(a) is natural since the next observation
X(n+1) sets a record if and only if it falls in the record-setting region. Note that

RSn = {x ∈ Rd : 0 ≤ x ̸≺ X(i) for all 1 ≤ i ≤ n

such that X(i) is a current record at time n},

and that the current records at time n all belong to RSn but lie on its frontier. Observe also
that Fn is a closed subset of RSn.

This extended abstract primarily concerns the stochastic process (Fn), and specifically
the process F − as defined (along with the process F +) next (see Figure 1).

▶ Definition 1.4. Recalling that Fn denotes the frontier of RSn, let

F −
n := min{x+ : x ∈ Fn} and F +

n := max{x+ : x ∈ Fn}. (1.1)

Almost surely, there are for each n unique vectors λn ∈ Fn and τn ∈ Fn such that F +
n = λn

and F −
n = τn; we call λn and τn the leading and trailing points, respectively, of the frontier.

Since the sets RSn decrease (weakly) with n, we have the following trivial consequence.

▶ Lemma 1.5. The process F − has nondecreasing sample paths.

AofA 2024
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1.2 The record-setting frontier; our two main theorems
Fill and Naiman first showed, in a precise sense [6, Theorem 1.4], that the difference between
the sum of coordinates (call it Yn) of a “generic” current record at time n and L n converges
in distribution to standard Gumbel. They next translated results from classical extreme
value theory due to Kiefer [7] to the setting of multivariate records to produce rather sharp
typical-behavior and almost-sure results about the process F +. For completeness, we repeat
their main result [6, Theorem 1.8] for F + here, except that we have rather effortlessly
extended part (b) of that theorem using Kiefer’s “first proof” as described in [6, proof of
Theorem 1.8(b)]. We remark that the difference between the top-boundary threshold at
about L n+d L2 n and bottom-boundary threshold at about L n+(d−1) L2 n is a noteworthy
feature of F +

n discussed further in [6, Section 1.3].

▶ Theorem 1.6 (Kiefer [7]). Consider the process F + defined at (1.1).
(a) Typical behavior of F +: F +

n − [L n + (d − 1) L2 n − L((d − 1)!)] L−→ G.

(b) Top boundaries for F +: For any sequence bn → ∞ that is ultimately monotone increas-
ing,

P(F +
n ≥ bn i.o.) = 1 or 0 according as

∑
e−bnbd−1

n diverges or converges.

In particular, for any k ≥ 2 we have

P

(
F +

n ≥ L n + d L2 n +
k∑

i=3
Li n + c Lk+1 n i.o.

)
=
{

1 if c ≤ 1;
0 if c > 1.

(c) Bottom boundaries for F +:

P(F +
n ≤ L n + (d − 1) L2 n − L3 n − L((d − 1)!) + c i.o.) =

{
1 if c ≥ 0;
0 if c < 0.

⌟

From Theorem 1.6 it follows in particular that

F +
n − L n

L2 n

P−→ d − 1

and

lim inf F +
n − L n

L2 n
= d − 1 < d = lim sup F +

n − L n

L2 n
a.s.

The results derived in [6] for F − are much less sharp than for F +. For the reader’s
convenience, we repeat those results here. Although parts (a) and (c1) were stated with
coefficient −3 [rather than −(2 + c)] for the L3 n term, the improvement we have noted here
is pointed out in [6, Remark 3.3].

▶ Theorem 1.7 ([6], Theorem 1.12). Consider the process F − defined at (1.1).
(a) Typical behavior of F −:

P(F −
n ≤ L n − (2 + c) L3 n) → 0 if c > 0, and

P(F −
n ≥ L n + cn) → 0 if cn → ∞.
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(b) Top outer boundaries for F −: P(F −
n ≥ L n + c L2 n i.o.) = 0 if c > 0.

(c1) Bottom outer boundaries for F −: P(F −
n ≤ L n − (2 + c) L3 n i.o.) = 0 if c > 0.

(c2) A bottom inner boundary for F −: P(F −
n ≤ L n − L3 n i.o.) = 1. ⌟

Recall that for real-valued random variables Zn and real numbers an, the condition
Zn = Op(an) means that Zn/an is bounded in probability.

The first of two main results of this extended abstract, Theorem 1.8, sharpens Theorem 1.7
considerably. In light of (i) the constant-order variability for a “generic” current record at
time n described in the opening paragraph of this subsection and (ii) Theorem 1.6(a), we
find it quite surprising that, properly centered but not scaled, F −

n has a limit in probability.

▶ Theorem 1.8. Consider the process F − defined at (1.1).
(a) Typical behavior of F −:

F −
n = L n − L3 n − L(d − 1) + Op

(
L3 n

L2 n

)
.

(b) Top outer boundaries for F −: If d ≥ 3, then

P(F −
n ≥ L n − L3 n − L(d − 2) + L 2 + c i.o.) = 0 if c > 0.

(c) Bottom outer boundaries for F −:

P(F −
n ≤ L n − L3 n − L d − L 2 − c i.o.) = 0 if c > 0.

Theorem 1.8 gives rise immediately to the following succinct corollary.

▶ Corollary 1.9. Consider the process F − defined at (1.1).
(a) Typical behavior of F −:

F −
n − (L n − L3 n) P−→ − L(d − 1)

and thus

F −
n − L n

L3 n

P−→ −1

and, yet more crudely,

F −
n − L n

L2 n

P−→ 0.

(b) Almost sure behavior for F −:

lim F −
n − L n

L2 n
= 0 a.s.

