
35th International Conference on
Probabilistic, Combinatorial and
Asymptotic Methods for the
Analysis of Algorithms

AofA 2024, June 17–21, 2024, University of Bath, UK

Edited by

Cécile Mailler
Sebastian Wild

LIPIcs – Vo l . 302 – AofA 2024 www.dagstuh l .de/ l ip i c s

Editors

Cécile Mailler
University of Bath, UK
c.mailler@bath.ac.uk

Sebastian Wild
University of Liverpool, UK
wild@liverpool.ac.uk

ACM Classification 2012
Mathematics of computing; Mathematics of computing → Discrete mathematics; Mathematics of
computing → Probability and statistics; Mathematics of computing → Information theory; Mathematics
of computing → Mathematical analysis; Theory of computation → Generating random combinatorial
structures; Theory of computation → Random walks and Markov chains

ISBN 978-3-95977-329-4

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-329-4.

Publication date
July, 2024

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.AofA.2024.0

ISBN 978-3-95977-329-4 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-0910-8320
mailto:c.mailler@bath.ac.uk
https://orcid.org/0000-0002-6061-9177
mailto:wild@liverpool.ac.uk
https://www.dagstuhl.de/dagpub/978-3-95977-329-4
https://www.dagstuhl.de/dagpub/978-3-95977-329-4
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.AofA.2024.0
https://www.dagstuhl.de/dagpub/978-3-95977-329-4
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université Paris Cité, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Chair, Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

AofA 2024

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Dedicated to the memory of Philippe Flajolet.

Contents

Preface
Cécile Mailler and Sebastian Wild . 0:ix–0:x

AofA 2024 Program Committee
. 0:xi

AofA Steering Committee
. 0:xi

Regular Papers

Fringe Trees for Random Trees with Given Vertex Degrees
Gabriel Berzunza Ojeda, Cecilia Holmgren, and Svante Janson 1:1–1:13

Enumeration and Succinct Encoding of AVL Trees
Jeremy Chizewer, Stephen Melczer, J. Ian Munro, and Ava Pun 2:1–2:12

Maximal Number of Subword Occurrences in a Word
Wenjie Fang . 3:1–3:12

Sparsification of Phylogenetic Covariance Matrices of k-Regular Trees
Sean Svihla and Manuel E. Lladser . 4:1–4:17

Bit-Array-Based Alternatives to HyperLogLog
Svante Janson, Jérémie Lumbroso, and Robert Sedgewick . 5:1–5:19

Phase Transition for Tree-Rooted Maps
Marie Albenque, Éric Fusy, and Zéphyr Salvy . 6:1–6:14

Composition Schemes: q-Enumerations and Phase Transitions in Gibbs Models
Cyril Banderier, Markus Kuba, Stephan Wagner, and Michael Wallner 7:1–7:18

Galled Tree-Child Networks
Yu-Sheng Chang, Michael Fuchs, and Guan-Ru Yu . 8:1–8:13

On Fluctuations of Complexity Measures for the FIND Algorithm
Jasper Ischebeck and Ralph Neininger . 9:1–9:15

A Bijection for the Evolution of B-Trees
Fabian Burghart and Stephan Wagner . 10:1–10:15

Tree Walks and the Spectrum of Random Graphs
Eva-Maria Hainzl and Élie de Panafieu . 11:1–11:15

Asymptotics of Weighted Reflectable Walks in A2
Torin Greenwood and Samuel Simon . 12:1–12:14

On the Number of Distinct Fringe Subtrees in Binary Search Trees
Stephan Wagner . 13:1–13:11

Early Typical Vertices in Subcritical Random Graphs of Preferential Attachment
Type

Peter Mörters and Nick Schleicher . 14:1–14:10
35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods
for the Analysis of Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:viii Contents

Asymptotics of Relaxed k-Ary Trees
Manosij Ghosh Dastidar and Michael Wallner . 15:1–15:13

Matching Algorithms in the Sparse Stochastic Block Model
Anna Brandenberger, Byron Chin, Nathan S. Sheffield, and Divya Shyamal 16:1–16:21

Lexicographic Unranking Algorithms for the Twelvefold Way
Amaury Curiel and Antoine Genitrini . 17:1–17:14

Periodic Behavior of the Minimal Colijn-Plazzotta Rank for Trees with a Fixed
Number of Leaves

Michael R. Doboli , Hsien-Kuei Hwang, and Noah A. Rosenberg 18:1–18:14

Binomial Sums and Mellin Asymptotics with Explicit Error Bounds: A Case Study
Benjamin Hackl and Stephan Wagner . 19:1–19:15

Multicoloured Hardcore Model: Fast Mixing and Its Applications as a Scheduling
Algorithm

Sam Olesker-Taylor . 20:1–20:14

Binary Search Trees of Permuton Samples
Benoît Corsini, Victor Dubach, and Valentin Féray . 21:1–21:13

The Recurrence/Transience of Random Walks on a Bounded Grid in an
Increasing Dimension

Shuma Kumamoto, Shuji Kijima, and Tomoyuki Shirai . 22:1–22:15

The Alternating Normal Form of Braids and Its Minimal Automaton
Vincent Jugé and June Roupin . 23:1–23:15

Analysis of Regular Sequences: Summatory Functions and Divide-And-Conquer
Recurrences

Clemens Heuberger, Daniel Krenn, and Tobias Lechner . 24:1–24:14

Patricia’s Bad Distributions
Louigi Addario-Berry, Pat Morin, and Ralph Neininger . 25:1–25:8

Limit Laws for Critical Dispersion on Complete Graphs
Umberto De Ambroggio, Tamás Makai, Konstantinos Panagiotou, and
Annika Steibel . 26:1–26:12

Asymptotic Enumeration of Rooted Binary Unlabeled Galled Trees with a Fixed
Number of Galls

Lily Agranat-Tamir, Michael Fuchs, Bernhard Gittenberger, and Noah A. Rosenberg 27:1–27:14

Sharpened Localization of the Trailing Point of the Pareto Record Frontier
James Allen Fill, Daniel Q. Naiman, and Ao Sun . 28:1–28:21

Statistics of Parking Functions and Labeled Forests
Stephan Wagner and Mei Yin . 29:1–29:14

Depth-First Search Performance in Random Digraphs
Philippe Jacquet and Svante Janson . 30:1–30:15

Preface

The 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods
for the Analysis of Algorithms (AofA 2024) was held at the University of Bath, UK, during
June 17 – 21, 2024.

Analysis of algorithms is a scientific basis for quantifying the efficiency of computation,
providing a link between abstract algorithms and the performance characteristics of their
implementations in the real world. The general effort to predict precisely the performance of
algorithms and data structures – the amount of time, storage, or other resources needed – has
produced mathematical methods of sweeping generality that unify and simplify making such
predictions in a rigorous way, as well as software tools supporting their application. In enabling
this progress, AofA has come to involve research in analytic combinatorics, the analysis of
random discrete structures, asymptotic analysis, exact and limiting distributions, and other
fields of inquiry in computer science, probability theory, and enumerative combinatorics. See
the AofA community websites for more details: https://www.math.aau.at/AofA/.

The Call for Papers invited papers in
analytic algorithmics and combinatorics,
probabilistic analysis of algorithms,
randomized algorithms.

We also welcomed papers addressing problems such as: combinatorial algorithms, string
searching and pattern matching, sublinear algorithms on massive data sets, network al-
gorithms, graph algorithms, caching and memory hierarchies, indexing, data mining, data
compression, coding and information theory, and computational finance. Papers were
also welcomed that address bridges to research in related fields such as statistical physics,
computational biology, computational geometry, and simulation.

The conference program featured the 2024 Philippe Flajolet Lecture by Michael Drmota, 30
contributed papers, which are collected in this volume, as well as 8 invited lectures:

Antoine Genitrini (Sorbonne Université): “Varieties of Trees with Constrained Labelings”
Leslie Goldberg (University of Oxford): “The Complexity of Approximate Counting”
Daniel Krenn (Paris Lodron University of Salzburg): “Multi-pivot quicksort and how to
compute precise asymptotics”
László Kozma (Freie Universität Berlin): “Analysis of algorithms via extremal combinat-
orics”
Alessandra Caraceni (Scuola Normale Superiore Pisa): “Growing random geometries:
making trees blossom and triangulations flip”
Markus Lohrey (Universität Siegen): “Grammar-based tree compression: combinatorics
and algorithms”
Thomas Sauerwald (University of Cambridge): “Balanced Allocations: The Power of
Choice versus Noise”
Sylvie Corteel (CNRS and Université Paris Cité): “Combinatorics of k-tilings”

As a typical convention in the field is to list authors in alphabetical order, we randomized
the order of papers in these proceedings to avoid biases; the same order was used for the
conference, so the proceedings volume gives paper in chronological order of presentation.
35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods
for the Analysis of Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.math.aau.at/AofA/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Preface

Flajolet Lecture

The Philippe Flajolet Lecture Prize for outstanding contributions to analytic combinatorics
and analysis of algorithms is awarded every two years by the Analysis of Algorithms (AofA)
community.

At the AofA 2024 conference, Michael Drmota presented the sixth Flajolet Lecture,
entitled “The Moment Method Revisited”. Previous Flajolet Lectures Prize recipients are
Donald E. Knuth, Robert Sedgewick, Luc Devroye, Wojciech Szpankowski, and Svante
Janson.

The prize is named in honor and recognition of the extraordinary accomplishments of the
late Philippe Flajolet and his formative influence on the growth and flourishing of the
AofA community. Philippe spent most of his scientific life at INRIA, France. He is best
known for fundamental advances in mathematical methods for the analysis of algorithms. His
research laid the foundation of a subfield of mathematics now known as analytic combinatorics.
Analytic combinatorics is a modern basis for the quantitative study of combinatorial structures
(such as words, trees, mappings, and graphs), with applications to probabilistic study of
algorithms that are based on these structures. It also strongly influences research in other
scientific domains, such as statistical physics, computational biology, and information theory.
Flajolet’s work takes the field forward by introducing original approaches in combinatorics
based on two types of methods: symbolic and analytic. The symbolic side is based on the
automation of decision procedures in combinatorial enumeration to derive characterizations
of generating functions. The analytic side treats those functions as functions in the complex
plane and leads to precise characterization of limit distributions. Beyond these foundational
contributions, Philippe’s research opened new avenues in various domains of applied computer
science, including streaming algorithms, communication protocols, database access methods,
data mining, symbolic manipulation, text-processing algorithms, and random generation.

Cécile Mailler and Sebastian Wild,
on behalf of the Program and Steering Committees

Preface 0:xi

AofA 2024 Program Committee
Cécile Mailler (co-chair), University of Bath, UK
Sebastian Wild (co-chair), University of Liverpool, UK
Frédérique Bassino, Université Sorbonne Paris Nord, France
Gabriel Berzunza, University of Liverpool, UK
Benjamin Doerr, École Polytechnique, France
Laura Eslava, UNAM, Mexico
Hsien-Kuei Hwang, Academia Sinica, Taiwan
Conrado Martínez, Universitat Politècnica de Catalunya, Spain
Stephen Melczer, University of Waterloo, Canada
Ralph Neininger, Goethe-Universität Frankfurt, Germany
Cyril Nicaud, Université Gustave Eiffel, France
Pablo Rotondo, Université Gustave Eiffel, France
Fiona Skerman, Uppsala University, Sweden
Andrea Sportiello, Université Sorbonne Paris Nord, France
Benedikt Stufler, TU Wien, Austria
Michael Wallner, TU Wien, Austria

AofA Steering Committee
Bruno Salvy (chair), INRIA, Lyon, France
Frédérique Bassino, Université Sorbonne Paris Nord, France
James Allen Fill, Johns Hopkins University, USA
Clemens Heuberger, Alpen-Adria-Universität Klagenfurt, Austria
Cecilia Holmgren, Uppsala Universitet, Sweden
Mark Daniel Ward, Purdue University, IN, USA

AofA 2024

Fringe Trees for Random Trees with Given Vertex
Degrees
Gabriel Berzunza Ojeda # Ñ

Department of Mathematical Sciences, University of Liverpool, UK

Cecilia Holmgren # Ñ

Department of Mathematics, Uppsala University, Sweden

Svante Janson # Ñ

Department of Mathematics, Uppsala University, Sweden

Abstract
We prove that the number of fringe subtrees, isomorphic to a given tree, in uniformly random trees
with given vertex degrees, asymptotically follows a normal distribution. As an application, we
establish the same asymptotic normality for random simply generated trees (conditioned Galton-
Watson trees). Our approach relies on an extension of Gao and Wormald’s (2004) theorem to the
multivariate setting.

2012 ACM Subject Classification Mathematics of computing

Keywords and phrases Conditioned Galton-Watson trees, fringe trees, simply generated trees,
uniformly random trees with given vertex degrees

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.1

Related Version Full Version: arXiv:2312.04243 [3]

Funding Cecilia Holmgren: Supported by the Knut and Alice Wallenberg Foundation; Ragnar
Söderberg’s Foundation; the Swedish Research Council.
Svante Janson: Supported by the Knut and Alice Wallenberg Foundation; the Swedish Research
Council.

1 Introduction and main results

In this paper, we consider fringe trees of random plane trees with given vertex statistics, i.e.,
a given number of vertices of each degree. As an application, we also give corresponding
result for random simply generated trees (or conditioned Galton–Watson trees). The main
results are laws of large numbers and central limit theorems for the number of fringe trees of
a given type.

Let T be the set of all (finite) plane rooted trees (also called ordered rooted trees); see
e.g., [9]. Denote the size, i.e. the number of vertices, of a tree T by |T |. The (out)degree of a
vertex v ∈ T , denoted dT (v), is its number of children in T ; thus leaves have degree 0 and
all other vertices have strictly positive degree. The degree statistic of a rooted tree T is the
sequence nT = (nT (i))i≥0, where nT (i) := |{v ∈ T : dT (v) = i}| is the number of vertices of
T with i children. We have

|T | =
∑
i≥0

nT (i) = 1 +
∑
i≥0

inT (i). (1)

A sequence n = (n(i))i≥0 is the degree statistic of some tree if and only if
∑

i≥0 n(i) =
1 +

∑
i≥0 in(i). For such sequences, we let |n| :=

∑
i≥0 n(i) be the size of n, and we write Tn

for the set of plane rooted trees with degree statistic n. We let Tn be a uniformly random

© Gabriel Berzunza Ojeda, Cecilia Holmgren, and Svante Janson;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 1; pp. 1:1–1:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Gabriel.Berzunza-Ojeda@liverpool.ac.uk
https://www.liverpool.ac.uk/mathematical-sciences/staff/gabriel-berzunza-ojeda/
mailto:cecilia.holmgren@math.uu.se
https://katalog.uu.se/empinfo/?id=N5-824
mailto:svante.janson@math.uu.se
http://www2.math.uu.se/~svante/
https://doi.org/10.4230/LIPIcs.AofA.2024.1
https://arxiv.org/abs/2312.04243
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Fringe Trees for Random Trees with Given Vertex Degrees

element of the set Tn, and we denote this by Tn ∼ Unif(Tn). It is also well known that the
total number of plane rooted trees with degree statistic n is given by (see [23, Exercise 6.2.1])

|Tn| = 1
|n|

(
|n|
n

)
= 1

|n|
|n|!∏

i≥0 n(i)! . (2)

For T ∈ T and a vertex v ∈ T , let Tv be the subtree of T rooted at v consisting of v and
all its descendants. We call Tv a fringe (sub)tree of T . We regard Tv as an element of T and
let, for T, T ′ ∈ T,

NT ′(T) := |{v ∈ T : Tv = T ′}| =
∑
v∈T

1{Tv=T ′}, (3)

i.e., the number of fringe subtrees of T that are equal (i.e., isomorphic to) to T ′. A random
fringe subtree T fr of T ∈ T is the random rooted tree obtained by taking the fringe subtree
Tv at a uniform random vertex v ∈ T . Thus, the distribution of T fr is given by

P(T fr = T ′) = NT ′(T)
|T |

, for T ′ ∈ T. (4)

We prove an asymptotic result on the distribution of a random fringe subtree in a random
rooted plane tree with a given degree statistic. In order to state the theorem, we need a little
more terminology. (See also Section 1.2 for some notation.) For a degree statistic n, denote
by p(n) = (pi(n))i≥0 its (empirical) degree distribution, i.e.,

pi(n) := n(i)
|n|

, for i ≥ 0. (5)

In this paper, we assume for convenience the following condition.

▶ Condition 1. nκ = (nκ(i))i≥0, κ ≥ 1, are degree statistics such that as κ → ∞:
(i) |nκ| → ∞,
(ii) For every i ≥ 0, we have pi(nκ) → pi, where p = (pi)i≥0 is a probability distribution

on N0.

▶ Remark 2. The condition that p is a probability distribution is no restriction. In fact, the
degree distribution p(nκ) has mean∑

i≥0
ipi(nκ) = 1

|nκ|
∑
i≥0

inκ(i) = |nκ| − 1
|nκ|

< 1, (6)

and thus the sequence of distributions p(nκ) is always tight. Hence, if pi(nκ) → pi, for every
i ≥ 0, then p = (pi)i≥0 is a probability distribution. Note also that (ii) says that p(nκ)
converges weakly to p, as κ → ∞. (As is well known, this is equivalent to convergence in
total variation.)

By (6) and Fatou’s lemma, if Condition 1 holds, then
∑

i≥0 ipi ≤ 1. Conversely, it is
easily seen that any such probability distribution p is the limit of p(nκ) for some sequence
of degree statistics nκ. In other words, the set of probability distributions p that can appear
as limits in Condition 1 is precisely the set of probability distributions p on N0 with mean∑

i≥0 ipi ≤ 1; we denote this set by P1(N0).
For a probability distribution p = (pi)i≥0 ∈ P1(N0), let Tp be a Galton–Watson tree with

offspring distribution p, and define πp as the distribution of Tp, i.e., (with 00 := 1 as usual)

πp(T) := P(Tp = T) =
∏
i≥0

p
nT (i)
i =

∏
i∈D(T)

p
nT (i)
i , for T ∈ T, (7)

G. Berzunza Ojeda, C. Holmgren, and S. Janson 1:3

where

D(T) := {i : nT (i) > 0} = {dT (v) : v ∈ T}, (8)

the set of degrees that appear in T . Note that πp(T) = 0 ⇐⇒ pi = 0 for some i ∈ D(T).
In particular, if nκ and p are as in Condition 1, then πp(T) = 0 if and only if nκ(i) = o(|nκ|)
for some i ∈ D(T).

We first give a law of large numbers for the number of fringe trees of a given type in a
random rooted plane tree with a given degree statistic. The proofs of this and the following
theorem are given in later sections.

▶ Theorem 3. Let nκ, κ ≥ 1, be some degree statistics that satisfy Condition 1, and let
Tnκ ∼ Unif(Tnκ). For every fixed T ∈ T, as κ → ∞:

(i) (Annealed version) P(T fr
nκ

= T) = E[NT (Tnκ)]
|nκ|

→ πp(T).

(ii) (Quenched version) P(T fr
nκ

= T | Tnκ
) = NT (Tnκ

)
|nκ|

→ πp(T) in probability.

In other words, the random fringe tree converges in distribution as κ → ∞: (i) says
T fr

nκ

d−→ Tp, or equivalently L(T fr
nκ

) → L(Tp), and (ii) is the conditional version L
(
T fr

nκ
|

Tnκ

) p−→ L(Tp).

▶ Remark 4. Similar results are known for several other models of random trees. In particular,
a version of Theorem 3 was proved by Aldous [2] for conditioned Galton–Watson trees with
finite offspring variance; this was extended to general simply generated trees in [19, Theorem
7.12]. In those cases, the degree statistic is random, but Condition 1 holds in probability,
with a non-random limiting probability distribution p. We return to simply generated trees
in Section 5. Another standard example is family trees of Crump–Mode–Jagers branching
processes (which includes e.g. random recursive trees, binary search trees and preferential
attachment trees); see e.g. [2] and [17, Theorem 5.14].

Theorem 3 is thus a law of large numbers for the number of fringe trees of a given type.
In this work, we also study the fluctuations and prove a central limit theorem for this number;
we furthermore show that this holds jointly for different types of fringe trees.

For a probability distribution p = (pi)i≥0 ∈ P1(N0) and T, T ′ ∈ T, let

ηp(T, T ′) := (|T | − 1)(|T ′| − 1) −
∑
i≥0

nT (i)nT ′(i)
pi

, (9)

where we interpret 0/0 := 0, and, for T ̸= T ′,

γp(T, T) := πp(T) + ηp(T, T)(πp(T))2, (10)
γp(T, T ′) := NT ′(T)πp(T) + NT (T ′)πp(T ′) + ηp(T, T ′)πp(T)πp(T ′). (11)

Note that ηp(T, T ′) = −∞ if pi = 0 for some i ∈ D(T) ∩ D(T ′). In this case, πp(T) =
πp(T ′) = 0, and we interpret ∞ · 0 := 0 in (10)–(11); thus γp(T, T ′) is always finite.

▶ Theorem 5. Let nκ, κ ≥ 1, be some degree statistics that satisfy Condition 1 and let
Tnκ

∼ Unif(Tnκ
). For a fixed m ≥ 1, let T1, . . . , Tm ∈ T be a fixed sequence of rooted plane

trees. Then, as κ → ∞,

ENTi
(Tnκ

) = πp(Ti)|nκ| + o(|nκ|), (12)
Var(NTi(Tnκ)) = γp(Ti, Ti)|nκ| + o(|nκ|), (13)

Cov
(
NTi(Tnκ), NTj (Tnκ)

)
= γp(Ti, Tj)|nκ| + o(|nκ|), (14)

AofA 2024

1:4 Fringe Trees for Random Trees with Given Vertex Degrees

for 1 ≤ i, j ≤ m, and(
NTj

(Tnκ
) − E[NTj

(Tnκ
)]√

|nκ|

)m

j=1

d−→ N(0, Γp), (15)

where the covariance matrix is defined by Γp := (γp(Ti, Tj))m
i,j=1. Furthermore, in (15), we

can replace E[NTi
(Tnκ

)] by |nκ|πp(nκ)(Ti).
If T ∈ T with πp(T) > 0 and |T | > 1, then γp(T, T) > 0 and thus (13) and (15) (with

m = 1) show that NT (Tnκ
) is asymptotically normal, with

NT (Tnκ
) − E[NT (Tnκ

)]√
Var(NT (Tnκ

))
d−→ N(0, 1), κ → ∞. (16)

The case |T | = 1 is trivial, with NT (Tnκ) = nκ(0) non-random. Ignoring this case,
Theorem 5 shows that NT (Tnκ

) is asymptotically normal when πp(T) > 0. On the other
hand, if πp(T) = 0, then also γp(T, T) = 0, and the theorems above do not give precise
information on the asymptotic distribution of NT (Tnκ). In this case, [3, Theorem 1.7] in the
full version is more precise.

In the case of critical conditioned Galton–Watson trees with finite offspring variance,
(joint) normal convergence of the subtree counts in analogy to (15) was proved in [20,
Corollary 1.8] (together with convergence of mean and variance). Indeed, [20, Theorem 1.5]
proved, more generally, asymptotic normality of additive functionals that are defined via toll
functions (under some conditions); see [3, Section 8] in the full version for further discussion
on additive functionals.

▶ Remark 6. Results on asymptotic normality for fringe tree counts have also been proved
earlier for several other classes of random trees. For example, for binary search trees see [7],
[8], [6], [12], [16]; for random recursive trees see [11], [16]; for increasing trees see [13]; for
m-ary search trees and preferential attachment trees see [18]; for random tries see [21].

Our approach relies on a multivariate version of the Gao–Wormald theorem [14, The-
orem 1]; see [3, Theorem A.1]. The original Gao–Wormald theorem [14] provides a way to
show asymptotic normality by analysing the behaviour of sufficiently high factorial moments.
(Typically, factorial moments are more convenient than standard moments in combinatorics.)
The multivariate version [3, Theorem A.1] extends this by considering joint factorial moments.
In our framework, this is very convenient since we can precisely compute the joint factorial
moments of the subtree counts in (3) for random trees with given degree statistics. (Another,
closely related, multivariate version of the Gao–Wormald theorem has independently been
shown recently by Hitczenko and Wormald [15].)

The (one dimensional) Gao–Wormald theorem has been used before by Cai and Devroye [5]
to study large fringe trees in critical conditioned Galton–Watson trees with finite offspring
variance. Indeed, they considered fringe subtree counts of a sequence of trees instead of a
fixed tree. In particular, they showed that asymptotic normality still holds in some regimes,
while in others there is a Poisson limit. In a forthcoming work, we will study the case of not
fixed fringe trees in the framework of random trees with given degrees.

1.1 Organization of the paper
In Section 2 we provide exact formulas for factorial moments of NT (Tn). These formulas
are then used in Sections 3–4 to prove our main results. An application to simply generated
trees is given in Sections 5.

G. Berzunza Ojeda, C. Holmgren, and S. Janson 1:5

1.2 Some notation
In addition to the notation introduced above, we use the following standard notation.

We let Z := {. . . , −1, 0, 1, . . . }, N := {1, 2, . . . }, N0 := {0, 1, 2, . . . }. We let 0 denote also
vectors and matrices with all elements 0 (the dimension will be clear from the context). We
use standard o and O notation, for sequences and functions of a real variable.

1E is the indicator function of an event E , and δij := 1{i=j} is Kronecker’s delta.
For x ∈ R and q ∈ N0, we let (x)q := x(x−1) · · · (x−q +1) denote the qth falling factorial

of x. (Here (x)0 := 1. Note that (x)q = 0 whenever x ∈ N0 and x − q + 1 ≤ 0.)
We interpret 0/0 = 0 and 0 · ∞ = 0.
We use d−→ for convergence in distribution, and p−→ for convergence in probability, for

a sequence of random variables in some metric space. Also, L(X) denotes the distribution
of X, and d= means equal in distribution. We write N(0, Γ) for the multivariate normal
distribution with mean vector 0 and covariance matrix Γ := (γij)m

i,j=1, for m ∈ N. (This
includes the case Γ = 0; in this case X ∼ N(0, Γ) means that X = 0 ∈ Rm a.s.)

Unspecified limits are as κ → ∞.

2 Moment computations

In this section, we compute the joint factorial moments of NT1(Tn), . . . , NTm
(Tn), for m ≥ 1

and a sequence of distinct rooted plane trees T1, . . . , Tm ∈ T, where Tn is a uniformly random
tree of Tn, for a degree statistic n. Before that, we need to introduce some notation. For
1 ≤ i, j ≤ m, let

τij := NTi(Tj)1{i̸=j} (17)

be the number of proper fringe subtrees of Tj that are equal to Ti. (Note that many of
these terms are 0. In particular, if we order T1, . . . , Tm according to their sizes, the matrix
(τij)m

i,j=1 is strictly triangular.)
For q1, . . . , qm ∈ N0, note that the product (NT1(Tn))q1 · · · (NTm

(Tn))qm
is the number of

sequences of q := q1 + · · · + qm distinct fringe subtrees of Tn, where the first q1 are copies of
T1, the next q2 are copies of T2, and so on. Given such a sequence of fringe subtrees, we say
that these fringe subtrees are marked. Furthermore, for each such sequence of marked fringe
subtrees of Tn, say that a tree in the sequence is bound if it is a fringe subtree of another
tree in the sequence; otherwise it is free. Note that the free trees are disjoint. Furthermore,
each bound tree in the sequence is a fringe subtree of exactly one free tree. For a sequence
b = (b1, . . . , bm) ∈ Nm

0 , let Sb(Tn) be the number of such sequences of q fringe trees such that
exactly bi of the fringe trees Ti are bound, for 1 ≤ i ≤ m. We thus have

E
[
(NT1(Tn))q1 · · · (NTm(Tn))qm

]
=
∑

b∈Nm
0

E[Sb(Tn)]. (18)

The sum is really only over b = (b1, . . . , bm) ∈ Nm
0 such that 0 ≤ bi ≤ qi for 1 ≤ i ≤ m, since

otherwise Sb(Tn) = 0. This sum can be computed by the following lemma.

▶ Lemma 7. Let n be a degree statistic and let Tn ∼ Unif(Tn). For m ≥ 1 and q1, . . . , qm ∈ N,
let T1, . . . , Tm ∈ T be a sequence of distinct rooted plane trees such that |n| ≥

∑m
j=1(qj −

bj)(|Tj | − 1) + 1. Then E[Sb(Tn)] is equal to

|n|
(|n|)1+

∑m

j=1
(qj−bj)(|Tj |−1)

∏
i≥0

(n(i))∑m

j=1
(qj−bj)nTj

(i)

m∏
j=1

(qj)bj
(
∑m

k=1(qk − bk)τjk)bj

bj ! ,

(19)

for every b = (b1, . . . , bm) ∈ Nm
0 such that 0 ≤ bi ≤ qi, for 1 ≤ i ≤ m.

AofA 2024

1:6 Fringe Trees for Random Trees with Given Vertex Degrees

Proof. If
∑m

j=1(qj − bj)nTj (i) > n(i) for some i ≥ 0, then both E[Sb(Tn)] and (19) are 0.
We may thus assume that

∑m
j=1(qj − bj)nTj

(i) ≤ n(i) for all i ≥ 0.
First, let us consider the case when all fringe trees are free, that is, the case b = 0 =

(0, . . . , 0) ∈ Nm
0 . Replace each marked fringe subtree in Tn by a single leaf; moreover, mark

this leaf and order all marked leaves into a sequence, corresponding to the order of the fringe
subtrees. This yields another tree T̃ , which we call a reduced tree, with a sequence of q

marked leaves. Since Tn has n(i) vertices of degree i, for i ≥ 0, and we have replaced qj

copies of Tj by leaves, the degree statistic ñ = (ñ(i))i≥0 of T̃ is given by

ñ(i) :=
{

n(i) −
∑m

j=1 qjnTj
(i), i ≥ 1,

n(0) −
∑m

j=1 qjnTj (0) +
∑m

j=1 qj , i = 0,
(20)

and has size

|ñ| :=
∑
i≥0

ñ(i) = |n| −
m∑

j=1
qj(|Tj | − 1). (21)

There is a one-to-one correspondence between trees in Tn with a sequence of marked fringe
subtrees as above, and reduced trees with the degree statistic (20) and a sequence of q marked
leaves. If we ignore the marks, the number of possible reduced trees is given by (2) with the
degree statistic ñ in (20). In each unmarked reduced tree, the number of ways to choose
sequences of marked leaves is (ñ(0))q1+···+qm

. Thus, the number of trees in Tn with marked
sequences of free fringe subtrees is the product of these numbers, i.e.,

(|ñ| − 1)!∏
i≥0 ñ(i)! (ñ(0))∑m

j=1
qj

= (|ñ| − 1)!∏
i≥0(n(i) −

∑m
j=1 qjnTj

(i))!
. (22)

By dividing with |Tn|, which is given by (2), and using (21), we find

E[S0(Tn)] = 1
(|n| − 1)∑m

j=1
qj(|Tj |−1)

∏
i≥0

(n(i))∑m

j=1
qjnTj

(i). (23)

Now consider the general case with a sequence b = (b1, . . . , bm) telling the number of
bound fringe subtrees. There are thus qj − bj free trees of type Tj . The number of ways to
choose the positions of the bound trees in the sequences of fringe trees is

∏m
j=1

(
qj

bj

)
, and for

each choice of free trees, there are
∑m

k=1(qk − bk)τjk possible bound trees of type Tj ; thus
the number of choices of the bound trees is

m∏
j=1

(qj)bj
(
∑m

k=1(qk − bk)τjk)bj

bj ! . (24)

The number of trees in Tn with sequences of qj − bj free trees Tj , for 1 ≤ j ≤ m, is given by
replacing qj by qj − bj in (20)–(22). Hence, we obtain (19), extending (23). ◀

We record two important special cases of Lemma 7 (see the proof of [3, Lemma 3.3] in
the full version for details).

▶ Lemma 8. Let n be a degree statistic and let Tn ∼ Unif(Tn).
(i) For q ∈ N and T ∈ T such that |n| ≥ q|T | − q + 1,

E[(NT (Tn))q] = |n|
(|n|)q|T |−q+1

∏
i≥0

(n(i))qnT (i). (25)

G. Berzunza Ojeda, C. Holmgren, and S. Janson 1:7

(ii) For distinct T, T ′ ∈ T such that |n| ≥ |T | + |T ′| − 1,

E[NT (Tn)NT ′(Tn)] = NT (T ′)E[NT ′(Tn)] + NT ′(T)E[NT (Tn)]

+ |n|
(|n|)|T |+|T ′|−1

∏
i≥0

(n(i))nT (i)+nT ′ (i). (26)

3 Proof of Theorems 3

In this section we prove Theorem 3. In what follows we will frequently use the following
well-known estimate (see for example, [3, Lemma 4.1]).

▶ Lemma 9. If x ≥ 1 is a real number and 0 ≤ k ≤ x/2 is an integer, then

(x)k = xk exp
(

−k(k − 1)
2x

+ O

(
k3

x2

))
. (27)

We start by proving the following theorem.

▶ Theorem 10. Let T ∈ T be a fixed tree. Then, uniformly for all degree statistics n =
(n(i))i≥0,

ENT (Tn) = |n|πp(n)(T) + O(1), (28)
Var NT (Tn) = |n|γp(n)(T, T) + O(1). (29)

More generally, if T, T ′ ∈ T, then

Cov
(
NT (Tn), NT ′(Tn)

)
= |n|γp(n)(T, T ′) + O(1). (30)

Proof. Note first the trivial bound

NT (Tn) ≤ n(i)
nT (i) ≤ n(i), i ∈ D(T), (31)

since the copies of T in Tn are distinct. Furthermore, by (7) and (5),

|n|πp(n)(T) ≤ |n|pi(n) = n(i), i ∈ D(T). (32)

Hence, (28) is trivial if n(i) = O(1) for some i ∈ D(T). In particular, we may in the sequel
assume n(i) ≥ 2nT (i) for every i ≥ 0, and thus |n| ≥ 2|T |. Then, by (25) (with q = 1) and
Lemma 9,

ENT (Tn) = |n|1−|T |
∏

i∈D(T)

n(i)nT (i)

× exp

 |T |(|T | − 1)
2|n|

−
∑

i∈D(T)

nT (i)(nT (i) − 1)
2n(i) + O

(∑
i∈D(T)

1
n(i)2

)
= |n|πp(n)(T)

× exp

 |T |(|T | − 1)
2|n|

−
∑

i∈D(T)

nT (i)(nT (i) − 1)
2n(i) + O

(∑
i∈D(T)

1
n(i)2

) ,

(33)

which implies (28) by (32).

AofA 2024

1:8 Fringe Trees for Random Trees with Given Vertex Degrees

Similarly, taking q = 2 in (25), and now assuming as we may n(i) ≥ 4nT (i) for every
i ≥ 0,

E(NT (Tn))2 = |n|
(|n|)2|T |−1

∏
i∈D(T)

(n(i))2nT (i)

= |n|2−2|T |
∏

i∈D(T)

n(i)2nT (i)

× exp

 (2|T | − 1)(2|T | − 2)
2|n| −

∑
i∈D(T)

2nT (i)(2nT (i) − 1)
2n(i) + O

(∑
i∈D(T)

1
n(i)2

)
=
(
|n|πp(n)(T)

)2

× exp

 (2|T | − 1)(|T | − 1)
|n| −

∑
i∈D(T)

nT (i)(2nT (i) − 1)
n(i) + O

(∑
i∈D(T)

1
n(i)2

) ,

(34)

Hence, using also (33),

E(NT (Tn))2 =
(
ENT (Tn)

)2

× exp

 (|T | − 1)2

|n|
−

∑
i∈D(T)

nT (i)2

n(i) + O
(∑

i∈D(T)

1
n(i)2

) . (35)

Consequently, using (28) and noting that ENT (Tn) = O(n(i)) for i ∈ D(T) by (28) and (32),

Var[NT (Tn)] = E(NT (Tn))2 + ENT (Tn) −
(
ENT (Tn)

)2

=
(
ENT (Tn)

)2

 (|T | − 1)2

|n|
−

∑
i∈D(T)

nT (i)2

n(i)

+ ENT (Tn) + O(1)

=
(
|n|πp(n)(T)

)2

 (|T | − 1)2

|n|
−

∑
i∈D(T)

nT (i)2

n(i)

+ |n|πp(n)(T) + O(1),

(36)

which yields (29) by the definitions (10), (9) and (5).
For the proof of (30) we use (26). The first two terms are handled by (28), and the final

term is treated as in (34)–(36) with mainly notational differences; we omit the details. ◀

Proof of Theorem 3. By Condition 1, we have pi(nκ) → pi for every i ≥ 0, and thus
πp(nκ)(T) → πp(T). Hence, (i) follows from (28).

Moreover, it follows from (9)–(10) that γp(nκ)(T, T) = O(1) (for a fixed T), and thus (29)
yields Var NT (Tnκ

) = O(|nκ|). Therefore, (ii) follows from (i) and Chebyshev’s inequality. ◀

4 Proof of Theorems 5

We have now all the ingredients to prove Theorem 5.

Proof of Theorem 5. First note that Condition 1 implies

πp(nκ)(Ti) → πp(Ti) and γp(nκ)(Ti, Tj) → γp(Ti, Tj), for 1 ≤ i, j ≤ m. (37)

Hence, (12)–(14) follow from (28)–(30) in Theorem 10.

G. Berzunza Ojeda, C. Holmgren, and S. Janson 1:9

We next prove the asymptotic normality result in (15). Note first that (28) implies that
it does not matter whether we use E[NTi

(Tnκ
)] or

µnκ
(T) := |nκ|πp(nκ)(T) = |nκ|

∏
i≥0

pi(nκ)nT (i) = |nκ|
∏

i∈D(T)

pi(nκ)nT (i). (38)

in (15).
If πp(Ti) = 0, for some 1 ≤ i ≤ m, then it follows from (10) that γp(Ti, Ti) = 0, and thus

(13) yields Var[NTi
(Tnκ

)] = o(|nκ|); consequently, (28) and Chebyshev’s inequality yield, as
κ → ∞,

NTi
(Tnκ

) − E[NTi
(Tnκ

)]√
|nκ|

p−→ 0. (39)

Hence, convergence of the i-th component in (15) is trivial in this case. Furthermore,
πp(Ti) = 0 also implies γp(Ti, Tj) = 0 for every 1 ≤ j ≤ m by (11), noting that if
NTi

(Tj) > 0 then also πp(Tj) = 0. Thus, we may ignore all i in (15) with πp(Ti) = 0 and
show (joint) convergence for the remaining ones, because then (15) in general will follow
from [4, Theorem 3.9 in Chapter 1]. Consequently, we henceforth assume that πp(Ti) > 0
for all 1 ≤ i ≤ m. Equivalently, pk > 0 for every k ∈

⋃m
i=1 D(Ti). We may also assume that

T1, . . . , Tm are distinct.
To see the main idea of the proof, we consider only the univariate case m = 1. The

general case follows similarly by a multidimensional version of the Gao–Wormald theorem
[3, Theorem A.1] in the full version. The main complication in the multivariate case is
the possibility that fringe trees of type Tj may contain fringe trees of type Tk for some
1 ≤ j, k ≤ m; we thus use the decomposition in (18) and estimate the terms separately; we
refer to the proof of [3, Theorem 1.5] in the full version for details.

We then consider m = 1 and omit the index 1 and write T instead of T1. In this case,
we can use the Gao–Wormald theorem [14, Theorem 1] and the following estimate. For any
qκ = O(|nκ|1/2), (25) and Lemma 9 yield, recalling the definitions (5), (7), (9), (10), and
(38) of pi(n), πp(T), ηp(T, T), γp(T, T), and µnκ

(T),

E[(NT (Tnκ))qκ] =
∏

i≥0 nκ(i)qκnT (i)

|nκ|qκ(|T |−1) exp

((
qκ(|T | − 1)

)2

2|nκ| −
∑
i≥0

(
qκnT (i)

)2

2nκ(i) + o(1)

)

= |nκ|qκ
∏
i≥0

pi(nκ)qκnT (i) exp

((
qκ(|T | − 1)

)2

2|nκ| −
∑
i≥0

(
qκnT (i)

)2

2nκ(i) + o(1)

)

=
(
|nκ|πp(nκ)(T)

)qκ exp
(

q2
κ

2|nκ|ηp(nκ)(T, T) + o(1)
)

= µnκ (T)qκ exp
(

(γp(nκ)(T, T) − πp(nκ)(T))|nκ|
2µnκ (T)2 q2

κ + o(1)
)

= µnκ (T)qκ exp
(

γp(T, T)|nκ| − µnκ (T)
2µnκ (T)2 q2

κ + o(1)
)

. (40)

If γp(T, T) > 0, we may now apply the Gao–Wormald theorem [14, Theorem 1] with
µκ := µnκ

(T) and σ2
κ := γp(T, T)|nκ| and conclude (16), which by (13) is equivalent to (15)

(with m = 1). The case γp(T, T) = 0 is trivial, since then (13) implies (39). Alternatively,
for any γp(T, T), we may take the same µκ but σ2

κ := |nκ| in the case m = 1 of our version
[3, Theorem A.1] of the Gao–Wormald theorem. ◀

AofA 2024

1:10 Fringe Trees for Random Trees with Given Vertex Degrees

5 Application to simply generated trees

Let Tn denote the (finite) subset of all plane rooted trees of size n ∈ N. Let w = (wi)i≥0 be
a sequence of non-negative real weights with w0 > 0 and wi > 0 for at least one i ≥ 2. For a
finite rooted plane tree T ∈ T, we define the weight of T to be

w(T) :=
∏
v∈T

wdT (v) =
∏
i≥0

w
nT (i)
i . (41)

For n ∈ N, let Zn(w) =
∑

T ∈Tn
w(T). If Zn(w) > 0, then we define the random tree Tw,n

by picking an element of Tn at random with probability proportional to its weight, i.e.,

P(Tw,n = T) = w(T)
Zn(w) , for T ∈ Tn. (42)

The random tree Tw,n is called simply generated tree of size n and weight sequence w;
see e.g. [9] and [19]. If w is a probability distribution (i.e.,

∑
i≥0 wi = 1), then Tw,n is a

Galton–Watson tree with offspring distribution w conditioned to have n vertices.
Let Φw(z) =

∑
i≥0 wiz

i be the generating function of the weight sequence w, and let
ρw ∈ [0, ∞] be its radius of convergence. For 0 ≤ s < ρw, we let

Ψw(s) := sΦ′
w(s)

Φw(s) =
∑

i≥0 iwis
i∑

i≥0 wisi
. (43)

Furthermore, if Φw(ρw) < ∞, we define also Ψw(ρw) by (43); if Φw(ρw) = ∞ then we define
Ψw(ρw) := lims↑ρw Ψw(s); the limit exists by [19, Lemma 3.1 (i)]. Let νw := Ψw(ρw) ∈ [0, ∞],
and define

τw =
{

ρw if νw < 1,

Ψ−1
w (1) if νw ≥ 1.

(44)

It follows from [19, Lemma 3.1] that

ρw > 0 ⇐⇒ νw > 0 ⇐⇒ τw > 0. (45)

The following result from [19] shows that simply generated trees satisfy Condition 1 in
probability.

▶ Theorem 11 ([19, Theorem 7.1 and Theorem 7.11]). Let w be a sequence of non-negative
real weights with w0 > 0 and wi > 0 for at least one i ≥ 2. Define

θi(w) = wiτ
i
w

Φw(τw) , for i ≥ 0. (46)

Then, θ(w) = (θi(w))i≥0 is a probability distribution with expectation µw = min(1, νw) and
variance σ2

w = τwΨ′
w(τw) ∈ [0, ∞]. Moreover, for n ∈ N with Zn(w) > 0, let Tw,n be a simply

generated tree of size n and weight sequence w. Then, the (empirical) degree distribution
p(nTw,n

) of Tw,n satisfies, for every i ≥ 0, pi(nTw,n
) p−→ θi(w), as n → ∞ (along integers n

such that Zn(w) > 0).

Note that if ρw = 0, then θ0(w) = 1 and θi(w) = 0 for i ≥ 1; otherwise, τw > 0 and (46)
shows that θi(w) > 0 ⇐⇒ wi > 0 for i ≥ 0.

Using Theorem 11, we can show that Theorem 5 implies the following version for
conditioned Galton–Watson trees. The asymptotic normality (49) was proved in case (i) by
different methods in [20, Corollary 1.8]; (ii) and (iii) are new.

G. Berzunza Ojeda, C. Holmgren, and S. Janson 1:11

▶ Theorem 12 (partly [20]). Let w be a sequence of non-negative real weights with w0 > 0
and wi > 0 for at least one i ≥ 2. Moreover, for n ∈ N with Zn(w) > 0, let Tw,n be a simply
generated tree of size n and weight sequence w. For fixed m ≥ 1, let T1, . . . , Tm ∈ T be a fixed
sequence of rooted plane trees. Then, as n → ∞ (along integers n such that Zn(w) > 0),(

NTj (Tw,n) − E[NTj (Tw,n) | nTw,n]
√

n

)m

j=1

d−→ N(0, Γθ(w)), (47)

where the covariance matrix Γθ(w) is defined by (10)–(11), and for 1 ≤ j ≤ m,

E[NTj
(Tw,n) | nTw,n

] = n

(n)|Tj |

∏
i≥0

(nTw,n
(i))nTj

(i). (48)

Furthermore, suppose that the weight sequence w satisfies one of the following conditions:
(i) νw ≥ 1 and σ2

w ∈ (0, ∞).
(ii) νw ≥ 1, σ2

w = ∞ and θ(w) belongs to the domain of attraction of a stable law of
index α ∈ (1, 2]. (The last condition is equivalent to that there exists a slowly varying
function L : R+ → R+ such that

∑k
i=0 i2θi(w) = k2−αL(k), as k → ∞ [10, Theorem

XVII.5.2].)
(iii) 0 < νw < 1 and θi(w) = ci−β + o(i−β), as i → ∞, with fixed c > 0 and β > 2.

Then, as n → ∞ (along integers n such that Zn(w) > 0),(
NTj

(Tw,n) − nπθ(w)(Tj)
√

n

)m

j=1

d−→ N(0, Γ̃θ(w)), (49)

where the covariance matrix Γ̃θ(w) = (γ̃θ(w)(Ti, Tj))m
i,j=1 is given by, for T, T ′ ∈ T such that

T ̸= T ′,

γ̃θ(w)(T, T) = πθ(w)(T) −
(
2|T | − 1 + ς−2

w
)

(πθ(w)(T))2, (50)
γ̃θ(w)(T, T ′) = NT ′(T)πθ(w)(T) + NT (T ′)πθ(w)(T ′)

−
(
|T | + |T ′| − 1 + ς−2

w
)

πθ(w)(T)πθ(w)(T ′), (51)

with ς2
w = σ2

w in case (i), and ς2
w = ∞ in cases (ii) and (iii).

▶ Remark 13. Recall that for any weight sequence w and any constants a, b > 0, the weight
sequence ŵ = (ŵi)i≥0 with ŵi := abiwi is equivalent to w, i.e., it satisfies that Tw,n

d= Tŵ,n
,

for all n for which either (and thus both) of the random trees are defined; this is a consequence
of (42). In the setting of Theorem 11, if ρw > 0, then the weight sequence w is equivalent to
the weight sequence θ(w) = (θi(w), i ≥ 0), which is a probability distribution with mean
µw = min(1, νw); see further [19, Section 7]. Thus, if ρw > 0 we can regard Tw,n as a
Galton–Watson tree Tθ(w),n with offspring distribution θ(w) conditioned to have n vertices.
This explains the appearance of θ(w) in Theorem 12, and it shows that there is no real loss of
generality to consider (as is often done) only the case τw = 1 when θ(w) = w. Note that the
conditioned Galton–Watson tree Tθ(w),n is critical if νw ≥ 1, and subcritical if 0 < νw < 1.

The complete proof of Theorem 12 is given in [3, Section 7] of the full version. Here, we only
comment on the main ideas. Indeed, for any fixed degree statistic n with P(nTw,n

= n) > 0,
(42) implies that conditionally given nTw,n

= n, Tw,n ∼ Unif(Tn); see e.g., [1, Proposition 8].
By the Skorohod coupling theorem [22, Theorem 4.30], we can assume that the convergence
in Theorem 11 holds a.s.; in other words, Condition 1 holds a.s. for the degree statistics nTw,n ,
with p = θ(w). Moreover, e.g. by resampling Tw,n conditioned on nTw,n

, we may assume

AofA 2024

1:12 Fringe Trees for Random Trees with Given Vertex Degrees

that also conditioned on the entire sequence of degree statistics (nTw,n)∞
n=1, the random trees

Tw,n, n ≥ 1, have the (conditional) distributions Unif(TnTw,n
). It follows that we may apply

Theorem 5 conditioned on the sequence of degree statistics (nTw,n
)∞
n=1; this shows that (47)

holds conditioned on (nTw,n)∞
n=1. Then, (47) also holds unconditionally by the dominated

convergence theorem. Furthermore, (48) follows from Lemma 8 (with q = 1). On the other
hand, the central idea to obtain the unconditional limit (49) is by combining the conditional
limit (47) with a limit result for the conditional expectations in (48). For this, one uses a
theorem on asymptotic normality of the degree statistics, which is proved in [20] and [24]
(see also [3, Theorem 7.6] for a different approach).

Theorem 12 gives a partial solution to [19, Problem 21.4], but the general case remains
open.

▶ Problem 14. Does (49) in Theorem 12 hold for any weight sequence w, with some
covariance matrix Γ̃θ(w) = (γ̃θ(w)(Ti, Tj))m

i,j=1?

References

1 Louigi Addario-Berry and Serte Donderwinkel. Random trees have height O(
√

n). arXiv
e-prints, January 2022. arXiv:2201.11773.

2 David Aldous. Asymptotic fringe distributions for general families of random trees. Ann. Appl.
Probab., 1(2):228–266, 1991.

3 Gabriel Berzunza Ojeda, Cecilia Holmgren, and Svante Janson. Fringe trees for random trees
with given vertex degrees. arXiv e-prints, December 2023. arXiv:2312.04243.

4 Patrick Billingsley. Convergence of probability measures. Wiley Series in Probability and
Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York, second edition,
1999. A Wiley-Interscience Publication. doi:10.1002/9780470316962.

5 Xing Shi Cai and Luc Devroye. A study of large fringe and non-fringe subtrees in conditional
Galton-Watson trees. ALEA Lat. Am. J. Probab. Math. Stat., 14(1):579–611, 2017. doi:
10.30757/alea.v14-29.

6 Huilan Chang and Michael Fuchs. Limit theorems for patterns in phylogenetic trees. J. Math.
Biol., 60(4):481–512, 2010. doi:10.1007/s00285-009-0275-6.

7 Luc Devroye. Limit laws for local counters in random binary search trees. Random Structures
Algorithms, 2(3):303–315, 1991. doi:10.1002/rsa.3240020305.

8 Luc Devroye. Limit laws for sums of functions of subtrees of random binary search trees.
SIAM J. Comput., 32(1):152–171, 2002/03. doi:10.1137/S0097539701383923.

9 Michael Drmota. Random trees, An interplay between combinatorics and probability. Springer-
WienNewYork, Vienna, 2009. doi:10.1007/978-3-211-75357-6.

10 William Feller. An introduction to probability theory and its applications. Vol. II. John Wiley
& Sons, Inc., New York-London-Sydney, second edition, 1971.

11 Qunqiang Feng and Hosam M. Mahmoud. On the variety of shapes on the fringe of a random
recursive tree. J. Appl. Probab., 47(1):191–200, 2010. doi:10.1239/jap/1269610825.

12 Philippe Flajolet, Xavier Gourdon, and Conrado Martínez. Patterns in random binary
search trees. Random Structures Algorithms, 11(3):223–244, 1997. doi:10.1002/(SICI)
1098-2418(199710)11:3<223::AID-RSA2>3.0.CO;2-2.

13 Michael Fuchs. Limit theorems for subtree size profiles of increasing trees. Combin. Probab.
Comput., 21(3):412–441, 2012. doi:10.1017/S096354831100071X.

14 Zhicheng Gao and Nicholas C. Wormald. Asymptotic normality determined by high moments,
and submap counts of random maps. Probab. Theory Related Fields, 130(3):368–376, 2004.
doi:10.1007/s00440-004-0356-9.

15 Pawel HItczenko and Nick Wormald. Multivariate asymptotic normality determined by high
moments. arXiv e-prints, December 2023. arXiv:2312.04246.

https://arxiv.org/abs/2201.11773
https://arxiv.org/abs/2312.04243
https://doi.org/10.1002/9780470316962
https://doi.org/10.30757/alea.v14-29
https://doi.org/10.30757/alea.v14-29
https://doi.org/10.1007/s00285-009-0275-6
https://doi.org/10.1002/rsa.3240020305
https://doi.org/10.1137/S0097539701383923
https://doi.org/10.1007/978-3-211-75357-6
https://doi.org/10.1239/jap/1269610825
https://doi.org/10.1002/(SICI)1098-2418(199710)11:3<223::AID-RSA2>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1098-2418(199710)11:3<223::AID-RSA2>3.0.CO;2-2
https://doi.org/10.1017/S096354831100071X
https://doi.org/10.1007/s00440-004-0356-9
https://arxiv.org/abs/2312.04246

G. Berzunza Ojeda, C. Holmgren, and S. Janson 1:13

16 Cecilia Holmgren and Svante Janson. Limit laws for functions of fringe trees for binary
search trees and random recursive trees. Electron. J. Probab., 20:no. 4, 51, 2015. doi:
10.1214/EJP.v20-3627.

17 Cecilia Holmgren and Svante Janson. Fringe trees, Crump-Mode-Jagers branching processes
and m-ary search trees. Probab. Surv., 14:53–154, 2017. doi:10.1214/16-PS272.

18 Cecilia Holmgren, Svante Janson, and Matas Šileikis. Multivariate normal limit laws for the
numbers of fringe subtrees in m-ary search trees and preferential attachment trees. Electron.
J. Combin., 24(2):Paper No. 2.51, 49, 2017. doi:10.37236/6374.

19 Svante Janson. Simply generated trees, conditioned Galton-Watson trees, random allocations
and condensation. Probab. Surv., 9:103–252, 2012. doi:10.1214/11-PS188.

20 Svante Janson. Asymptotic normality of fringe subtrees and additive functionals in conditioned
Galton-Watson trees. Random Structures Algorithms, 48(1):57–101, 2016. doi:10.1002/rsa.
20568.

21 Svante Janson. Central limit theorems for additive functionals and fringe trees in tries. Electron.
J. Probab., 27:Paper No. 47, 1–63, 2022. doi:10.1214/22-ejp776.

22 Olav Kallenberg. Foundations of modern probability. Probability and its Applications (New
York). Springer-Verlag, New York, second edition, 2002. doi:10.1007/978-1-4757-4015-8.

23 J. Pitman. Combinatorial stochastic processes, volume 1875 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 2006. Lectures from the 32nd Summer School on Probability Theory
held in Saint-Flour, July 7–24, 2002.

24 Paul Thévenin. Vertices with fixed outdegrees in large Galton-Watson trees. Electron. J.
Probab., 25:Paper No. 64, 25, 2020. doi:10.1214/20-ejp465.

AofA 2024

https://doi.org/10.1214/EJP.v20-3627
https://doi.org/10.1214/EJP.v20-3627
https://doi.org/10.1214/16-PS272
https://doi.org/10.37236/6374
https://doi.org/10.1214/11-PS188
https://doi.org/10.1002/rsa.20568
https://doi.org/10.1002/rsa.20568
https://doi.org/10.1214/22-ejp776
https://doi.org/10.1007/978-1-4757-4015-8
https://doi.org/10.1214/20-ejp465

Enumeration and Succinct Encoding of AVL Trees
Jeremy Chizewer #

University of Waterloo, Canada

Stephen Melczer # Ñ

University of Waterloo, Canada

J. Ian Munro # Ñ

University of Waterloo, Canada

Ava Pun # Ñ

University of Waterloo, Canada

Abstract
We use a novel decomposition to create succinct data structures – supporting a wide range of
operations on static trees in constant time – for a variety of tree classes, extending results of Munro,
Nicholson, Benkner, and Wild. Motivated by the class of AVL trees, we further derive asymptotics
for the information-theoretic lower bound on the number of bits needed to store tree classes whose
generating functions satisfy certain functional equations. In particular, we prove that AVL trees
require approximately 0.938 bits per node to encode.

2012 ACM Subject Classification Mathematics of computing → Enumeration

Keywords and phrases AVL trees, analytic combinatorics, succinct data structures, enumeration

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.2

Funding Stephen Melczer : SM and JC partially funded by NSERC Discovery Grant RGPIN-2021-
02382.
J. Ian Munro: JIM and AP partially funded by NSERC Discovery Grant RGPIN-2018-03972.

Acknowledgements The authors thank Andrew Odlyzko for discussions on the asymptotic behaviour
of AVL trees and the growth constant α, and thank Sebastian Wild for alerting us to relevant
references.

Introduction

AVL trees [1] (named for their discoverers, G. Adelson-Velsky and E. Landis) are a subclass
of binary search trees with logarithmic height, a property they maintain with updates during
insertions and deletions in logarithmic time. Indeed, AVL trees are the oldest class of binary
search trees maintaining logarithmic height and are characterized by the key property that
any pair of sibling subtrees differ in height by at most 1. In this paper, we examine the
amount of storage needed to encode AVL trees with n nodes, a property intimately related
to the number of AVL trees on n nodes. Odlyzko [13] gave a conjectural form for the number
of AVL trees on n nodes in the 1980s, anticipating a forthcoming proof, but this proof did
not appear in the literature.

If C =
⊔∞

n=0 Cn is a family of objects, with Cn denoting the objects of size n in C then
a representation of C is called succinct if it maps each object of Cn to a unique string of
length log2 |Cn| + o(log |Cn|). A succinct representation is thus one whose space complexity
asymptotically equals, up to lower-order terms, the information-theoretic lower bound. A
succinct data structure [11, 12] for C is a succinct representation of C that supports a range
of operations on C under reasonable time constraints.

© Jeremy Chizewer, Stephen Melczer, J. Ian Munro, and Ava Pun;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 2; pp. 2:1–2:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jchizewer@uwaterloo.ca
https://orcid.org/0000-0003-3333-9740
mailto:smelczer@uwaterloo.ca
https://melczer.ca
https://orcid.org/0000-0002-0995-3444
mailto:jian.munro@uwaterloo.ca
https://cs.uwaterloo.ca/~imunro/
https://orcid.org/0000-0002-7165-7988
mailto:a5pun@uwaterloo.ca
https://www.avapun.com/
https://orcid.org/0009-0008-4148-3164
https://doi.org/10.4230/LIPIcs.AofA.2024.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Enumeration and Succinct Encoding of AVL Trees

1

2

4

8

12 13

9

14

18 19

15

5

3

6 7

10

16 17

11

= original node = external node

Level-order bitmap: 1
1

1
2

1
3

1
4

0
5

0
6

1
7

1
8

1
9

1
10

0
11

0
12

0
13

1
14

0
15

0
16

0
17

0
18

0
19

Figure 1 A binary tree and its level-order bitmap representation.

1 Representations of Trees

The theory of succinct data structures has a long history, much of it focused on representations
of trees. We first describe some important classes of trees in this context, and then discuss
our main results.

Binary Search Trees

Let B be the class of rooted binary trees, so that the number |Bn| of objects in B of size n is
the nth Catalan number bn = 1

n+1
(2n

n

)
. The class B lends itself well to storing ordered data

in a structure called a binary search tree. The general idea is that for each node in the tree,
the data stored in its left subtree will be smaller than the data at that node, and the data
stored in the right subtree will be larger. To retrieve elements, one can recursively navigate
through the tree by comparing the desired element to the current node, and moving to the
left or right subtree if the element is respectively smaller or larger than the current node. As
a result, it is desirable to efficiently support the navigation operations of moving to parent
or child nodes in whatever representation is used.

A naive representation of B gives each node a label (using roughly log2 n space) and
stores the labels of each node’s children and parent. The resulting data structure supports
operations like finding node siblings in constant time, but is not succinct as it uses Θ(n log n)
bits while the information-theoretic lower bound is only log2(bn) = 2n + o(n). Somewhat
conversely, a naive space-optimal representation of B is obtained by listing the objects of
Bn in any canonical order and referencing a tree by its position {1, . . . , bn} in the order,
but asking for information like the children or parents of a node in a specific tree is then
expensive as it requires building parts of the tree.

Practical succinct representations of binary trees supporting efficient navigation date back
to Jacobson [6], who encoded a tree by storing the binary string of length 2n + 1 obtained by
adding external vertices so that every node has exactly two children, then taking a level-order

J. Chizewer, S. Melczer, J. I. Munro, and A. Pun 2:3

traversal of the tree and recording a 1 for each original internal node encountered and a 0
for each external node encountered (see Figure 1). If each node is labelled by its position
in a level-order traversal then, for instance, the children of the node labelled x in the tree
encoded by the string σ have labels 2 rankx(σ) and 2 rankx(σ) + 1, where rankx(σ) is the
number of ones in σ up to (and including) the position x. By storing o(n) bits, the rank
operation (and similar supporting operations used to retrieve information about the trees)
can be implemented in O(1) time. Jacobson’s results allow finding a parent or child using
O(log2 n) bit inspections; Clark [2] and Munro [8] improved this to O(1) inspections of log2 n

bit words.

AVL Trees
Because the time taken to access elements in a binary search tree typically depends on the
height of the tree, many data structures balance their trees as new data is added. The balance
operation requires rearranging the tree while preserving the underlying property that, for
each node, the elements in the left subtree are smaller and the elements in the right subtree
are larger. One of the most popular balanced tree structures – for theoretical study and
practical application – are AVL trees [1]. Roughly speaking, AVL trees have balancing rules
that force the subtrees rooted at the children of any node differ in height by at most one.
Throughout this paper we let A denote the class of AVL trees, so that An consists of all
binary trees on n vertices such that the subtrees of any vertex differ in height by at most
one (including empty subtrees).

Due to the way they are constructed, AVL trees have mainly been enumerated under
height restrictions, and enumeration by number of vertices (which is crucial for determining
space-efficient representations, but not as important for other applications) is less studied.
A 1984 paper [13] of Odlyzko describes the behaviour of a family of trees whose generating
functions satisfy certain equations. It ends by stating that the generating function of AVL
trees “appears not to satisfy any simple functional equation, but by an intensive study. . . it
can be shown” that |An| ∼ n−1α−nu(log n) where α = 0.5219 . . . is “a certain constant” and
u is a periodic function, referencing for details a paper that was planned to be published but
was never written.1

Efficiently Representing Tree Classes
Let B be a function satisfying B(n) = Θ(log n). In [9] the authors give a method to construct
a succinct encoding, and corresponding data structure, for any class of binary trees T
satisfying the following four conditions.
1. Fringe-hereditary: For any tree τ ∈ T and node v ∈ τ the fringe subtree τ [v], which

consists of v and all of its descendants in τ , also belongs to T .
2. Worst-case B-fringe dominated : Most nodes in members of T do not generate large fringe

subtrees, in the sense that∣∣∣{v ∈ τ :
∣∣τ [v]

∣∣ ≥ B(n)}
∣∣∣ = o(n/ log B(n))

for every binary tree τ in the subset Tn ⊂ T containing the members of T with n nodes,
where |τ | denotes the number of nodes in τ .

1 The current authors thank Andrew Odlyzko for discussions on the asymptotic behaviour of AVL trees
and the growth constant α.

AofA 2024

2:4 Enumeration and Succinct Encoding of AVL Trees

Figure 2 The six types of AVL trees with n = 5 nodes.

3. Log-linear : There is a constant c > 0 and a function ϑ(n) = o(n) such that

log |Tn| = cn + ϑ(n). (1)

4. B-heavy twigged: If v is a node of any τ ∈ T with |τ [v]| ≥ B(n), and τℓ[v] and τr[v] are
the left and right subtrees of v in τ , then |τℓ[v]|, |τr[v]| = ω(1).

We present a new construction that gives a succinct encoding for all classes of trees
satisfying only the first three conditions. By using constant time rank and select operations
already supported by a succinct encoding for binary trees, we can also eliminate the use of
so-called “portal nodes” and thus relax the second condition to the following.
2′. Worst-case weakly fringe dominated: Most nodes in members of T do not generate large

fringe subtrees, in the sense that there is a B′(n) satisfying B′(n) = d log n + o(log n) for
some d < 1 such that∣∣∣{v ∈ τ :

∣∣τ [v]
∣∣ ≥ B′(n)}

∣∣∣ = o(n) (2)

for every binary tree τ ∈ Tn.

Adopting terminology similar to that of [9], we call a class of binary trees weakly tame if
it is fringe-hereditary, worst-case weakly fringe dominated, and log-linear.

▶ Theorem 1. If T is a weakly tame class of binary trees then there exists a succinct encoding
for T that supports the operations in Table 1 in O(1) time using the (log n)-bit word RAM
model.

▶ Remark 2. We support operations on static trees, leaving extensions to trees with updates
(such as in [10]) to future work.

Proof. See Section 2. ◀

▶ Corollary 3. There exists a succinct encoding for AVL trees that supports the operations
in Table 1 in O(1) time using the (log n)-bit word RAM model.

Proof. AVL trees are weakly tame (see [9, Example F.2]) so the result follows immediately
from Theorem 1. ◀

▶ Remark 4. In [9] the log-linearity of AVL trees is inferred from the stated exponential
growth of an in Odlyzko [13]. This growth is proven in Theorem 6 below.

J. Chizewer, S. Melczer, J. I. Munro, and A. Pun 2:5

A minor modification of the arguments in [9] show that Left-Leaning AVL (LLAVL)
Trees, which are AVL trees with the added restriction that at every node the height of the left
subtree is at least the height of the right subtree, are also weakly tame, giving the following.

▶ Corollary 5. There exists a succinct encoding for LLAVL trees that supports the operations
in Table 1 in O(1) time using the (log n)-bit word RAM model.

Table 1 Operations discussed in [5, 9] which can be done in O(1) time in the (log n)-bit word
RAM model in a succinct encoding of a binary tree.

parent(v) the parent of v, same as anc(v, 1)
degree(v) the number of children of v

left_child(v) the left child of node v

right_child(v) the right child of node v

depth(v) the depth of v, i.e., the number of edges between the root and v

anc(v, i) the ancestor of node v at depth depth(v) − i

nbdesc(v) the number of descendants of v

height(v) the height of the subtree rooted at node v

LCA(v, u) the lowest common ancestor of nodes u and v

leftmost_leaf(v) the leftmost leaf descendant of v

rightmost_leaf(v) the rightmost leaf descendant of v

level_leftmost(ℓ) the leftmost node on level ℓ

level_rightmost(ℓ) the rightmost node on level ℓ

level_pred(v) the node immediately to the left of v on the same level
level_succ(v) the node immediately to the right of v on the same level
node_rankX(v) the position of v in the X-order, X ∈ {PRE, POST, IN},

i.e., in a preorder, postorder, or inorder traversal of the tree
node_selectX(i) the ith node in the X-order, X ∈ {PRE, POST, IN}
leaf_rank(v) the number of leaves before and including v in preorder
leaf_select(i) the ith leaf in preorder

To characterize how much space is required by a succinct encoding, we derive an asymptotic
bound on the number of AVL trees using techniques from analytic combinatorics [4, 7]. To
this end, let an = |An| be the counting sequence of A and let A(z) =

∑
n≥0 anzn be its

associated generating function. The key to enumerating AVL trees is to let Ah(z) be the
generating function for the subclass of AVL trees with height h. The balance condition on
subtrees implies that an AVL tree of height h + 2 is a root together with a subtree of height
h + 1 and a subtree of height either h + 1 or h, giving rise to the recursive equation

Ah+2(z) = Ah+1(z)(Ah+1(z) + 2Ah(z)) (3)

for all h ≥ 0, where the factor of 2 indicates that the shorter subtree can be on the left or
right side. This recursion, along with the initial conditions A0(z) = z (encoding the only
AVL tree with height zero, which is a single vertex) and A1(z) = z2 (encoding the only AVL
tree with height one, which is a root with two children) uniquely determines Ah(z) for all h.
Summing over all possible heights gives the generating function

A(z) =
∞∑

h=0
Ah(z)

for AVL trees.

AofA 2024

2:6 Enumeration and Succinct Encoding of AVL Trees

Figure 3 Values αh converging to α = 0.5219 . . . monotonically from below among even h (red)
and monotonically from above among odd h (blue).

Equation (3) implies that Ah(z) is a non-constant polynomial with positive coefficients for
all h, so the equation Ah(z) = 1/3 has a unique positive solution for all h ∈ N (see Figure 3
for values of these solutions). We prove the following.

▶ Theorem 6. If αh is the unique positive solution to Ah(z) = 1/3 then the limit

α = lim
h→∞

αh = 0.5219 . . .

exists. Furthermore,

log2(an) = n log2(α−1)︸ ︷︷ ︸
n(0.938...)

+ log θ(n)

for a function θ growing at most sub-exponentially (meaning θ(n) = o(κn) for all κ > 1).

Proof. The result follows immediately from applying Theorem 13 below with f(x1, x2) =
x2

1 + 2x1x2, since the unique positive solution to f(C, C) = C is C = 1/3. ◀

▶ Remark 7. A full proof of the claimed asymptotic behaviour an ∼ n−1α−nu(log n) in
Odlyzko [13], which characterizes sub-dominant asymptotic terms for the bitsize, requires
a more intense study of the recursion (3) and is outside the scope of this discussion. It is
postponed to future work.

Our approach derives asymptotics for a family of generating functions satisfying recursive
equations similar to (3). For instance, if Lh(z) is the generating function for LLAVL trees
with height h then

Lh+2(z) = Lh+1(z)(Lh+1(z) + Lh(z)) (4)

for all h ≥ 0, as an LLAVL tree of height h + 2 is a root together with a left subtree of height
h + 1 and a right subtree of height h + 1 or h. Note that the only difference between this
recurrence and the recursive equation (3) for AVL trees is the coefficient of Lh(z), since there
is now only one way to have an unbalanced pair of subtrees.

J. Chizewer, S. Melczer, J. I. Munro, and A. Pun 2:7

▶ Theorem 8. If γh is the unique positive solution to Lh(z) = 1/2 then the limit

γ = lim
h→∞

γh = 0.67418 . . .

is well-defined. Furthermore, the number ℓn of LLAVL trees on n nodes satisfies

log2(ℓn) = n log2(γ−1)︸ ︷︷ ︸
n(0.568...)

+ log θ(n)

for a function θ growing at most sub-exponentially.

Proof. The result follows by applying Theorem 13 below with f(x1, x2) = x2
1 + x1x2, since

the unique positive solution to f(C, C) = C is C = 1/2. ◀

2 A New Succinct Encoding for Weakly Tame Classes

We now prove Theorem 1, first describing our encoding and then showing it has the stated
properties.

2.1 Our encoding
Let E denote a succinct data structure representing all binary trees that supports the
operations in Table 1, and denote the encoding of a binary tree τ in this data structure by
E(τ). We now fix a weakly tame class of binary trees T and, given a binary tree τ ∈ T of
size n, define the upper tree

τ ′ =
{

v ∈ τ :
∣∣τ [p(v)]

∣∣ ≥ d log n
}

where p(v) denotes the parent of a vertex v in the tree τ and d is a constant such that
B′(n) = d log n + o(log n) satisfies (2) in the definition of worst-case weakly fringe dominated.

Our succinct data structure for T is constructed as follows.
1. We simply copy the encodings E(τ ′) for upper trees.
2. For every 1 ≤ j < d log n we write down a lookup table mapping the trees in Tj (with j

nodes) to their corresponding E encoding. We can do this, for example, by enumerating
the Tj in lexicographic order by the E encoding using integers of bitsize log |Tj | = cj +o(j),
where c is the constant in the definition of log-linearity (1).

3. For each leaf node ℓ ∈ τ ′ the fringe subtree τ [ℓ] has size |τ [ℓ]| < d log n by definition of τ ′.
We call these trees lower trees, and write them down using their encoding in a lookup
table in leaf_rank order of their roots in τ ′, storing the root locations in an indexable
dictionary.

4. Lastly, we store additional information in (fully) indexable dictionaries to support opera-
tions like node_rank/select, level_succ/pred, and leaf_rank/select. For instance,
for node_rank/select we store a fully indexable dictionary that maps the node_rank
for a node in τ ′ to the node_rank of the node in τ . The techniques to support the other
operations are similar, and are analogous to constructions used in [5, 3].

2.2 Proof of Size and Operation Time Bounds
Navigation through the upper tree follows standard navigation using E , which supports the
desired operations in constant time. When a leaf node ℓ is reached in the upper tree, the
operation x = leaf_rank(ℓ) gives the index of the child tree in the indexable dictionary.

AofA 2024

2:8 Enumeration and Succinct Encoding of AVL Trees

Then the operation select(x) gives the location of the string encoding the child tree. Finally,
using the table mapping our encoding to the E encoding gives us the ability to perform all
the navigation operations on the smaller tree. In order to perform the lookup using the
mapping, it is necessary to know the size of the tree. This can be inferred from the space in
memory allocated to the naming, which can be calculated by the operation select(x + 1)
in the indexable dictionary to find the starting location of the next child tree. To navigate
back to the upper tree from a child tree, we use the reverse operations of y = rank(x) in the
indexable dictionary followed by select_leaf(y) in the upper tree.

To get the node_rank of a node in τ ′ we use the fully indexable dictionary, and to get
the node_rank of a node not in τ ′ we simply get the node_rank of the root of the child tree
and the node_rank of the node within the child tree and perform the appropriate arithmetic
depending on the desired rank order (pre, post, in). For node_select, if the node is in
τ ′ then selecting using the indexable dictionary is sufficient. Otherwise, the node is in a
child tree and the initial node_select will return the predecessor node in τ ′ which will be
the root of the child tree when using preorder (the argument is similar for postorder and
inorder). Using the rank of this root and appropriate arithmetic, we can then select the
desired node in the child tree. Implementing the other operations is analogous. It is clear
that all of these operations are supported in constant time, since they involve a constant
number of calls to the constant-time operations in the existing data structures, and lookups
using (log n)-bit words.

Space Complexity

The space used by E(τ ′) is o(n) by the weakly tame property. The space used by the lookup
tables is O(nd log n) = o(n) by definition of τ ′ and d, and the space used by all of the
encodings of the child trees is cn + o(n) by log-linearity. Lastly, the space needed for the
indexable dictionaries is o(n) for each [3, Lemmas 1 and 2]. Summing these requirements
shows that the total storage required is cn + o(n) many bits, so the encoding is succinct. ◀

3 Asymptotics for a Family of Recursions

We derive the asymptotic behaviour of a family of generating functions which includes
Theorem 6 as a special case. Let F be a combinatorial class decomposed into a disjoint
union of finite subclasses F =

⊔∞
h=0 Fh whose generating functions Fh(z) are non-constant

and satisfy a recursion

Fh(z) = f(Fh−1(z), Fh−2(z), . . . , Fh−c(z)) for all h ≥ c, (5)

where c is a positive integer and f is a multivariate polynomial with non-negative coefficients.

▶ Remark 9. The elements of Fh are usually not the objects of F of size h (in our tree
applications they contain trees of height h, not trees with h nodes). The fact that each Fh is
finite implies that the Fh(z) are polynomials with non-negative coefficients. The coefficient
of zn in Fh(z) counts the number of objects of size n within the subclass indexed by h.

We assume that there exists a (necessarily unique) positive real solution C to the equation
C = f(C, C, . . . , C), and for each h ≥ 0 we let αh be the unique positive real solution to
Fh(z) = C. In order to rule out degenerate cases and cases where the counting sequence has
periodic behaviour, we need another definition.

J. Chizewer, S. Melczer, J. I. Munro, and A. Pun 2:9

10 20 30 40

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 4 Values αi converging with uis shown in blue and ℓjs shown in red.

▶ Definition 10 (recursive-dependent). We call the polynomial f recursive-dependent if there
exists a constant k (depending only on f) such that for any indices i, j ≥ c with i ≥ j + k

there exists a sequence of applications of the recurrence (5) resulting in a polynomial P with
Fi = P (Fℓ1 , . . . , Fℓm

) for some 0 ≤ ℓ1 < · · · < ℓm ≤ i where ∂P
∂Fj

̸= 0.

▶ Example 11. The polynomial f(x, y) = y is not recursive-dependent because it leads
to the recursion Fh(z) = Fh−2(z), meaning that the values of Fh when h is even can be
independent of those where h is odd.

▶ Lemma 12. If f is recursive-dependent with non-negative coefficients and a positive fixed
point then the limit α = limh→∞ αh exists.

Proof. We start by defining two subsequences of αh to give upper and lower bounds on its
limit, then prove that these are equal. First, we let

u0 be the smallest index j ∈ {0, . . . , c − 1} such that αj = max{α0, . . . , αc−1}
and for all i ≥ 0 let

ui+1 be the smallest index j ∈ {ui + 1, . . . , ui + c} such that αj = max{αui+1, . . . , αui+c},
so that the ui denote the indices of the maximum values of the αh as h ranges over intervals
of size at most c. Conversely, we let

ℓ0 be the index j ∈ {0, . . . , c − 1} such that αj = min{α0, . . . , αc−1}
and for all j ≥ 0 let

ℓi+1 be the index j ∈ {ui + 1, . . . , ui + c} such that αj = min{αui+1, . . . , αui+c},
so that the ℓj denote the indices of the minimum values of the αh as h ranges over intervals
of size at most c.

We claim that the subsequence αui is non-increasing. To establish this, we fix i ≥ 1
and consider αui

. By definition, αui
≥ αuj

for all j ∈ {ui−1 + 1, . . . , ui−1 + c}. Thus,
if ui+1 ∈ {ui−1 + 1, . . . , ui−1 + c} then αui

≥ αui+1 as claimed. If, on the other hand,
ui+1 > ui−1 + c then repeated application of the recursion (5) implies

Fui+1(αui) = f
(

Fui+1−1(αui), . . . , Fui+1−c(αui)
)

...

= Q
(

Fui−1+1(αui), . . . , Fui−1+c(αui)
)

,

AofA 2024

2:10 Enumeration and Succinct Encoding of AVL Trees

where Q is a multivariate polynomial with non-negative coefficients such that Q(C, . . . , C) =
C. All the Fh are monotonically increasing as non-constant polynomials with non-negative
coefficients, so Fj(αui

) ≥ Fj(αuj
) = C for all j ∈ {ui−1 + 1, . . . , ui−1 + c} and

Fui+1(αui
) ≥ Q

(
C, . . . , C

)
= C.

Since Fui+1 is monotonically increasing and Fui+1(αui+1) = C, we once again see that
αui

≥ αui+1 . As i was arbitrary, we have proven that αui
is non-increasing. The same

argument, reversing inequalities, proves that the subsequence αℓj is non-decreasing.
As αℓj

is non-decreasing and αui
is non-increasing, either αℓj

≤ αui
for all i, j ≥ 0 or

αℓj > αui for all sufficiently large i and j. The second case implies the existence of indices
a, b > 0 such that αℓb

> αua
but ℓb ∈ {ua−1 +1, . . . , ua−1 +c} so that ua is not the maximum

index of αj in this range, giving a contradiction. Thus, αℓj
≤ αui

for all i, j ≥ 0 and the
limits

αu = lim
i→∞

αui
and αℓ = lim

j→∞
αℓj

exist. To prove that the limit of αh exists as h → ∞, it is now sufficient to prove that
αu = αℓ.

