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Abstract
We present a family of algorithms for the problem of estimating the number of distinct items in
an input stream that are simple to implement and are appropriate for practical applications. Our
algorithms are a logical extension of the series of algorithms developed by Flajolet and his coauthors
starting in 1983 that culminated in the widely used HyperLogLog algorithm. These algorithms divide
the input stream into M substreams and lead to a time-accuracy tradeoff where a constant number
of bits per substream are saved to achieve a relative accuracy proportional to 1/

√
M . Our algorithms

use just one or two bits per substream. Their effectiveness is demonstrated by a proof of approximate
normality, with explicit expressions for standard errors that inform parameter settings and allow
proper quantitative comparisons with other methods. Hypotheses about performance are validated
through experiments using a realistic input stream, with the conclusion that our algorithms are
more accurate than HyperLogLog when using the same amount of memory, and they use two-thirds
as much memory as HyperLogLog to achieve a given accuracy.
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1 Introduction

Counting the number of distinct items in a data stream is a classic computational challenge
with many applications. As an example, consider the stream of strings taken from a web
log shown in the left column of Table 1 (we will use 1 million strings from this log of which
N = 368, 217 are distinct values as a running example in this paper). There is no bound on
the length of the stream, but maintaining an estimate of the number of different strings is
useful for many purposes.
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5:2 Bit-Array-Based Alternatives to HyperLogLog

One classic application is in computer networks. The ability to estimate the number of
different visitors of a website is certainly of interest, and can be critical in maintaining the
integrity of the site. For example, a significant drop in the percentage of distinct visitors in
a given time period might be an indication that the site is under a denial-of-service attack.

Another classic application is found in database systems, where estimating the number of
different strings having each attribute is a critical piece of knowledge in implementing certain
common data base operations. In this case, the length of the streams is available, but may
be very large, and a rough estimate suffices, so using a streaming algorithm is appropriate.

Elementary algorithms for solving the problem are standard in introductory computer
science classes. Perhaps the simplest is to use a hash table, but that requires saving all the
items in memory, which is far too high a cost to be useful in typical applications. In fact,
any method for computing an exact count must save all the items in memory (trivial proof:
any item not saved might or might not be distinct from all the others, and that fact cannot
be known until the last item is seen).

Accordingly, we focus on estimating the count. In typical applications, exact counts are
actually not needed – the estimates are being used to make relative decisions that do not
require full accuracy.

Since the seminal research by Flajolet and Martin in the 1980s [5][6] it has been known
that we actually can get by with a surprisingly small amount of memory. The practical
cardinality estimation problem is to estimate the number of distinct items in a data stream
under the following constraints:

Each item is examined only once.
The time to process each item is a very small constant multiple of the size of the item.
The amount of memory used is very small, no matter how large the stream.
The estimate is expected to be within a small percentage of the real count.

A solution to this problem typically is defined by an implementation that makes clear its
time and space requirements and an analysis that provides a precise characterization of how
the estimate compares to the actual value.

For many years, the state of the art in solving the practical cardinality estimation problem
has been HyperLogLog, the last in the series of algorithms developed by Flajolet and colleagues
from the 1980s through the 2000s [4] [7] [9] [14]. HyperLogLog is based on four main ideas:
Hashing is used to convert each item in the stream into a fixed-length binary number; the
position of the rightmost zero is computed, taking the maximum value found as an estimate
of the binary logarithm of the count; a technique known as stochastic averaging splits the
stream into M independent substreams so that an average of experimental results can be
computed; and the harmonic mean is used to properly handle outlying values. One reason
HyperLogLog is so widely used is that precise analysis of the bias in the estimate provides
the basis for formulating hypotheses about how the algorithm will perform in practical
situations, and the results of experiments that validate the hypotheses are presented. The
analysis exposes a space-accuracy tradeoff, allowing practitioners to choose with confidence
the amount of memory needed to achieve a given accuracy or the accuracy achieved for a
given amount of memory use: For a stream with N distinct values and using M substreams,
HyperLogLog uses M lg lg N bits and typically produces an estimate with a relative standard
error of c/

√
M where c

.= 1.04.
A series of theory papers have proven that O(M) bits are necessary and sufficient to

achieve estimates with asymptotic accuracy on the same order as HyperLogLog, an important
and significant accomplishment [1][10][11]. However, these papers lack implementations,
likely because the implied constants in the proofs are much too large for the methods to be
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Table 1 Computing a sketch for HyperBitT (with M = 8 and T = 1).

s x k r(x) sketch[]
81.95.186.98.freenet.com.ua 111...1111101111011110011101011 7 2 00000001
lsanca.dsl-w.verizon.net 011...1010100010001111110100000 3 0 00000001
117.222.48.163 110...0111001100000111011101101 6 1 00000001
1.23.193.58 100...0100101001000011101100011 4 2 00001001
188.134.45.71 101...0101111000101101000111001 5 1 00001001
gsearch.CS.Princeton.EDU 010...1010011011000011010000100 2 0 00001001
81.95.186.98.freenet.com.ua 011...1011110001110000111010000 3 0 00001001
81.95.186.98.freenet.com.ua 111...1111101111011110011101011 7 2 00001001
1.23.193.58 000...0100111001111101011100111 0 3 10001001
lnse3.cht.bigpond.net.au 111...0110011001011011101001110 7 0 10001001
117.211.88.36 000...1001100010100010010111010 0 0 10001001
1.23.193.58 000...0100111001111101011100111 0 3 10001001
lsanca.dsl-w.verizon.net 011...1010100010001111110100000 3 0 10001001
81.95.186.98.freenet.com.ua 111...1111101111011110011101011 7 2 10001001
gsearch.seas.upenn.edu 000...1000100011011010100001000 0 0 10001001
109.108.229.102 010...1010111101010110110011111 2 5 10101001
msnbot.search.msn.com 001...1001110110111001001101100 1 0 10101001

viable in practice . The theory literature also makes the implicit assumption that strong
assumptions on the hash functions are necessary (even to the point of dismissing algorithms
like HyperLogLog as illegitimate [1]). Strong hash functions add to the expense of processing
each item, and the idea that using one makes any difference at all in practice is tenuous at
best (see, for example, [3] for a discussion of this issue). In this paper, we focus on algorithms
with the potential to be useful in practice – we use hash functions that are widely used
in practice and hypothesize that any differences from the ideal are relatively insignificant.
Any practical application of hashing, however perfect in theory, must assume, at least, that
random bits exist, and therefore requires such a hypothesis.

