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Abstract
We consider the number of occurrences of subwords (non-consecutive sub-sequences) in a given word.
We first define the notion of subword entropy of a given word that measures the maximal number of
occurrences among all possible subwords. We then give upper and lower bounds of minimal subword
entropy for words of fixed length in a fixed alphabet, and also showing that minimal subword entropy
per letter has a limit value. A better upper bound of minimal subword entropy for a binary alphabet
is then given by looking at certain families of periodic words. We also give some conjectures based
on experimental observations.
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1 Introduction

Enumeration problems concerning patterns have been rich sources of interesting combinatorics.
The most famous examples are classes of permutations avoiding a given pattern. We refer
readers to [9, 14] for an exposition of such results. In this article, we will consider enumeration
about patterns in a word, which is in general easier than that for permutations.

There are two different widely used notions of patterns for words. The first notion is that
of a factor. A word v occurs in another word w as a factor if there is a consecutive segment
of w equal to v. The second notion is that of a subword. A word v occurs in another word w

as a subword if we can obtain v by deleting letters in w. A factor of w is always a subword
of w, but not vice versa. There are also other notions of patterns, such as the one in [2] that
generalizes both factors and subwords, but we will not discuss them here.

Unlike for permutations, the enumeration of classes of words avoiding a (set of) given
subwords or factors is already known in the sense that, for a given subword or factor, we
can express their avoidance in regular expressions, leading automatically (no pun intended)
to the generating function of such classes, which is always rational and can be effectively
computed [5, Section V.5]. There is also some work on counting words with a fixed number
of occurrences of a given pattern, for example [2, 11]. For the other end of the spectrum, the
problem of maximal density of certain patterns in words is considered by Burstein, Hästö
and Mansour in [1]. Readers are referred to the survey-book of Kitaev [9] for more of such
results. In general, such results are non-trivial, due to the possible overlap of patterns.
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3:2 Maximal Number of Subword Occurrences in a Word

We may also consider all patterns that occur in a given word. For the notion of factors,
this idea leads to the notion of factor complexity of a word w, first defined by Morse and
Hedlund in [13] and also called “subword complexity”, which is a function fw such that fw(k)
is the number of distinct factors in w of length k. In [7], Gheorghiciuc and Ward studied the
factor complexity of random words. We may also want to consider the number of occurrences
of a given pattern in a word. The work of Flajolet, Szpankowski and Vallée [6] establishes a
Gaussian limit law and large deviations for the number of occurrences of a given subword in
a long random word, again by analyzing overlap of occurrences of subwords. The number of
occurrences of a given pattern is of particular interest in algorithmics with applications in
data mining, in which researchers propose algorithms finding patterns with large number of
occurrences [8] and study complexity of such problems [15].

In this article, we take a further step on enumeration problems on patterns by considering
the number of occurrences of all subwords in a word. More precisely, we can see a given
word w that permits frequent occurrences of some subword w′ as having some “large space”
for such a subword, and we would like to measure the “extend” of such space, or from the
opposite direction, the “disorder” generated by the possible different occurrences. To this
end, we define a notion of subword entropy, which measures the maximal number of times
that any subword can occur in a given word. We delay its precise definition to later sections.
We then look at the minimal subword entropy of all words of a given length n in an alphabet
of k letters, denoted by minS

(k)
sw (n), as it is easy to find the ones with maximal subword

entropy. Using the super-additivity of minimal subword entropy, we show that minS
(k)
sw (n)/n

has a finite limit Lk. We then concentrate on the binary case, showing some upper bounds
of L2 by looking at certain families of periodic words, inspired by experimental data. As
a by-product, we also show that, given two words w and v, the generating function of the
number of occurrences of vr in wm is rational.

The rest of this article is organized as follows. We first give necessary definitions in
Section 2, then some basic results on subword occurrences and minimal subword entropy in
Section 3, including the proof of the existence of the limit Lk of minS

(k)
sw (n)/n, and bounds

of Lk. Then in Section 4, we focus on the case of binary alphabet, and shows a better upper
bound of L2 than the one given in Section 3. We end in Section 5 with a discussion on open
problems partially inspired by experimental results obtained for the binary case.