Suppose toward contradiction that αu ̸= αℓ, and define a = αu − αℓ > 0. For any ϵ > 0,
we pick i, j, k sufficiently large so that ℓj > ui > ℓk +c and |αui −αu|, |αℓj −αℓ|, |αℓk

−αℓ| < ϵ.
Then by recursive-dependence we can recursively decompose Fℓj

in terms of Fui
, and possibly

some other terms Fh1 , . . . , Fhr
where each |hn − ui| ≤ c, to get

C = Fℓj (αℓj) = P (Fui(αℓj), Fh1(αℓj), . . . , Fhr (αℓj))

where P (Fui
, Fh1 , . . . , Fhr

) is a polynomial with non-negative coefficients that depends on
Fui and satisfies P (C, . . . , C) = C. Because P is monotonically increasing in each coordinate,
and αℓk

+ ϵ > αℓ ≥ αℓj
, we see that

C ≤ P (Fui
(αℓk

+ ϵ), Fh1(αℓk
+ ϵ), . . . , Fhr

(αℓk
+ ϵ)).

Furthermore, each αhn ≥ αℓk
so

C ≤ P (Fui
(αℓk

+ ϵ), Fh1(αh1 + ϵ), . . . , Fhr
(αhr

+ ϵ))
≤ P (Fui

(αℓk
+ ϵ), C + poly(ϵ), . . . , C + poly(ϵ)).

Finally, αui − a ≥ αℓk
so

C ≤ P (Fui
(αui

− a + ϵ), C + poly(ϵ), . . . , C + poly(ϵ)).

Because a is fixed, P is monotonically increasing in each variable, and Fui
(αui

) = C,
taking ϵ → 0 shows that the right-hand side of this last inequality is strictly less than
P (C, . . . , C) = C, a contradiction. Thus, a = 0 and the limit α = αu = αℓ exists. ◀

▶ Theorem 13. If f is recursive-dependent with non-negative coefficients and a positive fixed
point, then the number an of objects in F of size n satisfies

an = α−n θ(n),

where α is the limit described in Lemma 12 and θ(n) is a function growing at most sub-
exponentially.

J. Chizewer, S. Melczer, J. I. Munro, and A. Pun 2:11

Proof. We prove that the generating function F (z) is analytic for |z| < α by showing that
the series

∑∞
h=0 Fh(z) converges for these values of z. Because |F (z)| → ∞ as z → α, the

point z = α is then a singularity of F (z) of smallest modulus, and thus (by the root test for
series convergence) the reciprocal of the exponential growth of an.

First, assume that there exists some k ≥ 0 and 0 < λ < 1 such that Fh(z) < λC for every
h ∈ {k, k + 1, . . . , k + c − 1}. Let A be the sum of the coefficients of all degree 1 terms of f .
Since f has non-negative coefficients and a positive real fixed point, we must have A < 1.
Let g(x1, . . . , xc) be the function created by removing all degree one terms from f . Observe
that C = AC + g(C, . . . , C), and thus g(λC, . . . , λC) ≤ λ2g(C, . . . , C) = λ2(1 − A)C, so that

f(λC, . . . , λC) ≤ AλC + λ2(1 − A)C.

Algebraic manipulation shows that Aλ + λ2(1 − A) ≤ λ, and since f has non-negative
coefficients we can conclude that for every h ∈ {k + c, k + 1 + c, . . . , k + 2c − 1} we have
Fh(z) ≤ AλC + λ2(1 − A)C. Let λ0 = λ and define λi = λi−1(A + λi−1 − Aλi−1) for all
i ≥ 1. By the above argument we have

Fch+k(z) ≤ λhC,

so it remains to show that
∑∞

i=0 λi converges. We will show that λi ≤ λ(A + λ − Aλ)i by
induction on i. The result holds by definition for i = 1. If the result holds for some j ≥ 1
then

λj+1 = λj(A + λj − Aλj)
≤ λ(A + λ − Aλ)j(A + λj − Aλj)
≤ λ(A + λ − Aλ)j+1,

where the last inequality follows from the fact that λj < λ since A + λ − Aλ < 1. The sum∑∞
i=0 λ(A + λ − Aλ)i converges as a geometric series, and thus

∑∞
h=0 Fh(z) converges.

It remains to show that if |z| < α then such a k and λ exist. For any |z| < α there is
some N sufficiently large such |z| < αn for all n ≥ N . By the definition of αn, and since the
coefficients of Fn are all positive, we must have Fn(z) < C. Hence Fn(z) < λnC for some
0 < λn < 1. Taking k = N and letting λ be the largest λn for n ∈ {N, N + 1, . . . , N + c − 1}
proves our final claim. ◀

References
1 G. Adelson-Velsky and E. Landis. An algorithm for the organization of information. In

Proceedings of the USSR Academy of Sciences (in Russian), 1962.
2 Clark, David. Compact PAT trees. PhD thesis, University of Waterloo, 1997. URL: http:

//hdl.handle.net/10012/64.
3 Arash Farzan and J. Ian Munro. A uniform paradigm to succinctly encode various families of

trees. Algorithmica, 68(1):16–40, January 2014. doi:10.1007/s00453-012-9664-0.
4 Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University Press,

Cambridge, 2009.
5 Meng He, J. Ian Munro, and S. Srinivasa Rao. Succinct ordinal trees based on tree covering.

In Automata, Languages and Programming, pages 509–520. 2007.
6 G. Jacobson. Space-efficient static trees and graphs. In 30th Annual Symposium on Foundations

of Computer Science, pages 549–554, 1989.
7 Stephen Melczer. An Invitation to Analytic Combinatorics: From One to Several Variables.

Texts and Monographs in Symbolic Computation. Springer International Publishing, 2021.

AofA 2024

http://hdl.handle.net/10012/64
http://hdl.handle.net/10012/64
https://doi.org/10.1007/s00453-012-9664-0

2:12 Enumeration and Succinct Encoding of AVL Trees

8 J. Ian Munro. Tables. In Vijay Chandru and V. Vinay, editors, Foundations of Software
Technology and Theoretical Computer Science, 16th Conference, Hyderabad, India, December
18-20, 1996, Proceedings, volume 1180 of Lecture Notes in Computer Science, pages 37–42.
Springer, 1996. doi:10.1007/3-540-62034-6_35.

9 J. Ian Munro, Patrick K. Nicholson, Louisa Seelbach Benkner, and Sebastian Wild. Hypersuc-
cinct trees – new universal tree source codes for optimal compressed tree data structures and
range minima. In 29th Annual European Symposium on Algorithm, pages 70:1–70:18, 2021.

10 J. Ian Munro, Venkatesh Raman, and Adam J. Storm. Representing dynamic binary trees
succinctly. In S. Rao Kosaraju, editor, Proceedings of the Twelfth Annual Symposium on
Discrete Algorithms, January 7-9, 2001, Washington, DC, USA, pages 529–536. ACM/SIAM,
2001. URL: http://dl.acm.org/citation.cfm?id=365411.365526.

11 J. Ian Munro and S. Srinivasa Rao. Succinct representation of data structures. In Dinesh P.
Mehta and Sartaj Sahni, editors, Handbook of Data Structures and Applications. Chapman
and Hall/CRC, 2004. doi:10.1201/9781420035179.ch37.

12 Gonzalo Navarro. Compact Data Structures: A Practical Approach. Cambridge University
Press, 2016.

13 A. M. Odlyzko. Some new methods and results in tree enumeration. In Proceedings of the
thirteenth Manitoba conference on numerical mathematics and computing (Winnipeg, Man.,
1983), volume 42, pages 27–52, 1984.

https://doi.org/10.1007/3-540-62034-6_35
http://dl.acm.org/citation.cfm?id=365411.365526
https://doi.org/10.1201/9781420035179.ch37

Maximal Number of Subword Occurrences in a
Word
Wenjie Fang # Ñ

Univ Gustave Eiffel, CNRS, LIGM, F-77454 Marne-la-Vallée, France

Abstract
We consider the number of occurrences of subwords (non-consecutive sub-sequences) in a given word.
We first define the notion of subword entropy of a given word that measures the maximal number of
occurrences among all possible subwords. We then give upper and lower bounds of minimal subword
entropy for words of fixed length in a fixed alphabet, and also showing that minimal subword entropy
per letter has a limit value. A better upper bound of minimal subword entropy for a binary alphabet
is then given by looking at certain families of periodic words. We also give some conjectures based
on experimental observations.

2012 ACM Subject Classification Mathematics of computing → Enumeration; Mathematics of
computing → Combinatorics on words

Keywords and phrases Subword occurrence, subword entropy, enumeration, periodic words

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.3

Related Version Full Version: https://arxiv.org/abs/2406.02971

Supplementary Material
Software (Source Code): https://github.com/fwjmath/maxocc-subword [3]

archived at swh:1:dir:fef689a6896632f63f67b460e989fc106d5899e0

Acknowledgements I would like to thank Stéphane Vialette for bringing the question of maximal
number of subword occurrences of a given word to our attention, and for giving an idea for
Proposition 3.4.

1 Introduction

Enumeration problems concerning patterns have been rich sources of interesting combinatorics.
The most famous examples are classes of permutations avoiding a given pattern. We refer
readers to [9, 14] for an exposition of such results. In this article, we will consider enumeration
about patterns in a word, which is in general easier than that for permutations.

There are two different widely used notions of patterns for words. The first notion is that
of a factor. A word v occurs in another word w as a factor if there is a consecutive segment
of w equal to v. The second notion is that of a subword. A word v occurs in another word w

as a subword if we can obtain v by deleting letters in w. A factor of w is always a subword
of w, but not vice versa. There are also other notions of patterns, such as the one in [2] that
generalizes both factors and subwords, but we will not discuss them here.

Unlike for permutations, the enumeration of classes of words avoiding a (set of) given
subwords or factors is already known in the sense that, for a given subword or factor, we
can express their avoidance in regular expressions, leading automatically (no pun intended)
to the generating function of such classes, which is always rational and can be effectively
computed [5, Section V.5]. There is also some work on counting words with a fixed number
of occurrences of a given pattern, for example [2, 11]. For the other end of the spectrum, the
problem of maximal density of certain patterns in words is considered by Burstein, Hästö
and Mansour in [1]. Readers are referred to the survey-book of Kitaev [9] for more of such
results. In general, such results are non-trivial, due to the possible overlap of patterns.

© Wenjie Fang;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 3; pp. 3:1–3:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wenjie.fang@univ-eiffel.fr
https://igm.univ-mlv.fr/~wfang/
https://orcid.org/0000-0001-9148-2807
https://doi.org/10.4230/LIPIcs.AofA.2024.3
https://arxiv.org/abs/2406.02971
https://github.com/fwjmath/maxocc-subword
https://archive.softwareheritage.org/swh:1:dir:fef689a6896632f63f67b460e989fc106d5899e0;origin=https://github.com/fwjmath/maxocc-subword;visit=swh:1:snp:93b3836bd2f1078505ef49ee70d7bfaedcbda9cc;anchor=swh:1:rev:82a00ae9fddc73a2a246bfdb1980f1a39c3c8496
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Maximal Number of Subword Occurrences in a Word

We may also consider all patterns that occur in a given word. For the notion of factors,
this idea leads to the notion of factor complexity of a word w, first defined by Morse and
Hedlund in [13] and also called “subword complexity”, which is a function fw such that fw(k)
is the number of distinct factors in w of length k. In [7], Gheorghiciuc and Ward studied the
factor complexity of random words. We may also want to consider the number of occurrences
of a given pattern in a word. The work of Flajolet, Szpankowski and Vallée [6] establishes a
Gaussian limit law and large deviations for the number of occurrences of a given subword in
a long random word, again by analyzing overlap of occurrences of subwords. The number of
occurrences of a given pattern is of particular interest in algorithmics with applications in
data mining, in which researchers propose algorithms finding patterns with large number of
occurrences [8] and study complexity of such problems [15].

In this article, we take a further step on enumeration problems on patterns by considering
the number of occurrences of all subwords in a word. More precisely, we can see a given
word w that permits frequent occurrences of some subword w′ as having some “large space”
for such a subword, and we would like to measure the “extend” of such space, or from the
opposite direction, the “disorder” generated by the possible different occurrences. To this
end, we define a notion of subword entropy, which measures the maximal number of times
that any subword can occur in a given word. We delay its precise definition to later sections.
We then look at the minimal subword entropy of all words of a given length n in an alphabet
of k letters, denoted by minS

(k)
sw (n), as it is easy to find the ones with maximal subword

entropy. Using the super-additivity of minimal subword entropy, we show that minS
(k)
sw (n)/n

has a finite limit Lk. We then concentrate on the binary case, showing some upper bounds
of L2 by looking at certain families of periodic words, inspired by experimental data. As
a by-product, we also show that, given two words w and v, the generating function of the
number of occurrences of vr in wm is rational.

The rest of this article is organized as follows. We first give necessary definitions in
Section 2, then some basic results on subword occurrences and minimal subword entropy in
Section 3, including the proof of the existence of the limit Lk of minS

(k)
sw (n)/n, and bounds

of Lk. Then in Section 4, we focus on the case of binary alphabet, and shows a better upper
bound of L2 than the one given in Section 3. We end in Section 5 with a discussion on open
problems partially inspired by experimental results obtained for the binary case.

2 Preliminaries

A word w of length n is a sequence w = (w1, . . . , wn) of elements in a finite set A called the
alphabet. We denote by |w| the length of w, and |w|a the number of letters a in w. For two
words v, w, their concatenation is denoted by v · w. We also denote by ϵ the empty word of
length 0. A run in a word w is a maximal consecutive segment in w formed by only one letter
in A. Given a word w, if there is another word w′ = (w′

1, . . . , w′
k) such that there is some set

P = {p1 < · · · < pk} of integers from 1 to n satisfying wpj
= w′

j for all 1 ≤ j ≤ k, then we
say that w′ is a subword of w, and we call the set P an occurrence of w′ in w. We denote by
occ(w, w′) the number of occurrences of w′ in w. For instance, for w = 011001 and w′ = 01,
there are 5 occurrences of w′ in w, which are {1, 2}, {1, 3}, {1, 6}, {4, 6}, {5, 6}. When w′ is
not a subword of w, we have occ(w, w′) = 0, and when w′ = ϵ, we have occ(w, ϵ) = 1.

It is easy to find words who have a subword with a large number of occurrences. For
instance, with w = an for some letter a ∈ A, the subword w′ = a⌊n/2⌋ appears

(
n

⌊n/2⌋
)
∼(2

πn

)1/2 2n times. It is more difficult to find words in which no subword occurs frequently.
To quantify such intuition, we define the maximal subword occurrences maxocc(w) of a word

W. Fang 3:3

w to be the maximal value of occ(w, w′), and subwords w′ reaching this value are called most
frequent subwords of w. We note that a word w may have several most frequent subwords.
We then define the subword entropy Ssw(w) of w in an alphabet of size k by

Ssw(w) := log2 maxocc(w).

We note that this definition does not depend on the size of the alphabet, as subword
occurrences are fundamentally about subsets of positions, and the size of the alphabet is
implicit in the word w. Now, finding words in which no subword occurs frequently is to find
words minimizing their subword entropy. We define the minimal subword entropy for words
of length n in an alphabet of size k by

minS(k)
sw (n) := min

w∈An,|A|=k
S(k)

sw (w).

3 Some basic results

We start with some simple properties of occ(w, u).

▶ Lemma 3.1. For words w, w′, u, u′, we have occ(w · w′, u · u′) ≥ occ(w, u) occ(w′, u′).

Proof. Let P (resp. P ′) be an occurrence of u (resp. u′) in w (resp. w′). The set
Q = P ∪ {p′ + |w| | p′ ∈ P ′} is an occurrence of u · u′ in w · w′, and the map (P, P ′) 7→ Q is
clearly injective. ◀

▶ Lemma 3.2. For a word w, it has a most frequent subword u with w1 = u1 and w|w| = u|w′|.

Proof. Let v be a most frequent subword of w. If v1 ≠ w1, then for all occurrences P of v in
w, we have 1 /∈ P . Then, {1} ∪ P is an occurrence of v′ = w1 · v, which is thus also a most
frequent subword. Otherwise, we take v′ = v. We repeat the same reasoning on v′ for the
last letter of w to obtain u. ◀

We now give simple upper and lower bounds for maxocc(w) for any word w.

▶ Proposition 3.3. Given an alphabet A of size k and n ≥ 1, for any word w ∈ An, we have
maxocc(w) ≤

(
n

⌈n/2⌉
)
, and it is realized exactly by w = an for any letter a ∈ A.

Proof. For w′ of length k, as occurrences of w′ in w are subsets of {1, . . . , n}, we have
occ(w, w′) ≤

(
n
k

)
≤
(

n
⌈n/2⌉

)
. It is clear that only words composed by the same letter reach

this bound. ◀

▶ Proposition 3.4. Given an alphabet A of size k and n ≥ 1, when n → ∞, for any
word w ∈ An, we have ln maxocc(w) ≥ max0≤ℓ≤n ln

((
n
ℓ

)
k−ℓ
)
, with ℓ = ⌊ n

k+1⌋ giving the
asymptotically maximized value n ln(1 + k−1)− 1

2 (ln n) + O(1).

Proof. Let u be a uniformly chosen word of length ℓ. We have

E[occ(w, u)] =
∑

P ⊆{1,...,n},|P |=ℓ

P[u occurs in w at positions P] =
(

n

ℓ

)
k−ℓ.

The first equality is from linearity of expectation, and the second from the fact that u is
uniformly chosen at random, and the probability does not depend on P . Hence, there is
some u∗ with occ(w, u∗) ≥ E[occ(w, u)], implying the non-asymptotic part of our claim.

AofA 2024

3:4 Maximal Number of Subword Occurrences in a Word

For the asymptotic part, take α = ℓ/n. Using Stirling’s approximation, we have

ln
((

n

ℓ

)
k−ℓ

)
= n

[
− α− ln α− (1− α) ln(1− α)− α ln k

]
− 1

2 ln n + O(1).

The coefficient of n above is maximized for α = (k + 1)−1, with value ln(1 + k−1). We thus
have our claim on the asymptotic growth. ◀

▶ Corollary 3.5. There are constants c1, c2 such that, for all n ∈ N and w ∈ An with
|A| = k ≥ 2, we have

log2(1 + k−1)n− 1
2 log2 n + c1 ≤ minS(k)

sw (n) ≤ Ssw(w) ≤ n− 1
2 log2 n + c2.

Proof. The bounds on Ssw(w) result from combining Propositions 3.3 and 3.4 with
ln
(

n
⌈n/2⌉

)
= n ln 2− 1

2 ln n + O(1). The bounds for minS
(k)
sw (n) then follows. ◀

We now show that there is a limit for minS
(k)
sw (n)/n. To this end, we need the well-known

Fekete’s lemma [4] for super-additive sequences.

▶ Lemma 3.6. Suppose that a sequence (gn)n≥1 satisfies that, for all n, m ≥ 1, we have
gn+m ≥ gn + gm. Then, for n→ +∞, the value of gn/n either tends to +∞ or converges to
some limit L.

We first show that the function minS
(k)
sw (n) is super-additive.

▶ Proposition 3.7. Given k ≥ 2, for any n, m ≥ 1, we have

minS(k)
sw (n + m) ≥ minS(k)

sw (n) + minS(k)
sw (m).

Proof. Let w be a word of length n + m achieving minimal subword entropy minS
(k)
sw (n + m).

We write w = w′ · w′′, with |w′| = n and |w′′| = m. Let v′ (resp. v′′) be a most frequent
subword of w′ (resp. w′′). We have

maxocc(w) ≥ occ(w′ · w′′, v′ · v′′) ≥ occ(w′, v′) occ(w′′, v′′) = maxocc(w′) maxocc(w′′).

The first inequality is from the definition of maxocc, the second from Lemma 3.1, and the
equality comes from the definition of v′ and v′′. By the definition of w, we have

minS(k)
sw (n + m) ≥ log2 maxocc(w′) + log2 maxocc(w′′) ≥ minS(k)

sw (n) + minS(k)
sw (m).

The second inequality is from the definition of minS
(k)
sw . ◀

▶ Theorem 3.8. For any k ≥ 2, the sequence (minS
(k)
sw (n)/n)n≥1 converges to a certain

limit Lk < +∞.

Proof. Proposition 3.7 shows that minS
(k)
sw (n) is super-additive. We then apply Lemma 3.6,

and as minS
(k)
sw (n)/n is bounded above by some constant according to Corollary 3.5, we have

the existence of the limit Lk which is finite. ◀

With the existence of the limit Lk, we can use known values of minS
(k)
sw (n) to give lower

bounds for Lk.

▶ Proposition 3.9. Given k ≥ 2, we have Lk ≥ minS
(k)
sw (n)/n for all n.

W. Fang 3:5

Proof. By iterating Proposition 3.7, we have minS
(k)
sw (rn) ≥ r minS

(k)
sw (n) for all r ≥ 1.

Diving both sides by rn, it means that the limit Lk of minS
(k)
sw (rn)/rn is also larger than

minS
(k)
sw (n). ◀

From Corollary 3.5, we know that

log2(1 + k−1) ≤ Lk ≤ 1.

When k →∞, the lower bound is asymptotically (ln 2)−1k−1, which tends to 0, while the
upper bound stays constant. The next natural step is to try to give better bounds for Lk,
and eventually compute the precise value of Lk. However, it seems to be a formidable task.

4 Better upper bound for binary alphabet

After the general basic results given in Section 3, we will focus hereinafter on the case of binary
alphabet A = {0, 1}. In this case, the bounds in Corollary 3.5 become log2(3/2) ≤ L2 ≤ 1
for the limit L2 in Theorem 3.8. The gap between the two bounds are significant, as
log2(3/2) ≈ 0.585. We now give a better upper bound of L2 by constructing a family of
periodic words with a small value of maximal subword occurrences.

▶ Proposition 4.1. For w = (0011)m, there is a most frequent subword w′ of the form (01)r.

Proof. Take a most frequent subword u of w of length ℓ. Suppose that u has the form
u = s ·00 · t. We take u(1) = s ·010 · t and u(2) = s ·0 · t. Let P = {p1, . . . , pℓ} be an occurrence
of u in w, and we suppose that the 00 occurs at pi, pi+1. Let P be the set of occurrences of u

in w, which is divided into P = P1∪P2, where P1 contains those P ’s with pi +1 ̸= pi+1, while
P2 contains those with pi + 1 = pi+1. For any P ∈ P1, the two 0’s occur in different runs,
meaning that there is at least one run 11 in between. This leads to at least two choices for
the extra 1 added in u(1). Therefore, occ(w, u(1)) ≥ 2|P1|. For any P ∈ P2, the two 0’s occur
in the same run, meaning that replacing them by a single 0 leaves us two choices. We thus
have occ(w, u(2)) ≥ 2|P2|, meaning that occ(w, u(1)) + occ(w, u(2)) ≥ 2|P| = 2 maxocc(w).
We deduce that at least one of the u(j)’s satisfies occ(w, u(j)) = maxocc(w). We observe that
both u(1) and u(2) have one less pair of identical consecutive letters than u. We may then do
the same for consecutive 1’s. By iterating such a process, we get a most frequent subword
without identical consecutive letters, thus alternating between 0 and 1. Then we conclude by
Lemma 3.2. ◀

▶ Remark 4.2. We want to highlight the importance of Proposition 4.1 here. The main
difficulty in the study of maximal subword occurrences is, in a sense, algorithmic. To the
author’s knowledge, we don’t know whether there is a polynomial time algorithm to compute
a most frequent subword of a given word, or to decide whether there is a subword that occurs
at least a given number of times. However, in the case of words of the form w = (0011)m, we
manage to show some structure of their most frequent subwords, which then allows us to
compute maxocc(w).

Let am,r = maxocc((0011)m, (01)r), and f(x, y) =
∑

m,r≥0 am,rxmyr be their generating
function. We have the following counting result.

▶ Proposition 4.3. We have

f(x, y) = 1− x

(1− x)2 − 4xy
, am,r = 4r

(
m + r

m− r

)
.

AofA 2024

3:6 Maximal Number of Subword Occurrences in a Word

Proof. For an occurrence P = {p1, . . . , p2r} of (01)r in (0011)m, we have two cases.
p2r < 4(m− 1), meaning that P is also an occurrence of (01)r in (0011)m−1;
p2r ∈ {4m− 2, 4m− 1}, meaning that the last letter 1 of (01)r occurs at the last segment
of 0011. As the (2r−1)-st letter of (01)r is 0, we have p2r−1 ∈ {4m′ +1, 4m′ +2} for some
0 ≤ m′ ≤ m− 1. By removing both p2r−1 and p2r, we obtain P ′, which is an occurrence
of (01)r−1 in (0011)m′ . To go back from P ′ to P given m′, we have two choices for both
p2r and p2r−1.

We thus have the recurrence for m ≥ 1 that

am,r = am−1,r +
m−1∑
m′=0

4am′,r−1. (1)

Subtracting Equation (1) for am,r with that for am−1,r, we have

am,r − 2am−1,r + am−2,r − 4am−1,r−1 = 0.

By the standard symbolic method, and with the initial conditions am,0 = 1 and am,r = 0 for
r > m, we obtain the claimed expression of f(x, y). We can then compute am,r by simply
extracting the coefficient of yr first, then that of xm. ◀

▶ Theorem 4.4. There is some constant c3 such that, for all n ∈ N, we have

minS(2)
sw (n) ≤ 1

2 log2(1 +
√

2)n− 1
2 log2 n + c3.

Proof. For the case n = 4m, we have

minS(2)
sw (4m) ≤ Ssw((0011)m) = max

0≤r≤m
log2 occ((0011)m, (01)r)

= 1
ln 2 max

0≤r≤m
ln
(

4r

(
m + r

m− r

))
.

The first equality comes from Proposition 4.1, and the second from Proposition 4.3. We take
r = αm for some fixed α with 0 < α < 1. Using Stirling’s approximation, we have

ln
(

4r

(
m + r

m− r

))
= s(α)m− 1

2 ln m + O(1),

where

s(α) = α ln 4 + (1 + α) ln(1 + α)− (1− α) ln(1− α)− 2α ln(2α).

The function s(α) is maximized at α = 2−1/2, with value 2 ln(1 +
√

2). We thus have, for
some constant c3, and in terms of n = 4m,

minS(2)
sw (n) ≤ ln(1 +

√
2)

2 ln 2 n− 1
2 ln 2 ln n + c3 − ln 4.

For the case n = 4m + i with 1 ≤ i ≤ 3, let u be a most frequent subword of w =
(0011)m010. For an occurrence P of u in w, we take P ′ = P ∩ {n − 2, n − 1, n}. Then,
j = |P ′| can be 0, 1, 2 or 3. In each case, we define u(j) to be u with the last j letters removed,
and there are at most 2 possibilities for P ′. We also notice that P \ P ′ is an occurrence of
u(j) in (0011)m. We thus have

maxocc(w) = occ(w, u) = 2 occ((0011)m, u(1)) + occ((0011)m, u(2)) + occ((0011)m, u(3))
≤ 4 maxocc((0011)m).

W. Fang 3:7

We conclude by

minS(2)
sw (4m + i) ≤ S(2)

sw (w) ≤ ln 4 + S(2)
sw ((0011)m) = ln(1 +

√
2)

2 ln 2 n− 1
2 ln 2 ln n + c3.

For the first inequality, we take w′ to be the first (4m + i) letters of w, and it is clear that
maxocc(w′) ≤ maxocc(w), as each occurrence of some subword v′ of w′ is also one for w. ◀

The asymptotic upper bound of minS
(2)
sw (n)/n given by Theorem 4.4 is 1

2 log2(1 +
√

2) ≈
0.636 . . ., which is much better than that in Corollary 3.5. Furthermore, by regarding (0011)m

as a word in a bigger alphabet, we have the following corollary, which also gives a better
upper bound than that in Corollary 3.5.

▶ Corollary 4.5. For all k ≥ 2 and n ∈ N, with the constant c3 from Theorem 4.4, we have

minS(k)
sw (n) ≤ 1

2 log2(1 +
√

2)n− 1
2 log2 n + c3.

There are also other families of words with which we have some knowledge on its most
frequent subwords, with results similar to Proposition 4.1. Two of the families we have
studied are (01)m and (000111)m.

▶ Proposition 4.6. For w = (01)m, there is a most frequent subword w′ of the form
(01)r. Furthermore, maxocc((01)m, (01)r) =

(
m+r
m−r

)
, which is maximized asymptotically for

r = ⌊n/
√

5⌋, with the asymptotic maximal value exp
(

n ln 3+
√

5
2 − ln n

2 + O(1)
)

.

▶ Proposition 4.7. For w = (000111)m, there is a most frequent subword w′ of the form
(0011)r. Furthermore, let f000111(x, y) =

∑
m,r≥0 occ((000111)m, (0011)r)xmyr, we have

f000111(x, y) = (1− x)3

(1− x)4 − 9x(1 + 2x)2y
.

For m → ∞, the value of occ((000111)m, (0011)r) is asymptotically maximized for r =
αm, with α an explicit value around 0.6597177 The asymptotic maximal value is
exp

(
γm− ln m

2 + O(1)
)
, where γ is an explicit value around 2.7182400

While the proof of Proposition 4.6 does not need heavy machinery, the proof of Proposi-
tion 4.7 needs the saddle-point estimates of large powers [5, Theorem VIII.8], during which
a polynomial equation of degree 5 appears. Fortunately, the needed solution of the said
equation has a radical expression, albeit complicated and making the explicit expressions of
α and γ in Proposition 4.7 too long to fit here.

While interesting, the upper bounds of L2 given by Propositions 4.6 and 4.7, which are
approximately 0.6942 . . . and 0.6536 . . . respectively, are worse than the one from Theorem 4.4.
It is natural to try to look at other families of periodic words. This is encouraged by the
following theorem.

▶ Theorem 4.8. For any words w, v in an alphabet A of size k, the generating function
fw,v(x, y) =

∑
m,r≥0 occ(wm, vr)xmyr is rational in x, y.

Proof. We define as,t
w,v(m) with 1 ≤ s, t ≤ m to be the number of occurrences P =

{p1, . . . , p|v|} of v in wm such that p1 = s and p|v| = (m − 1)|w| + t. In other words,
as,t

w,v(m) counts the occurrences of v in wm such that the first (resp. last) letter of v occurs
in the first (resp. last) copy of w at position s (resp. t). Let gs,t

w,v(x) =
∑

m≥1 as,t
w,v(m)xm−1.

Note the extra −1 in the exponent of x in gs,t
w,v(x). We first show that gs,t

w,v(x) is rational.

AofA 2024

3:8 Maximal Number of Subword Occurrences in a Word

For an occurrence P of v in wm, some consecutive letters may occur in the same copy of w.
We say that such letters form a cluster, and we denote by σ the integer composition of the
number of letters in each cluster from left to right. We denote by ℓ(σ) the length of σ, which
is also the number of clusters. We denote the clusters by v

(1)
σ , . . . v

(ℓ(σ))
σ , and it is clear that

they are obtained by cutting v into pieces whose lengths are the parts of σ. We then have

gs,t
w,v(x) = as,t

w,v(1)

+
∑
m≥2

∑
σ⊨|v|

xm−1
(

m− 2
ℓ(σ)− 2

) |w|∑
t′=s

as,t′

w,v
(1)
σ

(1)

(t∑
s′=1

as′,t

w,v
(ℓ(σ))
σ

(1)
)

ℓ(σ)−1∏
i=2

occ(w, v(i)
σ)).

Here, σ ⊨ |v| means that we go over all integer compositions of |v|. The first term is for
m = 1. For the second term, we simply count all possibilities of how clusters of v appear in
wm with m ≥ 2 while fixing the first and the last cluster. We observe that each as′,t′

w,v
σ(i)

(1)
for any s′, t′, i is a constant, and the same holds for occ(w, v

(i)
σ). By exchanging the two

summations, and observing that
∑

m≥2
(

m−2
d−2

)
xm−1 = xd−1(1− x)−(d−1), we see that gs,t

w,v(x)
is rational in x with (1− x)|v|−1 as denominator, as ℓ(σ) ≤ |v| for σ ⊨ |v|.

Now, for 1 ≤ t ≤ |w|, we define f
(t)
w,v(x, y) =

∑
m≥1

∑
r≥1 b

(t)
w,v(m, r)xm−1yr with

b
(t)
w,v(m, r) counting the number of occurrences P = {p1, . . . p|v|r} of vr in wm such that

p|v|r = (m−1)|w|+t. Again, we note the extra −1 in the exponent of x. We see that bt
w,v(m, r)

is defined similarly as as,t
w,v(m), except that we consider subwords of the form vr, and we do

not fix the position of the first letter of vr in wm. We thus have b
(t)
w,v(m, 1) =

∑|w|
s=1 as,t

w,v(m).
Now, let P be an occurrence of vr in wm counted by b

(t)
w,v(m, r). By considering the copies

of w spanned by the last copy of v, we have

f (t)
w,v(x, y) = y

|w|∑
s=1

gs,t
w,v(x) + xy

1− x

 |w|∑
t′=1

f (t′)
w,v (x, y)

 |w|∑
s=1

gs,t
w,v(x)

+ y

|w|−1∑
t′=1

f (t′)
w,v (x, y)

|w|∑
s=t′+1

gs,t
w,v(x)

 .

Here, the first term is for r = 1, and the rest is for r ≥ 2. There are two cases: either letters
in the r-th and the (r − 1)-st copies of v do not occur in the same copy of w in wm, or they
do. The first case is counted by the second term above, with the factor (1− x)−1 for copies
of w between the occurrences of the two last copies of v in wm. The second case is accounted
by the third term above, where we have the constraint that the last letter of the (r − 1)-st
copy of v occurs before the first letter of the r-th copy in the same copy of w.

Let f = t(f (1)
w,v, . . . , f

(|w|)
w,v). The equation above can be seen as Af = b for some matrix

A = (Ai,j)1≤i,j≤|w| and some row vector b, both with coefficients that are linear in y and
rational in x, and with only powers of (1− x) as denominators. We also observe that Ai,i

is of the form 1 + R(x)y with R(x) rational in x, while Ai,j for i ≠ j is of the form R(x)y.
Hence, A is non-singular, and f

(i)
w,v is rational in x, y for all 1 ≤ i ≤ |w|. We conclude by

observing that fw,v(x, y) = 1
1−x (1 + x

∑|w|
t=1 f

(t)
w,v(x, y)), with the 1 taking care of the case

m = 0, then the factor (1− x)−1 for the copies of w after the last cluster of vr. ◀

Therefore, in principle, for any word w and v, we can first compute fw,v(x, y) effectively
as in the proof of Theorem 4.8, then use analytic combinatorics in several variables [10, 12]
to compute the asymptotically maximal value of occ(wm, vr) for fixed m. Although the

W. Fang 3:9

computation of fw,v(x, y) would be tedious, it is still feasible in principle. The only problem
is that, for w in general, we do not have results like Proposition 4.1 for the structure of
most frequent subwords of wm, meaning that maxocc(wm) is not necessarily achieved for
subwords of the form vr.

5 Open questions

Generally, the “minimum of maximums” structure in the definition of minS
(k)
sw (n) makes

estimates difficult. Hence, not a lot is known about minS
(k)
sw (n). Intuitively, we have the

following conjecture that is surprisingly difficult to tackle.

▶ Conjecture 5.1. For fixed k ≥ 2, there is a value N such that the function minS
(k)
sw (n)/n

is increasing for n ≥ N .

We already know experimentally that Conjecture 5.1 is not universally true for all n (see
Table 1). This point needs to be addressed in possible proofs.

We are also interested by better bounds of L2. Inspired by Theorem 4.8, we looked at
some families experimentally, and there are some with potential to give a slightly better
upper bound of L2 according to numerical evidence. However, we don’t know how to prove
the observed structure on most frequent subwords of such periodic words in general, which
leads us to the following conjecture.

▶ Conjecture 5.2. For a given word w, there is a word v such that, for all m large enough,
there is a most frequent subword of wm that takes the form u · vr · u′, with u and u′ of lengths
bounded by |v|.

If Conjecture 5.2 holds, then using arguments similar to those in Theorem 4.4, we can
reduce the computation of maxocc(wm) to that of maximizing occ(wm, vr) while losing only
a multiplicative constant. We can then apply Theorem 4.8 and tools in analytic combinatorics
in several variables to obtain a better upper bound for Lk. Again, Conjecture 5.2 seems
natural, intuitive and supported by experimental evidence, but we don’t see how to settle it.

Another intuitive idea on most frequent subwords of a given word w is that their length
should be smaller than |w|/2. The reasoning is that longer subwords have more letters, thus
more possible occurrences, but this effect only works up till length |w|/2. However, even
such an intuitive idea, supported by Proposition 3.4, seems difficult to prove.

▶ Conjecture 5.3. For a given word w of length at least 2, there is no most frequent subword
of w with length at least |w|/2.

We now present some concrete experimental results, based on which we have other
conjectures. We denote by w the word obtained from w by switching 0 and 1, and ←−w the
reverse of w. By symmetry between the two letters, we have the following simple observation.

▶ Lemma 5.4. For any w ∈ {0, 1}n with n ≥ 0, we have maxocc(w) = maxocc(w) =
maxocc(←−w).

We now give the words achieving minimal subword entropy of length up to 35 in Table 1,
up to the symmetries in Lemma 5.4. These results are computed using a program written in
C on one core on a local computation server, and it took around 11 days for n = 35. The
source code can be found at https://github.com/fwjmath/maxocc-subword. We do not
include the most frequent subwords we find, because there may be several of them for a word,
taking up too much space in the table. There are several observations we can draw from
Table 1, but few is without exception.

AofA 2024

https://github.com/fwjmath/maxocc-subword

3:10 Maximal Number of Subword Occurrences in a Word

Table 1 Binary words achieving minimal subword entropy of length from 1 to 35. In each
equivalent class defined by the symmetries in Lemma 5.4, only one representative is given. Numerical
values are rounded to three digits after the decimal point when needed.

n Words w with lowest S
(2)
sw (w) maxocc(w) S

(2)
sw (w) S

(2)
sw (w)/n #runs

1 0 1 0 0 1
2 01 1 0 0 2
3 001 2 1 0.333 2
4 0110 2 1 0.25 3
5 01110 3 1.585 0.317 3
6 011001 5 2.322 0.387 4
7 0110001 6 2.585 0.369 4
8 01110001 9 3.170 0.396 4
9 011000110 16 4 0.444 5
10 0110001110 22 4.459 0.446 5
11 01110001110 33 5.044 0.459 5
12 011000111001 52 5.700 0.475 6
13 0111001001110 72 6.170 0.475 7
14 01100010111001 108 6.755 0.482 8
15 011000101110001 162 7.340 0.489 8
16 0111000101110001 252 7.977 0.499 8
17 01100011111000110 390 8.607 0.506 7
18 011100100101110001 588 9.200 0.511 10

19 0110001011101000110 900 9.814 0.517 11
0110001110110001110

20 01110001011011000110 1320 10.366 0.518 11
21 011100011011010001110 2049 11.000 0.524 11
22 0110001110101000111001 2958 11.530 0.524 12
23 01110001011011010001110 4473 12.127 0.527 13
24 011000111010101000111001 6979 12.769 0.532 14
25 0111000101101101000111001 10602 13.372 0.535 14
26 01110001011011001000111001 15962 13.962 0.537 14
27 011100010101110101000111001 24150 14.560 0.539 16

28 0110001111010010010111000110 36450 15.154 0.541 15
0111000101110101000101110001 16

29 01100011101010001010111000110 53671 15.712 0.542 17
30 011000111001100010101111000110 83862 16.356 0.545 15
31 0110001110101000101011110001110 127998 16.966 0.547 17
32 01100011101010001010111010001110 189131 17.529 0.548 19
33 011000111101010001011011010001110 288900 18.140 0.550 19
34 0110001110101000101011101001001110 442386 18.755 0.552 21
35 01110001011011001000110111001001110 681966 19.379 0.554 19

W. Fang 3:11

The words of length n achieving minS
(2)
sw (n) are palindromic, i.e., w = ←−w , or anti-

palindromic, i.e., w = ←−w , for many values of n, such as 1, 2, 4, 5, 6, 8, 9, 11, 12, 13,
14, 16, 17, 22, 23, 24, 29. Moreover, for n = 19 (resp. n = 28), one of the two words is
palindromic (resp. anti-palindromic), the other not.
The value of minS

(2)
sw (n)/n increases with n in general, but with the exceptions of n = 3, 4,

n = 6, 7 and n = 12, 13 (although the rounded numbers are the same). We believe that
the exceptions are due to the effect of small size, and should not reproduce for larger n.
The number of runs for words of length n achieving minS

(2)
sw (n) is increasing with n, with

the exception of n = 17, 28, 30, 35. Moreover, for n = 28 only one word among the two
that has less runs than the word for n = 27.
The maximal run length for words of length n achieving minS

(2)
sw (n) is at most 3, with

the exception of n = 17, 28, 30, 31, 33. Moreover, for n = 28, one of the two words has
maximal run length 3, and the other 4.
There is only one word of length n up to symmetries in Lemma 5.4 that achieves
minS

(2)
sw (n), with the exception of n = 19, 28, where there are two such words.

However, we should note that we only have very limited data, as we were only able to
perform exhaustive search for small values of n. A naïve method requires looking at Θ(4n)
word-subword pairs. Although some optimizations are possible, such as using Lemma 5.4 to
reduce the number of words to examine, the time taken remains exponential, against which
we cannot push too far. An evidence is that, although asymptotically minS

(2)
sw (n)/n should

be bounded from below by log2(3/2) ≈ 0.585 by Corollary 3.5, all the values of minS
(2)
sw (n)/n

in Table 1 are smaller than this asymptotic bound, meaning that the values of n tested here
are not large enough. Nevertheless, we can still formulate reasonable conjectures based on
these observations.

▶ Conjecture 5.5. For k ≥ 2, let w be a word of length n ≥ 1 achieving the minimal subword
entropy minS

(k)
sw (n). Then, except for a finite number of n, the longest run in w has length 3.

Furthermore, the average run length converges when n→ +∞.

Given Proposition 3.9, we may be tempted to use experimental results to give better
lower bound for L2. However, all such bounds are worse than the one in Corollary 3.5, which
is around 0.585 for k = 2. Judging from their gap, it seems impractical or even impossible
to obtain a better bound in this way. In fact, with examples obtained from searches using
various heuristics, it seems that maxocc(w) for w of length n achieving the lowest subword
entropy has an exponential growth in n with a growth constant close to but slightly larger
than 1.5, which is the value given by the lower bound. We thus have the following conjecture.

▶ Conjecture 5.6. We have L2 > log2(3/2).

The value in Conjecture 5.6 comes from the lower bound in Corollary 3.5, which is in fact
the expectation of the number of occurrences of a random subword of length n/3. Hence,
Conjecture 5.6 implies that, for all large values of n, there are binary words of length n

in which each subword of length n/3 occurs much more often than others. The question
remains on how to find such subwords, which probably have relatively high self-correlations.

AofA 2024

3:12 Maximal Number of Subword Occurrences in a Word

References
1 A. Burstein, P. Hästö, and T. Mansour. Packing Patterns into Words. Eletron. J. Combin.,

9(2), 2003. doi:10.37236/1692.
2 A. Burstein and T. Mansour. Counting occurrences of some subword patterns. Discrete

Mathematics & Theoretical Computer Science, Vol. 6 no. 1, January 2003. doi:10.46298/
dmtcs.320.

3 Wenjie Fang. fwjmath/maxocc-subword. Software, swhId:
swh:1:dir:fef689a6896632f63f67b460e989fc106d5899e0 (visited on 2024-07-05). URL:
https://github.com/fwjmath/maxocc-subword.

4 M. Fekete. Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit
ganzzahligen Koeffizienten. Math. Z., 17(1):228–249, 1923. doi:10.1007/bf01504345.

5 Ph. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University Press, Cambridge,
2009. doi:10.1017/CBO9780511801655.

6 Ph. Flajolet, W. Szpankowski, and B. Vallée. Hidden word statistics. Journal of the ACM,
53(1):147–183, 2006. doi:10.1145/1120582.1120586.

7 I. Gheorghiciuc and M. D. Ward. On Correlation Polynomials and Subword Complexity.
Discrete Mathematics & Theoretical Computer Science, DMTCS Proceedings vol. AH, 2007
Conference on Analysis of Algorithms (AofA 2007), 2007. doi:10.46298/dmtcs.3553.

8 K. Iwanuma, R. Ishihara, Y. Takano, and H. Nabeshima. Extracting Frequent Subsequences
from a Single Long Data Sequence: A Novel Anti-Monotonic Measure and a Simple On-Line
Algorithm. In Fifth IEEE International Conference on Data Mining (ICDM’05). IEEE, 2005.
doi:10.1109/icdm.2005.60.

9 S. Kitaev. Patterns in Permutations and Words. Springer Berlin Heidelberg, 2011. doi:
10.1007/978-3-642-17333-2.

10 S. Melczer. Algorithmic and Symbolic Combinatorics: An Invitation to Analytic Com-
binatorics in Several Variables. Springer International Publishing, 2021. doi:10.1007/
978-3-030-67080-1.

11 K. Menon and A. Singh. Subsequence frequency in binary words. Discrete Mathematics,
347(5):113928, May 2024. doi:10.1016/j.disc.2024.113928.

12 M. Mishna. Analytic combinatorics: a multidimensional approach. Discrete Mathematics and
its Applications (Boca Raton). CRC Press, 2020.

13 M. Morse and G. A. Hedlund. Symbolic dynamics. Amer. J. Math., 60(4):815, October 1938.
doi:10.2307/2371264.

14 V. Vatter. Permutation classes. In Handbook of Enumerative Combinatorics. CRC Press, 2015.
15 G. Yang. The complexity of mining maximal frequent itemsets and maximal frequent patterns.

In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining, KDD04. ACM, August 2004. doi:10.1145/1014052.1014091.

https://doi.org/10.37236/1692
https://doi.org/10.46298/dmtcs.320
https://doi.org/10.46298/dmtcs.320
https://archive.softwareheritage.org/swh:1:dir:fef689a6896632f63f67b460e989fc106d5899e0;origin=https://github.com/fwjmath/maxocc-subword;visit=swh:1:snp:93b3836bd2f1078505ef49ee70d7bfaedcbda9cc;anchor=swh:1:rev:82a00ae9fddc73a2a246bfdb1980f1a39c3c8496
https://github.com/fwjmath/maxocc-subword
https://doi.org/10.1007/bf01504345
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.1145/1120582.1120586
https://doi.org/10.46298/dmtcs.3553
https://doi.org/10.1109/icdm.2005.60
https://doi.org/10.1007/978-3-642-17333-2
https://doi.org/10.1007/978-3-642-17333-2
https://doi.org/10.1007/978-3-030-67080-1
https://doi.org/10.1007/978-3-030-67080-1
https://doi.org/10.1016/j.disc.2024.113928
https://doi.org/10.2307/2371264
https://doi.org/10.1145/1014052.1014091

Sparsification of Phylogenetic Covariance Matrices
of k-Regular Trees
Sean Svihla #

Department of Applied Mathematics, University of Colorado, Boulder, CO, USA

Manuel E. Lladser1 #

Department of Applied Mathematics, University of Colorado, Boulder, CO, USA

Abstract
Consider a tree T = (V, E) with root ◦ and an edge length function ℓ : E → R+. The phylogenetic
covariance matrix of T is the matrix C with rows and columns indexed by L, the leaf set of T , with
entries C(i, j) :=

∑
e∈[i∧j,o] ℓ(e), for each i, j ∈ L. Recent work [Gorman & Lladser 2023] has shown

that the phylogenetic covariance matrix of a large but random binary tree T is significantly sparsified,
with overwhelmingly high probability, under a change-of-basis to the so-called Haar-like wavelets of
T . Notably, this finding enables manipulating the spectrum of covariance matrices of large binary
trees without the necessity to store them in computer memory but instead performing two post-order
traversals of the tree [Gorman & Lladser 2023]. Building on the methods of the aforesaid paper, this
manuscript further advances their sparsification result to encompass the broader class of k-regular
trees, for any given k ≥ 2. This extension is achieved by refining existing asymptotic formulas for the
mean and variance of the internal path length of random k-regular trees, utilizing hypergeometric
function properties and identities.

2012 ACM Subject Classification Mathematics of computing → Trees; Mathematics of computing
→ Generating functions; Mathematics of computing → Random graphs

Keywords and phrases cophenetic matrix, Haar-like wavelets, hierarchical data, hypergeometric
functions, metagenomics, phylogenetic covariance matrix, sparsification, ultrametric matrix

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.4

Funding This research has been partially funded by the NSF grant No. 1836914.

Acknowledgements We are thankful to the reviewers for their comments and insightful suggestions.

1 Introduction

Hierarchical datasets are described, or presumed to be, by a rooted tree that recursively
organizes data into clusters so that its leaves are in a one-to-one correspondence with the data
points. Such datasets are common in various fields such as microbial ecology [5], where they
arise as models of inter-species covariance [10, 21]. In this context, the associated covariance
matrices are often large and dense, making their manipulation computationally challenging.
Nevertheless, these matrices bear redundancies induced by their hierarchical structure, which
may be exploited to sparsify them and make such manipulations tenable, if not trivial.

Ultrametric matrices, which arise in probability theory and statistical physics among
other fields, are often also dense. A symmetric matrix C ∈ Rn×n

+ is called ultrametric when
C(i, j) ≥ min{C(i, k), C(k, j)}, for all i, j, k ∈ {1, . . . , n}. If, in addition, C(i, i) > C(i, j)
for all j ̸= i when n > 1, or C(1, 1) > 0 when n = 1, C is called strictly ultrametric.
These matrices are fully dense, that is, all their entries are nonzero, but have a myriad of
mathematical properties [6, 18].

1 Corresponding author

© Sean Svihla and Manuel E. Lladser;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 4; pp. 4:1–4:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sean.svihla@colorado.edu
mailto:manuel.lladser@colorado.edu
https://orcid.org/0000-0001-6843-6845
https://doi.org/10.4230/LIPIcs.AofA.2024.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Sparsification of Phylogenetic Covariance Matrices of k-Regular Trees

A matrix C is ultrametric if and only if there is a rooted binary tree T = (V,E) and edge
length function ℓ : E → R+ such that [14,20]:

C =
∑
e∈E

ℓ(e) δe δ
′
e,

where δe is the binary column vector, with entries indexed by the leaves of T , indicating the
leaves that descend from e, and δ′

e is the transpose of δe. If L denotes the leaf set of T , the
above identity is equivalent to having

C(i, j) =
∑

e∈[i∧j,◦]

ℓ(e), for all i, j ∈ L, (1)

where [i ∧ j, ◦] denotes the set of edges that connect (i ∧ j), the least common ancestor of
i and j, with the root of the tree, denoted as ◦. Ultrametric matrices have, therefore, a
recursive structure, and their entries are redundant, suggesting that they may be amenable
to some form of compression [14].

The formulation in (1) arises naturally as a model of “phylogenetic” covariance wherein
the genetic drift of a particular trait follows a Brownian motion [15]. Under this model,
each leaf represents a microbial species (or some notion thereof), and the trait variation
among different species is a function of time since they diverged evolutionarily. Intuitively,
since species sharing more of their evolutionary history should thrive or struggle in similar
environments accordingly, a natural measure of trait covariance between two different species
i and j is the length of their shared evolutionary history, namely the quantity in (1).

In the general setting of rooted trees – not necessarily binary – a matrix with entries
such as in (1) is called the phylogenetic covariance matrix (or cophenetic matrix) of a tree.
(The term “phylogenetic” is usually omitted from now on.) Tree covariance matrices arise
naturally in the context of hierarchical datasets; in particular, the class of covariance matrices
associated with datasets having a binary hierarchy is precisely the class of ultrametric
matrices.

Recent work [14] has demonstrated that, in the case of large datasets with a binary
hierarchy, or equivalently, weighted and rooted binary trees, the associated covariance matrices
become asymptotically diagonal with overwhelmingly high probability after changing basis
to the so-called Haar-like wavelets [11] of the tree. (By “asymptotically diagonal with
overwhelmingly high probability,” we mean that the fraction of non-zero off-diagonal entries
of the covariance matrix, with respect to the wavelet basis, converges in probability to 0 as
the tree size approaches infinity.) The sparsification of such covariance matrices facilitates
manipulations that may be infeasible otherwise. For instance, the spectrum of ultrametric
matrices can be derived, whether exactly or approximately depending on the matrix size, from
just two post-order traversals of the associated tree without having to store the actual matrix
in computer memory [14]. In addition, the subclass of ultrametric matrices diagonalized by
Haar-like wavelets has been characterized, and their spectra shown to be in bijection with
non-negative decreasing functions on the interior nodes of a binary tree [14].

Nevertheless, many hierarchical datasets, for example, in the context of phylogenomic
studies [24], are non-binary and suffer the same downfall of having unmanageably large and
dense covariance matrices. It is a natural question, then, whether the same technique may be
used to sparsify covariance matrices belonging to a broader class of hierarchy. This manuscript
extends some of the ideas in [14] to the broader context of k-regular trees, i.e., rooted trees
for which each interior node has exactly k children. Specifically, Theorem 2, Theorem 4,
Corollary 5, and Corollary 15 in this manuscript are generalizations of [14, Theorem 2.3,

S. Svihla and M. E. Lladser 4:3

Theorem 3.4, Corollary 3.5, and Corollary 3.8], respectively, such that they are applicable
to any k ≥ 2. In addition, Theorem 10 supplies more precise asymptotic formulas for the
mean and variance of the internal path length of random k-regular trees – beyond what is
currently available in the literature.

This manuscript is based on the recent MS thesis [22].

Notation and Terminology
Depending on the context, we regard functions with finite domains as finite-dimensional
column vectors, and vice versa. Throughout, J·K is used to denote indicator functions.

We use standard terminology for trees unless otherwise stated. In particular, T = (V,E)
represents a rooted tree with vertex set V and edge set E. The size of T is the quantity
|T | := |V |. The sets of leaves and interior nodes of T are denoted as L and I, respectively,
and the internal path length of T is the quantity

IPL(T) =
∑
v∈I

depth(v).

For u, v ∈ V , we denote by [u, v] the set of edges in the shortest path from u to v and by
(u ∧ v) the least common ancestor of u and v.

T̊ denotes the interior of T , obtained by trimming the leaves of T .
In the subsequent discussion, T denotes a planted, ordered, and unlabelled

k-regular tree endowed with an edge length function ℓ : E → R+. In particular,
T is an ordered unlabelled k-regular tree whose root has been appended to a phantom one
(denoted as ◦), which acts as the parent of the original root. (The term “out-rooted” instead
of “planted” was introduced in [14].) See Figure 1(a). By definition, ◦ is an interior node of
T (i.e., ◦ ∈ I) and it has degree one. Furthermore, since each v ∈ I \ {◦} has k children, we
denote these generically as v1, . . . , vk from left-to-right.

For a given v ∈ V , T (v) denotes the sub-tree of T rooted at v and containing all of its
descendants. We let L(v) denote the sets of leaves of T (v). In addition, we orient edges away
from the root, that is, if e = (u, v) ∈ E, then u is understood to be the parent of v (and v is
understood to be a child of u). We define T (e) := T (v) and L(e) := L(v).

The trace length of T is the function ℓ∗ : E → R+ defined as [14]:

ℓ∗(e) := |L(e)| ℓ(e).

We also define for u, v ∈ V :

ℓ(u, v) :=
∑

e∈[u,v]

ℓ(e), and ℓ∗(u, v) :=
∑

e∈[u,v]

ℓ∗(e),

and, given non-empty J ⊂ V , we denote by ℓ(J, v) the column vector with entries ℓ(j, v), for
all j ∈ J , having dimension |J |. We give an analogous definition to ℓ∗(J, v).

For the remainder of this manuscript, the term “k-regular tree” encompasses
planted, unlabelled, ordered, k-regular trees.

2 Haar-like Wavelets on k-Regular Trees

In this section, we specialize the Haar-like wavelet basis given in [11] to our setting of k-regular
trees and present a useful interaction between the basis and the phylogenetic covariance
matrix associated with any such tree (Theorem 2).

AofA 2024

4:4 Sparsification of Phylogenetic Covariance Matrices of k-Regular Trees

◦

α

β

1 2 3

4 γ

5 6 7

(a) 3-Regular Tree.

ϕ◦

ϕα,1

ϕα,2

ϕβ,1

ϕβ,2

ϕγ,1

ϕγ,2

(b) Associated Haar-Like Wavelets.

Figure 1 Haar-like wavelets (right panel) associated with a 3-regular tree (left panel). As per our
convention, the tree leaves are labeled 1, 2, . . . following a depth-first search (DFS), while the non-root
internal nodes are leaf-labeled. Thus α := {1, 2, 3, 4, 5, 6, 7}, β := {1, 2, 3}, and γ := {5, 6, 7}. Except
for the planted root (i.e., green node), each internal node has two wavelets associated with it. By
construction, the wavelets are orthonormal piece-wise constant functions over the leave set and,
except for ϕ◦, each has mean zero.

While our manuscript focuses on ordered unlabeled trees, systematically naming their
leaves is beneficial for constructing the wavelets. Henceforth, we label the leaves of T

as 1, . . . , |L|, following the order encountered in a depth-first search (DFS) of T .
Moreover, aside from the planted root, we label interior nodes by the set of leaves
descending from them.

Wavelets are usually functions defined on a Euclidean space and derive their name from
their commonly wave-like shape. They are prevalent in time series and image analysis to
localize information across various scales.

In our context, the Haar-like wavelets associated with T are functions from L to R that
are in a one-to-one correspondence with the elements in the set {◦}∪

(
I \{◦}×{1, . . . , k−1}

)
;

in particular, there are 1 + (k − 1)(|I| − 1) wavelets associated with a k-regular tree. The
precise definition follows.

Given a v ∈ I and integer 1 ≤ n < k, define

Lv,n :=
n⋃

j=1
L(vj), and L+

v,n := Lv,n ∪ L(vn+1).

In particular, L+
v,n = Lv,n+1. Nevertheless, we introduced the notation of L+

v,n because this
is precisely the support of the wavelet with index (v, n) in the next definition.

▶ Definition 1 (Haar-like wavelets of a k-regular tree). The (mother) wavelet associated with
the root of T is the constant function ϕ◦ : L → R defined as

ϕ◦(i) := 1√
|L|

, for i ∈ L.

Instead, for each v ∈ I \ {◦} and integer 1 ≤ n < k, the wavelet with index (v, n) is the
function ϕv,n : L → R defined as

ϕv,n(i) :=

√
|L(vn+1)|

|Lv,n| · |Lv,n+1|
Ji ∈ Lv,nK −

√
|Lv,n|

|L(vn+1)| · |Lv,n+1|
Ji ∈ L(vn+1)K , for i ∈ L.

S. Svihla and M. E. Lladser 4:5

It turns out that the Haar-like wavelets are mutually orthogonal [11]. Moreover, from
well-known facts about graphs and trees,

|I| + |L| − 1 = 1
2
∑
v∈V

deg(v) = 1
2

[
|I| + |L| + k

(
|I| − 1

)]
,

hence |L| = 1 + (k − 1)(|I| − 1). That is, there are as many Haar-like wavelets as leaves
on the tree, and the wavelets form therefore an orthonormal basis of the linear space of
functions from L to R.

We emphasize that the wavelet with index (v, n) assigns identical positive values to the
leaves in Lv,n, and identical negative values to those in L(vn+1). These values are chosen so
that ϕv,n has mean zero and a unit ℓ2-norm; namely,∑

i∈L

ϕv,n(i) = 0, and
∑
i∈L

ϕ2
v,n(i) = 1.

To fix ideas, Figure 1(b) provides an illustration of the Haar-like wavelets of a 3-regular tree.
Notice that ϕv,n is supported on L+

v,n. As such, wavelets associated with nodes nearer the
root capture coarser information about the leaves of the tree. As noted in [13, Theorem 1.1]
for k = 2, given a function φ : L → R and wavelet ϕv,n, we have

⟨φ, ϕv,n⟩ = cv,n ·

 1
|Lv,n|

∑
i∈Lv,n

φ(i) − 1
|L(vn+1)|

∑
i∈L(vn+1)

φ(i)

 ,

where

cv,n :=

√
|Lv,n| |L(vn+1)|

|L+
v,n|

.

Consequently, projecting a function onto ϕv,n is the same, up to a constant factor, as
computing the difference between the average values of φ over Lv,n and L(vn+1). Hence,
the projections of a real-valued function defined over L onto the Haar-like wavelets can be
computed efficiently – which is relevant for applications involving large trees.

The following result highlights a remarkably simple action of the covariance matrix of a
k-regular tree over its Haar-like wavelets. This property was first noticed in [14] for the case
of 2-regular trees.

▶ Theorem 2. If ψ is a Haar-like wavelet associated with v ∈ I, then C ψ = diag(ℓ∗(L, v))ψ.

Proof. We first show the result for ψ = ϕ◦. For this, note that for all j ∈ L

(Cψ)(j) = 1√
L

∑
i∈L

ℓ(i ∧ j, ◦) = ψ(j)
∑
i∈L

∑
e∈[i∧j,◦]

ℓ(e),

yet we have the logical equivalence:

∀i, j ∈ L ∀v ∈ I, e ∈ [i ∧ j, v] ⇐⇒ i ∈ L(e) and e ∈ [j, v]. (2)

Hence, ℓ(e) occurs |L(e)| times in the previous double-sum, and

(Cψ)(j) = ψ(j)
∑

e∈[j,v]

|L(e)| ℓ(e) = ψ(j) ℓ∗(j, v),

which is precisely the j-th entry of the vector diag(ℓ∗(L, v))ψ.
Next, we consider ψ = ϕv,n, for a v ∈ I \ {◦} and 1 ≤ n < k. Then, for each j ∈ L, we

have the following cases:

AofA 2024

4:6 Sparsification of Phylogenetic Covariance Matrices of k-Regular Trees

(a) Assume j ̸∈ L+
v,n. Then, for all i ∈ L+

v,n, (i ∧ j) = (v ∧ j), so

(Cψ)(j) =
∑

i∈L+
v,n

ℓ(i ∧ j, ◦)ϕv,n(i) = ℓ(v ∧ j, ◦)
∑

i∈L+
v,n

ϕv,n(i) = 0,

because ϕv,n has mean zero. On the other hand, the entry associated with j in the vector
diag(ℓ∗(L, v))ψ also vanishes because ψ is supported on L+

v,n.
(b) Instead, if j ∈ L+

v,n then

(Cψ)(j) =
∑

i∈L+
v,n

ℓ(i ∧ j, ◦)ϕv,n(i)

=
∑

i∈L+
v,n

ℓ(i ∧ j, v)ϕv,n(i) + ℓ(v, ◦)
∑

i∈L+
v,n

ϕv,n(i)

=
∑

i∈L+
v,n

ϕv,n(i)
∑

e∈[i∧j,v]

ℓ(e),

where for the middle identity we have reused that ϕv,n has mean zero. But notice that
(i ∧ j) = v when ℓ(i ∧ j, v) = 0. Otherwise, if (i ∧ j) ̸= v then ϕv,n(i) = ϕv,n(j). Hence,
reusing the logic equivalence in (2), we find that

(Cψ)(j) = ϕv,n(j)
∑

i∈L+
v,n:(i∧j)̸=v

∑
e∈[i∧j,v]

ℓ(e) = ψ(j) ℓ∗(j, v).

which corresponds to the entry associated with j in the vector diag(ℓ∗(L, v))ψ.
The theorem now follows from parts (a)-(b). ◀

3 Sparsification of k-Regular Covariance Matrices

We now leverage the insights from the previous section to obtain a lower bound on the
proportion of entries in the covariance matrix of a k-regular tree that vanish when switching
to the Haar-type basis. To establish our main result in this section, we require the following
definition, which is analogous to the one used in [14] for 2-regular trees.

▶ Definition 3 (Haar-like matrix of a k-regular tree). The Haar-like matrix of T is the square
matrix Φ whose columns are the wavelets associated with the tree; that is, its rows are indexed
by L and its columns by the wavelets.

Let ψu, ψv be wavelets associated with interior nodes u, v ∈ I, respectively. We have as a
direct consequence of Theorem 2 that(

Φ′CΦ
)
(ψu, ψv) = ψu diag

(
ℓ∗(L, v)

)
ψv. (3)

But note that the support of diag
(
ℓ∗(L, v)

)
ψv is contained in the support of ψv; therefore,

the entry associated with row ψu and column ψv of Φ′CΦ vanish when ψu and ψv have
disjoint supports. Since Φ′ C Φ corresponds to C after changing basis to the Haar-like
wavelets, (3) shows that the wavelets may be used to sparsify the covariance matrix of
k-regular trees. Of course, there is no reason why such interactions should occur often
enough to meaningfully sparsify the matrix. As detailed next, however, a minimum level of
sparsification is guaranteed by the tree’s size and internal path length.

We emphasize that the following result is a conservative bound on the number of vanished
entries under the Haar-like basis. In practice, it is not uncommon to see better sparsification;
however, we have found in all cases that the overwhelming majority of sparsification arises
from the interactions considered in the following theorem. We discuss this topic further in
Section 4.

S. Svihla and M. E. Lladser 4:7

▶ Theorem 4. Let Φ and C denote the Haar-like matrix and (phylogenetic) covariance
matrix of a k-regular tree T , respectively. If ζ is the fraction of vanishing entries of Φ′CΦ
then

(1 − ζ) ≤ (k − 1)2 1
|I|

+ 2(k − 1)2 IPL(T)
|I|2

.

Proof. Note that C has dimensions |L| × |L| because T has as many Haar-like wavelets as
leaves. Observe if u, v ∈ I and ψu, ψv are any of their corresponding wavelets, identity (3)
implies(

Φ′ C Φ
)
(ψu, ψv) =

∑
i∈L(u)∩L(v)

ψu(i) ℓ∗(i, v)ψv(i).

As
(
Φ′ C Φ

)
(ψu, ψv) = 0 when L(u) ∩ L(v) = ∅, then ζ obeys:

(1 − ζ) ≤ (k − 1)2

|L|2
∣∣∣{(u, v) ∈ I × I ; L(u) ∩ L(v) ̸= ∅

}∣∣∣.
Notice, however, that L(u) ∩ L(v) ̸= ∅ only if u descends from v (or vice versa) [14]. Hence,
accounting for pairs of the form (u, u) and, when u ̸= v, (u, v) and (v, u), we obtain that

(1 − ζ) ≤ (k − 1)2

|L|2

(
|I| + 2

∑
u∈I

(
|T̊ (u)| − 1

))
≤ (k − 1)2

|L|2

(
2
∑
u∈I

|T̊ (u)| − |I|

)
.

Now, notice
∑

u∈I |T̊ (u)| =
∑

u∈I

∑
v∈I Jv ∈ T (u)K; that is, each node is counted once for

each of its ancestors, or∑
u∈I

|T̊ (u)| =
∑
v∈I

(
1 + depth(v)

)
= |I| + IPL(T).

Hence, we further obtain that

(1 − ζ) ≤ (k − 1)2

|L|2
(

|I| + 2 IPL(T)
)
.

As mentioned in Section 2, |L| = 1 + (k − 1)(|I| − 1). Hence |L| ≥ |I|; otherwise, |I| < 1,
which is not possible because k ≥ 2 and ◦ ∈ I. The theorem is now a direct consequence of
the above inequality. ◀

▶ Corollary 5. If IPL(T) ≪ |I|2 as |T | → ∞, then ζ = 1 − o(1).

▶ Example 6 (Perfect k-Regular Trees.). These are k-regular trees in which every leaf has
the same depth. Let T be one such tree with height (h+ 1). At each depth j ≥ 1, there are
kj−1 nodes. So

|I| = 1 +
h∑

j=1
kj−1 = k + kh − 2

k − 1 , and IPL(T) =
h∑

j=1
jkj−1 = hkh+1 − (h+ 1)kh + 1

(k − 1)2 ,

and we find that

IPL(T)
|I|2

= hkh+1 − (h+ 1)kh + 1
(k + kh − 2)2 ∼ h

kh−1 .

Hence IPL(T) = o
(
|I|2
)
, as h → ∞, and Corollary 5 implies that the Haar-like basis

asymptotically diagonalizes the covariance matrix of perfect k-regular trees as their height
tends to infinity.

AofA 2024

4:8 Sparsification of Phylogenetic Covariance Matrices of k-Regular Trees

▶ Example 7 (k-Regular Caterpillar Trees). These are k-regular trees in which the parent of
every leaf is a node in a central path graph. Let T be a k-regular caterpillar tree of height
(h+ 1) so that its central path has length h. Since there is only one node at depth 1, and at
each depth 2 ≤ j ≤ h, there are (k − 1) leaves and one interior node, we have

|I| = 2 + h, and IPL(T) =
h∑

j=1
j = h(h+ 1)

2 .

So
IPL(T)

|I|2
= h(h+ 1)

2(h+ 2)2 ∼ 1
2 ,

as h → ∞, and the lower-bound for ζ in Theorem 4 is trivial (in fact, strictly negative),
and we cannot guarantee that the covariance matrix associated with T is sparsified to a
significant degree as |T | → ∞.

The last example shows that covariance matrices of some k-regular trees do not meet the
criterion for significant sparsification given by Theorem 4; moreover, the tree in Example 6 is
exceptionally constrained. So, the question remains whether trees meeting the sparsification
criterion are at all common. To this end, we note that the guarantee provided by Theorem 4
is solely based on the tree’s topology; i.e., the edge lengths are irrelevant. Therefore, we may
investigate our remaining question by considering random k-regular trees irrespective of their
edge lengths.

3.1 Interlude on Hypergeometric Functions
For a concise introduction to hypergeometric functions, see [1, 23].

A hypergeometric function is one whose power series is hypergeometric; that is, its ratio
of consecutive coefficients indexed by n is a rational function of n. In particular, a power
series

∑∞
n=0 fn z

n is hypergeometric when there are constants a1, . . . , ap, b1, . . . , bq, for some
integers (q + 1) ≥ p ≥ 1, such that

fn+1

fn
= 1
n+ 1 · (n+ a1) · · · (n+ ap)

(n+ b1) · · · (n+ bq) .

(The constraints on p and q assume that the series coefficients are not eventually zero nor
undefined due to division by zero.) Accordingly, the coefficients fn may be written in terms
of the Pochhammer symbol (defined such that (c)0 := 1 and (c)n :=

∏n−1
i=0 (c+ i) for each

integer n ≥ 1) as

fn = 1
n! · (a1)n · · · (ap)n

(b1)n · · · (bq)n
, for all n ≥ 0.

The above hypergeometric function is denoted pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z). A hyper-
geometric function of this form is said to be s-balanced if

q∑
j=1

bj −
p∑

j=1
aj = s,

and if s > 0, the power series converges at z = 1 [8].
The following result will be crucial to identifying dominant singularities of the generating

function enumerating internal path length of k-regular trees, as well as addressing their
uniqueness in the closure of the disk of convergence. In stating this result, we use the
following notation for the remainder of Section 3:

S. Svihla and M. E. Lladser 4:9

p(t) := t(1 − t)k−1, for all t ∈ C.

and

zk := p

(
1
k

)
= (k − 1)k−1

kk
.

▶ Proposition 8 (Reformulation of [23, Identity (25)]). If k ≥ 2 then the hypergeometric
function k−1Fk−2(1

k , . . . ,
k−1

k ; k−2
k−1 ,

k
k−1 ; z

zk
) is analytic in the disc |z| < zk and continuous

in |z| ≤ zk. Furthermore,

k−1Fk−2

[1
k . . . k−1

k
2

k−1 . . . k−2
k−1

k
k−1

; p(t)
p
(1

k

)] = 1
1 − t

, for all 0 ≤ t ≤ 1
k
.

Proof. We attribute some of the ideas in this proof to I. Gessel [12].
Consider the functional equation

F (z) = 1 + z{F (z)}k, (4)

with F analytic in an open neighborhood of z = 0. The Lagrange Inversion Theorem implies
that (4) has a unique analytic solution in some open neighborhood of z = 0, with coefficients
given by:

[zn]F (z) = 1
(k − 1)n+ 1

(
kn

n

)
. (5)

Therefore

lim
n→∞

[zn+1]F (z)
[zn]F (z) = kk|z|

(k − 1)k−1 ,

implying that F (z) has radius of convergence zk and, due to the Vivanti-Pringsheim The-
orem [16, Theorem 5.7.1], zk is a singular point of F .

On the other hand, the ratio of consecutive terms in F (z) is

zn+1 [zn+1]F (z)
zn [zn]F (z) =

(
n+ 1

k

)
· · ·
(
n+ k−1

k

)(
n+ 2

k−1

)
· · ·
(
n+ k−2

k−1

)
·
(
n+ k

k−1

) · z/zk

n+ 1 ,

which reveals

F (z) = k−1Fk−2

[1
k . . . k−1

k
2

k−1 . . . k−2
k−1

k
k−1

; z

zk

]
, (6)

is the only analytic solution of (4) in the disk |z| < zk. Moreover, since the balance of this
hypergeometric function is

s =

k−2∑
j=2

j

k − 1

+ k

k − 1 −
k−1∑
j=1

j

k
= 1

2 > 0,

it follows from [8] that the series of F (z) converges at z = zk. Since F has non-negative
coefficients, the series is absolutely convergent for all |z| ≤ zk, implying that F is analytic
for |z| < zk and continuous for |z| ≤ zk.

AofA 2024

4:10 Sparsification of Phylogenetic Covariance Matrices of k-Regular Trees

To complete the proof, notice that F (z) > 0 for all 0 ≤ z ≤ zk. From the functional
equation (4) we have that

z =
(

1 − 1
F (z)

)(
1

F (z)

)k−1
= p

(
F (z) − 1
F (z)

)
, for all 0 ≤ z ≤ zk,

but p′(t) ≥ 0 for all 0 ≤ t ≤ k−1, with equality only at t = k−1, and p(k−1) = zk. Therefore,

p−1(t) = F (t) − 1
F (t) , i.e., F (t) = 1

1 − p−1(t) , for all t ∈
[
0, 1
k

]
,

or, equivalently,

F
(
p(t)

)
= 1

1 − t
, for all t ∈

[
0, 1
k

]
,

which finalizes the proof. ◀

▶ Remark 9. The sequence in (5) belongs to the class of Fuss-Catalan numbers. They are
cataloged in the OEIS as A000108 (k = 2), A001764 (k = 3), A002293 (k = 4), and so forth.

3.2 Expectation and Variance of Internal Path Length

Corollary 5 establishes that a sufficient condition for the Haar-like basis of a k-regular tree
to diagonalize its (phylogenetic) covariance matrix asymptotically, as the tree grows, is that
its internal path length becomes negligible compared to the square of the number of its
interior points. To assess the prevalence and extent of trees meeting this criterion, we need
asymptotic estimates for the mean and variance of large, uniformly at random, k-regular trees,
which is precisely what our next result addresses. We emphasize that related results exist in
the literature – see [9, Proposition VII.3], [19, Theorem 3.1], and [7, Theorem 2.19]. Our new
contribution is the derivation of leading asymptotic estimates – with explicit multiplicative
constants – in terms of k.

▶ Theorem 10. For a uniformly at random k-regular tree T with |I| internal nodes, the
expectation and variance of its internal path length satisfy the asymptotic estimates

E
[
IPL(T)

]
=

√
πk|I|3

2(k − 1)
(
1 + O(|I|−1/2)

)
, (7)

and

V
[
IPL(T)

]
= k

2(k − 1)

(10
3 − π

)
|I|3

(
1 + O(|I|−1/2)

)
. (8)

Proof (Sketch). Given that the asymptotic formulas in the Theorem agree with those in [14]
for k = 2, we assume henceforth that k ≥ 3.

Let Q(z, u) be the generating function for the class of k-regular trees, where the variable
z marks the number of internal nodes and u the internal path length of a tree. We find using
the methods of [9, Section III] that Q(z, u) obeys the functional equation

Q(z, u) = G
(
z,Q(zu, u)

)
, where G(z, w) := 1 + z wk. (9)

S. Svihla and M. E. Lladser 4:11

For brevity, define Q(z) := Q(z, 1), Qu(z) := ∂Q
∂u (z, 1), and Quu(z) := ∂2Q

∂u2 (z, 1). In
particular:

E
[
IPL(T)

]
= [zn]Qu(z)

[zn]Q(z) ; (10)

V
[
IPL(T)

]
= [zn]Quu(z)

[zn]Q(z) + [zn]Qu(z)
[zn]Q(z) −

(
[zn]Qu(z)
[zn]Q(z)

)2
. (11)

The asymptotic formulas in (7)-(8) follow from a detailed asymptotic analysis of the numer-
ators and denominators above. To this effect, we first note from (9) that

Q(z) = 1 + z{Q(z)}k. (12)

In particular, the proof of Proposition 8 implies that Q(z) is hypergeometric. Namely:

Q(z) = k−1Fk−2

[1
k . . . k−1

k
2

k−1 . . . k−2
k−1

k
k−1

; z

zk

]
, for all |z| ≤ zk.

Moreover, since zk = p(k−1), the following result is immediate from Proposition 8.

▶ Corollary 11. If k ≥ 3 then Q(zk) = k
k−1 ; in particular, k zk {Q(zk)}k−1 = 1.

We next show that Q(z) fits the “smooth implicit function schema” [9], and determine
the asymptotic order of the denominator in (10).

▶ Lemma 12. zk is the only singularity of Q(z) on the disk |z| ≤ zk and, locally around zk,
Q(z) admits the representation

Q(z) = 1 + g(z) − h(z) ·
√

1 − z

zk
,

for functions g(z) and h(z) analytic near zk. Furthermore

[zn]Q(z) =

√
k

2πn3(k − 1)3 · z−n
k

(
1 +O(n−1)

)
. (13)

As seen in Figure 2, the asymptotic formula in (13) is highly accurate even for small
values of n when k = 3, 4.

Proof. Define P (z) := Q(z)−1. P (0) = 0 and P (z) = F
(
z, P (z)

)
, where F (z, p) := z{1+p}k.

Note that F (0, p) = 0 and F has only non-negative Taylor coefficients around (0, 0). Moreover,
due to Corollary 11, P (zk) = 1

k−1 , hence

F
(
zk, P (zk)

)
= 1

k−1 ; Fz

(
zk, P (zk)

)
= kk

(k−1)k ̸= 0;
Fp

(
zk, P (zk)

)
= 1; Fpp

(
zk, P (zk)

)
= (k−1)2

k ̸= 0.

In particular, F
(
zk, P (zk)

)
= P (zk) and, since [zn]P (z) > 0 for all n ≥ 1, [7, Theorem 2.19]

implies that that zk is the only singularity of P (z) and hence of Q(z) in the disk |z| ≤ zk.
Furthermore, it admits the singular expansion

P (z) = g(z) − h(z) ·
√

1 − z

zk

AofA 2024

4:12 Sparsification of Phylogenetic Covariance Matrices of k-Regular Trees

(a) k = 3. (b) k = 8.

Figure 2 Plots of the first ten coefficients of the counting sequence associated with Q(z), for
k = 3 (left) and k = 8 (right), computed both by the exact formula and according to the asymptotic
estimate in (13).

where g(z) and h(z) are analytic in an open neighborhood of zk, and

[zn]P (z) =

√
zk Fz

(
zk, P (zk)

)
2π Fpp

(
zk, P (zk)

) z−n
k n−3/2 (1 + O(n−1)

)
,

from which the lemma follows. ◀

We now address the asymptotic behavior of the numerators in (10)-(11). For this, note
that by implicit differentiation in (12), we find that

Qu(z) = k z2 {Q(z)}2k−1(
1 − kz {Q(z)}k−1

)2 ; (14)

Quu(z) = k(7k − 1)z3{Q(z)}3k−2

(1 − kz{Q(z)}k−1)3

+ k2(7k − 1)z4{Q(z)}4k−3

(1 − kz{Q(z)}k−1)4 + 5k3(k − 1)z5{Q(z)}5k−4

(1 − kz{Q(z)}k−1)5 . (15)

(For details about these derivations refer to Appendix A of [22].) Our next result implies
that zk is the only singularity of the above partial derivatives in the disk |z| ≤ zk.

▶ Lemma 13. The equation kz {Q(z)}k−1 = 1, with |z| ≤ zk, has only zk as a solution.