Further, for fixed d ≥ 3 we have the refinement

F −
n = L n − L3 n + O(1) a.s.

▶ Remark 1.10. We do not know how to improve Theorem 1.7(b) when d = 2.

AofA 2024
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Suppose now that instead of F −
n we consider the somewhat larger quantity

F̂ −
n := (minimum coordinate-sum of any current record at time n). (1.2)

(See Figure 1.) Our second main theorem concerns the process F̂ −; in summary, the same
results hold for F̂ − as for F − in Theorem 1.8, with a sharper remainder term for F̂ − in
part (a).

▶ Theorem 1.11. Consider the process F̂ − defined at (1.2).
(a) Typical behavior of F̂ −:

F̂ −
n = L n − L3 n − L(d − 1) + Op

(
1

L2 n

)
.

(b) Top outer boundaries for F̂ −: If d ≥ 3, then

P(F̂ −
n ≥ L n − L3 n − L(d − 2) + L 2 + c i.o.) = 0 if c > 0.

(c) Bottom outer boundaries for F̂ −:

P(F̂ −
n ≤ L n − L3 n − L d − L 2 − c i.o.) = 0 if c > 0.

As a corollary, the process F̂ − satisfies the same assertions as for F − in Corollary 1.9.
▶ Remark 1.12. Combining Theorems 1.8 and 1.11, we find that there is little difference
between the two processes, in the sense that

F̂ −
n − F −

n
P−→ 0,

because in fact 0 ≤ F̂ −
n − F −

n = Op

(
L3 n
L2 n

)
.

▶ Remark 1.13. Extending Theorem 1.11, we conjecture that

(L2 n)
(

F̂ −
n − [L n − L3 n − L(d − 1)]

)
(1.3)

has a nondegenerate limiting distribution. This is discussed further in Remark 3.3.

1.3 Outline of extended abstract
The proof of Theorem 1.8 relies on Theorem 1.11, so we tackle the latter first. In Sections
2–3 we apply the first moment method and the second moment method, respectively, to the
number of remaining records with suitably small coordinate-sum; this leads to the proof
of Theorem 1.11 in Appendix B. In Sections 4–5 of this extended abstract we review and
extend the theory of generators developed in [5]. In Section 6 we apply the first moment
method to the number of generators with suitably small coordinate sum; this, together with
the upper bounds on F̂ − in Theorem 1.11, leads to the proof of Theorem 1.8 in Section 7.
▶ Remark 1.14. Because F −

n ≤ F̂ −
n , Theorem 1.8(b) follows immediately from Theo-

rem 1.11(b), as does Theorem 1.11(c) from Theorem 1.8(c).

More notation. Throughout the extended abstract, the boundaries we consider will without
exception have the form

bn := L n − L3 n − L cn with cn > 0 and cn = Θ(1). (1.4)

Also, we will often use the notation

βn := ne−bn (1.5)

The dimension d ≥ 2 will always remain fixed as n → ∞.
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2 Stochastic lower bound on F̂ −
n via the first moment method

In this section we show how to obtain a suitable stochastic lower bound on F̂ −
n . See

Proposition 2.3 for the result. The idea, for a suitably chosen sequence (bn) is to apply the
first moment method (computation of sufficiently small mean, together with application of
Markov’s inequality) to the count ρn(bn), where

ρn(b) := #{remaining records r at epoch n with r+ ≤ b}. (2.1)

Asymptotic determination of the mean is obtained by suitably modifying the asymptotic
determination of the mean of ρn = ρn(∞) in [2, Section 2].

2.1 Upper (and lower) asymptotic bound(s) on mean

In the next lemma we determine detailed asymptotics for the mean of ρn(bn) when (bn) is a
boundary of interest in establishing Theorems 1.8 and 1.11. The proof is rather elementary,
but we defer it to Appendix A. We define

Jj(x) :=
∫ ∞

x

(L z)je−z dz. (2.2)

and note that Jj(x) ∼ (L x)je−x as x → ∞.

▶ Lemma 2.1. With the notation and assumptions of (1.4)–(1.5) and (2.2), as n → ∞ we
have

E ρn(bn) = [1 + O(n−1(L2 n)2)] 1
(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
(L n)d−1−jJj(βn), (2.3)

or, equivalently,

E ρn(bn) = 1
(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
(L n)d−1−jJj(βn)+O(n−1(L n)d−1−cn(L2 n)2). (2.4)

▶ Remark 2.2. We need only lead-order asymptotics for the mean in this section, but (as seen
in the proof of Lemma 3.1 found in the full-length paper) we require much more detailed
asymptotics for it in the next section – asymptotics with an additive o(1) remainder term, as
we have in (2.4).

2.2 Stochastic lower bound on F̂ −
n

We are now in position to apply Markov’s inequality to bound the probability of the event
{F̂ −

n ≤ bn} = {ρn(bn) ≥ 1}.

▶ Proposition 2.3 (Stochastic lower bound on F̂ −
n ). With the notation and assumptions

of (1.4), as n → ∞ we have

P(F̂ −
n ≤ bn) ≤ E ρn(bn) = (1 + o(1)) 1

(d − 1)! (L n)d−1−cn .