2 Preliminaries

A word w of length n is a sequence w = (w1, . . . , wn) of elements in a finite set A called the
alphabet. We denote by |w| the length of w, and |w|a the number of letters a in w. For two
words v, w, their concatenation is denoted by v · w. We also denote by ϵ the empty word of
length 0. A run in a word w is a maximal consecutive segment in w formed by only one letter
in A. Given a word w, if there is another word w′ = (w′

1, . . . , w′
k) such that there is some set

P = {p1 < · · · < pk} of integers from 1 to n satisfying wpj
= w′

j for all 1 ≤ j ≤ k, then we
say that w′ is a subword of w, and we call the set P an occurrence of w′ in w. We denote by
occ(w, w′) the number of occurrences of w′ in w. For instance, for w = 011001 and w′ = 01,
there are 5 occurrences of w′ in w, which are {1, 2}, {1, 3}, {1, 6}, {4, 6}, {5, 6}. When w′ is
not a subword of w, we have occ(w, w′) = 0, and when w′ = ϵ, we have occ(w, ϵ) = 1.

It is easy to find words who have a subword with a large number of occurrences. For
instance, with w = an for some letter a ∈ A, the subword w′ = a⌊n/2⌋ appears

(
n

⌊n/2⌋
)
∼( 2

πn

)1/2 2n times. It is more difficult to find words in which no subword occurs frequently.
To quantify such intuition, we define the maximal subword occurrences maxocc(w) of a word
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w to be the maximal value of occ(w, w′), and subwords w′ reaching this value are called most
frequent subwords of w. We note that a word w may have several most frequent subwords.
We then define the subword entropy Ssw(w) of w in an alphabet of size k by

Ssw(w) := log2 maxocc(w).

We note that this definition does not depend on the size of the alphabet, as subword
occurrences are fundamentally about subsets of positions, and the size of the alphabet is
implicit in the word w. Now, finding words in which no subword occurs frequently is to find
words minimizing their subword entropy. We define the minimal subword entropy for words
of length n in an alphabet of size k by

minS(k)
sw (n) := min

w∈An,|A|=k
S(k)

sw (w).

3 Some basic results

We start with some simple properties of occ(w, u).

▶ Lemma 3.1. For words w, w′, u, u′, we have occ(w · w′, u · u′) ≥ occ(w, u) occ(w′, u′).

Proof. Let P (resp. P ′) be an occurrence of u (resp. u′) in w (resp. w′). The set
Q = P ∪ {p′ + |w| | p′ ∈ P ′} is an occurrence of u · u′ in w · w′, and the map (P, P ′) 7→ Q is
clearly injective. ◀

▶ Lemma 3.2. For a word w, it has a most frequent subword u with w1 = u1 and w|w| = u|w′|.

Proof. Let v be a most frequent subword of w. If v1 ≠ w1, then for all occurrences P of v in
w, we have 1 /∈ P . Then, {1} ∪ P is an occurrence of v′ = w1 · v, which is thus also a most
frequent subword. Otherwise, we take v′ = v. We repeat the same reasoning on v′ for the
last letter of w to obtain u. ◀

We now give simple upper and lower bounds for maxocc(w) for any word w.

▶ Proposition 3.3. Given an alphabet A of size k and n ≥ 1, for any word w ∈ An, we have
maxocc(w) ≤

(
n

⌈n/2⌉
)
, and it is realized exactly by w = an for any letter a ∈ A.

Proof. For w′ of length k, as occurrences of w′ in w are subsets of {1, . . . , n}, we have
occ(w, w′) ≤

(
n
k

)
≤
(

n
⌈n/2⌉

)
. It is clear that only words composed by the same letter reach

this bound. ◀

▶ Proposition 3.4. Given an alphabet A of size k and n ≥ 1, when n → ∞, for any
word w ∈ An, we have ln maxocc(w) ≥ max0≤ℓ≤n ln

((
n
ℓ

)
k−ℓ
)
, with ℓ = ⌊ n

k+1⌋ giving the
asymptotically maximized value n ln(1 + k−1)− 1

2 (ln n) + O(1).

Proof. Let u be a uniformly chosen word of length ℓ. We have

E[occ(w, u)] =
∑

P ⊆{1,...,n},|P |=ℓ

P[u occurs in w at positions P ] =
(

n

ℓ

)
k−ℓ.

The first equality is from linearity of expectation, and the second from the fact that u is
uniformly chosen at random, and the probability does not depend on P . Hence, there is
some u∗ with occ(w, u∗) ≥ E[occ(w, u)], implying the non-asymptotic part of our claim.

