Statistics of Parking Functions and Labeled Forests

Stephan Wagner &
Institute of Discrete Mathematics, TU Graz, Austria
Department of Mathematics, Uppsala University, Sweden

Mei Yin &
Department of Mathematics, University of Denver, CO, USA

—— Abstract

In this paper we obtain some new results on the enumeration of parking functions and labeled forests.

We introduce new statistics both for parking functions and for labeled forests that are connected
to each other by means of a bijection. We determine the joint distribution of two statistics on
parking functions and their counterparts on labeled forests. Our results on labeled forests also serve
to explain the mysterious equidistribution between two seemingly unrelated statistics in parking
functions recently identified by Stanley and Yin and give an explicit bijection between the two
statistics.
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1 Introduction

In this paper we obtain some new results on the enumeration of parking functions and labeled
forests. We introduce new statistics both for parking functions and for labeled forests and
connect them by means of a bijection. We determine the joint distribution of two statistics
on parking functions and their counterparts on labeled forests. Our enumerative results
for parking functions and for labeled forests inform each other. In particular, our results
on labeled forests serve to explain the mysterious equidistribution between two seemingly
unrelated statistics in parking functions recently identified by Stanley and Yin [16] and give
an explicit bijection between the two statistics.

We begin with the necessary definitions. In the parking function scenario due to Konheim
and Weiss [9], there are n parking spaces on a one-way street, labeled 1,2, ..., n in consecutive
order. A line of m < n cars enters the street, one by one. The ith car drives to its preferred
spot 7; and parks there if possible; if the spot is already occupied then the car parks in the
first available spot after that. The list of preferences m = (71,...,7,) is called a parking
function if all cars successfully park. (The parking function is called “classical” when m = n.)
We denote the set of parking functions by PF(m,n), where m is the number of cars and n is
the number of parking spots. Using the pigeonhole principle, we see that a parking function
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m € PF(m,n) must have at most one value = n, at most two values > n — 1, and for each k
at most k values > n — k + 1, and any such function is a parking function. Equivalently, « is
a parking function if and only if

#Hk:m<i}>m-n+i, fori=n—m+1,...,n. (1)

We make two immediate observations from (1). The first observation is that parking functions
are invariant under the action of the symmetric group &,, permuting the m cars, that is,
permuting the list of preferences w. The second observation is that when some 7; takes values
in the set {1,2,...,n—m+ 1}, changing m; to any other value in the set {1,2,...,n—m+1}
has no effect on 7 being a parking function.

One of the most fundamental results on parking functions is that the number of parking
functions is |PF(m,n)| = (n — m + 1)(n + 1)~ 1. A famous combinatorial proof in the
classical case was given by Pollak (unpublished but recounted in [5] and [12]). See also Pitman
and Stanley [15] for a generalization of Pollak’s circle argument. The combinatorial argument
boils down to the following easily verified statement: Let G denote the group of all m-tuples
(a1,...,am) € [n+ 1]™ with componentwise addition modulo n + 1. Let H be the subgroup
of G generated by (1,1,...,1). Then every coset of H contains exactly n — m + 1 parking
functions. Interpreted probabilistically, the combinatorial operation involves assigning m
cars on a circle with n 4+ 1 spots and recording those car assignments where spot n + 1 is left
empty after circular rotation. Since there are n —m + 1 missing spaces for the assignment of
any preference sequence, any preference sequence m has n — m + 1 rotations that are valid
parking functions. Our parking function proofs will be based on refinements of Pollak’s proof
technique, where we investigate the individual parking statistics for each car the moment it
is parked on the circle.