AofA 2024
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3 Stochastic upper bound on F̂ −
n via second moment method

In this section we show how to obtain a suitable stochastic upper bound on F̂ −
n (and thus

also on F −
n ). See Proposition 3.2 for the result. The idea, for a suitably chosen sequence

(bn), is to apply the second moment method (computation of sufficiently large mean and
sufficiently small variance, together with application of Chebyshev’s inequality) to the count
ρn(bn) [recall the definition (2.1)], which almost surely equals

ρ◦
n(bn) := #{remaining records r at epoch n with r+ < bn}. (3.1)

For the mean, we will use Lemma 2.1. The bound on the variance of ρn(bn) is obtained by
suitably modifying the already quite technical asymptotic determination of the variance of
ρn = ρn(∞) in [2, Section 2]; the determination here is quite a bit more technical still.

3.1 Upper bound on variance
We next show that the standard deviation of ρn(bn) is of smaller order of magnitude than the
mean – and by enough so that our proof (found in the full-length paper) of Theorem 1.8(b)
(for F̂ −, which implies the result for F −) using the first Borel–Cantelli lemma will succeed.
The rather long and rather computationally technical proof of the following result is left for
the full-length paper, where the reverse inequality (not needed in this extended abstract) is
also established.

▶ Lemma 3.1. With the notation and assumptions of (1.4), as n → ∞ we have

Var ρn(bn) ≤ (1 + o(1))E ρn(bn). (3.2)

3.2 Stochastic upper bound on F̂ −
n

We are now in position to utilize Chebyshev’s inequality to provide a bound on P(F̂ −
n ≥

bn) = P(ρ◦
n(bn) = 0) = P(ρn(bn) = 0).

▶ Proposition 3.2 (Stochastic upper bound on F̂ −
n ). With the notation and assumptions

of (1.4), as n → ∞ we have

P(F −
n ≥ bn) ≤ P(F̂ −

n ≥ bn) ≤ (1 + o(1)) (d − 1)!(L n)−(d−1−cn) = O((L n)−(d−1−cn)).

Proof. The first asserted inequality follows because F −
n ≤ F̂ −

n . Moreover, using Chebyshev’s
inequality, Lemma 3.1, and Lemma 2.1, we find

P(F̂ −
n ≥ bn) ≤ P(ρn(bn) = 0) = P(ρn(bn) − E ρn(bn) ≤ −E ρn(bn))

≤ Var ρn(bn)
[E ρn(bn)]2 ≤ (1 + o(1)) [E ρn(bn)]−1

= (1 + o(1)) (d − 1)!(L n)−(d−1−cn)

= O((L n)−(d−1−cn)),

as desired. ◀

▶ Remark 3.3. Lemma 3.1 and the reverse inequality established in the full-length paper
suggest that the law of ρn(bn) might be well approximated by a Poisson distribution with the
same mean, but, after attempts using the Stein–Chen method (see, e.g., [4]) or the method
of moments, we have been unable to prove such an approximation even in the case that
E ρn(bn) has a limit λ ∈ (0, ∞). For fixed a ∈ R, let Rn(a) denote ρn(bn) when

bn = L n − L3 n − L(d − 1) + a

L2 n
, (3.3)
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i.e., when cn = (d − 1)e−a/ L2 n in (1.4). Even if a Poisson approximation should fail, we
certainly conjecture that Rn(a) converges in distribution to a nondegenerate R(a) as n → ∞
with P(R(a) = 0) continuous and strictly decreasing in a. In that case, it follows that (1.3)
has limiting distribution function a 7→ P(R(a) ≥ 1).

In particular, if R(a) is Poisson distributed for every a, then (1.3) converges in distribution
to −G∗, where G∗ has a Gumbel distribution with location − L[(d−1)!]

d−1 and scale 1
d−1 .

4 Characterization of generators

The unpublished manuscript [5] by Fill and Naiman developed the concept of generators
of multivariate records mainly in connection with an importance-sampling algorithm for
generating (simulating) records. We shall find the same concept crucial for our improvement
Theorem 1.8(c) to Theorem 1.7(c2), the latter of which was established using a quite different
idea, namely, a certain geometric lemma [6, Lemma 3.1]. Accordingly, in this section and
the next we review and extend the theory of generators developed in [5]. In this section we
provide a characterization of the set of generators that is useful in counting them.

▶ Definition 4.1. Suppose x ∈ [0, ∞)d.
(a) The closed positive orthant generated (or determined) by x is the set

O+
x := {y ∈ [0, ∞)d : y ≥ x}.

(b) The minimum points of the frontier Fn are called generators. We denote the set of
generators at time n by Gn.

▶ Remark 4.2.
(a) The record-setting region RSn equals the union ∪g∈Gn

O+
g of closed positive orthants.

The elements of Gn are called generators because RSn is the up-set in [0, ∞)d generated
by Gn with respect to the partial order ≤.

(b) The almost surely unique generator with minimum coordinate-sum is the trailing point
τn, just as the remaining record with maximum coordinate-sum is the leading point λn.

There are 11 generators in Figure 1, including the trailing point τn at the intersection
of Fn and the dotted hyperplane (line) marked with x+ = F −

n . In terminology we shall
establish shortly, 9 of these are interior (i.e., 2-dimensional) generators and 2 of them are
1-dimensional generators.

We now proceed to characterize the set of generators.
Denote the ρ ≡ ρn current records at a given time n by r(1), . . . , r(ρ) (listed here in

arbitrary, but fixed, order). The record-setting region S ≡ RSn is then the closed set

S = ∩ρ
i=1

[
∪d

k=1O+
(

r
(i)
k e(k)

)]
= ∪d

k1=1 · · · ∪d
kρ=1 ∩ρ

i=1O+
(

r
(i)
ki

e(ki)
)

= ∪d
k1=1 · · · ∪d

kρ=1 O+
(

∨ρ
i=1r

(i)
ki

e(ki)
)

= ∪k∈[d][ρ] O+
(

R
(Π1(k))
1 , . . . , R

(Πd(k))
d

)
,

where e(k) denotes the kth standard basis vector and for j ∈ [d] and k ∈ [d][ρ] we have defined
the ordered partition Π(k) = (Π1(k), . . . , Πd(k)) of [ρ] by

Πj(k) := k−1({j}) = {i ∈ [ρ] : ki = j},

and for j ∈ [d] and P ⊆ [ρ] we have defined

R
(P )
j := ∨i∈P r

(i)
j .