AofA 2024



3:4 Maximal Number of Subword Occurrences in a Word

For the asymptotic part, take α = ℓ/n. Using Stirling’s approximation, we have

ln
((

n

ℓ

)
k−ℓ

)
= n

[
− α− ln α− (1− α) ln(1− α)− α ln k

]
− 1

2 ln n + O(1).

The coefficient of n above is maximized for α = (k + 1)−1, with value ln(1 + k−1). We thus
have our claim on the asymptotic growth. ◀

▶ Corollary 3.5. There are constants c1, c2 such that, for all n ∈ N and w ∈ An with
|A| = k ≥ 2, we have

log2(1 + k−1)n− 1
2 log2 n + c1 ≤ minS(k)

sw (n) ≤ Ssw(w) ≤ n− 1
2 log2 n + c2.

Proof. The bounds on Ssw(w) result from combining Propositions 3.3 and 3.4 with
ln
(

n
⌈n/2⌉

)
= n ln 2− 1

2 ln n + O(1). The bounds for minS
(k)
sw (n) then follows. ◀

We now show that there is a limit for minS
(k)
sw (n)/n. To this end, we need the well-known

Fekete’s lemma [4] for super-additive sequences.

▶ Lemma 3.6. Suppose that a sequence (gn)n≥1 satisfies that, for all n, m ≥ 1, we have
gn+m ≥ gn + gm. Then, for n→ +∞, the value of gn/n either tends to +∞ or converges to
some limit L.

We first show that the function minS
(k)
sw (n) is super-additive.

▶ Proposition 3.7. Given k ≥ 2, for any n, m ≥ 1, we have

minS(k)
sw (n + m) ≥ minS(k)

sw (n) + minS(k)
sw (m).

Proof. Let w be a word of length n + m achieving minimal subword entropy minS
(k)
sw (n + m).

We write w = w′ · w′′, with |w′| = n and |w′′| = m. Let v′ (resp. v′′) be a most frequent
subword of w′ (resp. w′′). We have

maxocc(w) ≥ occ(w′ · w′′, v′ · v′′) ≥ occ(w′, v′) occ(w′′, v′′) = maxocc(w′) maxocc(w′′).

The first inequality is from the definition of maxocc, the second from Lemma 3.1, and the
equality comes from the definition of v′ and v′′. By the definition of w, we have

minS(k)
sw (n + m) ≥ log2 maxocc(w′) + log2 maxocc(w′′) ≥ minS(k)

sw (n) + minS(k)
sw (m).

The second inequality is from the definition of minS
(k)
sw . ◀

▶ Theorem 3.8. For any k ≥ 2, the sequence (minS
(k)
sw (n)/n)n≥1 converges to a certain

limit Lk < +∞.

Proof. Proposition 3.7 shows that minS
(k)
sw (n) is super-additive. We then apply Lemma 3.6,

and as minS
(k)
sw (n)/n is bounded above by some constant according to Corollary 3.5, we have

the existence of the limit Lk which is finite. ◀

With the existence of the limit Lk, we can use known values of minS
(k)
sw (n) to give lower

bounds for Lk.

▶ Proposition 3.9. Given k ≥ 2, we have Lk ≥ minS
(k)
sw (n)/n for all n.
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Proof. By iterating Proposition 3.7, we have minS
(k)
sw (rn) ≥ r minS

(k)
sw (n) for all r ≥ 1.

Diving both sides by rn, it means that the limit Lk of minS
(k)
sw (rn)/rn is also larger than

minS
(k)
sw (n). ◀

From Corollary 3.5, we know that

log2(1 + k−1) ≤ Lk ≤ 1.

When k →∞, the lower bound is asymptotically (ln 2)−1k−1, which tends to 0, while the
upper bound stays constant. The next natural step is to try to give better bounds for Lk,
and eventually compute the precise value of Lk. However, it seems to be a formidable task.

4 Better upper bound for binary alphabet

After the general basic results given in Section 3, we will focus hereinafter on the case of binary
alphabet A = {0, 1}. In this case, the bounds in Corollary 3.5 become log2(3/2) ≤ L2 ≤ 1
for the limit L2 in Theorem 3.8. The gap between the two bounds are significant, as
log2(3/2) ≈ 0.585. We now give a better upper bound of L2 by constructing a family of
periodic words with a small value of maximal subword occurrences.

▶ Proposition 4.1. For w = (0011)m, there is a most frequent subword w′ of the form (01)r.