HyperLogLog uses 5M bits for N < 232, but much higher values are typical in modern
applications. Since it is safe to assume that N < 264, HyperLogLog demonstrates that
6M bits suffice for the practical cardinality estimation problem. Some improvements to
HyperLogLog and some interesting new approaches to the problem have been studied in
recent years [16] [19] [15] [12] [17] but we are still left with the following question: can we
find a practical algorithm as simple as HyperLogLog with comparable accuracy that uses cM

bits for some constant c that is significantly less than 6?

In this paper, we provide answers to this question. The algorithms we present have
the same structure as HyperLogLog but use much less memory – instead of recording the
maximum number of trailing ones, we focus on one bit per sub-stream indicating whether a
threshold has been hit. In Section 2, we use a rough estimate of the cardinality as an input
parameter in order to set the threshold to be the logarithm of the extimated number of
distinct items per substream. As such, the resulting algorithm is not a streaming algorithm,
but it serves as a basis for the streaming algorithms in Section 3 and Section 4 that do solve
the practical cardinality estimation problem, using just two bits per substream. In Section 5
we conclude by discussing how these algorithms match up against those in the literature.
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5:4 Bit-Array-Based Alternatives to HyperLogLog

2 HyperBitT

Our first algorithm uses the standard technique of starting with a rough estimate of the
cardinality and is therefore not properly a streaming algorithm, as no fixed estimate can
remain accurate as the cardinality grows without bound. We consider this algorithm because,
as we will see, it is sometimes useful in its own right, and it admits a precise analysis that
we can use to develop the streaming algorithms in Section 3 and Section 4.

We start with hashing and stochastic averaging with M substreams precisely as does
HyperLogLog, but use just one bit per substream, as follows. Of course, we expect each
substream to have about N/M distinct values, and it has been known since the original
work of Flajolet and Martin [5] that the maximum number of trailing 1s found among the
items in a stream is a good estimator of the logarithm of the number of distinct items in the
stream. (Indeed, this is the same as the length of the rightmost path in a random trie, a
quantity that was studied in the 1970s.) In this spirit, we use a parameter T as an estimate
of lg(N/M). That is, 2T is an estimate of N/M , and 2T M is an estimate of the cardinality
N . Now, we maintain a sketch comprising an array of M bits, one per substream, and set
the bit corresponding to a substream to 1 when an item from that substream has more than
T trailing 1s. When we want to estimate the number of distinct values in the stream, it turns
out that we can use a simple function of the number of 0 bits in the sketch to improve our
estimate. The algorithm may produce an inaccurate result or fail completely if the rough
estimate T is poorly chosen, but, as we will see, it is remarkably forgiving.

Implementation

We start with a bit array sketch[] with one bit per substream, initialized to all 0s. For
clarity, we use a bit[] type to describe our algorithms – although few programming languages
support an explicit bit[] type, the abstraction is easily implemented. For small M , we can
use integer values; for large M , we can use shifting and masking on arrays of integers (see
Appendix B). We typically use a power of two for convenience.

For each new item s in the stream, we compute a hash value x to represent it and a
second hash value k to identify its substream (typically, one might compute a 64-bit hash
and use the leading lg M bits for k and the rest for x). Then we compute r(x), the number
of trailing 1s in x. As described in Appendix B, this operation can be implemented with
only a few machine-language instructions. If r(x) is larger than T, we set sketch[k] to 1.
Table 1 is a trace of the process for a small sequence of hash values with M = 8 and T = 1.

When the stream is exhausted, we compute a correction to the rough estimate of N = 2T M

that takes into account some bias, as a function of the bit values in the sketch. Specifically,
we are interested in the parameter β, the proportion of 0s in the sketch. As indicated
by the analysis below, the appropriate correction factor is ln(1/β). If the sketch is small
enough to fit in a computer word, computing the number of 1s in the sketch is a classic
machine-language programming exercise and is actually a single instruction in many modern
machine architectures. For clarity, we use the function p(sketch); for large M it is preferable
to just increment a counter each time a sketch bit is changed from 0 to 1, as described in
Appendix B. The implementation in Algorithm 1 follows immediately and is easily translated
to any programming language.

If T is too small or too large, the algorithm fails because the estimate cannot be reasonably
corrected (when β is close to 0 or 1, the correction factor is too large or too small to be useful).
But, as we shall see, the algorithm does produce accurate results for a remarkably large
range of cardinality values, and we can precisely characterize that range and the accuracy.
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Algorithm 1 HyperBitT.
public static int estimateHBT (Iterable <String > stream , int M, int T)
{

bit [] sketch [M];
for ( String s : stream )
{

long x = hash1(s); // 64- bit hash
int k = hash2(s, M); // (lg M)-bit hash
if (r(x) > T) sketch [k] = 1; // more than T trailing 1s?

}
double beta = 1.0 - 1.0*p( sketch )/M; // fraction of 0s in sketch
return (int) (Math.pow (2, T)*M*Math.log (1.0/ beta ));

}

Analysis

As a basis for developing an intuition about the problem, we start with an approximate
analysis for the mean value of the number of distinct values in the stream. After N distinct
values have been processed from the input stream, we have seen an average of N/M distinct
values in each substream. As an approximation, assume that exactly N/M values go to
each substream. The probability that a given value has at least T trailing 1s is 1/2T so the
probability that a given bit in sketch[] remains 0 after N/M values are processed in its
corresponding substream is given by a Poisson approximation(

1 − 1
2T

)N/M

∼ e−N/(M2T )

(see for example, [18]). The number of 0s in sketch[] is a binomially distributed random
variable, so this value is also (approximately) β, the expected proportion of 0s in sketch[]
after N values have been processed. Thus, N/M ∼ 2T ln(1/β) and the expected number of
values processed is N ∼ M2T ln(1/β). In other words, we need to correct our rough estimate
of the number of values per stream by the factor ln(1/β).