AofA 2024
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Therefore we have the neat representation

S =
⋃

O+
(

R
(Π1)
1 , . . . , R

(Πd)
d

)
, (4.1)

where the union here is taken over all ordered partitions Π = (Π1, . . . , Πd) of [ρ] into d sets;
each Πj is allowed to be empty, in which case R

(Πj)
j := 0. This shows immediately that

every element of G ≡ Gn has in each coordinate either 0 or the value of some record in that
coordinate.

To simplify our characterization of generators, we begin by considering only “interior”
generators. For any point x ∈ O+

0 , let ν(x) denote the set of non-zero coordinates of x, and
observe that x lies in the interior of O+

0 if and only if ν(x) = [d]. We call such a point x an
interior point.

Observe that a point x of the form
(

R
(Π1)
1 , . . . , R

(Πd)
d

)
appearing in (4.1) is interior if

and only if all the cells Π of the partition are nonempty. Next, note that x ∈ (0, ∞)d is of
such a form if and only if there exist d distinct indices i1, . . . , id such that xj = r

(ij)
j for

j ∈ [d].
We are now in position to state and (in Appendix C) prove a characterization of the set I

of interior generators. (Note that I ⊂ G ⊂ S.)

▶ Theorem 4.3. A point g ∈ [0, ∞)d belongs to I if and only if
(i) g ∈ S, and
(ii) there exist d distinct indices i1, . . . , id such that

gj = r
(ij)
j = min

{
r

(iℓ)
j : ℓ ∈ [d]

}
for every j ∈ [d]. (4.2)

▶ Remark 4.4. Theorem 4.3 gives an injection from the set of interior generators into the set
of ordered d-tuples of remaining records.

Now that we have characterized the interior generators, it is straightforward to char-
acterize G in terms of projections of the current records to lower-dimensional coordinate
subspaces, but some care must be taken to ensure that the almost sure property of having no
coordinate ties remains true after projection. To begin a careful description, given a subset
T = {j1, . . . , jt} of [d] with |T | = t ∈ [d] and 1 ≤ j1 < · · · < jt ≤ d, define the projection
mapping πT : Rd → Rt by

πT (x1, . . . , xd) := (xj1 , . . . , xjt
),

and define the injection mapping ιT : Rt → Rd by

ιT (x1, . . . , xt) := ∨t
k=1xjk

e(jk).

Recall that ν(x) denotes the set of nonzero coordinates of a point x ∈ [0, ∞)d. Define the set
of T -generators to be the set

GT := G ∩ {x : ν(x) = T}

and observe that G is the disjoint union

G = ∪T ⊆[d]GT .

This observation, together with a characterization of each GT , thus provides a characterization
of G. A characterization of each GT is obtained by combining the following theorem with
Theorem 4.3.
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To set up the statement of the theorem, consider the image

RT := πT (R) =
{

πT (r(i)) : i ∈ [ρ]
}

⊂ R|T |

under πT of the set R :=
{

r(i) : i ∈ [ρ]
}

of current records, and note that RT inherits the
property of “no ties in any coordinate” from R. Let IT denote the set of interior generators
of RT , and let G′

T := ιT (IT ) denote the injection of IT into Rd.

▶ Theorem 4.5. For every T ⊆ [d] we have GT = G′
T .

In light of Theorem 4.5 (which is proved in Appendix C), we call the number of nonzero
coordinates of a generator its dimension. Figure 2 shows the generators of various dimensions
for an example with d = 3.

x1

x2

x3

g

Figure 2 Example of a record frontier in dimension d = 3 with ρ = 8 remaining records shown in
red and the resulting γ = 17 generators: three one-dimensional generators shown in violet, eight
two-dimensional generators shown in blue, and six three-dimensional (interior) generators shown in
green. The lower boundary of one of the orthants O+

g is shown using dashed lines.

▶ Example 4.6. Suppose d = 4 and the current records are (2, 8, 3, 7) and (5, 1, 4, 6). Then
|G| = 8, because |GT | = 1 for precisely eight nonempty subsets T of [4] and |GT | = 0
otherwise. The eight subsets T for which |GT | = 1 are

G{1} = {(5, 0, 0, 0)}; G{2} = {(0, 8, 0, 0)}; G{3} = {(0, 0, 4, 0)};
G{4} = {(0, 0, 0, 7)}; G{1,2} = {(2, 1, 0, 0)}; G{1,4} = {(2, 0, 0, 6)};

G{2,3} = {(0, 1, 3, 0)}; G{3,4} = {(0, 0, 3, 6)}.

Thus there are four one-dimensional generators, four two-dimensional generators, and no
generators with dimension exceeding two.

AofA 2024
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5 The expected number of generators

The proof of Theorem 1.8(c) requires a tight upper bound on the expected number of
generators at time n with suitably small coordinate-sum. In this section we warm up with a
result of independent interest, giving an asymptotic approximation for the expected total
number of generators at time n. We remark in passing that such an approximation proves
useful in the analysis of the importance-sampling record-generating scheme described in [5,
Sections 2–4].