Proof. Per Corollary 11, we know that zk solves the equation kz {Q(z)}k−1 = 1. On the
other hand, because Q(z) has non-negative coefficients, |kz {Q(z)}k−1| < k zk {Q(zk)}k−1 = 1
for |z| < zk; in particular, any solution to the equation must lie on the circle |z| = zk. But,
if |z| = zk and z ̸= zk then |Q(z)| < Q(|z|) = Q(zk) because Q has all powers of z with
strictly positive coefficients. Hence, |kz{Q(z)}k−1| = kzk|Q(z)|k−1 < kzk{Q(zk)}k−1 = 1,
which completes the proof of the lemma. ◀

Notice that the generating functions in (14)-(15) share a common form, which as we see
next may be exploited to yield a general asymptotic expansion of their coefficients.

S. Svihla and M. E. Lladser 4:13

▶ Lemma 14. If f : C → C is an entire analytic function such that f(zk) ̸= 0, and a ≥ 0
and b ≥ 1 are integers, then the function

[zn] f(z){Q(z)}a

(1 − kz{Q(z)}k−1)b
= f(zk)

2b/2 Γ(b/2)

(
k

k − 1

)a+b/2
n(b−2)/2 z−n

k

(
1 + O

(
n−1/2

))
.

Proof (Sketch). For further details, refer to the proof of [22, Lemma 3.2.5].
Define

P (z) := A(z)(
1 −B(z)

)b
,

where A(z) := f(z){Q(z)}a and B(z) := kz{Q(z)}k−1. By Lemma 12, we can write

Q(z) = g(z) − h(z)
√

1 − z

zk
,

where g(z) and h(z) are analytic in an open neighborhood of zk. In particular, locally around
zk, we have that

f(z) = f0 + O
(

1 − z

zk

)
; g(z) = g0 + O

(
1 − z

zk

)
; and h(z) = h0 + O

(
1 − z

zk

)
;

where f0, g0, and h0 are f(zk), g(zk), and h(zk), respectively.
To determine an asymptotic formula for the coefficients of P (z), we first seek singular

expansions for its numerator and denominator. For this, observe that locally around zk:

A(z) = α0 + O
(√

1 − z

zk

)
;

B(z) = β0 − β1

√
1 − z

zk
+ O

(
1 − z

zk

)
;

where α0 := f0g
a
0 , β0 := kzkg

k−1
0 , and β1 := k(k− 1)zkg

k−2
0 h0. But we know from Lemma 13

that B(zk) = 1; in particular, β0 = 1, and as a result

P (z) = f0g
a
0

{k(k − 1)zkg
k−2
0 h0}b

(
1 − z

zk

)−b/2(
1 + O

(√
1 − z

zk

))
.

Finally, note that g0 = Q(zk), hence g0 = k
k−1 due to Corollary 11. On the other hand, due

to Lemma 12, h0 = 1
k−1

√
2k

k−1 . Therefore

P (z) = f(zk)
2b/2 ·

(
k

k − 1

)a+b/2(
1 − z

zk

)−b/2(
1 + O

(√
1 − z

zk

))
,

and the lemma follows from [9, Theorem VI.4]. ◀

Finally, by applying Lemma 13 to each of the terms in (14)-(15), we obtain that

[zn]Qu(z, 1) = k

2(k − 1)2 · z−n
k

(
1 + O(n−1/2)

)
;

[zn]Quu(z) = 5k
6(k − 1)2

√
2kn3

π(k − 1) · z−n
k

(
1 + O

(
n−1/2)) ;

from which the asymptotic formulas for the expected value and variance of the internal path
length of a uniformly at random k-regular tree in Theorem 10 follow. ◀

AofA 2024

4:14 Sparsification of Phylogenetic Covariance Matrices of k-Regular Trees

(a) Dense covariance matrix. (b) Sparsified covariance matrix.

Figure 3 (a) Heat-map visualization of a dense covariance matrix C, and (b) sparsity pattern
of Φ′CΦ for a 3-regular tree with 200,001 leaves. The dense matrix has over 40 billion non-zero
entries. The sparse matrix, on the other hand, has only about 0.03% as many non-zero entries. The
heatmap of the dense matrix was produced downsampling the sparse representation by a factor of
1000, prior to undoing the change-of-basis.

3.3 Sparsification of Large, Random, k-Regular Covariance Matrices
So far, we have seen that the Haar-like wavelets can partially sparsify the (phylogenetic)
covariance matrix of a k-regular tree by changing the basis, obtaining a lower bound on the
proportion of vanishing entries under the basis change. A remaining challenge is determining
whether trees meeting the criteria for a high degree of sparsification are common. In this
section, we find that such trees are, in fact, abundant and that large random k-regular trees
are highly sparsified by the Haar-like wavelets with overwhelmingly high probability.

▶ Corollary 15. Let k ≥ 2 and T be a uniformly at random k-regular tree with |I| internal
nodes, and C its covariance matrix. If Φ is the Haar-like matrix associate with T, and ζ the
fraction of vanishing entries in Φ′CΦ, then ζ → 1 in probability, as |I| → ∞.

Proof. The argument mirrors the one for [14, Corollary 3.8].
Let µ and σ2 denote the expectation and variance of the internal path length of T,

respectively. Cantelli’s inequality states that P
(
IPL(T) > µ+ tσ

)
≤ (1 + t2)−1, for all t > 0.

But, from Theorem 10, we know that µ+ tσ = Ω(t|I|3/2); that is, there is a constant c > 0
such that P

(
IPL(T) > c t|I|3/2) ≤ (1 + t2)−1, or equivalently

P

(
IPL(T)

|I|2
≤ c t√

|I|

)
≥ t2

1 + t2
, for all t > 0.

The result follows by choosing t → ∞ so that t = o(
√

|I|). ◀

4 Discussion

Phylogenetic covariance matrices are often large and dense to the point of being computation-
ally unmanageable; however, we have demonstrated that expressing them in the Haar-like
basis can significantly sparsify them. In particular, we have shown that the covariance matrix
of a random k-regular tree will be highly sparsified with overwhelmingly high probability as

S. Svihla and M. E. Lladser 4:15

Figure 4 The largest 500 eigenvalues of a covariance matrix C associated with a 3-regular tree
with 200,001 leaves. The spectrum was computed from its sparse representation, obtained after
changing to the Haar-like basis.

the size of the tree tends to infinity. In this section, we illustrate the process of sparsifying a
large phylogenetic covariance matrix and discuss some of the practical considerations of the
method.

Consider Figure 3, which illustrates the application of the Haar-like wavelet transform
on a random 3-regular tree with 200,001 leaves. The tree was generated by simulating a
Galton-Watson process until a desired population size (i.e., number of leaves) was reached.
We find that, although the original, dense matrix contains over 40 billion non-zero entries,
the resulting sparse matrix contains a comparatively meager 11.3 million; that is, over 99.97%
of the entries in the original matrix were zeroed by the transform. Importantly, because
Φ′CΦ and C are similar matrices, we can quickly calculate the spectrum of C from its sparse
representation, illustrated in Figure 4. While this random tree model may not precisely
induce actual phylogenetic trees [2–4], we emphasize that the sparsification observed results
in an overwhelming part from the tree’s topology, irrespective of its edge lengths (which
effectively store covariances). Hence, the simulated data gives reasonable insight into the
performance of this technique in general.

As already mentioned, the degree of sparsification guaranteed by Theorem 4 is conservative.
For one, it does not account for the fact that the Haar-like wavelets are orthonormal, which
would suggest that at least some entries associated with two wavelets ψu and ψv, where u
is an ancestor of v, vanish. In fact, if a k-regular tree is trace balanced [14] (that is, for all
v ∈ I and i, j ∈ L(v), ℓ∗(i, v) = ℓ∗(j, v)), Theorem 2 implies that the Haar-like wavelets fully
diagonalize its covariance matrix. As a result, we often see a better degree of sparsification
than what is guaranteed by Theorem 4.

Our analysis shows that the technique of sparsifying dense phylogenetic covariance
matrices by a change-of-basis with the Haar-like wavelets extends to the broader class of
k-regular trees. While further work is required to verify the exact performance of this
method on random k-ary trees (i.e., ones for which each interior node contains at most k
children), well-known properties of generating functions enumerating simple varieties of trees
suggest that such a generalization is possible by the methods employed here. Comparison
with k-regular trees indicates sparsification for what one may call “almost” k-regular trees
(i.e., k-ary trees which are k-regular except at a relatively small number of internal nodes);
however, initial investigation suggests that the worst-case k-ary tree might result in poor
sparsification.

AofA 2024

4:16 Sparsification of Phylogenetic Covariance Matrices of k-Regular Trees

To conclude, it is worth noting that the k-regular and k-ary trees belong to the class of
“simply generated trees” [17], a generalization which may prove helpful for further expanding
our methodology. Exploring this avenue of research could grant access to new datasets
characterized by more intricate yet richer hierarchical structures.

References
1 K. M. Abadir. An introduction to hypergeometric functions for economists. Econometric

Reviews, 18(3):287–330, 1999.
2 D. Aldous. Probability distributions on cladograms. In D. Aldous and R. Pemantle, editors,

Random Discrete Structures, pages 1–18, New York, NY, 1996. Springer New York.
3 D. Aldous and B. Pittel. The critical beta-splitting random tree: Heights and related results,

2023. arXiv:2302.05066.
4 D. J. Aldous. The critical beta-splitting random tree II: Overview and open problems, 2023.

arXiv:2303.02529.
5 L. L. Cavalli-Sforza and A. W. Edwards. Phylogenetic analysis: models and estimation

procedures. Evolution, 21(3):550, 1967. doi:10.2307/2406616.
6 C. Dellacherie, S. Martinez, and J. San Martín. Inverse M-Matrices and Ultrametric Matrices,

volume 2118 of Lecture Notes in Mathematics. Springer, 2014.
7 M. Drmota. Random Trees: An Interplay between Combinatorics and Probability. Springer-

Verlag/Wein, 2009.
8 R. J. Evans and D. Stanton. Asymptotic formulas for zero-balanced hypergeometric series.

SIAM J. Math. Anal., 1984. doi:10.1137/0515078.
9 P. Flajolet and R. Sedegwick. Analytic Combinatorics. Cambridge University Press, 2009.

URL: http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065.
10 J. Fukuyama, P. J. McMurdie, L. Dethlefsen, D. A. Relman, and S. Holmes. Comparisons of

distance methods for combining covariates and abundances in microbiome studies. Biocom-
puting, pages 213–224, 2012. URL: http://psb.stanford.edu/psb-online/proceedings/
psb12/fukuyama.pdf.

11 Matan Gavish, Boaz Nadler, and Ronald R. Coifman. Multiscale wavelets on trees, graphs and
high dimensional data: theory and applications to semi supervised learning. In Proceedings of
the 27th International Conference on International Conference on Machine Learning, ICML’10,
pages 367–374, Madison, WI, USA, 2010. Omnipress.

12 I. Gessel. How can I verify this family of values for hypergeometric functions? MathOverflow,
september 12 2023. URL: https://mathoverflow.net/q/454420.

13 E. Gorman and M. E. Lladser. Interpretable metric learning in comparative metagenomics:
The adaptive Haar-like distance. PLoS Comput Biol, 2024 (to appear). URL: https://www.
biorxiv.org/content/10.1101/2023.09.27.559681v1.

14 E. Gorman and M. E. Lladser. Sparsification of large ultrametric matrices: insights into the
microbial Tree of Life. Proc. R. Soc. A, 479:20220847, 2023. doi:10.1098/rspa.2022.0847.

15 L. J. Harmon. Phylogenetic Comparative Methods. CreateSpace Independent Publishing
Platform, 2019.

16 E. Hille. Analytic function theory. Vol. 1. Introduction to Higher Mathematics. Ginn and
Company, 1959.

17 Svante Janson. Simply generated trees, conditioned Galton–Watson trees, random allocations
and condensation. Probability Surveys, 9:103–252, 2012.

18 S. Martinez, G. Michon, and J. San Martín. Inverse of strictly ultrametric matrices
are of Stieltjes type. SIAM J. Matrix Anal. Appl., 15(1):98–106, 1994. doi:10.1137/
s0895479891217011.

19 A. Meir and J. W. Moon. On the altitude of nodes in random trees. Canadian Journal of
Mathematics, 30, 1978.

https://arxiv.org/abs/2302.05066
https://arxiv.org/abs/2303.02529
https://doi.org/10.2307/2406616
https://doi.org/10.1137/0515078
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065
http://psb.stanford.edu/psb-online/proceedings/psb12/fukuyama.pdf
http://psb.stanford.edu/psb-online/proceedings/psb12/fukuyama.pdf
https://mathoverflow.net/q/454420
https://www.biorxiv.org/content/10.1101/2023.09.27.559681v1
https://www.biorxiv.org/content/10.1101/2023.09.27.559681v1
https://doi.org/10.1098/rspa.2022.0847
https://doi.org/10.1137/s0895479891217011
https://doi.org/10.1137/s0895479891217011

S. Svihla and M. E. Lladser 4:17

20 R. Nabben and R. S. Varga. A linear algebra proof that the inverse of a strictly ultrametric
matrix is a strictly diagonally dominant stieltjes matrix. SIAM J. Matrix Anal. Appl.,
15(1):107–113, 1994. doi:10.1137/s0895479892228237.

21 S. Pavoine, A.-B. Dufour, and D. Chessel. From dissimilarities among species to dissimilarities
among communities: a double principal coordinate analysis. Journal of Theoretical Biology,
228(4):523–537, 2004. doi:10.1016/j.jtbi.2004.02.014.

22 Sean Svihla. Sparsification of covariance matrices of k-regular trees. Master’s thesis, The
University of Colorado, 2024.

23 E. W. Weisstein. Hypergeometric function. https://mathworld.wolfram.com/
HypergeometricFunction.html. Accessed: September 2023.

24 Q. Zhu, U. Mai, and W. Pfeiffer et al. Phylogenomics of 10,575 genomes reveals evolutionary
proximity between domains bacteria and archaea. Nature Communications, 10:5477, 2019.

AofA 2024

https://doi.org/10.1137/s0895479892228237
https://doi.org/10.1016/j.jtbi.2004.02.014
https://mathworld.wolfram.com/HypergeometricFunction.html
https://mathworld.wolfram.com/HypergeometricFunction.html

Bit-Array-Based Alternatives to HyperLogLog
Svante Janson # Ñ

Department of Mathematics, Uppsala University, Sweden

Jérémie Lumbroso # Ñ

Department of Computer Science, University of Pennsylvania, Philadelphia, PA, USA

Robert Sedgewick1 # Ñ

Department of Computer Science, Princeton University, NJ, USA

Abstract
We present a family of algorithms for the problem of estimating the number of distinct items in
an input stream that are simple to implement and are appropriate for practical applications. Our
algorithms are a logical extension of the series of algorithms developed by Flajolet and his coauthors
starting in 1983 that culminated in the widely used HyperLogLog algorithm. These algorithms divide
the input stream into M substreams and lead to a time-accuracy tradeoff where a constant number
of bits per substream are saved to achieve a relative accuracy proportional to 1/

√
M . Our algorithms

use just one or two bits per substream. Their effectiveness is demonstrated by a proof of approximate
normality, with explicit expressions for standard errors that inform parameter settings and allow
proper quantitative comparisons with other methods. Hypotheses about performance are validated
through experiments using a realistic input stream, with the conclusion that our algorithms are
more accurate than HyperLogLog when using the same amount of memory, and they use two-thirds
as much memory as HyperLogLog to achieve a given accuracy.

2012 ACM Subject Classification Theory of computation → Sketching and sampling

Keywords and phrases Cardinality estimation, sketching, Hyperloglog

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.5

Supplementary Material Software (Source Code): https://github.com/robert-sedgewick
/hyperbitbit

Funding Svante Janson: Supported by the Knut and Alice Wallenberg Foundation and the Swedish
Research Council.

Acknowledgements This work is dedicated to the memory of Philippe Flajolet.
We would like to thank Martin Pépin and two anonymous reviewers for their helpful comments on
our initial submission; and Seth Pettie and Jelani Nelson for feedback on this paper. We would also
like to thank our colleagues, Conrado Martínez, Sampath Kannan, Val Tannen, and Pedro Paredes
for their interest and feedback; and our students, Alex Iriza and Alex Baroody for their discussions
and implementation work on earlier versions of these algorithms. Finally, we would like to thank the
editors, Cécile Mailler and Sebastian Wild, for their service to the community.

1 Introduction

Counting the number of distinct items in a data stream is a classic computational challenge
with many applications. As an example, consider the stream of strings taken from a web
log shown in the left column of Table 1 (we will use 1 million strings from this log of which
N = 368, 217 are distinct values as a running example in this paper). There is no bound on
the length of the stream, but maintaining an estimate of the number of different strings is
useful for many purposes.

1 Corresponding author

© Svante Janson, Jérémie Lumbroso, and Robert Sedgewick;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 5; pp. 5:1–5:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:svante.janson@math.uu.se
https://www.katalog.uu.se/profile/?id=XX2949
https://orcid.org/0000-0002-9680-2790
mailto:lumbroso@seas.upenn.edu
https://github.com/jlumbroso/
https://orcid.org/0000-0002-5563-687X
mailto:rs@cs.princeton.edu
https://sedgewick.io
https://orcid.org/0009-0001-7238-7860
https://doi.org/10.4230/LIPIcs.AofA.2024.5
https://github.com/robert-sedgewick/hyperbitbit
https://github.com/robert-sedgewick/hyperbitbit
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Bit-Array-Based Alternatives to HyperLogLog

One classic application is in computer networks. The ability to estimate the number of
different visitors of a website is certainly of interest, and can be critical in maintaining the
integrity of the site. For example, a significant drop in the percentage of distinct visitors in
a given time period might be an indication that the site is under a denial-of-service attack.

Another classic application is found in database systems, where estimating the number of
different strings having each attribute is a critical piece of knowledge in implementing certain
common data base operations. In this case, the length of the streams is available, but may
be very large, and a rough estimate suffices, so using a streaming algorithm is appropriate.

Elementary algorithms for solving the problem are standard in introductory computer
science classes. Perhaps the simplest is to use a hash table, but that requires saving all the
items in memory, which is far too high a cost to be useful in typical applications. In fact,
any method for computing an exact count must save all the items in memory (trivial proof:
any item not saved might or might not be distinct from all the others, and that fact cannot
be known until the last item is seen).

Accordingly, we focus on estimating the count. In typical applications, exact counts are
actually not needed – the estimates are being used to make relative decisions that do not
require full accuracy.

Since the seminal research by Flajolet and Martin in the 1980s [5][6] it has been known
that we actually can get by with a surprisingly small amount of memory. The practical
cardinality estimation problem is to estimate the number of distinct items in a data stream
under the following constraints:

Each item is examined only once.
The time to process each item is a very small constant multiple of the size of the item.
The amount of memory used is very small, no matter how large the stream.
The estimate is expected to be within a small percentage of the real count.

A solution to this problem typically is defined by an implementation that makes clear its
time and space requirements and an analysis that provides a precise characterization of how
the estimate compares to the actual value.

For many years, the state of the art in solving the practical cardinality estimation problem
has been HyperLogLog, the last in the series of algorithms developed by Flajolet and colleagues
from the 1980s through the 2000s [4] [7] [9] [14]. HyperLogLog is based on four main ideas:
Hashing is used to convert each item in the stream into a fixed-length binary number; the
position of the rightmost zero is computed, taking the maximum value found as an estimate
of the binary logarithm of the count; a technique known as stochastic averaging splits the
stream into M independent substreams so that an average of experimental results can be
computed; and the harmonic mean is used to properly handle outlying values. One reason
HyperLogLog is so widely used is that precise analysis of the bias in the estimate provides
the basis for formulating hypotheses about how the algorithm will perform in practical
situations, and the results of experiments that validate the hypotheses are presented. The
analysis exposes a space-accuracy tradeoff, allowing practitioners to choose with confidence
the amount of memory needed to achieve a given accuracy or the accuracy achieved for a
given amount of memory use: For a stream with N distinct values and using M substreams,
HyperLogLog uses M lg lg N bits and typically produces an estimate with a relative standard
error of c/

√
M where c

.= 1.04.
A series of theory papers have proven that O(M) bits are necessary and sufficient to

achieve estimates with asymptotic accuracy on the same order as HyperLogLog, an important
and significant accomplishment [1][10][11]. However, these papers lack implementations,
likely because the implied constants in the proofs are much too large for the methods to be

S. Janson, J. Lumbroso, and R. Sedgewick 5:3

Table 1 Computing a sketch for HyperBitT (with M = 8 and T = 1).

s x k r(x) sketch[]
81.95.186.98.freenet.com.ua 111...1111101111011110011101011 7 2 00000001
lsanca.dsl-w.verizon.net 011...1010100010001111110100000 3 0 00000001
117.222.48.163 110...0111001100000111011101101 6 1 00000001
1.23.193.58 100...0100101001000011101100011 4 2 00001001
188.134.45.71 101...0101111000101101000111001 5 1 00001001
gsearch.CS.Princeton.EDU 010...1010011011000011010000100 2 0 00001001
81.95.186.98.freenet.com.ua 011...1011110001110000111010000 3 0 00001001
81.95.186.98.freenet.com.ua 111...1111101111011110011101011 7 2 00001001
1.23.193.58 000...0100111001111101011100111 0 3 10001001
lnse3.cht.bigpond.net.au 111...0110011001011011101001110 7 0 10001001
117.211.88.36 000...1001100010100010010111010 0 0 10001001
1.23.193.58 000...0100111001111101011100111 0 3 10001001
lsanca.dsl-w.verizon.net 011...1010100010001111110100000 3 0 10001001
81.95.186.98.freenet.com.ua 111...1111101111011110011101011 7 2 10001001
gsearch.seas.upenn.edu 000...1000100011011010100001000 0 0 10001001
109.108.229.102 010...1010111101010110110011111 2 5 10101001
msnbot.search.msn.com 001...1001110110111001001101100 1 0 10101001

viable in practice . The theory literature also makes the implicit assumption that strong
assumptions on the hash functions are necessary (even to the point of dismissing algorithms
like HyperLogLog as illegitimate [1]). Strong hash functions add to the expense of processing
each item, and the idea that using one makes any difference at all in practice is tenuous at
best (see, for example, [3] for a discussion of this issue). In this paper, we focus on algorithms
with the potential to be useful in practice – we use hash functions that are widely used
in practice and hypothesize that any differences from the ideal are relatively insignificant.
Any practical application of hashing, however perfect in theory, must assume, at least, that
random bits exist, and therefore requires such a hypothesis.

HyperLogLog uses 5M bits for N < 232, but much higher values are typical in modern
applications. Since it is safe to assume that N < 264, HyperLogLog demonstrates that
6M bits suffice for the practical cardinality estimation problem. Some improvements to
HyperLogLog and some interesting new approaches to the problem have been studied in
recent years [16] [19] [15] [12] [17] but we are still left with the following question: can we
find a practical algorithm as simple as HyperLogLog with comparable accuracy that uses cM

bits for some constant c that is significantly less than 6?

In this paper, we provide answers to this question. The algorithms we present have
the same structure as HyperLogLog but use much less memory – instead of recording the
maximum number of trailing ones, we focus on one bit per sub-stream indicating whether a
threshold has been hit. In Section 2, we use a rough estimate of the cardinality as an input
parameter in order to set the threshold to be the logarithm of the extimated number of
distinct items per substream. As such, the resulting algorithm is not a streaming algorithm,
but it serves as a basis for the streaming algorithms in Section 3 and Section 4 that do solve
the practical cardinality estimation problem, using just two bits per substream. In Section 5
we conclude by discussing how these algorithms match up against those in the literature.

AofA 2024

5:4 Bit-Array-Based Alternatives to HyperLogLog

2 HyperBitT

Our first algorithm uses the standard technique of starting with a rough estimate of the
cardinality and is therefore not properly a streaming algorithm, as no fixed estimate can
remain accurate as the cardinality grows without bound. We consider this algorithm because,
as we will see, it is sometimes useful in its own right, and it admits a precise analysis that
we can use to develop the streaming algorithms in Section 3 and Section 4.

We start with hashing and stochastic averaging with M substreams precisely as does
HyperLogLog, but use just one bit per substream, as follows. Of course, we expect each
substream to have about N/M distinct values, and it has been known since the original
work of Flajolet and Martin [5] that the maximum number of trailing 1s found among the
items in a stream is a good estimator of the logarithm of the number of distinct items in the
stream. (Indeed, this is the same as the length of the rightmost path in a random trie, a
quantity that was studied in the 1970s.) In this spirit, we use a parameter T as an estimate
of lg(N/M). That is, 2T is an estimate of N/M , and 2T M is an estimate of the cardinality
N . Now, we maintain a sketch comprising an array of M bits, one per substream, and set
the bit corresponding to a substream to 1 when an item from that substream has more than
T trailing 1s. When we want to estimate the number of distinct values in the stream, it turns
out that we can use a simple function of the number of 0 bits in the sketch to improve our
estimate. The algorithm may produce an inaccurate result or fail completely if the rough
estimate T is poorly chosen, but, as we will see, it is remarkably forgiving.

Implementation

We start with a bit array sketch[] with one bit per substream, initialized to all 0s. For
clarity, we use a bit[] type to describe our algorithms – although few programming languages
support an explicit bit[] type, the abstraction is easily implemented. For small M , we can
use integer values; for large M , we can use shifting and masking on arrays of integers (see
Appendix B). We typically use a power of two for convenience.

For each new item s in the stream, we compute a hash value x to represent it and a
second hash value k to identify its substream (typically, one might compute a 64-bit hash
and use the leading lg M bits for k and the rest for x). Then we compute r(x), the number
of trailing 1s in x. As described in Appendix B, this operation can be implemented with
only a few machine-language instructions. If r(x) is larger than T, we set sketch[k] to 1.
Table 1 is a trace of the process for a small sequence of hash values with M = 8 and T = 1.

When the stream is exhausted, we compute a correction to the rough estimate of N = 2T M

that takes into account some bias, as a function of the bit values in the sketch. Specifically,
we are interested in the parameter β, the proportion of 0s in the sketch. As indicated
by the analysis below, the appropriate correction factor is ln(1/β). If the sketch is small
enough to fit in a computer word, computing the number of 1s in the sketch is a classic
machine-language programming exercise and is actually a single instruction in many modern
machine architectures. For clarity, we use the function p(sketch); for large M it is preferable
to just increment a counter each time a sketch bit is changed from 0 to 1, as described in
Appendix B. The implementation in Algorithm 1 follows immediately and is easily translated
to any programming language.

If T is too small or too large, the algorithm fails because the estimate cannot be reasonably
corrected (when β is close to 0 or 1, the correction factor is too large or too small to be useful).
But, as we shall see, the algorithm does produce accurate results for a remarkably large
range of cardinality values, and we can precisely characterize that range and the accuracy.

S. Janson, J. Lumbroso, and R. Sedgewick 5:5

Algorithm 1 HyperBitT.
public static int estimateHBT (Iterable <String > stream , int M, int T)
{

bit [] sketch [M];
for (String s : stream)
{

long x = hash1(s); // 64- bit hash
int k = hash2(s, M); // (lg M)-bit hash
if (r(x) > T) sketch [k] = 1; // more than T trailing 1s?

}
double beta = 1.0 - 1.0*p(sketch)/M; // fraction of 0s in sketch
return (int) (Math.pow (2, T)*M*Math.log (1.0/ beta));

}

Analysis

As a basis for developing an intuition about the problem, we start with an approximate
analysis for the mean value of the number of distinct values in the stream. After N distinct
values have been processed from the input stream, we have seen an average of N/M distinct
values in each substream. As an approximation, assume that exactly N/M values go to
each substream. The probability that a given value has at least T trailing 1s is 1/2T so the
probability that a given bit in sketch[] remains 0 after N/M values are processed in its
corresponding substream is given by a Poisson approximation(

1 − 1
2T

)N/M

∼ e−N/(M2T)

(see for example, [18]). The number of 0s in sketch[] is a binomially distributed random
variable, so this value is also (approximately) β, the expected proportion of 0s in sketch[]
after N values have been processed. Thus, N/M ∼ 2T ln(1/β) and the expected number of
values processed is N ∼ M2T ln(1/β). In other words, we need to correct our rough estimate
of the number of values per stream by the factor ln(1/β).

A full detailed analysis provides much more information, which is critical for studying
the performance of the algorithm. Specifically, we are able to approximate the distribution
of the reported cardinality, which gives us the information needed to estimate how accurate
it will be for given values of M .

The proof is based on the idea of Poissonization – instead of assuming that we have a
fixed given number N of distinct items, we assume that the number is random with a Poisson
distribution. It uses two technical lemmas from probability theory:

▶ Lemma 1. Suppose that Xn ≥ 0 are random variables and an, bn, and σ2 numbers such that,
as n → ∞, we have an → a > 0, bn → 0, and (Xn−an)/bn

d−→ N(0, σ2). If f is a continuously
differentiable function on (0, ∞) with f ′(a) ̸= 0, then (f(Xn) − f(an))/bn

d−→ N(0, f ′(a)2σ2).

Proof. See Appendix A. ◀

▶ Lemma 2. Let X ∼ Binomial(n, p) and let Y ∈ Poisson(np) where n > 0 and p ∈ [0, 1].
Then the total variation distance between them dT V (X, Y) is no greater than p; in other
words there exists a coupling of X and Y such that P(X ̸= Y) ≤ p.

Proof. See Theorem 2.M and pages 1–8 in [2]. ◀

AofA 2024

5:6 Bit-Array-Based Alternatives to HyperLogLog

▶ Theorem 3. Suppose that a stream S has N distinct items and that HyperBitT processes
S using M substreams with parameter T and terminates with βM 0s left in the sketch. Then
the statistic M2T ln(1/β) is approximately Gaussian with mean N and relative standard error
cβ

/√
M where cβ =

√
1/β − 1

/
ln(1/β). Formally,

√
M

cβ

(
M2T ln(1/β)

N
− 1

)
d−→ N(0, 1) (1)

as N, M, T → ∞ with N = Θ(M2T).

Proof. Assume first that N ∼ aM2T for some a ∈ (0, ∞). Pretend that the distinct items
in the stream arrive according to a Poisson process with rate 1. We then may consider the
process at a given time Ñ . If we keep Ñ fixed, then the number of distinct items seen so far
is a random variable obeying a Poisson distribution Poisson(Ñ). We let Ñ ∼ N ∼ aM2T .
For reference, we summarize here the notations used in this proof:

N ∼ aM2T , the cardinality of the stream seen so far when Algorithm 1 terminates
a, a positive number
N̂ = M2T ln(1/β), the reported estimate of N

Ñ ∼ aM2T , the Poisson parameter
Our goal is to approximate the distribution of N̂ .

We begin by finding, in the Poisson model, the distribution of βM , the number of 0s in the
sketch. Since a randomly thinned Poisson process is a new Poisson process, it follows that each
of the M substreams is a Poisson process with rate 1/M , and thus the number of distinct items
in each of them is Poisson(Ñ/M). These random numbers are independent, and each item in
the kth substream has probability 2−T to set sketch[k] to 1. It follows that if the number of
such items is Yk, then Yk is also Poisson, with Yk ∈ Poisson(2−T Ñ/M) = Poisson

(
Ñ/(M2T)

)
.

Now, let q be the probability that sketch[k]=0 (which is the same for all k). Then

q = P(Yk = 0) = exp
(

− Ñ

M2T

)
→ e−a. (2)

Since the numbers Yk are independent, the total number of 0s in the sketch is

βM ∈ Binomial(M, q). (3)

with mean Mq and variance Mq(1 − q).
As M → ∞, we have the normal approximation to the binomial:

√
M(β − q) = Mβ − Mq√

M

d−→ N
(
0, e−a(1 − e−a)

)
. (4)

Now, applying Lemma 1 with the function f(x) = ln(1/x) gives
√

M
(
ln(1/β) − ln(1/q)

) d−→ N(0, ea − 1). (5)

Consequently, since N̂ = M2T ln(1/β), M2T /Ñ → 1/a, and ln(1/q) = Ñ/M2T , we have

√
M

(N̂

Ñ
− 1

)
=

√
M

M2T

Ñ

(
ln 1

β
− ln 1

q

)
d−→ N

(
0, a−2(ea − 1)

)
. (6)

Furthermore, (5) implies ln(1/β) − ln(1/q) p−→ 0, and thus, using (2), ln(1/β) p−→ a; hence
(6) implies (1) (with Ñ instead of N).

S. Janson, J. Lumbroso, and R. Sedgewick 5:7

Figure 1 This plot shows the coefficient of 1/
√

M in the relative standard error cβ =√
1/β − 1

/
ln(1/β) (y-coordinate) for β (fraction of 0s in the sketch) between 0 and 1 (x-coordinate).

The value of cβ goes to infinity as β approaches 0 or 1, but it is relatively small when β is not close
to these extremes. For example, cβ < 1.5 when .043 < β < .541, cβ < 2 when .014 < β < .748, and
cβ < 3 when .0035 < β < .888.

This is the desired result for the Poisson model. To prove the result for a given number N

of items, we use Lemma 2. We may assume that we start by selecting all items with at least T
trailing 1s. Since each item is selected with probability 2−T , the number of selected items is
Binomial(N, 2−T). Similarly, if we consider the Poisson model with Poisson(N) items (thus
choosing N = Ñ above) then the number of selected items is Poisson(N2−T). By Lemma 2.
we may couple the two versions such that the number of selected items agree with probability
no less than 1 − 2−T → 1. Hence, (1) for a fixed N follows from the Poisson version.

We have proved that (1) holds when N/(M2T) converges to a limit in (0, ∞). The more
general assumption N = Θ(M2T) implies that every subsequence has a subsubsequence such
that N/(M2T) converges, and thus (1) holds for the subsubsequence. As is well known, this
implies that the full sequence converges (see Section 5.7 in [8]). ◀

To summarize, the goal of HyperBitT is to compute an estimate of N , the cardinality of
the input stream. To do so, it takes two parameters

M , the number of substreams (and the number of bits used)
T , a rough estimate of lg(N/M)

and, using an M -bit sketch, computes a value
β, the fraction of 0s in the sketch.

Theorem 3 provides formulas for two important pieces of information, as functions of β:
the correction factor ln(1/β), leading to the estimate 2T M ln(1/β) for N

the coefficient of 1/
√

M in the relative standard error cβ =
√

1/β − 1
/

ln(1/β)

This is the information that we need to properly choose the value of T . Of most interest is
the fact that cβ is relatively small and is large only when β is close to 0 or 1 (see Figure 1).
If T is too small, then the sketch will be predominately 1s, and β will be close to 0; if T is
too large, the sketch will be predominantly 0s and β will be close to 1.

As an example, suppose that we take M = 1024 and aim to keep cβ < 1.5, which is the
case when .043 < β < .541 (see Figure 1). As indicated in this table, each value of T leads
to an accurate answer for a rather large range of values of N .

AofA 2024

5:8 Bit-Array-Based Alternatives to HyperLogLog

Table 2 Since it is based on hash values, HyperBitT produces a different result every time it is
run. The following table shows the result of five consecutive runs of HyperBitT for our sample web
log with these parameter values. The last line compares the estimated cardinality with the actual
value 368,217. Since our estimate of the standard error is conservative (cβ is usually smaller than
1.5), four of the five runs produced estimates well within the desired 5%. Since the distribution is
Gaussian, the outlier in the first experiment is not unexpected.

of 0s in sketch[] Mβ 228 253 257 261 265

estimated cardinality 2T M ln(1/β) 393,773 366,498 362,386 358,338 354,351

estimated relative accuracy cβ/
√

M 3.9% 3.9% 3.9% 3.9% 3.9%

actual relative accuracy 6.9% 0.5% 1.6% 2.7% 3.8%

T 6 7 8 9 10 11
M2T ln(1/β) for β = .541 40,261 80,522 161,044 322,089 644,177 1,288,356
M2T ln(1/β) for β = .043 206,212 412,425 824,850 1,649,701 3,299,402 6,598,804

Validation

The purpose of our analysis is to enable us to hypothesize that the cardinality returned by
HyperBitT behaves as described by Theorem 3 and to set parameter values that keep the
error low. As with any scientific study, our confidence in the result grows with the number
of experiments that validate it, so we can only give an initial indication. (For example,
practitioners have confidence in a similar hypothesis for HyperLogLog because it has been
used in a wide variety of practical situations for years.)

The hypothesis rests on three main assumptions. First, we assume that the data we have
and that the hash functions we use have the idealized properties stipulated in the analysis,
or that deviations from this ideal are relatively insignificant. Second, we assume that the
second hash function splits the stream into each substream with equal probability, or that
deviations from this ideal are relatively insignificant. Third, we assume that deviations from
approximations in the analysis are relatively insignificant.

For example, suppose that we wish to use HyperBitT to estimate the number of distinct
strings in the web log described in Section 1. To do so, we need to specify the values of the
two parameters: M (the number of bits of memory we need to use to achieve the accuracy
that we want) and T (where 2T M is our rough guess of the cardinality).

First, we choose the value of M . As an example, suppose that we are looking for an
accurate answer, say with 5% relative error. Referring to Figure 1, if β is in the range
(.043, .541), then cβ < 1.5 and M = 1024 will do the trick, because 1.5/

√
1024 .= .0469 . This

is a conservative choice because cβ is usually much smaller than 1.5 in that range.
Next, we choose the value of T . Suppose we decide that it is a reasonable guess that

the unique values comprise somewhere between 20% and 80% of the stream (a rather wide
range). This leads to the choice T = 8 because M2T ln(1/β) is between 161,044 and 824,851
(and cβ < 1.5) when β is between .541 and .043.

Table 2 shows the experimental results that constitute a quick validation check. Figure 2
describes two experiments that each run it 10 thousand times, which both are strong evidence
of the validity of our analysis and our hypotheses about the performance of HyperBitT.

S. Janson, J. Lumbroso, and R. Sedgewick 5:9

(a) 100 trials every 10,000 inputs up to 1 million. (b) 10,000 trials with 1 million inputs.

Figure 2 Results of estimating cardinalities in a web log, each with 10,000 trials. In Figure 2(a)
HyperBitT was run 100 times for the first 10,000, 20,000, 30,000, . . . items in the log, up to 1 million.
Each grey dot shows the result of one experiment and the colored dots are the average of the values
for each set of 100 experiments. A black line that shows the actual number of distinct items in the
stream is completely hidden by the colored dots. The histogram in Figure 2(b) plots the estimates
returned by HyperBitT for 10,000 runs on the first 1 million strings in the web log. The distribution
matches a Gaussian, centered on the true number of distinct values, with relative standard deviation
about 1.25/

√
M

.= 0.039 (plotted in color), thus validating Theorem 3 and our hypothesis that the
estimated cardinality is likely to be within within 5% of the true value.

It is important to reiterate that HyperBitT is not a streaming algorithm. For example, it
could not be used without some periodic adjustments for our web log example, where the log
may be monitored for weeks, months, or even years, and therefore could consists of billions
or trillions of strings or more. But there are many situations where HyperBitT may be useful
because the estimate need not be very accurate and there are reasonable approaches to
coming up with one. In a database or similar application, one might take a random sample.
In a web log or similar application, one might take a small sample from initial values, or run
multiple offsetting streams, using the estimate from one as the rough guess for another. For
example, in protecting against a denial-of-service attack, the whole point might be to just
set off an alarm when the cardinality deviates significantly from an expected range.

3 HyperBitBit and HyperBitBitBit

In this section, we describe variants of the algorithm that can adapt as the number of unique
values grows, by making T a variable and then increasing it as needed.

Obviously, T needs to increase when the sketch becomes nearly full of 1s. The first
approach that comes to mind is to plan to increase T by one when the sketch becomes nearly
full and to maintain a second sketch with 1 bits corresponding to whether or not an item
with at least T+1 trailing 1s has been seen. Then, when the sketch is nearly full, we can
increment T and replace the first sketch with the second one. But then we need to replace
the second sketch. We could use a third sketch (and we will, when M is not small), but then
do we need a fourth sketch? Moreover, when the sketch for T is nearly full of 1s, so is the
sketch for T+1, so incrementing T by 1 does not help much.

AofA 2024

5:10 Bit-Array-Based Alternatives to HyperLogLog

Table 3 Fraction of zeros in sketches for T+i when the sketch for T is 97% full. The sketch for T
is 3% 0s, the sketch for T+4 is 80% 0s and the sketch for T+8 is 99% 0s.

i 0 1 2 3 4 5 6 7 8
βi = exp(− ln(1/β)/2i) .03 .17 .42 .64 .80 .90 .95 .97 .99

So we want to increment T by more than one. But by how much? Recall that our
analysis indicates that the accuracy degrades as the number of 0s in the sketch grows, and
incrementing T corresponds to increasing the number of 0s. Eventually we can stop when
we encounter sketches that are all 0s, but we are faced with a delicate balance between the
amount by which we increment T and the number of sketches we might need. Theorem 3
gives us precisely the information we need to make an intelligent choice.

To fix ideas, take M = 64 and suppose that we consider the sketch to be “nearly full”
when 62 of its bits are 1 (and therefore β = 2/64 .= 0.032). Now, we want to choose an
increment i for T – we will maintain a second sketch for T+i and increment T by i when the
sketch for T is 97% full of 1s. Our goal is to choose i such that we do not need to maintain
a third sketch.

Let βi be the fraction of 0s in the sketch for T+i. Because the estimated value of N does
not change, we must have ln(1/β) = ln(1/βi)/2i. Solving for βi gives βi = exp(− ln(1/β)/2i).
Table 3 shows these values for possible increments up to 8 (after that point, the sketches are
increasingly likely to be all 0s).

Specifically, Table 3 tells us something very important: for increments 4 or greater, there
is no need to maintain a third sketch, because it would be nearly all zeros. With our choice
to increment T by 4 when the sketch is 97% 0s, we know that at that time the sketch for
T+4 is about 80% 0s and the sketch for T+8 would be about 99% 0s, so we can increment T,
update our sketch for T using the sketch for T+4, and set the sketch for T+4 to all 0s. We
may be ignoring a few 1s that would be in the sketch for T+8 had we maintained it, but the
likelihood that ignoring them would noticeably affect the final estimate is very small. If we
want to be very conservative, we could maintain the indices of these 1s, at a very small (if
not negligible) extra cost, but few practitioners would bother.

This discussion brings us to HyperBitBit64 (Algorithm 2). It uses M = 64, maintains
two sketches, increments T by 4, and updates the sketches when the first sketch becomes
97% full of 1s. The implementation also illustrates how to use 64-bit words for the sketches,
which eliminates the overhead of maintaining bit arrays and leads to very simple and
efficient code in typical programming environments, even machine language. For clarity,
Algorithm 2 uses the call p(sketch) to count the number of 1s in the sketch. If this
is not available as an atomic operation, one might choose the alternative of counting
as the bits are set, as described in Appendix B and illustrated in the code at https:
//github.com/robert-sedgewick/hyperbitbit.

From the above discussion, it is reasonable to hypothesize that when Algorithm 2
terminates, sketch0 is the same as the sketch when Algorithm 1 is used with the current
value of T. In other words, Theorem 3 applies throughout. As we saw in Table 3, just
before incrementing T, sketch0 has about 97% 1s and sketch1 has about 20% 1s. Thus,
the fraction of 0s in the sketches stays in the range .03 < β < .80, so the value of cβ is in the
flat part of its curve (see Figure 1) – it is always less than 2.25 with average value about

1
.77

∫ .80
.03 cβdβ

.= 1.48 . This is conservative – the number of 0s quickly increases when it is
small, so cβ is more often than not less than this average.

https://github.com/robert-sedgewick/hyperbitbit
https://github.com/robert-sedgewick/hyperbitbit

S. Janson, J. Lumbroso, and R. Sedgewick 5:11

Algorithm 2 HyperBitBit64.
public static int estimateHBB64 (Iterable <String > stream)
{

int T = 1;
int M = 64;
long sketch0 ;
long sketch1 ;
for (String s : stream)
{

long x = hash1(s); // 64- bit hash
int k = hash2(s, M); // 6-bit hash
if (r(x) > T) sketch0 = sketch0 | 1L << k; // >T trailing 1s?
if (r(x) > T+4) sketch1 = sketch1 | 1L << k;
if (p(sketch0) > .97*M) // >62 1s?
{ sketch0 = sketch1 ; sketch1 = 0; T += 4; }

}
double beta = 1.0 - 1.0*p(sketch0)/M; // fraction of 0s
return (int) (Math.pow (2, T)*M*Math.log (1.0/ beta));

}

The end result is that HyperBitBit64 is a true streaming algorithm that uses just 128
bits (plus six bits for T) to achieve an expected standard error which is usually lower than
1.48/

√
64 .= 18.5% even for streams having billions or trillions or more distinct items. As we

will see in Section 5, this accuracy is substantially better than that achieved by HyperLogLog
for the same number of bits. The cost of processing each element is the cost of hashing plus
a few machine-language instructions. In applications where 18.5% accuracy suffices (and
developing a rough guess that would enable use of HyperBitT is infeasible), HyperBitBit64
is likely to be the method of choice because of these low costs. For example, it would be quite
useful in an application where maintaining large number of different cardinality counters are
needed, each responding to some different filter of the input stream.

For larger values of M (say 128 or 256) we can implement HyperBitBit with a bit array
(perhaps implemented with an array of 64-bit integers as described in Appendix B) and do
even better. Specifically, it makes sense to set the cutoff to increment T when the relative
standard error for the new value is equal to the current relative standard error. That is, with
a = ln(1/β) and c(a) =

√
ea − 1/a, we increment T by 4 when c(a) = c(a/16). The solution

to this equation is a = ln(1/β) .= 4.41 so β = e−a .= .012. That is, we should increment T by
4 and update the sketches when sketch0 has .988M 1 bits. At that point, the proportion
of 0s in the sketch for T+4 will be about e−a/24 .= .759. The proportion of 0s in the sketch
for T+8 would be about e−a/28 .= .983, so we are ignoring (2, 4, 9) 1 bits for (128, 256,
512) respectively, which is likely tolerable. The fraction of 0s in the sketches stays in the
range .012 < β < .759, so the value of cβ is always less than 2.05 with average value about

1
.747

∫ .759
.012 cβdβ

.= 1.46.

HyperBitBitBit

For even larger values of M , we can go to a third sketch, marking the subarrays with at least
T, T+4, and T+8 trailing 1s and define HyperBitBitBit in a straightforward manner. The
implementation is omitted because we present a significant improvement in Section 4. The
proportion of 0s in the sketch for T+12 would be about e−a/212 .= .996, so we are ignoring (1,
2, 4) 1 bits for (1024, 2048, and 4096) respectively, again likely tolerable.

AofA 2024

5:12 Bit-Array-Based Alternatives to HyperLogLog

Algorithm 3 HyperTwoBits.
public static int estimateHTB (Iterable <String > stream , int M)
{ // for M = 1024 , 2048 , or 4096

int T = 1;
twobit [] sketch = new twobit [M];
for (String s : stream)
{

long x = hash1(s); // 64- bit hash
int k = hash2(s, M); // (lg M)-bit hash
if (r(x) >= T) if (sketch [k] < 1) sketch [k] = 1;
if (r(x) >= T+4) if (sketch [k] < 2) sketch [k] = 2;
if (r(x) >= T+8) if (sketch [k] < 3) sketch [k] = 3;
if (pnz(sketch) > .988*M)
{

T = T+4;
for (int i = 0; i < M; i++)

if (sketch [i] > 0) sketch [i]--;
}

}
double beta = 1.0 - 1.0* pnz(sketch)/M;
return (long) (Math.pow (2, T)*M*Math.log (1/ beta));

}

As just noted for HyperBitBit, the fraction of 0s in the sketches stays in the range .012 <

β < .759, so the value cβ is always less than 2.05 with average value about 1
.747

∫ .759
.012 cβdβ

.=
1.46. In summary, HyperBitBitBit is a true streaming algorithm, effective for M up to at
least 4096, that uses 3M bits and achieves relative standard error of about 1.46/

√
M .

4 HyperTwoBits

Remarkably, we can produce the same result as HyperBitBitBit but using just 2M bits.
The trick is to note that if a bit is set in the sketch for T+4, the bit in the corresponding
position in the sketch for T must be set, and if a bit is set in the sketch for T+8, the bits in
the corresponding positions in the sketches for both T+4 and T must be set. This observation
means that we can represent the three sketches with an array of two-bit values that encode
in binary the number of 1s in each position in the three sketches in HyperBitBitBit, as
shown in this example:

sketch for T 11111111111011101111111111111111111110111011111100111111111
before sketch for T+4 00010011101000000000000100001100101100000011110000100000000

sketch for T+8 00000001000000000000000000000000000100000000110000100000000
two-bit values 11121123212011101111111211112211212310111022331100311111111

sketch for T 00010011101000000000000100001100101100000011110000100000000
after sketch for T+4 00000001000000000000000000000000000100000000110000100000000
T+=4 sketch for T+8 000

two-bit values 00010012101000000000000101001100101200000011220000200000000

Maintaining this array while streaming is simple: for each data item, we identify its stream
and set its value as appropriate. Then when the number of nonzero values reaches the
threshold, we increment T by 4 and simply decrement the nonzero values in the array.

S. Janson, J. Lumbroso, and R. Sedgewick 5:13

From this description, the implementation in Algorithm 3 is immediate. For clarity, we
use a twobit[] type to describe the algorithm – although no programming languages support
an explicit twobit[] type, the abstraction can be implemented with shifting and masking
on arrays of integers, an amusing exercise in bit logic (see Appendix B). For clarity, we use a
method pnz()) to count the nonzero entries in the array – its implementation is omitted
because it is better to maintain the count dynamically (also see Appendix B).

In summary, HyperTwoBits is a true streaming algorithm, effective for M up to at least
4096, that uses 2M bits and achieves relative standard error of about 1.46/

√
M . As described

in Appendix B, it can be implemented such that processing each item in a stream requires
only a few machine-language operations.

Figure 3 presents the results of two experiments for Algorithm 3 corresponding to those
presented for Algorithm 1 in Figure 2, which validate our hypothesis that the relative
accuracies of the algorithms are comparable and are strong evidence of the utility of the
algorithm in practice.

(a) 100 trials every 10,000 inputs up to 1 million. (b) 10,000 trials with 1 million inputs.

Figure 3 Results of estimating cardinalities in a web log using Algorithm 3 with M = 1000, for
comparison with Figure 2 (where the details of the experiments are described). Given the same
inputs (and the same random numbers), the figures for HyperBitBitBit would be identical.

5 Performance comparisons

Comparing the performance of our algorithms with each other and with cardinality estimation
algorithms in the literature needs to be done carefully for several reasons.

First, many papers from the theoretical computer science literature study algorithms
implemented in pseudocode (or just described in English). While these papers often introduce
interesting ideas, they cannot be evaluated as solutions to the practical cardinality estimation
problem for two reasons. First, the methods described have never been implemented (and are
sufficiently complicated that implementing them is not likely to be worthwhile) so the time
required to process each item while streaming cannot be determined. Second, the analyses
generally define complexity results that use O-notation and are not sufficiently precise to
compare the relative accuracy with other methods.

AofA 2024

5:14 Bit-Array-Based Alternatives to HyperLogLog

Second, even among methods that have been implemented and tested, practitioners might
prefer algorithms that are much simpler to implement and maintain over more complicated
methods that perform slightly better. Some methods are sufficiently complicated to implement
that practitioners might shy away from (or may not be able to afford) actually doing so. For
example, HyperLogLog is easy to implement with 8-bit bytes, but 6-bit bytes are sufficient.
Implementing a 6-bit byte array with arrays of 64-bit words is not difficult, but may be too
cumbersome from the point of view of some practitioners.

Third, many papers use the parameter M to count the number of bytes or words (of
varying length) of memory used. Proper comparisons necessitate counting total number of
bits of memory in all cases. As an extreme example, suppose that two algorithms achieve
standard error 2/

√
M but one uses M bits and the other uses M 64-bit words. The first is

eight times more accurate for a given number of bits of memory. In general, if we know that
the accuracy of an algorithm is c/

√
M and that it stores Mb bits, we express the accuracy in

terms of M⋆, the total number of bits used, or c
√

b/
√

M⋆. Inverting this equation gives the
number of bits needed to achieve a given accuracy x : M⋆ = b(c/x)2. We ignore relatively
inconsequential small fixed costs such as the six bits required to store the value of T in our
adaptive algorithms.

Fourth, few papers actually prove anything about the distribution of the reported values,
with the notable exception of [13]. Typically, normality is instead presented as a reasonable
hypothesis, which may often be the case, but our proof of asymptotic normality of the
reported cardinalities is significant.

Fifth, the accuracy of our algorithms depend on the coefficient cβ of 1/
√

M in the relative
standard error, which varies. We use the average value of cβ over the interval of values
β might take on during the execution of the algorithm. For HyperBitT we (somewhat
arbitrarily) use the interval where cβ < 1.5; our other algorithms calculate an appropriate
interval. As we have noted, the curve in Figure 1 is quite flat, so it is likely that the value
encountered in practice is smaller than the value cited.

Sixth, it is important to remember that we are dealing with random fluctuations and
approximate analyses. It may be tempting to use more precision, but any differences indicated
would not be noticed in practice. For example, one might conclude that HyperLogLog with
6-bit bytes should be very slightly better than LogLog with 6-bit bytes because its standard
error of 1.02/

√
M is very slightly better than 1.05/

√
M , but it would be extremely challenging

to develop experimental validation of that hypothesis.
With all these caveats, Table 4 presents a comparison of the algorithms we have discussed.

Our simplest and perhaps most useful implementation is HyperBitBit64, which achieves
18.5% accuracy on a stream on any length with just two 64-bit words and can be implemented
with a few dozen machine instructions. HyperBitT is the best by far when starting with
a rough estimate is feasible. More generally, if a straightforward and easy to maintain
implementation is desired, HyperBitBit and HyperBitBitBit are arguably simpler than the
8-bit version of HyperLogLog and substantially more efficient. If a careful implementation
with improved efficiency is desired, HyperTwoBits is substantially more efficient than the
6-bit version of HyperLogLog. In both cases our algorithms provide much better accuracy
for the same number of bits and use two-thirds as many bits to achieve the same accuracy.

6 Further Improvements

We conclude by briefly mentioning some opportunities that may lead to variants of our
algorithms that may be worthy of study in various particular situations.

S. Janson, J. Lumbroso, and R. Sedgewick 5:15

Table 4 Performance of cardinality estimation algorithms.

M⋆ = b(c/x)2 c
√

b/M⋆

bits needed for accuracy with
algorithm range for M b c c

√
b 2% 20% 128 bits 8K bits

Adaptive sampling[5] 64 1.20 9.60 230400 2304 85% 10.6%
Prob. counting[6] 64 0.78 6.24 97344 973 55% 6.9%

LogLog[4] 6 1.05 2.57 16538 165 23% 3.5%
HyperLogLog8[7] 8 1.04 2.94 21632 216 26% 3.3%
HyperLogLog[7] 6 1.02 2.55 16224 162 23% 2.8%

ExtHyperLogLog[16] 7 0.88 2.33 13552 136 21% 2.6%
HyperBitT 1 1.32 1.32 4356 44 12% 1.5%

HyperBitBit64 64 2 1.48 2.09 — 128 19% —
HyperBitBit 64–512 2 1.46 2.06 — 128 18% —

HyperBitBitBit 128–4096 3 1.46 2.53 15987 128 22% 2.8%
HyperTwoBits 128–4096 2 1.46 2.06 10658 128 18% 2.3%

Sparse arrays. Precise characterization of the “transition cost” just after incrementing T
(when the sketches are mostly 0s) may lead to slight performance improvements.
Use two sketches. The second sketch contains information that may lead to a more accurate
estimate. Analyzing this effect is tractable, but not likely to improve the accuracy by
more than a percentage point or two.
HyperThreeBits. Using 3-bit counters instead of the 2-bit counters in HyperTwoBits
allows implementation of seven layers of bit arrays and may be useful for specialized
applications needing very high accuracy (requiring huge values of M) for the kinds of
truly huge streams seen in modern computing.
HyperBit. We have studied many approaches to modifying HyperBitT to just increment
T, reset the sketch to 0s, and then characterizing the error due to the “transition cost”.
Despite some promising empirical results, the problem of developing a mathematical
model admitting proper comparison of such an algorithm with the ones described here
remains open.
Mergeability. Many applications can benefit from being able to merge sketches built
from two different streams. Our sketches are not difficult to merge, as indicated by the
following argument for HyperBitBit. A sketch is a triple (T, sketch0, sketch1). To
merge (TA, sketch0A, sketch1A) with (TB , sketch0B , sketch1B) consider the following
three cases:

If TA = TB = T use (T, sketch0A|sketch0B , sketch1A|sketch1B).
If the values of T differ by 8 or more, use the larger value and its sketches.
Otherwise, suppose wlog that TA = TB + 4. Use (TA, sketch0A|sketch1B , sketch1A).

In the first and third cases, check whether the first sketch is nearly full. If so, increment
T (by 4) and update the sketches as usual. This result is not precisely the same as if
the two streams had actually been merged, but the difference is likely acceptably small
in many practical situations. The argument for HyperBitT is similar, but simpler; the
argument for HyperBitBitBit is similar, but more complicated.

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996,
pages 20–29. ACM, 1996. doi:10.1145/237814.237823.

AofA 2024

https://doi.org/10.1145/237814.237823

5:16 Bit-Array-Based Alternatives to HyperLogLog

2 A. D. Barbour, Lars Holst, and Svante Janson. Poisson Approximation. Oxford University
Press, 1992.

3 Kai-Min Chung, Michael Mitzenmacher, and Salil P. Vadhan. Why simple hash functions
work: Exploiting the entropy in a data stream. Theory Comput., 9:897–945, 2013. doi:
10.4086/TOC.2013.V009A030.

4 Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities (extended
abstract). In Giuseppe Di Battista and Uri Zwick, editors, Algorithms - ESA 2003, 11th
Annual European Symposium, Budapest, Hungary, September 16-19, 2003, Proceedings, volume
2832 of Lecture Notes in Computer Science, pages 605–617. Springer, 2003. doi:10.1007/
978-3-540-39658-1_55.

5 Philippe Flajolet and G. Nigel Martin. Probabilistic counting. In 24th Annual Symposium on
Foundations of Computer Science, Tucson, Arizona, USA, 7-9 November 1983, pages 76–82.
IEEE Computer Society, 1983. doi:10.1109/SFCS.1983.46.

6 Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applic-
ations. J. Comput. Syst. Sci., 31(2):182–209, 1985. doi:10.1016/0022-0000(85)90041-8.

7 Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog: the
analysis of a near-optimal cardinality estimation algorithm. In Philippe Jacquet, editor, AofA
07— Proceedings of the 2007 Conference on Analysis of Algorithms, Juan-les-pins, France,
June 18-22, 2007, DMTCS Proceedings volume AH, pages 127–146. DMTCS, 2007. URL:
https://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf.

8 Allan Gut. Probability: A Graduate Course (2nd edition). Springer Texts in Statistics, 75,
2013.

9 Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in practice: algorithmic
engineering of a state of the art cardinality estimation algorithm. In Giovanna Guerrini and
Norman W. Paton, editors, Joint 2013 EDBT/ICDT Conferences, EDBT ’13 Proceedings,
Genoa, Italy, March 18-22, 2013, pages 683–692. ACM, 2013. doi:10.1145/2452376.2452456.

10 Piotr Indyk and David P. Woodruff. Tight lower bounds for the distinct elements problem.
In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003,
Cambridge, MA, USA, Proceedings, pages 283–288. IEEE Computer Society, 2003. doi:
10.1109/SFCS.2003.1238202.

11 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the
distinct elements problem. In Jan Paredaens and Dirk Van Gucht, editors, Proceedings of
the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA, pages 41–52. ACM, 2010.
doi:10.1145/1807085.1807094.

12 Matti Karppa and Rasmus Pagh. Hyperlogloglog: cardinality estimation with one log more. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 753–761, 2022.

13 Jérémie Lumbroso. An optimal cardinality estimation algorithm based on order statistics
and its full analysis. Discrete Mathematics & Theoretical Computer Science, AM, 2010.
doi:10.46298/dmtcs.2780.

14 Jérémie Lumbroso. How Flajolet processed streams with coin flips. CoRR, abs/1805.00612,
2018. arXiv:1805.00612.

15 Jérémie Lumbroso and Conrado Martínez. Affirmative Sampling: Theory and Applications.
In Mark Daniel Ward, editor, 33rd International Conference on Probabilistic, Combinatorial
and Asymptotic Methods for the Analysis of Algorithms (AofA 2022), volume 225 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 12:1–12:17, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.AofA.2022.12.

16 Tal Ohayon. Extendedhyperloglog: Analysis of a new cardinality estimator. CoRR,
abs/2106.06525, 2021. arXiv:2106.06525.

https://doi.org/10.4086/TOC.2013.V009A030
https://doi.org/10.4086/TOC.2013.V009A030
https://doi.org/10.1007/978-3-540-39658-1_55
https://doi.org/10.1007/978-3-540-39658-1_55
https://doi.org/10.1109/SFCS.1983.46
https://doi.org/10.1016/0022-0000(85)90041-8
https://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf
https://doi.org/10.1145/2452376.2452456
https://doi.org/10.1109/SFCS.2003.1238202
https://doi.org/10.1109/SFCS.2003.1238202
https://doi.org/10.1145/1807085.1807094
https://doi.org/10.46298/dmtcs.2780
https://arxiv.org/abs/1805.00612
https://doi.org/10.4230/LIPIcs.AofA.2022.12
https://arxiv.org/abs/2106.06525

S. Janson, J. Lumbroso, and R. Sedgewick 5:17

17 Seth Pettie and Dingyu Wang. Information theoretic limits of cardinality estimation: Fisher
meets shannon. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 556–569, 2021.

18 Robert Sedgewick and Philippe Flajolet. An Introduction to the Analysis of Algorithms, Second
Edition. Addison-Wesley-Longman, 2013.

19 Dingyu Wang and Seth Pettie. Better cardinality estimators for hyperloglog, pcsa, and beyond.
In Floris Geerts, Hung Q. Ngo, and Stavros Sintos, editors, Proceedings of the 42nd ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2023, Seattle,
WA, USA, June 18-23, 2023, pages 317–327. ACM, 2023. doi:10.1145/3584372.3588680.

A Proof of Lemma 1

Suppose that Xn ≥ 0 are random variables and an, bn, and σ2 numbers such that, as n → ∞,
we have an → a > 0, bn → 0, and (Xn − an)/bn

d−→ N(0, σ2). If f is a continuously
differentiable function on (0, ∞) with f ′(a) ̸= 0, then (f(Xn) − f(an))/bn

d−→ N(0, f ′(a)2σ2).

Proof. This is well known, but we include this proof for completeness.
By the mean value theorem,

f(Xn) − f(an)
bn

= f ′(X∗
n)Xn − an

bn
(7)

for some X∗
n with Xn ≤ X∗

n ≤ an or an ≤ X∗
n ≤ Xn. Since (Xn − an)/bn

d−→ N(0, σ2) and
bn → 0, we have Xn − an

p−→ 0. Furthermore, an → a, and hence Xn
p−→ a. Consequently,

also X∗
n

p−→ a. Thus, since f ′ is continuous, f ′(X∗
n) p−→ f ′(a). The result follows from (7)

and the assumption. ◀

B Implementation details

The abstract operations we have used in expressing our algorithms can be implemented
efficiently on most computers, as described in the following paragraphs. Our code makes
liberal use of Java’s left and right shift operators < < and > > and bitwise logical operations
(&, |, and ~) for bitwise (AND, OR, and NOT) respectively. Algorithm 4 is a full low-level
implementation of HyperBitBit64 that solves the practical cardinality estimation problem.

Sketches

As we have noted, few programming languages support an efficient bit[] type (even Java
does not guarantee that boolean arrays use one bit per entry). As we saw in HyperBitBit64
(Algorithm 2), shifting and masking on 64-bit long values is an easy way to implement the
abstraction. For larger values of M, we use arrays of 64-bit values. In Java, for example, we
maintain the sketch as an array of long values:

long[] sketch = new long [M/64];

Then the Java code
if ((sketch[k/64] & (1L < < (k % 64))) != 0)

tests whether the kth bit in the sketch is 1 and the Java code
sketch[k/64] = sketch[k/64] | (1L < < (k % 64));

sets the kth bit in the sketch to 1.

AofA 2024

https://doi.org/10.1145/3584372.3588680

5:18 Bit-Array-Based Alternatives to HyperLogLog

Trailing 1s

The key abstract operation in our implementations involves computing the function r(x), so
that we can test whether a 64-bit value x has at least T trailing 1s. Rather than maintaining
the parameter T , we maintain U = 2T . The reason for doing so is that the value U-1 has
T trailing 1s, which enables us to test whether a value x has at least T trailing ones with
the bitwise logical operation (x & (U-1)) == (U-1), which is easy to implement with a few
machine-language instructions.

Population count

The second abstract operation in our implementations is the function p(x), the so-called
“population count” – the number of 1 bits in a binary value. This function has a long and
interesting history, but, for our purposes, it is easy to avoid, by maintaining a count of the
number of 1 bits in the sketches, incrementing when each bit is set.

Two-bit counters

Again, we use shifting and masking on arrays of 64-bit long values. We keep one long
array s1 for the more significant bit and a second long array s0 for the less significant bit.
To make the code more readable, we define the following methods to test and set the bit
corresponding to bit k:

public static long val(long[] s1, long[] s0, int k)
{ return 2*((s1[k/64] > > (k % 64)) & 1L)+((s0[k/64] > > (k % 64)) & 1L); }
public static void setval(long[] s1, long[] s0, int k, long v)
{

s1[k/64] = (s1[k/64] & ~(1L < < (k % 64))) | ((v/2) & 1L) < < (k % 64);
s0[k/64] = (s0[k/64] & ~(1L < < (k % 64))) | (v & 1L) < < (k % 64);

}

In a tightly efficient or machine-code version, this code would be used inline.
The final abstract operation to consider is to decrement all the non-zero counters. Consider

the following table, which gives all possibilities for a given bit position, where s1s0 is the
value before incrementing and t1t0 is the value after decrementing.

before after
value s1 s0 value t1 t0

0 0 0 0 0 0
1 0 1 0 0 0
2 1 0 1 0 1
3 1 1 2 1 0

Considering these as truth tables on boolean values, it is easy to check that t1 = s1 AND
s0 and t0 = s1 AND NOT s0. Furthermore, we can eliminate the temporary variables by
doing the operations in the order s0 = s1 AND NOT s0 and then s1 = s1 AND NOT s0.
Implementing these operations with bitwise operations on our arrays of long values is
straightforward.

S. Janson, J. Lumbroso, and R. Sedgewick 5:19

Algorithm 4 HyperTwoBits (full low-level implementation).

public static int estimateHTB (String [] stream , int N, int M)
{

int U = 2;
double alpha = .988;
long [] s0 = new long [M/64];
long [] s1 = new long [M/64];
int count = 0;
for (int i = 0; i < N; i++)
{

long x = hash1(s); // 64- bit hash
int k = hash2(s, M); // (lg M)-bit hash
if ((x & (U -1)) == (U -1)) count ++;
if ((x & (U -1)) == (U -1))

if (val(s1 , s0 , k) < 1) setval (s1 , s0 , k, 1);
if ((x & (16*U -1)) == (16*U -1))

if (val(s1 , s0 , k) < 2) setval (s1 , s0 , k, 2);
if ((x & (256*U -1)) == (256*U -1))

if (val(s1 , s0 , k) < 3) setval (s1 , s0 , k, 3);
if (count >= alpha*M)
{

for (int j = 0; j < M/64; j++)
{ s0[j] = s1[j] & ~s0[j]; s1[j] = s1[j] & ~s0[j]; }
count = 0;
for (int j = 0; j < M; j++)

if (val(s1 , s0 , j) > 0) count ++;
U = 16*U;

}
}
double beta = 1.0 - 1.0* count/M;
double bias = Math.log (1.0/ beta);
return (int) (U*M*bias);

}

AofA 2024

Phase Transition for Tree-Rooted Maps
Marie Albenque #

IRIF, Université Paris Cité, France

Éric Fusy #

Univ Gustave Eiffel, CNRS, LIGM, F-77454 Marne-la-Vallée, France

Zéphyr Salvy #

Univ Gustave Eiffel, CNRS, LIGM, F-77454 Marne-la-Vallée, France

Abstract
We introduce a model of tree-rooted planar maps weighted by their number of 2-connected blocks.
We study its enumerative properties and prove that it undergoes a phase transition. We give the
distribution of the size of the largest 2-connected blocks in the three regimes (subcritical, critical
and supercritical) and further establish that the scaling limit is the Brownian Continuum Random
Tree in the critical and supercritical regimes, with respective rescalings

√
n/ log(n) and

√
n.

2012 ACM Subject Classification Mathematics of computing → Generating functions; Mathematics
of computing → Enumeration; Mathematics of computing → Stochastic processes; Mathematics of
computing → Probability and statistics

Keywords and phrases Asymptotic Enumeration, Planar maps, Random trees, Phase transition

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.6

Funding ANR CartesEtPlus “ANR-23-CE48-0018”.
Marie Albenque: ANR “IsOMa” under the agreeement ANR-21-CE48-0007.

Acknowledgements We would like to thank the anonymous referees for their careful reading and
their insightful comments.

1 Introduction

A planar map m is the proper embedding into the two-dimensional sphere of a connected
planar finite multigraph, considered up to homeomorphisms. In recent years, models of
random planar maps with weighted 2-connected blocks [5, 23] have been introduced. In
particular, the model with a Boltzmann weight u per block exhibits a phase transition at
uC = 9/5, with a “tree phase” for u > uC with only small blocks and having the Brownian
Continuum Random Tree (CRT) as scaling limit [23], a “map-phase” for u < uC characterized
by the existence of a giant block and having the Brownian sphere as scaling limit, and with
mesoscopic blocks and the stable tree of parameter 3/2 as scaling limit at the critical point
uC [14].

Here, we study such a model in the context of decorated maps and consider the emblematic
case of tree-rooted maps, i.e., maps endowed with a spanning tree. In theoretical physics,
decorated maps are instrumental to provide models of two-dimensional quantum gravity
coupled with matter. They lead to new asymptotic behaviours, and the study of scaling limits
in that context is currently a very challenging topic in random maps [16]. Among decorated
maps, tree-rooted maps have very rich combinatorial properties and their enumeration goes
back to Mullin [22], who obtained the formula

mn =
n∑

k=0

(
2n

2k

)
CatkCatn−k = CatnCatn+1 (1)

© Marie Albenque, Éric Fusy, and Zéphyr Salvy;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 6; pp. 6:1–6:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:malbenque@irif.fr
mailto:eric.fusy@univ-eiffel.fr
mailto:zephyr.salvy@univ-eiffel.fr
https://doi.org/10.4230/LIPIcs.AofA.2024.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Phase Transition for Tree-Rooted Maps

for the number of tree-rooted maps with n edges, by observing that a tree-rooted map
is a shuffle of two plane trees (the spanning tree and its dual). A direct bijective proof
that mn = CatnCatn+1 was later obtained by Bernardi [2], who subsequently extended his
bijection to maps endowed with a Potts model [3].

Our contributions here are both enumerative and probabilistic. First, we show an
asymptotic estimate for 2-connected tree-rooted maps, and that the enumeration of tree-
rooted maps with a weight u per 2-connected block undergoes a phase transition at an explicit
(transcendental) value uC . On the probabilistic side, we obtain limit laws for the sizes of
the largest blocks, with the existence of a giant block if and only if u < uC . Furthermore,
we show that the scaling limit is the CRT for all u ≥ uC , with a discontinuity at uC for the
order of magnitude of the rescaling, which is

√
n/ log n at uC whereas it is

√
n for u > uC

(the scaling limit result for u > uC also follows from [23, Th 6.63], as further commented in
Section 4.3). Finally, we discuss possible extensions in the concluding section.

2 Block-decomposition of tree-rooted maps

Let m be a planar map. We denote, respectively, by E(m), V (m) and F (m) its sets of edges,
vertices and faces. Any edge is made of two half-edges (which meet at the middle of the edge).
All the maps considered in this paper will be rooted, meaning that one of their half-edges is
distinguished (and is represented by an oriented edge on figures), and a rooted planar map
will be simply called a map from now on. The size of a map m – denoted by |m| – is defined
as its number of edges.

A map m is said to be separable if E(m) can be partitioned into two non-empty subsets
E1 and E2 such that there exists exactly one vertex – called cut vertex – incident to both an
element of E1 and an element of E2. It is is said to be 2-connected otherwise. By convention,
the vertex map (i.e., the map reduced to a single vertex) is considered to be 2-connected. A
block of m is a maximal 2-connected submap of positive size. The number of blocks of m is
denoted by b(m), so that if |m| > 0, then b(m) = 1 if and only if m is 2-connected.

Fix m a map, and let τ be one of its spanning trees, then one calls (m, τ) a tree-rooted
map. We denote, respectively, by M and B the set of tree-rooted maps and of 2-connected
tree-rooted maps, by Mn and Bn the subset of M and B restricted to elements of size n,
and by M(z) and B(y) the associated generating series. In the following, a tree-rooted map
will be denoted by m instead of being explicitly written as a pair, and, for m ∈ M, we write
τ(m) for its distinguished spanning tree.

To enumerate 2-connected maps, Tutte [25] formulated a decomposition to relate the
generating series of maps and of 2-connected maps, as follows. Fix m a map and let b be the
block containing its root. For each half-edge e of b incident to a vertex u, let c be the corner
of b incident to u and following e in counterclockwise order around u. The pendant submap
me of e is defined as the maximal submap of m disjoint from b except at u, and located in
the area of c. Unless me is reduced to the vertex map, its root is defined at the half-edge
following e in counterclockwise order around u in m. From b and the collection of pendant
submaps {me}, we can bijectively reconstruct m.

This decomposition extends readily to tree-rooted maps as follows. Fix m ∈ M. Consider
(b, τb), where b is, as before, the block of m containing its root and τb = τ(m) ∩ b. We claim
that τb is a spanning tree of b: clearly, τb is acyclic since τ(m) is. Then, for any u, v ∈ b, since
b is 2-connected, any path between u and v that is not included in b has to visit the same cut
vertex at least twice, and in particular is not simple. Any simple path between u and v in m

is then included in b, and so is the unique simple path between u and v in τ(m). This proves

M. Albenque, É. Fusy, and Z. Salvy 6:3

Figure 1 Block tree corresponding to a tree-rooted planar map. Full grey (resp. dashed black)
edges represent edges that are part (resp. not part) of the decorating spanning tree.

that τb is connected. The same reasoning can be applied to all the pendant submaps me, to
get a similar decomposition in the tree-rooted case, which induces the following identity of
generating series.

▶ Proposition 1. The generating series satisfy the following equality:

M(z) = B
(
zM(z)2) . (2)

Moreover, this equation can be refined to account for the number of blocks in a tree-rooted
map. Writing M(z, u) =

∑
m∈M z|m|ub(m), one has:

M(z, u) = uB(zM(z, u)2) + 1 − u. (3)

Note that these relations are exactly the same as the ones obtained in the non–tree-rooted
case [25, 14].

Tutte’s decomposition can also be applied recursively, by considering first the root block
and then applying the block decomposition to each of the pendant submaps. This can be
encoded by a decomposition tree Tm, which was first explicitly described by Addario-Berry
in the non–tree-rooted case [1, §2], but which can also be extended to the tree-rooted case;
see Figure 1.

▶ Proposition 2. The block tree Tm of a tree-rooted map m satisfies the following properties:
Edges of Tm correspond to half-edges of m;
Internal nodes of Tm correspond to blocks of m: if an internal node v of Tm has r children,
then the corresponding block bv of m has size r/2;
The map m is entirely determined by

(
Tm, (bv, v ∈ Tm)

)
where bv is the block of m

represented by v in Tm if v is an internal node and is the vertex map otherwise.

3 Asymptotic enumeration

3.1 Asymptotic enumeration of 2-connected tree-rooted maps
We obtain here an asymptotic estimate for the number bn := [yn]B(y) of 2-connected tree-
rooted maps of size n. The steps are as follows: we first lift (Lemma 3) the asymptotic
estimate mn ∼ 4

πn3 16n for tree-rooted maps to a singular expansion for the generating
function M(z). Then via (2), we get in Proposition 4 the radius of convergence ρB and the
singular expansion of B(y) around ρB. In order to transfer the singular expansion to an
asymptotic estimate for bn, we also show that ρB is the unique dominant singularity of B(y),
using a combinatorial argument.

AofA 2024

6:4 Phase Transition for Tree-Rooted Maps

▶ Lemma 3. When z → ρM = 1
16 in C \ {z ≥ ρM }, one has, with Z = 1 − 16z,

M(z) = 8 − 64
3π

− 8
(

10
3π

− 1
)

Z − 2
π

ln (Z) Z2 + O
(
Z2) . (4)

Proof. The explicit expression of mn translates to a D-finite equation satisfied by M(z):

M ′′′(z) + 6
z

M ′′(z) + 6(18z − 1)
z2(16z − 1)M ′(z) + 12

z2(16z − 1)M(z) = 0. (5)

D-finite equation theory [13, Sec. VII.9.1, p. 518] gives that the finite singularities of a
solution f(z) of (5) are among the zeroes of the denominators of the coefficients: S = {0, 1/16};
and any solution of (5) is analytically continuable along any path avoiding S. In particular,
the solution M(z) =

∑
n≥0 CatnCatn+1zn, which is clearly analytic at 0, is continuable to

the whole complex plane slit by the half-line z ≥ 1/16.
Moreover, 1/16 is a so-called regular singularity; and, using the DEtools package of

the Maple computer algebra software, one can compute singular expansions for a basis of
solutions of (5). The singular expansion of M(z) is then a linear combination of the basis’
singular expansions, which gives:

M(z) =
∞∑

k=0
akZk − ln(Z)

∞∑
k=2

bkZk, with Z = 1 − 16z,

holding in a slit neighborhood of 1/16. From the explicit expression [zn]M(z) = CatnCatn+1
it follows that a0 = M(1/16) = 8 − 64

3π and a1 = M ′(1/16)/(−16) = −8
(10

3π − 1
)
. By

Pringsheim’s theorem, M(z) is singular at its radius of convergence 1/16 so there exists a
smallest integer k ≥ 2 such that bk ̸= 0. By applying transfer theorems [13, Chap. VI], one
has

[zn]M(z) ∼ (−1)k bkk!
nk+1 16n.

Since CatnCatn+1 ∼ 4
πn3 16n, one must have k = 2 and b2 = 2

π , which concludes the
proof. ◀

▶ Proposition 4. The radius of convergence of B(y) is

ρB := ρM M2(ρM) = 4(3π − 8)2

9π2 ≈ 0.091, (6)

and, when y → ρB in a ∆-neighbourhood of ρB, one has, with Y = 1 − y/ρB,

B(y) = 8 − 64
3π

− 2π (10 − 3π)
(3π − 8)(4 − π) Y − 2(3π − 8)3

27π(4 − π)3 ln(Y)Y 2 + O(Y 2). (7)

Moreover, ρB is the unique dominant singularity of B(y).

▶ Remark 5. The generating series B(y) is not D-finite (having a transcendental radius of
convergence), but from Equations (2) and (5) it is D-algebraic.

Proof of Proposition 4. Let H(z) = zM(z)2, so that one has M(z) = B(y), where y = H(z).
Note that H(z) has radius of convergence 1/16, and it inherits from M(z) a singular expansion
of the form (with Z = 1 − 16z):

H(z) = τ − κ Z + ξ ln(Z)Z2 + O(Z2)

for τ, κ, ξ explicit (e.g. τ = (8 − 64
3π)2/16).