A full detailed analysis provides much more information, which is critical for studying
the performance of the algorithm. Specifically, we are able to approximate the distribution
of the reported cardinality, which gives us the information needed to estimate how accurate
it will be for given values of M .

The proof is based on the idea of Poissonization – instead of assuming that we have a
fixed given number N of distinct items, we assume that the number is random with a Poisson
distribution. It uses two technical lemmas from probability theory:

▶ Lemma 1. Suppose that Xn ≥ 0 are random variables and an, bn, and σ2 numbers such that,
as n → ∞, we have an → a > 0, bn → 0, and (Xn−an)/bn

d−→ N(0, σ2). If f is a continuously
differentiable function on (0, ∞) with f ′(a) ̸= 0, then (f(Xn) − f(an))/bn

d−→ N(0, f ′(a)2σ2).

Proof. See Appendix A. ◀

▶ Lemma 2. Let X ∼ Binomial(n, p) and let Y ∈ Poisson(np) where n > 0 and p ∈ [0, 1].
Then the total variation distance between them dT V (X, Y ) is no greater than p; in other
words there exists a coupling of X and Y such that P(X ̸= Y ) ≤ p.

Proof. See Theorem 2.M and pages 1–8 in [2]. ◀

AofA 2024



5:6 Bit-Array-Based Alternatives to HyperLogLog

▶ Theorem 3. Suppose that a stream S has N distinct items and that HyperBitT processes
S using M substreams with parameter T and terminates with βM 0s left in the sketch. Then
the statistic M2T ln(1/β) is approximately Gaussian with mean N and relative standard error
cβ

/√
M where cβ =

√
1/β − 1

/
ln(1/β). Formally,

√
M

cβ

(
M2T ln(1/β)

N
− 1

)
d−→ N(0, 1) (1)

as N, M, T → ∞ with N = Θ(M2T ).

Proof. Assume first that N ∼ aM2T for some a ∈ (0, ∞). Pretend that the distinct items
in the stream arrive according to a Poisson process with rate 1. We then may consider the
process at a given time Ñ . If we keep Ñ fixed, then the number of distinct items seen so far
is a random variable obeying a Poisson distribution Poisson(Ñ). We let Ñ ∼ N ∼ aM2T .
For reference, we summarize here the notations used in this proof:

N ∼ aM2T , the cardinality of the stream seen so far when Algorithm 1 terminates
a, a positive number
N̂ = M2T ln(1/β), the reported estimate of N

Ñ ∼ aM2T , the Poisson parameter
Our goal is to approximate the distribution of N̂ .

We begin by finding, in the Poisson model, the distribution of βM , the number of 0s in the
sketch. Since a randomly thinned Poisson process is a new Poisson process, it follows that each
of the M substreams is a Poisson process with rate 1/M , and thus the number of distinct items
in each of them is Poisson(Ñ/M). These random numbers are independent, and each item in
the kth substream has probability 2−T to set sketch[k] to 1. It follows that if the number of
such items is Yk, then Yk is also Poisson, with Yk ∈ Poisson(2−T Ñ/M) = Poisson

(
Ñ/(M2T )

)
.

Now, let q be the probability that sketch[k]=0 (which is the same for all k). Then

q = P(Yk = 0) = exp
(

− Ñ

M2T

)
→ e−a. (2)

Since the numbers Yk are independent, the total number of 0s in the sketch is

βM ∈ Binomial(M, q). (3)

with mean Mq and variance Mq(1 − q).
As M → ∞, we have the normal approximation to the binomial:

√
M(β − q) = Mβ − Mq√

M

d−→ N
(
0, e−a(1 − e−a)

)
. (4)

Now, applying Lemma 1 with the function f(x) = ln(1/x) gives
√

M
(
ln(1/β) − ln(1/q)

) d−→ N(0, ea − 1). (5)

Consequently, since N̂ = M2T ln(1/β), M2T /Ñ → 1/a, and ln(1/q) = Ñ/M2T , we have

√
M

(N̂

Ñ
− 1

)
=

√
M

M2T

Ñ

(
ln 1

β
− ln 1

q

)
d−→ N

(
0, a−2(ea − 1)

)
. (6)

Furthermore, (5) implies ln(1/β) − ln(1/q) p−→ 0, and thus, using (2), ln(1/β) p−→ a; hence
(6) implies (1) (with Ñ instead of N).
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Figure 1 This plot shows the coefficient of 1/
√

M in the relative standard error cβ =√
1/β − 1

/
ln(1/β) (y-coordinate) for β (fraction of 0s in the sketch) between 0 and 1 (x-coordinate).

The value of cβ goes to infinity as β approaches 0 or 1, but it is relatively small when β is not close
to these extremes. For example, cβ < 1.5 when .043 < β < .541, cβ < 2 when .014 < β < .748, and
cβ < 3 when .0035 < β < .888.

This is the desired result for the Poisson model. To prove the result for a given number N

of items, we use Lemma 2. We may assume that we start by selecting all items with at least T
trailing 1s. Since each item is selected with probability 2−T , the number of selected items is
Binomial(N, 2−T ). Similarly, if we consider the Poisson model with Poisson(N) items (thus
choosing N = Ñ above) then the number of selected items is Poisson(N2−T ). By Lemma 2.
we may couple the two versions such that the number of selected items agree with probability
no less than 1 − 2−T → 1. Hence, (1) for a fixed N follows from the Poisson version.