This new line of approach first appeared in a paper by Stanley and Yin [16] and is extended
in this paper, where we introduce the new statistics leading elements and size of level set on
parking functions 7 € PF(m,n) and examine their joint distributions. The statistic leading
elements was introduced in [16] earlier for classical parking functions = € PF(n,n) and
counts the total number of cars whose desired spot is the same as that of the first car. It
was shown in [16, Theorem 4.2] via a generating function approach that for classical parking
functions the leading elements statistic is equidistributed with the widely-studied 1’s statistic
that counts the total number of cars whose desired spot is spot 1. This feature of parking
functions is quite mysterious as these two parking function statistics seem unrelated and
are not of the same nature. While the leading elements statistic is invariant under circular
rotation, it does not satisfy permutation symmetry as permuting the entries might change
the first element. On the other hand, though the 1’s statistic is invariant under permuting
all the entries, it does not exhibit circular rotation invariance. Indeed, only one out of n + 1
rotations of an assignment of n cars on a circle with n+ 1 spots gives a valid parking function.
It is thus intriguing what is hidden behind the pair of statistics (leading elements, 1’s). By
casting parking functions in the context of labeled forests, this question will be answered in
our paper. We explain the gist of our argument below.

Let [n] ={1,2,...,n} and [n]o = {0,1,...,n}. Let T(n) denote the set of all rooted trees
T on the vertex set [n]o with root 0. More generally, let F(m,n) denote the set of all rooted
forests F' with n 4+ 1 vertices and m edges (equivalently, n — m + 1 distinct tree components)
such that a specified set of n — m + 1 vertices are the roots of the different trees. We label
the roots of F' by {01,02,...,0(n —m+ 1)} and the non-root vertices by {1,2,...,m}. The
fact that the cardinalities of classical parking functions and of rooted trees are the same, i.e.,

| PE(n,n)| = [T (n)],
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and more generally
| PF(m,n)| = |F(m,n)],

has motivated much work in the study of connections between the two combinatorial structures.
One bijective construction between parking functions and labeled forests goes back to Foata
and Riordan [5]. Their construction is for the special case m = n and is referred to as a
breadth first search (with a queue) on rooted trees. See Yan [17, Section 1.2.3] and also
Chassaing and Marckert [1]. We will show that under the bijective correspondence induced
by breadth first search, the seemingly unrelated leading elements statistic and the 1’s statistic
for classical parking functions both become degree statistics. One of them (the root degree)
is classical, while the other (degree of the parent of a fixed vertex) appears to be new.

Generally, statistics based on degrees and other aspects of labeled trees have been studied
extensively. A well-known generalization of Cayley’s tree theorem includes the degrees of all
vertices as additional statistics [7,14]. Another interesting example is the enumeration of
labeled trees with respect to their indegrees: there are two versions of defining indegrees, both
leading to the same enumeration formula. In the global orientation (see e.g. [14]), all edges
are oriented towards the root; in the local orientation (see [13]), they are oriented towards
the higher label. For many more interesting statistics of labeled trees, see for instance [3]
(descents), [11] (inversions, which were also connected to parking functions in [6]), or [10]
(runs).

This paper is organized as follows. In Section 2 we extend the statistic leading elements
(denoted lel(m)) for classical parking functions that was studied by Stanley and Yin [16] to
general parking functions = € PF(m,n). We also introduce a new statistic, size of level set
(denoted slev(w)), for parking functions m# € PF(m,n) that extends the notion of the 1’s
statistic (denoted ones(w)) for classical parking functions and study the joint distribution of
the level set statistic and the leading elements statistic. We establish the generating function
for the pair of statistics (slev(w),lel(7)) using variations of Pollak’s argument.

In Section 3, we apply the aforementioned bijection between parking functions and labeled
forests that is based on breadth first search. By means of this bijection, we find that the pair
of statistics (slev(r),lel(w)) on the set of parking functions PF(m,n) is equidistributed with
the pair of statistics (deg(0), deg(p)) on the set of rooted forests F(m,n), where deg(0) is the
root degree of a rooted forest (the total number of children of all roots 01,02, ...,0(n—m+1)),
and deg(p) is the number of children of the parent p of the vertex labeled 1 (by degree, we
generally mean more precisely the number of children of a vertex in a rooted tree, which is 1
less than the degree in the graph-theoretical sense for non-root vertices).