5.1 Exact expressions
Let γd,n (respectively, ιd,n) denote the number of generators (resp., interior generators) after
a given number n of d-dimensional observations. Our first result relates the expectations of
these two quantities.

▶ Lemma 5.1. For integers d ≥ 0 and n ≥ 0, we have

E γd,n =
d∑

k=0

(
d

k

)
E ιk,n, (5.1)

Proof. This is immediate from Theorem 4.5 and the discussion preceding that theorem. ◀

In Lemma 5.1, note that ι0,n = δ0,n: There is a single 0-dimensional generator (namely,
the origin in Rd) if n = 0 and no 0-dimensional generators otherwise. Also note that ιd,n = 0
if n < d.

The next result (proved in Appendix C) gives an exact expression for E ιd,n for n ≥ d ≥ 1.
We write nk for the falling factorial power

n(n − 1) · · · (n − k + 1) = k!
(

n
k

)
.

▶ Lemma 5.2. For integers n ≥ d ≥ 1, we have

E ιd,n = nd

∫
(0,1]d

xd−1
× (1 − x×)n−d dx. (5.2)

▶ Remark 5.3.
(a) The exact expression (5.2) in Lemma 5.2 may be compared to a similar expression for

E ρd,n derived in [2, Section 2]: For d ≥ 1 and n ≥ 1 we have

E ρd,n = n

∫
(0,1]d

(1 − x×)n−1 dx. (5.3)

In fact, by expanding the factor xd−1
× appearing in the integrand in (5.2) as

[1 − (1 − x×)]d−1 =
d−1∑
j=0

(−1)j

(
d − 1

j

)
(1 − x×)j ,

one sees that the expected counts of interior generators and expected counts of remaining
records are related by

E ιd,n = nd
d−1∑
j=0

(−1)j

(
d−1

j

)
n − d + j + 1 E ρd,n−d+j+1

for n ≥ d ≥ 1. But we do not know of any use for this connection.
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(b) An alternative expression to (5.3) is

E ρd,n =
n∑

j=1
(−1)j−1

(
n

j

)
j−(d−1) =: Ĥ(d−1)

n ,

a so-called Roman harmonic number studied by [8], [9], [10].

5.2 Asymptotics

From here we follow the same outline as for the expected number of remaining records in
Bai et al. [2] to obtain an asymptotic expansion for E ιd,n (see our Theorem 5.7, the main
result of Section 5). Accordingly, we begin by considering a Poissonized analogue of E ιd,n,
whose proof is rather simple and is included in the full-length paper.

▶ Lemma 5.4. For integers d ≥ 1 and n ≥ 0, define

ι̂d,n := nd

∫
[0,1)d

xd−1
× exp(−nx×) dx.

Then, for fixed d, as n → ∞ we have

ι̂d,n = (L n)d−1
d−1∑
j=0

(−1)jΓ(j)(d)
j!(d − 1 − j)! (L n)−j + O((n L n)d−1e−n).

We next bound the difference between ι̂d,n and

ι̃d,n := nd

∫
[0,1)d

xd−1
× (1 − x×)n dx. (5.4)

▶ Lemma 5.5. For fixed d ≥ 1, as n → ∞ we have

0 ≤ ι̂d,n − ι̃d,n = O(n−1(L n)d−1).

Proof. We utilize the elementary inequality

e−nt(1 − nt2) ≤ (1 − t)n ≤ e−nt

for n ≥ 1 and 0 ≤ t ≤ 1 (see [3, Lemma 5]). This yields

0 ≤ ι̂d,n − ι̃d,n ≤ nd+1
∫

[0,1)d

xd+1
× exp(−nx×) dx.

Proceeding just as in the proof of Lemma 5.4, we find that the last expression here is
O(n−1(L n)d−1). ◀

▶ Theorem 5.6. For fixed d ≥ 1, as n → ∞ the expected number of interior generators at
time n in dimension d satisfies

E ιd,n = (L n)d−1
d−1∑
j=0

(−1)jΓ(j)(d)
j!(d − 1 − j)! (L n)−j + O(n−1(L n)d−1).

AofA 2024
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Proof. Comparing (5.2) and (5.4) and then invoking Lemma 5.5, we see that

E ιd,n = nd

(n − d)d
ι̃d,n−d = [1 + O(n−1)] ι̃d,n−d

= [1 + O(n−1)]
[
ι̂d,n−d + O(n−1(L n)d−1)

]
= [1 + O(n−1)] ι̂d,n−d + O(n−1(L n)d−1).

But, according to Lemma 5.4,

ι̂d,n−d = [L(n − d)]d−1
d−1∑
j=0

(−1)jΓ(j)(d)
j!(d − 1 − j)! [L(n − d)]−j + O((n L n)d−1e−n)

= (L n)d−1
d−1∑
j=0

(−1)jΓ(j)(d)
j!(d − 1 − j)! (L n)−j + O(n−1(L n)d−2).

Thus

E ιd,n = [1 + O(n−1)] (L n)d−1
d−1∑
j=0

(−1)jΓ(j)(d)
j!(d − 1 − j)! (L n)−j + O(n−1(L n)d−1)

= (L n)d−1
d−1∑
j=0

(−1)jΓ(j)(d)
j!(d − 1 − j)! (L n)−j + O(n−1(L n)d−1),

as claimed. ◀

Combining (5.1) and (5.2), we can obtain an exact expression for E γd,n. Similarly,
combining (5.1) and Theorem 5.6 we obtain the following asymptotic expansion in powers of
logarithm for E γd,n after a little rearrangement.