We have proved that (1) holds when N/(M2T ) converges to a limit in (0, ∞). The more
general assumption N = Θ(M2T ) implies that every subsequence has a subsubsequence such
that N/(M2T ) converges, and thus (1) holds for the subsubsequence. As is well known, this
implies that the full sequence converges (see Section 5.7 in [8]). ◀

To summarize, the goal of HyperBitT is to compute an estimate of N , the cardinality of
the input stream. To do so, it takes two parameters

M , the number of substreams (and the number of bits used)
T , a rough estimate of lg(N/M)

and, using an M -bit sketch, computes a value
β, the fraction of 0s in the sketch.

Theorem 3 provides formulas for two important pieces of information, as functions of β:
the correction factor ln(1/β), leading to the estimate 2T M ln(1/β) for N

the coefficient of 1/
√

M in the relative standard error cβ =
√

1/β − 1
/

ln(1/β)

This is the information that we need to properly choose the value of T . Of most interest is
the fact that cβ is relatively small and is large only when β is close to 0 or 1 (see Figure 1).
If T is too small, then the sketch will be predominately 1s, and β will be close to 0; if T is
too large, the sketch will be predominantly 0s and β will be close to 1.

As an example, suppose that we take M = 1024 and aim to keep cβ < 1.5, which is the
case when .043 < β < .541 (see Figure 1). As indicated in this table, each value of T leads
to an accurate answer for a rather large range of values of N .

AofA 2024



5:8 Bit-Array-Based Alternatives to HyperLogLog

Table 2 Since it is based on hash values, HyperBitT produces a different result every time it is
run. The following table shows the result of five consecutive runs of HyperBitT for our sample web
log with these parameter values. The last line compares the estimated cardinality with the actual
value 368,217. Since our estimate of the standard error is conservative (cβ is usually smaller than
1.5), four of the five runs produced estimates well within the desired 5%. Since the distribution is
Gaussian, the outlier in the first experiment is not unexpected.

# of 0s in sketch[] Mβ 228 253 257 261 265

estimated cardinality 2T M ln(1/β) 393,773 366,498 362,386 358,338 354,351

estimated relative accuracy cβ/
√

M 3.9% 3.9% 3.9% 3.9% 3.9%

actual relative accuracy 6.9% 0.5% 1.6% 2.7% 3.8%

T 6 7 8 9 10 11
M2T ln(1/β) for β = .541 40,261 80,522 161,044 322,089 644,177 1,288,356
M2T ln(1/β) for β = .043 206,212 412,425 824,850 1,649,701 3,299,402 6,598,804

Validation

The purpose of our analysis is to enable us to hypothesize that the cardinality returned by
HyperBitT behaves as described by Theorem 3 and to set parameter values that keep the
error low. As with any scientific study, our confidence in the result grows with the number
of experiments that validate it, so we can only give an initial indication. (For example,
practitioners have confidence in a similar hypothesis for HyperLogLog because it has been
used in a wide variety of practical situations for years.)

The hypothesis rests on three main assumptions. First, we assume that the data we have
and that the hash functions we use have the idealized properties stipulated in the analysis,
or that deviations from this ideal are relatively insignificant. Second, we assume that the
second hash function splits the stream into each substream with equal probability, or that
deviations from this ideal are relatively insignificant. Third, we assume that deviations from
approximations in the analysis are relatively insignificant.

For example, suppose that we wish to use HyperBitT to estimate the number of distinct
strings in the web log described in Section 1. To do so, we need to specify the values of the
two parameters: M (the number of bits of memory we need to use to achieve the accuracy
that we want) and T (where 2T M is our rough guess of the cardinality).

First, we choose the value of M . As an example, suppose that we are looking for an
accurate answer, say with 5% relative error. Referring to Figure 1, if β is in the range
(.043, .541), then cβ < 1.5 and M = 1024 will do the trick, because 1.5/

√
1024 .= .0469 . This

is a conservative choice because cβ is usually much smaller than 1.5 in that range.
Next, we choose the value of T . Suppose we decide that it is a reasonable guess that

the unique values comprise somewhere between 20% and 80% of the stream (a rather wide
range). This leads to the choice T = 8 because M2T ln(1/β) is between 161,044 and 824,851
(and cβ < 1.5) when β is between .541 and .043.

Table 2 shows the experimental results that constitute a quick validation check. Figure 2
describes two experiments that each run it 10 thousand times, which both are strong evidence
of the validity of our analysis and our hypotheses about the performance of HyperBitT.
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(a) 100 trials every 10,000 inputs up to 1 million. (b) 10,000 trials with 1 million inputs.

Figure 2 Results of estimating cardinalities in a web log, each with 10,000 trials. In Figure 2(a)
HyperBitT was run 100 times for the first 10,000, 20,000, 30,000, . . . items in the log, up to 1 million.
Each grey dot shows the result of one experiment and the colored dots are the average of the values
for each set of 100 experiments. A black line that shows the actual number of distinct items in the
stream is completely hidden by the colored dots. The histogram in Figure 2(b) plots the estimates
returned by HyperBitT for 10,000 runs on the first 1 million strings in the web log. The distribution
matches a Gaussian, centered on the true number of distinct values, with relative standard deviation
about 1.25/

√
M

.= 0.039 (plotted in color), thus validating Theorem 3 and our hypothesis that the
estimated cardinality is likely to be within within 5% of the true value.

It is important to reiterate that HyperBitT is not a streaming algorithm. For example, it
could not be used without some periodic adjustments for our web log example, where the log
may be monitored for weeks, months, or even years, and therefore could consists of billions
or trillions of strings or more. But there are many situations where HyperBitT may be useful
because the estimate need not be very accurate and there are reasonable approaches to
coming up with one. In a database or similar application, one might take a random sample.
In a web log or similar application, one might take a small sample from initial values, or run
multiple offsetting streams, using the estimate from one as the rough guess for another. For
example, in protecting against a denial-of-service attack, the whole point might be to just
set off an alarm when the cardinality deviates significantly from an expected range.

3 HyperBitBit and HyperBitBitBit

In this section, we describe variants of the algorithm that can adapt as the number of unique
values grows, by making T a variable and then increasing it as needed.