The pair of statistics (deg(0), deg(p)) is further considered in Section 4. In particular, we
directly prove a formula for the number of rooted forests in F(m,n) for which deg(0) and
deg(p) take on given values by means of a combinatorial argument. In the special case m = n

(i.e., for labeled trees), the two statistics deg(0) and deg(p) also have the same distribution.

We provide an explicit bijection for this fact.
In Section 5, we finally examine the asymptotic properties of the statistics investigated in
our paper using standard probabilistic tools.

2  Statistics on parking functions

In this section we investigate the joint distribution of the pair of statistics (slev(r),lel(r))
on parking functions © € PF(m,n). The precise definitions of the individual statistics read
as follows:

29:3
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Leading elements: total number of cars whose desired spot is the same as that of the first
car, denoted lel(w). This statistic was recently introduced (in the special case m = n) by
Stanley and Yin [16].

Size of level set: total number of cars whose desired spot is in the range {1,2,...,n—m+1},

denoted slev(w). When m = n, the level set statistic reduces to the 1’s statistic for classical

parking functions, which counts the total number of cars whose desired spot is spot 1,

often denoted ones(m). The level set statistic slev(r) has not been considered before, but

the 1’s statistic ones(7) has been widely studied.
Our results for PF(m, n) are extensions of corresponding results for classical parking functions
PF(n,n) in [16]. As mentioned in the introduction, we will expand upon Pollak’s ingenious
circle argument [5] for the street parking model to derive our results.

The following lemma was proven before using other means, see for example Kenyon
and Yin [8, Corollary 3.4]. Our direct combinatorial argument below will shed light on the
structure of parking functions and will be useful in the proof of Theorem 4. As implied
by the necessary and sufficient condition (1), changing 7; = 1 to whichever value below
n—m+ 1 will still keep 7 a parking function. The number of parking functions = € PF(m,n)
with m € {1,2,...,n — m+ 1} is thus n — m + 1 times the number of parking functions
7w € PF(m,n) with m = 1.

» Lemma 1. We have
#{r € PF(m,n) :m =1} = (n —m+2)(n+1)"" 2%
which implies that
#{r € PF(m,n):m e{l,2,....n—-m+1}}=n—-—m+1)n-—m+2)(n+1)""2

Proof. The statement is trivially true for m = 1. For m > 2, we assign cars 2,...,m
independently on a circle of length n + 1. Taking circular rotation into consideration, the car
assignments give rise to (n —m + 2)(n + 1)™~2 valid parking functions. Note that car 1 will
always be able to park if its desired spot is spot 1. Our conclusion readily follows. |

The following lemma allows us to split a parking function in PF(m,n) into an arbitrary
map whose range is precisely the set {1,2,...,n —m + 1} (that is relevant for the statistic
slev) and a parking function on a smaller domain. It will be very useful in proving our results
on the distribution of statistics on PF(m,n).

» Lemma 2. Consider a function 7 : [m] — [n]. Fiz the elements of w that are equal to one
of 1,2,...,n—m+1, and suppose that there are s > 0 such elements (this is precisely slev(m) ).
Let the other elements be 7, ,mj,,...,m;, ., and define a new function 7 : [m — s| — [m — 1]
by m; = m;, — (n—m+1). Then w is a parking function in PF(m,n) if and only if 7 is a
parking function in PF(m — s,m — 1).

» Remark 3. For s = 0, there is no valid parking function in view of (1). This is consistent
with the fact that PF(m,m — 1) is (trivially) empty.

Proof. We make use of the characterization (1) of parking functions. For any i > m —n, we
have

#Hhk:mp<it=s+#{k: 7 <i—(n—m+1)}.
So the condition in (1) is equivalent to

#Hek:mp<i—-(n—-m+1)}>m-n+i—s
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fori=m—n+1,m-—n+2,...,n. Substituting h =i — (n —m + 1), this becomes

#{k:7, <h}>h+1-s (2)
forh =0,1,...,m—1. This is precisely the condition for a parking function in PF(m—s, m—1),
except for one detail: the conditions start at h = 0 rather than h = s. However, for h < s, (2)
is trivially satisfied. This completes the proof. <

Lemma 2 means that every parking function in PF(m,n) can be uniquely decomposed
into an arbitrary function 7, : A — [n —m + 1] on a set A C [m] of cardinality s and a
function that is equivalent to a parking function 7, in PF(m — s, m — 1).

