
On Fluctuations of Complexity Measures for the
FIND Algorithm
Jasper Ischebeck1 #Ñ

Institut für Mathematik, Goethe University Frankfurt, Germany

Ralph Neininger #Ñ

Institut für Mathematik, Goethe University Frankfurt, Germany

Abstract
The FIND algorithm (also called Quickselect) is a fundamental algorithm to select ranks or quantiles
within a set of data. It was shown by Grübel and Rösler that the number of key comparisons required
by FIND as a process of the quantiles α ∈ [0, 1] in a natural probabilistic model converges after
normalization in distribution within the càdlàg space D[0, 1] endowed with the Skorokhod metric.
We show that the process of the residuals in the latter convergence after normalization converges
in distribution to a mixture of Gaussian processes in D[0, 1] and identify the limit’s conditional
covariance functions. A similar result holds for the related algorithm QuickVal. Our method extends
to other cost measures such as the number of swaps (key exchanges) required by FIND or cost
measures which are based on key comparisons but take into account that the cost of a comparison
between two keys may depend on their values, an example being the number of bit comparisons
needed to compare keys given by their bit expansions.

2012 ACM Subject Classification Theory of computation → Sorting and searching

Keywords and phrases FIND, Quickselect, rank selection, probabilistic analysis of algorithms, weak
convergence, functional limit theorem

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.9

1 Introduction

In 1961, Hoare [11] introduced the algorithm FIND, also called Quickselect, to select a key
(an element) of a given rank from a linearly ordered finite set of data. We assume that the
data are distinct real numbers. To be definite a simple version of the FIND algorithm is given
as follows: FIND(S, k) has as input a set S = {s1, . . . , sn} of distinct real numbers of size
n and an integer 1 ≤ k ≤ n. The algorithm FIND operates recursively as follows: If n = 1
we have k = 1 and FIND returns the single element of S. If n ≥ 2 and S = {s1, . . . , sn} the
algorithm first chooses an element from S, say sj , called pivot, and generates the sets

S< := {si | si < sj , i ∈ {1, . . . , n} \ {j}}, S≥ := {si | si ≥ sj , i ∈ {1, . . . , n} \ {j}}.

If k = |S<| + 1, the algorithm returns sj . If k ≤ |S<|, recursively FIND(S<, k) is applied. If
k ≥ |S<| + 2, recursively FIND(S≥, k − |S<| − 1) is applied. Note that FIND(S, k) returns
the element of rank k from S. There are various variants of the algorithm, in particular
regarding how the pivot element is chosen and how S is partitioned into the subsets S< and
S≥.

In a standard probabilistic model one assumes that the data are ordered, i.e. given as a
vector (s1, . . . , sn), and are randomly permuted, all permutations being equally likely. This
can be achieved assuming that the data are given as (U1, . . . , Un) where (Uj)j∈N is a sequence

1 corresponding author

© Jasper Ischebeck and Ralph Neininger;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 9; pp. 9:1–9:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ischebec@math.uni-frankfurt.de
http://www.uni-frankfurt.de
https://orcid.org/0009-0003-9659-6581
mailto:neiningr@math.uni-frankfurt.de
https://www.math.uni-frankfurt.de/~neiningr/
https://orcid.org/0000-0003-3975-1293
https://doi.org/10.4230/LIPIcs.AofA.2024.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


9:2 QuickSelect Process CLT

of i.i.d. random variables with distribution unif[0, 1], the uniform distribution over the unit
interval [0, 1]. This is the probabilistic model considered below. Note that the randomness is
within the data, while the algorithm is deterministic.

Various cost measures have been considered for FIND, mainly the number of key compar-
isons required which we analyze in detail below. At the end of this extended abstract we
state related results for the number of swaps (key exchanges) required and for cost measures
which are based on key comparisons, where the cost of a comparison may depend on the
values of the keys si, sj , the number of bit comparisons required to decide whether si < sj
or not being a prominent example.

For analysis purposes a related process, called QuickVal, has been considered, see [19, 8].
Informally, QuickVal for an α ∈ [0, 1] mimics FIND to select (or to try to select) the value
α from the set of data, which, in our probabilistic model for large n, comes close to FIND
selecting rank ⌊αn⌋. To be definite, QuickVal((U1, . . . , Un), α) compares the Ui with U1 to
generate sublists

S< := (Uj1 , . . . , Ujm−1), S≥ := (Ujm+1 , . . . , Ujn
),

with Uji
< U1 for i = 1, . . . ,m− 1 and 2 ≤ j1 < · · · < jm−1 and Uji

≥ U1 for i = m+1, . . . , n
and 2 ≤ jm+1 < · · · < jn. Hence, m− 1 ∈ {0, . . . , n− 1} is the number of the Ui, 2 ≤ i ≤ n,
being smaller than U1. The algorithm recursively calls QuickVal(S<, α) if α < U1 and
|S<| > 0. If α ≥ U1 and |S≥| > 0 recursively QuickVal(S≥, α− U1) is called. The number of
key comparisons required by QuickVal((U1, . . . , Un), α) is denoted by Sα,n.

To describe the processes (Sα,n)α∈[0,1] and their limit (after scaling) conveniently we also
consider the binary search tree constructed from the the data (Ui)i∈N. Part of the following
definitions are depicted in Figure 1. The data are inserted into the rooted infinite binary
tree, where we denote its nodes by the elements of {0, 1}∗ := ∪∞

n=0{0, 1}n as follows. Its
root is denoted by the empty word ϵ and for each node ϕ ∈ {0, 1}∗ we denote by ϕ0 and
ϕ1 (the word ϕ appended with a 0 resp. 1) its left and right child respectively. Moreover
|ϕ| denotes the length of the word ϕ, which is the depth of the corresponding node in the
tree. To construct the binary search tree for (U1, . . . , Un) the first key U1 is inserted into the
root and occupies the root. Then, successively the following keys are inserted, where each
key traverses the already occupied nodes starting at the root as follows: Whenever the key
traversing is less than the occupying key at a node it moves on to the left child of that node,
otherwise to its right child. The first empty node found is occupied by the key.