Obviously, T needs to increase when the sketch becomes nearly full of 1s. The first
approach that comes to mind is to plan to increase T by one when the sketch becomes nearly
full and to maintain a second sketch with 1 bits corresponding to whether or not an item
with at least T+1 trailing 1s has been seen. Then, when the sketch is nearly full, we can
increment T and replace the first sketch with the second one. But then we need to replace
the second sketch. We could use a third sketch (and we will, when M is not small), but then
do we need a fourth sketch? Moreover, when the sketch for T is nearly full of 1s, so is the
sketch for T+1, so incrementing T by 1 does not help much.

AofA 2024



5:10 Bit-Array-Based Alternatives to HyperLogLog

Table 3 Fraction of zeros in sketches for T+i when the sketch for T is 97% full. The sketch for T
is 3% 0s, the sketch for T+4 is 80% 0s and the sketch for T+8 is 99% 0s.

i 0 1 2 3 4 5 6 7 8
βi = exp(− ln(1/β)/2i) .03 .17 .42 .64 .80 .90 .95 .97 .99

So we want to increment T by more than one. But by how much? Recall that our
analysis indicates that the accuracy degrades as the number of 0s in the sketch grows, and
incrementing T corresponds to increasing the number of 0s. Eventually we can stop when
we encounter sketches that are all 0s, but we are faced with a delicate balance between the
amount by which we increment T and the number of sketches we might need. Theorem 3
gives us precisely the information we need to make an intelligent choice.

To fix ideas, take M = 64 and suppose that we consider the sketch to be “nearly full”
when 62 of its bits are 1 (and therefore β = 2/64 .= 0.032). Now, we want to choose an
increment i for T – we will maintain a second sketch for T+i and increment T by i when the
sketch for T is 97% full of 1s. Our goal is to choose i such that we do not need to maintain
a third sketch.

Let βi be the fraction of 0s in the sketch for T+i. Because the estimated value of N does
not change, we must have ln(1/β) = ln(1/βi)/2i. Solving for βi gives βi = exp(− ln(1/β)/2i).
Table 3 shows these values for possible increments up to 8 (after that point, the sketches are
increasingly likely to be all 0s).

Specifically, Table 3 tells us something very important: for increments 4 or greater, there
is no need to maintain a third sketch, because it would be nearly all zeros. With our choice
to increment T by 4 when the sketch is 97% 0s, we know that at that time the sketch for
T+4 is about 80% 0s and the sketch for T+8 would be about 99% 0s, so we can increment T,
update our sketch for T using the sketch for T+4, and set the sketch for T+4 to all 0s. We
may be ignoring a few 1s that would be in the sketch for T+8 had we maintained it, but the
likelihood that ignoring them would noticeably affect the final estimate is very small. If we
want to be very conservative, we could maintain the indices of these 1s, at a very small (if
not negligible) extra cost, but few practitioners would bother.

This discussion brings us to HyperBitBit64 (Algorithm 2). It uses M = 64, maintains
two sketches, increments T by 4, and updates the sketches when the first sketch becomes
97% full of 1s. The implementation also illustrates how to use 64-bit words for the sketches,
which eliminates the overhead of maintaining bit arrays and leads to very simple and
efficient code in typical programming environments, even machine language. For clarity,
Algorithm 2 uses the call p(sketch) to count the number of 1s in the sketch. If this
is not available as an atomic operation, one might choose the alternative of counting
as the bits are set, as described in Appendix B and illustrated in the code at https:
//github.com/robert-sedgewick/hyperbitbit.

From the above discussion, it is reasonable to hypothesize that when Algorithm 2
terminates, sketch0 is the same as the sketch when Algorithm 1 is used with the current
value of T. In other words, Theorem 3 applies throughout. As we saw in Table 3, just
before incrementing T, sketch0 has about 97% 1s and sketch1 has about 20% 1s. Thus,
the fraction of 0s in the sketches stays in the range .03 < β < .80, so the value of cβ is in the
flat part of its curve (see Figure 1) – it is always less than 2.25 with average value about

1
.77

∫ .80
.03 cβdβ

.= 1.48 . This is conservative – the number of 0s quickly increases when it is
small, so cβ is more often than not less than this average.

https://github.com/robert-sedgewick/hyperbitbit
https://github.com/robert-sedgewick/hyperbitbit
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Algorithm 2 HyperBitBit64.
public static int estimateHBB64 (Iterable <String > stream )
{

int T = 1;
int M = 64;
long sketch0 ;
long sketch1 ;
for ( String s : stream )
{

long x = hash1(s); // 64- bit hash
int k = hash2(s, M); // 6-bit hash
if (r(x) > T) sketch0 = sketch0 | 1L << k; // >T trailing 1s?
if (r(x) > T+4) sketch1 = sketch1 | 1L << k;
if (p( sketch0 ) > .97*M) // >62 1s?
{ sketch0 = sketch1 ; sketch1 = 0; T += 4; }

}
double beta = 1.0 - 1.0*p( sketch0 )/M; // fraction of 0s
return (int) (Math.pow (2, T)*M*Math.log (1.0/ beta ));

}

The end result is that HyperBitBit64 is a true streaming algorithm that uses just 128
bits (plus six bits for T) to achieve an expected standard error which is usually lower than
1.48/

√
64 .= 18.5% even for streams having billions or trillions or more distinct items. As we

will see in Section 5, this accuracy is substantially better than that achieved by HyperLogLog
for the same number of bits. The cost of processing each element is the cost of hashing plus
a few machine-language instructions. In applications where 18.5% accuracy suffices (and
developing a rough guess that would enable use of HyperBitT is infeasible), HyperBitBit64
is likely to be the method of choice because of these low costs. For example, it would be quite
useful in an application where maintaining large number of different cardinality counters are
needed, each responding to some different filter of the input stream.