As a consequence of the decomposition in Lemma 2, we will now be able to prove results
on the distributions of the statistics slev(w) and lel(7). We start with the joint distribution
of slev(r) and lel(w), which is determined by the following theorem.

» Theorem 4. Let s,t > 1. We have

#{m € PF(m,n): slev(r) = s and lel(n) =t}

m— 2
— o 1)8 71m757t+1
<s—1,t—1,m—s—t>(n m+1)7(m—1)

m—1
_ 1 _ s—t m—s—ll
+(t—1,s—t7m—s)s(n m+1)(n—m)*"'m

We will revisit this formula later in the context of rooted forests. The generating function
for the joint distribution of slev(w) and lel(w) is obtained in a straightforward fashion by
summing over all s and ¢.

» Corollary 5.

> 2y = (n—m 4 Day [(m - D)((n—m+ Dz +y+m—1)""2
T€PF(m,n)

+@y+ n—m)z+ )(zy+ (n —m)z + m)mﬂ] . (3)

Proof of Theorem 4. Let us count parking functions = € PF(m,n) for which slev(w) = s.

Lemma 2 shows that we can decompose 7 into an arbitrary function 7, from A to [n —m+1],
where |A] = s and A C [m], and a (function equivalent to a) parking function m, in
PF(m — s,m — 1). For lel(x), we distinguish two cases:
The spot of the first car does not lie in {1,2,...,n —m+1}. In this case, 1 ¢ A, and the
value of lel(r) is determined by the function m,. Recall that by Pollak’s argument, for
every possible map from [m — s| to [m], there are s possible rotations that will turn it
into a parking function in PF(m —s,m —1). Thus in a randomly chosen parking function,
each car (other than the first) takes the same spot as car 1 with the same probability
%, and all the cars are independent. So lel(w) follows a binomial distribution in this
case, and there are s(m;ffl)(m — 1)m=*~t possibilities for 7, such that lel(w) = ¢. Since
there are (™) choices for the set A (the domain of 7,) and (n —m + 1)® choices for the
function 7, itself, we obtain a total contribution of

(m_ 1) '(n—m+1)s-8(mt_81_ 1>(m— nmeet

S

m—2
— _ 15 _lm—s—t-i-l.
(s—l,t—l,m—s—t)(n m+1)7(m—1)

29:5
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The corresponding generating function is

Z <ms— 1) (n —m + 1)5ys(m — 14+ y)m—s—lxs
= (n—m+1)xy(m— 1)((n—m+ ]_)x-|-y+m_ 1)m—2.

The spot of the first car lies in {1,2,...,n—m+1}. Then 1 € A, and lel(r) is completely
determined by the function 7,. Each element of A\ {1} has the same probability ni;mﬂ of
being mapped to the same element as car 1 by 7,, and all these elements are independent.
So given s, lel(w) follows a binomial distribution in this case as well, and given 7,(1),
there are (5~)(n—m)*~* possibilities for the map m, such that lel() = ¢. There are now
(";:11) choices for the set A, n —m + 1 choices for the spot of the first car, and sm™ 5!
possible choices for m,, so this case yields a contribution of

G [N L RS

m—1
— _ 1 _ s—t mfsfl.
(t—l,s—t,m—s)s(n m+1)(n—m)*"'m

The generating function associated with this case is

- -1
> (m )ym —m e 1)(n = m o+ y)* s

= (n—m+ Day(zy + (n —m)z +m)" (zy + (n —m)x + 1).
Combining the two contributions, we obtain Theorem 4 and Corollary 5. <

Specializing the generating function by setting z = 1 or y = 1, we immediately obtain
the distributions of lel(7) and slev(w). These are given in the following two corollaries.