▶ Theorem 5.7. For fixed d ≥ 1, as n → ∞ the expected number of generators at time n in
dimension d satisfies

E γd,n = (L n)d−1
d−1∑
j=0

ad,j(L n)−j + O(n−1(L n)d−1),

where

ad,j :=
j∑

k=0

(
d

d − j + k

)
(−1)kΓ(k)(d − j + k)

k!(d − 1 − j)! .

⌟

▶ Remark 5.8. Concerning Theorem 5.7:
(a) In particular, ad,0 = 1, so E γd,n has lead-order asymptotics

E γd,n = (L n)d−1 + O((L n)d−2);

this is (d − 1)! times as large as the lead-order asymptotics for the expected number of
remaining records, namely,

E ρd,n = (L n)d−1

(d − 1)! + O((L n)d−2).
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(b) For d = 2 and n ≥ 0, we have

E γ2,n = Hn + 1 = E ρ2,n + 1,

where Hn :=
∑n

k=1 k−1 is the nth harmonic number; and in fact it is easy to see that
γ2,n = ρ2,n + 1. For d = 3 and n ≥ 0, we have

E γ3,n = H2
n + H(2)

n + 1 = 2E ρ3,n + 1,

where H
(2)
n :=

∑n
k=1 k−2 is the nth second-order harmonic number; and in fact γ3,n =

2ρn + 1, as established in [5, Corollary 6.6]. There is not such a simple relationship
between the exact values of ρd,n and γd,n for d ≥ 4; confer [5, Remark 6.7].

(c) We hope to extend the work of Section 5.2 by finding at least lead-order asymptotics for
the variance, and also a normal approximation or other limit theorem, for the number
γd,n of generators after n observations.

6 Stochastic lower bound on F −
n via the first moment method

In this section we show how to obtain a suitable stochastic lower bound on F −
n . See

Proposition 6.2 for the result. The idea, for a suitably chosen sequence (bn) is to apply the
first moment method (computation of sufficiently small mean, together with application of
Markov’s inequality) to the count

γn(b) := (number of generators at epoch n with coordinate-sum ≤ b).

The bound on the mean of γn(bn) is obtained by suitably modifying the proof of Theorem 5.7
[compare also the similar treatment of ρn(bn) in Section 3 and the full-length paper].

▶ Lemma 6.1. With the notation and assumptions of (1.4)–(1.5) and (2.2), as n → ∞ we
have

E γn(bn) ≤ (1 + o(1)) (L n)d−1

(d − 1)! (cn L2 n)d−1(L n)−cn . (6.1)

Proof. We will be very brief here. Following very closely along the lines of Section 5, one
finds that

E γn(bn) ∼ 1
(d − 1)!

∫ L n

ne−bn

(L n − L z)d−1zd−1e−z dz

≤ (L n)d−1

(d − 1)!

∫ ∞

ne−bn

zd−1e−z dz

∼ (L n)d−1

(d − 1)! (ne−bn)d−1 exp(−ne−bn)

= (L n)d−1

(d − 1)! (cn L2 n)d−1(L n)−cn . ◀

We are now in position to utilize Markov’s inequality.

▶ Proposition 6.2 (Stochastic lower bound on F −
n ). Fix d ≥ 2. If 1 ≤ cn = O(1) and

b ≡ bn := L n − L3 n − L cn,

then

P(F −
n ≤ bn) ≤ E γn(bn) ≤ (1 + o(1)) (L n)d−1

(d − 1)! (cn L2 n)d−1(L n)−cn .
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7 Proof of Theorem 1.8

In this section we prove Theorem 1.8.

Proof of Theorem 1.8.
(a) This follows readily from Propositions 6.2 and 3.2 (or one can invoke Theorem 1.11

instead of Proposition 3.2).
(b) As noted in Remark 1.14, this is immediate from Theorem 1.11(b), already established

in Appendix B.
(c) This follows in the same fashion as our given proof of Theorem 1.11(c), now using

Proposition 6.2 in place of Proposition 2.3. We leave the routine details to the reader. ◀
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0
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for n ≥ 1 and 0 ≤ t ≤ 1 (see [3, Lemma 5]). Also, note from the definition (2.2) of the
function Jj that

Jj(x) ∼ (L x)je−x as x → ∞ (A.3)

and that for 1 ≤ x < y we have

0 < Jj(x) − Jj(y) ≤ (L y)j(e−x − e−y) = (L y)je−y(ey−x − 1). (A.4)

(a) Utilizing the upper bound in (A.2) immediately we derive

E ρn+1(bn+1)

= n + 1
(d − 1)!

∫ bn+1

0
yd−1e−y(1 − e−y)n dy

≤ n + 1
(d − 1)!

∫ bn+1

0
yd−1 exp

(
−ne−y − y

)
dy (A.5)

= 1 + n−1

(d − 1)!

∫ n

ne−bn+1
(L n − L z)d−1e−z dz

≤ 1 + n−1

(d − 1)!

∫ n+1

ne−bn+1
[L(n + 1) − L z]d−1e−z dz

= 1 + n−1

(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
[L(n + 1)]d−1−j

∫ n+1

ne−bn+1
(L z)je−z dz

= 1 + n−1

(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
[L(n + 1)]d−1−j [Jj(ne−bn+1) − Jj(n + 1)].