Proof. Take a most frequent subword u of w of length ℓ. Suppose that u has the form
u = s ·00 · t. We take u(1) = s ·010 · t and u(2) = s ·0 · t. Let P = {p1, . . . , pℓ} be an occurrence
of u in w, and we suppose that the 00 occurs at pi, pi+1. Let P be the set of occurrences of u

in w, which is divided into P = P1∪P2, where P1 contains those P ’s with pi +1 ̸= pi+1, while
P2 contains those with pi + 1 = pi+1. For any P ∈ P1, the two 0’s occur in different runs,
meaning that there is at least one run 11 in between. This leads to at least two choices for
the extra 1 added in u(1). Therefore, occ(w, u(1)) ≥ 2|P1|. For any P ∈ P2, the two 0’s occur
in the same run, meaning that replacing them by a single 0 leaves us two choices. We thus
have occ(w, u(2)) ≥ 2|P2|, meaning that occ(w, u(1)) + occ(w, u(2)) ≥ 2|P| = 2 maxocc(w).
We deduce that at least one of the u(j)’s satisfies occ(w, u(j)) = maxocc(w). We observe that
both u(1) and u(2) have one less pair of identical consecutive letters than u. We may then do
the same for consecutive 1’s. By iterating such a process, we get a most frequent subword
without identical consecutive letters, thus alternating between 0 and 1. Then we conclude by
Lemma 3.2. ◀

▶ Remark 4.2. We want to highlight the importance of Proposition 4.1 here. The main
difficulty in the study of maximal subword occurrences is, in a sense, algorithmic. To the
author’s knowledge, we don’t know whether there is a polynomial time algorithm to compute
a most frequent subword of a given word, or to decide whether there is a subword that occurs
at least a given number of times. However, in the case of words of the form w = (0011)m, we
manage to show some structure of their most frequent subwords, which then allows us to
compute maxocc(w).

Let am,r = maxocc((0011)m, (01)r), and f(x, y) =
∑

m,r≥0 am,rxmyr be their generating
function. We have the following counting result.

▶ Proposition 4.3. We have

f(x, y) = 1− x

(1− x)2 − 4xy
, am,r = 4r

(
m + r

m− r

)
.

AofA 2024



3:6 Maximal Number of Subword Occurrences in a Word

Proof. For an occurrence P = {p1, . . . , p2r} of (01)r in (0011)m, we have two cases.
p2r < 4(m− 1), meaning that P is also an occurrence of (01)r in (0011)m−1;
p2r ∈ {4m− 2, 4m− 1}, meaning that the last letter 1 of (01)r occurs at the last segment
of 0011. As the (2r−1)-st letter of (01)r is 0, we have p2r−1 ∈ {4m′ +1, 4m′ +2} for some
0 ≤ m′ ≤ m− 1. By removing both p2r−1 and p2r, we obtain P ′, which is an occurrence
of (01)r−1 in (0011)m′ . To go back from P ′ to P given m′, we have two choices for both
p2r and p2r−1.

We thus have the recurrence for m ≥ 1 that

am,r = am−1,r +
m−1∑
m′=0

4am′,r−1. (1)

Subtracting Equation (1) for am,r with that for am−1,r, we have

am,r − 2am−1,r + am−2,r − 4am−1,r−1 = 0.

By the standard symbolic method, and with the initial conditions am,0 = 1 and am,r = 0 for
r > m, we obtain the claimed expression of f(x, y). We can then compute am,r by simply
extracting the coefficient of yr first, then that of xm. ◀

▶ Theorem 4.4. There is some constant c3 such that, for all n ∈ N, we have

minS(2)
sw (n) ≤ 1

2 log2(1 +
√

2)n− 1
2 log2 n + c3.

Proof. For the case n = 4m, we have

minS(2)
sw (4m) ≤ Ssw((0011)m) = max

0≤r≤m
log2 occ((0011)m, (01)r)

= 1
ln 2 max

0≤r≤m
ln
(

4r

(
m + r

m− r

))
.

The first equality comes from Proposition 4.1, and the second from Proposition 4.3. We take
r = αm for some fixed α with 0 < α < 1. Using Stirling’s approximation, we have

ln
(

4r

(
m + r

m− r

))
= s(α)m− 1

2 ln m + O(1),

where

s(α) = α ln 4 + (1 + α) ln(1 + α)− (1− α) ln(1− α)− 2α ln(2α).