To describe the costs of the algorithms we organize, using notation of Fill and Nakama [8],
the sub-intervals ([Lϕ, Rϕ))ϕ∈{0,1}∗ implicitly generated starting with [0, 1) =: [Lϵ, Rϵ) and
recursively setting

τϕ := inf{i ∈ N |Lϕ < Ui < Rϕ},
Lϕ0 := Lϕ, Rϕ1 := Rϕ, Lϕ1 := Rϕ0 := Uτϕ

, Iϕ := Rϕ − Lϕ. (1)

Now, if a sublist starting with pivot Uτϕ
has to be split by QuickVal, the keys which are

inserted in the subtree rooted at Uτϕ
need to be compared with Uτϕ

. Hence, we get a
contribution of key comparisons of

Sϕ,n =
∑

τϕ<k≤n

1[Lϕ,Rϕ)(Uk). (2)



J. Ischebeck and R. Neininger 9:3

Uτϵ

Uτ0 Uτα,1

Uτα,2

...

Uτ10

α ≥ Uτϵ

α < Uτα,1

Figure 1 Part of the binary search tree. The pivots of sublists split by QuickVal((U1, . . . , Un), α)
for some α ∈ [0, 1] are on the path indicated. Note that we have τϵ = τϕ(α,0) = τα,0 = 1 and in this
example α ≥ U1 and α < Uτα,1 so that ϕ(α, 2) = 10 ∈ {0, 1}2.

Now, for α ∈ [0, 1], QuickVal((U1, . . . , Un), α) generates and splits sublists encoded by
ϕ(α, k) for k = 0, 1, . . . for which we obtain by ϕ(α, 0) = ϵ and

ϕ(α, k + 1) =
{
ϕ(α, k)0, if α < Uτϕ(α,k) ,

ϕ(α, k)1, if α ≥ Uτϕ(α,k) .
(3)

When using the variables defined in (1) or (2), we abbreviate the notation ϕ(α, k) by α, k,
such as writing Iα,k := Iϕ(α,k) or Sα,k,n := Sϕ(α,k),n.

The number of key comparisons required by QuickVal((U1, . . . , Un), α) is then given by
the (finite) sum

Sα,n =
∞∑
k=1

Sα,k,n.

Fill and Nakama [8, Theorem 3.2] showed (considering more general complexity measures)
that for each α ∈ [0, 1] almost surely

1
n
Sα,n → Sα :=

∞∑
k=0

Iα,k, (n → ∞). (4)

The latter convergence also holds in Lp, see Fill and Matterer [7, Proposition 6.1].
We take the point of view that such an almost sure asymptotic result may be considered a

strong law of large numbers (SLLN). The subject of the present extended abstract is to study
the fluctuations in such SLLN, sometimes called a central limit analogue. We study these
fluctuations as processes in the metric space (D[0, 1], dSK) of càdlàg functions endowed with
the Skorokhod metric; see Section 3 for the definitions and Billingsley [2] for background on
weak convergence of probability measures on metric spaces in general and on (D[0, 1], dSK)
in particular. Note that, by definition, (Sα,n)α∈[0,1] and (Sα)α∈[0,1] have càdlàg paths almost
surely. As the normalized process of fluctuations we define

Gn := (Gα,n)α∈[0,1] :=
(
Sα,n − nSα√

n

)
α∈[0,1]
. (5)

Then we have the following result:

AofA 2024



9:4 QuickSelect Process CLT

▶ Theorem 1. Let Sα,n be the number of key comparisons required by
QuickVal((U1, . . . , Un), α) and (Sα)α∈[0,1] as in (4). Then for the fluctuation process
Gn defined in (5) we have

Gn
d−→ G∞ in (D[0, 1], dSK) (n → ∞),

where G∞ is a mixture of centered Gaussian processes with random covariance function given
by

Σ∞,α,β :=
J∑
k=0

∞∑
j=0

Iα,j∨k + 1{α̸=β}(J + 1)
∞∑

j=J+1
(Iβ,j) − SαSβ , α, β ∈ [0, 1], (6)

where J = J(α, β) := max{k ∈ N0 | τα,k = τβ,k} ∈ N0 ∪ {∞}.

▶ Remark 2. Note that a strength of a functional limit theorem such as Theorem 1 is its
versatility implied by the (continuous) mapping theorem [2, Theorem 2.7]: For any metric
space (M,ϱ) and any continuous function h : D[0, 1] → M we obtain the convergence
h(Gn) → h(G∞) in distribution. This even holds for discontinuous (measurable) functions
h if the set Dh of discontinuities of h satisfies P(G∞ ∈ Dh) = 0. Examples include
the maximum (or minimum) of the process, i.e., we have for the worst case fluctuation
maxαGα,n → maxαGα,∞ in distribution. Also projections to one (or multiple) points, i.e.,
Gα,n → Gα,∞ for α ∈ [0, 1], cf. also Lemma 13. Furthermore, for a random index V with
arbitrary probability distribution on [0, 1] we obtain GV,n → GV,∞ in distribution.
▶ Remark 3. In his PhD thesis, Matterer [15, Theorem 6.4] showed the convergence of the
one-dimensional marginals for the functional limit law in Theorem 1.
▶ Remark 4. An alternative representation of the random covariance function in (6) is as
follows: With an independent random variable V uniformly distributed over [0, 1], we have

Σ∞,α,β = Cov
(
J(V, α), J(V, β)

∣∣ F∞
)
, (7)

with the σ-algebra

F∞ := σ
{
Iϕ | ϕ ∈ {0, 1}∗}. (8)

▶ Remark 5. A related functional limit law for the complexity of Radix Selection, an algorithm
to select ranks based on the bit expansions of the data, with a limiting Gaussian process with
a covariance function related to (7) can be found in [13, Theorem 1.2]. See [18, Theorem 1.1]
for another related functional limit law.

The analysis of QuickVal is usually considered an intermediate step to analyze the original
FIND algorithm. Grübel and Rösler [9] already pointed out that a version of FIND such
as stated above with C∗

n(k) denoting the number of key comparisons for finding rank k

within (U1, . . . , Un) does not lead to convergence within (D[0, 1], dSK) after the normalization
α 7→ 1

nC
∗
n(⌊αn⌋ + 1), where here and below the convention C∗

n(n+ 1) := C∗
n(n) is used. To

overcome this problem they propose a version that does not stop in case a pivot turns out to
be the rank to be selected by including the pivot in the list S< and proceeding until a list of
size 1 is generated. Moreover, their pivots are chosen uniformly at random. The number of
key comparisons C ′

n(k) for Grübel and Rösler’s FIND-version has the property that(
1
n
C ′
n

(
⌊αn⌋ + 1

))
α∈[0,1]

d−→ (Sα)α∈[0,1], in (D[0, 1], dSK), (9)



J. Ischebeck and R. Neininger 9:5

see [9, Theorem 4]. Without using random pivots we may also obtain right-continuous limits
by just recursively calling FIND(S≥, 0) in case the pivot turns out to be the rank sought.
We denote the number of key comparisons for this version by Cn(k), which is close to Grübel
and Rösler’s FIND-version and also satisfies (9).