That is,

E ρn(bn) ≤ 1 + (n − 1)−1

(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
(L n)d−1−j [Jj((n − 1)e−bn) − Jj(n)]. (A.6)

By the note following (2.2), Jj(n) ∼ (L n)je−n. Moreover, by (A.4) we have

0 < Jj((n − 1)e−bn) − Jj(βn)
≤ (L βn)je−βn [exp(e−bn) − 1]
∼ (L βn)je−βne−bn = (L βn)je−βnn−1cn L2 n = O

(
(L βn)je−βnn−1 L2 n

)
.

Thus

E ρn(bn) ≤ 1
(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
(L n)d−1−jJj(βn) + O(n−1(L n)d−1−cn L2 n)

= [1 + O(n−1 L2 n)] 1
(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
(L n)d−1−jJj(βn),

bettering the claim in the upper-bound direction for the mean at (2.3).
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(b) Utilizing the lower bound in (A.2), we find from (A.1) that

E ρn(bn) = n

(d − 1)!

∫ bn

0
yd−1e−y(1 − e−y)n−1 dy

≥ n

(d − 1)!

∫ bn

0
yd−1e−y(1 − e−y)n dy

≥ n

(d − 1)!

∫ bn

0
yd−1 exp

(
−ne−y − y

) (
1 − ne−2y

)
dy. (A.7)

We derive that the added term in (A.7) satisfies

n

(d − 1)!

∫ bn

0
yd−1 exp

(
−ne−y − y

)
dy

= 1
(d − 1)!

∫ n

βn

(L n − L z)d−1e−z dz

= 1
(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
(L n)d−1−j [Jj(βn) − Jj(n)].

But Jj(n) ∼ e−n(L n)j , whence the added term in (A.7) is lower-bounded by

1
(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
(L n)d−1−jJj(βn) − O(e−n(L n)d−1).

So it remains to show that the subtracted term in (A.7) can be absorbed into the remainder
term in (2.4), which we will do in similar (but easier) fashion to upper-bounding E ρn(bn).
Indeed, the subtracted term satisfies

0 <
n2

(d − 1)!

∫ bn

0
yd−1 exp

(
−ne−y − 3y

)
dy = n−1

(d − 1)!

∫ n

βn

z2(L n − L z)d−1e−z dz

(A.8)

≤ n−1(L n)d−1

(d − 1)!

∫ ∞

βn

z2e−z dz

∼ n−1(L n)d−1

(d − 1)! β2
ne−βn

= n−1(L n)d−1

(d − 1)! c2
n(L2 n)2(L n)−cn = O(n−1(L2 n)2(L n)d−1−cn)

= O

n−1(L2 n)2 1
(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
(L n)d−1−jJj(βn)

 ,

as desired. ◀

B Proof of Theorem 1.11

In this appendix we prove Theorem 1.11.

Proof of Theorem 1.11.
(a) This follows readily from Propositions 2.3 and 3.2. Here are some details. For a ∈ R, let

bn(a) := L n − L3 n − L(d − 1) + a

L2 n
, (B.1)
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as at (3.3); this is an instance of (1.4) with cn = (d − 1)e−a/ L2 n. By Proposition 2.3,

P(F̂ −
n ≤ bn(a)) ≤ (1 + o(1)) 1

(d − 1)! (L n)d−1−cn → 1
(d − 1)!e

(d−1)a;

the last expression here tends to 0 as a → −∞. Similarly, by Proposition 3.2,

P(F̂ −
n ≥ bn(a)) ≤ (1 + o(1))(d − 1)!(L n)−(d−1−cn) → (d − 1)!e−(d−1)a,

and the last expression here tends to 0 as a → ∞. It follows that the sequence of
distributions of (1.3) is tight, i.e., that Theorem 1.11(a) holds.

(b) Like F − (Lemma 1.5), the process F̂ − has nondecreasing sample paths. From this
it follows that if (bn) is (ultimately) monotone nondecreasing and (nj) is any strictly
increasing sequence of positive integers, then

{F̂ −
n ≥ bn i.o.(n)} ⊆ {F̂ −

nj+1
≥ bnj

i.o.(j)}.

To complete the proof of part (b), we choose bn ≡ L n − L3 n − L(d − 2) + L 2 + c with
c > 0 and nj ≡ 2j , bound P(F̂ −

nj+1
≥ bnj

) using Proposition 3.2, and apply the first
Borel–Cantelli lemma.
Here are the details. If n is even, then

bn/2 = L(n/2) − L3(n/2) − L(d − 2) + L 2 + c = L n − L3(n/2) − L(d − 2) + c

≥ L n − L3 n − L(d − 2) + c,

the last expression being the one in Proposition 3.2 with cn ≡ e−c(d − 2). Thus, by that
proposition,

P(F̂ −
nj+1

≥ bnj
) = P(F̂ −

nj+1
≥ bnj+1/2)

≤ P(F̂ −
nj+1

≥ L nj+1 − L3 nj+1 − L(d − 2) + c)

= O((L nj+1)−[d−1−e−c(d−2)]) = O((j + 1)−[1+(1−e−c)(d−2)]),

which is summable.
(c) To prove part (c) [which, as noted in Remark 1.14, will also follow immediately once we

prove Theorem 1.8(c)], we begin with an argument similar to that for part (b). If (bn)
is (ultimately) monotone nondecreasing and (nj) is any strictly increasing sequence of
positive integers, then

{F −
n ≤ bn i.o.(n)} ⊆ {F −

nj
≤ bnj+1 i.o.(j)}.