The function s(α) is maximized at α = 2−1/2, with value 2 ln(1 +
√

2). We thus have, for
some constant c3, and in terms of n = 4m,

minS(2)
sw (n) ≤ ln(1 +

√
2)

2 ln 2 n− 1
2 ln 2 ln n + c3 − ln 4.

For the case n = 4m + i with 1 ≤ i ≤ 3, let u be a most frequent subword of w =
(0011)m010. For an occurrence P of u in w, we take P ′ = P ∩ {n − 2, n − 1, n}. Then,
j = |P ′| can be 0, 1, 2 or 3. In each case, we define u(j) to be u with the last j letters removed,
and there are at most 2 possibilities for P ′. We also notice that P \ P ′ is an occurrence of
u(j) in (0011)m. We thus have

maxocc(w) = occ(w, u) = 2 occ((0011)m, u(1)) + occ((0011)m, u(2)) + occ((0011)m, u(3))
≤ 4 maxocc((0011)m).
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We conclude by

minS(2)
sw (4m + i) ≤ S(2)

sw (w) ≤ ln 4 + S(2)
sw ((0011)m) = ln(1 +

√
2)

2 ln 2 n− 1
2 ln 2 ln n + c3.

For the first inequality, we take w′ to be the first (4m + i) letters of w, and it is clear that
maxocc(w′) ≤ maxocc(w), as each occurrence of some subword v′ of w′ is also one for w. ◀

The asymptotic upper bound of minS
(2)
sw (n)/n given by Theorem 4.4 is 1

2 log2(1 +
√

2) ≈
0.636 . . ., which is much better than that in Corollary 3.5. Furthermore, by regarding (0011)m

as a word in a bigger alphabet, we have the following corollary, which also gives a better
upper bound than that in Corollary 3.5.

▶ Corollary 4.5. For all k ≥ 2 and n ∈ N, with the constant c3 from Theorem 4.4, we have

minS(k)
sw (n) ≤ 1

2 log2(1 +
√

2)n− 1
2 log2 n + c3.

There are also other families of words with which we have some knowledge on its most
frequent subwords, with results similar to Proposition 4.1. Two of the families we have
studied are (01)m and (000111)m.

▶ Proposition 4.6. For w = (01)m, there is a most frequent subword w′ of the form
(01)r. Furthermore, maxocc((01)m, (01)r) =

(
m+r
m−r

)
, which is maximized asymptotically for

r = ⌊n/
√

5⌋, with the asymptotic maximal value exp
(

n ln 3+
√

5
2 − ln n

2 + O(1)
)

.

▶ Proposition 4.7. For w = (000111)m, there is a most frequent subword w′ of the form
(0011)r. Furthermore, let f000111(x, y) =

∑
m,r≥0 occ((000111)m, (0011)r)xmyr, we have

f000111(x, y) = (1− x)3

(1− x)4 − 9x(1 + 2x)2y
.

For m → ∞, the value of occ((000111)m, (0011)r) is asymptotically maximized for r =
αm, with α an explicit value around 0.6597177 . . .. The asymptotic maximal value is
exp

(
γm− ln m

2 + O(1)
)
, where γ is an explicit value around 2.7182400 . . ..

While the proof of Proposition 4.6 does not need heavy machinery, the proof of Proposi-
tion 4.7 needs the saddle-point estimates of large powers [5, Theorem VIII.8], during which
a polynomial equation of degree 5 appears. Fortunately, the needed solution of the said
equation has a radical expression, albeit complicated and making the explicit expressions of
α and γ in Proposition 4.7 too long to fit here.

While interesting, the upper bounds of L2 given by Propositions 4.6 and 4.7, which are
approximately 0.6942 . . . and 0.6536 . . . respectively, are worse than the one from Theorem 4.4.
It is natural to try to look at other families of periodic words. This is encouraged by the
following theorem.

▶ Theorem 4.8. For any words w, v in an alphabet A of size k, the generating function
fw,v(x, y) =

∑
m,r≥0 occ(wm, vr)xmyr is rational in x, y.

Proof. We define as,t
w,v(m) with 1 ≤ s, t ≤ m to be the number of occurrences P =

{p1, . . . , p|v|} of v in wm such that p1 = s and p|v| = (m − 1)|w| + t. In other words,
as,t

w,v(m) counts the occurrences of v in wm such that the first (resp. last) letter of v occurs
in the first (resp. last) copy of w at position s (resp. t). Let gs,t

w,v(x) =
∑

m≥1 as,t
w,v(m)xm−1.