The convergence in (9) could only be stated weakly (not almost surely) since Grübel und
Rösler’s FIND-version due to randomization within the algorithm does not have a natural
embedding on a probability space. Note that the formulation of the QuickVal complexity
does have such an embedding which, e.g., makes the almost sure convergence in (4) possible.
However, it is easy to see that we have the distributional equality(

Cn
(
|{Ui ≤ α : 1 ≤ i ≤ n}|

))
α∈[0,1]

d= (Sα,n)α∈[0,1]. (10)

This allows to naturally couple the complexities on one probability space, which we call its
natural coupling. See [7, page 807] for a related discussion of natural couplings.

To transfer Theorem 1 to FIND we need to align jumps to come up with a suitable
fluctuation process. The conventions Cn(0) := Cn(1) and Cn(n+ 1) := Cn(n) are used.

▶ Corollary 6. Let Cn(k) be the number of key comparisons required to select rank 1 ≤ k ≤ n

within a set of n data by FIND with the natural coupling (10). Let Λn : [0, 1] → [0, 1], n ∈ N,
be any (random) monotone increasing bijective function such that Λn( k

n+1 ) is equal to the
element of rank k within {U1, . . . , Un}. Then we have(

Cn(⌊t(n+ 1)⌋) − nSΛn(t)√
n

)
t∈[0,1]

d−→ G∞ in (D[0, 1], dSK),

where G∞ is the process defined in Theorem 1.

The extended abstract is organized as follows: In Section 2 we introduce a novel perturbation
argument which is the basis of our analysis. Section 3 contains a criterion for weak convergence
of probability measures on (D[0, 1], dSK), which is applied in Section 4 to proof Theorem 1
and Corollary 6. In Section 5 further functional fluctuation results are stated for the number
of swaps (key exchanges) required by QuickVal (depending on the specific algorithm used
to partition S into the sublists S< and S≥) as well as functional fluctuation results for cost
measures which are based on key comparisons, where the cost of a comparison may depend
on the values of the keys.

For proofs omitted in the present extended abstract see the full paper version in prepara-
tion, which will be available as a future version of [12].

2 Perturbation of the data

QuickVal splits an interval [Lϕ, Rϕ) by the first value falling into [Lϕ, Rϕ) denoted by Uτϕ
.

Obviously, this implies dependencies between the data Ui and the lengths Iϕ of the intervals
[Lϕ, Rϕ). In the present section we construct a perturbed sequence (Ũi)i∈N to the data
(Ui)i∈N such that we gain independence of (Ũi)i∈N from the σ-algebra F∞ generated by the
interval lengths defined in (8). In particular, we aim that conditional on F∞ the number
of data (Ũ1, . . . , Ũn) falling into an interval [Lϕ, Rϕ) is binomial B(n, Iϕ) distributed, see
Lemma 8 below.

Every value Ui, i ∈ N, falls successively into subintervals generated by QuickVal until
becoming a pivot element. These subintervals correspond to the path between the root of
the corresponding binary search tree and the node where Ui is inserted. Let ϕi ∈ {0, 1}∗

denote the node where Ui is inserted. Hence, we have τϕi
= i and Ui = Lϕi

+ Iϕi0.

AofA 2024



9:6 QuickSelect Process CLT

Let (Vi)i∈N be a sequence of i.i.d. unif[0, 1] random variables being independent of (Ui)i∈N.
We define

Ũi := Lϕi
+ Iϕi

Vi. (11)

▶ Lemma 7. The sequence (Ũi)i∈N defined in (11) consists of i.i.d. unif[0, 1] distributed
random variables and is independent of F∞.

Proof. It suffices to show that Ũi conditional on F∞ and Ũ1, . . . , Ũi−1 is uniformly distributed
on [0, 1] for all i ∈ N. We use infinitesimal notation to denote this claim by

P
(
Ũi ∈ du

∣∣∣ F∞, Ũ1, . . . , Ũi−1

)
= 1[0,1](u)du, i ∈ N.

For each i ∈ N the random variables Ũi and Ui fall into the same interval [Lϕi
, Rϕi

), hence
ϕ1, . . . , ϕi−1 are determined by Ũ1, . . . , Ũi−1. Let us additionally condition on ϕi, then, by
definition,

P
(
Ũi ∈ du

∣∣∣ F∞, Ũ1, . . . , Ũi−1, ϕi

)
= 1
Iϕi

1[Lϕi
,Rϕi

)(u)du.

Note that ϕi denotes one of the i external nodes of the binary search tree with internal nodes
denoted by ϕ1, . . . , ϕi−1. We denote by Exti−1 the set of the labels of these external nodes.
Hence, conditional on F∞, ϕ1, . . . , ϕi−1 the label ϕi is chosen from Exti−1 with probability
given by the length of the corresponding interval, i.e., P(ϕi = ϕ | F∞, ϕ1, . . . , ϕi−1) = Iϕ for
all ϕ ∈ Exti−1. Thus, by the law of total probability we obtain

P
(
Ũi ∈ du

∣∣∣ F∞, Ũ1, . . . , Ũi−1

)
=

∑
ϕ∈Exti−1

Iϕ
1
Iϕ

1[Lϕ,Rϕ)(u)du = 1[0,1](u)du.

This implies the assertion. ◀

The Ũi are now coupled with the Ui but independent of the Iϕ. To compare with the number
of key comparisons required by QuickVal((U1, . . . , Un), α) we define

S̃α,k,n :=
n∑
i=1

1[Lα,k,Rα,k)(Ũi).

▶ Lemma 8. Conditional on Iα,k we have that S̃α,k,n has the binomial B(n, Iα,k) distribution.
Moreover, for all α ∈ [0, 1], n ∈ N and 0 ≤ k ≤ n we have

Sα,k,n ≤ (S̃α,k,n − 1)+ ≤ Sα,k,n + k − 1. (12)

Proof. The conditional distribution of S̃α,k,n follows from Lemma 7. Recall that Sα,k,n is
defined as

∑n
i=τα,k

1{Lα,k−1 ≤ Ui < Rα,k−1}. By definition, Ui and Ũi are in the interval
[Lϕi

, Rϕi
) for all i ∈ N. If Ui ∈ (Lα,k, Rα,k), then Ui appears as a pivot after the k-th pivot.