M. Albenque, É. Fusy, and Z. Salvy 6:5

The function H is analytic on D(0, 1/16) and since H ′(z) > 0 for any z ∈ [0, 1/16), one
can apply the analytic local inversion theorem at any such value of z. Moreover, H maps
the interval [0, 1/16] to the interval [0, τ], so one can define a functional inverse g of H on
a neighborhood of [0, τ), which is analytic on this domain. Furthermore, H ′ is continuous
in a ∆-neighbourhood of 1/16, with positive value at 1/16, hence H(z) is injective on a
∆-neighbourhood U of 1/16, and maps U to an open region containing a ∆-neighbourhood
V of τ .

Using bootstrapping, the singular expansion of g(y) at τ (valid in V) is easily obtained
from the singular expansion of H(z). With Y = 1 − y/τ , one gets

z = g(y) = 1
16 − τ

16κ
Y − τ2

16κ3 ln(Y)Y 2 + O(Y 2).

With Z = 1 − 16z, this gives

Z = τ

κ
Y + τ2

κ3 ln(Y)Y 2 + O(Y 2).

Then, B(y) = M(g(y)) is analytic at every point in [0, τ), and the claimed singular expansion
of B(y) at ρB := τ is obtained by composing the singular expansion of M(z) with the singular
expansion of g(y), i.e., injecting the above expansion of Z into the expansion in Lemma 3.
By Pringsheim’s theorem, ρB is the radius of convergence of B(y).

It remains to prove that ρB is the unique dominant singularity of B(y). To do so, we use
the trick of writing B(y) as a supercritical composition scheme (in the sense of [15]), which
we achieve thanks to a decomposition into series-parallel components. Doing so, we prove in
Lemma 6 that B(y) can be written as

B(y) = 1 + 2y + 2yA(y) + yA′(y)Q(A(y)), (8)

for some generating functions A(y) and Q(w) with nonnegative coefficients, such that A(y)
is non-periodic and has radius of convergence larger than ρB . This implies that the radius of
convergence of Q(w) is A(ρB). Moreover, by the Daffodil Lemma, see [13, Lem. IV.1, p. 266],
for any y ̸= ρB such that |y| = ρB, we have that |A(y)| < A(ρB). Hence, A(y) belongs to
the disk of convergence of Q and y cannot be a singularity, which concludes the proof. ◀

Let Q(w) be the generating function of 2-connected tree-rooted maps with no face of
degree 2 nor vertex of degree 2, with w counting the number of non-root edges. A 2-connected
map with at least 2 edges is called series-parallel if it has no K4 minor. Let A(y) (resp.
A(y)) be the generating function of 2-connected tree-rooted series-parallel maps such that
the root-edge is not (resp. is) in the spanning tree, the variable y counting the number of
non-root edges.

▶ Lemma 6. The generating series B(y), A(y) and Q(w) satisfy the identity (8).
Moreover, the radius ρA of convergence of A satisfies ρA = 2 − 3 · 2−2/3 ≈ 0.11 > ρB.

Proof. A series-parallel network N is obtained by deleting the root-edge e of a series-parallel
map, the two extremities of e being called the poles of N (which are distinguished as the source,
the origin of e, and the sink, the end of e). Note that A(y) is also the generating function of
series-parallel networks endowed with a spanning tree, while A(y) is the generating function
of series-parallel networks endowed with a spanning forest made of two trees containing each
of the two poles. These two cases are respectively called crossing and non-crossing.

AofA 2024

6:6 Phase Transition for Tree-Rooted Maps

The core c of a 2-connected tree-rooted map b of size |b| ≥ 2 is obtained by repeatedly
collapsing faces of degree 2 and erasing vertices of degree 2 (turning the two incident edges into
a single edge). This process is actually well-behaved only if b is not series-parallel (otherwise
it ends at a loop-edge with no vertex). Conversely, a 2-connected map b is obtained from its
core c where every edge is replaced by a series-parallel network. By convention, the root-edge
of c is chosen as the one bearing the series-parallel network containing the root-edge of b.
If b is endowed with a spanning tree τ := τ(b), then for each edge e of c, letting Ne be
the associated series-parallel network, on Ne the tree τ induces either a spanning tree, or a
spanning forest with two trees containing each of the two poles. In the first case, e is declared
a tree-edge of c, and thus τ induces a spanning tree on c. In terms of generating functions,
Q(w) is the counting series for the core, each non-root edge of the core then contributing
either A(y) if a tree-edge (crossing case) or contributing A(y) otherwise (non-crossing case).
Since, by duality we have A(y) = A(y), every non-root edge turns out to have the same
contribution A(y). On the other hand, the root-edge of the core contributes A′(y) because
of the choice of the root-edge. This yields the claimed equation (8), where the added term
2yA(y) accounts for 2-connected tree-rooted series-parallel maps.

Now, to get the statement about ρA, it is well-known that a series-parallel network is either
reduced to a single edge, or made of at least two series-parallel networks connected in series,
or made of at least two series-parallel networks connected in parallel. The series-parallel
decomposition then yields the following equation-system:

A(y) = y + S(y) + P (y), A(y) = y + S(y) + P (y),

S(y) = (y + P (y))2

1 − y − P (y) , S(y) = (y + P (y))
(

1
(1 − y − P (y))2 − 1

)
,

P (y) = (y + S(y))
(

1
(1 − y − S(y))2

− 1
)

, P (y) = (y + S(y))2

1 − y − S(y)
.

By symmetry, one has S(y) = P (y) and P (y) = S(y), which yields A(y) = A(y) (this is also
clear by duality). Hence, the function A(y) is algebraic and satisfies1

A(y)3 + (y + 1) A(y)2 + (2y − 1) A(y) + y = 0

and its radius of convergence is the smallest positive root of 4y3 − 24y2 + 48y − 5 which gives
ρA = 2 − 3 · 2−2/3 ≈ 0.11 and is larger than ρB . ◀

From Proposition 4, by applying transfer theorems [13, Chap.VI] one directly obtains:

▶ Corollary 7. When n → ∞,

bn ∼ 4 (3π − 8)3

27π (4 − π)3 · ρ−n
B · n−3. (9)

3.2 Enumerative phase transition for block-weighted tree-rooted maps
In this section, we investigate the singular expansion of z 7→ M(z, u) around its radius of
convergence. We prove that this expansion exhibits three possible behaviours depending on
the value of u.

1 The series A(y) is represented in Sloane’s OEIS by the sequence A121873, which enumerates non-crossing
plants in the (n + 1)-sided regular polygon [8].

M. Albenque, É. Fusy, and Z. Salvy 6:7

Figure 2 Plot of y(u) defined in Proposition 8. At uC the tangent from the right side is also
horizontal.

▶ Proposition 8 (Definitions of uC and of y(u)). Recall that ρB is the radius of convergence
of B(y). For u ≥ 0, the equation

2yuB′(y)
uB(y) + 1 − u

= 1 (10)

has a unique solution in [0, ρB], denoted by y(u), if and only if u ≥ uC , where

uC := 9π (4 − π)
420π − 81π2 − 512 ≃ 3.02. (11)

Moreover, we set y(u) := ρB for u ≤ uC .

▶ Remark 9. The function u 7→ y(u) is non-increasing. It is plotted in Figure 2.
The value of uC defined above is the critical point of the model, and permits to identify

three regimes for which the singular behavior of M(z, u) differs:

▶ Proposition 10. For u > 0, let ρ(u) be the radius of convergence of z 7→ M(z, u). Then,
one has

ρ(u) = y(u)
(uB(y(u)) + 1 − u)2 , (12)

and the following singular expansions hold in a ∆-neighbourhood of ρ(u), with Z = 1−z/ρ(u).
When u < uC (subcritical case),

M(z, u) = q(u) − r(u) Z − s(u) ln(Z)Z2 + O(Z2), (13)

where

q(u) = 1 + u

(
7 − 64

3π

)
, r(u) = 8u (3π − 8) (10 − 3π) (21πu + 3π − 64u)

(243u − 27) π3 − (1260u − 108) π2 + 1536πu
,

s(u) = 2u (21πu + 3π − 64u)3 (3π − 8)3

π (81π2u + 512u + 36π − 420πu − 9π2)3 .

AofA 2024

6:8 Phase Transition for Tree-Rooted Maps

When u = uc (critical case),

M(z, u) = qC + sC ln(Z)−1/2Z1/2 + O(Z), (14)

where

qC = q(uC) = 864π − 144π2 − 1280
420π − 81π2 − 512 , sC = 16

√
6 (10 − 3π)

3
2 (4 − π)

420π − 81π2 − 512 .

When u > uC (supercritical case),

M(z, u) = q(u) − s(u) Z1/2 + O(Z), (15)

where

q(u) = uB(y(u)) + 1 − u, s(u) = uB(y(u)) + 1 − u√
1 + 2y(u) B′′(y(u))

B′(y(u))

.

Moreover, ρ(u) is the unique dominant singularity of z 7→ M(z, u) for every u > 0.

Proof. Let H(u)(z) := zM(z, u)2, and B(u)(y) := uB(y) + 1 − u. Squaring the equation
M(z, u) = B(u)(H(u)(z)) and multiplying both sides by z, one gets the functional equation

H(u)(z) = zB(u)(H(u)(z))2,

which is of Lagrangean type. The functional inverse of H(u)(z) is thus Ψ(u)(y) := y/B(u)(y)2,
and the singular expansion of H(u)(z) (and hence of M(z, u)) depends on whether d

dy Ψ(u)(y) =
0 – which is equivalent to (10) – admits a solution in (0, ρB).

More precisely, for u > uc, H(u)(z) has a dominant singularity of square-root type at
ρ(u) = Ψ(u)(y(u)) (see [13, Thm VI.6, p. 404-405],), and the same holds for M(z, u) =
(H(u)(z)/z)1/2, with the constants in (15).

In the limit case u = uC , one has d
dy Ψ(u)(y) = 0 at y = ρB, where one gets (with Y =

1−y/ρB) the expansion z = Ψ(u)(y) = ρ(uC)+ξ Y 2 ln(Y)+O(Y 2) for some explicit ξ > 0. By
inversion and bootstrapping, one gets y = H(u)(z) = ρB − ρB

√
2ρ(uC)/ξ

√
Z/ ln(Z) + O(Z),

and a similar expansion holds for M(z, u) = (H(u)(z)/z)1/2, with the explicit constants
in (14).

For u < uC , one has 2ρBuB′(ρB)
uB(ρB)+1−u < 1, and there is no solution to d

dy Ψ(u)(y) = 0 on
[0, ρB]. At ρB, one gets the expansion z = Ψ(u)(y) = ρ(u) − κ Y + ξ Y 2 ln(Y) + O(Y 2) for
some explicit κ, ξ > 0, and writing Y = 1 − y/ρB . By inversion and bootstrapping, one gets
y = H(u)(z) = ρB − ρ(u)ρB

κ Z − ρ(u)2ρB

κ3 Z2 ln(Z) + O(Z2), and a similar expansion holds for
M(z, u) = (H(u)(z)/z)1/2, with the explicit constants in (13).

Finally, for every fixed u > 0, the equation for H(u)(z) is of (non-periodic) Lagrangean
type, hence ρ(u) is the unique dominant singularity of H(u)(z), and the same holds for
z 7→ M(z, u) = B(u)(H(u)(z)). ◀

Applying transfer theorems to the expansions in Proposition 10 then gives:

▶ Corollary 11. Let u > 0. Then, with the notation of Proposition 10, one has the following
asymptotic estimates as n → ∞.

When u < uC ,

[zn]M(z, u) ∼ 2s(u) ρ(u)−n n−3. (16)

M. Albenque, É. Fusy, and Z. Salvy 6:9

When u = uC ,

[zn]M(z, uC) ∼ sC

2
√

π
ρ(u)−n n−3/2 ln(n)−1/2. (17)

When u > uC ,

[zn]M(z, u) ∼ s(u)
2
√

π
ρ(u)−n n−3/2. (18)

▶ Remark 12. Instead of analytic combinatorics methods, one can also obtain these results
using probabilistic methods. In the subcritical case, they require having an estimate of the
size of the largest block, which is provided in Section 4.2.

4 Probabilistic study of tree-rooted maps

The purpose of this section is to study the phase transition undergone by a random tree-rooted
maps weighted by their number of 2-connected blocks. Following [1, 14], this study is based
on a interpretation of the block tree as a Bienaymé–Galton–Watson process (Section 4.1), to
obtain asymptotic estimates on the size of the largest blocks (Section 4.2), and scaling limit
results in the critical and supercritical cases (Section 4.3).

4.1 Definition of the probabilistic model and Bienaymé–Galton–Watson
trees

We consider the following probability distribution on the class M of tree-rooted maps,
indexed by a parameter u > 0: for any integer n ≥ 0, we define

P(u)
n (m) = ub(m)

[zn]M(z, u) for any m ∈ Mn. (19)

We denote by M(u)
n a tree-rooted map sampled from P(u)

n , by T(u)
n the block tree associated

to it, and by (Bv, v ∈ T(u)
n) its corresponding decorations.

For n ∈ Z≥0 and µ a probability distribution on Z≥0, GW (µ, n) denotes the law of a
Bienaymé–Galton–Watson tree with offspring distribution µ conditioned to have n edges.
For u > 0 and y ∈ [0, ρB], let µy,u be the probability distribution on Z≥0 defined by setting,
for j ≥ 0,

µy,u(2j) := bjyju1j ̸=0

uB(y) + 1 − u
, so that E [µy,u] = 2uyB′(y)

uB(y) + 1 − u
. (20)

Moreover, we set µu := µy(u),u, where y(u) is defined in Proposition 8. Then, the following
proposition is the tree-rooted analogue of [14, Proposition 3.1] (itself an extension of [1,
Proposition 3.1]).

▶ Proposition 13. For every u > 0 and any n ≥ 0, under P(u)
n , the law of the tree of blocks

(T(u)
n , (Bv, v ∈ T(u)

n)) can be described as follows.
T(u)

n follows the law GW (µu, 2n);
Conditionally given T(u)

n = t, the blocks (Bv, v ∈ t) are independent random variables,
and, for v ∈ t, Bv follows a uniform distribution on the set of blocks of size kv(t)/2, where
kv(t) is the number of children of v in t.

AofA 2024

6:10 Phase Transition for Tree-Rooted Maps

Therefore the behavior of T(u)
n will be driven by the properties of µu. It follows from

Corollary 7 and Proposition 8 that µu exhibits the following phase transition:

▶ Lemma 14. For any u > 0, define

c(u) = 4 (3π − 8)3

9 (4 − π)3
u

(21π − 64)u + 3π
. (21)

Then, one has:
Subcritical case. For u < uC ,

E(u) := E [µu] = 16 (3π − 8) (10 − 3π)
3 (4 − π)

u

(21π − 64)u + 3π
< 1 and µu({2j}) ∼

j→∞
c(u)j−3;

(22)

Critical case. For u = uC ,

E [µu] = 1 and µuC ({2j}) ∼
j→∞

c(uC)j−3 = (3π − 8)2

12 (10 − 3π) (4 − π)2 j−3 ≃ 0.40 j−3;

Supercritical case. For u > uC ,

E [µu] = 1 and µu({2j}) ∼ c(u)
(

y(u)
ρB

)j

j−3,

where y(u) < ρB so µu has exponential moments.

4.2 Phase transition for the sizes of the largest blocks
This section puts into light a phase transition for the block sizes of random tree-rooted
maps drawn according to P(u)

n . We use probabilistic techniques to obtain the results, but an
analysis using a saddle-point method could also be carried out.

For m a tree-rooted map, denote by LB1(m) ≥ · · · ≥ LBb(m)(m) the sizes of its blocks in
decreasing order. By convention, we set LBk(m) = 0 if k > b(m). For a random variable
Xn and a positive sequence an, recall that Xn = OP(an) (resp. Xn = ΘP(an)) means
that (P(Xn ≤ anun))n≥0 (resp. (P(an/un ≤ Xn ≤ anun))n≥0) tends to 1 for any positive un

tending to +∞.

▶ Theorem 15. The random tree-rooted map M(u)
n , drawn according to P(u)

n , exhibits the
following behaviours when n tends to infinity.
Subcritical case. For u < uc, the largest bloc is macroscopic, and more precisely one has:

LB1(M(u)
n) − (1 − E(u))n√

c(u)n ln(n)
(d)−−−−→

n→∞
N (0, 1). (23)

Furthermore, for any fixed j ≥ 2, it holds that LBj(M(u)
n) = ΘP(n1/2) and for x > 0:

P
(

LBj(M(u)
n) ≤ x

√
n
)

−−−−→
n→∞

e−λ(x)
j−2∑
p=0

λ(x)p

p! , where λ(x) := c(u)
2x2 . (24)

Critical case. For u = uC , for any fixed j ≥ 1, it holds that LBj(M(u)
n) = ΘP(n1/2). More

precisely, up to a shift of indices, the sizes of the blocks exhibit a similar behavior as the
sizes of non-macroscopic blocks in the subcritical regime, namely, for x > 0:

P
(

LBj(M(u)
n) ≤ x

√
n
)

−−−−→
n→∞

e−λ(x)
j−1∑
p=0

λ(x)p

p! , where λ(x) := c(uC)
2x2 . (25)

M. Albenque, É. Fusy, and Z. Salvy 6:11

Supercritical case. For u > uC , for all fixed j ≥ 1, it holds as n → ∞ that

LBj(M(u)
n) = ln(n)

ln
(

ρB

y(u)

) − 3 ln(ln(n))
ln
(

ρB

y(u)

) + OP(1).

Proof. In all three cases, we make extensive use of Janson’s survey [19]. In the supercritical
case, one can proceed as in the non–tree-rooted case [14] and use the survey’s Theorem 19.16.
In the critical case, its Example 19.29 can be applied. The subcritical case is a bit more
involved, Janson’s Theorem 19.34 can be applied for the size of the j-th largest block for
j ≥ 2. Results from Kortchemski [20, Theorem 1] allow to conclude for the largest block. ◀

▶ Remark 16. One can get a local limit theorem for LB1(M(u)
n) in the subcritical case as

in [24] (up to the technicality that nodes of the block tree have only even numbers of children).
Furthermore, one can state a joint limit law for the sizes LBj(M(u)

n). For any fixed r ≥ 1,c(u)
2

(
LBj(M(u)

n)√
n

)−2

, 2 ≤ j ≤ r + 1

 (d)−−−−→
n→∞

(A1, . . . , Ar),

where the Ai are the decreasingly ordered atoms of a Poisson Point Process of rate 1 on R+.
The same joint limit law holds at uC (with j from 1 to r).
▶ Remark 17. In contrast to the case of non–tree-rooted maps [14], here in the subcritical case
u < uC the size of the second block is negligible compared to the order of fluctuation of the
size of largest block. Moreover, for u < uC and fixed j ≥ 1, the j-th largest critical block has
the same limit law (up to constant rescaling) as the j + 1-th largest block in the subcritical
regime, which did not hold in the non–tree-rooted case. Informally, the conditioning that a
random walk (subcritical case) is an excursion (critical case) has negligible effect on the law
of the largest steps, so subcritical blocks (for j ≥ 2) behave like critical blocks.

4.3 Scaling limit in the critical and supercritical cases
In the critical and the supercritical cases, we can establish the following convergence result:

▶ Theorem 18. For any fixed u ≥ uc, there exist some constants αu, βu and γu such that:
If u > uc, it holds that:

γu√
n

·
(

M(u)
n , τ(M(u)

n), T(u)
n

) (d)−−−−→
n→∞

(αu · Te, βu · Te, Te); (26)

If u = uc, it holds that:

γuC

√
log(n)√
n

(
M(uC)

n , τ(M(uC)
n), T(uC)

n

) (d)−−−−→
n→∞

(αuC
· Te, βuC

· Te, Te); (27)

where, in both cases, each Te is a copy of the same realization of the Brownian Continuum
Random Tree (CRT), and the convergence holds in the Gromov-Hausdorff-Prokhorov sense.

Convergence towards the CRT in the supercritical case was previously obtained by
Stufler [23, Theorem 6.63], who considers a framework where a block-weighted map is
sampled, and afterwards one of its spanning trees is uniformly sampled. Block-weighted
models of random tree-rooted maps fall in this model upon tweaking the weights [23,
Remark 6.65]. Our contribution lies in showing scaling limit in the critical case (and having
a unified proof for both the supercritical and critical cases), and finding the value of uC .

AofA 2024

6:12 Phase Transition for Tree-Rooted Maps

Proof of Theorem 18. The convergence of the sequence of tree of blocks (T(u)
n) follows

from classical results about the scaling limit of Bienaymé–Galton–Watson trees towards
the CRT [21, 10], with an offspring distribution with a finite second moment in the u > uc

case or with finite moments of order 2 + ε in the critical case. The values of the constant
γu follows from general results. In the case u > uc, γu = σu/2, where σu is the standard
deviation of µu, given explicitely by

σ2
u = 1 + 2y(u)B′′(y(u))

B′(y(u)) .

For u = uC , the variance of µuC is infinite, and we get γuc
=
√

2c(uC) (see e.g. [18, Ex. 7.10]).
To establish the scaling limit of M(u)

n and of τ(M(u)
n), we proceed as in [23, 14] and prove

that the distances in the map and in the spanning tree are – up to a linear factor – equivalent
in the limit to the distances in the block tree. The proof extends effortlessly, and only requires
(for the critical case) to have a control on the diameter of the 2-connected blocks and of their
spanning trees, that we state in Lemma 19. The Prokhorov part of the convergence can be
established along the same lines as [14, Lemma 5.13]. ◀

A sequence (pn)n≥0 of nonnegative real numbers is called stretched-exponential if there is
γ > 0 such that pn ≤ exp(−nγ) for n large enough.

▶ Lemma 19 (Bound on the diameter of random 2-connected tree-rooted maps). Let Bn be a
uniformly random 2-connected tree-rooted map of size n, and recall that τ(Bn) denotes its
distinguished spanning tree. Then, for any ε > 0, the sequences

(
P(Diam(Bn) ≥ n1/2+ε)

)
n≥0

and
(
P(Diam(τ(Bn)) ≥ n1/2+ε

)
n≥0 are stretched-exponential2.

Proof. Note first that it is enough to establish the result for Diam(τ(Bn)) since Diam(Bn) ≤
Diam(τ(Bn)) deterministically.

By Mullin’s bijection [22], for Mn a uniform element of Mn, the height of τ(Mn) is
distributed as the maximal abscissa Xn in a random walk (with steps in {W, E, S, N}) of
length 2n, ending at the origin and staying in the right-hand upper quadrant. It is easy to
establish, e.g. using Chernoff’s bound and a union bound, that the maximal abscissa X̃n in a
random walk of length 2n in Z2 is such that, for any ε > 0, the sequence

(
P(X̃n ≥ n1/2+ε)

)
n≥0

is stretched-exponential.
Since the random walk has probability Θ(n−3) to end at the origin and to stay in the

quadrant, the sequence
(
P(Xn ≥ n1/2+ε)

)
n≥0 is also stretched-exponential. And so is the

sequence
(
P(Diam(τ(Mn)) ≥ n1/2+ε)

)
n≥0 since the diameter of a tree is at most twice its

height. Let α = 1 − E(1). By the results of the previous section, one gets

P(LB1(M⌊n/α⌋) = n) = Θ(1/
√

n ln(n)),

and in that case a block of maximal size is distributed as Bn. Hence, the sequence(
P(Diam(τ(Bn)) ≥ n1/2+ε)

)
n≥0 is also stretched-exponential. ◀

2 To prove Theorem 18, it is actually enough to have the result for an exponent strictly smaller than 1.

M. Albenque, É. Fusy, and Z. Salvy 6:13

5 Perspectives

It has been recently shown [9, 16, 17] that for Mn a random tree-rooted map of size n, the
volume-growth exponent (whose inverse should give the exponent for the order of magnitude
of the diameter) is with high probability in the interval [3.550408, 3.63299]. It would be
interesting to verify whether these bounds also hold for the random 2-connected tree-rooted
map Bn, and more generally for the random tree-rooted map M(u)

n in the subcritical regime.
Regarding extensions of the model, one could consider maps endowed with a spanning

forest, with weight v per tree in the forest, which were studied by Bousquet-Mélou and
Courtiel [7], and one could additionally have a weight u > 0 per 2-connected block. They
showed that, for v > 0, one gets the asymptotic behaviour n−5/2 as in pure maps [7]. The
phase transition should thus be of the same nature than for the non–tree-rooted case [14],
and we expect the scaling limit to be a stable tree of parameter 3/2 at the critical weight
uC(v). The case v = 0 corresponds to tree-rooted maps as studied here. Interestingly, their
model still has a combinatorial interpretation for v ∈ [−1, 0), with asymptotic behaviour
n−3 ln(n)−2 [7]. From this behaviour it can be expected that, at the critical weight uC(v),
the asymptotic enumeration has a correcting term n−3/2 and the scaling limit is the CRT
with distances rescaled by n1/2 (same order of magnitude as in the supercritical case). To
have a continuous range of asymptotic exponents, one could more generally consider random
maps weighted by a Potts model, and additionally weighted at blocks (a method to derive
the singular exponents of general maps weighted by a Potts model has been developed in [6];
see also [11, 4]).

Finally, one could also consider other kinds of block-decompositions in the context of
decorated maps, such as 3-oriented triangulations or 2-oriented quadrangulations decomposed
into irreducible components, having a weight u per such component. The asymptotic
exponents at u = 1 are n−5 and n−4 [12], respectively. This suggests that, as in the
above mentioned model, at the critical weight uC , the model exhibits a tree-behaviour: the
asymptotic enumeration has polynomial correction n−3/2 and rescaling the distances by n1/2

gives convergence towards the CRT.

References
1 Louigi Addario-Berry. A probabilistic approach to block sizes in random maps. ALEA - Latin

American Journal of Probability and Mathematical Statistics, XVI:1–13, 2019.
2 Olivier Bernardi. Bijective counting of tree-rooted maps and shuffles of parenthesis systems.

Electron. J. Comb., 14(1), 2007.
3 Olivier Bernardi. Tutte polynomial, subgraphs, orientations and sandpile model: New connec-

tions via embeddings. Electron. J. Comb., 15(1), 2008.
4 Olivier Bernardi and Mireille Bousquet-Mélou. Counting colored planar maps: algebraicity

results. Journal of Combinatorial Theory, Series B, 101(5):315–377, 2011.
5 Valentin Bonzom. Large N limits in tensor models: Towards more universality classes of

colored triangulations in dimension d ≥ 2. Symmetry, Integrability and Geometry: Methods
and Applications, 12(073):39, 2016.

6 Gaëtan Borot, Jérémie Bouttier, and Emmanuel Guitter. Loop models on random maps via
nested loops: the case of domain symmetry breaking and application to the Potts model.
Journal of Physics A: Mathematical and Theoretical, 45(49):494017, 2012.

7 Mireille Bousquet-Mélou and Julien Courtiel. Spanning forests in regular planar maps. Journal
of Combinatorial Theory, Series A, 135:1–59, 2015.

8 Frédéric Chapoton. The Anticyclic Operad of Moulds. International Mathematics Research
Notices, 2007.

AofA 2024

6:14 Phase Transition for Tree-Rooted Maps

9 Jian Ding and Ewain Gwynne. The fractal dimension of Liouville quantum gravity: universality,
monotonicity, and bounds. Communications in Mathematical Physics, 374(3):1877–1934, 2020.

10 Thomas Duquesne and Jean-François Le Gall. Random trees, Lévy processes and spatial
branching processes, volume 281. Société mathématique de France Paris, France, 2002.

11 B. Eynard and G. Bonnet. The Potts-q random matrix model: loop equations, critical
exponents, and rational case. Physics Letters B, 463(2-4):273–279, 1999.

12 Stefan Felsner, Éric Fusy, and Marc Noy. Asymptotic enumeration of orientations. Discrete
Mathematics & Theoretical Computer Science, 12, 2010.

13 Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University press,
2009.

14 William Fleurat and Zéphyr Salvy. A phase transition in block-weighted random maps.
Electron. J. Probab., 29:1–61, 2024.

15 Xavier Gourdon. Largest component in random combinatorial structures. Discret. Math.,
180(1-3):185–209, 1998.

16 Ewain Gwynne, Nina Holden, and Xin Sun. A mating-of-trees approach for graph distances in
random planar maps. Probability Theory and Related Fields, 177(3-4):1043–1102, 2020.

17 Ewain Gwynne and Joshua Pfeffer. Bounds for distances and geodesic dimension in Liouville
first passage percolation. Electron. Commun. Probab., 24:1–12, 2019.

18 Svante Janson. Stable distributions. arXiv preprint arXiv:1112.0220, 2011.
19 Svante Janson. Simply generated trees, conditioned Galton–Watson, random allocations and

condensation. Probability Surveys, 9:103–252, 2012.
20 Igor Kortchemski. Limit theorems for conditioned non-generic Galton–Watson trees. Ann.

Inst. Henri Poincaré Probab. Stat., 51(2):489–511, May 2015.
21 Jean-François Le Gall. Random trees and applications. Probability Surveys, 2:245, 2005.
22 R. C. Mullin. On the enumeration of tree-rooted maps. Canadian Journal of Mathematics,

19:174–183, 1967.
23 Benedikt Stufler. Limits of random tree-like discrete structures. Probability Surveys, pages

318–477, 2020.
24 Benedikt Stufler. On the maximal offspring in a subcritical branching process. Electronic

Journal of Probability, 25:1–62, 2020.
25 William T. Tutte. A census of planar maps. Canadian Journal of Mathematics, 15:249–271,

1963.

Composition Schemes: q-Enumerations and Phase
Transitions in Gibbs Models
Cyril Banderier Ñ

Laboratoire d’Informatique de Paris Nord, Université Sorbonne Paris Nord, Villetaneuse, France

Markus Kuba Ñ

Department Applied Mathematics & Physics, University of Applied Sciences - Technikum Wien,
Austria

Stephan Wagner Ñ

Institute of Discrete Mathematics, TU Graz, Austria
Department of Mathematics, Uppsala Universitet, Sweden

Michael Wallner Ñ

Institut für Diskrete Mathematik und Geometrie, TU Wien, Austria

Abstract
Composition schemes are ubiquitous in combinatorics, statistical mechanics and probability theory.
We give a unifying explanation to various phenomena observed in the combinatorial and statistical
physics literature in the context of q-enumeration (this is a model where objects with a parameter of
value k have a Gibbs measure/Boltzmann weight qk). For structures enumerated by a composition
scheme, we prove a phase transition for any parameter having such a Gibbs measure: for a critical
value q “ qc, the limit law of the parameter is a two-parameter Mittag-Leffler distribution, while it
is Gaussian in the supercritical regime (q ą qc), and it is a Boltzmann distribution in the subcritical
regime (0 ă q ă qc). We apply our results to fundamental statistics of lattice paths and quarter-plane
walks. We also explain previously observed limit laws for pattern-restricted permutations, and a
phenomenon uncovered by Krattenthaler for the wall contacts in watermelons.

2012 ACM Subject Classification Mathematics of computing Ñ Generating functions; Mathematics
of computing Ñ Enumeration; Mathematics of computing Ñ Distribution functions

Keywords and phrases Composition schemes, q-enumeration, generating functions, Gibbs dis-
tribution, phase transitions, limit laws, Mittag-Leffler distribution, chi distribution, Boltzmann
distribution

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.7

Related Version arXiv version: https://arxiv.org/abs/2311.17226

Funding Cyril Banderier : supported by the French-Austrian PHC Amadeus project “Asymptotic
behaviour of combinatorial structures”.
Stephan Wagner : supported by the Swedish research council (VR), grant 2022-04030.
Michael Wallner : supported by the Austrian Science Fund (FWF): P 34142 and OeAD WTZ project
FR 01/2023.

Acknowledgements The second author warmly thanks Thomas Feierl for many discussions about
watermelons and Paul Schreivogl for discussions on partition functions. We also thank Christian
Krattenthaler for drawing our attention to the open problem of the phase transition of contacts in
watermelons, and the two referees for their feedback. Last but not least, we are pleased to dedicate
this excursion into the realm of composition schemes and limit laws to one of the greatest experts of
this realm, namely Michael Drmota, at the occasion of his 60th birthday!

© Cyril Banderier, Markus Kuba, Stephan Wagner, and Michael Wallner;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 7; pp. 7:1–7:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://lipn.univ-paris13.fr/~banderier/
https://orcid.org/0000-0003-0755-3022
https://www.dmg.tuwien.ac.at/kuba/
https://orcid.org/0000-0001-7188-6601
https://www.math.tugraz.at/~wagner/
https://orcid.org/0000-0001-5533-2764
https://dmg.tuwien.ac.at/mwallner/
https://orcid.org/0000-0001-8581-449X
https://doi.org/10.4230/LIPIcs.AofA.2024.7
https://arxiv.org/abs/2311.17226
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Composition Schemes: q-Enumerations and Phase Transitions in Gibbs Models

1 Introduction

1.1 q-enumeration and Gibbs distributions
Let T be a family of combinatorial objects, let |¨| denote the size of objects, and let X : T Ñ N
be a statistic defined on T . The statistic X on objects of T of size n can be encoded by the
sum

fnpqq “
ÿ

TPT :|T |“n

qX pT q. (1)

This sum reduces for q “ 1 to the total number fnp1q “ fn of objects of size n. In
combinatorics, for any given q P R, it is called the q-enumeration of T of size n with respect
to X (see, e.g., [1, 31]). In the language of statistical mechanics, fnpqq is a partition function
with Boltzmann weight q. The bivariate generating function F pz, qq is then defined as

F pz, qq “
ÿ

TPT
z|T |qX pT q “

ÿ

ně0
fnpqqz

n “
ÿ

ně0

ÿ

kě0
fn,kznqk. (2)

Here fn,k denotes the number of objects of T of size n for which X equals k. It is usual to
associate with the statistic X the random variables Xn, n ě 1, defined as

PpXn “ kq “
fn,k

fn
“

rqksfnpqq

fnp1q
“

rznqksF pz, qq

rznsF pz, 1q , (3)

such that each object from T of size n is equally likely. The associated probability generating
function is given by EpqXnq “

rzn
sF pz,qq

rznsF pz,1q . In Equation (3), the reader is probably used to
consider q as a formal variable, but in this work, like in statistical mechanics, we shall
consider q as an adjustable parameter (weight P R`) of the underlying combinatorial and
physical structures. This is also the spirit of the Boltzmann sampling method [18], where q

is tuned to minimize the number of rejection steps in the sampling algorithm.
More precisely, in this article, we put a Gibbs measure on the statistic X ; that is, one

has the following probabilistic model.

▶ Definition 1 (Gibbs distribution). Let a family T of combinatorial objects and a statistic
X : T Ñ N be given. For real q ą 0, the Gibbs distribution of this statistic is the law of the
random variable Xnpqq with probability mass function

PpXnpqq “ kq “
fn,kqk

fnpqq
, k ě 0.

In terms of the probability generating function ppvq “ EpvXnp1qq, we have EpvXnpqqq “
ppvqq
ppqq .

A well-known example in probability theory is the Mallows distribution [36] on permutations
with respect to the inversion statistic.

In many applications, one is interested in the limit distribution of Xnpqq, which depends
on the value of q ą 0; see, e.g., [9, 11, 12, 14, 33, 34, 37, 40]. Let us pinpoint the result of
Krattenthaler [33], who uncovered a phase transition in the normalized mean number of
wall contacts at q “ 2 in watermelons. Using methods from analytic combinatorics, we
will show that similar phase transitions naturally occur in a great many instances, not only
with respect to the expectation but also for the limit laws. We will use the framework of
composition schemes, which often provide a direct and unifying way to explain why phase
transitions occur [5, 6, 25]. In Section 2, we establish in which way the phase transitions in
the Gibbs model depend on the value of q. Particular instances of similar phenomena have
been observed in [13,43]. We give further examples in Sections 3 and 4.

C. Banderier, M. Kuba, S. Wagner, and M. Wallner 7:3

1.2 Composition schemes and Gibbs distributions
Functional composition schemes such as F pzq “ G

`

Hpzq
˘

are of great importance in com-
binatorics [5, 6, 25] and probability theory [39]. The main focus is to analyse probabilistic
properties of compositions like

F pz, uq “ G
`

uHpzq
˘

(4)

as a multitude of parameters X can be modelled in this way. Here u marks the so-called size
of the core, i.e., the involved G-component; see [5,6,25]. The distribution of the corresponding
random variable Xn is then readily defined by

PpXn “ kq “
rznuksF pz, uq

rznsF pz, 1q .

Structurally, such schemes are at the heart of many fascinating phase transition phenomena
(analytically corresponding, e.g., to coalescing saddle points or to confluence of singularities),
related to the Gibbs measure in statistical physics and probability theory [39].

First, we relate composition schemes to q-enumeration.

▶ Lemma 2 (Composition schemes and Gibbs distributions). Let a combinatorial statistic X
with bivariate generating function F pz, uq be given. Then, for real q ą 0 the Gibbs distribution
of X has a probability mass function given in terms of F by

PpXnpqq “ kq “
rznuksF pz, quq

rznsF pz, qq
.

Figure 1 Under the Gibbs model, we get different limit distributions for the random variable
Xnpqq associated with statistics counted by a composition scheme: from left to right, Boltzmann
(e.g., the negative binomial), Mittag-Leffler (e.g., Rayleigh), chi (e.g., half-normal), Gaussian. We
establish their universality in the next sections.

In many (combinatorial) applications of composition schemes, the following assumptions
hold [6]: all involved generating functions Gpzq, Hpzq, and F pzq have nonnegative coefficients
and aperiodic support, are analytic in a ∆-domain with a finite radius of convergence ρF

and possess singular expansions of the form

F pzq “ P

ˆ

1 ´
z

ρF

˙

` cF ¨

ˆ

1 ´
z

ρF

˙λF

p1 ` op1qq , (5)

where λF P Rzt0, 1, 2, . . . u is called the singular exponent (at z “ ρF), and where P pxq P Crxs
is a polynomial (of degree ě 1 for λF ą 1, of degree 0 for 0 ă λF ă 1, and P “ 0 for
λF ă 0). Then, singularity analysis [25] can often be used to compute the asymptotics of
the coefficients. Note that the sign of the constant cF depends on the Puiseux exponent λF ;
see [6, Equation (8)].

AofA 2024

7:4 Composition Schemes: q-Enumerations and Phase Transitions in Gibbs Models

For the reader’s convenience, we recall the classical terminology for composition schemes
in the following definition.

▶ Definition 3 (Classification of composition schemes). Let τH “ HpρHq. A composition
scheme F pzq “ G

`

Hpzq
˘

is called subcritical if it satisfies τH ă ρG, critical if it satisfies
τH “ ρG, and supercritical if it satisfies τH ą ρG.

We note that each individual class of critical schemes leads to very diverse combinatorial
and probabilistic phenomena [3, 5, 6, 25,39].

One typical example of a combinatorial construction of shape F pz, uq “ G
`

uHpzq
˘

is
given by the sequence construction.

▶ Example 4 (Sequence of objects). Given a combinatorial structure H, let F “ SeqpHq.
Using the variable u to encode the core size (i.e., the number of H components), one has
F pz, uq “ 1{p1 ´ uHpzqq. This is a composition scheme with Gpzq “ 1{p1 ´ zq, with ρG “ 1
and λG “ ´1.

We observe that the parameter q can thus directly influence the nature of the underlying
singular structure when the total mass (obtained by u “ 1) changes from rznsF pz, 1q to
rznsF pz, qq. Let us make this more precise for the following class of functions that includes
the sequence construction.

▶ Lemma 5 (Nature and asymptotics of q-enumerated composition schemes). Let a composition
scheme F pz, uq “ G

`

uHpzq
˘

with singular exponents λG ă 0 and 0 ă λH ă 1 be given. Let
qc :“ ρG

τ
H

“
ρG

Hpρ
H
q
ą 0. The nature of the scheme then splits into three different regimes:

for 0 ă q ă qc, the scheme is subcritical;
for q “ qc, the scheme is critical;
for q ą qc, the scheme is supercritical.

Accordingly, if one imposes a Gibbs measure on the number of H-components, this impacts
the asymptotics of their q-enumeration fnpqq as follows:

fnpqq „

$

’

’

’

’

&

’

’

’

’

%

cH qG1pqτHq

Γp´λ
H
q

ρ´n
H n´λH´1, for 0 ă q ă qc,

cG

´

´
cH

τ
H

¯λG 1
Γp´λ

H
λ

G
q
ρ´n

H n´λH λG´1, for q “ qc,

cG

´

qρH1pρq
ρ

G

¯λG 1
Γp´λ

G
q
ρ´nn´λG´1, for q ą qc,

where, in the last case, ρ is the unique solution of qHpρq “ ρG in the interval p0, ρHq.

Proof of Lemma 5. First, we turn to the nature of the scheme Fqpzq “ GpqHpzqq. Since
Fqpzq has nonnegative coefficients, Pringsheim’s Theorem [25] implies that there is a singu-
larity on the real axis. Further, Hpzq is monotonically increasing on the real axis from 0
to ρH , where it attains the value τH “ HpρHq ă 8. Thus, the nature of Fqpzq depends on
the relation between the singularity ρG of Gpzq and qτH as claimed. Next, we look at the
singular expansions. We start with those of Gpzq and Hpzq. By the assumptions on λG and
λH we have

Gpzq „ cG

ˆ

1 ´
z

ρG

˙λG

and Hpzq „ τH ` cH

ˆ

1 ´
z

ρH

˙λH

. (6)

C. Banderier, M. Kuba, S. Wagner, and M. Wallner 7:5

In the subcritical regime 0 ă q ă
ρG

τ
H

, the outer function Gpzq is analytic at qτH and we
combine its expansion with the singular expansion of Hpzq around z “ ρH to obtain

Fqpzq “ GpqτHq ` G1pqτHq
`

qHpzq ´ qτH

˘

p1 ` op1qq

„ GpqτHq ` cHqG1pqτHq
`

1 ´
z

ρH

˘λH .

Basic singularity analysis [25] provides the stated expansion.
For the critical regime q “

ρG

τ
H

we obtain

Fqpzq „ cG

˜

1 ´ q
τH

ρG

´ q
cH

ρG

ˆ

1 ´
z

ρH

˙λH

¸λG

“ cG

ˆ

´
cH

τH

˙λG
ˆ

1 ´
z

ρH

˙λH λG

,

which leads to the desired result.
Finally, in the supercritical regime q ą

ρG

τ
H

, there exists a unique 0 ă ρ ă ρH such that
qHpρq “ ρG. As ρ ă ρG, we may expand Hpzq around ρ. This leads to

qHpzq “ qHpρq ` qH 1pρqpz ´ ρq ` O
`

pz ´ ρq2˘ .

Note that by the positivity of the coefficients of H one has H 1pρq ‰ 0. Thus, we have

Fqpzq „ cG

ˆ

qρH 1pρq

ρG

˙λG
ˆ

1 ´
z

ρ

˙λG

,

and the asymptotic formula for fnpqq follows by singularity analysis. ◀

2 Main theorem: Gibbs models and phase transitions with respect to q

The following result is our main theorem. It describes the dependency of the limit law on the
parameter q. In this extended abstract, we present only the case of sequence-like schemes.

▶ Theorem 6 (Gibbs distribution and phase transitions of sequence-like schemes). Let a
composition scheme F pz, uq “ G

`

uHpzq
˘

, with singular exponents λG ă 0 and 0 ă λH ă 1,
be given. Then, the Gibbs distribution of Xn “ Xnpqq associated with F pz, qvq has the
following limit laws and phase transition diagram that depend on qc “

ρG

τ
H

:

Parameter q 0 ă q ă qc q “ qc q ą qc

Regime subcritical critical supercritical
Singularity ρH ρH ρ ă ρH

Singular exponent ZλH ZλGλH ZλG

Limit law discrete continuous continuous
(Boltzmann) (Mittag-Leffler) (Gaussian)

In the subcritical regime 0 ă q ă qc, the random variable Xn ´ 1 converges to a dis-
crete distribution, a Boltzmann distribution BG1pqτhq with explicit probability generating
function given by:

PpXn ´ 1 “ kq Ñ rvks
G1pvqτHq

G1pqτHq
.

In particular, if Gpzq “ 1
p1´zqm , the limit law of Xn ´1 is a negative binomial distribution

NegBinpm`1, 1´qτHq, where X „ NegBinpr, pq is defined by PpX “ kq “
`

k`r´1
k

˘

prp1´
pqk for k ě 0.

AofA 2024

7:6 Composition Schemes: q-Enumerations and Phase Transitions in Gibbs Models

In the critical regime q “ qc, the random variable Xn{n
λH converges in distribution:

´cHXn

τH nλ
H

L
ÝÑ X,

where the random variable X follows the two-parameter Mittag-Leffler distribution
MLpα, βq (with α :“ λH and β :“ ´λGλH) that is associated with the density fXpxq “

Γpβ`1q
αΓp β

α`1q

ř8

n“1
p´1qn

n!Γp´nαq
xn`β{α´1 determined by its moments EpXrq “

ΓpβqΓpr`β{αq

Γpβ{αqΓpαr`βq
.

In particular, for λG “ ´1 and λH “ 1
2 , X follows the Rayleigh distribution Rp

?
2q,

where X „ Rpσq is defined by the density x
σ2 e´x2{p2σ2q for x ě 0.

In the supercritical regime q ą qc, the centred and normalized random variable pXn ´

µnq{σn converges in distribution to a standard normal distribution N p0, 1q, where mean µn

and variance σ2
n are both of order n: we have, with ρ ” ρpqq given by qHpρq “ ρG,

µn „
ρG

qρH 1pρq
¨ n, σ2

n „

´ ρ2
G

q2ρ2H 1pρq2 ´
ρG

qρH 1pρq
`

ρ2
GH2pρq

q2ρH 1pρq3

¯

¨ n.

In particular, the expected value of Xn is for n Ñ 8 asymptotically equivalent to

EpXnq „

$

’

’

&

’

’

%

1 `
qτH G2pqτHq

G1pqτ
H
q

, for 0 ă q ă qc,
λGτH Γp´λGλHq

c
H

Γpp1´λ
G
qλ

H
q
¨ nλH , for q “ qc,

ρG

qρH1pρq
¨ n, for q ą qc.

Proof of Theorem 6 (Sketch). For q ă qc we are in the subcritical regime and follow the
proof of Lemma 5. We build on the results of [6, 25]. We expand F pz, qvq for 0 ă v ă 1 to

obtain F pz, qvq „ GpqvτHq ` cHqvG1pqvτHq

´

1 ´ z
ρ

H

¯λH

.This implies that the probability
generating function satisfies

lim
nÑ8

EpvXnpqqq “ lim
nÑ8

rznsF pz, qvq

fnpqq
“

vG1pqvτHq

G1pqτHq
,

leading to a Boltzmann distribution BG1pqτHq. In particular, for Gpzq “ 1{p1 ´ zq we have
G1pzq “ 1{p1 ´ zq2, leading to a negative binomial distribution.

For q “ qc we are at the critical value and we thus apply [6, Theorem 4.1] with λG ă 0
and 0 ă λH ă 1. This yields the stated limit law, as discussed in [6, Remark 4.2].

In the supercritical regime for q ą qc, our claim results from the approach of Bender [25,
Propositions IX.6 and IX.7]. The singularity ρ “ ρpqvq becomes an analytic function of v while
the nature of the singularity remains unchanged for v in a sufficiently small neighbourhood
of 1. In particular, the expected value, the variance, and the normal limit law follow by an
application of Hwang’s quasi-power theorem [25,32]. ◀

It is worth pointing out that the constant in the asymptotics of σ2
n in the supercritical case

is always strictly positive. Thus degenerate limit laws are not possible. This is shown in the
following. The proof follows the lines of [35, Proposition 23].

▶ Proposition 7 (Positivity of the variance constant). In the supercritical regime q ą qc of
Theorem 6, we have

ρ2
G

q2ρ2H 1pρq2 ´
ρG

qρH 1pρq
`

ρ2
GH2pρq

q2ρH 1pρq3 ą 0,

thus σ2
n

n converges to a constant that is strictly positive.

C. Banderier, M. Kuba, S. Wagner, and M. Wallner 7:7

q “ 1 q “ 1.5 q “ 3

Figure 2 The distribution (with the histogram interpolated to a curve) of returns to 0 in Motzkin
excursions (as analysed in Section 3), for walks of length n “ 100, under the Gibbs measure of
weight q. While the distribution for a finite n evolves continuously when one increases q, it exhibits
a phase transition when one increases n (at qc “ 3{2 for this example). As stated in Theorem 6, it
converges to a negative binomial distribution for q ă qc, to a Rayleigh distribution for q “ qc, and
to a Gaussian distribution for q ą qc.

Proof. For v in a suitably small neighbourhood of 1, the singularity ρ “ ρpqvq of F pz, qvq

becomes an analytic function of v as mentioned in the proof of Theorem 6. It is implicitly
determined by qvHpρpqvqq “ ρG. Singularity analysis gives us the asymptotic formula

fnpqvq “ rznsF pz, qvq „ cG

´qvρpqvqH 1pρpqvqq

ρG

¯λG 1
Γp´λGq

ρpqvq´nn´λG´1;

see Lemma 5. For the moment generating function of the variable Xnpqq, this means that

EpetXnpqqq “
fnpqetq

fnpqq
„ exp

`

aptqn ` bptq
˘

, (7)

uniformly for t in a suitable neighbourhood of 0, where

aptq “ log ρpqq ´ log ρpqetq, bptq “ λG

´

t ` log ρpqetqH 1pρpqetqq

ρpqqH 1pρpqqq

¯

.

Note that ap0q “ bp0q “ 0 and a1p0q “ ´
qρ1pqq
ρpqq

“
ρG

qρpqqH1pρpqqq
(the latter identity follows

by implicit differentiation from qHpρpqqq “ ρG). Now let k be the smallest positive integer
greater than or equal to 2 such that apkqp0q ‰ 0, provided that such an integer exists.
Substitute t “ sn´1{k in (7) and apply the Taylor expansion of aptq and bptq around 0 to
obtain

E
´

exp
´spXnpqq ´ a1p0qnq

n1{k

¯¯

“ exp
´apkqp0q

k! sk ` op1q
¯

.

By Lévy’s continuity theorem, this would mean that Xnpqq´a1p0qn
n1{k converges in distribution

to a random variable X with moment generating function

Mpsq “ EpesXq “ exp
´apkqp0q

k! sk
¯

.

However, such a random variable can only exist for k “ 2: otherwise, it would have second
moment 0, thus be almost surely equal to 0 and have moment generating function Mpsq “ 1.

AofA 2024

7:8 Composition Schemes: q-Enumerations and Phase Transitions in Gibbs Models

If k “ 2, then

0 ‰ a2p0q “ ´
q2ρ2pqq

ρpqq
`

q2ρ1pqq2

ρpqq2 ´
qρ1pqq

ρpqq

“
ρ2

G

q2ρpqq2H 1pρpqqq2 ´
ρG

qρpqqH 1pρpqqq
`

ρ2
GH2pρpqqq

q2ρpqqH 1pρpqqq3 ,

and we are done (here, implicit differentiation of qHpρpqqq “ ρG is used again in the second
step). It only remains to exclude the possibility that there is no k ě 2 such that apkqp0q ‰ 0.
Then aptq must be a linear function: aptq “ κt for some constant κ, thus ρpqetq “ ρpqqe´κt.
This would have to hold for t in a neighbourhood of 0. But in view of the implicit equation
qetHpρpqetqq “ ρG, this would imply that the function H is given by Hpzq “

ρG

q pz{ρpqqq1{k,
contradicting our assumptions. ◀

3 Applications: phase transitions from negative binomial to Rayleigh
to Gaussian

We start our list of applications with the case of fixed-point-biased permutations avoiding
a pattern of length three, whose asymptotic behaviour was recently considered in [13].
Then we consider several instructive examples from the theory of lattice paths, namely the
returns to zero in Dyck bridges and Dyck excursions, as well as in Motzkin bridges and
Motzkin excursions. Thereby, we add to the existing classical results (that is, for the uniform
distribution) the phase transitions stemming from q-enumeration (that is, for the Gibbs
distribution on the parameter). We also consider the number of boundary interactions in
some quarter-plane walk models, and the number of contacts between two paths in some
watermelon models.

3.1 Fixed-point-biased permutations avoiding a pattern of length three
Let Snppq be the set of permutations of 1, 2, . . . , n that avoid a given pattern p (where,
as usual, the elements of the pattern p need not be contiguous in the permutation; see
Figure 3). The generating function counting the statistic fppσq (number of fixed points) of
such permutations for the pattern 321 was obtained by Vella [41, Theorem 2.13] and for the
other two patterns 132 and 213 by Elizalde [19, Theorem 3.5]. It is in all three cases equal to

F pz, uq “ 1 `

8
ÿ

n“1

ÿ

σPSnppq

ufppσqzn “
2

1 ` 2p1 ´ uqz `
?

1 ´ 4z
.

Figure 3 An example of a 321-avoiding permutation of length 12 with 3 fixed points marked
by red dots. (A permutation π “ pπ1, . . . , πnq avoids the pattern p “ 321 if there is no triplet
1 ď i ă j ă k ď n such that πk ă πj ă πi.)

C. Banderier, M. Kuba, S. Wagner, and M. Wallner 7:9

Later, Chelikavada and Panzo [13] used this generating function to establish a phase
transition which we rederive now.

▶ Theorem 8 (Phase transition for fixed-point-biased permutations). The limit Gibbs distribu-
tion of the fixed-point statistic in permutations avoiding any given pattern p P t132, 321, 213u
has a phase transition with critical value qc “ 3:

Parameter q 0 ă q ă 3 q “ 3 q ą 3

Limit law of Xnpqq Negative binomial Rayleigh Gaussian
NegBinp2, 1 ´ q{3q Rp

?
2q N p0, 1q

Proof. In order to deduce the phase transitions from Theorem 6, we write F pz, uq as a
sequence of components Hpzq marked with u

F pz, uq “
Hpzq

z
¨

1
1 ´ uHpzq

“
1

uz
¨

1
1 ´ uHpzq

´
1

uz
, where Hpzq “

2z

1 ` 2z `
?

1 ´ 4z
.

Here, F pz, uq is not in the shape of the composition scheme (4), but very close. For the limit
law, these perturbing factors are irrelevant, since by Lemma 2 one has for n, k ě 0

PpXnpqq “ kq “
rznuksF pz, quq

rznsF pz, quq
“

rzn`1uk`1sGpuqHpzqq

rzn`1sGpuqHpzqq
, where Gpzq “

1
1 ´ z

.

Thus, one has ρG “ 1, ρH “ 1
4 and τH “ HpρHq “ 1

3 . Theorem 6 then implies the phase
transition at qc “ ρG{τH “ 3 with a Boltzmann distribution (simplifying here to a NegBin),
a Mittag-Leffler distribution (simplifying here to a Rayleigh distribution since λH “ 1

2), and
a Gaussian distribution. ◀

3.2 Returns to zero in Dyck and Motzkin paths
We consider two classical directed models: Dyck and Motzkin paths. Dyck paths consist of
the steps up p1, 1q and down p1,´1q, while Motzkin paths allow additionally some horizontal
steps p1, 0q. They are called bridges if they start at p0, 0q and end at p2n, 0q, and excursions
if it is additionally required that they never cross the x-axis.

The random variable Xn, counting the number of returns to the x-axis in a random
excursion and bridge of size 2n, is a well-studied object [4, 25], leading for excursions to a
negative binomial limit law for Xn and leading for bridges to a Rayleigh limit law for Xn{

?
n.

Note that the root degree in plane trees behaves the same due to a classical bijection between
plane trees and Dyck excursions.

▶ Theorem 9 (q-enumerations: limit laws for returns to zero). The Gibbs distribution of the
number Xn “ Xnpqq of returns to zero in Dyck excursions and bridges of length 2n as well
as Motzkin excursions and bridges of length n, has a phase transition at qc and follows, after
suitable rescaling for n Ñ `8, either a negative binomial, Rayleigh, or Gaussian distribution.

Parameter q Limit law

0 ă q ă qc Xn ´ 1 L
ÝÑ NegBinp2, 1 ´ qτHq

q “ qc
´cH

τ
H

Xn?
n

L
ÝÑ Rayleighp

?
2q

q ą qc
Xn´µ¨n

σ¨
?

n

L
ÝÑ N p0, 1q

qc “

$

’

’

’

’

&

’

’

’

’

%

2 for Dyck excursions,
1 for Dyck bridges,
3
2 for Motzkin excursions,
1 for Motzkin bridges.

Here, τH is 1
2 , 1, 2

3 , 1, and cH is ´ 1
2 ,´1,´ 1?

3 ,´ 2?
3 for Dyck excursions, Dyck bridges,

Motzkin excursions and Motzkin bridges, respectively.

AofA 2024

7:10 Composition Schemes: q-Enumerations and Phase Transitions in Gibbs Models

Proof. Cutting each time the path returns to the x-axis [25, p. 636], one directly sees that
the generating functions Dpzq and BDpzq of Dyck excursions and bridges, respectively, satisfy
the relations

Dpzq “
1

1 ´ z2Dpzq
“

1 ´
?

1 ´ 4z2

2z2 and BDpzq “
1

1 ´ 2z2Dpzq
“

1
?

1 ´ 4z2
.

The generating functions Dpz, uq and BDpz, uq of Dyck excursions and bridges marking the
number of returns are

Dpz, uq “
1

1 ´ z2uDpzq
and BDpz, uq “

1
1 ´ 2z2uDpzq

. (8)

In both cases we recognize a composition scheme (4) with Gpzq “ 1
1´z and Hpzq “ z2Dpzq

for excursions and Hpzq “ 2z2Dpzq for bridges. Therefore, we can readily apply Theorem 6.
Motzkin excursions have the generating function

Mpzq “
1 ´ z ´

a

p1 ` zqp1 ´ 3zq

2z2 ,

with dominant singularity ρ “ 1
3 [25]. With the same ideas as for Dyck paths, we directly

get the bivariate generating functions Mpz, uq and BM pz, uq of excursions and bridges,
respectively, as

Mpz, uq “
1

1 ´ zu
`

1 ` zMpzq
˘ and BM pz, uq “

1
1 ´ zu

`

1 ` 2zMpzq
˘ . (9)

Again, we recognize the composition scheme (4) with Gpzq “ 1
1´z and Hpzq “ zp1 ` zMpzqq

for excursions and Hpzq “ zp1 ` 2zMpzqq for bridges. This leads again to similar phase
transitions. ◀

▶ Remark 10 (Weighted paths). Let p91, p0, p1 ě 0 be the weights of the steps p1, 91q, p1, 0q,
p1, 1q, respectively. The weight of a path is the product of its weights. Weighted Dyck
excursions and bridges behave exactly as unweighted ones, as each path of length 2n has
a weight pp91p1q

n. However, weighted Motzkin excursions and bridges behave differently.
With the same techniques it is easy to show that for weighted Motzkin excursions, the phase
transition occurs at

qc “
p0 ` 2?p91p1

p0 `
?

p91p1
“ 1 `

1
1 `

p0?
p91p1

P p1, 2s.

Finally, for weighted Motzkin bridges the phase transition again always occurs at qc “ 1,
because τH “ 1 is independent of the weights.

3.3 Boundary contacts for quarter-plane walks

A direct byproduct of our results are phase transitions for Hadamard models of quarter-plane
walks. Beaton, Owczarek, and Rechnitzer [7] initiated the study of quarter-plane walks with
wall interactions. We are interested in walks restricted to the quarter plane, starting and
ending at the origin, and their interaction with the walls (that is, their number of contacts
with x- or y-axis).

C. Banderier, M. Kuba, S. Wagner, and M. Wallner 7:11

It turns out that in many models the generating functions are rather complicated [7], but
for three families of walks called Hadamard models, the analysis of contacts can be done
in a fairly simple way. Such models are enumerated by a Hadamard product of generating
functions

Apzq d Bpzq :“
ÿ

ně0
anbnzn, where Apzq “

ÿ

ně0
anzn and Bpzq “

ÿ

ně0
bnzn.

They correspond to the diagonal, diabolo, and king walk models with stepsets

, , ,

respectively (for the last two models, one has in fact a slight variant of the usual diabolo or
king models: here we allow additionally the step p0, 0q, as indicated by the centre dot in the
stepset representation). Walks of length 2n in the quarter plane that start and end at p0, 0q
decompose into two independent directed excursions of length n. Therefore, these models are
in bijection with pairs of Dyck and Motzkin excursions. This is summarized in the following
table, where Dpz, uq and Mpz, uq are the generating functions from (8) and (9), respectively.

Model Steps Generating function Qpz, u1, u2q Sequence Q2n OEIS

Diagonal Dpz, u1q d Dpz, u2q Cn ¨ Cn A001246

Diabolo Dpz, u1q d Mpz, u2q Cn ¨ Mn A151362

King Mpz, u1q d Mpz, u2q Mn ¨ Mn A133053

The limit laws for the number of wall interactions with the x-axis or y-axis depend on
the particular values of the q-enumerations; compare with the results in Theorem 9. More
precisely, we get the following proposition. By symmetry it also translates to y-axis contacts
in the missing cases.

▶ Theorem 11 (Boundary interactions for some quarter-plane walks). The number of x-axis
contacts of diagonal walks and the number of y-axis contacts of diabolo walks follows the law
of the q-enumeration of Dyck returns to 0. The number of x-axis contacts of diagonal, diabolo,
and king walks follows the law of the q-enumeration of Motzkin returns to 0. Accordingly, the
phase transitions are the same as in Theorem 9.

Proof (sketch). In the diagonal model, the generating function of the x-axis contacts is
equal to Dpz, quq d Dpzq. Therefore, by Lemma 2 we have

PpXnpqq “ kq “
rznuksDpz, quq d Dpzq

rznsDpz, qq d Dpzq
“

rznuksDpz, quq

rznsDpz, qq
.

Thus, the result follows directly from Theorem 9. The other models follow in the same
fashion. ◀

▶ Remark 12 (x-axis plus y-axis contacts). The law of the number of x-axis plus y-axis contacts
is more involved, as it requires the study of the analytic behaviour of Hadamard products of
the shape p1´ zqa d p1´ zqb. These products were studied by Fill, Flajolet, and Kapur, who
gave the corresponding Puiseux expansions; see [23, Proposition 8]. Note that, as pinpointed
in [23], the case a ` b integer requires the use of additional hypergeometric identities.

AofA 2024

http://oeis.org/A001246
http://oeis.org/A151362
http://oeis.org/A133053

7:12 Composition Schemes: q-Enumerations and Phase Transitions in Gibbs Models

3.4 Friendly two-watermelons without wall: contacts and returns
We consider a pair of directed walkers with Dyck steps p1,´1q and p1, 1q. The walkers
start and end at the same point, may meet and share edges but not cross. Such walker
configurations W are also called friendly two-watermelons (see the related work of Roitner [38]
and Krattenthaler, Guttmann, and Viennot [34]). We are interested in walks of length n and
the number of contacts C of the two walkers. A contact in a two-watermelon is a point (not
counting the starting point) where both paths occupy the same lattice point. (See Figure 4.)

▶ Theorem 13 (Phase transition for contacts in friendly two-watermelons). With the renor-
malizations of Theorem 6, the limit Gibbs distribution of the number of contacts in friendly
two-watermelons has a phase transition with critical value qc “ 4{3:

Parameter q 0 ă q ă 4
3 q “ 4

3 q ą 4
3

Limit law of Xnpqq Negative binomial Rayleigh Gaussian
NegBinp2, 1 ´ 3

4 qq Rp
?

2q N p0, 1q

Proof. Let F pz, uq denote the bivariate generating function of friendly two-watermelons with
respect to the number of contacts:

F pz, uq “
ÿ

wPW
z|w|uCpwq.

This generating function was determined by Roitner [38], using a reduction to weighted
Motzkin paths. It is given by

F pz, uq “
1

1 ´ u
`

z2W pzq ` 2z
˘ , W pzq “

1 ´ 2z ´
?

1 ´ 4z

2z2 . (10)

Under the uniform distribution model, Roitner also obtained a discrete limit law for the
parameter (number of contacts). We note in passing that closely related problems in families
of osculating walkers have been considered before by Bousquet-Mélou [10]. Under the Gibbs
distribution model, we recognize a composition scheme with Gpzq “ 1{p1 ´ zq, ρG “ 1, and
Hpzq “ zpzW pzq ` 2q so that τH “ 3

4 . Therefore, Theorem 6 applies: we get the 3 phases,
with the critical value qc “

ρG

τ
H

“ 4
3 . ◀

Figure 4 An example of a friendly two-watermelon without wall of length 24 with 8 contacts
marked by red dots. Under the Gibbs model where such an object is given the weight q8, the
distribution of the number of contacts then depends on the value of q, according to the phase
transition given in Theorem 13.

C. Banderier, M. Kuba, S. Wagner, and M. Wallner 7:13

4 Extensions to other constructions: new phase transitions from
negative binomial to chi to Gaussian

It is appealing to extend Theorem 6 to even more general composition schemes such as

F pz, uq “ Mpzq ¨ G
`

uHpzq
˘

, (11)

where an additional factor Mpzq appears. This extended scheme is of interest as it captures
many classical combinatorial structures: some families of trees or lattice paths (meanders),
Pólya urns, and other probabilistic processes like the Chinese restaurant model. In its critical
phase, this scheme was recently analysed in [6] under the uniform distribution model for the
associated combinatorial structures. This extends the work of pioneers like Bender, Flajolet,
Soria, Drmota, Hwang, Gourdon [8, 16,17,26,28,32], later synthesized in [25].

In the long version of this article, we analyse this extended scheme under the Gibbs
measure model, and we show that the phase transition for Gibbs distributions leads, in some
cases, to the 3-parameter Mittag-Leffler distribution introduced in [6]. Further examples of
combinatorial problems involving an extended scheme are the root degree in two-connected
outerplanar graphs (see Drmota, Giménez, and Noy [15, Theorem 3.2]), the returns to zero
in coloured walks, and the number of wall interactions in watermelons. We now analyse the
phase transitions for these last two models.

4.1 Number of wall contacts in watermelons
An m-watermelon of length 2n consists of m walkers moving from p0, 2i ´ 2q to p2n, 2i ´ 2q,
1 ď i ď m, where every walker may either take an up step p1, 1q or a down step p1,´1q, but
walkers are not allowed to occupy the same position (they are thus called vicious). One
says that the watermelon has a wall if the x-axis serves as a barrier which the lowest walker
may touch but not cross. (See Figure 5.) Watermelons were introduced by Fisher [24] for
modelling wetting and melting. We refer the reader to the work of Krattenthaler, Guttmann,
and Viennot [33,34] or Feierl [20–22] for more results on watermelons and related problems.

Figure 5 A 3-watermelon (with a wall) of length 24 with 7 x-axis contacts marked by red dots.
Under the Gibbs model where such an object is given the weight q7, the distribution of the number
of contacts then depends on the value of q, according to the phase transition given in Theorem 14.

We are interested in the number of x-axis contacts of the lowest walker. For m “ 1 this
reduces to Theorem 9 on Dyck excursions. For m ě 1, we get the following theorem.
▶ Theorem 14 (Phase transition for wall contacts). The limit Gibbs distribution of the number
of x-axis contacts in m-watermelons with a wall has a phase transition at qc “ 2:

Parameter q 0 ă q ă 2 q “ 2 q ą 2

Limit law of Xnpqq Negative binomial Chi distribution Gaussian
NegBinp2m, 1 ´

q
2 q

Xn?
n

L
ÝÑ χp2mq N p0, 1q

AofA 2024

7:14 Composition Schemes: q-Enumerations and Phase Transitions in Gibbs Models

Proof (sketch). The q-enumeration of the number of contacts in m-watermelons of length
2n (n ą 0) with a wall was given by Krattenthaler [33, Theorem 4]:

fnpqq “
pn ´ 1q!

śm´1
i“0 p2i ` 1q!

śm´2
i“0 p2n ` 2iq!

ś2m´2
i“0 pn ` iq!

n`1
ÿ

ℓ“2

ˆ

2n ´ ℓ

n ´ 1

˙ˆ

ℓ ` 2m ´ 3
ℓ ´ 2

˙

qℓ. (12)

In the following, we denote by Xn the random variable counting the number of wall contacts,
where we drop the dependence on m. Its probability generating function EpqXnq satisfies

EpqXnq “
fnpqq

fnp1q
. (13)

Let F pz, qq denote the generating function of the numerator of the reduced fraction (13), i.e.,

F pz, qq “
ÿ

ną0
zn

n`1
ÿ

ℓ“2

ˆ

2n ´ ℓ

n ´ 1

˙ˆ

ℓ ` 2m ´ 3
ℓ ´ 2

˙

qℓ. (14)

We change the order of summation and shift the index to get

F pz, qq “
ÿ

ℓě2

ˆ

ℓ ` 2m ´ 3
ℓ ´ 2

˙

qℓ
ÿ

něℓ´1

ˆ

2n ´ ℓ

n ´ 1

˙

zn “ q2z
ÿ

ℓě0

ˆ

ℓ ` 2m ´ 1
ℓ

˙

qℓzℓ
ÿ

ně0

ˆ

2n ` ℓ

n

˙

zn.

Introducing the Catalan generating function Cpzq “ 1´
?

1´4z
2z , one has

ÿ

ně0

ˆ

2n ` ℓ

n

˙

zn “
Cpzqℓ

?
1 ´ 4z

.

While such a formula can be proven by convolution identities [29, Eq. (5.72)], it is pleasant
to give a bijective proof; we invite the reader to pause here and find it before reading on.

The bijection consists in taking a walk of length 2n ` ℓ ending at altitude ℓ, cutting it
at the initial longest bridge, and after this, at the last passage at each altitude. This gives
ř

ně0
`2n`ℓ

n

˘

z2n`ℓ “ 1?
1´4z

pzCpz2qqℓ.
Going back to the quest for simplifying F pz, qq, we thus obtain

F pz, qq “
q2z

?
1 ´ 4z

¨
1

`

1 ´ qzCpzq
˘2m , (15)

where in the last step we used the generating function identity Gpzq “ 1
p1´zq2m “

ř

ℓě0
`

ℓ`2m´1
ℓ

˘

zℓ. Note that Eq. (15) suggests that there may be a bijective proof of
Formula (12) using links with bridges and arches (instead of Krattenthaler’s tour de force
relying on determinants and jeu de taquin).

Now, in order to get the limit laws, our key observation is that Eq. (15) is a composition
scheme of shape F pz, qq “ MpzqG

`

qHpzq
˘

, where Hpzq “ zCpzq, and the probability
generating function (under the Gibbs measure) of the number of contacts is given by

EpvXnpqqq “
rzn´1vksF pz, qvq

rzn´1sF pz, qq
.

Next, we just apply singularity analysis with values λG “ ´2m, ρG “ 1, λH “ 1
2 . The

scheme is critical for qc “ 2, where one gets the Mittag-Leffler distribution 1?
2 MLp 1

2 , 2m´ 1
2 q,

which can be seen (from its moments) to be the same as the chi distribution χp2mq. This
gives the theorem. ◀

C. Banderier, M. Kuba, S. Wagner, and M. Wallner 7:15

4.2 Returns to zero in coloured walks
Let m ą 0 be an integer. An m-coloured bridge is an m-tuple pB1, . . . , Bmq of (possibly
empty) bridges Bi. As a visual representation, we think of them appended one after the other,
Bi is coloured in colour i. Note that not all colours need to be present. Let an m-coloured
walk be an m-coloured bridge to which a final walk is appended that never returns to the
x-axis. See Andrews [2] and [27,30] for some combinatorial properties of these walks, and
links with multicompositions.

We now prove that their number of returns to zero follows a χpmq distribution. In
particular, this gives the half-normal distribution for m “ 1 (which extends Theorem 9
to unconstrained walks, see [42]), the Rayleigh distribution for m “ 2, and the Maxwell
distribution for m “ 3.

First bridge Second (empty) bridge
of colour blue of colour purple

Third bridge
of colour green

Figure 6 A 3-coloured walk (only 2 of the available 3 colours are present) with 7 returns to zero
(red dots).

▶ Theorem 15 (Phase transitions for returns to zero). The Gibbs distribution of the number
Xnpqq of returns to zero in m-coloured walks of length n has a phase transition at qc “ 1 and
follows, after suitable rescaling for n Ñ `8, either a negative binomial, chi, or Gaussian dis-
tribution.

Parameter q 0 ă q ă 1 q “ 1 q ą 1

Limit law of Xnpqq Negative binomial Chi distribution Gaussian
NegBinpm, 1 ´ qq χpmq N p0, 1q

Proof (Sketch). We start by showing that returns to zero in m-coloured walks satisfy the
composition scheme F pz, qq “ MpzqGpqApzqq. First, let Bpzq be the generating function of
bridges. Each bridge can be decomposed into a sequence of minimal bridges (or generalized
arches), which have no return to zero between their extremities (yet jumps might cross the
x-axis). Hence, Apzq “ 1´ 1

Bpzq
. Second, the m-tuple corresponding to an m-coloured bridge

has the generating function GpApzqq, with Gpzq “ 1
p1´zqm . Third, the final part of the walk

(that never returns to the x-axis) corresponds to Mpzq “ W pzq{Bpzq, since each walk can
be factored into an initial bridge and this final part.

Then, as before, the probability generating function (under the Gibbs measure) is

EpvXnpqqq “
rznvksF pz, qvq

rznsF pz, qq
.

We get the values λG “ ´m, ρG “ 1, and λM “ ´1{2. Furthermore, for any directed
walk model [4], Bpzq has a critical exponent λB “ ´1{2, and therefore λA “ 1{2. This
also means that Bpzq diverges at the singularity, and thus Apzq is equal to 1. Hence, the
scheme is universally critical at qc “ 1, where we get 1?

2 MLp 1
2 , m´1

2 q, which can be seen
(from its moments) to be the same as the chi distribution χpmq. Other cases follow by
singularity analysis. ◀

AofA 2024

7:16 Composition Schemes: q-Enumerations and Phase Transitions in Gibbs Models

5 Conclusion

We unified the recent results of [6] with the classical results of [8,25] to obtain phase transitions
for Gibbs models under the umbrella of composition schemes. This allows us to obtain a
variety of limit laws, leading to new results, as well as summarizing and generalizing classical
results in analytic combinatorics. It also explains the universality hidden behind some phase
transitions up to now sporadically observed in the literature. In the full version of this article,
we give several extensions of Theorem 6, thus treating many other examples of more general
combinatorial constructions.

It is interesting to have an informal physicist look at our results: in statistical mechanics,
the Gibbs measure can be seen as qk “

expp´k{T q

Zp1{T q
, where T is the temperature of the model.

Accordingly, T Ñ 0 (i.e., q is very small) gives a frozen “solid” phase (typically leading
to a discrete distribution), while T Ñ `8 gives a “gaseous” phase (typically leading to a
Gaussian distribution), and, around (or at) a critical temperature Tc, this gives a “liquid”
phase (where the wild things are: one often observes at this location an unexpected fancy
distribution). Our article is one more illustration of this informal paradigm.

References
1 Florian Aigner. A new determinant for the q-enumeration of alternating sign matrices. Journal

of Combinatorial Theory, Series A, 180:27 pp., 2021. URL: https://arxiv.org/abs/1810.
08022.

2 George E. Andrews. The theory of compositions. IV: Multicompositions. The Mathematics
Student, 2007:25–31, 2007. URL: https://georgeandrews1.github.io/publications.html.

3 Cyril Banderier and Michael Drmota. Formulae and asymptotics for coefficients of algebraic
functions. Combinatorics, Probability and Computing, 24(1):1–53, 2015. URL: http://lipn.
univ-paris13.fr/~banderier/Papers/Alg.pdf.

4 Cyril Banderier and Philippe Flajolet. Basic analytic combinatorics of directed lattice paths.
Theoretical Computer Science, 281(1-2):37–80, 2002. doi:10.1016/S0304-3975(02)00007-5.

5 Cyril Banderier, Philippe Flajolet, Gilles Schaeffer, and Michèle Soria. Random maps,
coalescing saddles, singularity analysis, and Airy phenomena. Random Structures & Algorithms,
19(3-4):194–246, 2001. URL: https://lipn.univ-paris13.fr/~banderier/Papers/rsa.pdf.

6 Cyril Banderier, Markus Kuba, and Michael Wallner. Phase transitions of composition schemes:
Mittag-Leffler and mixed-Poisson distributions. Annals of Applied probability, 2024. 53 pp., to
appear. doi:10.48550/arXiv.2103.03751.

7 Nicholas R. Beaton, A. L. Owczarek, and Andrew Rechnitzer. Exact solution of some quarter
plane walks with interacting boundaries. Electronic Journal of Combinatorics, 26(3 (P53)),
2019. doi:10.37236/8024.

8 Edward A. Bender. Central and local limit theorems applied to asymptotic enumeration.
Journal of Combinatorial Theory, Series A, 15:91–111, 1973. doi:10.1016/0097-3165(73)
90038-1.

9 Alexei Borodin, Vadim Gorim, and Eric M. Rains. q-distributions on boxed plane partitions.
Selecta Mathematica, 16(4):731–789, 2010. doi:10.1007/s00029-010-0034-y.

10 Mireille Bousquet-Mélou. Three osculating walkers. Journal of Physics: Conference Series,
42:35–46, 2006. doi:10.1088/1742-6596/42/1/005.

11 Richard Brak, John W. Essam, and Aleksander L. Owczarek. New results for directed
vesicles and chains near an attractive wall. Journal of Statistical Physics, 93:155–192, 1998.
doi:10.1023/B:JOSS.0000026731.35385.93.

12 Richard Brak, John W. Essam, and Aleksander L. Owczarek. Scaling analysis for the adsorption
transition in a watermelon network of n directed non-intersecting walks. Journal of Statistical
Physics, 102:997–1017, 2001. doi:10.1023/A:1004819507352.

https://arxiv.org/abs/1810.08022
https://arxiv.org/abs/1810.08022
https://georgeandrews1.github.io/publications.html
http://lipn.univ-paris13.fr/~banderier/Papers/Alg.pdf
http://lipn.univ-paris13.fr/~banderier/Papers/Alg.pdf
https://doi.org/10.1016/S0304-3975(02)00007-5
https://lipn.univ-paris13.fr/~banderier/Papers/rsa.pdf
https://doi.org/10.48550/arXiv.2103.03751
https://doi.org/10.37236/8024
https://doi.org/10.1016/0097-3165(73)90038-1
https://doi.org/10.1016/0097-3165(73)90038-1
https://doi.org/10.1007/s00029-010-0034-y
https://doi.org/10.1088/1742-6596/42/1/005
https://doi.org/10.1023/B:JOSS.0000026731.35385.93
https://doi.org/10.1023/A:1004819507352

C. Banderier, M. Kuba, S. Wagner, and M. Wallner 7:17

13 Aksheytha Chelikavada and Hugo Panzo. Limit theorems for fixed point biased permutations
avoiding a pattern of length three. arXiv, 2023. URL: https://arxiv.org/abs/2311.04623.

14 Mihai Ciucu and Christian Krattenthaler. Enumeration of lozenge tilings of hexagons with
cut off corners. Journal of Combinatorial Theory, Series A, 100:201–231, 2002. doi:10.1006/
jcta.2002.3288.

15 Michael Drmota, Omer Giménez, and Marc Noy. Degree distribution in random planar graphs.
Journal of Combinatorial Theory. Series A, 118(7):2102–2130, 2011. doi:10.1016/j.jcta.
2011.04.010.

16 Michael Drmota and Michèle Soria. Marking in combinatorial constructions: generating
functions and limiting distributions. Theoretical Computer Science, 144(1-2):67–99, 1995.
doi:10.1016/0304-3975(94)00294-S.

17 Michael Drmota and Michèle Soria. Images and preimages in random mappings. SIAM Journal
on Discrete Mathematics, 10(2):246–269, 1997. doi:10.1137/S0895480194268421.

18 Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann samplers
for the random generation of combinatorial structures. Combinatorics, Probability and Com-
puting, 13(4-5):577–625, 2004. doi:10.1017/S0963548304006315.