Note the extra −1 in the exponent of x in gs,t
w,v(x). We first show that gs,t

w,v(x) is rational.

AofA 2024



3:8 Maximal Number of Subword Occurrences in a Word

For an occurrence P of v in wm, some consecutive letters may occur in the same copy of w.
We say that such letters form a cluster, and we denote by σ the integer composition of the
number of letters in each cluster from left to right. We denote by ℓ(σ) the length of σ, which
is also the number of clusters. We denote the clusters by v

(1)
σ , . . . v

(ℓ(σ))
σ , and it is clear that

they are obtained by cutting v into pieces whose lengths are the parts of σ. We then have

gs,t
w,v(x) = as,t

w,v(1)

+
∑
m≥2

∑
σ⊨|v|

xm−1
(

m− 2
ℓ(σ)− 2

) |w|∑
t′=s

as,t′

w,v
(1)
σ

(1)

( t∑
s′=1

as′,t

w,v
(ℓ(σ))
σ

(1)
)

ℓ(σ)−1∏
i=2

occ(w, v(i)
σ )).

Here, σ ⊨ |v| means that we go over all integer compositions of |v|. The first term is for
m = 1. For the second term, we simply count all possibilities of how clusters of v appear in
wm with m ≥ 2 while fixing the first and the last cluster. We observe that each as′,t′

w,v
σ(i)

(1)
for any s′, t′, i is a constant, and the same holds for occ(w, v

(i)
σ ). By exchanging the two

summations, and observing that
∑

m≥2
(

m−2
d−2

)
xm−1 = xd−1(1−x)−(d−1), we see that gs,t

w,v(x)
is rational in x with (1− x)|v|−1 as denominator, as ℓ(σ) ≤ |v| for σ ⊨ |v|.

Now, for 1 ≤ t ≤ |w|, we define f
(t)
w,v(x, y) =

∑
m≥1

∑
r≥1 b

(t)
w,v(m, r)xm−1yr with

b
(t)
w,v(m, r) counting the number of occurrences P = {p1, . . . p|v|r} of vr in wm such that

p|v|r = (m−1)|w|+t. Again, we note the extra −1 in the exponent of x. We see that bt
w,v(m, r)

is defined similarly as as,t
w,v(m), except that we consider subwords of the form vr, and we do

not fix the position of the first letter of vr in wm. We thus have b
(t)
w,v(m, 1) =

∑|w|
s=1 as,t

w,v(m).
Now, let P be an occurrence of vr in wm counted by b

(t)
w,v(m, r). By considering the copies

of w spanned by the last copy of v, we have

f (t)
w,v(x, y) = y

|w|∑
s=1

gs,t
w,v(x) + xy

1− x

 |w|∑
t′=1

f (t′)
w,v (x, y)

 |w|∑
s=1

gs,t
w,v(x)


+ y

|w|−1∑
t′=1

f (t′)
w,v (x, y)

|w|∑
s=t′+1

gs,t
w,v(x)

 .

Here, the first term is for r = 1, and the rest is for r ≥ 2. There are two cases: either letters
in the r-th and the (r − 1)-st copies of v do not occur in the same copy of w in wm, or they
do. The first case is counted by the second term above, with the factor (1− x)−1 for copies
of w between the occurrences of the two last copies of v in wm. The second case is accounted
by the third term above, where we have the constraint that the last letter of the (r − 1)-st
copy of v occurs before the first letter of the r-th copy in the same copy of w.

Let f = t(f (1)
w,v, . . . , f

(|w|)
w,v ). The equation above can be seen as Af = b for some matrix

A = (Ai,j)1≤i,j≤|w| and some row vector b, both with coefficients that are linear in y and
rational in x, and with only powers of (1− x) as denominators. We also observe that Ai,i

is of the form 1 + R(x)y with R(x) rational in x, while Ai,j for i ≠ j is of the form R(x)y.
Hence, A is non-singular, and f

(i)
w,v is rational in x, y for all 1 ≤ i ≤ |w|. We conclude by

observing that fw,v(x, y) = 1
1−x (1 + x

∑|w|
t=1 f

(t)
w,v(x, y)), with the 1 taking care of the case

m = 0, then the factor (1− x)−1 for the copies of w after the last cluster of vr. ◀

Therefore, in principle, for any word w and v, we can first compute fw,v(x, y) effectively
as in the proof of Theorem 4.8, then use analytic combinatorics in several variables [10, 12]
to compute the asymptotically maximal value of occ(wm, vr) for fixed m. Although the
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computation of fw,v(x, y) would be tedious, it is still feasible in principle. The only problem
is that, for w in general, we do not have results like Proposition 4.1 for the structure of
most frequent subwords of wm, meaning that maxocc(wm) is not necessarily achieved for
subwords of the form vr.