» Corollary 6. Taking x =1 in (3), we have

Yo Y =m—m+yy+n)m

7EPF(m,n)

» Corollary 7. Taking y =1 in (3), we have

Z Slev(m) (n—m+1a ((nfm+1)$+m)m_1 :
T€PF(m,n)

Observe that the generating functions in Corollaries 6 and 7 are identical for m = n (up
to renaming the variable). In this case, slev(m) becomes the statistic ones(7) (number of 1’s
in the parking function).

3 Breadth first search

In this section we explore the implications of the breadth first search (BFS) algorithm
connecting parking functions PF(m, n) and rooted forests F(m,n). This allows us to transfer
results from parking functions to forests. Our construction will extend the corresponding
construction between classical parking functions PF(n, n) and rooted trees 7 (n) by Foata and
Riordan [5, Section 3]. That our construction is a bijection may be similarly argued as in [5],
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Figure 1 Rooted spanning forest.

with minor adaptations. We will not go over all the technical details here, but will provide
the explicit formulas for the generalized construction and illustrate the correspondence with
a concrete example.

A forest F' € F(m,n) may be represented by an acyclic function f, where for a non-root
vertex i, f; = j indicates that vertex j is the parent of vertex ¢ in a tree component of the
forest. Take m =9 and n = 12. See Figure 1 representing an element of F' € F(9,12), which
corresponds to the acyclic function f given below:

i = 1 2 3 4 5 6 7 8 9
fi = 01 04 4 01 2 03 5 2 4°

(4)

We read the vertices of the forest in breadth first search (BFS) order. That is, read root
vertices in order first, then all vertices at level 1 (children of a root), then those at level 2
(distance 2 from a root), and so on, where vertices at a given level are naturally ordered
in order of increasing predecessor, and, if they have the same predecessor, increasing order.
See [17, Section 1.2.3] for a description of this graph searching algorithm in the language of
computer science. Applying BFS to the forest F' in Figure 1, we have

Vo1y.--5004,VU5,...,VU13 = 01,02,03,04, 1,4,6,273,9,5,8,7.

We let J;I be the vertex ordering once we remove the root vertices and oy be the inverse
order permutation of 0;1.

i =12 3 4 5 6 7 8 9
o/t = 1 6 2 3 9 5 8 7
of(i) = 1 4 5 2 7 3 9 8 6

We further let ¢(f) = (r1,...,r12) with r; recording the degree of v;, starting with vg; and
ending with v1o (ignoring the final vertex v13), that is,

t(f)=(20,1,1,0,2,0,2,0,0,1,0).

The sequence t(f) is referred to as the forest specification of F.

Via the breadth first search, a generic forest F' € F(m,n) may thus be uniquely charac-
terized by its associated specification ¢(f) and order permutation o ;. Furthermore, the pair
(t(f), o) must satisfy certain balance and compatibility conditions. For exact definitions of
these conditions, see [8, Section 2.2] and the references therein. Indeed, if we let C(m,n) be
the set of all feasible pairs, then C(m,n) is in one-to-one correspondence with F(m,n). It
turns out that C(m,n) is also in one-to-one correspondence with the set of parking functions
PF(m,n), which we now describe.

29:7
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For a parking function m € PF(m,n), the associated specification is s(m) = (r1,...,7n),
where ry, = #{i : m; = k} records the number of cars whose parking preference is spot k. The
order permutation T, € &,,, on the other hand, is defined by 7 (i) = #{j : 7; < m;, or m; =
m; and j < 4}, and so is the permutation that orders the list, without switching elements
that are the same. In words, 7,(i) is the position of the entry m; in the non-decreasing
rearrangement of m. For example, for 7 = (3,1,3,1), 7:(1) = 3, 7x(2) = 1, 7+ (3) = 4, and
7-(4) = 2. We can easily recover a parking function = by replacing ¢ in 7, with the ith
smallest term in the sequence 1™ ...n". As in the case of rooted forests, all feasible pairs
(s(m), ) for parking functions constitute the set C(m,n).