Hence, its interval [Lϕi , Rϕi) and thus also Ũi are contained in (Lα,k, Rα,k). The k-th pivot
Uτα,k

itself does not contribute to Sα,k,n, which implies the left inequality stated in the
present lemma.

For the right inequality, assume for some i ∈ N that the perturbed value Ũi is in
(Lα,k, Rα,k), but Ui is not. Then the corresponding interval (Lϕi

, Rϕi
) must contain

(Lα,k, Rα,k), thus making Ui a pivot that appears before the k-th pivot. Since there are only
k such pivots, the right inequality follows. ◀



J. Ischebeck and R. Neininger 9:7

3 On Weak Convergence in D[0, 1]

The space D[0, 1] consists of all functions f : [0, 1] → R having left limits and being
right-continuous, i.e., with

lim
s↑t

f(s) exists for all t ∈ [0, 1) and lim
s↓t

f(s) = f(t) for all t ∈ [0, 1).

These two properties are abbreviated as càdlàg (continue à droite, limites à gauche). Càdlàg
functions are continuous almost everywhere, but may have right-continuous jumps. Measuring
closeness of functions f, g ∈ D[0, 1] in the Skorokhod metric is more flexible than just
considering the supremum norm ∥f − g∥∞: The Skorokhod metric allows aligning jumps
before comparing them in the supremum norm by setting

dSK(f, g) := inf
λ

max
{

∥f ◦ λ− g∥∞, ∥λ− id∥∞
}
, (13)

where the infimum is taken over all increasing bijections λ : [0, 1] → [0, 1] and id denotes
identity.

To prove the convergence in distribution in Theorem 1 within the metric space
(D[0, 1], dSK), we use the following Proposition 9. It can be proved by classical tools of weak
convergence theory based on a study of the modulus of continuity and the Arzelà–Ascoli
theorem in form of a general theorem of Billingsley [2, Theorem 13.2].

▶ Proposition 9. Let X1, X2, . . . be a sequence of random variables in (D[0, 1], dSK). Suppose
that for every K ∈ N, there exist random càdlàg step functions XK

1 , X
K
2 , . . . with all jumps

contained in {Uϕ | ϕ ∈ {0, 1}∗, |ϕ| < K}. If
(i) for all r ∈ N and α1, . . . , αr ∈ [0, 1], the marginals L(Xn(α1), . . . , Xn(αr)) converge

weakly to some distribution µα1,...,αr
,

(ii) for all ε > 0,

lim
K→∞

lim sup
n→∞

P
(∥∥Xn −XK

n

∥∥
∞ > ε

)
→ 0, (14)

then (Xn)n∈N converges in distribution to a random variable X on (D[0, 1], dSK), and for
all r ∈ N and α1, . . . , αr ∈ [0, 1] we have

L(X(α1), . . . , X(αr)) = µα1,...,αr . (15)

4 Proof of Theorem 1

To split the contributions to the process Gn into costs resulting from above and below a level
K ∈ N we define

Gα,k,n := Sα,k,n − nIα,k√
n

(16)

as the normalized fluctuations of the contribution at level k, and set

G≤K
α,n :=

K∑
k=0

Gα,k,n, G≤K
n :=

(
G≤K
α,n

)
α∈[0,1], G>Kα,n :=

∞∑
k=K+1

Gα,k,n. (17)

Hence, Gα,n = G≤K
α,n +G>Kα,n . Analogously, for the perturbed values S̃k,n we define

Wα,k,n := S̃α,k,n − nIα,k√
n

, W≤K
α,n :=

K∑
k=0

Wα,k,n W≤K
n :=

(
W≤K
α,n

)
α∈[0,1]. (18)

AofA 2024



9:8 QuickSelect Process CLT

▶ Lemma 10. For all K ∈ N we have convergence in distribution of (G≤K
n )n∈N towards

a mixture G≤K
∞ = (G≤K

α,∞)α∈[0,1] of centered Gaussian processes within ∥ · ∥∞. Conditional
on F∞, the limit G≤K

∞ is a centered Gaussian process with covariance function given, for
α, β ∈ [0, 1] by

Cov
(
G≤K
α,∞, G

≤K
β,∞ | F∞

)
=
K∧J∑
k=0

K∑
j=0

Iα,j∨k +
(
1 + (K ∧ J)

) K∑
j=J+1

Iβ,j − S≤K
α S≤K

β , (19)

where J = J(α, β) is as in Theorem 1 and S≤K
α :=

∑K
k=0 Iα,k. The stated convergence in

distribution also holds conditionally in F∞, i.e., we have almost surely that L(G≤K
n | F∞)

converges weakly towards L(G≤K
∞ | F∞).

Proof. First note that by Lemma 8 we have
∥∥G≤K

n −W≤K
n

∥∥
∞ < K2/

√
n, so it suffices to

show the lemma for W≤K
n . Conditional on F∞, the value of W≤K

α,n is given by

W≤K
α,n = 1√

n

n∑
i=1

K∑
k=0

1{Lα,k ≤ Ũi < Rα,k} − (Rα,k − Lα,k), (20)

thus the 2k different values of the process W≤K
n can be expressed as the sum of n centered,

bounded i.i.d. random vectors, scaled by 1/
√
n. By the multivariate central limit theorem,

these converge towards a multivariate, centered normal variable. As the positions of the
jumps, still conditional on F∞, are fixed, we have convergence of W≤K

n and thus also of G≤K
n

towards a Gaussian process. Define Xα,k := 1{Lα,k−1 ≤ Ũ1 < Rα,k−1}. The covariance
function then is given by

Cov
(
G≤K
α,∞, G

≤K
β,∞ | F∞

)
= Cov

( K∑
k=0

Xα,k,

K∑
j=0

Xβ,j

∣∣∣∣ F∞

)

=
K∑
k=0

K∑
j=0

E[Xα,kXβ,j | F∞] − S≤K
α S≤K

β

=
K∧J∑
k=0

K∑
j=0

Iα,k∨j +
(
1 + (K ∧ J)