5 Open questions

Generally, the “minimum of maximums” structure in the definition of minS
(k)
sw (n) makes

estimates difficult. Hence, not a lot is known about minS
(k)
sw (n). Intuitively, we have the

following conjecture that is surprisingly difficult to tackle.

▶ Conjecture 5.1. For fixed k ≥ 2, there is a value N such that the function minS
(k)
sw (n)/n

is increasing for n ≥ N .

We already know experimentally that Conjecture 5.1 is not universally true for all n (see
Table 1). This point needs to be addressed in possible proofs.

We are also interested by better bounds of L2. Inspired by Theorem 4.8, we looked at
some families experimentally, and there are some with potential to give a slightly better
upper bound of L2 according to numerical evidence. However, we don’t know how to prove
the observed structure on most frequent subwords of such periodic words in general, which
leads us to the following conjecture.

▶ Conjecture 5.2. For a given word w, there is a word v such that, for all m large enough,
there is a most frequent subword of wm that takes the form u · vr · u′, with u and u′ of lengths
bounded by |v|.

If Conjecture 5.2 holds, then using arguments similar to those in Theorem 4.4, we can
reduce the computation of maxocc(wm) to that of maximizing occ(wm, vr) while losing only
a multiplicative constant. We can then apply Theorem 4.8 and tools in analytic combinatorics
in several variables to obtain a better upper bound for Lk. Again, Conjecture 5.2 seems
natural, intuitive and supported by experimental evidence, but we don’t see how to settle it.

Another intuitive idea on most frequent subwords of a given word w is that their length
should be smaller than |w|/2. The reasoning is that longer subwords have more letters, thus
more possible occurrences, but this effect only works up till length |w|/2. However, even
such an intuitive idea, supported by Proposition 3.4, seems difficult to prove.

▶ Conjecture 5.3. For a given word w of length at least 2, there is no most frequent subword
of w with length at least |w|/2.

We now present some concrete experimental results, based on which we have other
conjectures. We denote by w the word obtained from w by switching 0 and 1, and ←−w the
reverse of w. By symmetry between the two letters, we have the following simple observation.

▶ Lemma 5.4. For any w ∈ {0, 1}n with n ≥ 0, we have maxocc(w) = maxocc(w) =
maxocc(←−w ).

We now give the words achieving minimal subword entropy of length up to 35 in Table 1,
up to the symmetries in Lemma 5.4. These results are computed using a program written in
C on one core on a local computation server, and it took around 11 days for n = 35. The
source code can be found at https://github.com/fwjmath/maxocc-subword. We do not
include the most frequent subwords we find, because there may be several of them for a word,
taking up too much space in the table. There are several observations we can draw from
Table 1, but few is without exception.

AofA 2024
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Table 1 Binary words achieving minimal subword entropy of length from 1 to 35. In each
equivalent class defined by the symmetries in Lemma 5.4, only one representative is given. Numerical
values are rounded to three digits after the decimal point when needed.

n Words w with lowest S
(2)
sw (w) maxocc(w) S

(2)
sw (w) S

(2)
sw (w)/n #runs

1 0 1 0 0 1
2 01 1 0 0 2
3 001 2 1 0.333 2
4 0110 2 1 0.25 3
5 01110 3 1.585 0.317 3
6 011001 5 2.322 0.387 4
7 0110001 6 2.585 0.369 4
8 01110001 9 3.170 0.396 4
9 011000110 16 4 0.444 5
10 0110001110 22 4.459 0.446 5
11 01110001110 33 5.044 0.459 5
12 011000111001 52 5.700 0.475 6
13 0111001001110 72 6.170 0.475 7
14 01100010111001 108 6.755 0.482 8
15 011000101110001 162 7.340 0.489 8
16 0111000101110001 252 7.977 0.499 8
17 01100011111000110 390 8.607 0.506 7
18 011100100101110001 588 9.200 0.511 10