For larger values of M (say 128 or 256) we can implement HyperBitBit with a bit array
(perhaps implemented with an array of 64-bit integers as described in Appendix B) and do
even better. Specifically, it makes sense to set the cutoff to increment T when the relative
standard error for the new value is equal to the current relative standard error. That is, with
a = ln(1/β) and c(a) =

√
ea − 1/a, we increment T by 4 when c(a) = c(a/16). The solution

to this equation is a = ln(1/β) .= 4.41 so β = e−a .= .012. That is, we should increment T by
4 and update the sketches when sketch0 has .988M 1 bits. At that point, the proportion
of 0s in the sketch for T+4 will be about e−a/24 .= .759. The proportion of 0s in the sketch
for T+8 would be about e−a/28 .= .983, so we are ignoring (2, 4, 9) 1 bits for (128, 256,
512) respectively, which is likely tolerable. The fraction of 0s in the sketches stays in the
range .012 < β < .759, so the value of cβ is always less than 2.05 with average value about

1
.747

∫ .759
.012 cβdβ

.= 1.46.

HyperBitBitBit

For even larger values of M , we can go to a third sketch, marking the subarrays with at least
T, T+4, and T+8 trailing 1s and define HyperBitBitBit in a straightforward manner. The
implementation is omitted because we present a significant improvement in Section 4. The
proportion of 0s in the sketch for T+12 would be about e−a/212 .= .996, so we are ignoring (1,
2, 4) 1 bits for (1024, 2048, and 4096) respectively, again likely tolerable.
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Algorithm 3 HyperTwoBits.
public static int estimateHTB (Iterable <String > stream , int M)
{ // for M = 1024 , 2048 , or 4096

int T = 1;
twobit [] sketch = new twobit [M];
for ( String s : stream )
{

long x = hash1(s); // 64- bit hash
int k = hash2(s, M); // (lg M)-bit hash
if (r(x) >= T ) if ( sketch [k] < 1) sketch [k] = 1;
if (r(x) >= T+4) if ( sketch [k] < 2) sketch [k] = 2;
if (r(x) >= T+8) if ( sketch [k] < 3) sketch [k] = 3;
if (pnz( sketch ) > .988*M)
{

T = T+4;
for (int i = 0; i < M; i++)

if ( sketch [i] > 0) sketch [i]--;
}

}
double beta = 1.0 - 1.0* pnz( sketch )/M;
return (long) (Math.pow (2, T)*M*Math.log (1/ beta ));

}

As just noted for HyperBitBit, the fraction of 0s in the sketches stays in the range .012 <

β < .759, so the value cβ is always less than 2.05 with average value about 1
.747

∫ .759
.012 cβdβ

.=
1.46. In summary, HyperBitBitBit is a true streaming algorithm, effective for M up to at
least 4096, that uses 3M bits and achieves relative standard error of about 1.46/

√
M .

4 HyperTwoBits

Remarkably, we can produce the same result as HyperBitBitBit but using just 2M bits.
The trick is to note that if a bit is set in the sketch for T+4, the bit in the corresponding
position in the sketch for T must be set, and if a bit is set in the sketch for T+8, the bits in
the corresponding positions in the sketches for both T+4 and T must be set. This observation
means that we can represent the three sketches with an array of two-bit values that encode
in binary the number of 1s in each position in the three sketches in HyperBitBitBit, as
shown in this example:

sketch for T 11111111111011101111111111111111111110111011111100111111111
before sketch for T+4 00010011101000000000000100001100101100000011110000100000000

sketch for T+8 00000001000000000000000000000000000100000000110000100000000
two-bit values 11121123212011101111111211112211212310111022331100311111111

sketch for T 00010011101000000000000100001100101100000011110000100000000
after sketch for T+4 00000001000000000000000000000000000100000000110000100000000
T+=4 sketch for T+8 00000000000000000000000000000000000000000000000000000000000

two-bit values 00010012101000000000000101001100101200000011220000200000000

Maintaining this array while streaming is simple: for each data item, we identify its stream
and set its value as appropriate. Then when the number of nonzero values reaches the
threshold, we increment T by 4 and simply decrement the nonzero values in the array.
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From this description, the implementation in Algorithm 3 is immediate. For clarity, we
use a twobit[] type to describe the algorithm – although no programming languages support
an explicit twobit[] type, the abstraction can be implemented with shifting and masking
on arrays of integers, an amusing exercise in bit logic (see Appendix B). For clarity, we use a
method pnz()) to count the nonzero entries in the array – its implementation is omitted
because it is better to maintain the count dynamically (also see Appendix B).

In summary, HyperTwoBits is a true streaming algorithm, effective for M up to at least
4096, that uses 2M bits and achieves relative standard error of about 1.46/

√
M . As described

in Appendix B, it can be implemented such that processing each item in a stream requires
only a few machine-language operations.

Figure 3 presents the results of two experiments for Algorithm 3 corresponding to those
presented for Algorithm 1 in Figure 2, which validate our hypothesis that the relative
accuracies of the algorithms are comparable and are strong evidence of the utility of the
algorithm in practice.

(a) 100 trials every 10,000 inputs up to 1 million. (b) 10,000 trials with 1 million inputs.

Figure 3 Results of estimating cardinalities in a web log using Algorithm 3 with M = 1000, for
comparison with Figure 2 (where the details of the experiments are described). Given the same
inputs (and the same random numbers), the figures for HyperBitBitBit would be identical.

5 Performance comparisons

Comparing the performance of our algorithms with each other and with cardinality estimation
algorithms in the literature needs to be done carefully for several reasons.

First, many papers from the theoretical computer science literature study algorithms
implemented in pseudocode (or just described in English). While these papers often introduce
interesting ideas, they cannot be evaluated as solutions to the practical cardinality estimation
problem for two reasons. First, the methods described have never been implemented (and are
sufficiently complicated that implementing them is not likely to be worthwhile) so the time
required to process each item while streaming cannot be determined. Second, the analyses
generally define complexity results that use O-notation and are not sufficiently precise to
compare the relative accuracy with other methods.
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Second, even among methods that have been implemented and tested, practitioners might
prefer algorithms that are much simpler to implement and maintain over more complicated
methods that perform slightly better. Some methods are sufficiently complicated to implement
that practitioners might shy away from (or may not be able to afford) actually doing so. For
example, HyperLogLog is easy to implement with 8-bit bytes, but 6-bit bytes are sufficient.
Implementing a 6-bit byte array with arrays of 64-bit words is not difficult, but may be too
cumbersome from the point of view of some practitioners.