) K∑
j=J+1

Iβ,j − S≤K
α S≤K

β . (21)

The assertion follows. ◀

To see that the covariance functions in (21) converge towards the covariance function of
G∞ stated in Theorem 1 we restate a Lemma of Grübel and Rösler [9, Lemma 1] that the
maximal length of the intervals at a level is decreasing geometrically with increasing levels.
It is obtained observing that E

[∑
|ϕ|=k I

2
ϕ

]
=
( 2

3
)k and states:

▶ Lemma 11. There exists an a.s. finite random variable K1 such that for all k ≥ K1:

max
α∈[0,1]

Iα,k ≤ k

(
2
3

)k/2
. (22)

Lemma 11 implies that the covariance functions of G≤K
∞ from (19) converge a.s. to the

covariance function of G∞ from (6).
For the costs from levels k > K we find:

▶ Proposition 12. For all ε, η > 0 there are constants K,N ∈ N such that for all n ≥ N

P
(
∥G>Kn ∥∞ > η

)
< ε. (23)



J. Ischebeck and R. Neininger 9:9

We postpone the proof of the latter proposition and first use Proposition 12 and Lemma 10
to show convergence of the finite-dimensional distributions, denoted fdd-convergence.

▶ Lemma 13. We have fdd-convergence of Gn towards G∞.

Proof. For any K, we can split Gn = G≤K
n +G>Kn . By Lemma 10, we have

G≤K
n

fdd−→ G≤K
∞ (n → ∞).

Furthermore, because the covariance functions of the G≤K
∞ converge a.s., we obtain

G≤K
∞

fdd−→ G∞ (K → ∞)

by Lévy’s continuity theorem. Hence, for all α1, . . . , αℓ ∈ [0, 1] and all t1, . . . , tℓ ∈ R we find
a sequence (Kn)n∈N in N such that

P
(
G≤Kn
α1,n < t1, . . . , G

≤Kn
αℓ,n

< tℓ
)

−→ P
(
Gα1,∞ < t1, . . . , Gαℓ,∞ < tℓ

)
(n → ∞).

Now, since ∥G>Kn
n ∥∞ → 0 in probability by Proposition 12 the claim of Lemma 13 follows

by Slutzky’s theorem. ◀

To prepare for the proof of Proposition 12, we show that the fluctuations on each level
are also at least geometrically decreasing. Recall K1 from Lemma 11.

▶ Lemma 14. There exists a constant a > 1 such that for all k, n ∈ N

P
(

max
α∈[0,1]

|Wα,k,n| > a−k, K1 ≤ k

)
≤ b(k) + c(k, n)

with b(k), c(k, n) ≥ 0 such that

∞∑
k=1

b(k) < ∞ and
⌊(9/2) logn⌋∑

k=1
c(k, n) → 0 (n → ∞). (24)

For the proof of Lemma 14 we require the following Chernoff bound:

▶ Lemma 15. Let Sn be binomial B(n, p) distributed for some p ∈ [0, 1] and n ∈ N and let
µ := E[Sn], ε ≥ 0. Then

P
(
Sn /∈

(
(1 − ε)µ, (1 + ε)µ

))
≤ 2 exp

(
− ε2µ

2 + ε

)
.

Proof. Combine upper and lower bound in McDiarmid [16, Theorem 2.3]. ◀

Proof of Lemma 14. Fix some α ∈ [0, 1]. Conditionally on Ik,α, the costs S̃α,k,n are
B(n, Ik,α)-distributed by Lemma 7. The Chernoff bound in Lemma 15 implies

P
(
|Wα,k,n| > a−k ∣∣ Iα,k) = P

(∣∣S̃α,k,n − nIα,k
∣∣ > √

na−k
∣∣∣ Iα,k)

≤ 2 exp
(

− na−2k

nIα,k(2 +
√
na−k/(nIα,k))

)
= 2 exp

(
−
(
2a2kIα,k + ak/

√
n
)−1)

. (25)

AofA 2024



9:10 QuickSelect Process CLT

For the two summands in the exponent in (25) we have the following behavior: Summand
2a2kIk,α is falling geometrically with k for sufficiently small a > 1. Summand ak/

√
n

is falling with n, but growing with k. To separate these two contributions, note that
exp(x−1) ≥ 1

m!x
−m and thus exp(−x−1) ≤ m!xm for all m ∈ N and x ≥ 0. Choosing m = 7,

we obtain

P
(
|Wα,k,n| > a−k ∣∣ Iα,k) ≤ 2 · 7!

(
2a2kIα,k + ak/

√
n
)7

≤ 2147!a14kI7
α,k + 277!a7kn−7/2

by convexity of x 7→ x7. Note that the 2k intervals at level k have lengths Iα,k summing to 1.
Hence,

P
(

max
α∈[0,1]

|Wα,k,n| > a−k
∣∣∣ Iα,k) ≤ 2147!a14k max

α∈[0,1]
I6
α,k + 277!(2a7)kn−7/2.

When furthermore K1 ≤ k, by Lemma 11 the length Iα,k is bounded by k
( 2

3
)k/2, hence

P
(

max
α∈[0,1]

|Wα,k,n| > a−k, K1 ≤ k
)

≤ 2147!ka14k
(

2
3

)3k
+ 277!(2a7)kn−7/2.

Define the first summand on the right hand side of the latter inequality by b(k) and the
second summand by c(k, n). For all 1 < a < (3/2)3/14 the b(k) form a convergent series. To
also show the second statement in (24) note that

⌊(9/2) logn⌋∑
k=1

c(k, n) = O
((

2a7)(9/2) logn
n−7/2

)
= O

(
n(9/2) log 2+(9/2)·7 log a−7/2

)
.

The latter O-term converges to 0 for (63/2) log a < 7/2 − (9/2) log 2 ≈ 0.381 . . . , thus we
may choose a as required. ◀

We are now prepared for the proof of Proposition 12.