19 0110001011101000110 900 9.814 0.517 11
0110001110110001110

20 01110001011011000110 1320 10.366 0.518 11
21 011100011011010001110 2049 11.000 0.524 11
22 0110001110101000111001 2958 11.530 0.524 12
23 01110001011011010001110 4473 12.127 0.527 13
24 011000111010101000111001 6979 12.769 0.532 14
25 0111000101101101000111001 10602 13.372 0.535 14
26 01110001011011001000111001 15962 13.962 0.537 14
27 011100010101110101000111001 24150 14.560 0.539 16

28 0110001111010010010111000110 36450 15.154 0.541 15
0111000101110101000101110001 16

29 01100011101010001010111000110 53671 15.712 0.542 17
30 011000111001100010101111000110 83862 16.356 0.545 15
31 0110001110101000101011110001110 127998 16.966 0.547 17
32 01100011101010001010111010001110 189131 17.529 0.548 19
33 011000111101010001011011010001110 288900 18.140 0.550 19
34 0110001110101000101011101001001110 442386 18.755 0.552 21
35 01110001011011001000110111001001110 681966 19.379 0.554 19
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The words of length n achieving minS
(2)
sw (n) are palindromic, i.e., w = ←−w , or anti-

palindromic, i.e., w = ←−w , for many values of n, such as 1, 2, 4, 5, 6, 8, 9, 11, 12, 13,
14, 16, 17, 22, 23, 24, 29. Moreover, for n = 19 (resp. n = 28), one of the two words is
palindromic (resp. anti-palindromic), the other not.
The value of minS

(2)
sw (n)/n increases with n in general, but with the exceptions of n = 3, 4,

n = 6, 7 and n = 12, 13 (although the rounded numbers are the same). We believe that
the exceptions are due to the effect of small size, and should not reproduce for larger n.
The number of runs for words of length n achieving minS

(2)
sw (n) is increasing with n, with

the exception of n = 17, 28, 30, 35. Moreover, for n = 28 only one word among the two
that has less runs than the word for n = 27.
The maximal run length for words of length n achieving minS

(2)
sw (n) is at most 3, with

the exception of n = 17, 28, 30, 31, 33. Moreover, for n = 28, one of the two words has
maximal run length 3, and the other 4.
There is only one word of length n up to symmetries in Lemma 5.4 that achieves
minS

(2)
sw (n), with the exception of n = 19, 28, where there are two such words.

However, we should note that we only have very limited data, as we were only able to
perform exhaustive search for small values of n. A naïve method requires looking at Θ(4n)
word-subword pairs. Although some optimizations are possible, such as using Lemma 5.4 to
reduce the number of words to examine, the time taken remains exponential, against which
we cannot push too far. An evidence is that, although asymptotically minS

(2)
sw (n)/n should

be bounded from below by log2(3/2) ≈ 0.585 by Corollary 3.5, all the values of minS
(2)
sw (n)/n

in Table 1 are smaller than this asymptotic bound, meaning that the values of n tested here
are not large enough. Nevertheless, we can still formulate reasonable conjectures based on
these observations.

▶ Conjecture 5.5. For k ≥ 2, let w be a word of length n ≥ 1 achieving the minimal subword
entropy minS

(k)
sw (n). Then, except for a finite number of n, the longest run in w has length 3.

Furthermore, the average run length converges when n→ +∞.

Given Proposition 3.9, we may be tempted to use experimental results to give better
lower bound for L2. However, all such bounds are worse than the one in Corollary 3.5, which
is around 0.585 for k = 2. Judging from their gap, it seems impractical or even impossible
to obtain a better bound in this way. In fact, with examples obtained from searches using
various heuristics, it seems that maxocc(w) for w of length n achieving the lowest subword
entropy has an exponential growth in n with a growth constant close to but slightly larger
than 1.5, which is the value given by the lower bound. We thus have the following conjecture.

▶ Conjecture 5.6. We have L2 > log2(3/2).

The value in Conjecture 5.6 comes from the lower bound in Corollary 3.5, which is in fact
the expectation of the number of occurrences of a random subword of length n/3. Hence,
Conjecture 5.6 implies that, for all large values of n, there are binary words of length n

in which each subword of length n/3 occurs much more often than others. The question
remains on how to find such subwords, which probably have relatively high self-correlations.

AofA 2024
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