19 Sergi Elizalde. Multiple pattern avoidance with respect to fixed points and excedances.
Electronic Journal of Combinatorics, 11(1):40 pp., 2004. doi:10.37236/1804.

20 Thomas Feierl. The height of watermelons with wall. Journal of Physics A: Mathematical and
Theoretical, 45(9), 2012. doi:10.1088/1751-8113/45/9/095003.

21 Thomas Feierl. The height and range of watermelons without wall. European Journal of
Combinatorics, 34(1):138–154, 2013. doi:10.1016/j.ejc.2012.07.021.

22 Thomas Feierl. Asymptotics for the number of walks in a Weyl chamber of type B. Random
Structures & Algorithms, 45(2):261–305, 2014. doi:10.1002/rsa.20467.

23 James Allen Fill, Philippe Flajolet, and Nevin Kapur. Singularity analysis, Hadamard products,
and tree recurrences. Journal of Computational and Applied Mathematics, 174(2):271–313,
2005. doi:10.1016/j.cam.2004.04.014.

24 Michael E. Fisher. Walks, walls, wetting, and melting. Journal of Statistical Physics, 34:667–
729, 1984. doi:10.1007/BF01009436.

25 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
2009. URL: http://algo.inria.fr/flajolet/Publications/book.pdf.

26 Philippe Flajolet and Michèle Soria. General combinatorial schemas: Gaussian limit dis-
tributions and exponential tails. Discrete Mathematics, 114(1-3):159–180, 1993. doi:
10.1016/0012-365X(93)90364-Y.

27 Manosij Ghosh Dastidar and Michael Wallner. Bijections and congruences involving lattice
paths and integer compositions. arXiv, 2024. A short version of this work was published
in the proceedings of GASCOM 2024, https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?
GASCom2024.22. URL: https://arxiv.org/pdf/2402.17849.

28 Xavier Gourdon. Largest component in random combinatorial structures. Discrete Mathematics,
180(1-3):185–209, 1998. doi:10.1016/S0012-365X(97)00115-5.

29 Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics. Addison-
Wesley Publishing Company, second edition, 1994. URL: https://www-cs-faculty.stanford.
edu/~knuth/gkp.html.

30 Brian Hopkins and Stéphane Ouvry. Combinatorics of multicompositions. In Combinatorial and
additive number theory IV, pages 307–321. Springer, 2021. doi:10.1007/978-3-030-67996-5_
16.

31 Sam Hopkins, Alexander Lazar, and Svante Linusson. On the q-enumeration of barely
set-valued tableaux and plane partitions. European Journal of Combinatorics, 2021. doi:
10.1016/j.ejc.2023.103760.

32 Hsien-Kuei Hwang. On convergence rates in the central limit theorems for combinatorial
structures. European Journal of Combinatorics, 19:329–343, 1998. doi:10.1006/eujc.1997.
0179.

AofA 2024

https://arxiv.org/abs/2311.04623
https://doi.org/10.1006/jcta.2002.3288
https://doi.org/10.1006/jcta.2002.3288
https://doi.org/10.1016/j.jcta.2011.04.010
https://doi.org/10.1016/j.jcta.2011.04.010
https://doi.org/10.1016/0304-3975(94)00294-S
https://doi.org/10.1137/S0895480194268421
https://doi.org/10.1017/S0963548304006315
https://doi.org/10.37236/1804
https://doi.org/10.1088/1751-8113/45/9/095003
https://doi.org/10.1016/j.ejc.2012.07.021
https://doi.org/10.1002/rsa.20467
https://doi.org/10.1016/j.cam.2004.04.014
https://doi.org/10.1007/BF01009436
http://algo.inria.fr/flajolet/Publications/book.pdf
https://doi.org/10.1016/0012-365X(93)90364-Y
https://doi.org/10.1016/0012-365X(93)90364-Y
https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?GASCom2024.22
https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?GASCom2024.22
https://arxiv.org/pdf/2402.17849
https://doi.org/10.1016/S0012-365X(97)00115-5
https://www-cs-faculty.stanford.edu/~knuth/gkp.html
https://www-cs-faculty.stanford.edu/~knuth/gkp.html
https://doi.org/10.1007/978-3-030-67996-5_16
https://doi.org/10.1007/978-3-030-67996-5_16
https://doi.org/10.1016/j.ejc.2023.103760
https://doi.org/10.1016/j.ejc.2023.103760
https://doi.org/10.1006/eujc.1997.0179
https://doi.org/10.1006/eujc.1997.0179

7:18 Composition Schemes: q-Enumerations and Phase Transitions in Gibbs Models

33 Christian Krattenthaler. Watermelon configurations with wall interaction: exact and asymp-
totic results. Journal of Physics: Conference Series, 42:179–212, 2006. doi:10.1088/
1742-6596/42/1/017.

34 Christian Krattenthaler, Anthony J. Guttmann, and Xavier G. Viennot. Vicious walkers,
friendly walkers and Young tableaux II: with a wall. Journal of Physics A: Mathematical and
General, 33:8835–8866, 2000. doi:10.1088/0305-4470/33/48/318.

35 Sara Kropf and Stephan Wagner. On q-quasiadditive and q-quasimultiplicative functions.
Electronic Journal of Combinatorics, 24(1):Paper No. 1.60, 22 pages, 2017. doi:10.37236/
6373.

36 Colin L. Mallows. Non-null ranking models I. Biometrika, 44:114–130, 1957. doi:10.2307/
2333244.

37 Aleksander L. Owczarek and Thomas Prellberg. Exact solution of pulled, directed vesicles
with sticky walls in two dimensions. Journal of Mathematical Physics, 60:8 pp., 2019. doi:
10.1063/1.5083149.

38 Valerie Roitner. Contacts and returns in 2-watermelons without wall. Bulletin of the Institute
of Combinatorics and its Applications, 89, 2020. URL: http://bica.the-ica.org/Volumes/
89/Reprints/BICA2020-01-Reprint.pdf.

39 Benedikt Stufler. Gibbs partitions: a comprehensive phase diagram. Annales de l’Institut
Henri Poincaré - Probabilités et Statistiques, 2023. To appear. URL: https://arxiv.org/
abs/2204.06982.

40 Rami Tabbara, Aleksander L. Owczarek, and Andrew Rechnitzer. An exact solution of two
friendly interacting directed walks near a sticky wall. Journal of Physics A: Mathematical and
Theoretical, 47(1), 2014. doi:10.1088/1751-8113/47/1/015202.

41 Antoine Vella. Pattern avoidance in permutations: Linear and cyclic orders. Electronic Journal
of Combinatorics, 9(2):43 pp., 2003. doi:10.37236/1690.

42 Michael Wallner. A half-normal distribution scheme for generating functions. European Journal
of Combinatorics, 87:103138, 2020. doi:10.1016/j.ejc.2020.103138.

43 Shuang Wu. Sachdev–Ye–Kitaev model with an extra diagonal perturbation: phase transition
in the eigenvalue spectrum. Journal of Physics A: Mathematical and Theoretical, 55(41):415207,
2022. doi:10.1088/1751-8121/ac93cd.

https://doi.org/10.1088/1742-6596/42/1/017
https://doi.org/10.1088/1742-6596/42/1/017
https://doi.org/10.1088/0305-4470/33/48/318
https://doi.org/10.37236/6373
https://doi.org/10.37236/6373
https://doi.org/10.2307/2333244
https://doi.org/10.2307/2333244
https://doi.org/10.1063/1.5083149
https://doi.org/10.1063/1.5083149
http://bica.the-ica.org/Volumes/89/Reprints/BICA2020-01-Reprint.pdf
http://bica.the-ica.org/Volumes/89/Reprints/BICA2020-01-Reprint.pdf
https://arxiv.org/abs/2204.06982
https://arxiv.org/abs/2204.06982
https://doi.org/10.1088/1751-8113/47/1/015202
https://doi.org/10.37236/1690
https://doi.org/10.1016/j.ejc.2020.103138
https://doi.org/10.1088/1751-8121/ac93cd

Galled Tree-Child Networks
Yu-Sheng Chang #

Department of Mathematical Sciences, National Chengchi University, Taipei, Taiwan

Michael Fuchs #

Department of Mathematical Sciences, National Chengchi University, Taipei, Taiwan

Guan-Ru Yu #

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan

Abstract
We propose the class of galled tree-child networks which is obtained as intersection of the classes of
galled networks and tree-child networks. For the latter two classes, (asymptotic) counting results
and stochastic results have been proved with very different methods. We show that a counting
result for the class of galled tree-child networks follows with similar tools as used for galled networks,
however, the result has a similar pattern as the one for tree-child networks. In addition, we also
consider the (suitably scaled) numbers of reticulation nodes of random galled tree-child networks
and show that they are asymptotically normal distributed. This is in contrast to the limit laws
of the corresponding quantities for galled networks and tree-child networks which have been both
shown to be discrete.

2012 ACM Subject Classification Mathematics of computing → Enumeration; Mathematics of
computing → Distribution functions

Keywords and phrases Phylogenetic Network, galled Network, tree-child Network, asymptotic
Enumeration, Limit Law, Lagrange Inversion

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.8

Funding Yu-Sheng Chang: NSTC-111-2115-M-004-002-MY2.
Michael Fuchs: NSTC-111-2115-M-004-002-MY2.
Guan-Ru Yu: NSTC-110-2115-M-017-003-MY3.

Acknowledgements We thank the three reviewers for positive feedback and useful suggestions. This
paper is dedicated to Hsien-Kuei Hwang on the occasion of his 60th birthday.

1 Introduction

Phylogenetic networks are used to visualize, model, and analyze the ancestor relationship of
taxa in reticulate evolution. To make them more relevant for biological applications as well as
devise algorithms for them, many subclasses of the class of phylogenetic networks have been
proposed; see the comprehensive survey [14]. A lot of recent research work was concerned with
fundamental questions such as counting them and understanding the shape of a network drawn
uniformly at random from a given class; see, e.g., [2, 3, 4, 8, 9, 11, 12, 10, 13, 15, 16]. Despite
this, even counting results are still missing for most of the major classes of phylogenetic
networks. Two notable exceptions are tree-child networks and galled networks for which such
results have been proved in [11, 12]. In this work, we consider the intersection of these two
network classes. We start with some basic definitions and then explain why we find this class
interesting.

First, a phylogenetic network is defined as follows.

© Yu-Sheng Chang, Michael Fuchs, and Guan-Ru Yu;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 8; pp. 8:1–8:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yushengchang.pi@gmail.com
https://orcid.org/0009-0002-4736-6694
mailto:mfuchs@nccu.edu.tw
https://orcid.org/0000-0001-8891-6897
mailto:gryu@math.nsysu.edu.tw
https://orcid.org/0000-0003-4255-6974
https://doi.org/10.4230/LIPIcs.AofA.2024.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Galled Tree-Child Networks

(a) (b) (c)

12 3

1

23
1

2

Figure 1 (a) A galled network which is not tree-child; (b) A tree-child network which is not
galled; (c) A galled tree-child network.

▶ Definition 1 (Phylogenetic Network). A (rooted) phylogenetic network of size n is a rooted,
simple, directed, acyclic graph whose nodes fall into the following three (disjoint) categories:
(a) A unique root which has indegree 0 and outdegree 1;
(b) Leaves which have indegree 1 and outdegree 0 and are bijectively labeled with labels from

the set {1, . . . , n};
(c) Internal nodes which have indegree and outdegree at least 1 and total degree at least 3.
Moreover, a phylogenetic network is called binary if all internal nodes have either indegree 1
and outdegree 2 (tree nodes) or indegree 2 and outdegree 1 (reticulation nodes).

▶ Remark 2.
(i) Phylogenetic networks with all internal nodes having indegree equal to 1 are called

phylogentic trees. They have been used as visualization tool in evolutionary biology at
least since Darwin.

(ii) If not explicitly mentioned, phylogenetic networks are always binary in the sequel.

We next define galled networks and tree-child networks which are two of the major classes
of phylogenetic networks. (The former has been introduced for computational reasons, the
latter because of its biological relevance; see [14].) For the definition, we need the notion of
a tree cycle which is a pair of edge-disjoint paths in a phylogenetic network that start at a
common tree node and end at a common reticulation node with all other nodes being tree
nodes.

▶ Definition 3.
(a) A phylogenetic network is called a tree-child network if every non-leaf node has at least

one child which is either a tree node or a leaf.
(b) A phylogenetic network is called a galled network if every reticulation node is in a

(necessarily unique) tree cycle.

▶ Remark 4. Note that neither the class of tree-child networks is contained in the class of
galled networks nor vice versa; see Figure 1.

Let TCn,k and GNn,k denote the number of tree-child networks and galled networks
of size n with k reticulation nodes, respectively. It is not hard to see that k ≤ n − 1 for
tree-child networks and k ≤ 2n − 2 for galled networks where both bounds are sharp; see,
e.g., [11, 12]. Thus, the total numbers are given by:

TCn :=
n−1∑
k=0

TCn,k and GNn :=
2n−2∑
k=0

GNn,k. (1)

Y.-S. Chang, M. Fuchs, and G.-R. Yu 8:3

The asymptotic growth of both of these sequences is known. First, in [11], it was proved
that for the number of tree-child networks, as n → ∞,

TCn = Θ
(

n−2/3ea1(3n)1/3
(

12
e2

)n

n2n

)
, (2)

where a1 is the largest root of the Airy function of the first kind. The surprise here was
the presence of a stretched exponential in the asymptotic growth term. On the other hand,
no stretched exponential is contained in the asymptotics of the number of galled networks.
More precisely, it was proved in [12] that, as n → ∞,

GNn ∼
√

2e 4
√

e

4 n−1
(

8
e2

)n

n2n. (3)

The tools used to establish (2) and (3) were very different: for (2), a bijection to a class of
words was proved and a recurrence for these word was found which could be (asymptotically)
analyzed with the approach from [6]; for (3), the component graph method introduced in [13]
together with the Laplace method and a result from [1] was used.

Another difference was the location in (1) of the terms which dominate the two sums. For
tree-child networks, the main contribution comes from networks with k close to n − 1 (the
maximally reticulated networks), whereas for galled networks, the main contributions comes
from networks with k ≈ n. In fact, the limit law of the number of reticulation nodes, say Rn,
was derived in [5, 12] for both network classes if a network of size n is sampled uniformly at
random. More precisely, for tree-child networks, it was shown in [5] that, as n → ∞,

n − 1 − Rn
d−→ Poisson(1/2),

where d−→ denotes convergence in distribution and Poisson(λ) is a Poisson law with parameter
λ. A similar discrete limit law was proved in [12] for galled networks. More precisely, it was
shown that, as n → ∞,

E(Rn) = n − 3
8 + o(1)

and that the limit law of n − Rn is not Poisson but a mixture of Poisson laws; see Theorem 2
in [12] for more details.

Due to the above results and differences, one wonders how the intersection of the class of
tree-child networks and galled networks behaves?

▶ Definition 5 (Galled Tree-Child Network). A galled tree-child network is a network which is
both a galled network and a tree-child network.

Let GTCn,k denote the number of galled tree-child networks of size n with k reticulation
nodes. We show below that again k has the sharp upper bound n − 1. (See Lemma 19 in
Section 3.) Set:

GTCn :=
n−1∑
k=0

GTCn,k.

Then, this sequence has the following first-order asymptotics.

▶ Theorem 6. For the number of galled tree-child networks, we have, as n → ∞,

GTCn ∼ 1
2 4

√
e

n−5/4e2
√

n

(
2
e2

)n

n2n.

AofA 2024

8:4 Galled Tree-Child Networks

▶ Remark 7. Note that the asymptotic expansion contains a stretched exponential as does
the expansion (2) for tree-child networks, however, the proof will use the tools which were
developed in [12] to derive (3) for galled networks.

We next consider the number of reticulation nodes Rn of a random galled tree-child
network which is a galled tree-child network of size n that is sampled uniformly at random
from the set of all galled tree-child networks of size n. In contrast to tree-child networks and
galled networks, the limit law of Rn (suitably scaled) is continuous.

▶ Theorem 8. The number of reticulation nodes Rn of a random galled tree-child networks
satisfies, as n → ∞,

Rn − E(Rn)√
Var(Rn)

d−→ N(0, 1),

where N(0, 1) denotes the standard normal distribution. Moreover, as n → ∞,

E(Rn) = n −
√

n + o(
√

n) and Var(Rn) ∼
√

n/2.

The above results show that galled tree-child networks behave quite different from both
tree-child networks and galled networks. That is one reason why we find them interesting.

Another reason stems from a recent result which was proved in [4]. In the latter paper, the
asymptotics of GNn,k for fixed k was derived. Let PNn,k denote the number of phylogenetic
networks of size n and k reticulation nodes. (Note that this number is finite, whereas it
becomes infinite when summing over k.) Then, one of the main results from [4] implies that
for fixed k, as n → ∞,

PNn,k ∼ TCn,k ∼ GNn,k ∼ 2k−1√
2

k!

(
2
e

)n

nn+2k−1. (4)

(The first two asymptotic equivalences were proved in [10, 15].) That TCn,k and GNn,k have
the same first-order asymptotics for fixed k was a surprise since the classes of tree-child
networks and galled networks are quite different, e.g., neither contains the other; see Remark 4.
However, the above result can be explained via the class of galled tree-child networks as will
be seen in Section 3 below.

We conclude the introduction with a short sketch of the paper. The proofs of Theorem 6
and Theorem 8 follow with a similar approach as used for galled networks in [11]. This
approach is based on the component graph method from [13] which we recall in the next
section. Then, in Section 3, we consider GTCn,k for small and large values of k. Finally,
Section 4 contains the proofs of our main results (Theorem 6 and Theorem 8). We conclude
the paper with some final remarks in Section 5.

2 The Component Graph Method

The component graph method for galled networks was introduced in [13] and used in [4, 12]
to prove asymptotic results. It is explained in detail in all these papers. However, to make
the current paper more self-contained, we briefly recall it.

Let N be a galled network. Then, by removing all the edges leading to reticulation
vertices (these are the so-called reticulation edges), we obtain a forest whose trees are called
the tree-components of N .

The component graph of N , denoted by C(N), is now a directed, acyclic graph which has
a vertex for every tree-component. Moreover, the vertices are connected by the removed
reticulation edges in the same way as the tree-components have been connected by them.

Y.-S. Chang, M. Fuchs, and G.-R. Yu 8:5

1

2

5

4

6

7

3

1

5 2 6

3

47

compress

decompress

ρ

N C(N)

Figure 2 A galled network N and its component graph C(N) which is a phylogenetic tree.

Finally, we attach the leaves in the tree-components to the corresponding vertices in C(N)
unless a vertex v of C(N) is a terminal vertex and its corresponding tree-component has
exactly one leaf, in which case we use the label of that leaf to label v. Note that C(N) may
contain double edges. We replace such a double edge by a single edge and indicate that it
was a double edge by placing an arrow on it; see Figure 2 for a galled network together with
its component graph. Also, denote by C̃(N) the component graph of C(N) with all arrows
on edges removed. Then, the authors of [13] made the following important observation.

▶ Proposition 9 ([13]). N is a galled network if and only if C̃(N) is a (not necessarily
binary) phylogenetic tree.

▶ Remark 10. By this result, for a galled network N , C(N) must have arrows on all internal
edges (i.e., all edges whose two endpoints are both internal nodes).

The component graph can be seen as a kind of compression of N that retains some but not
all structural properties of N . Indeed, different networks N might share the same component
graph. However, we can generate all galled networks of size n from a list of all component
graphs (i.e., phylogenetic trees) with n labeled leaves by a decompression procedure which is
explained below.

First, we need the notion of one-component networks.

▶ Definition 11 (One-component Network). A phylogenetic network is called a one-component
network if every reticulation node has a leaf as its child.

▶ Remark 12. The name comes from the fact that one-component networks only have one
non-trivial tree-component.

Now, let a component graph C of a galled tree-child network be given. We do a breadth-
first traversal of the internal vertices of C and replace these vertices v by a one-component
galled network Ov whose leaves below reticulation vertices are labeled with the first k labels,
where k is the number of outgoing edges of v in C that have an arrow on them, and whose
size is equal to the outdegree c(v) of v. (In order to avoid confusion, the labels of Ov are

AofA 2024

8:6 Galled Tree-Child Networks

subsequently assumed to be from the set {1, . . . , c(v)}.) Then, attach the subtrees rooted
at the children of v which are connected to v by edges with arrows on them to the leaves
of Ov with labels {1, . . . , k}, where the subtree with the smallest label is attached to 1, the
subtree with the second smallest label is attached to 2, etc. Moreover, relabel the remaining
leaves of Ov, namely the ones with the labels {k + 1, . . . , c(v)}, by the remaining labels of
the subtrees of v (which are all of size 1, i.e., they are leaves in C) in an order-consistent way.
By using all possible one-component galled networks in every step, this gives all possible
galled networks with C as component graph. Moreover, if we start from C̃, then we first
have to place arrows on all edges whose heads are internal nodes of C̃ (see Remark 10) and
for all remaining edges, we can freely decide if we want to place an arrow on them or not.
Overall, this gives the following result which was one of the main results in [13].

▶ Proposition 13 ([13]). We have,

GNn =
∑

T

∏
v

clf(v)∑
j=0

(
clf(v)

j

)
Mc(v),c(v)−clf(v)+j ,

where the first sum runs over all (not necessarily binary) phylogenetic trees T of size n, the
product runs over all internal nodes of T , c(v) is the outdegree of v, clf(v) is the number
of children of v which are leaves, and Mn,k denotes the number of one-component galled
networks of size n with k reticulation vertices, where the leaves below the reticulation vertices
are labeled with labels from the set {1, . . . , k}.

For galled tree-child networks, it is now clear that the same formula holds with the only
difference that Mn,k has to be replaced by the corresponding number of one-component galled
tree-child networks. However, this number is the same as the number of one-component
tree-child networks.

▶ Lemma 14. Every one-component tree-child network is a one-component galled tree-child
network.

Proof. Let v be a reticulation vertex and consider a pair of edge-disjoint paths from a
common tree vertex to v. (Note that such a pair trivially exists.) Then, no internal vertex
can be a reticulation vertex because such a reticulation vertex would not be followed by a
leaf. Thus, v is in a tree cycle which shows that the network is indeed galled. ◀

Denote by Bn,k the number of one-component tree-child networks of size n and k

reticulation vertices, where the labels of the leaves below the reticulation vertices are
{1, . . . , k}. Then, we have the following analogous result to Proposition 13.

▶ Proposition 15. We have,

GTCn =
∑

T

∏
v

clf(v)∑
j=0

(
clf(v)

j

)
Bc(v),c(v)−clf(v)+j , (5)

where notation is as in Proposition 13 and Bn,k was defined above.

▶ Remark 16. Using this result, by systematically generating all (not necessarily binary)
phylogenetic trees of size n and computing Bn,k with the closed-form expression below, we
obtain the following table for small values of n:

Y.-S. Chang, M. Fuchs, and G.-R. Yu 8:7

Table 1 The values of GTCn for 1 ≤ n ≤ 10.

n GTCn

1 1
2 3
3 48
4 1,611
5 87,660
6 6,891,615
7 734,112,540
8 101,717,195,895
9 17,813,516,259,420
10 3,857,230,509,496,875

We will deduce all our results from (5). In addition, we make use of the following results
for Bn,k which were proved in [3] and [11]. To state them, denote by OTCn,k the number of
one-component tree-child networks of size n with k reticulation vertices and by OTCn the
(total) number of one-component tree-child networks of size n. Then,

OTCn,k =
(

n

k

)
Bn,k (6)

and

OTCn =
n−1∑
k=0

OTCn,k.

(Note that the tree-child property implies the k ≤ n − 1 and this bound is sharp.)

▶ Proposition 17 ([3, 11]).
(i) We have,

OTCn,k =
(

n

k

)
(2n − 2)!

2n−1(n − k − 1)! .

(ii) As n → ∞,

OTCn,k = 1
2
√

eπ
n−3/2e2

√
n

(
2
e2

)n

n2ne−x2/
√

n

(
1 + O

(
1 + |x|3

n
+ |x|√

n

))
,

where k = n −
√

n + x and x = o(n1/3).

The second result above gives a local limit theorem (see, e.g., Section IX.9 in [7]) for the
(random) number of reticulation vertices of a one-component tree-child network of size n

which is picked uniformly at random from all one-component tree-child networks of size n. It
implies the following (asymptotic) counting result for OTCn.

▶ Corollary 18 ([11]). As n → ∞,

OTCn ∼ 1
2
√

e
n−5/4e2

√
n

(
2
e2

)n

n2n.

AofA 2024

8:8 Galled Tree-Child Networks

3 Networks with Few and Many Reticulation Nodes

In this section, we consider GTCn,k for small and large k. We start with large k.
As mentioned in the last section, for tree-child networks, we have that k ≤ n − 1 and this

bound is sharp. Clearly, this implies that k ≤ n − 1 also holds for galled tree-child networks.
Again this bound is sharp. We summarize this in the following lemma.

▶ Lemma 19. The number of reticulation vertices of a galled tree-child network of size n is
at most n − 1 where this bound is sharp.

Proof. Let C̃ be the component graph of a galled tree-child network of size n which by
Proposition 9 is a phylogenetic tree. The maximal number of reticulation vertices of a
network decompressed from C̃ is achieved by placing the maximal number of arrows at all
outgoing edges of internal vertices v of C̃. Note that this number is c(v) − 1, where c(v)
denotes the degree of v, since placing arrows on all outgoing edges is not possible because
Bc(v),c(v) = 0 (as Bn,k denotes the number of certain one-component tree-child networks and
k ≤ n − 1). Thus, the maximal number of reticulation vertices equals∑

v

(c(v) − 1) =
∑

v

c(v) − (# internal nodes of C̃), (7)

where the sums run over all internal vertices of C̃. By the handshake lemma,∑
v

c(v) = (# internal nodes of C̃ − 1) + n

which, by plugging into (7), gives the claimed result. ◀

The proof of the last lemma also reveals the structure of maximally reticulated galled
tree-child networks of size n: They are obtained by decompressing component graphs C̃ that
are phylogenetic trees of size n with at least one leaf ℓ attached to every internal vertex v by
placing arrows on all outgoing edges of v except the one leading to ℓ. This can be translated
into generating functions. Set:

M(z) :=
∑
n≥1

GTCn,n−1
zn

n! , B(z) :=
∑
n≥1

Bn,n−1
zn

n! =
∑
n≥1

(2n − 2)!
2n−1n! zn,

where the last line follows from (6) and Proposition 17-(i). Then, we have the following
result.

▶ Lemma 20. We have,

M(z) = z + zB′(M(z)). (8)

Proof. According to the explanation in the paragraph preceding the lemma, a maximally
reticulated galled tree-child network is either a leaf or obtained from a maximally reticulated
one-component tree-child network with the leaves below the reticulation vertices replaced by
maximally reticulated galled tree-child networks. This translates into

M(z) = z +
∑
n≥1

Bn,n−1
zM(z)n−1

(n − 1)! ,

where the z inside the sum counts the leaf which is not below the reticulation vertex and the
factor 1/(n − 1)! discards the order of the maximally reticulated galled tree-child networks
(counted by M(z)n−1) which are attached to the children below the reticulation vertices.
The claimed result follows from this. ◀

Y.-S. Chang, M. Fuchs, and G.-R. Yu 8:9

Note that (8) is of Lagrangian type. Thus, we can obtain the asymptotics of GTCn,n−1
by applying Lagrange’s inversion formula and the following result from [1].

▶ Theorem 21 ([1]). Let S(z) be a formal power series with s0 = 0, s1 ̸= 0 and nsn−1 ∼ γsn.
Then, for α ̸= 0 and β real numbers,

[zn](1 + S(z))αn+β ∼ αeαs1γnsn.

▶ Theorem 22. The number of maximally reticulated galled tree-child networks GTCn,n−1
satisfies, as n → ∞,

GTCn,n−1 ∼
√

eπn−1/2
(

2
e2

)n

n2n.

▶ Remark 23. For tree-child networks, it was proved in [11] that TCn = Θ(TCn,n−1). (This
was a main step in the proof of (2).) The above result together with Theorem 6 shows that
the same is not true for galled tree-child networks.

Proof. Applying the Lagrange inversion formula to (8) gives

GTCn,n−1 = n![zn]M(z) = (n − 1)![ωn−1](1 + B′(ω))n. (9)

Next, by Stirling’s formula, as n → ∞,

[zn]B′(z) = Bn+1,n

n! = (2n)!
2nn! ∼

√
2
(

2
e

)n

nn.

Thus, we can apply Theorem 21 to (9) with γ = 1/2 and obtain that, as n → ∞,

GTCn,n−1 ∼
√

enBn,n−1 =
√

en
(2n − 2)!

2n−1 ∼
√

eπn−1/2
(

2
e2

)n

n2n.

This is the claimed result. ◀

We next consider GTCn,k with k small, i.e., the other extreme case of the number of
reticulation vertices. Here, we have the following result which shows that the distribution of
a uniformly chosen phylogenetic network with n leaves and k reticulation nodes concentrates
on the set of galled tree-child networks. This explains why the asymptotic expansions of
TCn,k and GNn,k in (4) are the same. (It would be interesting to know whether or not this
distribution concentrates on an even smaller set.)

▶ Theorem 24. For fixed k, as n → ∞,

GTCn,k ∼ 2k−1√
2

k!

(
2
e

)n

nn+2k−1. (10)

The proof of this result uses ideas from [10].

Proof. First consider galled tree-child networks of size n which are obtained by decompressing
phylogenetic trees of size n which have all k arrows on the edges from the root, i.e., the root
has at least one leaf and all other children are either internal nodes or leaves (with at most k

internal nodes) and all internal nodes have just leaves as children. By Proposition 8 in [10],
the number of these galled tree-child network has the same asymptotics as the one on the
right-hand side of (10). Moreover, these networks also dominate the asymptotics in the case
of tree-child networks. Thus, the remaining galled tree-child networks are asymptotically
negligible as their number is bounded above by the number of the remaining tree-child
networks. ◀

AofA 2024

8:10 Galled Tree-Child Networks

▶ Remark 25. Note that this re-proves the (surprising) asymptotic result for GNn,k in (4)
from [4]. On the other hand, the above asymptotic result could be also deduced from
(4). In order to explain this, denote by PN n,k (resp. T Cn,k/GN n,k/GT Cn,k) the set of all
phylogenetic networks (resp. tree-child networks/galled networks/galled tree-child networks)
with n leaves and k reticulation nodes. Then,

|T Cn,k ∪ GN n,k| = |T Cn,k| + |GN n,k| − |T Cn,k ∩ GN n,k|
= TCn,k + GNn,k − GTCn,k

and |T Cn,k ∪ GN n,k| ≤ PNn,k. From this the asymptotic result for GTCn,k follows from
those of (4). (We are thankful to one of the reviewers for this remark.)

4 Proof of the Main Results

In this section, we first prove Theorem 6 and then state a result which implies Theorem 8.
For the proof of Theorem 6, we closely follow the method of proof of (3) from [12]. The

main idea is to use (5) to find asymptotic matching upper and lower bounds for GTCn.
First, for an upper bound, we pick a (not necessarily binary) phylogenetic tree T of

size n (which is considered to be a component graph of a galled tree-child network of size
n) and decompress it by picking for internal vertices v of T any one-component tree-child
network of size c(v) (where the notation is as in Proposition 13). Since, as explained in
Section 2, actually only certain one-component tree-child networks are permissible, this
modified decompression procedure overcounts the number of galled tree-child networks of
size n. More precisely, we consider

Un :=
∑

T

∏
v

OTCc(v),

where the first sum runs over all phylogenetic trees T of size n and the product runs over
internal vertices of T . Then, we have GTCn ≤ Un. Next, set

U(z) :=
∑
n≥1

Un
zn

n! , A(z) :=
∑
n≥1

OTCn+1
zn

(n + 1)! .

Then, the definition of Un implies the following result.

▶ Lemma 26. We have,

U(z) = z + U(z)A(U(z)).

Proof. The networks counted by Un are either a leaf or a one-component tree-child network
with n leaves which are replaced by an unordered sequence of networks of the same type.
This gives

U(z) = z +
∑
n≥2

OTCn
U(z)n

n!

from which the claimed result follows. ◀

Now, we can proceed as in the proof of Theorem 22 to obtain the following asymptotic
result for Un.

Y.-S. Chang, M. Fuchs, and G.-R. Yu 8:11

▶ Proposition 27. As n → ∞,

Un ∼ 1
2 4

√
e

n−5/4e2
√

n

(
2
e2

)n

n2n.

Proof. From Lemma 26 and the Lagrange inversion formula,

Un = n![zn]U(z) = (n − 1)![ωn−1](1 − A(ω))−n.

The result follows from this by applying Theorem 21 and Corollary 18. ◀

Next, we need a matching lower bound. Therefore, we consider (5) with the first sum
restricted to phylogenetic trees of the shape (where we have removed the leaf labels):

.

2j

n − 2j

We denote the resulting term by Ln. The decompression procedure from Section 2 then gives
the following result.

▶ Lemma 28. We have,

Ln =
⌊n/2⌋∑
j=0

(
n

2j

)
(2j)!
j!2j

n−2j∑
ℓ=0

(
n − 2j

ℓ

)
Ln−j,j+ℓ

=
⌊n/2⌋∑
j=0

(
n

2j

)
(2j)!
j!2j

n−2j∑
ℓ=0

(
n − 2j

ℓ

)
(2n − 2j − 2)!

2n−j−1(n − 2j − ℓ − 1)! . (11)

Proof. The first equality is explained as in the proof of Lemma 9 in [12] and the second
equality follows from (6) and Proposition 17-(i). ◀

From this result, we can deduce (matching) first-order asymptotics for Ln which then
together with the asymptotics of the upper bound (Proposition 27) concludes the proof of
Theorem 6.

▶ Proposition 29. As n → ∞,

Ln ∼ 1
2 4

√
e

n−5/4e2
√

n

(
2
e2

)n

n2n.

Sketch of the proof. From Stirling’s formula (similar to the proof of Proposition 17-(ii)),(
n − 2j

ℓ

)
(2n − 2j − 2)!

2n−j−1(n − 2j − ℓ − 1)! ∼ 1
2j+1√

eπ
n−3/2e2

√
n

(
2
e2

)j

n2n−2je−x2/
√

n,

where k = n −
√

n + x and this holds uniformly for |x| ≤ n1/2+ϵ and j ≤ nϵ with ϵ > 0
arbitrarily small. Using the Laplace method then gives,

n−2j∑
ℓ=0

(
n − 2j

ℓ

)
(2n − 2j − 2)!

2n−j−1(n − 2j − ℓ − 1)! ∼ 1
2j+1√

e
n−5/4e2

√
n

(
2
e2

)n

n2n−2j

AofA 2024

8:12 Galled Tree-Child Networks

uniformly for j ≤ nϵ for arbitrarily small ϵ > 0. Finally, by plugging the last relation into
(11),

Ln ∼ 1
2
√

e

∑
j≥0

1
j!4j

n−5/4e2
√

n

(
2
e2

)n

n2n

which gives the claimed result. ◀

▶ Remark 30. Note that this proposition shows that a “typical” galled tree-child network of
size n is obtained by decompressing component graphs of the form given before Lemma 28.
This implies, e.g., that the Sackin index defined in [17] of a galled tree-child network has the
unusual expected order n7/4.

Finally, by refining the above method (see Section 6 of [12] where the same was done
for galled networks), we obtain the following result which implies our second main result
(Theorem 8).

▶ Theorem 31. Let In be the number of reticulation vertices of a random galled tree-child
network of size n which are not followed by a leaf and Rn be the total number of reticulation
vertices. Then, as n → ∞,(

In,
Rn − n +

√
n

4
√

n/4

)
d−→ (I, R),

where I and R are independent with I
d= Poisson(1/4) and R

d= N(0, 1).

5 Conclusion

In this paper, we introduced the class of galled tree-child networks which is obtained as
intersection of the classes of galled networks and tree-child networks. Our reason for doing
so was two-fold: (i) Different tools have been used to prove results for galled networks
and tree-child networks [11, 12]; consequently, we were curious about which tools apply
to the combination of these classes? (ii) It was recently proved that the number of galled
networks and tree-child networks have the same first-order asymptotics when the number of
reticulation vertices is fixed [4, 10]. Why is that the case?

As for (i), we showed that an asymptotic counting result for galled tree-child networks
(Theorem 6) can be obtained with the methods for galled networks, however, the result
contains a stretched exponential as does the asymptotic result for tree-child networks. In
addition, we showed that the number of reticulation vertices for a random galled tree-child
networks is asymptotically normal (Theorem 8), whereas the limit laws of the same quantities
for galled networks and tree-child networks were discrete. As for (ii), we showed that the
number of galled tree-child networks also satisfies the same first order asymptotics when the
number of reticulation vertices is fixed. This explains the previous results from [4, 10].

Overall, the class of galled tree-child networks is interesting and thus merits further
examination. In particular, due to Remark 30, studying the shape of random galled tree-child
networks seems to be more feasible than studying the shape of random networks from other
network classes because such a study boils down to the easier task of studying the shape of
one-component tree-child networks which have a straightforward recursive decomposition
that, e.g., resulted in a closed-form expression for their numbers; see [17]. The latter paper,
where one-component tree-child networks are called simplex networks, e.g., asks for properties
of the height and such results would immediately entail corresponding results for random
galled tree-child networks. (Studying the height is an open problem for most classes of
phylogenetic networks.) We may come back to this question in future work.

Y.-S. Chang, M. Fuchs, and G.-R. Yu 8:13

References
1 Edward A. Bender and L. Bruce Richmond. An asymptotic expansion for the coefficients

of some power series. II. Lagrange inversion. Discrete Math., 50(2-3):135–141, 1984. doi:
10.1016/0012-365X(84)90043-8.

2 Mathilde Bouvel, Philippe Gambette, and Marefatollah Mansouri. Counting phylogen-
etic networks of level 1 and 2. J. Math. Biol., 81(6-7):1357–1395, 2020. doi:10.1007/
s00285-020-01543-5.

3 Gabriel Cardona and Louxin Zhang. Counting and enumerating tree-child networks and their
subclasses. J. Comput. System Sci., 114:84–104, 2020. doi:10.1016/j.jcss.2020.06.001.

4 Yu-Sheng Chang and Michael Fuchs. Counting phylogenetic networks with few reticulation
vertices: Galled and recticulation-visible networks. Bull. Math. Biol., 86:Paper No. 76, 2024.
doi:10.1007/s11538-024-01309-w.

5 Yu-Sheng Chang, Michael Fuchs, Hexuan Liu, Michael Wallner, and Guan-Ru Yu. Enumerative
and distributional results for d-combining tree-child networks. Adv. in Appl. Math., 157:Paper
No. 102704, 2024. doi:10.1016/j.aam.2024.102704.

6 Andrew Elvey Price, Wenjie Fang, and Michael Wallner. Compacted binary trees admit a
stretched exponential. J. Combin. Theory Ser. A, 177:Paper No. 105306, 40, 2021. doi:
10.1016/j.jcta.2020.105306.

7 Philipp Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
2009.

8 Michael Fuchs, Bernhard Gittenberger, and Marefatollah Mansouri. Counting phylogenetic
networks with few reticulation vertices: tree-child and normal networks. Australas. J. Combin.,
73:385–423, 2019.

9 Michael Fuchs, Bernhard Gittenberger, and Marefatollah Mansouri. Counting phylogenetic
networks with few reticulation vertices: exact enumeration and corrections. Australas. J.
Combin., 81:257–282, 2021.

10 Michael Fuchs, En-Yu Huang, and Guan-Ru Yu. Counting phylogenetic networks with
few reticulation vertices: a second approach. Discrete Appl. Math., 320:140–149, 2022.
doi:10.1016/j.dam.2022.03.026.

11 Michael Fuchs, Guan-Ru Yu, and Louxin Zhang. On the asymptotic growth of the number of
tree-child networks. European J. Combin., 93:Paper No. 103278, 20, 2021. doi:10.1016/j.
ejc.2020.103278.

12 Michael Fuchs, Guan-Ru Yu, and Louxin Zhang. Asymptotic enumeration and distributional
properties of galled networks. J. Combin. Theory Ser. A, 189:Paper No. 105599, 28, 2022.
doi:10.1016/j.jcta.2022.105599.

13 Andreas D. M. Gunawan, Jeyaram Rathin, and Louxin Zhang. Counting and enumerating
galled networks. Discrete Appl. Math., 283:644–654, 2020. doi:10.1016/j.dam.2020.03.005.

14 Sungsik Kong, Joan Carles Pons, Laura Kubatko, and Kristina Wicke. Classes of explicit
phylogenetic networks and their biological and mathematical significance. J. Math. Biol.,
84(6):Paper No. 47, 44, 2022. doi:10.1007/s00285-022-01746-y.

15 Marefatollah Mansouri. Counting general phylogenetic networks. Australas. J. Combin.,
83:40–86, 2022.

16 Miquel Pons and Josep Batle. Combinatorial characterization of a certain class of words and a
conjectured connection with general subclasses of phylogenetic tree-child networks. Sci. Rep.,
11:Article number: 21875, 2021.

17 Louxin Zhang. The Sackin index of simplex networks. In Comparative genomics, volume
13234 of Lecture Notes in Comput. Sci., pages 52–67. Springer, Cham, 2022. doi:10.1007/
978-3-031-06220-9_4.

AofA 2024

https://doi.org/10.1016/0012-365X(84)90043-8
https://doi.org/10.1016/0012-365X(84)90043-8
https://doi.org/10.1007/s00285-020-01543-5
https://doi.org/10.1007/s00285-020-01543-5
https://doi.org/10.1016/j.jcss.2020.06.001
https://doi.org/10.1007/s11538-024-01309-w
https://doi.org/10.1016/j.aam.2024.102704
https://doi.org/10.1016/j.jcta.2020.105306
https://doi.org/10.1016/j.jcta.2020.105306
https://doi.org/10.1016/j.dam.2022.03.026
https://doi.org/10.1016/j.ejc.2020.103278
https://doi.org/10.1016/j.ejc.2020.103278
https://doi.org/10.1016/j.jcta.2022.105599
https://doi.org/10.1016/j.dam.2020.03.005
https://doi.org/10.1007/s00285-022-01746-y
https://doi.org/10.1007/978-3-031-06220-9_4
https://doi.org/10.1007/978-3-031-06220-9_4

On Fluctuations of Complexity Measures for the
FIND Algorithm
Jasper Ischebeck1 # Ñ

Institut für Mathematik, Goethe University Frankfurt, Germany

Ralph Neininger # Ñ

Institut für Mathematik, Goethe University Frankfurt, Germany

Abstract
The FIND algorithm (also called Quickselect) is a fundamental algorithm to select ranks or quantiles
within a set of data. It was shown by Grübel and Rösler that the number of key comparisons required
by FIND as a process of the quantiles α ∈ [0, 1] in a natural probabilistic model converges after
normalization in distribution within the càdlàg space D[0, 1] endowed with the Skorokhod metric.
We show that the process of the residuals in the latter convergence after normalization converges
in distribution to a mixture of Gaussian processes in D[0, 1] and identify the limit’s conditional
covariance functions. A similar result holds for the related algorithm QuickVal. Our method extends
to other cost measures such as the number of swaps (key exchanges) required by FIND or cost
measures which are based on key comparisons but take into account that the cost of a comparison
between two keys may depend on their values, an example being the number of bit comparisons
needed to compare keys given by their bit expansions.

2012 ACM Subject Classification Theory of computation → Sorting and searching

Keywords and phrases FIND, Quickselect, rank selection, probabilistic analysis of algorithms, weak
convergence, functional limit theorem

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.9

1 Introduction

In 1961, Hoare [11] introduced the algorithm FIND, also called Quickselect, to select a key
(an element) of a given rank from a linearly ordered finite set of data. We assume that the
data are distinct real numbers. To be definite a simple version of the FIND algorithm is given
as follows: FIND(S, k) has as input a set S = {s1, . . . , sn} of distinct real numbers of size
n and an integer 1 ≤ k ≤ n. The algorithm FIND operates recursively as follows: If n = 1
we have k = 1 and FIND returns the single element of S. If n ≥ 2 and S = {s1, . . . , sn} the
algorithm first chooses an element from S, say sj , called pivot, and generates the sets

S< := {si | si < sj , i ∈ {1, . . . , n} \ {j}}, S≥ := {si | si ≥ sj , i ∈ {1, . . . , n} \ {j}}.

If k = |S<| + 1, the algorithm returns sj . If k ≤ |S<|, recursively FIND(S<, k) is applied. If
k ≥ |S<| + 2, recursively FIND(S≥, k − |S<| − 1) is applied. Note that FIND(S, k) returns
the element of rank k from S. There are various variants of the algorithm, in particular
regarding how the pivot element is chosen and how S is partitioned into the subsets S< and
S≥.

In a standard probabilistic model one assumes that the data are ordered, i.e. given as a
vector (s1, . . . , sn), and are randomly permuted, all permutations being equally likely. This
can be achieved assuming that the data are given as (U1, . . . , Un) where (Uj)j∈N is a sequence

1 corresponding author

© Jasper Ischebeck and Ralph Neininger;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 9; pp. 9:1–9:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ischebec@math.uni-frankfurt.de
http://www.uni-frankfurt.de
https://orcid.org/0009-0003-9659-6581
mailto:neiningr@math.uni-frankfurt.de
https://www.math.uni-frankfurt.de/~neiningr/
https://orcid.org/0000-0003-3975-1293
https://doi.org/10.4230/LIPIcs.AofA.2024.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 QuickSelect Process CLT

of i.i.d. random variables with distribution unif[0, 1], the uniform distribution over the unit
interval [0, 1]. This is the probabilistic model considered below. Note that the randomness is
within the data, while the algorithm is deterministic.

Various cost measures have been considered for FIND, mainly the number of key compar-
isons required which we analyze in detail below. At the end of this extended abstract we
state related results for the number of swaps (key exchanges) required and for cost measures
which are based on key comparisons, where the cost of a comparison may depend on the
values of the keys si, sj , the number of bit comparisons required to decide whether si < sj
or not being a prominent example.

For analysis purposes a related process, called QuickVal, has been considered, see [19, 8].
Informally, QuickVal for an α ∈ [0, 1] mimics FIND to select (or to try to select) the value
α from the set of data, which, in our probabilistic model for large n, comes close to FIND
selecting rank ⌊αn⌋. To be definite, QuickVal((U1, . . . , Un), α) compares the Ui with U1 to
generate sublists

S< := (Uj1 , . . . , Ujm−1), S≥ := (Ujm+1 , . . . , Ujn
),

with Uji
< U1 for i = 1, . . . ,m− 1 and 2 ≤ j1 < · · · < jm−1 and Uji

≥ U1 for i = m+1, . . . , n
and 2 ≤ jm+1 < · · · < jn. Hence, m− 1 ∈ {0, . . . , n− 1} is the number of the Ui, 2 ≤ i ≤ n,
being smaller than U1. The algorithm recursively calls QuickVal(S<, α) if α < U1 and
|S<| > 0. If α ≥ U1 and |S≥| > 0 recursively QuickVal(S≥, α− U1) is called. The number of
key comparisons required by QuickVal((U1, . . . , Un), α) is denoted by Sα,n.

To describe the processes (Sα,n)α∈[0,1] and their limit (after scaling) conveniently we also
consider the binary search tree constructed from the the data (Ui)i∈N. Part of the following
definitions are depicted in Figure 1. The data are inserted into the rooted infinite binary
tree, where we denote its nodes by the elements of {0, 1}∗ := ∪∞

n=0{0, 1}n as follows. Its
root is denoted by the empty word ϵ and for each node ϕ ∈ {0, 1}∗ we denote by ϕ0 and
ϕ1 (the word ϕ appended with a 0 resp. 1) its left and right child respectively. Moreover
|ϕ| denotes the length of the word ϕ, which is the depth of the corresponding node in the
tree. To construct the binary search tree for (U1, . . . , Un) the first key U1 is inserted into the
root and occupies the root. Then, successively the following keys are inserted, where each
key traverses the already occupied nodes starting at the root as follows: Whenever the key
traversing is less than the occupying key at a node it moves on to the left child of that node,
otherwise to its right child. The first empty node found is occupied by the key.

To describe the costs of the algorithms we organize, using notation of Fill and Nakama [8],
the sub-intervals ([Lϕ, Rϕ))ϕ∈{0,1}∗ implicitly generated starting with [0, 1) =: [Lϵ, Rϵ) and
recursively setting

τϕ := inf{i ∈ N |Lϕ < Ui < Rϕ},
Lϕ0 := Lϕ, Rϕ1 := Rϕ, Lϕ1 := Rϕ0 := Uτϕ

, Iϕ := Rϕ − Lϕ. (1)

Now, if a sublist starting with pivot Uτϕ
has to be split by QuickVal, the keys which are

inserted in the subtree rooted at Uτϕ
need to be compared with Uτϕ

. Hence, we get a
contribution of key comparisons of

Sϕ,n =
∑

τϕ<k≤n

1[Lϕ,Rϕ)(Uk). (2)

J. Ischebeck and R. Neininger 9:3

Uτϵ

Uτ0 Uτα,1

Uτα,2

...

Uτ10

α ≥ Uτϵ

α < Uτα,1

Figure 1 Part of the binary search tree. The pivots of sublists split by QuickVal((U1, . . . , Un), α)
for some α ∈ [0, 1] are on the path indicated. Note that we have τϵ = τϕ(α,0) = τα,0 = 1 and in this
example α ≥ U1 and α < Uτα,1 so that ϕ(α, 2) = 10 ∈ {0, 1}2.

Now, for α ∈ [0, 1], QuickVal((U1, . . . , Un), α) generates and splits sublists encoded by
ϕ(α, k) for k = 0, 1, . . . for which we obtain by ϕ(α, 0) = ϵ and

ϕ(α, k + 1) =
{
ϕ(α, k)0, if α < Uτϕ(α,k) ,

ϕ(α, k)1, if α ≥ Uτϕ(α,k) .
(3)

When using the variables defined in (1) or (2), we abbreviate the notation ϕ(α, k) by α, k,
such as writing Iα,k := Iϕ(α,k) or Sα,k,n := Sϕ(α,k),n.

The number of key comparisons required by QuickVal((U1, . . . , Un), α) is then given by
the (finite) sum

Sα,n =
∞∑
k=1

Sα,k,n.

Fill and Nakama [8, Theorem 3.2] showed (considering more general complexity measures)
that for each α ∈ [0, 1] almost surely

1
n
Sα,n → Sα :=

∞∑
k=0

Iα,k, (n → ∞). (4)

The latter convergence also holds in Lp, see Fill and Matterer [7, Proposition 6.1].
We take the point of view that such an almost sure asymptotic result may be considered a

strong law of large numbers (SLLN). The subject of the present extended abstract is to study
the fluctuations in such SLLN, sometimes called a central limit analogue. We study these
fluctuations as processes in the metric space (D[0, 1], dSK) of càdlàg functions endowed with
the Skorokhod metric; see Section 3 for the definitions and Billingsley [2] for background on
weak convergence of probability measures on metric spaces in general and on (D[0, 1], dSK)
in particular. Note that, by definition, (Sα,n)α∈[0,1] and (Sα)α∈[0,1] have càdlàg paths almost
surely. As the normalized process of fluctuations we define

Gn := (Gα,n)α∈[0,1] :=
(
Sα,n − nSα√

n

)
α∈[0,1]
. (5)

Then we have the following result:

AofA 2024

9:4 QuickSelect Process CLT

▶ Theorem 1. Let Sα,n be the number of key comparisons required by
QuickVal((U1, . . . , Un), α) and (Sα)α∈[0,1] as in (4). Then for the fluctuation process
Gn defined in (5) we have

Gn
d−→ G∞ in (D[0, 1], dSK) (n → ∞),

where G∞ is a mixture of centered Gaussian processes with random covariance function given
by

Σ∞,α,β :=
J∑
k=0

∞∑
j=0

Iα,j∨k + 1{α ̸=β}(J + 1)
∞∑

j=J+1
(Iβ,j) − SαSβ , α, β ∈ [0, 1], (6)

where J = J(α, β) := max{k ∈ N0 | τα,k = τβ,k} ∈ N0 ∪ {∞}.

▶ Remark 2. Note that a strength of a functional limit theorem such as Theorem 1 is its
versatility implied by the (continuous) mapping theorem [2, Theorem 2.7]: For any metric
space (M,ϱ) and any continuous function h : D[0, 1] → M we obtain the convergence
h(Gn) → h(G∞) in distribution. This even holds for discontinuous (measurable) functions
h if the set Dh of discontinuities of h satisfies P(G∞ ∈ Dh) = 0. Examples include
the maximum (or minimum) of the process, i.e., we have for the worst case fluctuation
maxαGα,n → maxαGα,∞ in distribution. Also projections to one (or multiple) points, i.e.,
Gα,n → Gα,∞ for α ∈ [0, 1], cf. also Lemma 13. Furthermore, for a random index V with
arbitrary probability distribution on [0, 1] we obtain GV,n → GV,∞ in distribution.
▶ Remark 3. In his PhD thesis, Matterer [15, Theorem 6.4] showed the convergence of the
one-dimensional marginals for the functional limit law in Theorem 1.
▶ Remark 4. An alternative representation of the random covariance function in (6) is as
follows: With an independent random variable V uniformly distributed over [0, 1], we have

Σ∞,α,β = Cov
(
J(V, α), J(V, β)

∣∣ F∞
)
, (7)

with the σ-algebra

F∞ := σ
{
Iϕ | ϕ ∈ {0, 1}∗}. (8)

▶ Remark 5. A related functional limit law for the complexity of Radix Selection, an algorithm
to select ranks based on the bit expansions of the data, with a limiting Gaussian process with
a covariance function related to (7) can be found in [13, Theorem 1.2]. See [18, Theorem 1.1]
for another related functional limit law.

The analysis of QuickVal is usually considered an intermediate step to analyze the original
FIND algorithm. Grübel and Rösler [9] already pointed out that a version of FIND such
as stated above with C∗

n(k) denoting the number of key comparisons for finding rank k

within (U1, . . . , Un) does not lead to convergence within (D[0, 1], dSK) after the normalization
α 7→ 1

nC
∗
n(⌊αn⌋ + 1), where here and below the convention C∗

n(n+ 1) := C∗
n(n) is used. To

overcome this problem they propose a version that does not stop in case a pivot turns out to
be the rank to be selected by including the pivot in the list S< and proceeding until a list of
size 1 is generated. Moreover, their pivots are chosen uniformly at random. The number of
key comparisons C ′

n(k) for Grübel and Rösler’s FIND-version has the property that(
1
n
C ′
n

(
⌊αn⌋ + 1

))
α∈[0,1]

d−→ (Sα)α∈[0,1], in (D[0, 1], dSK), (9)

J. Ischebeck and R. Neininger 9:5

see [9, Theorem 4]. Without using random pivots we may also obtain right-continuous limits
by just recursively calling FIND(S≥, 0) in case the pivot turns out to be the rank sought.
We denote the number of key comparisons for this version by Cn(k), which is close to Grübel
and Rösler’s FIND-version and also satisfies (9).

The convergence in (9) could only be stated weakly (not almost surely) since Grübel und
Rösler’s FIND-version due to randomization within the algorithm does not have a natural
embedding on a probability space. Note that the formulation of the QuickVal complexity
does have such an embedding which, e.g., makes the almost sure convergence in (4) possible.
However, it is easy to see that we have the distributional equality(

Cn
(
|{Ui ≤ α : 1 ≤ i ≤ n}|

))
α∈[0,1]

d= (Sα,n)α∈[0,1]. (10)

This allows to naturally couple the complexities on one probability space, which we call its
natural coupling. See [7, page 807] for a related discussion of natural couplings.

To transfer Theorem 1 to FIND we need to align jumps to come up with a suitable
fluctuation process. The conventions Cn(0) := Cn(1) and Cn(n+ 1) := Cn(n) are used.

▶ Corollary 6. Let Cn(k) be the number of key comparisons required to select rank 1 ≤ k ≤ n

within a set of n data by FIND with the natural coupling (10). Let Λn : [0, 1] → [0, 1], n ∈ N,
be any (random) monotone increasing bijective function such that Λn(k

n+1) is equal to the
element of rank k within {U1, . . . , Un}. Then we have(

Cn(⌊t(n+ 1)⌋) − nSΛn(t)√
n

)
t∈[0,1]

d−→ G∞ in (D[0, 1], dSK),

where G∞ is the process defined in Theorem 1.

The extended abstract is organized as follows: In Section 2 we introduce a novel perturbation
argument which is the basis of our analysis. Section 3 contains a criterion for weak convergence
of probability measures on (D[0, 1], dSK), which is applied in Section 4 to proof Theorem 1
and Corollary 6. In Section 5 further functional fluctuation results are stated for the number
of swaps (key exchanges) required by QuickVal (depending on the specific algorithm used
to partition S into the sublists S< and S≥) as well as functional fluctuation results for cost
measures which are based on key comparisons, where the cost of a comparison may depend
on the values of the keys.

For proofs omitted in the present extended abstract see the full paper version in prepara-
tion, which will be available as a future version of [12].

2 Perturbation of the data

QuickVal splits an interval [Lϕ, Rϕ) by the first value falling into [Lϕ, Rϕ) denoted by Uτϕ
.

Obviously, this implies dependencies between the data Ui and the lengths Iϕ of the intervals
[Lϕ, Rϕ). In the present section we construct a perturbed sequence (Ũi)i∈N to the data
(Ui)i∈N such that we gain independence of (Ũi)i∈N from the σ-algebra F∞ generated by the
interval lengths defined in (8). In particular, we aim that conditional on F∞ the number
of data (Ũ1, . . . , Ũn) falling into an interval [Lϕ, Rϕ) is binomial B(n, Iϕ) distributed, see
Lemma 8 below.

Every value Ui, i ∈ N, falls successively into subintervals generated by QuickVal until
becoming a pivot element. These subintervals correspond to the path between the root of
the corresponding binary search tree and the node where Ui is inserted. Let ϕi ∈ {0, 1}∗

denote the node where Ui is inserted. Hence, we have τϕi
= i and Ui = Lϕi

+ Iϕi0.

AofA 2024

9:6 QuickSelect Process CLT

Let (Vi)i∈N be a sequence of i.i.d. unif[0, 1] random variables being independent of (Ui)i∈N.
We define

Ũi := Lϕi
+ Iϕi

Vi. (11)

▶ Lemma 7. The sequence (Ũi)i∈N defined in (11) consists of i.i.d. unif[0, 1] distributed
random variables and is independent of F∞.

Proof. It suffices to show that Ũi conditional on F∞ and Ũ1, . . . , Ũi−1 is uniformly distributed
on [0, 1] for all i ∈ N. We use infinitesimal notation to denote this claim by

P
(
Ũi ∈ du

∣∣∣ F∞, Ũ1, . . . , Ũi−1

)
= 1[0,1](u)du, i ∈ N.

For each i ∈ N the random variables Ũi and Ui fall into the same interval [Lϕi
, Rϕi

), hence
ϕ1, . . . , ϕi−1 are determined by Ũ1, . . . , Ũi−1. Let us additionally condition on ϕi, then, by
definition,

P
(
Ũi ∈ du

∣∣∣ F∞, Ũ1, . . . , Ũi−1, ϕi

)
= 1
Iϕi

1[Lϕi
,Rϕi

)(u)du.

Note that ϕi denotes one of the i external nodes of the binary search tree with internal nodes
denoted by ϕ1, . . . , ϕi−1. We denote by Exti−1 the set of the labels of these external nodes.
Hence, conditional on F∞, ϕ1, . . . , ϕi−1 the label ϕi is chosen from Exti−1 with probability
given by the length of the corresponding interval, i.e., P(ϕi = ϕ | F∞, ϕ1, . . . , ϕi−1) = Iϕ for
all ϕ ∈ Exti−1. Thus, by the law of total probability we obtain

P
(
Ũi ∈ du

∣∣∣ F∞, Ũ1, . . . , Ũi−1

)
=

∑
ϕ∈Exti−1

Iϕ
1
Iϕ

1[Lϕ,Rϕ)(u)du = 1[0,1](u)du.

This implies the assertion. ◀

The Ũi are now coupled with the Ui but independent of the Iϕ. To compare with the number
of key comparisons required by QuickVal((U1, . . . , Un), α) we define

S̃α,k,n :=
n∑
i=1

1[Lα,k,Rα,k)(Ũi).

▶ Lemma 8. Conditional on Iα,k we have that S̃α,k,n has the binomial B(n, Iα,k) distribution.
Moreover, for all α ∈ [0, 1], n ∈ N and 0 ≤ k ≤ n we have

Sα,k,n ≤ (S̃α,k,n − 1)+ ≤ Sα,k,n + k − 1. (12)

Proof. The conditional distribution of S̃α,k,n follows from Lemma 7. Recall that Sα,k,n is
defined as

∑n
i=τα,k

1{Lα,k−1 ≤ Ui < Rα,k−1}. By definition, Ui and Ũi are in the interval
[Lϕi

, Rϕi
) for all i ∈ N. If Ui ∈ (Lα,k, Rα,k), then Ui appears as a pivot after the k-th pivot.

Hence, its interval [Lϕi , Rϕi) and thus also Ũi are contained in (Lα,k, Rα,k). The k-th pivot
Uτα,k

itself does not contribute to Sα,k,n, which implies the left inequality stated in the
present lemma.

For the right inequality, assume for some i ∈ N that the perturbed value Ũi is in
(Lα,k, Rα,k), but Ui is not. Then the corresponding interval (Lϕi

, Rϕi
) must contain

(Lα,k, Rα,k), thus making Ui a pivot that appears before the k-th pivot. Since there are only
k such pivots, the right inequality follows. ◀

J. Ischebeck and R. Neininger 9:7

3 On Weak Convergence in D[0, 1]

The space D[0, 1] consists of all functions f : [0, 1] → R having left limits and being
right-continuous, i.e., with

lim
s↑t

f(s) exists for all t ∈ [0, 1) and lim
s↓t

f(s) = f(t) for all t ∈ [0, 1).

These two properties are abbreviated as càdlàg (continue à droite, limites à gauche). Càdlàg
functions are continuous almost everywhere, but may have right-continuous jumps. Measuring
closeness of functions f, g ∈ D[0, 1] in the Skorokhod metric is more flexible than just
considering the supremum norm ∥f − g∥∞: The Skorokhod metric allows aligning jumps
before comparing them in the supremum norm by setting

dSK(f, g) := inf
λ

max
{

∥f ◦ λ− g∥∞, ∥λ− id∥∞
}
, (13)

where the infimum is taken over all increasing bijections λ : [0, 1] → [0, 1] and id denotes
identity.

To prove the convergence in distribution in Theorem 1 within the metric space
(D[0, 1], dSK), we use the following Proposition 9. It can be proved by classical tools of weak
convergence theory based on a study of the modulus of continuity and the Arzelà–Ascoli
theorem in form of a general theorem of Billingsley [2, Theorem 13.2].

▶ Proposition 9. Let X1, X2, . . . be a sequence of random variables in (D[0, 1], dSK). Suppose
that for every K ∈ N, there exist random càdlàg step functions XK

1 , X
K
2 , . . . with all jumps

contained in {Uϕ | ϕ ∈ {0, 1}∗, |ϕ| < K}. If
(i) for all r ∈ N and α1, . . . , αr ∈ [0, 1], the marginals L(Xn(α1), . . . , Xn(αr)) converge

weakly to some distribution µα1,...,αr
,

(ii) for all ε > 0,

lim
K→∞

lim sup
n→∞

P
(∥∥Xn −XK

n

∥∥
∞ > ε

)
→ 0, (14)

then (Xn)n∈N converges in distribution to a random variable X on (D[0, 1], dSK), and for
all r ∈ N and α1, . . . , αr ∈ [0, 1] we have

L(X(α1), . . . , X(αr)) = µα1,...,αr . (15)

4 Proof of Theorem 1

To split the contributions to the process Gn into costs resulting from above and below a level
K ∈ N we define

Gα,k,n := Sα,k,n − nIα,k√
n

(16)

as the normalized fluctuations of the contribution at level k, and set

G≤K
α,n :=

K∑
k=0

Gα,k,n, G≤K
n :=

(
G≤K
α,n

)
α∈[0,1], G>Kα,n :=

∞∑
k=K+1

Gα,k,n. (17)

Hence, Gα,n = G≤K
α,n +G>Kα,n . Analogously, for the perturbed values S̃k,n we define

Wα,k,n := S̃α,k,n − nIα,k√
n

, W≤K
α,n :=

K∑
k=0

Wα,k,n W≤K
n :=

(
W≤K
α,n

)
α∈[0,1]. (18)

AofA 2024

9:8 QuickSelect Process CLT

▶ Lemma 10. For all K ∈ N we have convergence in distribution of (G≤K
n)n∈N towards

a mixture G≤K
∞ = (G≤K

α,∞)α∈[0,1] of centered Gaussian processes within ∥ · ∥∞. Conditional
on F∞, the limit G≤K

∞ is a centered Gaussian process with covariance function given, for
α, β ∈ [0, 1] by

Cov
(
G≤K
α,∞, G

≤K
β,∞ | F∞

)
=
K∧J∑
k=0

K∑
j=0

Iα,j∨k +
(
1 + (K ∧ J)

) K∑
j=J+1

Iβ,j − S≤K
α S≤K

β , (19)

where J = J(α, β) is as in Theorem 1 and S≤K
α :=

∑K
k=0 Iα,k. The stated convergence in

distribution also holds conditionally in F∞, i.e., we have almost surely that L(G≤K
n | F∞)

converges weakly towards L(G≤K
∞ | F∞).

Proof. First note that by Lemma 8 we have
∥∥G≤K

n −W≤K
n

∥∥
∞ < K2/

√
n, so it suffices to

show the lemma for W≤K
n . Conditional on F∞, the value of W≤K

α,n is given by

W≤K
α,n = 1√

n

n∑
i=1

K∑
k=0

1{Lα,k ≤ Ũi < Rα,k} − (Rα,k − Lα,k), (20)

thus the 2k different values of the process W≤K
n can be expressed as the sum of n centered,

bounded i.i.d. random vectors, scaled by 1/
√
n. By the multivariate central limit theorem,

these converge towards a multivariate, centered normal variable. As the positions of the
jumps, still conditional on F∞, are fixed, we have convergence of W≤K

n and thus also of G≤K
n

towards a Gaussian process. Define Xα,k := 1{Lα,k−1 ≤ Ũ1 < Rα,k−1}. The covariance
function then is given by

Cov
(
G≤K
α,∞, G

≤K
β,∞ | F∞

)
= Cov

(K∑
k=0

Xα,k,

K∑
j=0

Xβ,j

∣∣∣∣ F∞

)

=
K∑
k=0

K∑
j=0

E[Xα,kXβ,j | F∞] − S≤K
α S≤K

β

=
K∧J∑
k=0

K∑
j=0

Iα,k∨j +
(
1 + (K ∧ J)

) K∑
j=J+1

Iβ,j − S≤K
α S≤K

β . (21)

The assertion follows. ◀

To see that the covariance functions in (21) converge towards the covariance function of
G∞ stated in Theorem 1 we restate a Lemma of Grübel and Rösler [9, Lemma 1] that the
maximal length of the intervals at a level is decreasing geometrically with increasing levels.
It is obtained observing that E

[∑
|ϕ|=k I

2
ϕ

]
=
(2

3
)k and states:

▶ Lemma 11. There exists an a.s. finite random variable K1 such that for all k ≥ K1:

max
α∈[0,1]

Iα,k ≤ k

(
2
3

)k/2
. (22)

Lemma 11 implies that the covariance functions of G≤K
∞ from (19) converge a.s. to the

covariance function of G∞ from (6).
For the costs from levels k > K we find:

▶ Proposition 12. For all ε, η > 0 there are constants K,N ∈ N such that for all n ≥ N

P
(
∥G>Kn ∥∞ > η

)
< ε. (23)

J. Ischebeck and R. Neininger 9:9

We postpone the proof of the latter proposition and first use Proposition 12 and Lemma 10
to show convergence of the finite-dimensional distributions, denoted fdd-convergence.

▶ Lemma 13. We have fdd-convergence of Gn towards G∞.

Proof. For any K, we can split Gn = G≤K
n +G>Kn . By Lemma 10, we have

G≤K
n

fdd−→ G≤K
∞ (n → ∞).

Furthermore, because the covariance functions of the G≤K
∞ converge a.s., we obtain

G≤K
∞

fdd−→ G∞ (K → ∞)

by Lévy’s continuity theorem. Hence, for all α1, . . . , αℓ ∈ [0, 1] and all t1, . . . , tℓ ∈ R we find
a sequence (Kn)n∈N in N such that

P
(
G≤Kn
α1,n < t1, . . . , G

≤Kn
αℓ,n

< tℓ
)

−→ P
(
Gα1,∞ < t1, . . . , Gαℓ,∞ < tℓ

)
(n → ∞).

Now, since ∥G>Kn
n ∥∞ → 0 in probability by Proposition 12 the claim of Lemma 13 follows

by Slutzky’s theorem. ◀

To prepare for the proof of Proposition 12, we show that the fluctuations on each level
are also at least geometrically decreasing. Recall K1 from Lemma 11.

▶ Lemma 14. There exists a constant a > 1 such that for all k, n ∈ N

P
(

max
α∈[0,1]

|Wα,k,n| > a−k, K1 ≤ k

)
≤ b(k) + c(k, n)

with b(k), c(k, n) ≥ 0 such that

∞∑
k=1

b(k) < ∞ and
⌊(9/2) logn⌋∑

k=1
c(k, n) → 0 (n → ∞). (24)

For the proof of Lemma 14 we require the following Chernoff bound:

▶ Lemma 15. Let Sn be binomial B(n, p) distributed for some p ∈ [0, 1] and n ∈ N and let
µ := E[Sn], ε ≥ 0. Then

P
(
Sn /∈

(
(1 − ε)µ, (1 + ε)µ

))
≤ 2 exp

(
− ε2µ

2 + ε

)
.

Proof. Combine upper and lower bound in McDiarmid [16, Theorem 2.3]. ◀

Proof of Lemma 14. Fix some α ∈ [0, 1]. Conditionally on Ik,α, the costs S̃α,k,n are
B(n, Ik,α)-distributed by Lemma 7. The Chernoff bound in Lemma 15 implies

P
(
|Wα,k,n| > a−k ∣∣ Iα,k) = P

(∣∣S̃α,k,n − nIα,k
∣∣ > √

na−k
∣∣∣ Iα,k)

≤ 2 exp
(

− na−2k

nIα,k(2 +
√
na−k/(nIα,k))

)
= 2 exp

(
−
(
2a2kIα,k + ak/

√
n
)−1)

. (25)

AofA 2024

9:10 QuickSelect Process CLT

For the two summands in the exponent in (25) we have the following behavior: Summand
2a2kIk,α is falling geometrically with k for sufficiently small a > 1. Summand ak/

√
n

is falling with n, but growing with k. To separate these two contributions, note that
exp(x−1) ≥ 1

m!x
−m and thus exp(−x−1) ≤ m!xm for all m ∈ N and x ≥ 0. Choosing m = 7,

we obtain

P
(
|Wα,k,n| > a−k ∣∣ Iα,k) ≤ 2 · 7!

(
2a2kIα,k + ak/

√
n
)7

≤ 2147!a14kI7
α,k + 277!a7kn−7/2

by convexity of x 7→ x7. Note that the 2k intervals at level k have lengths Iα,k summing to 1.
Hence,

P
(

max
α∈[0,1]

|Wα,k,n| > a−k
∣∣∣ Iα,k) ≤ 2147!a14k max

α∈[0,1]
I6
α,k + 277!(2a7)kn−7/2.

When furthermore K1 ≤ k, by Lemma 11 the length Iα,k is bounded by k
(2

3
)k/2, hence

P
(

max
α∈[0,1]

|Wα,k,n| > a−k, K1 ≤ k
)

≤ 2147!ka14k
(

2
3

)3k
+ 277!(2a7)kn−7/2.

Define the first summand on the right hand side of the latter inequality by b(k) and the
second summand by c(k, n). For all 1 < a < (3/2)3/14 the b(k) form a convergent series. To
also show the second statement in (24) note that

⌊(9/2) logn⌋∑
k=1

c(k, n) = O
((

2a7)(9/2) logn
n−7/2

)
= O

(
n(9/2) log 2+(9/2)·7 log a−7/2

)
.

The latter O-term converges to 0 for (63/2) log a < 7/2 − (9/2) log 2 ≈ 0.381 . . . , thus we
may choose a as required. ◀

We are now prepared for the proof of Proposition 12.

Proof of Proposition 12. Let ε, η > 0. ToK1 from Lemma 11 and a and b(k) from Lemma 14
we choose K sufficiently large such that

P(K1 > K) ≤ ε

4 ,
∞∑
k=K

a−k ≤ η

4 and
∞∑
k=K

b(k) ≤ ε

4 . (26)

Let Hn be the maximum amount of steps needed by QuickVal((U1, . . . , Un), α) for any α.
Thus, Hn is also the height of the binary search tree built from U1, . . . , Un. Devroye [4]
showed that the height has expectation E[Hn] = γ log n+ o(log n) with γ = 4.311 . . . Reed
[17] further showed that Var(Hn) = O(1). Hence, we can choose N sufficiently large such
that

P
(
Hn > ⌊(9/2) log n⌋

)
<
ε

4 ,
⌊(9/2) logn⌋∑

k=1
c(k, n) ≤ ε

4 , and ((9/2) log n)2
√
n

≤ η

4 (27)

for all n ≥ N . Subsequently we use the decomposition

G>Kα,n =
⌊(9/2) logn⌋∑
k=K+1

Sα,k,n − nIα,k√
n

+
∞∑

⌊(9/2) logn⌋+1

Sα,k,n − nIα,k√
n

=: Γn +G>⌊(9/2) logn⌋
α,n

and consider the event

An := {K1 > K} ∪ {Hn > ⌊(9/2) log n⌋}.

J. Ischebeck and R. Neininger 9:11

We have P(An) < ε/2 for all n ≥ N . Note that on Acn (the complement of An) we have
Sα,k,n = 0 for all k > ⌊(9/2) log n⌋ and also the bound on Iα,k from Lemma 11 applies, hence∣∣∣G>⌊(9/2) logn⌋

α,n

∣∣∣ ≤
∞∑

⌊(9/2) logn⌋+1

√
nIα,k ≤

∞∑
⌊(9/2) logn⌋+1

√
nk

(
2
3

)k/2

= O
(
n1/2−(9/4) log(3/2) log n

)
= o(1)

since (9/4) log(3/2) = 0.912 . . . Hence, we can enlarge N so that on Acn we have∣∣G>⌊(9/2) logn⌋
α,n

∣∣ < η/2 for all n ≥ N . This implies the bound

P
(
|G>Kα,n | > η

)
≤ P(An) + P

({
|G>Kα,n | > η

}
∩Acn

)
≤ ε

2 + P
({

|Γn| > η

2

}
∩Acn

)
+ P

({∣∣G>⌊(9/2) logn⌋
α,n

∣∣ > η

2

}
∩Acn

)
. (28)

Note that the third summand in (28) is 0. Hence, it remains to bound the second summand
in (28). To this end note that

|Γn| ≤ sup
α∈[0,1]

⌊(9/2) logn⌋∑
k=K+1

(∣∣∣∣∣ S̃α,k,n − nIα,k√
n

∣∣∣∣∣+

∣∣∣∣∣Sα,k,n − S̃α,k,n√
n

∣∣∣∣∣
)

≤

(⌊(9/2) logn⌋∑
k=K+1

max
α∈[0,1]

|Wα,k,n|

)
+ ⌊(9/2) log n⌋2

√
n

, (29)

where Lemma 8 is used. The third relation in (27) assures that the second term in (29) is
smaller than η/4. In view of the second relation in (26) and (29), we have

{
|Γn| > η

2

}
∩Acn ⊂

⌊(9/2) logn⌋⋃
k=K

{
max
α∈[0,1]

|Wα,k,n| > a−k, K1 ≤ k

}
.

Thus, Lemma 14 together with (26) and (27) imply that the second summand in (28) is
bounded by ε/2. This implies the assertion. ◀

Proof of Theorem 1. We apply Proposition 9 to Gn and G≤K
n . The first condition, fdd

convergence, is Lemma 13, the second condition is Proposition 12. ◀

We now transfer the fluctuation result for QuickVal in Theorem 1 to the original FIND
process in Corollary 6.

Proof of Corollary 6. Let F̃n be the inverse of Λn in the statement of Corollary 6. By
definition of Λn, the value of the element U(k) of rank k within U1, . . . , Un is given by k

n+1 ,
so ⌊

(n+ 1)F̃n(α)
⌋

=
∣∣{Ui ≤ α | 1 ≤ i ≤ n}

∣∣ (30)

for all α ∈ [0, 1). Thus, Cn
(⌊

(n+ 1)F̃n(α)
⌋)

= Sα,n a.s. for all α ∈ [0, 1], see (10). For α = 1
note that F̃n(α) = 1 and Cn(n+ 1) = Cn(n) by definition. The Skorokhod distance dSK is
then bounded by

dSK

(
Gn,

(
Cn(⌊t(n+ 1)⌋) − nSΛn(t)√

n

)
t∈[0,1]

)
= dSK

(
Gn,

(
SΛn(t),n − nSΛn(t)√

n

)
t∈[0,1]

)
= dSK

(
Gn, (GΛn(t),n)t∈[0,1]

)
≤ ∥F̃n − id∥∞.

AofA 2024

9:12 QuickSelect Process CLT

By (30), F̃n is close to the empirical distribution function and thus converges a.s. uniformly
to the identity id by the Glivenko–Cantelli theorem. The statement of Corollary 6 then
follows from Slutzky’s theorem. ◀

5 Further cost measures

In this section we sketch results analogous to Theorem 1 for other cost measures than the
number of key comparisons. We consider the number of swaps required by QuickVal, which
however depends on the implementation of the procedure to partition the input (U1, . . . , Un)
into the sublists S< and S≥. We consider two such procedures, the one originally proposed
by Hoare [10] and one that is attributed to Lomuto, see [1, 3, 14]. Our results are stated in
Subsection 5.1.

As a further cost measure, we consider the model where the costs to compare two keys
may depend on their values, e.g. the number of bit comparisons required to compare them
when they are given by their binary expansions. The total cost for all key comparisons
required by QuickVal((U1, . . . , Un), α) or FIND((U1, . . . , Un), k) is no longer determined by
the fact that the ranks of (U1, . . . , Un) form an uniformly random permutation. Here, the
distribution of the Ui matters. We only consider the uniform distribution as in the previous
sections and hope to report on other distributions in the full paper version of this extended
abstract. Our results are stated in Subsection 5.2. A probabilistic analysis for the number of
bit comparisons of the related Quicksort algorithms was given in [6, 5].

5.1 Number of swaps

Usually, QuickSelect is implemented in-place, meaning that it only requires the memory
for the list S of values and a bounded amount of additional memory. This is achieved by
swapping values within S so that the elements of S< and S≥ are contained in contiguous
parts of the list. Such a procedure is called partition. There are various procedures of
partition.

The original procedure by Hoare [10] searches the list S from both ends at once: It
repeatedly finds the index i = min{2 ≤ i ≤ n | Ui > U1} of the leftmost element bigger than
the pivot and the index j := max{2 ≤ j ≤ n | Uj < U1} of the rightmost element smaller
than the pivot. If i < j, it swaps Ui and Uj . Else the algorithm terminates.

A simpler, but less efficient implementation is the so-called Lomuto partition scheme
[1, 3, 14] that only searches from one end of S. It keeps track of the amount i of elements at
the start of the list it has already swapped. In every step, it finds the index j := max{2 ≤
j ≤ n | Uj < U1} of the rightmost element smaller than the pivot. If i+ 1 < j, it swaps Ui+1
and Uj and increases i by one. Otherwise the algorithm terminates.