Combining the above perspectives, we see that the breadth first search algorithm bijectively
connects parking functions and rooted forests, where (¢(f),o;) = (s(m), 7). Continuing
with our earlier example, for the forest F' € F(9,12) in Figure 1 with acyclic function
representation f given by (4), we have

s(m) =(2,0,1,1,0,2,0,2,0,0,1,0),

and
i = 1 2 3 5 6 8 9
@) = 1 4 2 3 9 5 8 7
@@ = 1 4 5 2 7 3 8 6

We form the non-decreasing rearrangement sequence associated with s(m):
12,31, 41, 62,8%,11' =1,1,3,4,6,6,8,8,11.

Replacing i in 7, with the ith smallest term in this sequence yields the corresponding parking
function m € PF(9,12) given below:

i = 1 2 3 4 5 6 7 8 9
m = 1 4 6 1 8 3 11 8 6

This bijective construction between parking functions and rooted forests has some inter-
esting implications that are listed in the following theorem.

» Theorem 8. The following statistics are equidistributed:
The number of times m; appears in a parking function © € PF(m,n) equals the degree of
the parent of vertex i in the corresponding forest F' € F(m,n).
The number of times 1,2,...,n —m + 1 appears in a parking function 71 € PF(m,n)
respectively equals the degree of the root vertex 01,02,...,0(n—m+1) in the corresponding
forest F' € F(m,n).

Proof. This is due to our specific construction. From a forest F' to a parking function 7, we
have

J if f; =07 for some j =1,2,...,n—m+1,
= .
(n—m+1)+o0s(fi) otherwise.

Conversely, from a parking function 7 to a forest F', we have

0j if m;; = j for some j=1,2,...,n—m+1,
fi = —1( .
TN m— (n—m+1)) otherwise.

The second claim is clear. For the first claim, we note that 7; = m; corresponds to f; = f;,
i.e., vertices ¢ and j have the same parent.
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In our illustrative example, the number of times each entry of m appears is given by the
vector W = (2,1,2,2,2,1,1,2,2), whose entries coincide with the respective degree of the
parent of vertex ¢ for i € {1,2,...,9}. An immediate consequence of this fact is that

9 4 13
Zwi = Z deg?(04) + Z deg?(i) = 15.
i=1 i=1 i=5

We also observe that the number of times 1,2, 3,4 appears in 7 respectively agrees with the
degrees of the roots 01,02,03,04 in the forest F, both yielding the vector (2,0,1,1). <

4  Statistics on trees and forests

In the bijection described in the previous section, the number of times m; occurs in the
parking function (the statistic lel(7)) corresponds to the degree deg(p) of the parent p of
vertex 1 (see Theorem 8). Moreover, the total number of times 1,2,...,n —m + 1 occur
in the parking function (our statistic slev(r)) corresponds to the total root degree deg(0),
i.e., the sum of the degrees of all roots. Hence, the pair (deg(0), deg(p)) follows the same
joint distribution as the pair (slev(w),lel(w)). The following generating function identity is
therefore an automatic consequence of Corollary 5.

» Theorem 9.

> adesOydes®) = (n —m+ D)ay [(m - 1)((n—m+ Dz +y+m—1)"2
FeF(m,n)

+a@y+ n—m)z+ D(zy+ (n —m)x + m)m72] . (5)

When m = n, the rooted spanning forest F' € F(m,n) reduces to a rooted tree T' € T (n).

We recognize from Corollaries 6 and 7 that ones(w) and lel(w) are equidistributed. The
breadth first search algorithm maps them to deg(0) and deg(p), respectively, so those are
equidistributed as well. In words, the distribution of the number of children of the root
0 of a rooted labeled tree follows the same distribution as the number of children of the
parent of vertex 1 (or indeed by symmetry the parent of any fixed vertex). The property of
being parent of a specific vertex induces a bias towards higher degrees, which turns out to
be equivalent to the bias induced by being the root (which necessarily has at least one child).
The following procedure provides an explicit bijection for the equidistribution of deg(0) and
deg(p).