To complete the proof of part (c), we choose bn ≡ L n−L3 n−L d−L 2−c with c > 0 and
nj ≡ 2j , bound P(F −

nj
≤ bnj+1) using Proposition 2.3, and apply the first Borel–Cantelli

lemma.
Here are the details. First note that

b2n = L(2n) − L3(2n) − L d − L 2 − c ≤ L n − L3 n − L d − c,

the bounding expression being the one in Proposition 2.3 with cn ≡ ecd. Thus, by that
proposition,

P(F −
nj

≤ bnj+1) ≤ P(F −
nj

≤ L nj − L3 nj − L d − c)

= O((L nj)−[ecd−(d−1)]) = O(j−[1+(ec−1)d]),

which is summable. ◀
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C Proofs of Theorems 4.3 and 4.5 and Lemma 5.2

Proof of Theorem 4.3. First suppose g ∈ I. Then (i) is automatic from the definition
of I. Moreover, we know from our earlier discussion of generators that (ii) holds for
g =

(
R

(Π1)
1 , . . . , R

(Πd)
d

)
with the possible exception of the second equality in (4.2). But if

that equality does not hold, let j, ℓ ∈ [d] with j ̸= ℓ satisfy

r
(iℓ)
j < R

(Πj)
j .

We then move iℓ from the cell Πℓ to the cell Πj in order to form a new partition, call it Π′.
Then

g >
(

R
(Π′

1)
1 , . . . , R

(Π′
d)

d

)
∈ S,

so g is not a generator.
Next we prove the converse. If g has these two properties, then g ∈ (0, ∞)d belongs to S,

so all that is left to show is that g is a minimum (with respect to ≤) of S. Suppose that
x < g; we will complete the proof by showing that x ̸∈ S.

Let j0 satisfy xj0 < gj0 . Then

xj0 < gj0 = r
(ij0 )
j0

(C.1)

using (4.2) for the equality. Additionally, for j ̸= j0 we have

xj ≤ gj < r
(ij0 )
j , (C.2)

where the second inequality holds by (4.2) because

gj = r
(ij)
j = min

{
r

(iℓ)
j : ℓ ∈ [d]

}
,

which almost surely is strictly smaller than r
(ij0 )
j because ij ̸= ij0 . Combining (C.1) and (C.2),

we see that x ≺ r(ij0 ), and so x ̸∈ S. ◀

Proof of Theorem 4.5. Let t = |T |. There is no loss of generality (and there is some
ease in notation) in supposing that T = [t], and thus x ∈ GT if and only if x ∈ G and
xt+1 = · · · = xd = 0. Let x = (x1, . . . , xt, 0, . . . , 0) satisfy ν(x) = t. We will show that x ∈ GT

– equivalently, that x ∈ G – if and only if πT (x) ∈ IT – equivalently, that x ∈ ιT (IT ) = G′
T .

Indeed, for x to be a generator, there are two requirements: (i) x ∈ S, and (ii) x is a
minimum of S. The requirement (i) is that for each i there should exist j ∈ [d] such that
xj ≥ r

(i)
j . However, since we assume that r(i) ≻ 0, such j must belong to [t]. We have thus

argued that x is in S = RS(R) (the record-setting region determined by the points in R) if
and only if πT (x) ∈ RS(RT ).

The requirement (ii) is that y < x must imply y /∈ S. But note that y < x if and only if
y is of the form y = (y1, . . . , yt, 0, . . . , 0) with πT (y) < πT (x). Thus requirement (ii) can be
rephrased thus: If y = (y1, . . . , yt, 0, . . . , 0) with πT (y) < πT (x), then y /∈ RS – equivalently,
by what we argued in connection with requirement (i), that πT (y) /∈ RS(RT ).

So we have argued that x is a generator if and only if πT (x) ∈ IT , i.e., if and only if
x ∈ G′

T . This is as desired. ◀
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Proof of Lemma 5.2. To facilitate the statement and proof of Lemma 5.2, and in order
to follow more closely the analogous treatment of remaining records in [2, Section 2], we
may and do switch from Exponential(1) observation coordinates to observations uniformly
distributed in [0, 1)d. Referring to Theorem 4.3(ii), let us say that the d-tuple (X(i1), . . . ,

X(id)) of observations (where the indices ij are distinct elements of [n]) generates an epoch-n
interior generator g if those d observations are all remaining records at epoch n and

gj = X
(ij)
j = min{X

(iℓ)
j : ℓ ∈ [d]} for every j ∈ d.

Note that every interior generator is generated by precisely one such generating d-tuple. Thus
E ιd,n equals nd times the probability that (X(1), . . . , X(d)) generates an interior generator.
Condition on the value y := (x(1), . . . , x(d)) of this d2-tuple. According to Theorem 4.3, in
order for y to generate an interior generator, two conditions are required. One is that

x
(ℓ)
j ≥ x

(j)
j for every ℓ, j ∈ d with ℓ ̸= j. (C.3)

Let x :=
(

x
(1)
1 , . . . , x

(d)
d

)
. The other condition is that the remaining n − d observations each

need to fall outside O+
x , guaranteeing the condition x ∈ S required by Theorem 4.3(i).

Therefore,

E ιd,n = nd

∫
y:(C.3) holds

[
1 −

∏
(1 − x

(j)
j )
]n−d

dy,

a d2-dimensional integral which reduces effortlessly to a d-dimensional integral:

E ιd,n = nd

∫
[0,1)d

[
∏

(1 − xj)]d−1 [1 −
∏

(1 − xj)]n−d dx

= nd

∫
(0,1]d

xd−1
× (1 − x×)n−d dx,

as desired. ◀
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