Both partition schemes only compare elements to the pivot, so the model of randomness
is preserved within the sublists S< and S≥. However, their original order is not preserved,
so QuickSelect run on U1, . . . , Un will usually not select the same pivots as QuickSelect on
U1, . . . , Un+1. For convenience, we assume that the pivot to split a sublist S′ of S is the
element of S′ that came first in the original list S. We call this choice of the pivots a suitable
embedding.

J. Ischebeck and R. Neininger 9:13

5.1.1 Hoare’s partition
For Hoare’s partition, via a hypergeometric distribution the expected number of swaps in
step k given F∞ is approximately nIα,k+1(Iα − Iα,k)/Iα,k, which leads to the limit process
L = (Lα)α∈[0,1] given by

Lα :=
∞∑
k=0

Iα,k+1(Iα − Iα,k)
Iα,k

, α ∈ [0, 1]. (31)

It is now possible to study the fluctuations by their contributions from the individual levels
and combine them as for the number of key comparisons above. Since we are still in the range
of the central limit theorem we again obtain a mixture of centered Gaussian processes. To
be explicit, first denote by Zϕ the limit of the Gα,k,n as n → ∞ where ϕ = ϕ(α, k) ∈ {0, 1}k.
Further, denote by {Yϕ |ϕ ∈ {0, 1}∗} a set of i.i.d. N (0, 1) random variables being independent
of {Zϕ |ϕ ∈ {0, 1}∗} and of F∞. Then the limiting process Gswap = (Gswap

α)α∈[0,1] is given
by

Gswap
α :=

∑
ϕ∈{ϕ(k,α) | k∈N0}

Yϕ
Iϕ0Iϕ1

I
3/2
ϕ

+ Zϕ0
Iϕ1

Iϕ
+ Zϕ1

Iϕ0

Iϕ
− Zϕ

Iϕ0Iϕ1

I2
ϕ

, α ∈ [0, 1]. (32)

The Yϕ represent fluctuations caused by the hypergeometric distribution connected to
partition, while the terms with Z represent fluctuations around the limit (31). Then we have
the following result for key exchanges corresponding to Theorem 1:

▶ Theorem 16. Let Kα,n be the number of key exchanges required by
QuickVal((U1, . . . , Un), α) with Hoare’s partition algorithm in a suitable embedding.
Then, as n → ∞, we have(

Kα,n − nLα√
n

)
α∈[0,1]

d−→ Gswap in (D[0, 1], dSK).

5.1.2 Lomuto’s partition
The Lomuto partition is simpler to implement and much easier to analyze. The Lomuto
partition swaps every element smaller than the pivot, so the amount of swaps at some path
ϕ ∈ {0, 1}∗ is given by Sϕ0 + 1. With the Zϕ introduced in Subsection 5.1.1 we find that
(Zϕ)ϕ∈{0,1}∗ is a mixture of centered Gaussian processes with conditional covariance function
given by

Cov(Zϕ, Zψ | F∞) = Iϕ∨ψ − IϕIψ, ϕ, ψ ∈ {0, 1}∗,

where Iϕ∨ψ is the length of the interval [Lϕ, Rϕ) ∩ [Lψ, Rψ), thus Iϕ∨ψ is only nonzero if one
of ψ and ϕ is a prefix of the other. Then the limiting process GLo = (GLo

α)α∈[0,1] is given by

GLo
α =

∞∑
k=0

Zϕ(α,k)0, α ∈ [0, 1].

We can directly apply Lemma 14 and our proof for the number of key comparisons can be
straightforwardly transferred.

▶ Theorem 17. Let KLo
α,n be the number of key exchanges required by

QuickVal((U1, . . . , Un), α) with Lomuto’s partition procedure in a suitable embedding.
Then, as n → ∞, we have(

KLo
α,n − n

∑∞
k=0 Iϕ(α,k)0√
n

)
α∈[0,1]

d−→ GLo in (D[0, 1], dSK).

AofA 2024

9:14 QuickSelect Process CLT

5.2 Number of bit comparisons
We now consider the model where the cost to compare two keys depends on their values.
These costs are described by a measurable cost function β : [0, 1]2 → [0,∞), and we require
that they have a polynomial tail, that is: There are constants c, ε > 0 such that for all
u ∈ [0, 1], x ∈ N and for V being unif[0, 1] distributed

P(β(u, V) ≥ x) ≤ cx−1/ε.

This condition is called (c, ε)-tameness, see Matterer [15], and β is called to be ε-tame if it
is (c, ε)-tame for some c > 0. Note that, e.g., β counting the number of bit comparisons is
ε-tame for all ε > 0. The costs of QuickVal((U1, . . . , Un), α) in this model are given by

Sβα,n :=
∞∑
k=0

∑
τα,k<i≤n

1[Lα,k,Rα,k)(Ui)β(Uτα,k
, Ui)

and the limit is, with V being unif[0, 1] distributed and independent of the U1, . . . , Un, given
as

Sβα,∞ :=
∞∑
k=0

E
[
1[Lα,k,Rα,k)(V)β(Uτα,k

, V)
∣∣ F∞

]
.

Matterer [15, Theorem 6.4 and Theorem 6.14] shows for ε < 1
2 that for fixed α ∈ [0, 1] the

resulting residual

Gβα,n :=
Sβα,n − nSβα,∞√

n

converges to a mixed centered Gaussian random variable Gβα,∞ in distribution and with all
moments. It is possible to combine them to a mixture of centered Gaussian processes

Gβ∞ = (Gβα,∞)α∈[0,1], (33)

defined by the conditional covariance functions given, with Xβ
α,k := 1[Lα,k,Rα,k)(V) ·

β(Uτα,k,n
, V), by

Cov
(
Gβα,∞, G

β
γ,∞ | F∞

)
= Cov

(∞∑
k=0

Xβ
α,k,

∞∑
k=0

Xβ
γ,k

∣∣ F∞

)
, α, γ ∈ [0, 1]. (34)

The latter expression is well-defined due to the following lemma using ε-tameness:

▶ Lemma 18. Let [L,R) ⊆ [0, 1] be an interval of length I = R − L > 0 and u ∈ [L,R).
For V being unif[0, 1] distributed set X := 1[L,R)(V)β(u, V). Then, for every s ∈ (0, ε−1),
uniformly in L,R, we have

E[Xs] = I · E[Xs | V ∈ [L,R)] = O
(
I1−εs

)
.

We have the following result corresponding to Theorem 1.

▶ Theorem 19. Let β be an ε-tame cost function with ε < 1
4 . Then we have(

Sβα,n − nSβα,∞√
n

)
α∈[0,1]

d−→ Gβ∞ in (D[0, 1], dSK),

where Gβ∞ is the mixture of centered Gaussian processes defined in (33).

J. Ischebeck and R. Neininger 9:15

References
1 Jon Bentley. Programming pearls. Addison-Wesley, Reading, Mass. URL: https://www.

pearson.de/programming-pearls-9780134498027.
2 Patrick Billingsley. Convergence of probability measures. Wiley Series in Probability and

Statistics: Probability and Statistics. John Wiley & Sons Inc., New York, 1999. A Wiley-
Interscience Publication. doi:10.1002/9780470316962.

3 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to algorithms. MIT Press, Cambridge, MA, third edition, 2009.

4 Luc Devroye. A note on the height of binary search trees. J. ACM, 33(3):489–498, May 1986.
doi:10.1145/5925.5930.

5 James Allen Fill. Distributional convergence for the number of symbol comparisons used by
QuickSort. Ann. Appl. Probab., 23(3):1129–1147, 2013. doi:10.1214/12-AAP866.

6 James Allen Fill and Svante Janson. The number of bit comparisons used by Quicksort: an
average-case analysis. Electron. J. Probab., 17:no. 43, 22, 2012. doi:10.1214/EJP.v17-1812.

7 James Allen Fill and Jason Matterer. QuickSelect tree process convergence, with an application
to distributional convergence for the number of symbol comparisons used by worst-case find.
Combin. Probab. Comput., 23(5):805–828, 2014. doi:10.1017/S0963548314000121.

8 James Allen Fill and Takehiko Nakama. Distributional convergence for the number of
symbol comparisons used by quickselect. Advances in Applied Probability, 45(2):425–450, 2013.
doi:10.1239/aap/1370870125.

9 Rudolf Grübel and Uwe Rösler. Asymptotic distribution theory for Hoare’s selection algorithm.
Adv. in Appl. Probab., 28(1):252–269, 1996. doi:10.2307/1427920.

10 C. A. R. Hoare. Algorithm 63: Partition. Commun. ACM, 4(7):321, July 1961. doi:
10.1145/366622.366642.

11 C. A. R. Hoare. Algorithm 65: Find. Commun. ACM, 4(7):321–322, July 1961. doi:
10.1145/366622.366647.

12 Jasper Ischebeck and Ralph Neininger. On fluctuations of complexity measures for the find
algorithm, 2024. arXiv:2403.07685.

13 Kevin Leckey, Ralph Neininger, and Henning Sulzbach. Process convergence for the complexity
of radix selection on markov sources. Stochastic Processes and their Applications, 129(2):507–
538, 2019. doi:10.1016/j.spa.2018.03.009.

14 Hosam M. Mahmoud. Distributional analysis of swaps in quick select. Theoretical Computer
Science, 411(16):1763–1769, 2010. doi:10.1016/j.tcs.2010.01.029.

15 Jason Matterer. Quickselect Process and QuickVal Residual Convergence. PhD thesis, The
Johns Hopkins University, Baltimore, Maryland, 2015.

16 Colin McDiarmid. Concentration. In Michel Habib, Colin McDiarmid, Jorge Ramirez-Alfonsin,
and Bruce Reed, editors, Probabilistic Methods for Algorithmic Discrete Mathematics, pages
195–248. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998. doi:10.1007/
978-3-662-12788-9_6.

17 Bruce Reed. The height of a random binary search tree. J. ACM, 50(3):306–332, May 2003.
doi:10.1145/765568.765571.

18 Henning Sulzbach, Ralph Neininger, and Michael Drmota. A Gaussian limit process for
optimal FIND algorithms. Electronic Journal of Probability, 19(none):1–28, 2014. doi:
10.1214/EJP.v19-2933.

19 Brigitte Vallée, Julien Clément, James Allen Fill, and Philippe Flajolet. The number of
symbol comparisons in QuickSort and QuickSelect. In Automata, languages and programming.
Part I, volume 5555 of Lecture Notes in Comput. Sci., pages 750–763. Springer, Berlin, 2009.
doi:10.1007/978-3-642-02927-1_62.

AofA 2024

https://www.pearson.de/programming-pearls-9780134498027
https://www.pearson.de/programming-pearls-9780134498027
https://doi.org/10.1002/9780470316962
https://doi.org/10.1145/5925.5930
https://doi.org/10.1214/12-AAP866
https://doi.org/10.1214/EJP.v17-1812
https://doi.org/10.1017/S0963548314000121
https://doi.org/10.1239/aap/1370870125
https://doi.org/10.2307/1427920
https://doi.org/10.1145/366622.366642
https://doi.org/10.1145/366622.366642
https://doi.org/10.1145/366622.366647
https://doi.org/10.1145/366622.366647
https://arxiv.org/abs/2403.07685
https://doi.org/10.1016/j.spa.2018.03.009
https://doi.org/10.1016/j.tcs.2010.01.029
https://doi.org/10.1007/978-3-662-12788-9_6
https://doi.org/10.1007/978-3-662-12788-9_6
https://doi.org/10.1145/765568.765571
https://doi.org/10.1214/EJP.v19-2933
https://doi.org/10.1214/EJP.v19-2933
https://doi.org/10.1007/978-3-642-02927-1_62

A Bijection for the Evolution of B-Trees
Fabian Burghart #

Department of Mathematics and Computer Science, Eindhoven University of Technology, The
Netherlands

Stephan Wagner #

Institute of Discrete Mathematics, TU Graz, Austria
Department of Mathematics, Uppsala University, Sweden

Abstract
A B-tree is a type of search tree where every node (except possibly for the root) contains between
m and 2m keys for some positive integer m, and all leaves have the same distance to the root. We
study sequences of B-trees that can arise from successively inserting keys, and in particular present
a bijection between such sequences (which we call histories) and a special type of increasing trees.
We describe the set of permutations for the keys that belong to a given history, and also show how
to use this bijection to analyse statistics associated with B-trees.

2012 ACM Subject Classification Mathematics of computing → Enumeration; Theory of computa-
tion → Randomness, geometry and discrete structures; Theory of computation → Data structures
design and analysis

Keywords and phrases B-trees, histories, increasing trees, bijection, asymptotic enumeration, tree
statistics

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.10

Funding Fabian Burghart: F. Burghart has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement
No 101034253.
Stephan Wagner : Supported by the Swedish research council (VR), grant 2022-04030.

1 Introduction and main results

B-trees, since their inception in [4], have become a popular data structure. Regarding their
mathematical analysis, there were some early results by Yao [13] and Odlyzko [11] for the
special case of 2-3-trees, but despite Knuth posing a natural open question in [7], progress
has been scarce. Perhaps most notable is the approach using Pólya urns as in [1–3,6], which
yielded results especially for the fringe analysis of B-trees. In this paper, we propose a novel
way of investigating B-trees, by focussing on what we call histories.

1.1 B-trees and their insertion algorithm
By a search tree, we mean a rooted plane tree whose nodes contain keys, which we think of as
pairwise distinct real numbers, in such a way that (1) the keys are stored in increasing order
from left to right (including within a single node), and (2) every non-leaf node containing k

keys has exactly k + 1 children, where we think of the i-th child as being attached between
the (i − 1)-th and the i-th key of its parent node. For i = 1 we interpret this as being
attached to the left of the first key, and analogously for i = k + 1, the child is attached to
the right of the last key in the node. Note that we explicitly allow leaves to contain keys,
and will refer to the intervals between consecutive keys in a leaf as gaps; thus we do not
follow the convention of [10] where the leaves really take the place of our gaps, and therefore
cannot contain keys.

© Fabian Burghart and Stephan Wagner;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:f.burghart@tue.nl
https://orcid.org/0000-0003-1977-2345
mailto:stephan.wagner@tugraz.at
https://orcid.org/0000-0001-5533-2764
https://doi.org/10.4230/LIPIcs.AofA.2024.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 A Bijection for the Evolution of B-Trees

Let m ≥ 1. Following Knuth [10, Section 6.2.4], a B-tree of order 2m + 1 is a search tree
satisfying the following properties: Every node contains at least m and at most 2m keys,
except for the root which contains at least 1 and at most 2m keys. Moreover, the tree is
balanced in the sense that all leaves have the same distance to the root. We remark that
some authors (e.g. [4]) refer to such a tree as a B-tree of order m instead.

B-trees can be constructed via the following insertion algorithm: Given a B-tree and
a key that is not already stored in the tree, place the key in the appropriate leaf and the
appropriate position within the keys of the leaf. If, after this placement, the leaf still contains
at most 2m keys, then we are done. Otherwise, we split the node containing 2m + 1 keys by
moving the median key up into the parent node and grouping the lowest m keys and the
largest m keys each in their own node. By doing this, it might now happen that the parent
node contains 2m + 1 keys, in which case we again split it into two nodes of m vertices and
move the median key (of the parent node) up. This process may propagate all the way along
the path from the leaf where we inserted the key to the root vertex, in which case we create
a new root vertex above the old root, containing only a single key (the one that was the
median among the 2m + 1 keys of the old root), and split the old root in two. Note that the
latter case of splitting the root is the only situation in which the height of the B-tree can
increase.

For the purpose of this article, we are interested in B-trees up to isomorphism of rooted
plane trees. Equivalently, we can represent an isomorphism class by replacing all keys by
dots, as in Figure 1(left). For brevity’s sake, we will henceforth use B-tree to mean such an
isomorphism class. An alternative way to think about these isomorphism classes is to fix
the keys instead, e.g. by saying the keys are the set {1, . . . , n} – the disadvantage of this
approach being that inserting another key means having to reassign the values of some of
the old keys. Nonetheless, we will make use of both of these representations.

1.2 Main results
Let Tn be a B-tree of order 2m + 1 containing n keys. A history of Tn is a finite sequence
(T1, . . . , Tn) of B-trees of order 2m + 1 such that for all i = 2, . . . , n, the tree Ti is obtained
from Ti−1 through inserting a single key using the insertion algorithm outlined above. In
particular, Ti contains i keys. We denote by Hm(Tn) the set of all histories of Tn, and by
Hm(n) the set of all histories of any B-tree of order 2m + 1 with n keys. In other words,
Hm(n) =

⋃
Tn

Hm(Tn), where the union is taken over all (non-isomorphic) B-trees of order
2m + 1 with n keys.

We can now state our main result:

▶ Theorem 1. Let n, m ≥ 1. There is a bijection between Hm(n) and the set of all trees Hn

satisfying the following properties:
(i) Hn is a rooted plane tree on n vertices, labelled by {1, . . . , n}, such that along each path

from the root to a leaf, the labels are increasing.
(ii) The vertices of Hn at heights 2m, 3m + 1, 4m + 2, . . . have up to two children, all other

vertices have at most one child.

We will call trees Hn satisfying properties (i) and (ii) in the theorem (2m + 1)-historic
(or just historic, if it is not ambiguous) in the interest of brevity. Given a historic tree H

on n vertices, it will be useful throughout to consider all potential positions for attaching
a vertex n + 1 that lead to another historic tree. We think of these positions as external
vertices, and call the vertices in H internal to tell them apart. We also write H̄ to denote
H together with the external vertices. Furthermore, we call the internal vertices at height
2m, 3m + 1, 4m + 2, . . . branchings (irrespective of how many internal children they have).

F. Burghart and S. Wagner 10:3

▶ Proposition 2. Let Hn be the historic tree corresponding to a history (T1, . . . , Tn) of
B-trees of order 2m + 1 under the bijection in Theorem 1. Then, the following holds:

(i) For any n ≥ 1, the number of external vertices of Hn equals the number of leaves of Tn.
(ii) For any n ≥ 1, the number of branchings in Hn equals the number of keys in Tn that

are not stored in leaves.
(iii) Let n ≥ 2m + 1. Consider the i-th external vertex v of Hn from the left, and let s be the

number of internal vertices in Hn strictly between v and the closest branching above v.
Then, the i-th leaf of Tn from the left contains exactly m + s keys.

We dedicate Section 2 to the proof of Theorem 1 and Proposition 2. That section will
also contain the description of the bijection. In Section 3, we exhibit a recursive construction
of π(Hn), the set of all permutations π ∈ Sn that, when used as key sequence for a B-tree,
lead to the history described by the historic tree Hn. As part of this description, we obtain
the following result:

▶ Proposition 3. Let Hn be a (2m+1)-historic tree having b ≥ 1 branchings. Let s1, . . . , sb+1
be the number of internal vertices in Hn strictly between the i-th external vertex and its
closest branching. Then

|π(Hn)| =
(

(2m + 1)!
(m!)2

)b

·
b+1∏
i=1

(m + si)!. (1)

This formula is somewhat reminiscent of the classical hook length formula, see e.g. [10,
Section 5.1.4, Exercise 20]: the number of increasing labellings of a tree with n vertices is
given by

n!
∏

v

1
Nv

,

where the product is over all vertices and Nv is the number of vertices in the subtree consisting
of v and all its descendants.

▶ Remark 4. It is possible to consider B-trees of order 2m as well, where a node splits
whenever it is assigned 2m keys. In that case, the smallest m − 1 keys end up in the left
node, the m-th key is pushed into the parent node, and the largest m keys end up in the
right node. It is still possible to define suitable (2m)-historic trees, but the distance between
a branching and the next branching below will depend on whether we go to the left or to the
right in Hn.

2 The bijection

The purpose of this section is to prove Theorem 1.
We begin by describing the bijection; see Figure 1 for an example. If n = 1, there is only

one B-tree and only one corresponding H1. For an arbitrary history (T1, . . . , Tn) ∈Hm(n),
construct the corresponding Hn as follows: Assume we already constructed Hk corresponding
to the history (T1, . . . , Tk) ∈Hm(k) for some 1 ≤ k < n. Then Tk+1 is obtained from Tk by
inserting a single new key. If this insertion takes place in the i-th leaf (counted from left to
right) of Tk before accounting for possible splits, then we attach the vertex labelled k + 1
to Hk at the i-th external vertex of Hk (counted from left to right). This gives Hk+1, and
inductively, Hn.

AofA 2024

10:4 A Bijection for the Evolution of B-Trees

•

T1

−→ • •

T2

−→
•

•

•

T3

−→
•

•

• •

T4

−→
• • •

• •

T5

−→
• • • •

• •

T6

−→
•

• •

• • • •

T7

−→

• • • • •

• •

•

T8

−→

• • • • •

• • •

•

T9

1

2

3

4

5

6

9

7

8

Figure 1 A history of B-trees of order 2m + 1 = 3 on the left, with the corresponding historic
tree H9 shown on the right. The external vertices of H9 are shown in white, and are connected by
dotted lines. The vertices 3, 5, 8, and 9 are the branchings of H9.

Conversely, given some historic Hn, we can construct trees H1, . . . , Hn−1 such that Hk

is the subtree consisting of the vertices with label ≤ k. Suppose that the vertex k + 1 is
attached to Hk ⊆ Hk+1 in the i-th external vertex of Hk, and suppose we have already
constructed the history (T1, . . . , Tk) corresponding to Hk. Then we can extend this history
to the one corresponding to Hk+1 by inserting a key into the i-th leaf from the left of Tk,
and let Tk+1 be the B-tree obtained by this (possibly after performing the necessary splits).

It is clear from the description that this gives inverse maps between Hm(n) and (2m + 1)-
historic trees on n vertices, provided the constructions are at all well-defined. This is the
case if the number of external vertices on Hk equals the number of leaves of Tk, which is
exactly claim (i) in Proposition 2. Thus we proceed by proving Proposition 2, which will
imply Theorem 1.

Proof of Proposition 2. We first note that (i) is equivalent to (ii). Indeed, since all non-
branchings have outdegree 1 in Hn, and the branchings have outdegree exactly 2, the number
of branchings is one less than the number of external vertices. Similarly, it is a simple
consequence of the insertion algorithm for B-trees that every key that gets moved out of a
leaf by a split increases the number of leaves by one, so that the number of keys not stored
in leaves is one less than the number of leaves.

Next, we observe that (i) holds for n ≤ 2m. This is the case since any B-tree of order
2m + 1 for those values of n only has a single node (which is simultaneously root and leaf),
and all vertices with these labels in Hn necessarily have outdegree 1. We proceed by induction
on n.

For n = 2m + 1, we see the first split in Tn, leading to a root node containing a single
key, and two leaves containing m keys each. For Hn, we have now reached height 2m, and
thus have two external vertices – these are the children of a branching in Hn, thus there are
no internal vertices between them and the branching. This establishes both (i) and (iii) for
n = 2m + 1.

Now assume that (i) and (iii) hold for some n ≥ 2m + 1, and that we obtain Tn+1 from
Tn by adding a key to the i-th leaf, which held m + s keys in Tn. We distinguish two cases
for s:

For 0 ≤ s ≤ m−1, we end up with m+s+1 keys in the i-th leaf of Tn+1, and the number
of leaves does not change. For Hn, we need to append the vertex labelled n + 1 in place of
the i-th external vertex. Denote by w the closest branching to n + 1 (i.e., the most recent

F. Burghart and S. Wagner 10:5

predecessor that is a branching; such a vertex exists since n ≥ 2m + 1). By assumption,
there are exactly s vertices strictly between w and n + 1, so n + 1 is not a branching, and
only has a single external child (and the path from that external vertex to w is one vertex
longer). Thus, properties (i) and (iii) hold for n + 1.

If, on the other hand, s = m, then adding the key splits the i-th leaf; producing two leaves
in its stead that each hold m keys. For Hn, we denote again by w the closest branching to
the i-th external vertex which becomes the position of the new vertex n + 1. Invoking (iii)
for Hn shows that there are m vertices between n + 1 and w, so n + 1 is another branching
and therefore has two new external vertices as children, replacing the old one. The closest
branching to the new external vertices is now n + 1, and there are no internal vertices strictly
between them, which again corresponds to the number of keys in the new vertices. This
shows that splits in the B-tree correspond to branchings in the historic tree and asserts (i)
and (iii) for n + 1, finishing the induction argument. ◀

3 The permutations associated with a history

Let T be a B-tree of order 2m + 1, containing n keys. We denote by π(T) the set of all
permutations π ∈ Sn that, when used as a key sequence for the insertion algorithm, yield
the tree T . The aim of this section is to give a recursive description of π(T) in terms of the
“trimmed” tree T (1) that is obtained from T by deleting all leaves. For this purpose, write n1
for the number of keys stored in T (1). We will rely on the following observation:

Consider a history (T1, . . . , Tn = T). Let i1 < i2 < · · · < in1 be those i where Ti was
obtained from Ti−1 by inserting a key that led to a split (note that this is consistent with the
indexing). Then

(
T

(1)
i1

, . . . , T
(1)
in1

)
is a valid history of T (1). We remark that this is a purely

combinatorial statement: If we instead looked at i.i.d. keys sampled from some continuous
probability distribution, then the processes (Tn)n≥1 and

(
T

(1)
in

)
n≥1 would be quite different!

As a consequence, suppose we are given a permutation π ∈ π(T). This π produces
a history (T1, . . . , Tn). Moreover, keeping track of the actual keys, we obtain a sequence
Ki1 , . . . , Kin1

of those keys that ascend above the leaves at times i1, . . . , in1 . Forgetting
about their actual values and only keeping track of the relative size of the Kij then produces a
new permutation π(1) ∈ π(T (1)), where, moreover, π(1) produces the history

(
T

(1)
i1

, . . . , T
(1)
in1

)
.

This defines a map ΨT : π(T)→ π(T (1)), π 7→ π(1), and our goal will be to invert this: Given
a π(1), we want to find all π ∈ Sn that lead to such π(1).

This inversion will come in the form of a 3-step algorithm, described in detail below, in
Section 3.2. However, we will give a high-level overview now:
1. In the first step, we start from a given π(1) ∈ π(T (1)), and lift it to a sequence

(Ki1 , . . . , Kin1
) as above.

2. In the second step, we use π(1) and Proposition 2 to construct an acyclic digraph
G = G(T, π(1)). Lemma 7 states that the set of topological labellings of G corresponds
bijectively to the set of historic trees of T that produce π(1).

3. Therefore, in the third step, we can fix a historic tree H obtained from step 2, and restrict
our attention to π(H). The algorithm given will produce an arbitrary element of π(H)
after making a sequence of choices; different choices will lead to different permutations,
and going over all permitted choices produces the entire set, see Lemma 8. In more
concrete terms, we start step 3 with an “empty” permutation consisting of n blank
symbols, and by recursively comparing it against Ki1 , . . . , Kin1

and H we will replace
the blanks by entries from {1, . . . , n}.

AofA 2024

10:6 A Bijection for the Evolution of B-Trees

3.1 Preparatory lemmas
To ensure well-definedness at a later point (Lemma 7), we need the following lemma:

▶ Lemma 5. There is a well-defined map Ψ̂T : Hm(T)→ π(T (1)) that assigns to a history
(T1, . . . , Tn = T) the π(1) constructed above, where π ∈ π(T) is any permutation producing
the history.

Proof. We will assume that the keys in Tj are exactly 1, . . . , j (labelled from left to right,
since Tj is a search tree) for 1 ≤ j ≤ n, and relabel them accordingly whenever we insert
a new key. We show inductively that we can (a) determine uniquely which key moved up
from the leaves at the times i1, i2, . . . and (b) keep track of how the keys in T

(1)
j−1 change

as we go to T
(1)
j . For T1, . . . , T2m, there is nothing to show. In T2m+1, we know that the

unique key in the root node has label m + 1. Suppose we have verified (a) and (b) for some
j ≥ 2m + 1. If j + 1 is not one of i1, i2, . . . , in1 then no splits happen, and comparing Tj+1

with Tj reveals which leaf grew by one. All keys in T
(1)
j to the right of that leaf are increased

by 1 for T
(1)
j+1, all other keys in T

(1)
j remain the same. If on the other hand j + 1 is one of

i1, i2, . . . , in1 then comparing Tj+1 and Tj reveals which leaf of Tj split. As before, all keys
in T

(1)
j to the right of that leaf are increased by 1 for T

(1)
j+1, all other keys in T

(1)
j remain the

same. Moreover, let K be the largest key in T
(1)
j to the left of the splitting leaf. Then the

new key introduced to T
(1)
j+1 will be K + m + 1, and it will be the unique key in Tj+1 that is

placed between the two leaves coming from the split leaf.
Thus, only from the history of Tn we can keep track of which keys were introduced to

T
(1)
j in which order, which yields Ki1 , . . . , Kin1

after updating all the keys and thus π(1). ◀

We also note the following simple fact about the bijection from Theorem 1:

▶ Lemma 6. Let Hn be the historic tree for (T1, . . . , Tn). Suppose that vertex i of a historic
tree H is a branching, and suppose that the key that is pushed upwards from the splitting
leaf at that time is Ki ∈ {1, . . . , n} in Tn. Let j ∈ {i + 1, . . . , n} be another vertex of H,
and let kj denote the key added at time j in the history. Then, kj > Ki if and only if j is
positioned to the right of i in H (not necessarily as a descendant of i), and kj < Ki otherwise.
Moreover, if j > i is another branching of H, then also Kj > Ki if and only if j is to the
right of i, and Kj < Ki otherwise.

Proof. This follows from the observation that after the split pushes Ki upwards, the leaves
of the B-tree can be partitioned into those containing keys < Ki, which are therefore to
the left, and those containing keys > Ki, which are further to the right, as well as from the
description of the bijection given in Section 2. ◀

3.2 The algorithm
We now turn our attention to the promised “inverse” of ΨT . Denote by h the height of T .

For h = 0, the tree T only consists of the root node, and then π(T) = Sn. For h > 0,
suppose we know π(T (1)).

Step 1. By performing an in-order traversal of the keys in T , we can see which of the
numbers 1, . . . , n correspond to the keys in T (1). In other words, in-order traversal gives a
monotone injection ι : {1, . . . , n1} ↪→ {1, . . . , n}, by sending i to the j that is the i-th key
from the left among those not in a leaf node of T . This injection in turn allows us to write
any π(1) ∈ π(T (1)) as a sequence πι =

(
Ki1 , . . . , Kin1

)
.

F. Burghart and S. Wagner 10:7

Step 2. We construct a rooted digraph G = G(T, π(1)) in the following way: First, construct
a binary search tree from π(1). Then, subdivide the edges (and move the root up) in such a
fashion that the nodes of the binary search tree become the branchings of a historic tree and
append extra vertices to match with the leaves of T , according to Proposition 2(iii). We then
direct all edges away from the root, and consider the directed path π(1)(1) −→ · · · −→ π(1)(n1).
Merge this path into the (mostly empty) historic tree by identifying the vertex π(1)(i) in the
path with the vertex containing π(1)(i) in the tree, for all i = 1, . . . , n1. For bookkeeping,
we colour the edges coming from the path red, and the edges from the tree black. Finally,
delete all labels/keys from the resulting digraph G.

▶ Lemma 7. The digraph G = G(T, π(1)) constructed in this fashion is acyclic. Furthermore,
any topological labelling of G (that is, any labelling such that all edges point towards the
higher label) induces a historic tree H for T on the black edges. Such H corresponds to those
histories of T that are obtained by π ∈ Sn such that π(1) is the associated history of T (1). In
other words, we have

{topological labellings of G(T, π(1))} 1:1←→ Ψ̂−1(π(1)),

where the bijection is the one from Theorem 1 after removing the red edges from G.

Step 3. It remains to give the actual description of π(T). Specifically, writing π(H) for the
set of π ∈ Sn that produce the history encoded by the historic tree H, we can pick an H

coming from a topological labelling of G(T, π(1)) and describe the corresponding π(H). We
are given the key sequence πι = (Ki1 , . . . , Kin1

) from Step 1, as well as a fixed topological
labelling of G, with the induced historic tree H.

In what follows, p will be a sequence of distinct integers which is to be determined,
thought of as a map onto some range R. Furthermore H will be a historic tree on |R| vertices,
and K is a subsequence of πι containing (in the same order) all those Kij

that appear in R.
Moreover, we demand that the length of the sequence K equals the number of branchings in
H. Then, the following recursive procedure constructs all desired π:

Step 3.0. Initialize p = π as a yet undetermined permutation in Sn, thus R = {1, . . . , n}.
Further, set H = H and K = πι.

Step 3.1. If |R| ≤ 2m, let p be an arbitrary bijection onto R. Otherwise, choose an arbitrary
position 1 ≤ j1 ≤ 2m + 1 to place K1, the first element of K (i.e., fix p(j1) = K1), mark m

additional positions among the first 2m + 1 of p as small, and the remaining m as large.
For j > 2m + 1, mark the j-th entry of the permutation as small if the vertex labelled j

is positioned to the left of the topmost branching in H, and as large otherwise.

Step 3.2. Define new undetermined bijections p±, where p+ contains all the large positions
of p, and p− all the small ones. These bijections will have the ranges R+ := R ∩
{K1 + 1, . . . , n} and R− := R ∩ {1, . . . ,K1 − 1}, respectively. Moreover, let K± be the
subsequences of K containing, in the same order, the entries strictly larger/smaller than
K1. Also split H into H± such that H− contains the vertices labelling the small positions
in π and such that H− below the m-th vertex is equal to the left subtree of H from Step
3.1. Construct H+ analogously, then relabel H± with integers from 1, . . . , |H±| while
maintaining the relative order.

Step 3.3: Repeat steps 3.1–3.3 for both (p±,R±,K±,H±).

AofA 2024

10:8 A Bijection for the Evolution of B-Trees

▶ Lemma 8. If H comes from a topological ordering of G(T, π(1)) and πι is constructed from
T and π(1) as in step 1, then the following holds for step 3.2:

(i) K± consists of those entries of πι that are contained in R±.
(ii) |H±| = |R±| ≥ m, and each of R± is a set of consecutive integers.
(iii) The lengths of K± are equal to the number of branchings in H±.

Moreover, the set of permutations constructible with step 3 is π(H).

▶ Remark 9. Since we have π(T) =
⋃

H π(H), where the union is disjoint and to be taken
over all histories leading to T , this means we can construct π(T) out of π(T (1)) by performing
steps 1–3 for all π(1) in π(T (1)).

3.3 An example

We give an example to illustrate the procedure: Suppose m = 1, n = 9, and consider the
permutation π = (6, 1, 2, 4, 7, 5, 9, 8, 3). This permutation produces a B-tree T of the form
given in Figure 2a – in fact, this permutation gives the history shown in Figure 1. Thus T (1)

contains 4 keys, and π(1) = (1, 3, 4, 2) ∈ π(T (1)).

Step 1. The in-order traversal of T reveals that the keys in T (1) correspond to the keys
2, 4, 6, 8 in T . Then the injection on the keys is given by {1, 2, 3, 4} ∋ i 7→ 2i ∈ {1, . . . , 9},
and applying this to the entries of π gives πι = (2, 6, 8, 4).

Step 2. Constructing a binary search tree from π(1) gives the one shown in Figure 2b which
is then turned into the DAG G = G(T, π(1)) shown in Figure 2c (the remaining labels are
there to indicate how it connects to the binary search tree and to π(1)). This graph has three
distinct topological labellings, one of which induces the H depicted in Figure 2d.

Step 3. We initialize p = (_, _, _, _, _, _, _, _, _), R = {1, . . . , 9}, K = (2, 6, 8, 4) and
H = H. After step 3.1, we have e.g. p = (ℓ, s, 2, ℓ, ℓ, ℓ, ℓ, ℓ, ℓ), where we write s for a small
position, and ℓ for a large. Here, the assignment of ℓ, s, 2 to the first 3 positions can be done
arbitrarily (but we choose the options that will reconstruct π from above), the remainder
is given by comparing it to H: the vertices labelled 4, 5, . . . are all positioned to the right
of the top-most branching in H. This leads to p− = (_) with R− = {1}, which in the
next round of the recursion simply becomes p = (1), and to p+ = (_, _, _, _, _, _, _) with
R+ = {3, . . . , 9}, K+ = {6, 8, 4}, and an H+ = H ′ given by Figure 2e.

In the second round of the recursion (using the “+”-branch, as the other one is trivial),
we have e.g. p = (6, s, ℓ, s, ℓ, ℓ, s), where the assignment of ℓ, s, 6 to the first 3 positions
can again be done arbitrarily, and the rest is governed by H ′. This gives p± = (_, _, _)
with R− = {3, 4, 5},K− = (4) and R+ = {7, 8, 9},K+ = (8), respectively. Due to the small
number of entries, both H± are given by the unique 3-historic tree on 3 vertices. In the
next two rounds of the recursion, the p± will then be filled by arbitrary assignments of the
numbers in their range, say p+ = (7, 9, 8) and p− = (4, 5, 3).

Finally, we can put everything back together by embedding a pair of p± into the previous
p according to the assignment of s and ℓ. Thus, p+ = (7, 9, 8) and p− = (4, 5, 3) together
yield (6, 4, 7, 5, 9, 8, 3). This in turn was p+ from the first iteration of step 3, and together
with the corresponding p− = (1), we regain π = (6, 1, 2, 4, 7, 5, 9, 8, 3).

F. Burghart and S. Wagner 10:9

•

• • •

• •

•

•

•

(a) The B-tree T .

1

3

2 4

(b) Binary search
tree.

1

3

2 4

(c) G(T, π(1)).

1

2

3

4

5

6

9

7

8

(d) H.

1

2

3

4

7

5

6

(e) H ′.

Figure 2 Steps in the algorithm of Section 3, as performed in Subsection 3.3.

3.4 Proofs
Proof of Lemma 7. For G to contain a directed cycle, we need two vertices vi = π(1)(i) and
vj = π(1)(j) such that vi is a descendant of vj in the tree (i.e., according to the black edges),
but vj is a descendant of vi according to the red edges. However, the latter only means that
i < j. Accordingly, π(1)(i) was the first to be used for the binary search tree’s construction,
and hence vi cannot be below vj in the tree. Thus G is acyclic.

Trivially, any topological ordering of G yields an increasing labelling for the tree, so the
induced H is historic. By construction of H, the final tree in the corresponding history
(T1, . . . , Tn) will have the same leaves as T (according to Proposition 2(iii)), and thus the
same set of keys in T

(1)
n as in T (1). Moreover, by Lemma 6, these keys are moved upwards

from the leaves in the relative order described by π(1), hence T
(1)
n = T (1) and H is a history

of T that belongs to Ψ̂−1(π(1)).
Conversely, consider now a history (T1, . . . , Tn) ∈ Ψ̂−1(π(1)) with the associated historic

tree Hn. As in step 1, we obtain from π(1) and Tn a sequence πι = (Ki1 , . . . , Kin1
), where the

ij are precisely the times in the history when a leaf was split. The historic tree Hn therefore
must have its branchings labelled by the ij (and this forces the labelling to be increasing
along the red edges in G), and to be consistent with Lemma 6, the left/right-positioning
of the branchings has to correspond to the one in a binary search tree obtained from πι or
equivalently π(1). Thus, such an Hn is of the type constructed in Step 2, and its labelling is
a topological labelling of G. ◀

Proof of Lemma 8. Claim (i) is evident from the construction. For (ii), the equality |H±| =
|R±| follows from Lemma 6, we have |R±| ≥ m since |R| ≥ 2m + 1, and consecutivity is
again immediate from the construction. Claim (iii) again follows from Lemma 6. Taken
together, these three claims ensure that the recursion in step 3 is well-defined whenever we
initialize as in step 3.0.

For the final assertion, we first define π± to be permutations obtained from p± in step 3.2
by mapping R± to {1, . . . , |R±|} in an order-preserving fashion. We now use strong induction
on n, where T, π(1), and H are arbitrary but coherent in the sense of Lemma 7. For n ≤ 2m,
there is nothing to show, as step 3.1 gives π(H) = Sn.

For all larger n, observe that if π ∈ π(H) then Ki1 is the median of π(1), . . . , π(2m + 1)
and π± ∈ π(H±). The first property is equivalent to Ki1 being moved upwards from the
leaves at the first branching of H and is ensured by step 3.1. The second property comes from

AofA 2024

10:10 A Bijection for the Evolution of B-Trees

Lemma 6: The large entries in π are precisely (except for the first m) those corresponding
to the right descendants of the first branching in H. This holds by step 3.2, and π± are
constructible by the induction hypothesis since |R±| < n. Thus, such π is constructible.

Conversely, suppose π is constructible. Then, by the recursion, π± are constructible,
and thus π± ∈ π(H±) by the induction hypothesis. The i-th entry of π± is simultaneously
the i-th large/small entry (according to step 3.1) of π. For i < m, this is chosen arbitrarily
among all possible configurations for the first 2m + 1 entries of π. For i > m, the entry in π

is dictated by H , but is not among the first 2m + 1. Thus, it corresponds to a descendant of
the first branching, and it follows from Lemma 6 that filling the large/small entries with the
entries from π± in order produces a π ∈ π(H). ◀

Proof of Proposition 3. This lemma follows from an analysis of step 3. Indeed, whenever
we are placing a K1 into the permutation in step 3.1, we have 2m + 1 choices for the exact
position, and then

(2m
m

)
choices for the location of the small positions within the first 2m + 1

slots of p. Placing such a K1 corresponds exactly to the branchings in H , and it is clear that
every possible choice will lead to a different π in the end. Whenever we have |R| ≤ 2m, we
have |R|! choices. Moreover, invoking Lemma 8, the corresponding K is the empty sequence,
hence the entries of R are the keys that end up in a joint leaf – say, the i-th leaf – of T .
Thus by Proposition 2(iii), |R| = m + si, and (1) follows. ◀

4 The number of histories

In this section, we will be interested in the number of possible histories that can arise, and
in particular the asymptotic behaviour of this number. We focus on the case m = 1. In this
case, a historic tree is a binary increasing tree where only vertices at even heights can have
two children. Vertex 2 is always the only child of vertex 1, and vertex 3 is always the only
child of vertex 2. It will be advantageous later to remove vertex 1 (and decrease all other
labels by 1); we call the result a reduced historic tree. In such a tree, only vertices at odd
heights can have two children.

If we remove the top two vertices (vertices 1 and 2, referred to in the following as the
stem) from a reduced historic tree with n vertices, then it decomposes into two smaller
reduced historic trees, each possibly only consisting of a single external vertex. On the
level of generating functions, this translates to a second-order differential equation for the
exponential generating function H(x) =

∑
n≥0

hn

n! xn, where hn is the number of reduced
historic trees with n internal vertices (equivalently, the number of histories of length n + 1).
We have

H ′′(x) = H(x)2, H(0) = H ′(0) = 1. (2)

One can compare this to the well-known differential equation T ′(x) = T (x)2 for the ex-
ponential generating function associated with arbitrary binary increasing trees, see for
example [8, Lemma 6.4]. We remark here that the tree consisting only of a single external
vertex is often not counted, in which case the equation becomes T ′(x) = (1 + T (x))2 instead.
The sequence hn (see [12, A007558]) and the associated differential equation (2) were analysed
in a different context in [5]: the differential equation has an explicit solution that can be
expressed in terms of the Weierstrass elliptic function. It has a dominant singularity at
ρ ≈ 2.3758705509 where

H(x) ∼ c

(1− x/ρ)2

for a constant c = 6ρ−2 ≈ 1.0629325375. This leads to the following asymptotic behaviour:

F. Burghart and S. Wagner 10:11

hn

n! ∼ cnρ−n = 6nρ−n−2.

We would now like to generalise the differential equation to arbitrary m ≥ 1. We remove
the first m vertices from a (2m + 1)-historic tree to obtain a reduced (2m + 1)-historic tree,
which is now a binary increasing tree where only vertices at heights ≡ −1 mod m + 1 can
have two children. Removing the stem consisting of m + 1 vertices decomposes such a tree
into two smaller trees with the same property (each of them can also be a single external
vertex). So in analogy to (2), we obtain a differential equation of order m + 1, namely

H(m+1)(x) = H(x)2, H(0) = H ′(0) = · · · = H(m)(0) = 1. (3)

This higher-order differential equation can no longer be solved in an explicit fashion,
as it was the case for m = 1. If we assume that there is a dominant singularity ρm where
the behaviour of H is of the form cm(1− x/ρm)−am , then comparing the two sides of the
equation gives us

cm
am(am + 1) · · · (am + m)

ρm+1
m

(1− x/ρm)−am−m−1 = c2
m(1− x/ρm)−2am ,

thus am = m + 1 and cm = (2m+1)!
m! ρ−m−1

m . Applying singularity analysis would then yield

[xn]H(x) ∼ cm

m!n
mρ−n

m = (2m + 1)!
(m!)2 nmρ−n−m−1

m .

This leads us to the following conjecture:

▶ Conjecture 10. For every m ≥ 1, the number of reduced (2m + 1)-historic trees with n

vertices (corresponding to histories of length n + m) is asymptotically equal to

n! · (2m + 1)!
(m!)2 nmρ−n−m−1

m

for some positive constant ρm.

Numerical evidence for small values of m seems to support this conjecture, as the fit of
the asymptotic formula with the actual coefficients is excellent. Experimental values of the
exponential growth rate ρ−1

m are given in Table 1.

Table 1 Experimental values of ρ−1
m for 2 ≤ m ≤ 6.

m 2 3 4 5 6
ρ−1

m 3.7746 5.1792 6.5857 7.9928 9.3999

5 Statistics of B-trees via historic trees

Let us now study B-trees that are constructed by successive insertion of n random numbers.
Equivalently, we can think of them as being constructed from a random permutation of
1, 2, . . . , n. In order to apply the connection to historic trees, we need to take the number of
permutations associated with a specific history into account.

Again, we focus on the special case m = 1. Proposition 3 tells us that the number of
permutations corresponding to a specific historic tree T is in this case 6b(T)2i(T), where b(T)
is the number of branchings and i(T) the number of internal vertices that lie directly between

AofA 2024

10:12 A Bijection for the Evolution of B-Trees

a branching and an external vertex. This remains true if we consider reduced historic trees.
We associate this number as a weight w(T) = 6b(T)2i(T) with every reduced historic tree
T and consider the weighted exponential generating function (rather than the unweighted
one that was analysed in the previous section). In the recursive decomposition of a reduced
historic tree into its stem and two smaller trees T1 and T2, we have b(T) = b(T1) + b(T2) + 1
and i(T) = i(T1) + i(T2). This is even true if T1 or T2 (or both) only consist of a single
external vertex. Thus we obtain

w(T) = 6b(T1)+b(T2)+1 · 2i(T1)+i(T2) = 6w(T1)w(T2). (4)

On the level of the weighted exponential generating function W (x), (2) becomes

W ′′(x) = 6W (x)2, W (0) = 1, W ′(0) = 2. (5)

Unlike (2), however, there is now a very simple explicit solution, namely W (x) = 1
(1−x)2 .

This is not unexpected, since the total weight of all reduced historic trees with n internal
vertices must be equal to the number of permutations of 1, 2, . . . , n + 1. Thus

W (x) =
∑
n≥0

(n + 1)!
n! xn = 1

(1− x)2 .

Recall that the number of external vertices in n-vertex reduced 3-historic trees is in
bijection with the number of leaves in 2-3-trees built from n + 1 keys. Thus, as a next
step, we incorporate the number of external vertices e(T) as an additional statistic in our
generating function in order to prove the following theorem:

▶ Theorem 11. Let Ln be the number of leaves in a 2-3-tree built from n random keys. Then
we have E(Ln) = 3

7 (n + 1) and V(Ln) = 12
637 (n + 1) for n > 11. Moreover, the central limit

theorem

Ln − E(Ln)√
V(Ln)

d→ N(0, 1)

holds.

Proof. Let us consider the bivariate generating function in which the second variable u

marks the number of external vertices e(T):

W (x, u) =
∑

T

1
|T |!x

|T |ue(T).

Since e(T) = e(T1)+e(T2), the differential equation (5) is actually unaffected by the additional
variable; the only change concerns the initial values. We have (where derivatives are taken
with respect to x)

W ′′(x, u) = 6W (x, u)2, W (0, u) = u, W ′(0, u) = 2u, (6)

which no longer has an equally simple explicit solution. Using the method described in [5], it
can, however, be expressed as the inverse function to

X(w, u) =
∫ w

u

1√
4t3 + 4u2(1− u)

dt.

F. Burghart and S. Wagner 10:13

It follows that W (x, u) has a dominant singularity at ρ(u) =
∫ ∞

u
1√

4t3+4u2(1−u)
dt: as w →∞,

we have

X(w, u) = ρ(u)− 1√
w

+ O(w−7/2),

thus

W (x, u) ∼ 1
(ρ(u)− x)2

at the singularity. An application of the quasi-power theorem [9, Theorem IX.8] yields a
central limit theorem for the number of external vertices. Moreover, one can obtain explicit
expressions for the moments. Differentiating (6) with respect to u and plugging in u = 1, we
obtain the following differential equation for W1(x) = ∂

∂u W (x, u)
∣∣∣
u=1

:

W ′′
1 (x) = 12W (x, 1)W1(x) = 12

(1− x)2 W1(x), W1(0) = 1, W ′
1(0) = 2,

since we already know that W (x, 1) = W (x) = (1− x)−2. This linear differential equation
has the two linearly independent solutions (1− x)−3 and (1− x)4, and one obtains

W1(x) = 6
7(1− x)3 + (1− x)4

7 .

Thus for n > 4, we have [xn]W1(x) = 6
7 [xn](1− x)−3 = 6

7
(

n+2
2

)
. Consequently, the average

number of external vertices is

[xn]W1(x)
[xn]W (x) =

6
7
(

n+2
2

)
n + 1 = 3(n + 2)

7 .

In the same way, one can treat the second moment: to this end, we consider W2(x) =(
∂

∂u

)2
W (x, u)

∣∣∣
u=1

. Differentiating (6) twice with respect to u and plugging in u = 1 now
gives us

W ′′
2 (x) = 12W (x)W2(x) + 12W1(x)2

= 12
(1− x)2 W2(x) + 12

(6
7(1− x)3 + (1− x)4

7

)2
, W2(0) = W ′

2(0) = 0.

The solution to this differential equation is given by

W2(x) = 54
49(1− x)4 −

108
91(1− x)3 −

24
49(1− x)3 + 4

7(1− x)4 + 2
637(1− x)10.

So for n > 10, [xn]W2(x) = 54
49

(
n+3

3
)
− 108

91
(

n+2
2

)
= 9(n+1)(n+2)(13n−3)

637 . It follows that the
variance of the number of external vertices is

[xn](W1(x) + W2(x))
[xn]W (x) −

([xn]W1(x)
[xn]W (x)

)2
= 12(n + 2)

637 .

This completes the proof. ◀

The approach in our proof provides an alternative to the analysis via Pólya urns, see
[1–3, 13] (in particular, the mean was first determined by Yao [13] by explicitly solving a
recursion). Here, one can think of the leaves in a B-tree as balls in an urn of different types

AofA 2024

10:14 A Bijection for the Evolution of B-Trees

depending on the number of keys they hold. Adding a new key then corresponds to picking
a ball from the urn and replacing it by a new ball (of different type), or two new balls in the
case of a node split.

The same calculations for the moments as in Theorem 11 can also be carried out for
higher values of m, though the expressions become more complicated. For general m ≥ 1,
the differential equation becomes

W (m+1)(x, u) = (2m + 1)!
m!2 W (x, u)2,

with initial values

W (i)(0, u) = (m + i)!u, i = 0, 1, . . . , m.

In particular, we have W (x) = W (x, 1) = m!(1 − x)−m−1, and W1(x) = ∂
∂u W (x, u)

∣∣∣
u=1

satisfies the linear differential equation

W
(m+1)
1 (x) = 2(2m + 1)!

m! (1− x)−m−1W1(x).

Up to a trivial change of variables (substituting for 1−x), this is a linear differential equation
of Cauchy–Euler type that can be solved with standard tools. In fact, setting e−t = 1− x

turns it into a linear differential equation with constant coefficients. Functions of the form
f(x) = (1− x)−b with

bm+1 = b(b + 1) · · · (b + m) = 2(2m + 1)!
m! = (2m + 2)!

(m + 1)! (7)

are particular solutions to this differential equation. Note that b = m + 2 is always a solution
to (7). The general solution can be determined as linear combination of particular solutions,
taking the initial values into account. The term of the form c(1−x)−m−2 in W1(x) dominates
asymptotically.

To give one more concrete example, for m = 2 we have the differential equation

W ′′′(x, u) = 30W (x, u)2, W (0, u) = 2u, W ′(0, u) = 6u, W ′′(0, u) = 24u.

Thus W (x, 1) = 2(1− x)−3. The solutions to (7) are now b = 4 and b = −7±
√

71i
2 . Taking

the initial values into account, we obtain

W1(x) = 60
37(1− x)4 + 7

√
71 + 31i

37
√

71
(1− x)(7+

√
71i)/2 + 7

√
71− 31i

37
√

71
(1− x)(7−

√
71i)/2.

Thus the average number of external vertices in reduced 5-historic trees with n vertices is
10(n+3)

37 + O(n−13/2).
For general m, one finds from the differential equation that the function ℓ(t) = W1(1−e−t)

has Laplace transform

L(s) = m!((m + 1)m+1 − sm+1)
(s−m− 1)((m + 2)m+1 − sm+1)

,

where sh = s(s + 1) · · · (s + h − 1) is a rising factorial as in (7). The term κm

s−m−2 in the
partial fraction decomposition corresponds to the dominant term

W1(x) ∼ κm

(1− x)m+2 .

F. Burghart and S. Wagner 10:15

Here we have, with Hk = 1 + 1
2 + · · ·+ 1

k denoting a harmonic number,

κm = m!
2(H2m+2 −Hm+1) .

Consequently, the average number of external vertices in reduced (2m + 1)-historic trees
with n vertices is asymptotically equal to κm

(m+1)! ·n = 1
2(m+1)(H2m+2−Hm+1) ·n. Some explicit

values of the constant κm

(m+1)! are given in Table 2.

Table 2 Values of the constant κm
(m+1)! = 1

2(m+1)(H2m+2−Hm+1) for 1 ≤ m ≤ 10.

m 1 2 3 4 5 6 7 8 9 10
κm

(m+1)!
3
7

10
37

105
533

252
1627

2310
18107

25740
237371

9009
95549

136136
1632341

11639628
155685007

10581480
156188887

6 Conclusion and perspective

The connection between B-tree histories and historic trees provides us with a novel way
to analyse B-trees and their evolution. Possible future directions include studying further
statistics of B-trees and historic trees and considering higher values of m. In particular, a
proof of Conjecture 10 would be desirable. It might even be interesting, at least from a
purely mathematical perspective, to allow m to grow with n.

References
1 D. Aldous, B. Flannery, and J.L. Palacios. Two applications of urn processes. Probability in

the Engineering and Informational Sciences, 2(3):293–307, 1988.
2 Ricardo A. Baeza-Yates. Fringe analysis revisited. ACM Comput. Surv., 27(1):111–119, 1995.

doi:10.1145/214037.214103.
3 A. Bagchi and A.K. Pal. Asymptotic normality in the generalized Pólya–Eggenberger urn

model, with an application to computer data structures. SIAM Journal on Algebraic Discrete
Methods, 6(3):394–405, 1985.

4 R. Bayer and E. McCreight. Organization and maintenance of large ordered indexes. Acta
Informatica, 1:173–189, 1972.

5 Olivier Bodini, Matthieu Dien, Xavier Fontaine, Antoine Genitrini, and Hsien-Kuei Hwang.
Increasing diamonds. In LATIN 2016: theoretical informatics, volume 9644 of Lecture Notes in
Comput. Sci., pages 207–219. Springer, Berlin, 2016. doi:10.1007/978-3-662-49529-2_16.

6 B. Chauvin, D. Gardy, N. Pouyanne, and D.-H. Ton-That. B-urns. ALEA. Latin American
Journal of Probability & Mathematical Statistics, 13:605–634, 2016.

7 V. Chvátal, D.A. Klarner, and D.E. Knuth. Selected combinatorial research problems.
Computer Science Department, Stanford University, STAN-CS-72-292, 1972.

8 Michael Drmota. Random trees. SpringerWienNewYork, Vienna, 2009. doi:10.1007/
978-3-211-75357-6.

9 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
2009.

10 D.E. Knuth. The Art of Computer Programming: Volume 3. Sorting and Searching. Addison-
Wesley, 2nd edition, 1998.

11 A.M. Odlyzko. Periodic oscillations of coefficients of power series that satisfy functional
equations. Advances in Mathematics, 44:180–205, 1982.

12 OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2024. Published
electronically at https://oeis.org.

13 A.C.C. Yao. On random 2–3 trees. Acta informatica, 9(2):159–170, 1978.

AofA 2024

https://doi.org/10.1145/214037.214103
https://doi.org/10.1007/978-3-662-49529-2_16
https://doi.org/10.1007/978-3-211-75357-6
https://doi.org/10.1007/978-3-211-75357-6
https://oeis.org

Tree Walks and the Spectrum of Random Graphs
Eva-Maria Hainzl
TU Wien, Austria

Élie de Panafieu
Nokia Bell Labs, Nozay, France

Abstract
It is a classic result in spectral theory that the limit distribution of the spectral measure of random
graphs G(n, p) converges to the semicircle law in case np tends to infinity with n. The spectral
measure for random graphs G(n, c/n) however is less understood. In this work, we combine and
extend two combinatorial approaches by Bauer and Golinelli (2001) and Enriquez and Menard (2016)
and approximate the moments of the spectral measure by counting walks that span trees.

2012 ACM Subject Classification Mathematics of computing → Generating functions; Mathematics
of computing → Spectra of graphs

Keywords and phrases Spectrum of random matrices, generating functions

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.11

Related Version Full Version: http://arxiv.org/abs/2405.08347 [12]

Funding This work was supported by the RandNET project, MSCA-RISE - Marie Skłodowska-Curie
Research and Innovation Staff Exchange Programme (RISE), Grant agreement 101007705.
Eva-Maria Hainzl: This work was partially founded by the Austrian Science Foundation FWF,
projects F50-02, F55-02.

Acknowledgements We thank Nicolas Curien and Laurent Ménard for encouraging us to work on
this topic, their availability and their insights on the spectrum of random graphs. We also thank the
Institut de Recherche en Informatique Fondamentale (IRIF), Université Paris Cité, for hosting us.

1 Introduction

Random matrix theory studies the spectrum of random matrices and has found many
applications, including in physics [22], wireless communication [19] and numerical analysis
[7]. A fundamental result of this field is that the limit distribution of the spectral measure of
so-called Wigner matrices converges to the semicircle law [20, 21] and it is worth mentioning
that a common proof of this theorem by the moment method relies on counting closed walks
on trees (e.g. [10]). This universal law has been extended to several other classes, such
as adjacency matrices of random regular graphs [13, 18] and Erdős-Rényi random graphs
G(n, p) when pn → ∞. In particular, Bauer and Golinelli [1] pointed out the importance of
the spectral measure of adjacency matrices of random graphs and explained how to compute
the moments by counting walks on trees. Zakharevich [24] picked up on the approach and
showed further that the spectral distribution of G(n, c/n) converges to a limit distribution
µc which has infinite support. However, for p = c/n, several technical conditions of classic
theorems in probability theory are not met such that one could apply standard techniques
and despite recent progress [3, 15, 4, 16, 6], µc remains an enigma. In [8], Enriquez and
Ménard returned to combinatorial methods and computed several terms of the asymptotic
expansion, as c tends to infinity, of the moments of the normalized spectral measures

µc
n = 1

n

∑
λ∈Sp(c−1/2A(G(n,c/n)))

δλ

© Eva-Maria Hainzl and Élie de Panafieu;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 11; pp. 11:1–11:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9431-5596
https://orcid.org/0009-0002-1386-971X
https://doi.org/10.4230/LIPIcs.AofA.2024.11
http://arxiv.org/abs/2405.08347
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Tree Walks and the Spectrum of Random Graphs

where A(G(n, c/n)) is the adjacency matrix of a random graph G(n, c/n). We go along the
steps in the computation of moments of this measure for clarity and start with

mℓ(µc
n) =

∑
G

P
[
G
(

n,
c

n

)
= G

]
· 1

n

∑
λ∈Sp(c−1/2A(G))

λℓ.

This formulation reduces to counting closed walks in G, since the sum of the eigenvalues to
the power ℓ is just the trace of the matrix to the power ℓ, and a value

(
Aℓ
)

i,i
on the diagonal

of this matrix is the number of closed walks of length ℓ starting at the vertex i. That is,

∑
λ∈Sp(c−1/2A(G))

λℓ =
(

1
c

)ℓ/2
tr
(
A(G)ℓ

)
=

∑
closed walk (v1,v2,...vℓ,v1)∈G

(
1
c

)ℓ/2
.

Thus, the moment equals

mℓ(µc
n) = 1

n

1
cℓ/2

∑
(v1,v2,...vℓ)∈[n]ℓ

E [Xv1,v2Xv2,v3 · · · Xvℓ,v1] ,

where Xvi,vj
is the random variable taking the value 1 if the edge (vi, vj) is in the graph

and 0 otherwise. Observe that if a closed walk (v1, . . . , vℓ, v1) contains e distinct edges, then
E [Xv1,v2Xv2,v3 · · · Xvℓ,v1] = (c/n)e. The number of closed walks on [n] of length ℓ with m

vertices is bounded by nmmℓ. Since the total number of vertices is bounded by the length,
we have nmmℓ ≤ nmℓℓ. The contribution to the moment of all such closed walks containing
e distinct edges is bounded by

1
n

1
cℓ/2 nmℓℓ

(c

n

)e

= ce−ℓ/2ℓℓnm−e−1.

We are considering a fixed moment ℓ, so this tends to 0 with n whenever m < e + 1, that
is, whenever the graph (necessarily connected) induced by the closed walk is not a tree. In
particular, when ℓ is odd, the induced graph cannot be a tree, so the moment of order ℓ

tends to 0.
Let wm,2ℓ denote the number of closed walks of length 2ℓ spanning a tree with m vertices.

We now consider the even moment of order 2ℓ and split the sum according to the number m

of distinct vertices in the closed walk

m2ℓ(µc
n) = 1

n

1
cℓ

ℓ+1∑
m=1

(
n

m

)(c

n

)m−1
wm,2ℓ.

Let us define the limit distribution µc = limn→+∞ µc
n. Then its odd moments are zero and

its moment of order 2ℓ is

m2ℓ(µc) = lim
n→+∞

1
n

1
cℓ

ℓ+1∑
m=1

(
n

m

)(c

n

)m−1
wm,2ℓ =

ℓ+1∑
m=1

1
cℓ−m+1

wm,2ℓ

m! .

By identifying the generating functions of (wm,2ℓ)ℓ≥0, for m = ℓ+1 and m = ℓ, as the Stieltjes
transform of a specific measure, Enriquez and Ménard were able to derive an approximation
of the moments of the limit law and computational experiments showed that even the density
of this measure approximated the shape of the histograms of eigenvalues of sampled matrices
quite well. An extension of this approximation to the order c−2 took considerable effort on
several sides, including the combinatorics of closed walks on trees.

E.-M. Hainzl and É. de Panafieu 11:3

The aim of this paper is to provide further insight into what we call tree walks, and
consequently an efficient way to compute the numbers wm,2ℓ, for all 2ℓ ≥ 0 and 0 ≤ m ≤ ℓ+1,
and their generating functions. But as we delve further into their connection with the spectral
measure, we come across surprising and beautiful identities involving the generating function
of the Catalan numbers.

Section 2 presents the formal definition of various tree walk families and our main results,
which are Theorem 3 and Theorem 4. Theorem 3 expresses the generating function of tree
walks as a rational function of the Catalan generating function. Theorem 4 gives several
error terms for an asymptotic approximation of µc as c tends to infinity. We also presents
Conjecture 5, which states that this asymptotic approximation could be extended to an
arbitrary order, turning it into a form of asymptotic expansion. This paper contains only the
main steps of the proofs, a complete version being available on arxiv [12]. The main steps of
the proof of Theorem 3 and Theorem 4 are given respectively in Sections 3 and 4. Numerical
experiments are provided in Section 5.

2 Main results

Before we state our main results, let us clarify some definitions.

▶ Definition 1 (Tree walks). A tree walk of size m is a walk on the complete labeled graph
of size m that visits every node, starts and ends at the same node, and induces a tree. More
formally, a tree walk W = (v1, v2, . . . , vℓ) is a sequence of vi ∈ [m] such that

V :=
⋃

j∈[ℓ]

{vj}, E :=
⋃

j∈[ℓ−1]

{(vj , vj+1)} ∪ {(vℓ, v1)}

define a labelled tree T (W) with vertex set V = [m] and edge set E. Further, we define v1 to
be the root of the induced tree T (W). Thus, we talk freely about the root and leaves of W ,
when referring to the root and leaves of T (W). We further stick to the convention that if the
root has degree 1 it is also a leaf of T (W).
In the following, we study the number wm,2ℓ of tree walks of length 2ℓ that span a tree of size
m and the generating function

W (v, z) =
∑

ℓ,m≥0
wm,2ℓ

vm

m! zℓ.

Since a walk of length 2ℓ spans a tree with at most ℓ + 1 vertices, we have wm,2ℓ = 0 if
ℓ < m − 1 and for ℓ ≥ 1, we define w0,2ℓ = w1,2ℓ = 0 and w1,0 = 1, w0,0 = 0.

The ordinary generating function of the moments of µc is therefore given by

Mµc(z) =
∑
ℓ≥0

m2ℓ(µc)z2ℓ =
∑
ℓ≥0

ℓ+1∑
m=0

wm,2ℓ
cm

m! c
−ℓ−1z2ℓ = 1

c
W

(
c,

z2

c

)
, (1)

where m0(µc) = 1 as always. However, we could have restructured Mµc(z) like Enriquez and
Ménard in [8] as well. We just sum over the negative exponent ξ = ℓ + 1 − m of c such that

Mµc(z) =
∑
ℓ≥0

m2ℓ(µc)z2ℓ =
∑
ℓ≥0

∑
m≥0

wm,2ℓ
cm

m! c
−ℓ−1z2ℓ =

∑
ℓ≥0

∑
ξ≥0

wℓ−ξ+1,2ℓ

(ℓ − ξ + 1)!
z2ℓ

cξ
. (2)

This expansion in turn motivates the following definition.

AofA 2024

11:4 Tree Walks and the Spectrum of Random Graphs

▶ Definition 2 (Excess of a tree walk). If an edge is traversed 2k times in a tree walk, then
the excess of the edge e is defined as ξ(e) = k − 1. The excess of a tree walk W is the sum
over the excess of all edges in the induced tree T (W) = (V, E). Hence, it is half its length
minus the number of edges of the tree, ξ(W) = ℓ − |E|. An edge with positive excess is
called an excess edge and an edge without excess a simple edge. We denote the generating
function of tree walks with excess ξ by

Wξ(z) =
∑
ℓ≥0

wℓ−ξ+1,2ℓ

(ℓ − ξ + 1)! zℓ,

where wm,2ℓ is the number of tree walks of length 2ℓ that span a tree of size m.

Thus, the relation between the generating functions we have defined so far is

Mµc(z) = 1
c

W

(
c,

z2

c

)
=
∑
ξ≥0

1
cξ

Wξ

(
z2) .

Bauer and Golinelli [1] introduced in the sequence wm,2ℓ an additional parameter d

counting the number of times the walk leaves the root. This approach allowed them to
compute the values wm,2ℓ for 2ℓ and m up to 120 [17], and they conjectured a particular
form for wm,2ℓ that we prove in the next theorem. When we translate this decomposition in
generating functions, an equation for W (x, v, z) is obtained, where x marks the parameter d.
Unfortunately, this equation is not particularly amenable to classic analysis with complex
analytic methods as it involves a Laplace transform. Our approach on the other hand is
reminiscent of the decomposition of graphs with given excess by Wright [23]. Not only do we
prove a well founded recursion in z and v, but we provide more insight into the structure of
tree walks and their generating function. Most importantly, we compute closed expressions
for wm,2ℓ, ℓ ≥ 0 for fixed (small) m and prove a conjecture from [1].

▶ Theorem 3. Let C(z) = 1−
√

1−4z
2z denote the generating function of the Catalan numbers,

and Wξ(z) denote the generating function of tree walks of excess ξ from Definition 2. Then
W0(z) = C (z) and for any ξ ≥ 1, there are polynomials (Kξ,s(x))0≤s≤2ξ−2 with non-negative
coefficients of degree 2ξ + s such that

Wξ(z) = C (z)
2ξ−2∑
s=0

Kξ,s

(
zC(z)2)(

1 − zC(z)2
)s+1 .

In particular, denoting by Cat(n) the n-th Catalan number, we have

Kξ,2ξ−2(x) = Cat(ξ − 1)x4ξ−2 and Kξ,2ξ−3(x) = (3ξ − 1) Cat(ξ − 1)x4ξ−3.

We establish a recursion for the polynomials Kξ,s(x) in Section 3. This enables the
successive computation of three quantities. First, the generating function Wξ(z) for any ξ,
then the series Mµc(z) up to an arbitrary degree in c, given sufficient computational power,
and finally the moments m2ℓ.

Our next theorem significantly extends Theorem 3 from [8]. It approximates µc for large
c. There are many notions of convergence for measures. The one we consider here is the
convergence of all moments (restricting to the even ones since the odd ones vanish). Further,
when looking at the limit of a sequence of random variables, it is common to rescale them by
their mean and standard deviation. Here, the rescaling takes the form of a dilation operator
Λα, for α > 0. This operator transforms a measure µ into the measure Λα(µ) satisfying for
every Borel set A

Λα(µ)(A) = µ(A/α).

E.-M. Hainzl and É. de Panafieu 11:5

▶ Theorem 4. Let mℓ(µ) denote the ℓ-th moment of a measure µ and Λα the dilation
operator defined above. Then as c → ∞, it holds for all ℓ ≥ 0 that

m2ℓ(µc) = m2ℓ

(
Λf(1/c)

(
σ +

5∑
i=1

1
ci

σi

))
+ O

(
1
c6

)

where f(1/c) = 1+ 1
2c + 3

8c2 + 29
16c3 + 1987

128c4 + 47247
256c5 , σ is the semicircle law and all σ1, σ2, . . . σ5

are signed measures explicitly given in Section 5, with total mass 0.

This approximation entails some curious identities concerning the generating functions
Wξ(z) and prompts us to state the following conjecture which we discuss in more detail in
Section 4.

▶ Conjecture 5. Let Mµc(z) be the ordinary moment generating function of µc as defined
in (1). Then there exists a unique power series P (x) with non-negative integer coefficients
such that all Vi(z) which are given by

Vi(z) :=
[
c−i
]

Mµc

(√
z

P (1/c)

)
, i ≥ 0

are the product of C (z) and a polynomial in zC (z)2.

Let us denote by fk(x) the truncation of order k of
√

P (x). If the previous conjecture
holds, there exist signed measures σ1, . . . , σk explicitly computable from V1(z), . . . , Vk(z)
such that for any ℓ, the moment of order 2ℓ of µc is

m2ℓ(µc) = m2ℓ

(
Λfk(1/c)

(
σ +

k∑
i=1

c−iσi

))
+ O(c−k−1).

Thus, Conjecture 5 provides a form of asymptotic expansion for µc as c tends to infinity.

3 Decomposition of tree walks

Our proof of Theorem 3 involves reducing a tree walk with excess ξ by most of its simple
edges to its kernel walk and subsequently reversing the contraction by blowing it up to an
arbitrary tree walk with excess ξ. The following subsection is focused on this decomposition
process and the subsequent subsection on the proof of Theorem 3 and a recursion enumerating
kernel walks.

3.1 Kernel walks
Recall that an edge of a tree walk W is simple if it is traversed exactly twice, and is an excess
edge otherwise.

▶ Definition 6 (Kernel walks). Given a tree walk W , we define the kernel of the tree walk or
simply the kernel walk WK as the tree walk we obtain by the following procedure.
1. Set W ′ = W and let T (W ′) be its induced tree.
2. While there exists a simple edge e incident to a leaf in T (W ′) which is not the root, delete

both occurrences of e in W ′.
3. While the root u of the tree is a leaf and incident to a simple edge {u, v}, delete this edge

in W ′ and choose v as the root of T (W ′).

AofA 2024

11:6 Tree Walks and the Spectrum of Random Graphs

4. While there exists a vertex v in T (W ′) that is not the root and only incident to two simple
edges ei = ej+1 = {u, v} and ei+1 = ej = {v, w}, replace both consecutive pairs ei, ei+1
and ej , ej+1 with {u, w} in W ′.

5. Set WK = W ′.
Naturally, a tree walk W with kernel WK = W is itself called a kernel walk. Further, we
define kξ,s,2ℓ to be the number of kernel walks of length 2ℓ with excess ξ, where the induced
tree has s simple edges and we define the corresponding generating function

Kξ(u, v, z) =
∑

s,ℓ≥0
kξ,s,2ℓ us vℓ−ξ+1

(ℓ − ξ + 1)!z
ℓ,

where u counts the number of simple edges, v the number of vertices in the induced tree and
z the half-length of the walk.

This procedure is illustrated below. Note that the variable v in the generating function of
kernel walks is superfluous since its exponent is fully determined by the length and the excess
of the walk. However, we choose to keep it to explain the factorial in the denominator. If
we consider the generating function K(u, v, z) =

∑
ξ≥0 Kξ(u, v, z), we can reconstruct the

individual generating functions by

Kξ(u, v, z) =
[
yξ−1]K

(
u,

v

y
, yz

)
.

Example. Reducing a tree walk W and its induced tree T (W) to its kernel.

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

(a) Step 1: Set T (W ′).
Excess edges and the
root in T (W ′) are
marked red.

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

(b) Step 2: Identify
all leaves which are not
incident to an excess
edge.

1

2

3
4

5

6

7

8

9

(c) Step 2: Remove
blue vertices and up-
date T (W ′) by rela-
beling the vertices.

1

2

3
4

5

6

7

8

9

(d) Repeat Step 2.

3
2

6

5

4

8

7

1

(e) Step 3: The root is
a leaf.

1

2

3

4

5

6

7

(f) Step 3: Choose new
root and relabel ver-
tices.

1

2

3

4

5

6

7

(g) Step 4: Find adja-
cent simple edges.

1

2

3

4

5

6

(h) Step 4: Update
T (W ′) by deleting ver-
tex 4 and relabeling the
vertices.

Tree walks of a given excess ξ can be arbitrarily large. However, our next result establishes
that there are only finitely many kernel walks of excess ξ. This is reminiscent of the result of
Wright [23] on the enumeration of connected graphs.

E.-M. Hainzl and É. de Panafieu 11:7

▶ Lemma 7. Let WK be a kernel walk with excess ξ. Then its induced tree T (WK) = (V, E)
satisfies |V | ≤ 3ξ − 1 and the number of its simple edges is at most 2ξ − 2. These bounds are
tight. Thus, Kξ(u, v, z) is a polynomial of degree 2ξ − 2 in u, 3ξ − 1 in v and 4ξ − 2 in z.

Proof. Consider a kernel walk WK of excess ξ, with m vertices, ℓ1 leaves, ℓ2 vertices of degree
2 that are not the root, and outdegree sequence (d1, . . . , dm). Each leaf is incident to an
excess edge, so ℓ1 ≤ ξ. Each vertex of degree 2 is incident to an excess edge, so ℓ2 ≤ 2ξ − ℓ1.
The sum of the outdegrees is m − 1, so

m − 1 =
∑

j

dj ≥ 2 (m − ℓ1 − ℓ2) + ℓ2

which implies m ≤ 3ξ − 1. The number of simple edges is bounded by m − 1 − ξ ≤ 2ξ − 2.
The kernel walk has at most 2ξ − 2 half-steps along the simple edges, and 2ξ half-steps along
the excess edges, so the half-length is bounded by 4ξ − 2. Any binary tree on 2ξ − 1 vertices,
with additional edges of excess 1 attached to each leaf, reaches those bounds. ◀

Although expressing Kξ(u, v, z) directly is challenging, some subfamilies of kernel walks
have a simple expression. A kernel walk of excess ξ is said to be optimal if it contains 2ξ − 2
simple edges, and near-optimal if it contains 2ξ − 3 simple edges.

▶ Lemma 8. Let Cat(n) denote the n-th Catalan number. There are (3ξ − 1)! Cat(ξ − 1)
optimal kernels of excess ξ for ξ ≥ 1, and (3ξ − 1)! Cat(ξ − 1) near-optimal kernels of excess
ξ for ξ ≥ 2. Let Kξ,s (z) denote the generating function of kernel walks with excess ξ and s

simple edges in the induced tree, where z marks the half-length of the walk. This implies
(a) Kξ,2ξ−2(z) = Cat(ξ − 1)z4ξ−2, for ξ ≥ 1
(b) Kξ,2ξ−3(z) = (3ξ − 1) Cat(ξ − 1)z4ξ−3, for ξ ≥ 2.

Given a kernel walk WK with excess ξ, we reconstruct a tree walk W by substituting
every simple edge by a sequence of back and forth steps, adding a sequence of steps at the
root of T (WK), moving the root to the leaf of this attached path and adding a tree walk
without excess at the beginning and after each step in this extension of WK .

▶ Lemma 9. Let Wξ(z) be the generating function of the number of tree walks with excess
ξ ≥ 1 and Kξ(u, v, z) the generating function of kernel walks with excess ξ and where u marks
the number of simple edges, v the number of vertices and z the half-length of the walk. Then

Wξ(z) = C(z)
1 − zC(z)2 Kξ

(
1

1 − zC(z)2 , 1, zC(z)2
)

.

The proof of Theorem 3 is now straightforward.

3.2 A recursion for the generating function of tree walks of excess ξ

Theorem 3 raises the question of the computation of the generating function Kξ,s(z) of
kernel walks of excess ξ with s simple edges, where z marks the half-length. There exists a
recurrence, but we prefer to decompose the tree walks further and enumerate simpler objects.
This path also alleviates the work of the computer algebra system when computing Kξ,s(z).

▶ Definition 10. A superreduced walk is a tree walk where no edge is simple. Denoting by
sm,2ℓ the number of such walks of length 2ℓ on m vertices, their generating function is

S(v, z) =
∑
ℓ≥0
m≥0

sm,2ℓ
vm

m! zℓ.

AofA 2024

11:8 Tree Walks and the Spectrum of Random Graphs

Figure 2 Decomposing kernel walks by isolating the superreduced component including the
root (red).

The following lemma reduces the enumeration of kernels to the enumeration of super-
reduced walks. The main idea is to consider the induced tree of a kernel walk and isolate
the component which contains the root after deleting all simple edges (see Figure 2). The
restriction of the kernel walk to this component is a superreduced walk and the restriction of
the kernel walk to all of the other components are kernel walks again.

▶ Lemma 11. Let S(v, z) be the generating function of superreduced walks, that is, kernel
walks without simple edges, where v counts the number of vertices in the induced tree and
z the half-length of the walk. Then for the generating function of kernel walks K(u, v, z) =∑

ξ≥0 Kξ(u, v, z) it holds that

K(u, v, z) = 1(
1 − uz(K(u, v, z) − v)

)S

(
v,

z(
1 − uz(K(u, v, z) − v)

)2

)
−uvz(K(u, v, z)−v).

Once given the generating function S(v, z) of superreduced walks, we compute K(u, v, z)
by Lagrange inversion (see e.g. [11]). Our next lemma provides an equation characterizing
S(v, z). The proof relies on the idea from [1] to mark the number of times the walk leaves
the root (see Figure 3). Applying the symbolic method [2, 9] to translate it into generating
functions results in a series S(x, v, z) for superreduced walks, where a new auxiliary variable
x marks how often the walk leaves the root.