1. Remove the edge connecting vertices 1 and p.

2. Connect vertices 0 and 1 by an edge.

3. Interchange vertices 0 and p.

See Figure 2 for the general procedure and Figure 3 for an example. This map has the
extra benefit of being an involution. Moreover, the degrees of all vertices except 0 and p are
preserved. Some nice features are hence introduced in the corresponding parking function
bijection, where in our example

m=(8,4,5,1,2,1,1,5,6) < 7’ = (5,8,2,2,1,5,5,4,9).

We see that ones(w) and lel() are switched, but the frequencies of the non-1 and non-leading
elements are preserved up to permutation. In the example, the non-1 and non-leading
elements in 7 are 5 (occurring twice), 2, 4, and 6. Those in 7’ are 2 (occurring twice), 4, 8,
and 9.

29:9
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Figure 3 A bijective map between deg(0) and deg(p) (example).

The counting formula in our next proposition is equivalent to Theorem 4 in view of the
bijection between parking functions and forests. In the following, we also illustrate it with a
combinatorial proof of the statement in the setting of forests.

» Proposition 10. Let s,t > 1. We have
#{F € F(m,n): deg(0) = s and deg(p) =t}

m—2
_ _ 15 _lm—s—t+1
(s—l,t—l,m—s—t)(n m+1)%(m —1)

+ (t B 1,?—_t,1m B 5) s(n —m+1)(n —m)* " tmm—s—1
Proof. As a starting point, we recall the well-known result that the number of rooted forests
with vertex set [a] and b components whose root labels are given is ba®*~1 (see [14]). Thus
the number of such rooted forests with one distinguished vertex (possibly one of the roots)
is ba®~?, and by symmetry the number of such rooted forests where a vertex in the first
component is distinguished must be a*~°. Now in order to prove our formula, we distinguish
two cases:

Case 1. The parent p of vertex 1 is not one of the roots. A forest F' with this property
as well as deg(0) = s and deg(p) = t can be uniquely constructed as follows:
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Choose a label r € [m]\ {1} (m — 1 possibilities).
Choose two disjoint sets of labels {z1, 29, ..., 2s_1} and {y1,y2, ..., y:—1} from [m]\ {1, r}

(for which there are (571 t:n1_n21757 t) possibilities).
Choose a rooted forest on [m] \ {1} with root labels r a1, za,. .., Zs—1,Y1,Y2,- -, Yt—1
and a distinguished vertex p in the first component (there are (m — 1)™~*~* possibilities,

as explained above). Note that potentially p = r.
Split the distinguished vertex p into two vertices, labeled p and 1 respectively, where p is
the parent and 1 is the child, and all former children of p now become children of 1.
Add roots 01,02,...,0(n —m + 1), and connect each of the vertices r,z1,za,...,25_1
with one of these roots by an edge. There are (n — m + 1)*® possibilities for this.
Add edges between vertex p and y1,¥ys,-..,y:—1. Note that p is indeed the parent of 1 in
this construction, and that deg(0) = s as well as deg(p) = t.
It is easy to reverse the procedure given a forest with deg(0) = s and deg(p) = ¢ for which p
is not one of the roots. So to summarize, we have

m — 2
_ 1) 71m757t+1
<s—1,t—1,m—s—t)(n m+1)°(m —1)

possible forests in this case, which accounts for the first term in our formula. Case 1 is
illustrated in the special case n = m = 13, s = 3 and t = 2 in Figure 4. The choice of root
labels is r = 5, {x1, 22} = {3,13} and {y1} = {9}.

Figure 4 Illustration of the procedure: the rooted forest (top) with the distinguished vertex p
indicated by a thick node, and the final tree (bottom).

Case 2. The parent p of vertex 1 is one of the roots. Again, there is a unique way to
construct all these forests:

29:11
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Select a set of labels {x1,22,...,25_1} from [m]\ {1} in (77}') ways.