Proof of Proposition 12. Let ε, η > 0. ToK1 from Lemma 11 and a and b(k) from Lemma 14
we choose K sufficiently large such that

P(K1 > K) ≤ ε

4 ,
∞∑
k=K

a−k ≤ η

4 and
∞∑
k=K

b(k) ≤ ε

4 . (26)

Let Hn be the maximum amount of steps needed by QuickVal((U1, . . . , Un), α) for any α.
Thus, Hn is also the height of the binary search tree built from U1, . . . , Un. Devroye [4]
showed that the height has expectation E[Hn] = γ logn+ o(logn) with γ = 4.311 . . . Reed
[17] further showed that Var(Hn) = O(1). Hence, we can choose N sufficiently large such
that

P
(
Hn > ⌊(9/2) logn⌋

)
<
ε

4 ,
⌊(9/2) logn⌋∑

k=1
c(k, n) ≤ ε

4 , and ((9/2) logn)2
√
n

≤ η

4 (27)

for all n ≥ N . Subsequently we use the decomposition

G>Kα,n =
⌊(9/2) logn⌋∑
k=K+1

Sα,k,n − nIα,k√
n

+
∞∑

⌊(9/2) logn⌋+1

Sα,k,n − nIα,k√
n

=: Γn +G>⌊(9/2) logn⌋
α,n

and consider the event

An := {K1 > K} ∪ {Hn > ⌊(9/2) logn⌋}.



J. Ischebeck and R. Neininger 9:11

We have P(An) < ε/2 for all n ≥ N . Note that on Acn (the complement of An) we have
Sα,k,n = 0 for all k > ⌊(9/2) logn⌋ and also the bound on Iα,k from Lemma 11 applies, hence∣∣∣G>⌊(9/2) logn⌋

α,n

∣∣∣ ≤
∞∑

⌊(9/2) logn⌋+1

√
nIα,k ≤

∞∑
⌊(9/2) logn⌋+1

√
nk

(
2
3

)k/2

= O
(
n1/2−(9/4) log(3/2) logn

)
= o(1)

since (9/4) log(3/2) = 0.912 . . . Hence, we can enlarge N so that on Acn we have∣∣G>⌊(9/2) logn⌋
α,n

∣∣ < η/2 for all n ≥ N . This implies the bound

P
(
|G>Kα,n | > η

)
≤ P(An) + P

({
|G>Kα,n | > η

}
∩Acn

)
≤ ε

2 + P
({

|Γn| > η

2

}
∩Acn

)
+ P

({∣∣G>⌊(9/2) logn⌋
α,n

∣∣ > η

2

}
∩Acn

)
. (28)

Note that the third summand in (28) is 0. Hence, it remains to bound the second summand
in (28). To this end note that

|Γn| ≤ sup
α∈[0,1]

⌊(9/2) logn⌋∑
k=K+1

(∣∣∣∣∣ S̃α,k,n − nIα,k√
n

∣∣∣∣∣+

∣∣∣∣∣Sα,k,n − S̃α,k,n√
n

∣∣∣∣∣
)

≤

(⌊(9/2) logn⌋∑
k=K+1

max
α∈[0,1]

|Wα,k,n|

)
+ ⌊(9/2) logn⌋2

√
n

, (29)

where Lemma 8 is used. The third relation in (27) assures that the second term in (29) is
smaller than η/4. In view of the second relation in (26) and (29), we have

{
|Γn| > η

2

}
∩Acn ⊂

⌊(9/2) logn⌋⋃
k=K

{
max
α∈[0,1]

|Wα,k,n| > a−k, K1 ≤ k

}
.

Thus, Lemma 14 together with (26) and (27) imply that the second summand in (28) is
bounded by ε/2. This implies the assertion. ◀

Proof of Theorem 1. We apply Proposition 9 to Gn and G≤K
n . The first condition, fdd

convergence, is Lemma 13, the second condition is Proposition 12. ◀

We now transfer the fluctuation result for QuickVal in Theorem 1 to the original FIND
process in Corollary 6.

Proof of Corollary 6. Let F̃n be the inverse of Λn in the statement of Corollary 6. By
definition of Λn, the value of the element U(k) of rank k within U1, . . . , Un is given by k

n+1 ,
so ⌊

(n+ 1)F̃n(α)
⌋

=
∣∣{Ui ≤ α | 1 ≤ i ≤ n}

∣∣ (30)

for all α ∈ [0, 1). Thus, Cn
(⌊

(n+ 1)F̃n(α)
⌋)

= Sα,n a.s. for all α ∈ [0, 1], see (10). For α = 1
note that F̃n(α) = 1 and Cn(n+ 1) = Cn(n) by definition. The Skorokhod distance dSK is
then bounded by

dSK

(
Gn,

(
Cn(⌊t(n+ 1)⌋) − nSΛn(t)√

n

)
t∈[0,1]

)
= dSK

(
Gn,

(
SΛn(t),n − nSΛn(t)√

n

)
t∈[0,1]

)
= dSK

(
Gn, (GΛn(t),n)t∈[0,1]

)
≤ ∥F̃n − id∥∞.

AofA 2024



9:12 QuickSelect Process CLT

By (30), F̃n is close to the empirical distribution function and thus converges a.s. uniformly
to the identity id by the Glivenko–Cantelli theorem. The statement of Corollary 6 then
follows from Slutzky’s theorem. ◀

5 Further cost measures

In this section we sketch results analogous to Theorem 1 for other cost measures than the
number of key comparisons. We consider the number of swaps required by QuickVal, which
however depends on the implementation of the procedure to partition the input (U1, . . . , Un)
into the sublists S< and S≥. We consider two such procedures, the one originally proposed
by Hoare [10] and one that is attributed to Lomuto, see [1, 3, 14]. Our results are stated in
Subsection 5.1.

As a further cost measure, we consider the model where the costs to compare two keys
may depend on their values, e.g. the number of bit comparisons required to compare them
when they are given by their binary expansions. The total cost for all key comparisons
required by QuickVal((U1, . . . , Un), α) or FIND((U1, . . . , Un), k) is no longer determined by
the fact that the ranks of (U1, . . . , Un) form an uniformly random permutation. Here, the
distribution of the Ui matters. We only consider the uniform distribution as in the previous
sections and hope to report on other distributions in the full paper version of this extended
abstract. Our results are stated in Subsection 5.2. A probabilistic analysis for the number of
bit comparisons of the related Quicksort algorithms was given in [6, 5].

5.1 Number of swaps

Usually, QuickSelect is implemented in-place, meaning that it only requires the memory
for the list S of values and a bounded amount of additional memory. This is achieved by
swapping values within S so that the elements of S< and S≥ are contained in contiguous
parts of the list. Such a procedure is called partition. There are various procedures of
partition.