Third, many papers use the parameter M to count the number of bytes or words (of
varying length) of memory used. Proper comparisons necessitate counting total number of
bits of memory in all cases. As an extreme example, suppose that two algorithms achieve
standard error 2/

√
M but one uses M bits and the other uses M 64-bit words. The first is

eight times more accurate for a given number of bits of memory. In general, if we know that
the accuracy of an algorithm is c/

√
M and that it stores Mb bits, we express the accuracy in

terms of M⋆, the total number of bits used, or c
√

b/
√

M⋆. Inverting this equation gives the
number of bits needed to achieve a given accuracy x : M⋆ = b(c/x)2. We ignore relatively
inconsequential small fixed costs such as the six bits required to store the value of T in our
adaptive algorithms.

Fourth, few papers actually prove anything about the distribution of the reported values,
with the notable exception of [13]. Typically, normality is instead presented as a reasonable
hypothesis, which may often be the case, but our proof of asymptotic normality of the
reported cardinalities is significant.

Fifth, the accuracy of our algorithms depend on the coefficient cβ of 1/
√

M in the relative
standard error, which varies. We use the average value of cβ over the interval of values
β might take on during the execution of the algorithm. For HyperBitT we (somewhat
arbitrarily) use the interval where cβ < 1.5; our other algorithms calculate an appropriate
interval. As we have noted, the curve in Figure 1 is quite flat, so it is likely that the value
encountered in practice is smaller than the value cited.

Sixth, it is important to remember that we are dealing with random fluctuations and
approximate analyses. It may be tempting to use more precision, but any differences indicated
would not be noticed in practice. For example, one might conclude that HyperLogLog with
6-bit bytes should be very slightly better than LogLog with 6-bit bytes because its standard
error of 1.02/

√
M is very slightly better than 1.05/

√
M , but it would be extremely challenging

to develop experimental validation of that hypothesis.
With all these caveats, Table 4 presents a comparison of the algorithms we have discussed.

Our simplest and perhaps most useful implementation is HyperBitBit64, which achieves
18.5% accuracy on a stream on any length with just two 64-bit words and can be implemented
with a few dozen machine instructions. HyperBitT is the best by far when starting with
a rough estimate is feasible. More generally, if a straightforward and easy to maintain
implementation is desired, HyperBitBit and HyperBitBitBit are arguably simpler than the
8-bit version of HyperLogLog and substantially more efficient. If a careful implementation
with improved efficiency is desired, HyperTwoBits is substantially more efficient than the
6-bit version of HyperLogLog. In both cases our algorithms provide much better accuracy
for the same number of bits and use two-thirds as many bits to achieve the same accuracy.

6 Further Improvements

We conclude by briefly mentioning some opportunities that may lead to variants of our
algorithms that may be worthy of study in various particular situations.
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Table 4 Performance of cardinality estimation algorithms.

M⋆ = b(c/x)2 c
√

b/M⋆

bits needed for accuracy with
algorithm range for M b c c

√
b 2% 20% 128 bits 8K bits

Adaptive sampling[5] 64 1.20 9.60 230400 2304 85% 10.6%
Prob. counting[6] 64 0.78 6.24 97344 973 55% 6.9%

LogLog[4] 6 1.05 2.57 16538 165 23% 3.5%
HyperLogLog8[7] 8 1.04 2.94 21632 216 26% 3.3%
HyperLogLog[7] 6 1.02 2.55 16224 162 23% 2.8%

ExtHyperLogLog[16] 7 0.88 2.33 13552 136 21% 2.6%
HyperBitT 1 1.32 1.32 4356 44 12% 1.5%

HyperBitBit64 64 2 1.48 2.09 — 128 19% —
HyperBitBit 64–512 2 1.46 2.06 — 128 18% —

HyperBitBitBit 128–4096 3 1.46 2.53 15987 128 22% 2.8%
HyperTwoBits 128–4096 2 1.46 2.06 10658 128 18% 2.3%

Sparse arrays. Precise characterization of the “transition cost” just after incrementing T
(when the sketches are mostly 0s) may lead to slight performance improvements.
Use two sketches. The second sketch contains information that may lead to a more accurate
estimate. Analyzing this effect is tractable, but not likely to improve the accuracy by
more than a percentage point or two.
HyperThreeBits. Using 3-bit counters instead of the 2-bit counters in HyperTwoBits
allows implementation of seven layers of bit arrays and may be useful for specialized
applications needing very high accuracy (requiring huge values of M) for the kinds of
truly huge streams seen in modern computing.
HyperBit. We have studied many approaches to modifying HyperBitT to just increment
T, reset the sketch to 0s, and then characterizing the error due to the “transition cost”.
Despite some promising empirical results, the problem of developing a mathematical
model admitting proper comparison of such an algorithm with the ones described here
remains open.
Mergeability. Many applications can benefit from being able to merge sketches built
from two different streams. Our sketches are not difficult to merge, as indicated by the
following argument for HyperBitBit. A sketch is a triple (T, sketch0, sketch1). To
merge (TA, sketch0A, sketch1A) with (TB , sketch0B , sketch1B) consider the following
three cases:

If TA = TB = T use (T, sketch0A|sketch0B , sketch1A|sketch1B).
If the values of T differ by 8 or more, use the larger value and its sketches.
Otherwise, suppose wlog that TA = TB + 4. Use (TA, sketch0A|sketch1B , sketch1A).