Construct a rooted forest with vertex set [m] and root labels 1,1, 29,...,25-1 (there
are sm™~*~! possibilities).

Among the labels z1, 2, ..., 24 1, choose the siblings of vertex 1; there are (5~) possible
choices.

Pick one of the n — m + 1 roots 01,02, ...,0(n —m + 1) as the parent p of vertex 1, and
connect it and all the siblings chosen in the previous step to it by an edge.
Lastly, pick one of the other n — m roots as parent for each of the remaining vertices with
label in the set {z1,22,...,25_1}. This step yields (n —m)*~* possibilities.

Putting these together gives us the second term and thus completes the proof. |

5 Limit distributions

In this section we conclude the paper with some asymptotic observations on the statistics
investigated in our paper. We consider the scenario where m is a linear function of n, and
determine the limit distributions of the statistics lel and slev (for parking functions) and
deg(0) as well as deg(p) (for rooted forests), respectively.

» Proposition 11. Let s be a fized positive integer, and take m = cn for some 0 < ¢ <1 as
n — oo. Consider the parking preference m € PF(m,n) chosen uniformly at random, and let

lels () be the number of cars with the same preference as car s. Then lelg(m)—1 KN Poisson(c),
i.e., for every fized nonnegative integer j,

de ¢

4!

P(lels(r) =144 | # € PF(m,n)) ~

Proof. By permutation symmetry, we only need to prove this result for s = 1, where lel, ()
is exactly lel(w). We divide both sides of the generating function for lel(r) in Corollary 6
through by (n—m+1)(n+1)™~!. The right side becomes the probability generating function
of S(m,n) =1+ Z?;l X;, where the X, are independent Bernoulli random variables:

X — 0, probability n/(n+ 1),
‘| 1, probability 1/(n+1).

Hence we have a standard case of the law of rare events, leading to a Poisson limit distribution.
<

» Corollary 12. Let s be a fized positive integer, and take m = cn for some 0 < ¢ <1
as n — oo. Consider the labeled forest F € F(m,n) chosen uniformly at random, and let

deg(ps) be the degree of the parent ps of vertex s. Then deg(ps) — 1 4 Poisson(c).

Proof. By permutation symmetry, we only need to prove this result for s = 1, where deg(ps)
is exactly deg(p). Since lel(7) and deg(p) are equidistributed (by Theorem 8), the statement
follows from Proposition 11. <

» Proposition 13. Take m = cn for some 0 < ¢ < 1 as n — oo. Consider the parking
preference m € PF(m,n) chosen uniformly at random. Then we have

slev(m) — ¢(1 — ¢)n g./\/'(O .
A2(1—c)n ,
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Proof. We proceed as in the proof of Proposition 11 and divide both sides of the generating
function for slev(r) in Corollary 7 through by (n—m+1)(n+1)™~1. The right side becomes
the probability generating function of S(m,n) =1+ ZZ’;}I X;, where the X; are independent
Bernoulli random variables:

0, probability m/(n+ 1),
Xi= 0
1, probability (n —m +1)/(n+1).

The probabilities converge to ¢ and 1 — ¢ respectively, and the standard central limit theorem
applies. This means that slev(r) may be approximated by N(0,1) after standardization. <

» Corollary 14. Toke m = cn for some 0 < ¢ < 1 as n — oo. Consider the labeled forest
F € F(m,n) chosen uniformly at random. Then we have

deg(0) —c(l —¢)n 4
o — N(0,1).

Proof. Since slev(w) and deg(0) are equidistributed (again by Theorem 8), this is the same
proof as for Proposition 13. |

» Remark 15. The asymptotic analysis of the special case ones(w) for 7 € PF(n,n) was
conducted by Diaconis and Hicks [2]. The limit distribution of the root degree in labeled
trees is classical [4, Example IX.6]. Both ones(7) — 1 and deg(0) — 1 can be approximated
by Poisson(1).
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