▶ Lemma 12. Let sj,m,2ℓ denote the number of superreduced walks on m vertices, length 2ℓ

and leaving the root j times. Let

S(x, v, z) =
∑

j,m,ℓ≥0
sj,m,2ℓ

xj

j!
vm

m! zℓ

denote the generating function of superreduced kernel walks, where z marks the half-length of
the walk, v the number of vertices in the induced tree and x how often the walk leaves the
root. Then

S(x, v, z) = v exp
(

Lt=1

(
D (t, xz) S(t, v, z)

))
where D(t, x) =

∑
k≥1

xk+1

(k+1)!
tk

k! and Lt=1 (A(t)) =
∑

k≥0 k! [tk]A(t).

By implementing this well founded recursion in v and z it is easy to compute S(v, z) up
to order ξ + 1 in v and 2ξ in z, then we compute [us]K(u, v, z) for s ∈ [1, ξ] by Lagrange

E.-M. Hainzl and É. de Panafieu 11:9

12 1

1

2

3

4

6

5

Figure 3 Decomposition of a superreduced walk.

inversion from Lemma 11, and finally Wξ(z). For example for ξ = 1, 2, 3, we obtain the
generating functions

W1(z) = z2C (z)5

1 − zC (z)2 , W2(z) = C (z) z3C (z)6 + 4z4C (z)8 − 6z5C (z)10 + 2z6C (z)12(
1 − zC (z)2

)3

W3(z) = z4C (z)9 1+16zC(z)2+11z6C(z)12+95z4C(z)8−54z5C(z)10−62z3C(z)6−5z2C(z)4

(1−zC(z)2)5 ,

recovering and extending the results of [1] and of [8] (except for W2(z) where our calculation
differs from [8] and agree with [1]).

4 A refined normalisation of the spectral measure and some curious
identities

In this section, we return to our initial motivation to describe the moments of the spectral
measure µc by the identity

Mµc(z) = 1
c

W

(
c,

z2

c

)
=
∑
ξ≥0

1
cξ

Wξ

(
z2) .

As Zacharevich [24] pointed out, µc is fully determined by its moments and if µc were a
continuous measure, we could compute its density by the inversion formula of Stieltjes-Perron.
This is not the case (µc has a dense set of atoms [5, 4]), but nonetheless a better understanding
of the Stieltjes transform of µc would entail a better understanding of the measure itself.

In combinatorial terms, the Stieltjes transform Sµ(z) of a measure µ with finite moments
is simply the ordinary generating function of moments evaluated at z−1 multiplied by z−1.
That is,

Sµ(z) =
∑
ℓ≥0

mℓ(µ)z−(ℓ+1).

In turn, under some conditions, the Stieltjes-Perron formula expresses the density ρ of the
measure µ by

ρ(z) = lim
ε→0

− 1
π

Im (Sµ(z + iε)) . (3)

For example, the Stieltjes transform of the limit law µ of the normalized spectral measure of
G(n, p) with p constant, and its density, are respectively

Sµ(z) = 1
z

C

(
1
z2

)
, lim

ε→0
− 1

π
Im (Sµ(z + iε)) =

√
4 − z2

2π
1(−2,2)(z).

AofA 2024

11:10 Tree Walks and the Spectrum of Random Graphs

The distribution given by this density is called after its shape, the semicircle distribution.
The Stieltjes transform of µc equals

Sµc(z) = 1
z

Mµc

(
1
z

)
=
∑
ξ≥0

1
zcξ

Wξ

(
1
z2

)
.

Given the structure of Wξ(z) from Theorem 3, Sµc(z) is a sum of rational functions in Sµ(z)

Sµc(z) = Sµ(z) + 1
c

· Sµ(z)5

1 − Sµ(z)2 + 1
c2 · Sµ(z)7 + 4Sµ(z)9 − 6Sµ(z)11 + 2Sµ(z)13

(1 − Sµ(z)2)3 + . . .

Now one could hope that the inversion formula applied to each of the z−1Wξ(z−1) would
yield a density of a measure and the density of µc would turn out to be a weighted sum of
them. This hope is certainly too far fetched, as µc has a dense set of atoms. But Enriquez
and Ménard [8] found a way to still make use of this expansion by using a dilation operator
in their Theorem 3. The main idea is to scale the spectral measure and evaluate Mµc(z) at
z/(1 + 1

2c) instead. This scaling entails a perturbation on the level of coefficients of 1/c. In

particular,
∑

ℓ≥0 m2ℓ

(
z

1+ 1
2c

)2ℓ

is equal to

∑
ℓ≥0

(
w0,2ℓz

2ℓ + 1
c (w1,2ℓ − ℓw0,2ℓ)z2ℓ + 1

c2

(
w2,2ℓ − ℓw1,2ℓ +

(
ℓ2

2 + ℓ
4

)
w0,2ℓ

)
z2ℓ + . . .

)
.

Now the generating functions at c−1 and c−2 are polynomials in z2C(z2)2 multiplied by
C(z2), and the corresponding densities can be computed with the inversion formula. We
expand their calculation to order 5 instead of 2.

Instead of using the dilation operator, we can rescale the adjacency matrix A(G(n, c/n))
of G(n, c/n) by 1√

c p(1/c)
instead of 1√

c
. We define

µp
n = 1

n

∑
λ∈Sp((c p(1/c))−1/2A(G(n,c/n)))

δλ,

where p(x) is a polynomial in x with constant term 1 which is yet to be determined, and µp

for the limit as n tends to infinity. This implies

µp
n = Λp(1/c)−1/2(µc

n) and Mµp(z) = Mµc

(
z√

p(1/c)

)
.

The original scaling factor 1/
√

c derives from the classical scaling of Wigner matrices, where
one scales the matrix by 1/

√
nV(X), where X is distributed as the individual matrix entries.

In the case of adjacency matrices of G(n, c/n) the variance of Bernoulli variables determining
the entries of the matrix is of course c/n(1− c/n) such that we obtain the scaling factor 1/

√
c

in the limit. We do not have a similar interpretation for our proposed alternative scaling.

▶ Proposition 13. Let p5(x) = 1 + x + x2 + 4x3 + 33x4 + 386x5 and Mµc(z) be the ordinary
moment generating function of µc as defined in (1). Then for Vi(z) =

[
c−i
]

Mµp (
√

z) we
have

Vi(z) = C(z)Qi

(
zC(z)2) , i = 0, 1, 2, . . . , 5,

E.-M. Hainzl and É. de Panafieu 11:11

where

Q0(x) = 1, Q1(x) = −x, Q2(x) = −2x3,

Q3(x) = −
(
11x5 + x4 − 2x3 + 2x2 + 3x

)
,

Q4(x) = −
(
90x7 + 27x6 − 19x5 + 17x4 + 23x3 + 20x2 + 26x

)
,

Q5(x) = −
(
931x9 + 529x8 − 163x7 + 166x6 + 301x5 + 239x4 + 249x3 + 266x2 + 324x

)
.

The proof consists in computing the coefficients of p5(x) one by one, starting with
[x0]p(x) = 1. Then, for any k, let us assume the first k − 1 coefficients have been computed
and set [xk]p(x) as a variable. We observe in our computations that for the first few values
of k,

[c−k]Mµc

√ z∑k
j=0[xj]p(x)c−j

is a fraction with denominator a power of 1 − zC(z)2, and the coefficient [xk]p(x) can be
chosen so that this fraction reduces to a polynomial.

Proof of Theorem 4. The generating function of the moments of Λf(1/c)(µc) is given by
Mµc

(
z

f(1/c)

)
. Note that

f(x)2 = 1 + x + x2 + 4x3 + 33x4 + 386x5 + O(x6)

such that we can expand

Mµc

(
z

f(1/c)

)
= Mµf2 (z) =

5∑
i=0

1
ci

Vi

(
z2)+

∑
i≥6

1
ci

[c−i]Mµf2 (z)

where the Vi(z) are given by Proposition 13. Applying the inversion formula to these functions
yield densities of signed measures with null mass. ◀

To illustrate why the existence of p5(x) is surprising, we observe that if

W̃2(z) := W2(z) + z3C(z)7

(1 − zC(z)2)3

is given instead of W2(z), then there is no choice for [x2]p(x) allowing this magical simplific-
ation between numerator and denominator and the reduction to a polynomial.

This example highlights the difficulty of proving the existence of P (x) in Conjecture 5.
A combinatorial approach seems reasonable, but we are not aware of any combinatorial
meaning of the generating functions Vi(z), nor do we have a combinatorial interpretation of
the differential equations which are satisfied by the generating functions Wξ(z), except for
the equation of V1(z). Nevertheless the next theorem sheds partial light on why the scaling
by p5(x) results in Proposition 13. It shows that keeping the same first two coefficients as in
p5(x) but changing the others gives fractions, in the expansion in c−1, with denominators
that are powers of 1 − zC(z)2 that are two less than expected.

▶ Theorem 14. Let p(x) =
∑

i≥0 xi. Then V̂i(z) := [c−i]Mµp (
√

z) is a polynomial in zC(z)2

multiplied by C(z) for i = 0, 1, 2 and for i ≥ 3 there exist polynomials Q̂i(x) such that

V̂i(z) = C(z) Q̂i(zC(z)2)
(1 − zC(z)2)2i−3 .

AofA 2024

11:12 Tree Walks and the Spectrum of Random Graphs

5 Computational experiments

As curious as Conjecture 5 is from a purely mathematical perspective, the alternative scaling
of the matrices of the spectral measure seems to have advantages in the approximation of
the limit measure µ̄c. There are certain important details to take into account though.

Since the Vi(z) in Corollary 13 are polynomials in zC(z)2 multiplied by C(z), the
evaluation 1

z Vi

(1
z

)
is a polynomial in the Stieltjes transform of the semicircle law. The

inversion formula (3) therefore always yields densities of signed measures with zero mass for
these Stieltjes transforms. In particular, we obtain a sequence of densities fi(z) from the
Stieltjes transforms 1

z Vi

(1
z

)
for 1 ≤ i ≤ 5 which are given by

f0(z) = 1
2π

√
4 − z2 1(−2,2)(z),

f1(z) = 1
2π

(
1 − z2)√4 − z2 1(−2,2)(z),

f2(z) = 1
2π

(
1 − 6z2 + 5z4 − z6)√4 − z2 1(−2,2)(z),

f3(z) = 1
2π

(
9 − 140z2 + 358z4 − 299z6 + 98z8 − 11z10)√4 − z2 1(−2,2)(z),

f4(z) = 1
2π

(
56 + 1602z2 − 8625z4 + 16004z6

− 13447z8 + 5624z10 − 1143z12 + 90z14)√4 − z2 1(−2,2)(z),

f5(z) = 1
2π

(
442 − 17946z2 + 171911z4 − 574676z6 + 904447z8

− 768354z10 + 373181z12 − 103622z14 + 15298z16 − 931z18)√4 − z2 1(−2,2)(z).

Now, it is easy to see that the coefficients of the polynomial factors of the fi(z) grow
rapidly and that these functions oscillate quite heavily. Hence, there exists a largest integer
t(c) depending on c such that

t(c)∑
ξ=0

1
cξ

fξ(z)

takes non-negative values on the interval (−2, 2) and is therefore the density of a probability
measure. Experiments for c = 5, 10, 20 show that this t(c) seems to be the right scaling
for µ̄c such that most of the eigenvalues are exactly in the interval (−2, 2). This is remin-
iscent of divergent asymptotic expansions (see e.g. the introduction of [14]). For example,
consider Stirling’s asymptotic expansion n! ≈ nne−n

√
2πn(s0 + s1n−1 + s2n−2 + · · ·) where

(s0, s1, s2, . . .) = (1, 1
12 , 1

288 , . . .). For any n, there exists t(n) such that the accuracy of the
approximation of order k improves for k from 0 to t(n), then decreases with k.

Further, the densities seem to approximate the histograms of eigenvalues of sampled
matrices quite well. In Table 1, we can see histograms of random matrices with p = 5/n.
In each row, we sampled N matrices of size n × n such that we always obtained 100000
eigenvalues. They were scaled by

√
c(1 + 1/c) such that we would expect a reasonable

approximation by the density f0(z) + 1/cf1(z) + 1/c2f2(z). Indeed, in the columns we see
the histograms of the eigenvalues in green and the densities given by the approximations of
f0(z), f0(z) + c−1f1(z) and f0(z) + c−1f1(z) + c−2f2(z). As n grows, the curve of the latter
fits the histogram best. Another example is illustrated in Table 2. In this case, c = 10 and
t(c) = 3 such that we consider the densities f0(z) + c−1f1(z), f0(z) + c−1f1(z) + c−2f2(z)
and f0(z) + c−1f1(z) + c−2f2(z) + c−3f3(z).

E.-M. Hainzl and É. de Panafieu 11:13

Table 1 Histograms (100 bins) of eigenvalues of N random adjacency matrices of G(n, 5/n)
compared to the densities f0(z), f1(z) and f2(z).

sample
f0(z) f0(z) + 1

5 f1(z) f0(z) + 1
5 f1(z) + 1

25 f2(z)
size

n=40
N=2500

n=200
N=500

n=1000
N=100

References
1 Michel Bauer and Olivier Golinelli. Random incidence matrices: Moments of the spectral

density. Journal of Statistical Physics, 103:301–337, 2001. doi:10.1023/A:1004879905284.
2 François Bergeron, Gilbert Labelle, and Pierre Leroux. Combinatorial Species and Tree-like

Structures. Cambridge University Press, 1997.
3 Charles Bordenave, Marc Lelarge, and Justin Salez. The rank of diluted random graphs.

Annals of Probability, 39(3):1097–1121, 2011. doi:10.1214/10-AOP567.
4 Charles Bordenave, Arnab Sen, and Bálint Virág. Mean quantum percolation. Journal of the

European Mathematical Society, 19(12):3679–3707, 2017. doi:10.4171/JEMS/750.
5 JT Chayes, L Chayes, Judy R Franz, James P Sethna, and SA Trugman. On the density of

state for the quantum percolation problem. Journal of Physics A: Mathematical and General,
19(18):L1173, 1986. doi:10.1088/0305-4470/19/18/011.

6 Simon Coste and Justin Salez. Emergence of extended states at zero in the spectrum of sparse
random graphs. Annals of Probability, 49(4), 2021. doi:10.1214/20-AOP1499.

7 Alan Edelman and N Raj Rao. Random matrix theory. Acta numerica, 14:233–297, 2005.
doi:10.1017/S0962492904000236.

8 Nathanaël Enriquez and Laurent Ménard. Spectra of large diluted but bushy random graphs.
Random Structures & Algorithms, 49(1):160–184, 2016. doi:10.1002/rsa.20618.

9 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge Univer-
sity Press, 2009. URL: http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=
9780521898065.

AofA 2024

https://doi.org/10.1023/A:1004879905284
https://doi.org/10.1214/10-AOP567
https://doi.org/10.4171/JEMS/750
https://doi.org/10.1088/0305-4470/19/18/011
https://doi.org/10.1214/20-AOP1499
https://doi.org/10.1017/S0962492904000236
https://doi.org/10.1002/rsa.20618
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065

11:14 Tree Walks and the Spectrum of Random Graphs

Table 2 Histograms (200 bins) of eigenvalues of N random adjacency matrices of G(n, 10/n)
compared to the densities f̃1(z), f̃2(z) and f̃3(z).

sample
f̃1(z) = f0(z) + 1

10 f1(z) f̃2(z) = f̃1(z) + 1
100 f2(z) f̃3(z) = f̃2(z) + 1

1000 f3(z)
size

n=125
N=800

n=500
N=200

n=2000
N=50

10 Zoltán Füredi and János Komlós. The eigenvalues of random symmetric matrices. Combinat-
orica, 1:233–241, 1981. doi:10.1007/BF02579329.

11 Ira M Gessel. Lagrange inversion. Journal of Combinatorial Theory, Series A, 144:212–249,
2016. doi:10.1016/j.jcta.2016.06.018.

12 Eva-Maria Hainzl and Élie de Panafieu. Tree walks and the spectrum of random graphs. arXiv,
arXiv:2405.08347:26, 2024. doi:10.48550/arXiv.2405.08347.

13 Brendan D McKay. The expected eigenvalue distribution of a large regular graph. Linear
Algebra and its applications, 40:203–216, 1981. doi:10.1016/0024-3795(81)90150-6.

14 Frank Olver. Asymptotics and special functions. CRC Press, 1997. doi:10.1201/
9781439864548.

15 Justin Salez. Every totally real algebraic integer is a tree eigenvalue. Journal of Combinatorial
Theory, Series B, 111:249–256, 2015. doi:10.1016/j.jctb.2014.09.001.

16 Justin Salez. Spectral atoms of unimodular random trees. Journal of the European Mathematical
Society (EMS Publishing), 22(2), 2020. doi:10.4171/JEMS/923.

17 N.J.A. Sloane. sequence a294439. The on-line encyclopedia of integer sequences, 2017.
18 Linh V Tran, Van H Vu, and Ke Wang. Sparse random graphs: Eigenvalues and eigenvectors.

Random Structures & Algorithms, 42(1):110–134, 2013. doi:10.1002/rsa.20406.
19 Antonia M Tulino, Sergio Verdú, et al. Random matrix theory and wireless communications.

Foundations and Trends® in Communications and Information Theory, 1(1):1–182, 2004.
doi:10.1561/0100000001.

https://doi.org/10.1007/BF02579329
https://doi.org/10.1016/j.jcta.2016.06.018
https://doi.org/10.48550/arXiv.2405.08347
https://doi.org/10.1016/0024-3795(81)90150-6
https://doi.org/10.1201/9781439864548
https://doi.org/10.1201/9781439864548
https://doi.org/10.1016/j.jctb.2014.09.001
https://doi.org/10.4171/JEMS/923
https://doi.org/10.1002/rsa.20406
https://doi.org/10.1561/0100000001

E.-M. Hainzl and É. de Panafieu 11:15

20 Eugene P Wigner. Characteristic vectors of bordered matrices with infinite dimensions. Annals
of Mathematics, pages 548–564, 1955. doi:10.2307/1970079.

21 Eugene P Wigner. On the distribution of the roots of certain symmetric matrices. Annals of
Mathematics, 67(2):325–327, 1958. doi:10.2307/1970008.

22 Eugene P Wigner. Random matrices in physics. SIAM review, 9(1):1–23, 1967. doi:
10.1137/1009001.

23 Edward M Wright. The number of connected sparsely edged graphs I-III. Journal of Graph
Theory, 1977-80.

24 Inna Zakharevich. A generalization of wigner’s law. Communications in Mathematical Physics,
268:403–414, 2006. doi:10.1007/s00220-006-0074-5.

AofA 2024

https://doi.org/10.2307/1970079
https://doi.org/10.2307/1970008
https://doi.org/10.1137/1009001
https://doi.org/10.1137/1009001
https://doi.org/10.1007/s00220-006-0074-5

Asymptotics of Weighted Reflectable Walks in A2

Torin Greenwood # Ñ

Department of Mathematics, North Dakota State University, Fargo, ND, USA

Samuel Simon # Ñ

Department of Mathematics, Simon Fraser University, Burnaby, Canada

Abstract
Lattice walks are used to model various physical phenomena. In particular, walks within Weyl
chambers connect directly to representation theory via the Littelmann path model. We derive
asymptotics for centrally weighted lattice walks within the Weyl chamber corresponding to A2 by
using tools from analytic combinatorics in several variables (ACSV). We find universality classes
depending on the weights of the walks, in line with prior results on the weighted Gouyou-Beauchamps
model. Along the way, we identify a type of singularity within a multivariate rational generating
function that is not yet covered by the theory of ACSV. We conjecture asymptotics for this type of
singularity.

2012 ACM Subject Classification Mathematics of computing → Generating functions; Mathematics
of computing → Enumeration; Theory of computation → Random walks and Markov chains

Keywords and phrases Lattice walks, Weyl chambers, asymptotics weights, analytic combinatorics
in several variables

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.12

Supplementary Material Software: https://github.com/TorinGreenwood/AofA-A2Walks [19]
archived at swh:1:dir:f547652d646a07bd8b230ec1a3e1c796f57bec10

Acknowledgements This work was started at the 2020-2021 Mathematical Research Community on
Combinatorial Applications of Computational Geometry and Algebraic Topology. The authors are
grateful for early work with Eric Nathan Stucky and guidance from Marni Mishna.

1 Lattice walks

Lattice walks have a rich history both as a model of phenomena throughout math and
science, and as a driving force for the development of new analytic techniques to extract
asymptotics from general combinatorial problems. For example, lattice walks have modeled
melting phenomena in statistical mechanics [13], diffusion and Brownian motion [1], queueing
systems [10], and Young diagrams [17, 22]. Additionally, lattice walks have pushed forward
the techniques of analytic combinatorics in several variables (ACSV), as the categorization of
increasingly many families of lattice walks has continually stretched the limits of generating
functions one can analyze [6, 7, 28].

This work continues the tradition, studying the asymptotics of reflectable weighted lattice
walks within a Weyl chamber. While this family of walks has direct connections to the
Littelmann path model and representation theory [26], the analysis here also reveals a type of
singularity within a generating function previously unseen in applications. Our main results
include leading term asymptotics for weighted walks in the Tandem and Double Tandem
models for almost all choices of central weightings, as defined in Section 1.2. Additionally,
Conjecture 8 predicts asymptotics generally for generating functions in the new singularity
regime we identified, based on merging the results on several related types of singularities.

A lattice model in d dimensions is defined by a finite stepset S ⊂ Zd. A lattice walk of
length n, or lattice path of length n, is a sequence w = (w1, w2, · · · , wn) of steps wj ∈ S.
After m steps, the walk is at the point given by

∑m
i=1 wi. We consider counting the number

© Torin Greenwood and Samuel Simon;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 12; pp. 12:1–12:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:torin.greenwood@ndsu.edu
http://ndsu.edu/pubweb/~togreenw/
https://orcid.org/0000-0003-4598-7059
mailto:ssimon@sfu.ca
https://sites.google.com/view/sam-simon/home
https://doi.org/10.4230/LIPIcs.AofA.2024.12
https://github.com/TorinGreenwood/AofA-A2Walks
https://archive.softwareheritage.org/swh:1:dir:f547652d646a07bd8b230ec1a3e1c796f57bec10;origin=https://github.com/TorinGreenwood/AofA-A2Walks;visit=swh:1:snp:ab04d2308cd9f891e7903a5a579c2f928398eccb;anchor=swh:1:rev:792262cb851eea4e7d5da5aa9194777655d71d8e
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Asymptotics of Weighted Reflectable Walks in A2

of walks restricted to the Weyl chamber A2, defined in Section 1.3 below. As in Figure 1,
we will find that the walks we study could also be viewed as walks in the positive quarter
plane, although the Weyl chamber interpretation allows us to use the generalized reflection
principle [14] to derive a generating function encoding the walks.

1.1 Walks in restricted regions
Dyck paths form a prototypical one-dimensional lattice path enumeration problem with a
domain restriction: Dyck paths of length 2n start and end at 0, take 2n steps from {1, −1},
and always remain at or above the point 0. One way to show Dyck paths are enumerated by
the Catalan numbers is to use the reflection principle, where paths that do cross below 0 are
mapped bijectively to paths that are easier to count.

Natural extensions include counting walks in higher dimensions, with different stepsets,
or in other restricted regions. For one-dimensional walks, [2] provides a generating function
and asymptotic formula for restricted walks with general weighted stepsets, which assign a
positive weight to each step. Moving up one dimension, walks in the half plane Z × N can
sometimes be reduced to pairs of one-dimensional weighted walks by treating the horizontal
and vertical coordinates as independent walks.

When walks are otherwise restricted in multiple dimensions, the analysis is substantially
more involved. For walks in the quarter plane, [10, 6] provided a systematic approach for
deriving a generating function for broad classes of stepsets, instead of developing ad-hoc
methods for individual stepsets. Symmetry plays a major role in computing generating
functions, which we explore in Section 1.3. Many additional works have contributed to the
study of walks in the positive quadrant, including [25, 4, 24, 32].

In [27], asymptotics are found for walks in the positive d-dimensional orthant with highly
symmetric nontrivial stepsets using the kernel method. The authors of [27] express the
generating function as the diagonal of a multivariate rational function. They give asymptotics
for such unweighted walks as a function of the stepset and number of dimensions. By adding
one degree of freedom, work in [28] generalized these results and determined asymptotics for
stepset models which are symmetric over all but one axis.

Considering other domain restrictions, [8] gives asymptotic behavior of a multidimensional
random walk in a general cone, including in Weyl chambers. In this work, Denisov and
Wachtel provide a formula for counting the number of walks of length n between two specified
points in d-dimensional space. They show that such walks have asymptotics of the form
K · ρn · n−ℓ−d/2. The value of ℓ is given as a function of the smallest eigenvalue of the
Laplace-Beltrami operator, which can add a barrier to directly applying their theorem.
Furthermore, their approach can not give an explicit expression for the constant factor in the
asymptotics. The work of [9] extends these results to additional cases, where a parameter of
the weighted walks called the drift no longer needs to be zero.

Bostan, Raschel, and Salvy make explicit the results of Denisov and Wachtel in the case
d = 2 with the cone R = N2. They determine asymptotic formulas for excursions for all 79
small step models in the quarter plane [5]. Bogosel et al. [3] further extract results from
Denisov and Wachtel and make explicit the cases S ⊂ {−1, 0, 1}3 \{0} with the cone R = N3.
They study three-dimensional excursions by associating a spherical triangle to each model.

1.2 Weighted walks
Many discrete models require non-uniform probabilities on the steps. Assigning weights to
steps in a given model allows for a more detailed analysis of the asymptotic counting function.
Through asymptotic analyses with weights, we can discover relations between aspects of the
model and the asymptotic formula for the number of walks.

T. Greenwood and S. Simon 12:3

If each step wi in a walk (w1, w2, · · · , wn) has associated weight ai, define the weight of
the walk as

∏n
i=1 ai. If the weights are positive integers, we can interpret the weighted model

as allowing colors or multisets of steps. Weights could represent probabilities when they sum
to 1. We restrict our attention to central weights, which are defined by the property that two
walks having same length and endpoints must have the same weight. Central weights can
equivalently be defined by assigning a weight to each orthogonal axis. We write α = (a, b)
for two-dimensional central weights.

One goal of the work here is to provide an explicit connection between the weights of the
steps in a walk and the subexponential asymptotic behavior of the walks. This relationship
is depicted in Figure 2, illustrating the transitions between various subexponential regimes.
Because this description may be difficult to extract from the general results of [8], we prove
the results directly.

Most similar to our results, a weighted version of the Gouyou-Beauchamps (GB) model
was studied in [7], following the work in [6, 4] on the unweighted model. Here, the stepset is
S = {(1, 0), (−1, 0), (−1, 1), (1, −1)}, and the coordinates of the steps are centrally weighted
with a, b > 0. In [7, Theorem 1], the authors showed asymptotics are always of the form
κV [n](i, j)ρnn−r for constants ρ and r that depend on the weights a and b, and a harmonic
function V [n](i, j) depending on the weights and parity of n. In particular, the exponential
growth ρ is a continuous function of a and b across boundaries, while r is not. We observe
this same behavior in Theorem 3 below.

In [7], the authors also give a diagram of the subexponential regimes for the Tandem
stepset without proof that matches our subexponential regimes in Theorem 3 below, but we
provide a complete description of the asymptotics with constant terms and additionally note
a particularly challenging regime and a possible solution in Conjecture 8 below.

Finally, in [30], the second author and a collaborator found results for weighted walks in
Ad

1 for arbitrary d. Much of the work there provides a scaffold for the asymptotic analyses
here, although the case of A2 turns out to be more complicated for several reasons. In
particular, when using the asymptotic integral estimate described in Theorem 9 below, the
leading term for A2 is sometimes difficult to find because many of the initial terms in the
asymptotic expansion are zero. The complexity in finding leading term asymptotics implies
that it would be even more challenging to find full asymptotic expansions in these cases.

1.3 Weyl chambers
Weyl groups allow us to generalize the notion of symmetric stepsets. For a broad treatment
of Weyl groups, see [21]. Some core results on walks in Weyl chambers appear in [14].

▶ Definition 1 (Reduced Root System). For vectors x, y ∈ Rd, let σx(y) be the reflection of
y through the hyperplane perpendicular to x. A reduced root system is a finite set of vectors
Φ ⊂ Rd such that for any x, y ∈ Φ: σx(y) ∈ Φ; y − σx(y) is an integer multiple of x; and
the only nontrivial scalar multiple of x in Φ is −x.

Root systems appear throughout math, especially in relation to Lie groups, and they
capture important symmetry. Given a root system Φ, a special subset of positive roots Φ+

can be chosen, where for each α ∈ Φ, exactly one of ±α is in Φ+, and also if α, β ∈ Φ+ and
α + β ∈ Φ, then α + β ∈ Φ+. Then, as one more refinement, the elements of Φ+ which
cannot be decomposed into sums of elements from Φ+ form a base for Φ.

The isometries defined by {σx : x ∈ Φ} form a group under composition, called a Weyl
group. Additionally, the collection of hyperplanes associated to all of the isometries of the
Weyl group partition Rd into regions called Weyl chambers, as illustrated on the left in

AofA 2024

12:4 Asymptotics of Weighted Reflectable Walks in A2

α

β α + β

-α

β-α - β

σα+β

σα

σβ

b1

b2
b2

b1

Figure 1 The root system Φ = {±α, ±β, ±(α + β)} ⊂ R2 appears on the left with a colored
choice of positive roots. The dotted lines illustrate the hyperplanes defining the Weyl group of
reflections, A2. The fundamental Weyl chamber is shaded. On the right, a walk in the chamber
using the Tandem model stepset (colored), and the corresponding walk in the positive quadrant of
Z2. The Double Tandem stepset additionally includes the dashed lines.

Figure 1. One of the chambers consists of points v ∈ Rd such that ⟨γ, v⟩ > 0 for all γ ∈ Φ,
and this chamber is called the fundamental or principal Weyl chamber. The root system,
group of isometries, and principal Weyl chamber for A2 are shown on the left in Figure 1.
Finally, we define a reflectable stepset with respect to the Weyl group.

▶ Definition 2. Let W be a Weyl group acting on a real inner product space V with a
distinguished basis B = (b1, . . . , bd) and Weyl chamber C. We say that a nonempty set of
vectors S is a (W, B)-reflectable stepset if for all g ∈ W and s ∈ S, we have g(s) ∈ S, and for
all s ∈ S and 1 ≤ i ≤ d, there is an integer ci such that the dot product ⟨s, bi⟩ ∈ {−ci, 0, ci}.

For A2, there are exactly two non-equivalent reflectable stepsets up to change of basis:
the Tandem and Double Tandem stepsets illustrated in the middle in Figure 1. If the basis
{b1, b2} is chosen as unit vectors along the edge of the cone, then we can stretch the cone to
a quadrant with axes corresponding to these basis vectors. In this way, we can identify the
walks within A2 as walks in the positive quadrant of Z2. Define ST = {(1, 0),(−1, 1),(0, −1)}
for the Tandem model, and SDT = {(1, 0), (−1, 1), (0, −1), (0, 1), (1, −1), (−1, 0)} for the
Double Tandem model.

Crucially, while ST and SDT do not appear symmetrical in the quarter plane, they are
reflectable when considered within A2. Thus, the generalized reflection principle can be used
to analyze the number of walks within the chamber [14, Theorem 1].

Grabiner and Magyar gave exact results for walks in Weyl Chambers [18]. Their formulas
are for walks between two points staying within the designated chamber. They obtain these
formulas using determinants. A number of their formulas include the hyperbolic Bessel
function of the first kind of order m.

Grabiner later gave asymptotics for a number of Weyl Chambers including the region
defined by x1 ≥ x2 ≥ · · · ≥ xd, which corresponds to the d-candidate ballot problem
[15, 16, 17]. Here, the problem was interpreted as distributions of subtableaux in order to
appeal to known formula for computing and manipulating Young tableaux.

Krattenthaler [23] completed the asymptotic analysis for the number of random walks
in a Weyl chamber and random walks on a circle, noting that computing the multiplicative
constants remains a challenge. Feierl extends this work by giving asymptotics for the zero
drift reflectable walks in type A Weyl chambers [12]. This work uses Taylor approximations
and the saddle-point method to obtain asymptotics from known determinant formulas. Here,
we derive results without using determinants, which leads to asymptotics of a simpler form.

T. Greenwood and S. Simon 12:5

2 Results

Here, we state our results for our asymptotic counts of weighted walks within A2. For the
Tandem model, we recover the universality classes as found in [7], while also computing the
asymptotic constants for almost all classes. We extend this to the Double Tandem model. In
the exceptional cases when a = 1, b < 1 or a < 1, b = 1, we offer conjectured asymptotics and
Conjecture 8, a prediction for general asymptotics in such a regime.

▶ Theorem 3. Let R = N2 and let α = (a, b). For ST = {(1, 0),(−1, 1),(0, −1)} (the Tandem
model) and SDT = {(1, 0), (−1, 1), (0, −1), (0, 1), (1, −1), (−1, 0)} (the Double Tandem model),
the number of weighted walks of length n which stay in R satisfies

q(a,b)(n) ∼ γρnn−r

where the exponential growth ρ and subexponential growth r for each of ST and SDT are
given in Figure 2, with the starred case conjectured. The constant terms are given in [34,
Tables 5.3, 5.4].

A
xial,

Axial,

Balanced

Transitional,

Free

Reluctant

Directed

DirectedTr
an
si
ti
on
al
,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Condition DT ρ

1<
√

b<a<b2 (a+ 1
a

+ b
a

+ a
b

+ 1
b

+b)

a=b2>1
(

a2+2(a+1)
√

a+1
a

)
b=a2>1

(
b2+2(b+1)

√
b+1

b

)
a>1,b<

√
a

(
a2+2(a+1)

√
a+1

a

)
b>1,a<

√
b

(
b2+2(b+1)

√
b+1

b

)
b=a=1 6

a<1, b=1 6
b<1, a=1 6

a<1, b<1 6

Figure 2 The Tandem and Double Tandem model have the same growth rate regimes with
different exponential growth rates. The regimes for the Tandem model are pictured on the left, with
the subexponential growth (in red) and exponential growth (in black). The exponential growth is
continuous across boundaries, and is unmarked on the boundaries. On the right, the same regimes
are listed with the corresponding exponential growth rates for the Double Tandem model. Starred
cases are conjectured.

We verified the results given in Theorem 3 numerically by computing q(a,b)(n) exactly for
specific choices of (a, b) in each regime and some large values of n (see [34, Table 5.4]). In
particular, we use the gfun Maple package provided by Salvy and Zimmermann [33].

AofA 2024

12:6 Asymptotics of Weighted Reflectable Walks in A2

3 Extracting asymptotics

In many instances, analytic combinatorics in several variables (ACSV) provides a quick
pipeline from a combinatorial description of a problem to asymptotics. Once a generating
function is obtained, the singularities of the generating function can be classified. Existing
libraries of results (as in [31]) describe the asymptotics of the array for many of the most
common types of singularities.

We represent a d-variate multivariate rational GF as F (z) := G(z)/H(z) =
∑

anzn,
where z = (z1, . . . , zd) and zn = zn1

1 · · · znd

d . The zero set V := {z : H(z) = 0} determines
the singular variety of F . We seek asymptotics for [zn]F (z) as n → ∞ in a prescribed
direction r̂ ∈ Rd

>0, so that n ≈ r̂n with n → ∞. In most combinatorial cases, finitely many
critical points determine the asymptotics of a generating function. To find the critical points,
consider representing the coefficients via the Cauchy integral formula,

[zn]F (z) =
(

1
2πi

)d ∫
T

F (z)z−n−1dz, (1)

where T is a d-dimensional torus enclosing the origin but no singularities of F . Heuristically,
the critical points are determined by expanding T until it reaches points on the singular
variety closest to the origin that minimize the exponential growth z−n within the integrand.

A critical point p is called smooth if V is a smooth manifold in a neighborhood of
p. This means that if V is d-dimensional, then in a neighborhood of p there is a smooth
parameterization of V using only d−1 variables. For rational generating functions, smoothness
is easily checked using the implicit function theorem (see [31, Lemma 7.6]).

For many lattice path enumeration problems, there are also transverse multiple points,
where V can locally be smoothly deformed into the intersection of perpendicular hyperplanes.
For rational GFs, these types of critical points satisfy systems of polynomial equations in
terms of the denominator H and its partial derivatives (see Section 4.2).

Call a critical point p = (p1, . . . , pd) minimal when there are no other points q ∈ V where
|qi| ≤ |pi| for each coordinate with at least one inequality strict. Smooth minimal critical
points always contribute to asymptotics. However, for transverse minimal critical points,
an additional technical condition must be met (Definition 6). A highlight of the analysis
of weighted walks in A2 is that there is a case where the technical condition is almost met.
Conjecture 8 predicts this halves the contribution of the critical point to the asymptotics.

4 Proof sketch

We obtain the asymptotics in Theorem 3 with the following steps:
1. Encoding as a diagonal. Using the symmetry group corresponding to the stepset,

represent the generating function as a diagonal of a rational function.
2. Computing critical points. Find the solutions to the critical point equations.
3. Finding contributing critical points. Determine which critical points are contributing

as a function of the weights.
4. Evaluating the Cauchy integral. Simplify the Cauchy integral (Equation (1)) to a

Fourier-Laplace integral and then use existing results.

T. Greenwood and S. Simon 12:7

4.1 Encoding as a diagonal
For both ST and SDT , the reflection group is generated by the involutions Ψ(x, y) = (y/x, y)
and Φ(x, y) = (x, x/y). Using either the generalized reflection principle (as in [27]) or
evaluations of the unweighted generating functions in [28, Examples 6.5.1 and 6.5.2], we find
that weighted walks starting at the origin of length n are encoded as coefficients of xnyntn

in the following functions.

FT (x, y, t) = GT (x, y)
HT (x, y, t) = (b2x − ay2)(bx2 − a2y)(xy − ab)

(1 − txy(a
x + bx

ay + y
b))a3b3(1 − x)x(1 − y)y

, (2)

FDT (x, y, t) = GDT (x, y)
HDT (x, y, t)

= (b2x − ay2)(bx2 − a2y)(xy − ab)
(1 − txy(a

x + x
a + bx

ay + ay
bx + y

b + b
y))a3b3(1 − x)x(1 − y)y

. (3)

4.2 Computing critical points
First, we compute all possible critical points for all values of the weights (a, b). Then, in
Section 4.3, we determine which critical points contribute to asymptotics. We focus on the
Tandem case here, as the Double Tandem case follows a similar analysis.

Weighted walks are encoded as the main diagonal of the functions in Equation (2), so
we search for critical points in the 1 = (1, 1, 1) direction. By definition, smooth critical
points satisfy {H = 0, xHx = yHy = tHt}, where H = HT . Next, to rule out non-smooth,
non-transverse points, we verify that the factorization of HT given in Equation (2) is a
transverse polynomial factorization (as in [29, Definition 9.3]): define the inventory S(x, y) =
ax+by/ax+1/by, and label the factors H0 = (1−txyS(1/x, 1/y)), H1 = (1−x), H2 = (1−y).
At any point w where a factor Hi(w) = 0, its gradient ∇Hi(w) is nonzero, and also at any
point where the factors are simultaneously zero, their gradients are linearly independent. (In
fact, this applies broadly to GFs encoding other types of walks.) This implies there are no
non-smooth, non-transverse points.

To find the transverse multiple points, we must consider all 7 combinations of whether
H0, H1, and H2 are zero, and use [29, Definition 9.7] to compute the transverse critical points
for each such stratum individually. Conveniently, the technical definition of transverse critical
points simplifies greatly in these lattice walk cases where all but one of the factors are of the
form 1 − x and 1 − y. For example, to compute the transverse critical points for V0,1 (where
H0, H1 = 0 and H2 ̸= 0), the equations simplify to using the smooth critical point equations
on H0(1, y, t) to compute the y and t critical point coordinates. Ultimately, we obtain the
critical points in Table 1 for each stratum.

4.3 Finding contributing critical points
We now refine to contributing critical points, starting by checking minimality. The form of
the generating function here is close enough to the Gouyou-Beauchamps generating function
that we can reuse a result from [7].

▶ Lemma 4 (Lemma 3 of [7]). For the rational function F (x, y, t) described by (2), when G

and H are coprime the point (x, y, t) ∈ V is minimal if and only if

|x| ≤ 1, |y| ≤ 1, |t| ≤ 1
|xy|S(| 1

x |, | 1
y |)

,

where the three strict inequalities do not occur simultaneously.

AofA 2024

12:8 Asymptotics of Weighted Reflectable Walks in A2

Table 1 Critical points for each stratum, corresponding to every possible non-trivial choice of
setting some of the factors {H0, H1, H2} to zero.

Stratum x y t

V0 a b 1
3ab

aei(2π/3) bei(4π/3) ei(4π/3)

3ab

aei(4π/3) bei(2π/3) ei(2π/3)

3ab

V0,1 1 b/
√

a a5/2−2a
b(a3−4)

1 −b/
√

a − a5/2+2a
b(a3−4)

V0,2 a/
√

b 1 2b3−b3/2

(4b3−1)a

−a/
√

b 1 2b3+b3/2

(4b3−1)a

V0,1,2 1 1 1
a+ b

a
+ 1

b

Next, we filter to minimal points minimizing the height function |xyt|−1.

▶ Lemma 5. For each value of a, b, the unique positive minimal point that minimizes the
height function |xyt|−1 is given in Table 2.

Table 2 Positive minimal critical points for choices of the weights a and b.

CP Conditions on weights Positive minimal critical point Exponential growth

1 1 <
√

b < a < b2 x = 1, y = 1, t = 1
b+a/b+1/a

a + b
a

+ 1
b

2 a > 1, b ≤
√

a x = 1, y = b√
a

, t = a5/2−2a
b(a3−4) a + 2√

a

3 b > 1, a ≤
√

b x = a√
b
, y = 1, t = 2b3−b3/2

4ab3−a
2
√

b + 1
b

4 a ≤ 1, b ≤ 1 x = a, y = b, t = 1
3ab

3

Proof (sketch). Minimizing the height |xyt|−1 is equivalent to minimizing |S(1/x, 1/y)|,
which we can accomplish using calculus. Both here and in arbitrary dimension, the contrib-
uting critical points display a non-obvious boolean lattice structure in the following sense.
Any given critical point is minimal when each of its coordinates (except the t coordinate) is
at most 1. If there is a minimal critical point with coordinate xi ≠ 1 and another minimal
critical point with coordinate xj ̸= 1, then there must also be a minimal critical point where
xi ̸= 1 and xj ̸= 1. This greatly simplifies the problem of finding contributing critical points
because it is easy to show that the more coordinates are equal to one in a critical point,
the less the corresponding exponential growth is. Then, from the boolean structure, there
is never a need to compare the contributions of two different critical points with the same
number of non-one coordinates. ◀

When there are only finitely many smooth minimal critical points, we can use existing
results to compute asymptotics, but we need an additional definition and criterion in the
presence of transverse multiple points.

▶ Definition 6 (Definition 9.8 of [29]). Let H(z) = H1(z) · · · Hm(z) be a square-free factoriz-
ation of H. Fix K = {k1, · · · , kq} ⊆ {1, . . . , m}, and let w ∈ Cd be a solution to the critical
point equations for the stratum where Hi = 0 if and only if i ∈ K. For each 1 ≤ j ≤ q let
bj ∈ {1, · · · , d} be an index such that the partial derivative (∂Hkj /∂zbj)(w) ̸= 0. The vector

T. Greenwood and S. Simon 12:9

vkj
=

(∇logHkj)(w)
wbj

(∂Hj/∂zbj
)(w) =

(
w1(∂Hkj

/∂z1)(w)
wbj

(∂Hj/∂zbj
)(w) , · · · ,

wd(∂Hkj
/∂zd)(w)

wbj
(∂Hj/∂zbj

)(w)

)
has real coordinates. The normal cone of H at w is the set

N(w) =

q∑

j=1
ajvkj : aj > 0

 ⊂ Rd. (4)

The point w is called a contributing point if w is minimal, w minimizes |z|−1 among all
minimal points, and 1 ∈ N(w).

In some regimes below, it turns out that 1 is in the boundary of N(w) (i.e. some aj

must be 0). Although w then does not meet the requirements to be a contributing point, it
may still determine asymptotics. The following lemma applies to both the critical points in
Table 2, and also to the critical points more generally for reflectable walks in Ad

2.

▶ Lemma 7. Let w be a minimal critical point. If w has a coordinate of 1 and w satisfies
the smooth critical point equations for H0 = 1 − txyS(a

x , b
y) in the direction 1, then 1 is on

the boundary of the normal cone N(w) (see Definition 6). Otherwise, 1 is on interior of
N(w).

Proof (sketch). For HT factored as in Equation (2), we can compute ∇logHi(w) for i = 0, 1, 2
explicitly. When i = 1 or 2, the logarithmic gradient is a basis vector. For i = 0,

∇logH0(w) =
(

−1 − xyt

(
− a

x
+ bx

ay

)
, −1 − xyt

(
− bx

ya
+ y

b

)
, −1

)
.

In cases where H1(w) = 0, 1 is in the interior cone if and only if −a/x + bx/ay < 0, and it
is on the boundary if −a/x + bx/ay = 0. A similar statement can be made for H2. It is then
a matter of algebra to show that equality occurs exactly when the critical point equations
for H0 = 1 − txyS(1/x, 1/y) are met. ◀

From Lemma 7, we find that the critical points from Table 2 always contribute except
perhaps when a = 1 or b = 1. In these exceptional cases, we note that [31, Theorem 10.65]
indicates that when the numerator of a GF is nonzero at the critical point, the direction
being on a facet of N(w) cuts the asymptotic contribution in half. Here, the numerator is
zero, but we conjecture the idea is still true regardless.

▶ Conjecture 8. When a direction r is on a facet of the normal cone N(w) defined by a
minimal transverse critical point w, then w contributes half as much to the asymptotics as
when r is in the interior.

As with all of the other regimes for the Tandem and Double Tandem model, we have verified
this conjecture numerically when a = 1 or b = 1, and our conjectured subexponential growth
aligns with Figure 7 of [7]. In particular, we looked at the weights a = 1/8 and b = 1 and
found that for walks of length 2000, the error between the asymptotic estimate and the exact
number of walks is less than 1%. For weights a = 1 and b = 1/4 and walks of length 2000,
the error was approximately 1.2%.

Note that this situation does not occur in the analysis of the Gouyou-Beauchamps walks
in [7]. This is because in the transitional cases for the Gouyou-Beauchamps walks, the
corresponding generating function has a factor of 1 − y in the numerator and denominator
that cancels and makes these cases among the easier cases to analyze. This is notable in

AofA 2024

12:10 Asymptotics of Weighted Reflectable Walks in A2

particular because the factor of 1 − y in the numerator is independent of the weights in this
regime. Although we too find cancellation of factors in the numerator and denominator for
some regimes (see Section 4.5 below), there is no cancellation in the transitional cases for
the Tandem or Double Tandem models, and indeed there is no factor in the numerator that
is independent of the weights.

4.4 Evaluating the Cauchy integral
The final step is to set up the integral to compute asymptotics. Note that the textbook [31]
includes results for transverse critical points that could be applied directly at this point, but
for a more complete and elementary viewpoint, we include a residue approach. Beginning
with the Cauchy integral equation (Equation (1)), we expand the torus T until it nears the
minimal critical points in Table 2. When different minimal points from Table 2 end up being
equal at certain weight values, the analysis differs in these cases because it causes cancellation
between factors of G and H . Ultimately, we are left with the 9 cases as described in Figure 2.
We outline here an overview of the process of extracting asymptotics. The details for each
of the 9 cases can be found in [34], with an example in Section 4.5 below. We also include
SageMath code at the following URL illustrating how to compute asymptotics in each of
these cases.

https://github.com/TorinGreenwood/AofA-A2Walks

The overall goal is to simplify the integral until it is a Fourier-Laplace type integral where
the following result applies:

▶ Theorem 9 (Theorem 7.7.3 of [20]; Lemma 5.16 of [31]). Suppose that the functions A(θ)
and ϕ(θ) in r variables are smooth in a neighborhood N of the origin and that the gradient
∇ϕ(0) = 0; the Hessian H of ϕ at 0 is non-singular; ϕ(0) = 0; and the real part of ϕ(θ) is
non-negative on N . Then for each M > 0 there are complex constants C0, . . . , CM such that∫

N
A(θ)e−nϕ(θ)dθ =

(
2π

n

)r/2
det (H)−1/2 ·

M∑
j=0

Cjn−j + O(n−M−1). (5)

The constants Cj are given by the formula:

Cj = (−1)j
∑
ℓ≤2j

Dℓ+j(Aϕℓ)(0)
2ℓ+jℓ!(ℓ + j)! , with ϕ := ϕ − ⟨θ, Hθ⟩ (6)

where D is the differential operator D :=
∑

u,v(H−1)u,v
∂

∂θu

∂
∂θv

.

The computational obstacle in using Theorem 9 is determining the first j for which Cj is
nonzero, as this gives the subexponential growth. If G vanishes to order k at the critical
point, then Cj = 0 for 0 ≤ j ≤ ⌈k/2⌉ − 1. Whenever the critical point is not smooth, we first
take residues to reduce the number of variables in the integral and also make the singular
variety smooth. Because the non-smoothness comes from factors of the form (1 − x) or
(1 − y), it is typically straightforward to compute residues.

For example, when a critical point has x coordinate equal to 1, we can compare the value
of the integral over the circle |x| = 1 − ϵ to the integral at |x| = 1 + ϵ and add a term which
has smaller exponential growth, so it does not contribute to the dominant asymptotics. Then
we compute the difference of the two integrals using the residue theorem, which corresponds
to removing the factor of (1 − x) in the denominator and evaluating the remaining function

https://github.com/TorinGreenwood/AofA-A2Walks

T. Greenwood and S. Simon 12:11

at x = 1. After applying the residue, we check to see if factors between G and H now cancel,
which can impact the order to which G vanishes. Then, we do a change of variables to
set the integral to use Theorem 9. Lastly, we compute the Cj to obtain the asymptotics,
which is completed using code. We incorporate portions of the code available in the online
supplement to the textbook, [29].

4.5 Example analysis: axial regime
Here, we compute the asymptotics in the case where a = b2 > 1. Equivalently, by expanding
the generating function in Equation (2) as a geometric series in t, we aim for an asymptotic
expression for the following:

q(a,b)(n) := [x0][y0]
(

a(x − y2)(a1/2x2 − a2y)(a3/2 − xy)
a9/2(x − 1)x(y − 1)y

(
a

x
+ x

a1/2y
+ y

a1/2

)n)
.

The critical point that is contributing is
(

1, b√
a

)
= (1, 1). However, we calculate that the

direction (1, 1) is not in the normal cone at this point, and is instead on the boundary. To get
around this, we take the term (x − y2) in the numerator and express it at (x − 1) − (y2 − 1).
Since coefficient extraction is linear, we have the following

q(a,b)(n) = [x0][y0]
(

a(a1/2x2 − a2y)(a3/2 − xy)
a9/2x(y − 1)y

(
a

x
+ x

a1/2y
+ y

a1/2

)n)
+ [x0][y0]

(
a(y + 1)(a1/2x2 − a2y)(a3/2 − xy)

a9/2(x − 1)xy

(
a

x
+ x

a1/2y
+ y

a1/2

)n)
.

The first function has critical point at (a, 1). The second function has critical point (1, 1).
Thus, the first function does not contribute to the asymptotics. The cancellation of factors
here is similar to [7].

In order to obtain asymptotics from the second function, we start by taking a residue at
x = 1. The next step is to do a change of variables to make it of Fourier-Laplace type so we
can use Theorem 9. We apply the change of variables y = eiθ, dy = ieiθdθ, so the region of
integration is over [−π/2, 3π/2). With this transformation the integral becomes∫

[−π/2,3π/2)

A(θ)e−nϕ(θ)dθ,

where

A(θ) = (a2eiθ − a1/2)(a3/2 − eiθ)(eiθ + 1)e−iθ

a7/2

and

ϕ(θ) = log
(

a + 2√
a

a−1/2e2iθ + aeiθ + a−1/2

)
.

Applying Theorem 9 gives the formula

q(a,b)(n) ∼ (a + 2a−1/2)n · n−1/2 · (a3 − 2a3/2 + 1)
√

a3/2 + 2√
πa3 .

AofA 2024

12:12 Asymptotics of Weighted Reflectable Walks in A2

For the Double Tandem stepset we compute

q(a,b)(n) ∼
(

a2 + 2(a + 1)
√

a + 1
a

)n

· n−1/2

· (a7/2 − 2a2 +
√

a)
√

2a2 + (a2 + 1)
√

a + 2a
√

πa4
√

a + 1
.

5 Next steps

The results here merely scratch the surface of possible questions about walks within Weyl
chambers. An obvious next step would be to analyze the d-dimensional Tandem and Double
Tandem stepsets. For example, the d-dimensional Tandem stepset has steps given by

STd
= {ei − ei−1 : 2 ≤ i ≤ d} ∪ {e1} ∪ {−ed}

where ei is the ith elementary basis vector with a one in the ith coordinate and zeroes
elsewhere. The first steps in computing the asymptotics are not the main obstructions. We
can express the generating function for these walks as the diagonal of a rational function, and
solve the critical point equations in d dimensions. We additionally find a similar structure to
the contributing critical points as in the 2-dimensional case. However, there are more cases
where Conjecture 8 may apply and computing constants becomes increasingly difficult.

These difficulties appear largely because applying Theorem 9 involves solving for the
first nonzero Cj in Equation (5). This is in contrast to existing results for Ad

1, where the
functional form of the group sum in the Ad

1 case allowed the authors in [30] work through
the calculations in general. In particular, the first nonzero Cj was always the first term
where there are nonzero derivatives of order 2j. For Ad it is straightforward to determine the
degree to which the function vanishes at a critical point, but this is not sufficient. For A2
when a < 1 and b < 1, the function vanishes to degree three but the constant C2 is still zero
at the critical point. It is possible that there are aspects of the governing function, coming
from the Weyl denominator, that must be exploited in order to give a general statement.
Even for A3, computations can include taking 90 different mixed partial derivatives of order
24. Certainly, there are simplifications that can be made to obtain this, but it presents a
barrier to quickly getting results in higher dimensions to find a pattern.

While current work has focused on the Weyl chambers of Ad
1 and Ad, there are other

families of interest. In particular, there may still be room to use the approach here to derive
explicit asymptotic results for weighted reflectable walks for the family of Weyl groups Bd

for d > 2. In [11] Feierl counted weighted walks in Bd using determinants, while the case of
weighted reflectable walks in B2 has been covered in [7].

More generally, one goal is to have results for walks in the product of any Weyl chambers.
This would be the culmination of multiple projects, as there are not general results for all
Weyl chambers. This is a plausible project as the product of the chambers should decompose
in the same sense as the reflectable walks.

References
1 F. Baccelli and G. Fayolle. Analysis of models reducible to a class of diffusion processes in

the positive quarter plane. SIAM Journal on Applied Mathematics, 47(6):1367–1385, 1987.
doi:10.1137/0147090.

2 C. Banderier and P. Flajolet. Basic analytic combinatorics of directed lattice paths. Theoretical
Computer Science, 281(1-2):37–80, 2002. doi:10.1016/S0304-3975(02)00007-5.

https://doi.org/10.1137/0147090
https://doi.org/10.1016/S0304-3975(02)00007-5

T. Greenwood and S. Simon 12:13

3 B. Bogosel, V. Perrollaz, K. Raschel, and A. Trotignon. 3d positive lattice walks and
spherical triangles. Journal of Combinatorial Theory, Series A, 172:105189, 2020. doi:
10.1016/j.jcta.2019.105189.

4 A. Bostan, F. Chyzak, M. van Hoeij, M. Kauers, and L. Pech. Hypergeometric expressions
for generating functions of walks with small steps in the quarter plane. European Journal of
Combinatorics, 61:242–275, 2017. doi:10.1016/j.ejc.2016.10.010.

5 A. Bostan, K. Raschel, and B. Salvy. Non-D-finite excursions in the quarter plane. Journal of
Combinatorial Theory, Series A, 121(0):45–63, 2014. doi:10.1016/j.jcta.2013.09.005.

6 M. Bousquet-Mélou and M. Mishna. Walks with small steps in the quarter plane. Contemporary
Mathematics, 520:1–40, 2010. doi:10.1090/conm/520.

7 J. Courtiel, S. Melczer, M. Mishna, and K. Raschel. Weighted lattice walks and universality
classes. Journal of Combinatorial Theory, Series A, 152:255–302, 2017. doi:10.1016/j.jcta.
2017.06.008.

8 D. Denisov and V. Wachtel. Random walks in cones. The Annals of Probability, 43(3):992–1044,
2015. URL: http://www.jstor.org/stable/24519214.

9 Jetlir Duraj. Random walks in cones: The case of nonzero drift. Stochastic Processes and
their Applications, 124(4):1503–1518, 2014. doi:10.1016/j.spa.2013.12.003.

10 G. Fayolle, R. Iasnogorodski, and V. Malyshev. Random walks in the quarter-plane, volume 40
of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1999. doi:10.1007/
978-3-319-50930-3.

11 T. Feierl. Asymptotics for the number of walks in a Weyl chamber of type B. Random
Structures Algorithms, 45(2):261–305, 2014. doi:10.1002/rsa.20467.

12 T. Feierl. Asymptotics for the number of zero drift reflectable walks in a Weyl chamber of
type A. Preprint arXiv:1806.05998, 2018. doi:10.48550/arXiv.1806.05998.

13 M. E. Fisher. Walks, walls, wetting, and melting. Journal of Statistical Physics, 34(5):667–729,
1984. doi:10.1007/BF01009436.

14 I. M. Gessel and D. Zeilberger. Random walks in a Weyl chamber. Proceedings of the American
Mathematical Society, 115(1):27–31, 1992. doi:10.1090/S0002-9939-1992-1092920-8.

15 D. J. Grabiner. Brownian motion in a Weyl chamber, non-colliding particles, and random
matrices. Annales de l’Institut Henri Poincaré Probabilités et Statistiques, 35(2):177–204, 1999.
doi:10.1016/S0246-0203(99)80010-7.

16 D. J. Grabiner. Random walk in an alcove of an affine Weyl group, and non-colliding
random walks on an interval. Journal of Combinatorial Theory, Series A, 97(2):285–306, 2002.
doi:10.1006/jcta.2001.3216.

17 D. J. Grabiner. Asymptotics for the distributions of subtableaux in Young and up-down
tableaux. Electronic Journal of Combinatorics, 11(2):R29, 2006. doi:10.37236/1886.

18 D. J. Grabiner and P. Magyar. Random walks in Weyl chambers and the decomposition of
tensor powers. J. Algebraic Combin., 2(3):239–260, 1993. doi:10.1023/A:1022499531492.

19 Torin Greenwood and Samuel Simon. AofA-A2Walks. Software, swhId:
swh:1:dir:f547652d646a07bd8b230ec1a3e1c796f57bec10 (visited on 2024-07-12). URL:
https://github.com/TorinGreenwood/AofA-A2Walks.

20 L. Hörmander. The analysis of linear partial differential operators I: Distribution theory and
Fourier analysis. Springer, 2015. doi:10.1007/978-3-642-61497-2.

21 J. E. Humphreys. Introduction to Lie algebras and representation theory, volume 9. Springer
Science & Business Media, 2012. doi:10.1007/978-1-4612-6398-2.

22 W. König. Orthogonal polynomial ensembles in probability theory. Probability Surveys,
2:385–447, 2005. doi:10.1214/154957805100000177.

23 C. Krattenthaler. Asymptotics for random walks in alcoves of affine Weyl groups. Séminaire
Lotharingien de Combinatoire, 52:B52i, 2007. URL: https://www.emis.de/journals/SLC/
wpapers/s52kratt.html.

24 C. Krattenthaler. Lattice path enumeration. Handbook of enumerative combinatorics, pages
589–678, 2015. doi:10.1201/b18255.

AofA 2024

https://doi.org/10.1016/j.jcta.2019.105189
https://doi.org/10.1016/j.jcta.2019.105189
https://doi.org/10.1016/j.ejc.2016.10.010
https://doi.org/10.1016/j.jcta.2013.09.005
https://doi.org/10.1090/conm/520
https://doi.org/10.1016/j.jcta.2017.06.008
https://doi.org/10.1016/j.jcta.2017.06.008
http://www.jstor.org/stable/24519214
https://doi.org/10.1016/j.spa.2013.12.003
https://doi.org/10.1007/978-3-319-50930-3
https://doi.org/10.1007/978-3-319-50930-3
https://doi.org/10.1002/rsa.20467
https://doi.org/10.48550/arXiv.1806.05998
https://doi.org/10.1007/BF01009436
https://doi.org/10.1090/S0002-9939-1992-1092920-8
https://doi.org/10.1016/S0246-0203(99)80010-7
https://doi.org/10.1006/jcta.2001.3216
https://doi.org/10.37236/1886
https://doi.org/10.1023/A:1022499531492
https://archive.softwareheritage.org/swh:1:dir:f547652d646a07bd8b230ec1a3e1c796f57bec10;origin=https://github.com/TorinGreenwood/AofA-A2Walks;visit=swh:1:snp:ab04d2308cd9f891e7903a5a579c2f928398eccb;anchor=swh:1:rev:792262cb851eea4e7d5da5aa9194777655d71d8e
https://github.com/TorinGreenwood/AofA-A2Walks
https://doi.org/10.1007/978-3-642-61497-2
https://doi.org/10.1007/978-1-4612-6398-2
https://doi.org/10.1214/154957805100000177
https://www.emis.de/journals/SLC/wpapers/s52kratt.html
https://www.emis.de/journals/SLC/wpapers/s52kratt.html
https://doi.org/10.1201/b18255

12:14 Asymptotics of Weighted Reflectable Walks in A2

25 I. Kurkova and K. Raschel. On the functions counting walks with small steps in the
quarter plane. Publ. Math. Inst. Hautes Études Sci., 116:69–114, 2012. doi:10.1007/
s10240-012-0045-7.

26 P. Littelmann. Characters of representations and paths in H∗
R. Representation theory and

automorphic forms (Edinburgh, 1996), 61:29–49, 1997. doi:10.1090/pspum/061.
27 S. Melczer and M. Mishna. Asymptotic lattice path enumeration using diagonals. Algorithmica,

75(4):782–811, 2016. doi:10.1007/s00453-015-0063-1.
28 S. Melczer and M. C. Wilson. Higher dimensional lattice walks: Connecting combinatorial

and analytic behavior. SIAM Journal on Discrete Mathematics, 33(4):2140–2174, 2019.
doi:10.1137/18M1220856.

29 Stephen Melczer. An Invitation to Analytic Combinatorics: From One to Several Variables.
Springer Nature, 2021. doi:10.1007/978-3-030-67080-1.

30 Marni Mishna and Samuel Simon. The asymptotics of reflectable weighted walks in arbitrary
dimension. Advances in Applied Mathematics, 118:102043, 2020. doi:10.1016/j.aam.2020.
102043.

31 Robin Pemantle, Mark C. Wilson, and Stephen Melczer. Analytic Combinatorics in Several
Variables. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2 edition,
2024. doi:10.1017/9781108874144.

32 K. Raschel. Counting walks in a quadrant: a unified approach via boundary value problems.
Journal of the European Mathematical Society, 14(3):749–777, 2012. doi:10.4171/JEMS/317.

33 B. Salvy and P. Zimmermann. GFUN: a maple package for the manipulation of generating
and holonomic functions in one variable. ACM Transactions on Mathematical Software,
20(2):163–177, 1994. doi:10.1145/178365.178368.

34 Samuel Lee Krumm Simon. Walks ’n’ Blocks: Asymptotic Enumeration of Weighted Reflectable
Walks in Ad

1 and A2 and Exploration of Balanced Splittable Hadamard Matrices. PhD thesis,
Simon Fraser University, 2023. URL: https://summit.sfu.ca/item/36175.

https://doi.org/10.1007/s10240-012-0045-7
https://doi.org/10.1007/s10240-012-0045-7
https://doi.org/10.1090/pspum/061
https://doi.org/10.1007/s00453-015-0063-1
https://doi.org/10.1137/18M1220856
https://doi.org/10.1007/978-3-030-67080-1
https://doi.org/10.1016/j.aam.2020.102043
https://doi.org/10.1016/j.aam.2020.102043
https://doi.org/10.1017/9781108874144
https://doi.org/10.4171/JEMS/317
https://doi.org/10.1145/178365.178368
https://summit.sfu.ca/item/36175

On the Number of Distinct Fringe Subtrees in
Binary Search Trees
Stephan Wagner #

Institute of Discrete Mathematics, TU Graz, Austria
Department of Mathematics, Uppsala University, Sweden

Abstract
A fringe subtree of a rooted tree is a subtree that consists of a vertex and all its descendants. The
number of distinct fringe subtrees in random trees has been studied by several authors, notably
because of its connection to tree compaction algorithms. Here, we obtain a very precise result for
binary search trees: it is shown that the number of distinct fringe subtrees in a binary search tree
with n leaves is asymptotically equal to c1n

log n
for a constant c1 ≈ 2.4071298335, both in expectation

and with high probability. This was previously shown to be a lower bound, our main contribution is
to prove a matching upper bound. The method is quite general and can also be applied to similar
problems for other tree models.

2012 ACM Subject Classification Mathematics of computing → Enumeration; Theory of computa-
tion → Randomness, geometry and discrete structures; Theory of computation → Data compression

Keywords and phrases Fringe subtrees, binary search trees, tree compression, minimal DAG,
asymptotics

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.13

Funding Supported by the Swedish research council (VR), grant 2022-04030.

1 Introduction

A fringe subtree of a rooted tree is a subtree that consists of a vertex and all its descendants,
see for instance Figure 1. Fringe subtrees of random trees have been studied quite thoroughly
under different models of randomness. Typical results include limit theorems for the number
of fringe subtrees of a given size or shape (we will use those as an auxiliary tool in this
paper as well), see for example [12,14]. Fringe subtrees are intrinsically related to additive
functionals of rooted trees [14–16,19,24], which can in fact be seen as linear combinations
of fringe subtree counts. There are general limit theorems for additive functionals under
different assumptions, and many relevant quantities associated with trees can be expressed
as additive functionals.

v1

v2 v3

v4 v5 v6 v7

v8 v9 v10 v11 v12 v13

v14 v15

Figure 1 A binary tree. The fringe subtree rooted at v2 is indicated by the dashed rectangle.

© Stephan Wagner;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 13; pp. 13:1–13:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stephan.wagner@tugraz.at
https://orcid.org/0000-0001-5533-2764
https://doi.org/10.4230/LIPIcs.AofA.2024.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 On the Number of Distinct Fringe Subtrees in Binary Search Trees

It is clear that an n-vertex tree has n fringe subtrees, one corresponding to each of its
vertices. Usually, some of these will be identical/isomorphic as rooted trees, so the number
of distinct fringe subtrees is generally smaller. In most of this paper, fringe subtrees will
be considered identical if they are the same as plane trees (i.e., the order of the children of
a vertex matters). The vertex labels are ignored. Otherwise, we regard them as distinct.
There are however also other possible notions of distinctness that will be mentioned briefly
in the final section.

The number of distinct fringe subtrees is connected to tree compression: in a fundamental
algorithm to compress trees, vertices whose associated fringe subtrees have the same shape
are merged to form what is called the minimal directed acyclic graph (DAG). The precise
shape of the tree can be recovered from the minimal DAG. Consider the tree in Figure 1 for
a simple example: note that the fringe subtrees rooted at v2 and v6 are identical, so they
are merged. For the same reason, v4, v7, v10 are merged as their fringe subtrees are identical
in shape. Figure 2 shows the minimal DAG associated with the tree in Figure 1. Observe
that the number of vertices of the minimal DAG is precisely the number of distinct fringe
subtrees.

There are various applications of this compression technique by means of minimal DAGs.
Let us mention XML compression and querying [5, 11], symbolic model checking [4] and
compiler construction [1, Chapter 6.1 and 8.5] as notable examples. It is therefore of natural
interest in computer science to analyse the extent to which the number of vertices is reduced
by compressing a tree to its minimal DAG.

v1

v3

v2, v6

v4, v7, v10

v5, v8, v9, v11, v12, v13, v14, v15

Figure 2 The minimal DAG associated with the tree in Figure 1. The vertices of the original
tree that are compressed to a single vertex are listed.

For simply generated trees, it was shown by Flajolet, Sipala and Steyaert [10] that the
expected size of the minimal DAG is of order n√

log n
. For instance, the average number of

vertices in the minimal DAG associated with a uniformly random binary tree (a tree in
which every internal vertex has precisely two children) with n leaves is asymptotically equal
to 2n√

π log4 n
. It was also proven (see [22]) that this does not only hold in expectation, but

also with high probability: in other words, with probability tending to 1, the size of the
minimal DAG lies in an interval of the form [(1 − o(1)) 2n√

π log4 n
, (1 + o(1)) 2n√

π log4 n
]. The

result of Flajolet, Sipala and Steyaert was further extended to Σ-labelled unranked trees
in [3]. Moreover, an extension to the number of fringe subtrees that occur more than once

S. Wagner 13:3

or generally at least a fixed number of times was considered in [20]. Interestingly, periodic
fluctuations start to occur in the asymptotics: the average number of trees that occur at
least r times (r ≥ 2) as a fringe subtree is asymptotically

ψr(log n) n

(log n)3/2 +O
(n

(log n)5/2

)
(1)

for a positive periodic function ψr (see [20, Theorem 5.1] for the precise statement).
In this paper, we will be concerned with the model of random binary search trees. We

consider binary trees where all internal vertices have two children: a left child and a right
child. In the following, the size of a binary tree will always be the number of leaves; the
number of internal vertices is always one less. In the probabilistic model that we study, a
binary search tree is built from a random permutation of the numbers 1, 2, . . . , n. These
numbers are stored in the internal vertices of the tree in such a way that all numbers less
than the root label are in the left branch, while all numbers greater than the root label are
in the right branch. See Figure 3 for an example.

5

2 8

41 7 9

3 6

Figure 3 The binary search tree resulting from the permutation (5, 2, 8, 4, 1, 7, 9, 3, 6). Internal
vertices are indicated by circles, leaves by squares.

It is well known that this model is also essentially equivalent to that of binary increasing
trees (binary trees with vertex labels that are increasing from the root to the leaves),
see [7, Section 1.4.1]. For this and other types of increasing trees, the typical number of
distinct fringe subtrees is of the order n

log n rather than n√
log n

. The main reason for this
difference is the fact that the number of fringe subtrees with k vertices in an n-vertex tree is
on average n

k3/2 (asymptotically, up to a constant factor) for simply generated trees and n
k2

for increasing trees.
The first result on binary search trees is due to Flajolet, Gourdon, and Martínez [9].

Letting Fn be the number of distinct fringe subtrees in a random binary search tree of size
n, they proved that

E(Fn) ≤ (4 log 2)n
log n +O

(n log log n
(log n)2

)
.

Devroye [6] provided a lower bound of the same order of magnitude (and also reproved the
upper bound of Flajolet, Gourdon, and Martínez), showing that

E(Fn) ≥ (log 3)n
2 logn (1 + o(1)).

AofA 2024

13:4 On the Number of Distinct Fringe Subtrees in Binary Search Trees

The constant in the lower bound (i.e., log 3
2 ≈ 0.5493061443) was improved to 0.6017824584 by

Seelbach Benkner and Lohrey [21]. Seelbach Benkner and the present author [22] presented
a general approach to proving results of this form. Specifically, it is shown in [22] that the
number of distinct fringe subtrees is of order n√

log n
, both in expectation and with high

probability, for simply generated trees/conditioned Bienaymé–Galton–Watson trees under
various notions of what “distinct” means (e.g., distinct as plane trees, nonisomorphic as
rooted trees). An analogous result for increasing trees holds with an order of magnitude of

n
log n rather than n√

log n
. As a special case of the general approach, one obtains the following

bounds with c1 ≈ 2.4071298335 and c2 = 4 log 2 ≈ 2.7725887222:
c1n

log n (1 + o(1)) ≤ E(Fn) ≤ c2n

log n (1 + o(1)),

which further improves the lower bound (the upper bound is identical with that of Flajolet,
Sipala and Steyaert). These inequalities hold not only for the expected value, but also with
high probability. Even though upper and lower bound are of the same order of magnitude
and the constants c1 and c2 in the upper and lower bound are fairly close to each other, it
is clear that there is still a gap. The aim of this paper is to close the gap and show that
the constant c1 = 4

∑
k≥1

log k
(k+1)(k+2) in the lower bound is in fact best possible. We will

specifically prove the following theorem.

▶ Theorem 1. For the constant c1 = 4
∑

k≥1
log k

(k+1)(k+2) , we have

E(Fn) ∼ c1n

log n

as n → ∞. Moreover, we also have convergence in probability:

Fn

n/ log n
p→ c1.

The approach taken in [22, 23] leading to the lower bound will be briefly described in
Section 3. The proof of the upper bound that is required for Theorem 1 will be presented
afterwards in Section 4. Before that, we require some technical results on fringe subtrees
in binary search trees as well as an important invariant that is called the shape functional.
These auxiliary results will be outlined in the following section. The paper concludes with a
brief discussion and an outlook to other problems to which the same method applies.

2 Preliminaries

Let us first fix some notation. We let Bn be the set of binary trees of size n (for instance,
Figure 4 shows the set B4), and let Tn be a random binary tree of size n constructed
according to the random binary search tree model. In this section, we gather some results on
the distribution of different random variables associated with Tn.

2.1 The binary search tree distribution and the shape functional
We first need some auxiliary results related to the probability distribution of the shape of
binary search trees. Let T be a binary tree of size n, and let Nv be the number of internal
vertices in the fringe subtree rooted at v. We say that a binary search tree has shape T if
the binary tree obtained by ignoring all labels is T . It is well known that the probability
that the shape of a random binary search tree of size n is exactly T can be expressed as

p(T) =
∏

v

1
Nv

,

S. Wagner 13:5

the product being over all internal vertices, see for example Fill [8]. The quantity

(n− 1)!
∏

v

1
Nv

is also the number of ways to label the internal vertices with labels 1, 2, . . . , n − 1 in an
increasing fashion, i.e., in such a way that each vertex other than the root has a greater label
than its parent [18, Section 5.1.4, Exercise 20].

Consider for example Figure 4: there are five possible shapes for binary search trees of
size 4, occurring respectively with probability 1

6 ,
1
6 ,

1
6 ,

1
6 and 1

3 . The negative logarithm of
p(T), which can be expressed as

− log p(T) =
∑

v

logNv,

is called the shape functional of T [8] – to be more precise, it is the shape functional of the
tree formed by the internal vertices.

1
6

1
6

1
6

1
6

1
3

Figure 4 The five different binary trees with four leaves and their respective probabilities.

The distribution of the shape functional in random binary search trees was first studied
by Fill in [8]. One can also obtain the following central limit theorem from an application of
a general theorem on additive functionals due to Holmgren and Janson [14].

▶ Lemma 2. Let the random variable Ln be defined by Ln = − log p(Tn). We have

E(Ln) = µn+O(log n),

where µ =
∑∞

k=1
2 log k

(k+1)(k+2) . Moreover, V(Ln) = σ2n + O(1) for a constant σ2 > 0, and
the centred and normalised random variable Ln−µn

σ
√

n
converges in distribution to a standard

normal distribution.

For our purposes, the asymptotic formulas for mean and variance will already be sufficient,
since all we actually need is that the random variable Ln is concentrated around its mean.

2.2 The total number of fringe subtrees of a given shape or size
The second key ingredient concerns fringe subtrees that belong to a specific set. As mentioned
earlier, there are many results on the number of fringe subtrees of a specific shape or size.
The following lemma, which is specifically geared towards our needs, was proven (in greater
generality) in [22], see also [23, Lemma 2].

▶ Lemma 3. Let a, ε be two fixed positive real numbers with ε < 1
2 . For every positive integer

k, let Sk ⊆ Bk be a set whose elements are binary trees of size k. Let pk =
∑

B∈Sk
p(B) be

the probability that a random binary search tree Tk of size k has a shape that belongs to Sk.
Now let Zn,k denote the (random) number of fringe subtrees of size k in a random binary

search tree Tn of size n whose shape belongs to Sk. Moreover, let Yn,ε denote the total
number of arbitrary fringe subtrees of size greater than nε. Then

AofA 2024

13:6 On the Number of Distinct Fringe Subtrees in Binary Search Trees

(a) E(Zn,k) = 2npk

k(k+1) for all k < n,
(b) V(Zn,k) = O(pkn/k

2) for all k with a log n ≤ k ≤ nε,
(c) E(Yn,ε) = O(n1−ε), and
(d) with high probability, the following statements hold simultaneously:

(i) |Zn,k − E(Zn,k)| ≤ p
1/2
k k−1n1/2+ε for all k with a log n ≤ k ≤ nε,

(ii) Yn,ε ≤ n1−ε/2.

Equipped with this and the previous lemma, we now have the necessary tools to prove
both a lower bound and an upper bound that will ultimately yield Theorem 1. The interval
from a log n to nε in Lemma 3 is such that it covers the asymptotically relevant range in the
proof of Theorem 1, where we split into several parts according to the fringe subtree size.

3 The lower bound

In this section, we give a brief account of the proof of the lower bound, see [22, 23], slightly
adapted to our specific situation to provide more explicit error terms than in those papers.

The key idea to bound the number of distinct fringe subtrees from below is to only
consider trees that are relatively “large”. Specifically, we set k0 := 1

µ (log n+ (log n)3/4), with
µ as defined in Lemma 2, and only count fringe subtrees whose size is at least k0, while all
smaller fringe subtrees are ignored. It is clear that this will give us a lower bound on the
total number of distinct fringe subtrees. It turns out that for this particular choice of k0,
most fringe subtrees of size k ≥ k0 only occur once in the tree.

In the setting of Lemma 3, let us choose Sk to be the subset of Bk consisting of those
trees B for which p(B) ≤ exp(−µk + k2/3), or equivalently − log p(B) ≥ µk − k2/3. We can
apply Lemma 2 to show that this condition is satisfied with high probability for random
binary trees. Indeed, the Chebyshev inequality yields

P(Lk ≤ µk − k2/3) ≤ V(Lk)
(E(Lk) − µk + k2/3)2 ,

which by Lemma 2 becomes

P(Lk ≤ µk − k2/3) = O(k−1/3).

Thus we can conclude that pk in Lemma 3 is 1 −O(k−1/3) for our specific choice of Sk.
So the expected contribution of trees in Sk for k ≥ k0 to the total fringe subtree count

is, by part (a) of Lemma 3,∑
k≥k0

E(Zn,k) =
∑

k≥k0

2npk

k(k + 1) = 2n
∑

k≥k0

k−2(
1 −O(k−1/3)

)
= 2n
k0

(
1 −O(k−1/3

0)
)

= 2µn
log n

(
1 −O

(
(log n)−1/4))

. (2)

Moreover, part (d.i) of Lemma 3 guarantees that this is also valid not just in expectation,
but also with high probability.

Now we show that there are very few duplicates (identical fringe subtrees) among these.
For every k ≥ k0, let Z(2)

n,k be the number of pairs of identical fringe subtrees in a random
binary search tree of size n whose shape is in Sk. We condition on the total number of fringe
subtrees of size k, which we denote by Xn,k. Since every fringe subtree follows, conditioned
on its size k, the probability distribution of a random binary search tree Tk, we have

E(Z(2)
n,k | Xn,k = N) =

(
N

2

) ∑
B∈Sk

p(B)2.

S. Wagner 13:7

By the definition of Sk, this gives us

E(Z(2)
n,k | Xn,k = N) ≤

(
N

2

)
e−µk+k2/3 ∑

B∈Sk

p(B) ≤
(
N

2

)
e−µk+k2/3

.

Clearly, Xn,k ≤ n, so the law of total expectation gives us

E(Z(2)
n,k) ≤

(
n

2

)
e−µk+k2/3

.