The original procedure by Hoare [10] searches the list S from both ends at once: It
repeatedly finds the index i = min{2 ≤ i ≤ n | Ui > U1} of the leftmost element bigger than
the pivot and the index j := max{2 ≤ j ≤ n | Uj < U1} of the rightmost element smaller
than the pivot. If i < j, it swaps Ui and Uj . Else the algorithm terminates.

A simpler, but less efficient implementation is the so-called Lomuto partition scheme
[1, 3, 14] that only searches from one end of S. It keeps track of the amount i of elements at
the start of the list it has already swapped. In every step, it finds the index j := max{2 ≤
j ≤ n | Uj < U1} of the rightmost element smaller than the pivot. If i+ 1 < j, it swaps Ui+1
and Uj and increases i by one. Otherwise the algorithm terminates.

Both partition schemes only compare elements to the pivot, so the model of randomness
is preserved within the sublists S< and S≥. However, their original order is not preserved,
so QuickSelect run on U1, . . . , Un will usually not select the same pivots as QuickSelect on
U1, . . . , Un+1. For convenience, we assume that the pivot to split a sublist S′ of S is the
element of S′ that came first in the original list S. We call this choice of the pivots a suitable
embedding.



J. Ischebeck and R. Neininger 9:13

5.1.1 Hoare’s partition
For Hoare’s partition, via a hypergeometric distribution the expected number of swaps in
step k given F∞ is approximately nIα,k+1(Iα − Iα,k)/Iα,k, which leads to the limit process
L = (Lα)α∈[0,1] given by

Lα :=
∞∑
k=0

Iα,k+1(Iα − Iα,k)
Iα,k

, α ∈ [0, 1]. (31)

It is now possible to study the fluctuations by their contributions from the individual levels
and combine them as for the number of key comparisons above. Since we are still in the range
of the central limit theorem we again obtain a mixture of centered Gaussian processes. To
be explicit, first denote by Zϕ the limit of the Gα,k,n as n → ∞ where ϕ = ϕ(α, k) ∈ {0, 1}k.
Further, denote by {Yϕ |ϕ ∈ {0, 1}∗} a set of i.i.d. N (0, 1) random variables being independent
of {Zϕ |ϕ ∈ {0, 1}∗} and of F∞. Then the limiting process Gswap = (Gswap

α )α∈[0,1] is given
by

Gswap
α :=

∑
ϕ∈{ϕ(k,α) | k∈N0}

Yϕ
Iϕ0Iϕ1

I
3/2
ϕ

+ Zϕ0
Iϕ1

Iϕ
+ Zϕ1

Iϕ0

Iϕ
− Zϕ

Iϕ0Iϕ1

I2
ϕ

, α ∈ [0, 1]. (32)

The Yϕ represent fluctuations caused by the hypergeometric distribution connected to
partition, while the terms with Z represent fluctuations around the limit (31). Then we have
the following result for key exchanges corresponding to Theorem 1:

▶ Theorem 16. Let Kα,n be the number of key exchanges required by
QuickVal((U1, . . . , Un), α) with Hoare’s partition algorithm in a suitable embedding.
Then, as n → ∞, we have(

Kα,n − nLα√
n

)
α∈[0,1]

d−→ Gswap in (D[0, 1], dSK).

5.1.2 Lomuto’s partition
The Lomuto partition is simpler to implement and much easier to analyze. The Lomuto
partition swaps every element smaller than the pivot, so the amount of swaps at some path
ϕ ∈ {0, 1}∗ is given by Sϕ0 + 1. With the Zϕ introduced in Subsection 5.1.1 we find that
(Zϕ)ϕ∈{0,1}∗ is a mixture of centered Gaussian processes with conditional covariance function
given by

Cov(Zϕ, Zψ | F∞) = Iϕ∨ψ − IϕIψ, ϕ, ψ ∈ {0, 1}∗,

where Iϕ∨ψ is the length of the interval [Lϕ, Rϕ) ∩ [Lψ, Rψ), thus Iϕ∨ψ is only nonzero if one
of ψ and ϕ is a prefix of the other. Then the limiting process GLo = (GLo

α )α∈[0,1] is given by

GLo
α =

∞∑
k=0

Zϕ(α,k)0, α ∈ [0, 1].

We can directly apply Lemma 14 and our proof for the number of key comparisons can be
straightforwardly transferred.

▶ Theorem 17. Let KLo
α,n be the number of key exchanges required by

QuickVal((U1, . . . , Un), α) with Lomuto’s partition procedure in a suitable embedding.
Then, as n → ∞, we have(

KLo
α,n − n

∑∞
k=0 Iϕ(α,k)0√
n

)
α∈[0,1]

d−→ GLo in (D[0, 1], dSK).

AofA 2024



9:14 QuickSelect Process CLT

5.2 Number of bit comparisons
We now consider the model where the cost to compare two keys depends on their values.
These costs are described by a measurable cost function β : [0, 1]2 → [0,∞), and we require
that they have a polynomial tail, that is: There are constants c, ε > 0 such that for all
u ∈ [0, 1], x ∈ N and for V being unif[0, 1] distributed

P(β(u, V ) ≥ x) ≤ cx−1/ε.

This condition is called (c, ε)-tameness, see Matterer [15], and β is called to be ε-tame if it
is (c, ε)-tame for some c > 0. Note that, e.g., β counting the number of bit comparisons is
ε-tame for all ε > 0. The costs of QuickVal((U1, . . . , Un), α) in this model are given by

Sβα,n :=
∞∑
k=0

∑
τα,k<i≤n

1[Lα,k,Rα,k)(Ui)β(Uτα,k
, Ui)

and the limit is, with V being unif[0, 1] distributed and independent of the U1, . . . , Un, given
as

Sβα,∞ :=
∞∑
k=0

E
[
1[Lα,k,Rα,k)(V )β(Uτα,k

, V )
∣∣ F∞

]
.

Matterer [15, Theorem 6.4 and Theorem 6.14] shows for ε < 1
2 that for fixed α ∈ [0, 1] the

resulting residual

Gβα,n :=
Sβα,n − nSβα,∞√

n

converges to a mixed centered Gaussian random variable Gβα,∞ in distribution and with all
moments. It is possible to combine them to a mixture of centered Gaussian processes

Gβ∞ = (Gβα,∞)α∈[0,1], (33)

defined by the conditional covariance functions given, with Xβ
α,k := 1[Lα,k,Rα,k)(V ) ·

β(Uτα,k,n
, V ), by

Cov
(
Gβα,∞, G

β
γ,∞ | F∞

)
= Cov

( ∞∑
k=0

Xβ
α,k,

∞∑
k=0

Xβ
γ,k

∣∣ F∞

)
, α, γ ∈ [0, 1]. (34)

The latter expression is well-defined due to the following lemma using ε-tameness:

▶ Lemma 18. Let [L,R) ⊆ [0, 1] be an interval of length I = R − L > 0 and u ∈ [L,R).
For V being unif[0, 1] distributed set X := 1[L,R)(V )β(u, V ). Then, for every s ∈ (0, ε−1),
uniformly in L,R, we have

E[Xs] = I · E[Xs | V ∈ [L,R)] = O
(
I1−εs

)
.