In the first and third cases, check whether the first sketch is nearly full. If so, increment
T (by 4) and update the sketches as usual. This result is not precisely the same as if
the two streams had actually been merged, but the difference is likely acceptably small
in many practical situations. The argument for HyperBitT is similar, but simpler; the
argument for HyperBitBitBit is similar, but more complicated.
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A Proof of Lemma 1

Suppose that Xn ≥ 0 are random variables and an, bn, and σ2 numbers such that, as n → ∞,
we have an → a > 0, bn → 0, and (Xn − an)/bn

d−→ N(0, σ2). If f is a continuously
differentiable function on (0, ∞) with f ′(a) ̸= 0, then (f(Xn) − f(an))/bn

d−→ N(0, f ′(a)2σ2).

Proof. This is well known, but we include this proof for completeness.
By the mean value theorem,

f(Xn) − f(an)
bn

= f ′(X∗
n)Xn − an

bn
(7)

for some X∗
n with Xn ≤ X∗

n ≤ an or an ≤ X∗
n ≤ Xn. Since (Xn − an)/bn

d−→ N(0, σ2) and
bn → 0, we have Xn − an

p−→ 0. Furthermore, an → a, and hence Xn
p−→ a. Consequently,

also X∗
n

p−→ a. Thus, since f ′ is continuous, f ′(X∗
n) p−→ f ′(a). The result follows from (7)

and the assumption. ◀

B Implementation details

The abstract operations we have used in expressing our algorithms can be implemented
efficiently on most computers, as described in the following paragraphs. Our code makes
liberal use of Java’s left and right shift operators < < and > > and bitwise logical operations
(&, |, and ~) for bitwise (AND, OR, and NOT ) respectively. Algorithm 4 is a full low-level
implementation of HyperBitBit64 that solves the practical cardinality estimation problem.

Sketches

As we have noted, few programming languages support an efficient bit[] type (even Java
does not guarantee that boolean arrays use one bit per entry). As we saw in HyperBitBit64
(Algorithm 2), shifting and masking on 64-bit long values is an easy way to implement the
abstraction. For larger values of M, we use arrays of 64-bit values. In Java, for example, we
maintain the sketch as an array of long values:

long[] sketch = new long [M/64];

Then the Java code
if ((sketch[k/64] & (1L < < (k % 64))) != 0)

tests whether the kth bit in the sketch is 1 and the Java code
sketch[k/64] = sketch[k/64] | (1L < < (k % 64));

sets the kth bit in the sketch to 1.
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Trailing 1s

The key abstract operation in our implementations involves computing the function r(x), so
that we can test whether a 64-bit value x has at least T trailing 1s. Rather than maintaining
the parameter T , we maintain U = 2T . The reason for doing so is that the value U-1 has
T trailing 1s, which enables us to test whether a value x has at least T trailing ones with
the bitwise logical operation (x & (U-1)) == (U-1), which is easy to implement with a few
machine-language instructions.

Population count

The second abstract operation in our implementations is the function p(x), the so-called
“population count” – the number of 1 bits in a binary value. This function has a long and
interesting history, but, for our purposes, it is easy to avoid, by maintaining a count of the
number of 1 bits in the sketches, incrementing when each bit is set.

Two-bit counters

Again, we use shifting and masking on arrays of 64-bit long values. We keep one long
array s1 for the more significant bit and a second long array s0 for the less significant bit.
To make the code more readable, we define the following methods to test and set the bit
corresponding to bit k:

public static long val(long[] s1, long[] s0, int k)
{ return 2*((s1[k/64] > > (k % 64)) & 1L)+((s0[k/64] > > (k % 64)) & 1L); }
public static void setval(long[] s1, long[] s0, int k, long v)
{

s1[k/64] = (s1[k/64] & ~(1L < < (k % 64))) | ((v/2) & 1L) < < (k % 64);
s0[k/64] = (s0[k/64] & ~(1L < < (k % 64))) | (v & 1L) < < (k % 64);

}

In a tightly efficient or machine-code version, this code would be used inline.
The final abstract operation to consider is to decrement all the non-zero counters. Consider

the following table, which gives all possibilities for a given bit position, where s1s0 is the
value before incrementing and t1t0 is the value after decrementing.

before after
value s1 s0 value t1 t0

0 0 0 0 0 0
1 0 1 0 0 0
2 1 0 1 0 1
3 1 1 2 1 0

Considering these as truth tables on boolean values, it is easy to check that t1 = s1 AND
s0 and t0 = s1 AND NOT s0. Furthermore, we can eliminate the temporary variables by
doing the operations in the order s0 = s1 AND NOT s0 and then s1 = s1 AND NOT s0.
Implementing these operations with bitwise operations on our arrays of long values is
straightforward.
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Algorithm 4 HyperTwoBits (full low-level implementation).

public static int estimateHTB ( String [] stream , int N, int M)
{

int U = 2;
double alpha = .988;
long [] s0 = new long [M/64];
long [] s1 = new long [M/64];
int count = 0;
for (int i = 0; i < N; i++)
{

long x = hash1(s); // 64- bit hash
int k = hash2(s, M); // (lg M)-bit hash
if ((x & (U -1)) == (U -1)) count ++;
if ((x & (U -1)) == (U -1))

if (val(s1 , s0 , k) < 1) setval (s1 , s0 , k, 1);
if ((x & (16*U -1)) == (16*U -1))

if (val(s1 , s0 , k) < 2) setval (s1 , s0 , k, 2);
if ((x & (256*U -1)) == (256*U -1))

if (val(s1 , s0 , k) < 3) setval (s1 , s0 , k, 3);
if ( count >= alpha*M)
{

for (int j = 0; j < M/64; j++)
{ s0[j] = s1[j] & ~s0[j]; s1[j] = s1[j] & ~s0[j]; }
count = 0;
for ( int j = 0; j < M; j++)

if (val(s1 , s0 , j) > 0) count ++;
U = 16*U;

}
}
double beta = 1.0 - 1.0* count/M;
double bias = Math.log (1.0/ beta );
return (int) (U*M*bias );

}
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