We have the following result corresponding to Theorem 1.

▶ Theorem 19. Let β be an ε-tame cost function with ε < 1
4 . Then we have(

Sβα,n − nSβα,∞√
n

)
α∈[0,1]

d−→ Gβ∞ in (D[0, 1], dSK),

where Gβ∞ is the mixture of centered Gaussian processes defined in (33).



J. Ischebeck and R. Neininger 9:15

References
1 Jon Bentley. Programming pearls. Addison-Wesley, Reading, Mass. URL: https://www.

pearson.de/programming-pearls-9780134498027.
2 Patrick Billingsley. Convergence of probability measures. Wiley Series in Probability and

Statistics: Probability and Statistics. John Wiley & Sons Inc., New York, 1999. A Wiley-
Interscience Publication. doi:10.1002/9780470316962.

3 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to algorithms. MIT Press, Cambridge, MA, third edition, 2009.

4 Luc Devroye. A note on the height of binary search trees. J. ACM, 33(3):489–498, May 1986.
doi:10.1145/5925.5930.

5 James Allen Fill. Distributional convergence for the number of symbol comparisons used by
QuickSort. Ann. Appl. Probab., 23(3):1129–1147, 2013. doi:10.1214/12-AAP866.

6 James Allen Fill and Svante Janson. The number of bit comparisons used by Quicksort: an
average-case analysis. Electron. J. Probab., 17:no. 43, 22, 2012. doi:10.1214/EJP.v17-1812.

7 James Allen Fill and Jason Matterer. QuickSelect tree process convergence, with an application
to distributional convergence for the number of symbol comparisons used by worst-case find.
Combin. Probab. Comput., 23(5):805–828, 2014. doi:10.1017/S0963548314000121.

8 James Allen Fill and Takehiko Nakama. Distributional convergence for the number of
symbol comparisons used by quickselect. Advances in Applied Probability, 45(2):425–450, 2013.
doi:10.1239/aap/1370870125.

9 Rudolf Grübel and Uwe Rösler. Asymptotic distribution theory for Hoare’s selection algorithm.
Adv. in Appl. Probab., 28(1):252–269, 1996. doi:10.2307/1427920.

10 C. A. R. Hoare. Algorithm 63: Partition. Commun. ACM, 4(7):321, July 1961. doi:
10.1145/366622.366642.

11 C. A. R. Hoare. Algorithm 65: Find. Commun. ACM, 4(7):321–322, July 1961. doi:
10.1145/366622.366647.

12 Jasper Ischebeck and Ralph Neininger. On fluctuations of complexity measures for the find
algorithm, 2024. arXiv:2403.07685.

13 Kevin Leckey, Ralph Neininger, and Henning Sulzbach. Process convergence for the complexity
of radix selection on markov sources. Stochastic Processes and their Applications, 129(2):507–
538, 2019. doi:10.1016/j.spa.2018.03.009.

14 Hosam M. Mahmoud. Distributional analysis of swaps in quick select. Theoretical Computer
Science, 411(16):1763–1769, 2010. doi:10.1016/j.tcs.2010.01.029.

15 Jason Matterer. Quickselect Process and QuickVal Residual Convergence. PhD thesis, The
Johns Hopkins University, Baltimore, Maryland, 2015.

16 Colin McDiarmid. Concentration. In Michel Habib, Colin McDiarmid, Jorge Ramirez-Alfonsin,
and Bruce Reed, editors, Probabilistic Methods for Algorithmic Discrete Mathematics, pages
195–248. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998. doi:10.1007/
978-3-662-12788-9_6.

17 Bruce Reed. The height of a random binary search tree. J. ACM, 50(3):306–332, May 2003.
doi:10.1145/765568.765571.

18 Henning Sulzbach, Ralph Neininger, and Michael Drmota. A Gaussian limit process for
optimal FIND algorithms. Electronic Journal of Probability, 19(none):1–28, 2014. doi:
10.1214/EJP.v19-2933.

19 Brigitte Vallée, Julien Clément, James Allen Fill, and Philippe Flajolet. The number of
symbol comparisons in QuickSort and QuickSelect. In Automata, languages and programming.
Part I, volume 5555 of Lecture Notes in Comput. Sci., pages 750–763. Springer, Berlin, 2009.
doi:10.1007/978-3-642-02927-1_62.

AofA 2024

https://www.pearson.de/programming-pearls-9780134498027
https://www.pearson.de/programming-pearls-9780134498027
https://doi.org/10.1002/9780470316962
https://doi.org/10.1145/5925.5930
https://doi.org/10.1214/12-AAP866
https://doi.org/10.1214/EJP.v17-1812
https://doi.org/10.1017/S0963548314000121
https://doi.org/10.1239/aap/1370870125
https://doi.org/10.2307/1427920
https://doi.org/10.1145/366622.366642
https://doi.org/10.1145/366622.366642
https://doi.org/10.1145/366622.366647
https://doi.org/10.1145/366622.366647
https://arxiv.org/abs/2403.07685
https://doi.org/10.1016/j.spa.2018.03.009
https://doi.org/10.1016/j.tcs.2010.01.029
https://doi.org/10.1007/978-3-662-12788-9_6
https://doi.org/10.1007/978-3-662-12788-9_6
https://doi.org/10.1145/765568.765571
https://doi.org/10.1214/EJP.v19-2933
https://doi.org/10.1214/EJP.v19-2933
https://doi.org/10.1007/978-3-642-02927-1_62

	1 Introduction
	2 Perturbation of the data
	3 On Weak Convergence in D[0,1]
	4 Proof of Theorem 1
	5 Further cost measures
	5.1 Number of swaps
	5.1.1 Hoare's partition
	5.1.2 Lomuto's partition

	5.2 Number of bit comparisons