Summing over all k ≥ k0, we finally find that∑
k≥k0

E(Z(2)
n,k) ≤

(
n

2

) ∑
k≥k0

e−µk+k2/3
= O

(
n2e−µk0+k

2/3
0

)
= O

(
ne−(log n)3/4+O((log n)2/3)

)
.

This shows that
∑

k≥k0
Z

(2)
n,k is (in expectation) negligible compared to

∑
k≥k0

Zn,k (see (2)).
By a standard application of the Markov inequality, this also applies with high probability.

Note that Zn,k − Z
(2)
n,k is a lower bound on the number of distinct fringe subtrees whose

shape is in Sk: a shape that occurs r times contributes r−
(

r
2
)

= r(3−r)
2 ≤ 1 to this quantity.

Moreover, the number of distinct fringe subtrees whose shape belongs to Sk for some k ≥ k0
clearly provides a lower bound on the overall number of distinct fringe subtrees Fn, so we
can conclude that

Fn ≥
∑

k≥k0

(
Zn,k − Z

(2)
n,k

)
= 2µn

log n
(
1 −O

(
(log n)−1/4))

,

both in expectation and with high probability.

4 The upper bound

Let us now move on to the upper bound. We can express the number of distinct fringe
subtrees as a sum of indicators. For every binary tree B, let In(B) be the indicator random
variable for the event that a random binary search tree of size n has a fringe subtree whose
shape is B. With this definition, it is clear that

Fn =
∑
k≥1

∑
B∈Bk

In(B).

The key to proving the upper bound that yields Theorem 1 is to split this sum into several
parts and analyse their contributions. Specifically, the three regions are defined as follows:

Small: k ≤ k1 := 1
2 log4 n;

Medium: k1 < k ≤ k2 := 1
µ (log n− (log n)3/4), with µ as defined in Lemma 2;

Large: k2 < k.
This cutting technique is also the main idea behind many of the previously mentioned results
on the quantity Fn. The novel contribution of this paper lies mainly in the middle region
and its precise analysis.

4.1 Bounding the contribution of small fringe subtrees
This part is the easiest: clearly the contribution of trees whose size is at most k1 = 1

2 log4 n

to the random variable Fn is no greater than the total number of distinct binary trees whose
size is at most k1. Since the number of possible trees for every given size k is a Catalan
number (thus |Bk| = 1

k

(2k−2
k−1

)
= O(4k)), we immediately obtain the (deterministic) upper

bound∑
k≤k1

∑
B∈Bk

In(B) ≤
∑

k≤k1

|Bk| = O(4k1) = O(
√
n),

which renders all these trees negligible.

AofA 2024

13:8 On the Number of Distinct Fringe Subtrees in Binary Search Trees

4.2 Bounding the contribution of medium-sized fringe subtrees
In the medium region, we have to perform a more careful analysis, separating trees not only
by their size but also the value of their shape functional. We will split into trees with “large”
shape functional and thus (relatively) low probability to occur as a fringe subtree, and trees
with “small” shape functional, which have a comparatively high probability to occur. For
the former, we show that the expected total number of occurrences is too low to make a
significant contribution, while for the latter we prove that there are not enough distinct trees
with sufficiently small shape functional to contribute to the main term of the asymptotics.

Let us now make this precise. For an integer k in the range k1 < k ≤ k2, let us define a
partition of Bk into two subsets (depending on n) as follows:

B1
k contains all trees B ∈ Bk with the property that p(B) ≤ k3

n ,
B2

k contains all remaining trees in Bk.

Lemma 2 can be used to show that it is unlikely for the shape of a random binary
search tree Tk to be in B1

k: the inequality p(Tk) ≤ k3

n can be rewritten as e−Lk ≤ k3

n , or
Lk ≥ log n− 3 log k. This time, the Chebyshev inequality yields

P(Lk ≥ log n− 3 log k) ≤ V(Lk)
(log n− 3 log k − E(Lk))2 .

For k ≤ k2, we have log n − 3 log k − E(Lk) = log n − µk + O(log log n) ≥ (log n)3/4 +
O(log log n), thus (by Lemma 2)

P(Lk ≥ log n− 3 log k) = O
(k

(log n)3/2

)
.

So if we set Sk = B1
k in Lemma 3, then it follows that

pk =
∑

B∈B1
k

p(B) = O
(k

(log n)3/2

)
.

Consequently, by part (d.i) of Lemma 3, we have, with high probability,∑
k1<k≤k2

∑
B∈B1

k

In(B) ≤
∑

k1<k≤k2

Zn,k

≤
∑

k1<k≤k2

(2npk

k(k + 1) +
p

1/2
k n1/2+ε

k

)
= O

(n

(log n)3/2

)
.

Observe that this also holds in expectation (even without the term p
1/2
k

n1/2+ε

k) by part (a) of
Lemma 3.

For the remaining part, we prove that there are comparatively few trees in the set B2
k as

compared to B1
k, even though the majority of the probability mass lies with B2

k. Specifically,
we bound the contribution as follows: for every B ∈ B2

k, we have p(B) ≥ k3

n by definition
and thus∑

B∈B2
k

In(B) ≤
∑

B∈B2
k

1 ≤
∑

B∈B2
k

np(B)
k3 .

S. Wagner 13:9

Now by definition of p(B), we have
∑

B∈B2
k
p(B) ≤

∑
B∈Bk

p(B) = 1, thus∑
B∈B2

k

In(B) ≤ n

k3 .

This inequality even holds deterministically. Finally, summing over all k in our range yields∑
k1<k≤k2

∑
B∈B2

k

In(B) ≤
∑

k1<k≤k2

n

k3 = O
(n

(log n)2

)
.

Both this and the previous error bound that we found for B1
k are negligible compared to the

term of order n
log n that we will obtain in the final case.

4.3 Bounding the contribution of large fringe subtrees
Finally, we look at large fringe subtrees whose size is greater than k2 = 1

µ (log n− (log n)3/4).
Here, we apply Lemma 3 with Sk = Bk for all k > k2 to show that the total number of such
subtrees (regardless of whether they are distinct or not) is equal to∑

k2<n≤nε

Zn,k + Yn,ε =
∑

k2<n≤nε

2n
k(k + 1) +O(n1−ε/2) = 2n

k2
(1 + o(1)) = 2µn

log n (1 + o(1)),

both in expectation and with high probability. This term dominates the contribution of the
two other cases, so we end up with

Fn =
∑

B

In(B) ≤ c1n

log n (1 + o(1)), (3)

both in expectation and with high probability. Since the matching lower bound was already
provided (see Section 3), this completes the proof of Theorem 1. ◀

5 Discussion and outlook

As the proof shows, the dominant contribution to the number of distinct fringe subtrees comes
from those fringe subtrees that are “large” – specifically, whose size is at least approximately
1
µ log n. The significance of this value is as follows: above this threshold, a typical binary
search tree B of size k satisfies p(B) = o(1/n); as a result, the number of duplicates among
the fringe subtrees of size k in Tn becomes insignificant, and the contribution to the number of
distinct fringe subtrees is essentially just the number of fringe subtrees. Below the threshold
of 1

µ log n, it is precisely the opposite: we have p(B) = ω(1/n) (i.e., np(B) → ∞) for a typical
binary search tree B of size k, which ultimately leads to a negligible contribution.

Further examples of the same kind are presented in [22]: in all these examples, there are
upper and lower bounds of the same order of magnitude, namely n√

log n
or n

log n . However,
in most of them the constants in the bounds do not quite match.

The same technique as presented in this paper can be applied to other examples of this
kind to determine the precise asymptotic behaviour of many similar quantities. To this end,
one needs sufficient information on the behaviour of the analogue of the quantity p(B) –
specifically, a result of the same type as Lemma 2 is required.

Let us give one concrete example: the number of nonisomorphic fringe subtrees in recursive
trees was studied recently by Bodini, Genitrini, Gittenberger, Larcher and Naima [2]. For
this quantity, the analogue of p(B) is the probability that a recursive tree of a given size

AofA 2024

13:10 On the Number of Distinct Fringe Subtrees in Binary Search Trees

is isomorphic to a fixed unlabelled tree. The general central limit theorem for additive
functionals of recursive trees due to Holmgren and Janson [14] can be applied to show that
the analogue of Lemma 2 does indeed hold. At the end of the procedure, we have the
following result:

▶ Theorem 4. The number of nonisomorphic fringe subtrees in a random recursive tree with
n vertices is asymptotically equal to c3n

log n , where the constant c3 is approximately equal to
0.9136401430, both in expectation and with high probability.

The constant c3 already appears in the lower bound in [22, Theorem 16]. The numerical
computation of this constant is discussed there as well. This and further examples will be
considered in the full version of this paper in a broader context.

Let us finally mention an interesting connection to the concept of entropy for random
tree models (compare [13,17]): recall that the constant µ in our main theorem stems from
the mean of the quantity Ln (the shape functional of a random binary search tree) as given
in Lemma 2. Note that we have

E(Ln) = E(− log p(Tn)) = −
∑

B∈Bn

p(B) log p(B),

which can be interpreted as the entropy of the random variable Tn. Thus the growth constant
for the number of distinct fringe subtrees is directly connected to the growth constant for
the entropy. A similar interpretation is possible in other examples, such as Theorem 4.

References
1 Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley series in computer science / World student series edition. Addison-Wesley,
1986.

2 Olivier Bodini, Antoine Genitrini, Bernhard Gittenberger, Isabella Larcher, and Mehdi Naima.
Compaction for two models of logarithmic-depth trees: analysis and experiments. Random
Structures Algorithms, 61(1):31–61, 2022. doi:10.1002/rsa.21056.

3 Mireille Bousquet-Mélou, Markus Lohrey, Sebastian Maneth, and Eric Noeth. XML compres-
sion via DAGs. Theory of Computing Systems, 57(4):1322–1371, 2015. doi:10.1145/2448496.
2448506.

4 Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3):293–318, 1992. doi:10.1145/136035.136043.

5 Peter Buneman, Martin Grohe, and Christoph Koch. Path queries on compressed XML.
In Johann Christoph Freytag et al., editors, Proceedings of the 29th Conference on Very
Large Data Bases, VLDB 2003, pages 141–152. Morgan Kaufmann, 2003. doi:10.1016/
B978-012722442-8/50021-5.

6 Luc Devroye. On the richness of the collection of subtrees in random binary search trees.
Information Processing Letters, 65(4):195–199, 1998. doi:10.1016/S0020-0190(97)00206-8.

7 Michael Drmota. Random Trees: An Interplay Between Combinatorics and Probability.
Springer, 1st edition, 2009.

8 James Allen Fill. On the distribution of binary search trees under the random permuta-
tion model. Random Structures & Algorithms, 8(1):1–25, 1996. doi:10.1002/(SICI)
1098-2418(199601)8:1<1::AID-RSA1>3.0.CO;2-1.

9 Philippe Flajolet, Xavier Gourdon, and Conrado Martínez. Patterns in random binary
search trees. Random Structures & Algorithms, 11(3):223–244, 1997. doi:10.1002/(SICI)
1098-2418(199710)11:3<223::AID-RSA2>3.0.CO;2-2.

https://doi.org/10.1002/rsa.21056
https://doi.org/10.1145/2448496.2448506
https://doi.org/10.1145/2448496.2448506
https://doi.org/10.1145/136035.136043
https://doi.org/10.1016/B978-012722442-8/50021-5
https://doi.org/10.1016/B978-012722442-8/50021-5
https://doi.org/10.1016/S0020-0190(97)00206-8
https://doi.org/10.1002/(SICI)1098-2418(199601)8:1<1::AID-RSA1>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1098-2418(199601)8:1<1::AID-RSA1>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1098-2418(199710)11:3<223::AID-RSA2>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1098-2418(199710)11:3<223::AID-RSA2>3.0.CO;2-2

S. Wagner 13:11

10 Philippe Flajolet, Paolo Sipala, and Jean-Marc Steyaert. Analytic variations on the common
subexpression problem. In Proceedings of the 17th International Colloquium on Automata,
Languages and Programming, ICALP 1990, volume 443 of Lecture Notes in Computer Science,
pages 220–234. Springer, 1990. doi:10.1007/BFb0032034.

11 Markus Frick, Martin Grohe, and Christoph Koch. Query evaluation on compressed trees. In
Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science, LICS 2003,
pages 188–197. IEEE Computer Society Press, 2003. doi:10.1109/LICS.2003.1210058.

12 Michael Fuchs. Limit theorems for subtree size profiles of increasing trees. Combinatorics,
Probability and Computing, 21(3):412–441, 2012. doi:10.1017/S096354831100071X.

13 Zbigniew Gołębiewski, Abram Magner, and Wojciech Szpankowski. Entropy and optimal
compression of some general plane trees. ACM Trans. Algorithms, 15(1):Art. 3, 23, 2019.
doi:10.1145/3275444.

14 Cecilia Holmgren and Svante Janson. Limit laws for functions of fringe trees for binary
search trees and random recursive trees. Electronic Journal of Probability, 20:1–51, 2015.
doi:10.1214/EJP.v20-3627.

15 Cecilia Holmgren, Svante Janson, and Matas Šileikis. Multivariate normal limit laws for the
numbers of fringe subtrees in m-ary search trees and preferential attachment trees. Electron.
J. Combin., 24(2):Paper No. 2.51, 49 pp., 2017. doi:10.37236/6374.

16 Svante Janson. Asymptotic normality of fringe subtrees and additive functionals in conditioned
Galton-Watson trees. Random Struct. Algorithms, 48(1):57–101, 2016. doi:10.1002/rsa.
20568.

17 John C. Kieffer, En-Hui Yang, and Wojciech Szpankowski. Structural complexity of random
binary trees. In Proceedings of the 2009 IEEE International Symposium on Information
Theory, ISIT 2009, pages 635–639. IEEE, 2009. doi:10.1109/ISIT.2009.5205704.

18 Donald E. Knuth. The art of computer programming. Vol. 3. Addison-Wesley, Reading, MA,
1998.

19 Dimbinaina Ralaivaosaona and Stephan Wagner. A central limit theorem for additive
functionals of increasing trees. Combin. Probab. Comput., 28(4):618–637, 2019. doi:
10.1017/s0963548318000585.

20 Dimbinaina Ralaivaosaona and Stephan G. Wagner. Repeated fringe subtrees in random rooted
trees. In Proceedings of the Twelfth Workshop on Analytic Algorithmics and Combinatorics,
ANALCO 2015, pages 78–88. SIAM, 2015. doi:10.1137/1.9781611973761.7.

21 Louisa Seelbach Benkner and Markus Lohrey. Average case analysis of leaf-centric binary
tree sources. In 43rd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, pages 16:1–16:15, 2018. doi:
10.4230/LIPIcs.MFCS.2018.16.

22 Louisa Seelbach Benkner and Stephan Wagner. Distinct fringe subtrees in random trees.
Algorithmica, 84(12):3686–3728, 2022. doi:10.1007/s00453-022-01013-y.

23 Louisa Seelbach Benkner and Stephan G. Wagner. On the collection of fringe subtrees in
random binary trees. In Yoshiharu Kohayakawa and Flávio Keidi Miyazawa, editors, LATIN
2020: Theoretical Informatics - 14th Latin American Symposium, São Paulo, Brazil, January
5-8, 2021, Proceedings, volume 12118 of Lecture Notes in Computer Science, pages 546–558.
Springer, 2020. doi:10.1007/978-3-030-61792-9_43.

24 Stephan Wagner. Central limit theorems for additive tree parameters with small toll functions.
Combin. Probab. Comput., 24(1):329–353, 2015. doi:10.1017/S0963548314000443.

AofA 2024

https://doi.org/10.1007/BFb0032034
https://doi.org/10.1109/LICS.2003.1210058
https://doi.org/10.1017/S096354831100071X
https://doi.org/10.1145/3275444
https://doi.org/10.1214/EJP.v20-3627
https://doi.org/10.37236/6374
https://doi.org/10.1002/rsa.20568
https://doi.org/10.1002/rsa.20568
https://doi.org/10.1109/ISIT.2009.5205704
https://doi.org/10.1017/s0963548318000585
https://doi.org/10.1017/s0963548318000585
https://doi.org/10.1137/1.9781611973761.7
https://doi.org/10.4230/LIPIcs.MFCS.2018.16
https://doi.org/10.4230/LIPIcs.MFCS.2018.16
https://doi.org/10.1007/s00453-022-01013-y
https://doi.org/10.1007/978-3-030-61792-9_43
https://doi.org/10.1017/S0963548314000443

Early Typical Vertices in Subcritical Random
Graphs of Preferential Attachment Type
Peter Mörters # Ñ

University of Cologne, Germany

Nick Schleicher1 #

University of Cologne, Germany

Abstract
We study the size of the connected component of early typical vertices in a subcritical inhomogeneous
random graph with a kernel of preferential attachment type. The principal tools in our analysis are,
first, a coupling of the neighbourhood of a typical vertex in the graph to a killed branching random
walk and, second, an asymptotic result for the number of particles absorbed at the killing barrier in
this branching random walk.

2012 ACM Subject Classification Mathematics of computing → Random graphs; Mathematics of
computing → Paths and connectivity problems; Mathematics of computing → Markov processes

Keywords and phrases Inhomogeneous random graphs, preferential attachment, networks, subcritical
behaviour, size of components, connectivity, coupling, branching random walk, random tree

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.14

Funding Peter Mörters: Supported by DFG project 444092244 “Condensation in random geometric
graphs” within the priority programme SPP 2265.

Acknowledgements This paper contains results from the second author’s Master thesis.

1 Introduction and statement of results

There is currently a huge demand for models of scale-free networks coming from a variety of
application areas, ranging from social sciences, telecommunications to power grids. These
applications lead to competing demands on the network models: On the one hand they
should be amenable to mathematical and statistical analysis; models like stochastic block
models or, more generally, inhomogeneous random graphs have shown to be useful here.
On the other hand models should also incorporate network features beyond the scale-free
distribution of the degrees. A sensible approach here is to go beyond phenomenological
modelling of a scale-free network and observe which network features emerge from basic
building principles. Preferential attachment, popularized by Barabási and Albert [2], has
shown to be a particularly natural and interesting principle. In this paper we study, from
a mathematical point of view, an inhomogeneous random graph model with a kernel that
mimics the connection probabilities of preferential attachment models. We show that this
model, while having many features of more complicated preferential attachment networks,
allows a very fine analysis even in the difficult subcritical case, when despite the scale-free
degree distribution the network exhibits only weak connectivity.

1 Corresponding author

© Peter Mörters and Nick Schleicher;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 14; pp. 14:1–14:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pmoerter@uni-koeln.de
http://www.mi.uni-koeln.de/~moerters/
https://orcid.org/0000-0002-8917-3789
mailto:nschlei2@uni-koeln.de
https://orcid.org/0009-0000-1512-1815
https://doi.org/10.4230/LIPIcs.AofA.2024.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Early Typical Vertices in Subcritical Random Graphs of Preferential Attachment Type

For the general inhomogeneous graph model [4] we take a symmetric kernel

κ : (0, 1]2 → (0,∞)

and for each n ∈ N we build the graph Gn with vertex set Vn = {1, . . . , n} by connecting
two distinct vertices i, j ∈ Vn independently with probability

pij := 1
n

(
κ

(
i
n ,

j
n

)
∧ n

)
.

For example, in the stochastic block model the interval (0, 1] is partitioned into finitely many
blocks and κ chosen to be constant on the cartesian product of any pair of blocks. In order
to get scale-free networks, however, one uses a kernel κ with a singularity at the origin.

In preferential attachment models vertices arrive one-by-one and attach themselves to
existing vertices with a preference for powerful vertices, specifically those which already
have a large degree. There are various ways to turn this idea into a proper definition, but
they all have in common that the expected degree of a fixed vertex i in a network of n
vertices grows, as n → ∞, like ≈ c(n/i)γ , for some constant c and exponent γ ∈ (0, 1).
Choosing a connection probability of the nth vertex to each earlier vertex i < n which is
proportional to its expected degree at time n and picking the proportionality factor such
that the expected number of connections remains bounded from zero and infinity leads to a
connection probability pi,n = βnγ−1i−γ , for some constant β > 0, which makes the model
an inhomogeneous random graph with kernel

κ(x, y) = β(x ∨ y)γ−1(x ∧ y)−γ ,

where 0 < γ < 1 parametrizes the strength of the preferences of early vertices and β > 0 is an
edge density parameter. We call this model the inhomogeneous random graph of preferential
attachment type and explore some of its properties here.

The graph has a phase transition in the sense that if and only if the parameters γ and β
are big enough, there exists a component of the graph of macroscopic size. More precisely
(Gn) has a giant component if the size Sn of the largest connected component in Gn satisfies

Sn
n

→ θ > 0 in probability.

For the inhomogeneous random graph of preferential attachment type we have:

▶ Theorem 1. A giant component exists if and only if

γ ≥ 1
2 or β > βc := 1

4 − γ

2 .

This is a simplification of the main result in [5]. The proof can be based on taking a weak
local limit in the graph, a sketch of the argument can be found in [11] .

In this paper we are primarily interested in the subcritical regime, i.e. when γ < 1
2

and 0 < β < βc. In this case all component sizes are of smaller order than n. Our main
result, Theorem 2 below, identifies the component sizes of vertices in a moving observation
window, which we call early typical vertices. More precisely, a sequence of vertices on ∈ Vn
is called typical if on/n → u for some u > 0 and our observation window comprises typical
vertices with small u, which are the early typical vertices. We show that these vertices have a
connected component of asymptotic size Y u−ρ− independent of n, where ρ− is an explicitly
given exponent and Y a positive random variable, whose tail behaviour we also identify.

P. Mörters and N. Schleicher 14:3

▶ Theorem 2. Let Sn(i) be the size of the connected component of vertex i ∈ Vn in the
inhomogeneous random graph of preferential attachment type in the subcritical regime. If
on ∈ Vn is such that on

n → u ∈ (0, 1], then

lim
u↓0

lim
n→∞

P
(
Sn(on) ≥ u−ρ−x

)
= P (Y ≥ x) ,

for all x > 0, where

ρ± = 1
2 ±

√
(γ − 1

2)2 + β(2γ − 1).

and Y is a positive random variable satisfying

P (Y ≥ x) = x−(ρ+/ρ−)+o(1) as x → ∞.

The remainder of the paper explains the ideas behind the proof of Theorem 2. We
first look at the inner limit, when n → ∞, which we investigate using a coupling of the
neighbourhood of vertex on to a killed branching random walk. This is done in Section 2. In
Section 3 we study the number of particles absorbed at the killing boundary of the branching
random walk, from which our result follows.

2 Local coupling

The main object in this section is a branching random walk on the real line with a killing
barrier at the origin. The branching random walk is started with a particle located in
log u < 0 and the displacements of the children of a vertex are given by an independent
Poisson point process with intensity

π(dy) = β(eγy1y>0 + e(1−γ)y
1y<0) dy .

As π is an infinite measure initially every particle has infinitely many children, but we kill all
particles located to the right of the killing barrier together with their offspring. As a result
the killed branching process lives entirely on the negative half axis and it turns out that, for
parameters γ < 1

2 and β < βc, the killed branching process becomes extinct after a finite
number of generations and its genealogical tree is therefore finite. We denote this marked
tree (with the vertex locations as marks) by T (u) and by T (u) the number of vertices in this
tree. The main result of this section is the following proposition.

▶ Proposition 3. If on ∈ Vn is such that on

n → u ∈ (0, 1] and x > 0, then

lim
n→∞

P
(
Sn(on) ≥ u−ρ−x

)
= P

(
T (u) ≥ u−ρ−x

)
.

The proof is an adaptation of arguments in [5] to our model. It is based on a coupling
of the neighbourhood of vertex on in the graph Gn to the killed branching random walk
starting with a particle in location log un, for a suitable sequence (un) with un → u, which
we will carry out in two steps in the following sections.

2.1 First step: Coupling to a random labelled tree
We first couple our graph to a tree, which we call the random labelled tree. Each vertex of
this tree carries a label from the set {1, · · · , n}, we denote by Tn(o) the tree with the root
labelled by o ∈ {1, · · · , n}. Every vertex with label i ∈ {1, . . . , n} produces independently
for every j ∈ {1, . . . , i − 1, i + 1, . . . , n} exactly one offspring of label j with probability
pij := β(i∨ j)γ−1(i∧ j)−γ ∧ 1. Note that different vertices in Tn(o) may carry the same label.

AofA 2024

14:4 Early Typical Vertices in Subcritical Random Graphs of Preferential Attachment Type

We now use a depth first search on the graph Gn to couple the connected component
of on to the random labelled tree Tn(on). Sequences (bn) and (cn) with bn, cn ∈ {1, . . . , n},
which we specify later, are used to stop the coupling when certain bad events occur. The
coupling of the random labelled tree Tn(on) and the connected component of on in the
graph Gn is defined on a probability space of Bernoulli variables. For every unordered pair
{i, j} of distinct labels in {1, . . . , n} we generate a sequence P (1)

ij , P
(2)
ij , . . . , of independent

Bernoulli variables (P (k)
ij)k with parameter pij . We classify all labels into one of the following

categories:

Unseen labels that have not been seen in the construction,
Active labels that have been seen but not yet explored,
Passive labels that have been seen and explored.

Initially, we set k({i, j}) = 1 for every unordered pair {i, j} of distinct labels. We
declare on active and all other labels unseen. In every further step, if there are no active
labels left we stop and declare the coupling as successful. Otherwise we pick the smallest
active label, say i, declare it as passive and explore it. This means that, for every j ∈
{1, . . . , i− 1, i+ 1, . . . , n},

if j is unseen then k({i, j}) = 1. We form an edge between i and j inGn and simultaneously
create a child of i with label j in Tn(on) if and only if P (1)

ij = 1. If we formed an edge in
this way we declare the label j as active;
otherwise, if j is active or passive, and P (k({i,j}))

ij = 1 we stop and declare the coupling
unsuccessful, if P (k({i,j}))

ij = 0 we change neither graph nor tree;
we increase k({i, j}) by one.

If after this step
one of the active labels has j ≤ bn, or
the total number of active or passive labels exceeds cn,

then we stop and declare the coupling unsuccessful. If we have not stopped we continue the
exploration, again with the smallest active label (if there is any).

Observe that this procedure couples the connected component of on in the graph Gn
based on the variables (P (1)

ij : {i, j} ⊂ {1, . . . , n}) and the random labelled tree Tn(on) based
on the variables (P (k)

ij : {i, j} ⊂ {1, . . . , n}, k ∈ N) in such a way that for a successful coupling
the rooted graph given as the connected component of on in Gn coincides with the coupled
labelled tree Tn(on). As we are in the subcritical regime we do not expect to see too many
labels or very small labels. Hence, for a suitable choice of the sequences (bn) and (cn), we
expect unsuccessful coupling to be unlikely.

The main technical result of this section confirms this intuition.

▶ Proposition 4. Suppose that u ∈ (0, 1] and on
n

→ u. If

lim
n→∞

cn = ∞ and lim
n→∞

c2
n

bn
= 0 and lim

n→∞

cnb
γ
n

nγ
= 0 ,

then with high probability the coupling is successful.

The simple proof is omitted.

P. Mörters and N. Schleicher 14:5

2.2 Second step: Coupling to the killed branching random walk
The second step is to couple Tn(on) to the marked tree T (un) of the killed branching random
walk started in position log un, for a suitable un → u. For this purpose, we have to map
labels from {1, · · · , n} to positions in (−∞, 0]. We do this using the following map

ϕn : {1, . . . , n} → (−∞, 0] , i 7→ −
n∑

j=i+1

1
j
.

Note that the youngest vertex is mapped to the origin, and older vertices are placed to the
left with decreasing intensity. Conversely, we define the projection

πn : (−∞, 0] → {1, . . . , n}
t 7→ min{m : t ≤ ϕn(m)}.

We pick un = exp(ϕn(on)) and note that on

n → u implies un → u. We now couple T (un)
to the random labelled tree Tn(on). We obtain from T (un) the projection with labels in
{1, . . . , n} by taking the particles of T (un) and give each of them the label obtained by
applying πn to its position. However, the process thus obtained is not equal to Tn(on) in
law. For example, a particle could have several children with the same label. A more careful
coupling is therefore required.

▶ Proposition 5. Suppose that on

n → u ∈ (0, 1] and un = exp(ϕn(on)). If T (un) contains no
more than cn vertices and no vertex in location to the left of ϕn(bn) where

lim
n→∞

cn

b1−γ
n

= 0 and lim
n→∞

cnn
γ

bγ+1
n

= 0,

then it can be coupled to Tn(on) so that with high probability the projection of T (un) with
labels in {1, . . . , n} agrees with Tn(on).

We sketch the proof of Proposition 5. We start with the root, which is positioned at
log(un). By assumption it will be projected to on. We now go through the particles in the
lexicographical order of T (un). A vertex at location t ∈ (−∞, 0] is projected to i = πn(t) if

−
n∑
k=i

1
k
< t ≤ −

n∑
k=i+1

1
k
.

When t branches the number of children with label in j ∈ {1, . . . , n} in the projection is
Poisson distributed with parameter

π
((

− t−
n∑
k=j

1
k
,−t−

n∑
k=j+1

1
k

))
.

If i < j this is roughly

π
((j−1∑

k=i

1
k
,

j∑
k=i

1
k

))
≈ β

∫ log j
i

log j−1
i

eγy dy = (β/γ)
(
(ji)

γ − (j−1
i)γ

)
≈ β(1

i)(
j
i)
γ−1 = pij ,

and if i > j this is roughly

π
((

−
i∑

k=j

1
k
,−

i∑
k=j+1

1
k

))
≈ β

∫ log j+1
i

log j
i

e(1−γ)y dy = (β/1 − γ)
(
(j+1

i)1−γ − (ji)
1−γ)

≈ β(1
i)(

j
i)

−γ = pij .

AofA 2024

14:6 Early Typical Vertices in Subcritical Random Graphs of Preferential Attachment Type

Making this more precise, if i ≥ bn one can couple the Poisson random variable to a Bernoulli
random variable with parameter pij with an error probability that can be summed to at
most nγb−γ−1

n over all j ∈ {i+ 1, . . . , n}, resp. bγ−1
n over all j ∈ {bn, . . . , i − 1}. Summing

these error probabilities over the at most cn vertices i projected gives the result.

Proof of Proposition 3. Observe that it is possible to satisfy all the conditions on cn and bn
imposed in Proposition 4 and 5. If the coupling of the labelled tree Tn(on) and the connected
component of on in Gn and simultaneously with the branching process T (un) is successful
we have Sn(on) = T (un) and the result follows because

lim
n→∞

P
(
Sn(on) ≥ u−ρ−x

)
= lim
n→∞

P
(
T (un) ≥ u−ρ−x

)
= P

(
T (u) ≥ u−ρ−x

)
,

using stochastic continuity of the family (T (u) : u ∈ (0, 1]) in the last step. ◀

3 The killed branching random walk

In this section we complete the proof of Theorem 2 by showing the following result about
the killed branching random walk.

▶ Proposition 6. Under the conditions of Theorem 2, for every x > 0,

lim
u↓0

P
(
T (u) ≥ xu−ρ−

)
= P (Y ≥ x) ,

where Y is a positive random variable satisfying

P (Y ≥ x) = x−(ρ+/ρ−)+o(1) as x → ∞.

The proof uses arguments from Aidekon et al. [1] in our setup. The role of the exponents
ρ± will become clear in Section 3.1, while in Section 3.2 we will use a famous law of large
number for general branching processes due to Nerman [12] to obtain the desired asymptotic.

3.1 Background on branching random walks without killing
Consider the marked tree we get from the branching random walk (without killing) with
displacements given by a Poisson process Π with intensity π, where the mark of a particle x
(identified, for example, by its Ulam-Harris label) corresponds to its location τx.

We define

ψ(α) = E
[∑
x∈Π

e−ατx
]
.

We can calculate ψ(α) for γ < α < 1 − γ exactly with Campbell’s formula [8],

ψ(α) = E
[∑
x∈Π

e−ατx
]

=
∫

e−αtπ(dt) = β

∫ ∞

0
e(γ−α)t dt+ β

∫ 0

−∞
e(1−γ−α)t dt

= β

α− γ
+ β

1 − γ − α
,

otherwise, for α /∈ (γ, 1 − γ), we have ψ(α) = ∞. There exists α with ψ(α) < 1 if and only
if γ < 1

2 and β < 1
4 − γ

2 , i.e. in the subcritical regime for the inhomogeneous random graph.
This is also the exact condition for the branching random walk with killing barrier at the
origin to suffer extinction in finite time almost surely.

P. Mörters and N. Schleicher 14:7

If there exists α with ψ(α) < 1, by continuity, there exist two real numbers γ < ρ− <

ρ+ < 1 − γ with ψ(ρ−) = ψ(ρ+) = 1. We can calculate both values explicitly

ρ± = 1
2 ±

√
(γ − 1

2)2 + β(2γ − 1).

Because ψ(ρ−) = 1 we obtain a nonnegative martingale (Wn) by letting Wn be the sum
of e−ρ−τx over all the particles x (with position denoted τx) in the nth generation of the
branching random walk. By Biggins’ theorem for branching random walks, see e.g. [3, 10],
the martingale limit W is strictly positive if and only if the following two conditions hold,

(i) log(ψ(ρ−)) − ρ−ψ
′(ρ−)

ψ(ρ−) > 0 ,
(ii) E[W1 logW1] < ∞.

The first one holds as ψ(ρ−) = 1 and ψ′(ρ−) < 0. For the second condition it suffices to
check E[Wα

1] < ∞ for some α > 1. For this we define

f(x,Π) = e−ρ−τx(
∑
y∈Π

e−ρ−τy)α−1 .

Then E[Wα
1] = E[

∫
f(x,Π) Π(dx)] and by Mecke’s equation [8, Theorem 4.1] we get

E[Wα
1] =

∫
E[f(x,Π + δx)]π(dx) =

∫
e−ρ−xE

[
(e−ρ−x +

∫
e−ρ−t Π(dt))α−1]

π(dx)

≤ 2α−1
(∫

e−αρ−xπ(dx) + E
[
(
∫

e−ρ−t Π(dt))α−1]
ψ(ρ−)

)
.

The right summand is finite if 1 < α ≤ 2 because in this case, by Jensen’s inequality, the
expectation is bounded by one. The left summand is equal to ψ(αρ−) which is finite for
1 < α < 1−γ

ρ−
. Hence W is strictly positive.

3.2 Convergence of the total number of particles
We now introduce the setting of general branching processes as used in Nerman [12]. Let
ξ be a point process on [0,∞). The points represent the ages at which an individual gives
birth to another particle. We denote by µ = E[ξ] the intensity measure of the point process.
The following conditions have to be met:

(i) µ is not concentrated on any lattice,
(ii) there exists an α ∈ (0,∞) such that

∫ ∞
0 e−αtµ(dt) = 1 and

(iii) we have
∫ ∞

0 te−αtµ(dt) < ∞.

α is called the Malthusian parameter. A continuous-time branching process where every
individual x (identified, again, by its Ulam-Harris label) gives birth to a single new individual
at the times given by adding to its own birth time σx the points of an independent copy ξx
of a point process as above, is called a Crump-Mode-Jagers or general branching process. We
denote by T the set of all particles that exist in the general branching process.

The set-up of [12] allows to also include a time dependent characteristic for each particle x,
but in our case it suffices to consider a random variable Xx, which may depend on ξx but is
independent for each particle and distributed like some X. We sum Xx over all particles
born before time t,

ZXt :=
∑

x∈T ,σx<t

Xx.

The following result is [12, Theorem 3.1] formulated in our set-up.

AofA 2024

14:8 Early Typical Vertices in Subcritical Random Graphs of Preferential Attachment Type

▶ Proposition 7. Suppose that E[X] < ∞, then

e−αtZXt → Y in probability, as t → ∞,

where Y is a finite non-negative random variable.

We now have all the tools to prove Proposition 6. In order to use Proposition 7 we need
to derive a suitable ξ and X from π. For this purpose we take a branching random walk
started with a particle at the origin, with offspring displacements given by a Poisson point
process with intensity π. We do not kill particles, but we only allow particles at locations
in (−∞, 0] to branch, leaving the particles in (0,∞) frozen. We let X ≥ 1 be the total
number of branching particles including the particle at the origin, which is finite because the
branching random walk with killing barrier at 0 becomes extinct almost surely. We let ξ be
the point process of locations of the frozen (non-branching) particles, see Figure 1.

Figure 1 Branching particles are marked in blue, there are X = 6 in total. The positions on
[0, ∞) of the frozen particles, which are marked in red, yield the point process ξ.

▶ Proposition 8. We have E[X] < ∞ and ξ satisfies the conditions above for the Malthusian
parameter α = ρ−. Moreover, for t = − log u, we have

ZXt
d= T (u).

Proof. Shifting all particle positions by t = − log u the killed branching random walk
T (u) becomes a branching random walk T ′(u) started with a particle at the origin, with
displacements given by a Poisson point process with intensity π, with a killing barrier at
t = − log u. We now construct a coupling of T ′(u) and the general branching process with
ξ and X, so that the identity ZXt = T ′(u) holds, where T ′(u) is the number of particles of
T ′(u), which has the same law as T (u).

To construct the coupling, we divide the descendants of a particle x ∈ T ′(u) into branching
particles to its left and frozen particles to its right, just as above. The positions of the frozen
particles are the birth times of its children in the general branching process, the number of
branching particles is the characteristic Xx. In this way the total progeny T ′(u) of the killed
branching random walk equals ZXt , see Figure 2.

We now check that EX < ∞. We pick α > 0 with ψ(α) < 1 and give a branching
particle x in position τx ≤ 0 the weight e−ατx ≥ 1. Then the expected sum over all weights
of branching particles in generation n is bounded by ψ(α)n. Hence the total weight summed
over all branching particles, and in particular the total number X of such particles, has an
expectation which is bounded by 1

1−ψ(α) .

P. Mörters and N. Schleicher 14:9

Figure 2 On the left the branching random walk, on the right the associated general branching
process and the characteristics of each particle.

It remains to check that ρ− is the Malthusian parameter associated to ξ. To this end
we construct a martingale (Mn) as follows: We start with a particle at the origin and
M0 = 1. In every step we replace the leftmost particle in (−∞, 0] by its offspring chosen
with displacements according to a Poisson process of intensity π and leave all other particles
alive. Particles in (0,∞) never branch and remain alive but frozen. If there is no particle in
(−∞, 0] the process stops and the positions of the frozen particles make up ξ. The random
variable Mn is obtained as the sum of all particles x alive after the nth step weighted with
e−ρ−τx , where τx is the position of particle x. Because ψ(ρ−) = 1 the process (Mn) is indeed
a martingale, and it clearly converges almost surely to

∫ ∞
0 e−ρ−tξ(dt). Now take α > ρ−

with ψ(α) < 1. The martingale (Mn) is dominated by the random variable given as the sum
over all branching particles x (with nonpositive position τx) weighted with e−ατx and all
frozen particles x (with positive position τx) weighted with e−ρ−τx . This random variable is
integrable, as the sum of weights of frozen particles born from a single particle x in position
τx < 0 is independent with expectation bounded by e−ατx and the expected sum over these
bounds for all branching particles is itself bounded by 1

1−ψ(α) , as above. We thus get (ii)
from dominated convergence and hence ρ− is the Malthusian parameter. Condition (i) is
obvious and (iii) is easy to check. ◀

To complete the proof of Proposition 6 we combine Proposition 7 and 8 to obtain

uρ−T (u) → Y in distribution, as u ↓ 0.

By [12, Theorem 6.3] the ratios of two cumulative characteristics of the same general branching
process converges to a constant. Hence we get, as in [1, Lemma 21], that the limit Y is a
constant multiple of the positive martingale limit W . In particular, W and Y share the same
tail behaviour at infinity, which by [9, Theorem 2.2] applied to χ = ρ+/ρ− is given by

P (W ≥ x) = x−(ρ+/ρ−)+o(1).

AofA 2024

14:10 Early Typical Vertices in Subcritical Random Graphs of Preferential Attachment Type

4 Outlook

One of our principal aims is to find the size of the largest component in the subcritical
inhomogeneous random graph of preferential attachment type. In rank one models like the
configuration model or the inhomogeneous random graph with product kernel this component
is known to have a size of the order of the largest degree in the graph, in our language nγ ,
see [7, 6]. However, for the inhomogeneous random graph of preferential attachment type we
expect this to be considerably larger because in this model powerful vertices are less well
connected so that exploration beyond the first generation is still relevant. We heuristically
derive a conjecture from our Theorem 2: Suppose we were allowed to let n → ∞ and u → 0
simultaneously. At best we could be allowed u ≈ c

n . Then our hypothetic result would give
that the most powerful vertices (with index on independent of n) would have a connected
component of size nρ− . Our conjecture is therefore that this is the right order for the size of
the largest component. Verifying this conjecture is subject of ongoing work of the authors.

References
1 Elie Aïdékon, Yueyun Hu, and Olivier Zindy. The precise tail behavior of the total progeny

of a killed branching random walk. The Annals of Probability, 41(6), November 2013. doi:
10.1214/13-aop842.

2 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, October 1999. doi:10.1126/science.286.5439.509.

3 John D. Biggins. Martingale convergence in the branching random walk. J. Appl. Probab.,
14:25–37, 1977. doi:10.2307/3213258.

4 Béla Bollobás, Svante Janson, and Oliver Riordan. The phase transition in inhomogeneous
random graphs. Random Structures and Algorithms, 31(1):3–122, June 2007. doi:10.1002/
rsa.20168.

5 Steffen Dereich and Peter Mörters. Random networks with sublinear preferential attach-
ment: The giant component. The Annals of Probability, 41(1), January 2013. doi:
10.1214/11-aop697.

6 Aolan Ding and Rick Durrett. The phase transition in Chung-Lu graphs, 2023. arXiv:
2305.08203.

7 Svante Janson. The largest component in a subcritical random graph with a power law
degree distribution. The Annals of Applied Probability, 18(4):1651–1668, 2008. doi:10.1214/
07-AAP490.

8 Günter Last and Mathew Penrose. Lectures on the Poisson process, volume 7 of IMS Textb.
Cambridge: Cambridge University Press, 2018. doi:10.1017/9781316104477.

9 Quansheng Liu. On generalized multiplicative cascades. Stochastic Processes and their
Applications, 86(2):263–286, 2000. doi:10.1016/S0304-4149(99)00097-6.

10 Russell Lyons. A simple path to Biggins’ martingale convergence for branching random walk,
1998. arXiv:math/9803100.

11 Peter Mörters. Tangent graphs. Pure and Applied Functional Analysis, 8, 2023. URL:
http://yokohamapublishers.jp/online2/oppafa/vol8/p1767.html.

12 Olle Nerman. On the convergence of supercritical general (C-M-J) branching processes. Z.
Wahrscheinlichkeitstheor. Verw. Geb., 57:365–395, 1981. doi:10.1007/BF00534830.

https://doi.org/10.1214/13-aop842
https://doi.org/10.1214/13-aop842
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.2307/3213258
https://doi.org/10.1002/rsa.20168
https://doi.org/10.1002/rsa.20168
https://doi.org/10.1214/11-aop697
https://doi.org/10.1214/11-aop697
https://arxiv.org/abs/2305.08203
https://arxiv.org/abs/2305.08203
https://doi.org/10.1214/07-AAP490
https://doi.org/10.1214/07-AAP490
https://doi.org/10.1017/9781316104477
https://doi.org/10.1016/S0304-4149(99)00097-6
https://arxiv.org/abs/math/9803100
http://yokohamapublishers.jp/online2/oppafa/vol8/p1767.html
https://doi.org/10.1007/BF00534830

Asymptotics of Relaxed k-Ary Trees
Manosij Ghosh Dastidar
Institut für Diskrete Mathematik und Geometrie, TU Wien, Austria

Michael Wallner Ñ

Institut für Diskrete Mathematik und Geometrie, TU Wien, Austria

Abstract
A relaxed k-ary tree is an ordered directed acyclic graph with a unique source and sink in which
every node has out-degree k. These objects arise in the compression of trees in which some repeated
subtrees are factored and repeated appearances are replaced by pointers. We prove an asymptotic
theta-result for the number of relaxed k-ary tree with n nodes for n → ∞. This generalizes
the previously proved binary case to arbitrary finite arity, and shows that the seldom observed
phenomenon of a stretched exponential term ecn1/3

appears in all these cases. We also derive the
recurrences for compacted k-ary trees in which all subtrees are unique and minimal deterministic
finite automata accepting a finite language over a finite alphabet.

2012 ACM Subject Classification Mathematics of computing → Generating functions

Keywords and phrases Asymptotic enumeration, stretched exponential, Airy function, directed
acyclic graph, Dyck paths, compacted trees, minimal automata

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.15

Supplementary Material
Software (Maple Worksheet): https://gitlab.tuwien.ac.at/michael.wallner/relaxed-k-ary-
trees [10], archived at swh:1:dir:f9b3ed0c7c098f24ee8860808959b84e402dc276

Funding Manosij Ghosh Dastidar : supported by the Austrian Science Fund (FWF): P 34142.
Michael Wallner : supported by the Austrian Science Fund (FWF): P 34142.

Acknowledgements We warmly thank the three referees for their useful feedback.

1 Introduction and Main Result

The enumeration of directed acyclic graphs (DAGs) is an important and timely topic in
computer science [3], mathematics [2,13,16], and many related areas such as phylogenetics [15]
and theoretical physics [11, 12]. Several problems in this area have remained open for a long
time, with bounds sometimes differing by an exponential factor. One of those problems is
the enumeration of minimal deterministic finite automata (DFAs) with n states recognizing
a finite language over a finite alphabet [14]. In [6] Elvey Price, Fang, and Wallner solved
the corresponding asymptotic counting problem for a binary alphabet, and uncovered
the remarkable phenomenon of a stretched exponential term ec n1/3 . This term provides an
explanation for the previously encountered difficulties. For example, the associated generating
function cannot be algebraic, and it can only be D-finite (satisfy a linear differential equation
with polynomial coefficients) if it has an irregular singularity.

This phenomenon was first observed by the above-mentioned authors in [7] in the
asymptotic number of another class of DAGs: compacted binary trees of size n. These arise
in the compression of XML documents [3], in the common subexpression problem in, e.g.,
compiling [5], and in data structures of, e.g., computer algebra software [8]. Since then, this
phenomenon has also been shown in many classes of DAGs and related objects, such as
phylogenetic networks [4], permutation patterns [18], and Young tableaux [1]. In this paper,

© Manosij Ghosh Dastidar and Michael Wallner;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 15; pp. 15:1–15:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0721-4979
https://dmg.tuwien.ac.at/mwallner/
https://orcid.org/0000-0001-8581-449X
https://doi.org/10.4230/LIPIcs.AofA.2024.15
https://gitlab.tuwien.ac.at/michael.wallner/relaxed-k-ary-trees
https://gitlab.tuwien.ac.at/michael.wallner/relaxed-k-ary-trees
https://archive.softwareheritage.org/swh:1:dir:f9b3ed0c7c098f24ee8860808959b84e402dc276;origin=https://gitlab.tuwien.ac.at/michael.wallner/relaxed-k-ary-trees;visit=swh:1:snp:14b81123a1b20aac3b43249a8cfb4c4aa889e9b5;anchor=swh:1:rev:714673a8c2395d9f8f96e61189362d7b1562a4fa
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Asymptotics of Relaxed k-Ary Trees

we show that the examples of compacted binary trees and minimal DFAs are just single
cases of infinite families admitting a stretched exponential. Our main result is the following
asymptotics of a super-class of the latter two.

▶ Theorem 1. Let k ≥ 2 be an integer. The number of relaxed k-ary trees satisfies for
n → ∞

Θ
(

n!k−1
(

kk

(k − 1)k−1

)n

e
3
(

k(k−1)
2

)1/3
a1n1/3

n
2k−1

3

)
,

where a1 ≈ −2.338 is the largest root of the Airy function Ai(x) defined as the unique function
satisfying Ai′′(x) = xAi(x) and limx→∞ Ai(x) = 0.

Figure 1 All 7 ternary relaxed ternary trees with 2 internal nodes.

2 Bijections and recurrences

In this paper, we consider a special class of DAGs, in which the outgoing edges (equivalently,
the children) are equipped with an order.

▶ Definition 2. An ordered DAG is a directed acyclic graph where there is a left to right
ordering among the children.

This brings us to the main object of this paper: the class of relaxed trees, a subclass of
ordered DAGs, defined as follows; see Figure 1 and 2. The word relaxed signifies that they
are a super-class of compacted trees, which are in bijection with trees after a compression
procedure; see [7, 8].

▶ Definition 3. A relaxed k-ary tree is an ordered DAG consisting of a unique source and a
unique sink such that every node except the sink has out degree exactly k. Its spine is the
spanning subtree created by the depth first search. The edges of the spine are called internal
edges, while the other edges are called external edges or pointers. All nodes except the unique
sink, are called internal nodes.

▶ Remark 4. Note that in the binary case, the previous definition is equivalent to the one
given in [7], in which relaxed trees are defined as trees enriched by pointers. Whereas here
we characterize relaxed trees as a subclass of ordered DAGs.

M. Ghosh Dastidar and M. Wallner 15:3

8

4

1 2 3

6

5

7

Figure 2 Example of relaxed ternary tree with 7 internal nodes (circles) labelled in postorder.
The unique sink is depicted by a square. The black edges belong to the spine, the red ones are
so-called pointers.

We start as in [7] by drawing a bijection between relaxed k-ary trees and Dyck paths
with weights on their horizontal steps. This is done so that we can convert internal nodes
into vertical steps and pointers into horizontal steps.

Every internal node u in the spine of a relaxed tree has a k-ary tree T (u) associated with
it where the nodes are traversed in postorder.

▶ Definition 5. A compacted k-ary tree is a special case of a relaxed k-ary tree where for
any arbitrary two nodes u, v in the spine, the k-ary trees associated with them T (u), T (v) are
not identical.

In order to count relaxed k-ary trees, we will now describe a bijection to a class of paths,
which are easier to enumerate. Let us first define the specific paths.

▶ Definition 6. A horizontally k-decorated path P is defined as a lattice path consisting of
up steps U = (0, 1) and horizontal steps H = (1, 0) from (0, −1) with decorations such that:

The first step is a U step, and its removal leaves a path never crossing the diagonal
y = x

k−1 .
Below each H step, there is exactly one cross in one of the unit boxes below this H step
and y = −1.

The following lemma describes the bijection between relaxed k-ary trees and horizontally
k-decorated paths. An example is shown in Figure 3.

▶ Lemma 7. There is a bijection between horizontally k-decorated paths ending at ((k−1)n, n)
and relaxed k-ary trees of size n + 1.

Proof. Let R be a relaxed k-ary tree of size n + 1. We transform this tree uniquely into a
k-decorated path ending at ((k − 1)n, n). We traverse the spine of R in post-order and label
nodes from 1 to n + 1. During the traversal when we move up (i.e., traverse a spine edge the
second time) we add a U step and when crossing a pointer for the last time (i.e., circling
around its parent) we add a H step. Thereby, we associate each U step with the node we
leave, and each H step with the parent of its pointer. Moreover, below each H step we draw
a cross in the unit box that intersects the column of this H step with the row of the U step
that is associated with the target of the pointer of this H step.

Observe now, that the first step is always a U step, as the unique sink is processed first
in post-order and has no pointers. Thus, after removing this step, we start at the origin
(0, 0). Furthermore, note that R consists of n spine edges, and (k − 1)n pointers. Hence, the

AofA 2024

15:4 Asymptotics of Relaxed k-Ary Trees

9

6

3

1 2

5

8

X XX

X X

X

X

X

3b 2a 2b 2c 4a

X

4b 4c 5a 5b 5c 9b 8a

X

X

X

4 7
X

X X

7a 7b 7c

X

8c

Figure 3 Example of the bijection described in Lemma 7 between relaxed ternary trees and
horizontally 3-decorated paths.

path consists of n U steps and (k − 1)n H steps, and after attaching a final U step, the path
ends at ((k − 1)n, n). It remains to show that the path never crosses y = x

k−1 . Note that
before a U step is added, the relaxed subgraph of which the associated node is the root has
been traversed. The subgraph consisting only of the node 1 is treated by the fact that we
start at (0, −1). Now we proceed by induction on the depth of the subgraph. We need to
distinguish, whether the node is on the left-branch from the root or not. First, we assume
it is not. The minimal cases is a single pointer, which leads to a step H and increases the
distance to the diagonal y = x

k−1 by one unit. Now assume that a subgraph with i > 0
nodes is given. The root has k children, which all have size less than i. Thus by induction,
each part does not cross y = x

k−1 and moves one unit further to the right from the diagonal.
Therefore, processing the k children moves the path k steps to the right from x

k−1 , while
(after that) processing the root, moves the path one unit up. Thus the path stays below
y = x

k−1 and is one unit further to the right. Second, we assume that the node is on the
diagonal. Then, the first child does not move the path one unit to the right, but the other
k − 1 do. By induction, the path still does not cross the diagonal x

k−1 but the distance now
also stays the same.

Now in the reverse direction, let us take a horizontally k-decorated path ending at
((k − 1)n, n). We want to recover a relaxed k-ary tree from this path. We start by noting
that the number of up steps in the path is n and therefore the number of nodes is n + 1.
Our first step is a horizontal step.

We start by adding a H step which corresponds to the left most leaf labelled 1. Then
along with the path P, we create the spine of the the relaxed k-ary tree. Thus along the up
steps we create nodes of the spine as the ith up step creates the (i + 1)th node in post-order.
Along the horizontal steps we say that we add a pointer from the existing node that we
are in to a node j + 1 which is indicated by the cross placed on the level j below the path
(counting from the bottom up). Completing this process we get a relaxed k-ary tree with its
nodes labelled in post-order. ◀

This bijection allows directly to derive the following recurrence relations, following the
step-by-step construction of the paths. In Table 1 we give the initial terms for k = 2, . . . , 5.

M. Ghosh Dastidar and M. Wallner 15:5

▶ Proposition 8. Let rn,m be the number of horizontally decorated paths ending at (n, m)
and ∀k ∈ Z, k > 1.

rn,m = rn,m−1 + (m + 1)rn−1,m, for 1 ≤ m ≤ n

k − 1 , (1)

rn,m = 0 for m >
n

k − 1 ,

rn,0 = 1 for n ≥ 0.

Thus, by Lemma 7, the number of relaxed k-ary trees with n internal nodes is equal to
r(k−1)n,n.

Table 1 Number of relaxed k-ary trees. Also the number of unlabeled acyclic single-source
automata with n transient states on a k-letter input alphabet. The matrix consisting of these rows
is given by A128249.

k Relaxed k-ary trees (rk) OEIS

2 (1, 3, 16, 127, 1363, 18628, 311250, 6173791, . . .) A082161
3 (1, 1, 7, 139, 5711, 408354, 45605881, 7390305396, . . .) A082162
4 (1, 1, 15, 1000, 189035, 79278446, 63263422646, 86493299281972, . . .) A102102
5 (1, 1, 31, 6631, 5470431, 12703473581, 68149976969707, . . .) —

In a next step, we will also state the respective recurrences for compacted k-ary trees
and minimal DFAs accepting a finite language on an alphabet of size k. These results
generalize [7, Proposition 2.11] and [6, Proposition 5], respectively.

In a relaxed k-ary tree an internal node will be called a cherry if all its children are
pointers.

▶ Theorem 9. A relaxed k-ary tree C is a compacted k-ary tree if and only if no internal
nodes u, v have the same children in the same order. Moreover, if C is not a compacted
k-ary tree there exists a pair (u, v) with identical children and v is a cherry.

Proof. Let us take C to be a compacted k-ary tree. Let two internal nodes u, v have the
same children in the same order. This implies that the k-ary trees associated with u and v

are isomorphic, which violates the definition of a compacted tree.
Conversely, let us assume that C is not a compacted tree. Therefore from the definition

of a compacted tree it follows that we can find at least one pair of internal nodes (u, v) such
that the k-ary trees associated with them are the same. At this point if v is a cherry then we
are done. But if v is not a cherry then we take the first child of both nodes, say u1 and v1,
respectively, and note that T (u1) = T (v1). Now, if v1 is not a cherry then we can continue
this process. Therefore by infinite descent we see that there has to be two nodes u, v such
that v is a cherry. ◀

In order to continue, we need the following concept. First, recall that in each horizontally
k-decorated path, each step H is decorated by a marked box below. Further, each up step U

corresponds to an internal node in the k-ary tree. Thus, we assign to each step U a k-tuple
(u1, u2, . . . , uk) corresponding to the nodes of its children. (This will help us to construct the
compacted trees from the relaxed ones.) Let us define a Ck-decorated path as a horizontally
decorated path with the restriction that for consecutive steps HkU (k steps H followed
by U) the k-tuple (h1, h2, . . . hk) corresponding to the labels below the H steps, we have
(h1, h2, . . . hk) ̸= (u1, u2, . . . uk) for all preceding steps U .

AofA 2024

http://oeis.org/A128249
http://oeis.org/A082161
http://oeis.org/A082162
http://oeis.org/A102102

15:6 Asymptotics of Relaxed k-Ary Trees

▶ Proposition 10. There is a bijection between the number of compacted k-ary trees of size
n and Ck-decorated paths of length kn.

Proof. Note that the Ck-decorated paths are a subset of the horizontally k-decorated paths
and the previous bijection sends the relaxed k-ary trees to horizontally k-decorated paths.
The Ck-decorated paths have been constructed in this way to reinforce the condition that the
relaxed trees corresponding to these decorated paths are such that the k-ary trees associated
with any two arbitrary nodes can never be identical. ◀

This allows us, again by a direct step-by-step construction, to derive the following bivariate
recurrence for Ck-decorated paths; see Table 2.

▶ Proposition 11. Let cn,m denote the number of Ck-decorated paths ending at (n, m). Then

cn,m = cn,m−1 + (m + 1)cn−1,m − (m − 1)cn−k,m−1 for 1 ≤ m ≤ n

k − 1 ,

cn,m = 0 for m >
n

k − 1 ,

cn,0 = 1 for n ≥ 0.

The number of compacted k-ary trees with n internal nodes is c(k−1)n,n.

Table 2 Number of compacted k-ary trees, which are defined as relaxed k-ary trees with the
additional constraint that each fringe subtree is unique.

k Compacted k-ary trees (ck) OEIS

2 (1, 1, 3, 15, 111, 1119, 14487, 230943, 4395855, . . .) A254789
3 (1, 1, 7, 133, 5299, 371329, 40898599, 6561293893, . . .) —
4 (1, 1, 15, 975, 182175, 75961695, 60422966655, 82450320955455, . . .) —
5 (1, 1, 31, 6541, 5373571, 12458850121, 66790559866471, . . .) —

We have a similar recursion for the minimal DFAs over a k-ary alphabet. We use the same
scheme for the bijection with the H steps having a decoration. Since we have accepting and
rejecting states, the U steps are colored either red or green. We call such paths 2-coloured.
Again, we summarize the first values of Table 3.

▶ Proposition 12. Let bn,m denote the number of 2-coloured horizontally decorated paths
corresponding to DFAs ending in (n, m). Then

bn,m = 2bn,m−1 + (m + 1)bn−1,m − m bn−k,m−1 for 1 ≤ m ≤ n

k − 1 ,

bn,m = 0 for m >
n

k − 1 ,

bn,0 = 1 for n ≥ 0.

The number of minimal DFAs accepting a accepting a finite language on an alphabet of size k

with n + 1 states is b(k−1)n,n.

http://oeis.org/A254789

M. Ghosh Dastidar and M. Wallner 15:7

Table 3 Number of minimal deterministic finite automata recognizing a finite k-letter language.

k DFA (mk) OEIS

2 (1, 1, 6, 60, 900, 18480, 487560, . . .) A331120
3 (1, 1, 14, 532, 42644, 6011320, 1330452032, . . .) —
4 (1, 1, 30, 3900, 1460700, 1220162880, . . .) —
5 (1, 1, 62, 26164, 43023908, 199596500056, . . .) —

3 Asymptotics of relaxed k-ary trees

The goal of this section is to prove our main Theorem 1 on relaxed k-ary trees. As the proof
is rather technical and complex, we will begin with an overview of the main steps.

First, in Section 3.1 we transform the recurrence (1) into a new recurrence (di,j)i,j≥0
by changing the used steps and extracting the super-exponential and certain exponential
and polynomial contributions. Second, in Section 3.2 we perform a heuristic analysis of the
asymptotics of (di,j)i,j≥0, and guess the shape for a rigorous proof. Using this shape, we build
and prove in Section 3.3 explicit sequences (X̃i,j)i,j≥0 and (X̂i,j)i,j≥0 that satisfy the same
recurrence as (di,j)i,j≥0 but with the equality sign replaced by the inequality signs ≤ and ≥,
respectively. This is the most technical part in which we heavily rely on computer algebra.
Finally, in Section 3.4 we use these explicit sequences to prove inductively asymptotically
tight upper and lower bounds, which yield our main theorem.

3.1 Transformation into a Dyck-like recurrence
We start from recurrence (1) and our goal is to determine the asymptotics of r(k−1)n,n. First,
we observe that the path closest to the diagonal given by (Hk−1V)n has a weight (n!)k−1

as there are n H steps at height 0, 1, . . . , n − 1. All other paths will get smaller weights.
Therefore, after rescaling with this weight, all paths have a weight bounded by one. Note that
it is technically easier to work with the rescaling ((k − 1)n)!, which has by Stirling’s formula
the same super-exponential growth. The difference in the exponential growth is a factor
(k − 1)(k−1)n, which we will take into account later in (5). Thus, we set r̃n,m = rn,m

((k−1)n)! and
get the new recurrence

r̃n,m = m + 1
n

r̃n−1,m + r̃n,m−1, m ≤ n

k − 1 .

Next, as we are interested in the asymptotics of r̃(k−1)n,n, we will transform this recurrence
from North and East steps, to Dyck-like up and down steps. For this purpose, we define the
new variables{

i = n + m,

j = n − (k − 1)m,
equivalently

{
n = (k−1)i+j

k ,

m = i−j
k .

The idea behind this choice, is that i tracks the length of the walk, i.e., the number of steps,
and j the distance to the diagonal. By this choice, we have i, j ≥ 0. This gives the following
generalized Dyck-like recurrence:

d̃i,j = Ũ(i, j)d̃i−1,j−1 + d̃i−1,j+k−1, i > 0, j ≥ 0, (2)

with the initial condition d̃0,0 = 1 and the weight Ũ(i, j) = i−j+k
(k−1)i+j . Thus, we have the new

steps (1, 1) and (1, −k +1). This is a simple directed lattice path model with space-dependent

AofA 2024

http://oeis.org/A331120

15:8 Asymptotics of Relaxed k-Ary Trees

weights. Note that as the change in the x-direction is one unit per step, a path of length n

consists of n steps, and it suffices therefore to track the current altitude. Therefore, from now
on we consider only the changes in the y-direction, which we call jumps +1 and −(k − 1).

Let us now look at the drift of this new model. For now, we assume that i is large and
that j = o(i). The drift δ̃(i, j) at a point (i, j) is defined as the expected next jump size
when leaving (i, j). Therefore, at (i, j) the jump +1 gets weight Ũ(i + 1, j + 1) and the
jump −(k − 1) weight 1 for j ≥ k − 1 and 0 otherwise. Hence, we get that δ̃(i, j) = 1 for
0 ≤ j ≤ k − 2 and

δ̃(i, j) = i − j + k

(k − 1)(i + 1) + j + 1 − (k − 1) = −k(k − 2)
k − 1 + O

(
1
i

)
, for j > k − 2.

Note that in the binary case (k = 2), the first term is zero and therefore the drift is converging
to zero for large i. However, in the general case the drift is negative for large i. But we can
define the following transformation to achieve the same behavior: di,j = (k − 1)2nd̃i,j where
n = (k−1)i+j

k . This gives the final Dyck-like recurrence

di,j = U(i, j)di−1,j−1 + di−1,j+k−1, i > 0, j ≥ 0, (3)

with the initial condition d0,0 = 1 and the following weight for the up step

U(i, j) = (k − 1)2(i − j + k)
(k − 1)i + j

= (k − 1)
(

1 − k(j − k + 1)
(k − 1)i + j

)
. (4)

The drift δ(i, j) in this model is again δ(i, j) = 1 for 0 ≤ j ≤ k − 2 but now we have

δ(i, j) = −k(k − 1)(j − k + 2)
k(i + 1) − i + j

= −k(j − k + 2)
i

+ O
(

1
i2

)
, for j > k − 2,

and therefore converges to zero. In this final model (3), we are interested in dkn,0 since

r(k−1)n,n = ((k − 1)n)!r̃(k−1)n,n = ((k − 1)n)!d̃kn,0 = ((k − 1)n)!
(k − 1)2(k−1)n

dkn,0

∼
√

k − 1(2π)1−k/2 (n!)k−1

(k − 1)(k−1)n
n1−k/2dkn,0,

(5)

where the last equality follows by Stirling’s formula.

3.2 Heuristic analysis
In the next step, we will now heuristically analyze the recurrence (3). Inspired by the binary
case and numerical experiments, we use the ansatz

di,j = h(i)f
(

j + 1
i1/3

)
. (6)

The function h(i) captures a macroscopic amplitude that is independent of j, while the
function f(x) captures the local behavior around the origin. The rescaling by i1/3 is motivated
by an analogy to pushed Dyck path and the binary case [7].

Substituting this ansatz into the recurrence (3) and reordering we get

h(i)
h(i − 1) =

U(i, j)f
(

j
(i−1)1/3

)
+ f

(
j+k

(i−1)1/3

)
f
(

j+1
i1/3

) .

M. Ghosh Dastidar and M. Wallner 15:9

As the left-hand side is independent of j, for large i both sides should have an expansion
in i with whose coefficients are independent of j. Let us now zoom into the region i1/3 by
binding the variables i and j using the transformation j = x i1/3 + 1. This gives

h(i)
h(i − 1) =

U(i, x i1/3 + 1)f
(

x i1/3+1
(i−1)1/3

)
+ f

(
x i1/3+k+1

(i−1)1/3

)
f(x) . (7)

Assuming now that f(x) has a convergent Taylor series expansion around x, we get

h(i)
h(i − 1) = k + k

2
(k − 1)f ′′(x) − 2xf(x)

f(x) i−2/3 + O(i−1).

Hence, in order to be consistent, the left-hand side needs to have an expansion in decreasing
powers of i1/3. In particular, it starts like

h(i)
h(i − 1) = k + c i−2/3 + O(i−1),

for a constant c ∈ R. Comparing coefficients, we see that f(x) has to satisfy the differential
equation

f ′′(x) = 2(kx + c)
k(k − 1) f(x).

This differential equation is, as in the binary case, solved by the Airy functions of the first
and second kind. Due to the combinatorial nature of the problem, we require f(x) ≥ 0 for
x ≥ 0 as well as limx→∞ f(x) = 0. Therefore, we get up to a multiplicative constant the
following solution

f(x) = Ai
(

21/3(kx + c)
k(k − 1)1/3

)
.

Now, note that due the boundary conditions dn,−1 = 0 we must have f(0) = 0. Together,
with f(x) ≥ 0 for x ≥ 0, this means that the argument of the Airy function must evaluate to
the largest zero a1 ≈ −2.338 of Ai(x). Therefore

c = k(k − 1)1/3

21/3 a1

and

f(x) = Ai (a1 + B x) , where B =
(

2
k − 1

)1/3
.

In order to capture the polynomial term, we need to use a more general ansatz than (6)
that includes a second function g(x) capturing the scale of order i−1/3. In particular, we use

di,j = h(i)
(

f

(
j + 1
i1/3

)
+

g
(

j+1
i1/3

)
i1/3

)
. (8)

Note that the function g(x) will influence the terms starting from order i−1 in (7). Analogous
computations as performed above for f(x) lead us to the ansatz

g(x) = −
(

(k + 2)x2

6(k − 1) + 22/3a1(k − 2)x
6(k − 1)2/3

)
f(x).

AofA 2024

15:10 Asymptotics of Relaxed k-Ary Trees

3.3 Explicit bounds

All these heuristic arguments above guide us to the following two results. These generalize [7,
Lemmas 4.2 and 4.4], whose results are recovered by setting k = 2. The proofs are analogous
to [4, 7]; for the details we refer to the accompanying Maple worksheet. In particular, this
shows that the method developed in [7] is powerful enough to analyze bivariate recurrences
that include parameters.

▶ Lemma 13. Let k ≥ 2 be an integer and B = (2
k−1)1/3. For all i, j ≥ 0 let

X̃i,j :=
(

1 − 22/3a1(k − 2)
6(k − 1)2/3

j

i2/3 − k + 2
6(k − 1)

j2

i
+ 7k − 11

6(k − 1)
j

i

+ a2
1(k − 2)2B4

72
j2

i4/3 + a1(k2 − 4)2B5

72
j3

i5/3

)
Ai
(

a1 + B(j + 1)
i1/3

)
,

s̃i := k

(
1 + a1

Bi2/3 + 7k − 6
6i

− 1
i7/6

)
.

Then, for any ε > 0, there exists an ĩ0 such that

X̃i,j s̃i ≤ U(i, j)X̃i−1,j+1 + X̃i−1,j−1

for all i ≥ ĩ0 and for all 0 ≤ j < i2/3−ε, where U(i, j) is defined in (4).

▶ Lemma 14. Let k ≥ 2 be an integer and B = (2
k−1)1/3. Choose η > (k+2)2

72(k−1)2 fixed and for
all i, j ≥ 0 let

X̂i,j :=
(

1 − 22/3a1(k − 2)
6(k − 1)2/3

j

i2/3 − k + 2
6(k − 1)

j2

i
+ 7k − 11

6(k − 1)
j

i

+ a2
1(k − 2)2B4

72
j2

i4/3 + a1(k2 − 4)2B5

72
j3

i5/3 + η
m4

n2

)
Ai
(

a1 + B(j + 1)
i1/3

)
,

ŝi := k

(
1 + a1

Bi2/3 + 7k − 6
6i

+ 1
i7/6

)
.

Then, for any ε > 0, there exists an î0 such that

X̂i,j ŝi ≥ U(i, j)X̂i−1,j+1 + X̂i−1,j−1

for all i ≥ î0 and for all 0 ≤ j < i1−ε, where U(i, j) is defined in (4).

Note that in the binary case k = 2, many terms in the previous Lemmas 13 and 14 are
zero. These terms do not affect the final asymptotics, but they are needed for the proof
using generalized Newton polygons. In particular, they allow to set certain points on the
convex hull to zero, which then leads to the same behavior as in the binary case. For this
reason, the technical proofs follow nearly verbatim the binary ones and we omit them in this
extended abstract and refer to [7] and the accompanying Maple worksheet.

These explicit recurrences that satisfy the recurrence (3) with = replaced by ≤ and ≥,
are the key ingredient to prove our main theorem.

M. Ghosh Dastidar and M. Wallner 15:11

3.4 Proof of Theorem 1 on relaxed k-ary trees
We start with the lower bound. First, we define a sequence Xi,j := max{X̃i,j , 0} which
satisfies the inequality of Lemma 13 for all j ≤ i

k−1 . Note that the factor of the Airy function
Ai becomes negative for large j. Then, we define an explicit sequence h̃i := s̃ih̃i−1 for i > 0
and h̃0 = s̃0. Using this we can prove by induction that di,j ≥ C0h̃iXi,j for some constant
C0 > 0 and all i ≥ ĩ0 and all 0 ≤ j ≤ i

k−1 . Therefore,

dkn,0 ≥ C0h̃knXkn,0

≥ C0

kn∏
i=1

k

(
1 + a1

Bi2/3 + 7k − 6
6i

− 1
i7/6

)
Ai
(

a1 + B

(kn)1/3

)
≥ C1kkne3a1(kn)1/3/Bn

7k−8
6 . (9)

Finally, combining this with (5) we get the lower bound.
We continue with the upper bound, whose proof is similar, yet more technical. The

starting point is Proposition 14 and, as in the lower bound, a function Xi,j that is valid
for all 0 ≤ j ≤ i

k−1 . For this purpose we define as in the binary case [7] a sequence d̃i,j

depending on some large integer parameter I > 0 such that

d̃i,j :=
{

di,j for 0 ≤ j ≤ i3/4 and i > I,

0 otherwise.
(10)

The missing key step is now to show that dkn,0 = O(d̃kn,0). Combining this with the
analogous computations performed for the lower bound above we get

d̃kn,0 ≤ Ĉ1kkne3a1(kn)1/3/Bn
7k−8

6 .

To complete the prove we show dkn,0 ≤ 2d̃kn,0 using lattice path theory and computer
algebra. We start from Equation (3) of di,j , which we interpret as a recurrence counting
lattice paths. They are composed of steps (1, 1) weighted by U(i, j) and (1, −k + 1) weighted
by 1 when the respective step ends at (i, j). The total weight of a path is the product of its
weights. Now, we are interested in the paths never crossing y = 0 and ending at (kn, 0). Let
now pℓ,k,kn be the number of such paths starting at (r, s) and ending at (kn, 0). From (3)
we directly get

pr,s,kn = (k − 1)2(r − s + k)
(k − 1)(r + 1) + s + 1pr+1,s+1,kn + pr+1,s−k+1,kn,

with pℓ,−1,kn = 0 and pkn,s,kn = δs,0, where the factor is U(r + 1, s + 1).
Now, we are able to show that
pr,s1,kn

s1 + 1 ≥ pr,s2,kn

s2 + 1 , (11)

for integers 0 ≤ s1 < s2 ≤ r ≤ kn such that k | s2 − s1. The proof is completely elementary
and uses reverse induction on r starting from r = kn. We refer to our accompanying Maple
worksheet.

Finally, from (11) we directly get

pkx,ky,kn ≤ (ky + 1)pkx,0,kn. (12)

This allows to prove the following generalization of [7, Lemma 4.6] whose proof follows
exactly the same lines and we omit it here. For the following statement, recall that di,j is
the weighted number of paths ending at (i, j). Let d̃i,j be the number of these paths such
that no intermediate point (kx, ky) on the path satisfies x > Iε and y > x3/4.

AofA 2024

15:12 Asymptotics of Relaxed k-Ary Trees

▶ Lemma 15. For all ε > 0 there exists a constant Iε > 0 that acts as the parameter I in
the definition of d̃i,j in (10), such that dkn,0 ≤ (1 + ε)d̃kn,0 for all n > 0.

Proof. As in the binary case, we first rewrite the claimed inequality into 1 − d̃kn,0
dkn,0

≤ ε
1−ε .

The left-hand side here represents the proportion of walks that pass through at least one
point (kx, ky) such that x > Iε and y > x3/4. Let sx,y,n be the proportion of such walks
that pass through one fixed such point:

sx,y,n = dkx,kypkx,ky,kn

dkn,0
.

The idea is that the sum of these values over all violating points x, y is of course an upper
bound for our claim. So we want to prove that this sum is very small for large x.

By (12) combined with the fact that sx,y,n ≤ 1, we get

sx,y,n ≤ (ky + 1)pkx,0,kndkx,ky

dkn,0sx,0,n
= (ky + 1)dkx,ky

dkx,0

≤ ky + 1
C1kkxe3a1(kx)1/3/Bx

7k−8
6

(k − 1)(k−1)x+y

(
kx

x − y

)
where we also used the lower bound (9) for dkx,0 and the crude bound dkx,ky ≤ (k −
1)(k−1)x+y

(
kx

x−y

)
. The latter holds, as we may bound non-negative paths ending at (kx, ky)

by unconstrained paths with weights (k − 1) for the up step (1, 1) and 1 for down step
(1, −k + 1), since U(i, j) ≤ k − 1 for all i, j ≥ 0.

Now this last expression is completely explicit, and for large x one can see that it is of
order Θ(e−x1/2). Now, the proof of the binary case follows verbatim and the claim follows. ◀

Finally, this proves dkn,0 ≤ 2d̃kn,0 and ends the proof of our main Theorem 1.

4 Conclusion and Outlook

The aim of this paper was to show that the method from [7] developed for the asymptotics
of compacted binary trees can be applied to more general recurrences. Previously, in [4] we
showed how to handle more general weights including an integer parameter, while in this
paper we generalized the used steps. Instead of steps (1, 1) and (1, −1) of Dyck type we
studied a recurrence with larger steps given by (1, k − 1) and (1, −1), for an arbitrary fixed
positive integer k. In particular, we proved in Theorem 1 that in the class of relaxed k-ary
trees the phenomenon of a stretched exponential appears for any integer k ≥ 2.

In the long version, we will also prove the generalizations from the binary to the k-ary case
for compacted trees and minimal deterministic finite automata accepting a finite language
on an alphabet of size k for which we showed in Propositions 11 and 12 that their respective
recurrences have similar shapes. We expect that the phenomenon of a stretched exponential
persists also in these cases. In general, the presented method can be applied to more general
cases including several parameters in the weights and also recurrences with more than two
steps.

Another research direction is to generalize the previously studied relaxed binary trees of
bounded right height [9] to the k-ary case. In the binary case, this class has been proved to be
D-finite using exponential generating function methods. In the k-ary case, a similar rescaling,
as we used in Section 3.1 by n!k−1 should allow to analyze this class using generalized
exponential functions of the type

∑
n≥0 an

zn

(n!)k−1 . This class is also interesting, since the
binary case has rich combinatorial properties, such as bijection and closed-form enumeration
formulas [17], which are also worth to investigate in the k-ary case.

M. Ghosh Dastidar and M. Wallner 15:13

References
1 Cyril Banderier and Michael Wallner. Young Tableaux with Periodic Walls: Counting

with the Density Method. Sém. Lothar. Combin., 85B, Article 85B.47:12 pp., 2021. URL:
https://www.mat.univie.ac.at/~slc/wpapers/FPSAC2021/47.html.

2 Béla Bollobás. Random graphs, volume 73 of Cambridge Studies in Advanced Mathematics. Cam-
bridge University Press, Cambridge, second edition, 2001. doi:10.1017/CBO9780511814068.

3 Mireille Bousquet-Mélou, Markus Lohrey, Sebastian Maneth, and Eric Noeth. XML
compression via directed acyclic graphs. Theory Comput. Syst., 57(4):1322–1371, 2015.
doi:10.1007/s00224-014-9544-x.

4 Yu-Sheng Chang, Michael Fuchs, Hexuan Liu, Michael Wallner, and Guan-Ru Yu. Enumerative
and distributional results for d-combining tree-child networks. Adv. in Appl. Math., 157:Paper
No. 102704, 2024. doi:10.1016/j.aam.2024.102704.

5 Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subexpres-
sion problem. J. Assoc. Comput. Mach., 27(4):758–771, 1980. doi:10.1145/322217.322228.

6 Andrew Elvey Price, Wenjie Fang, and Michael Wallner. Asymptotics of Minimal Deterministic
Finite Automata Recognizing a Finite Binary Language. In AofA 2020, volume 159 of LIPIcs.
Leibniz Int. Proc. Inform., pages 11:1–11:13, 2020. doi:10.4230/LIPIcs.AofA.2020.11.

7 Andrew Elvey Price, Wenjie Fang, and Michael Wallner. Compacted binary trees admit a
stretched exponential. J. Combin. Theory Ser. A, 177:105306, 40, 2021. doi:10.1016/j.jcta.
2020.105306.

8 Philippe Flajolet, Paolo Sipala, and Jean-Marc Steyaert. Analytic variations on the common
subexpression problem. In Automata, languages and programming, pages 220–234. Springer,
1990. doi:10.1007/BFb0032034.

9 Antoine Genitrini, Bernhard Gittenberger, Manuel Kauers, and Michael Wallner. Asymptotic
enumeration of compacted binary trees of bounded right height. J. Combin. Theory Ser. A,
172:105177, 2020. doi:10.1016/j.jcta.2019.105177.

10 Manosij Ghosh Dastidar and Michael Wallner. Maple worksheet -
asymptotics of relaxed k-ary trees. Software, FWF P 34142, swhId:
swh:1:dir:f9b3ed0c7c098f24ee8860808959b84e402dc276 (visited on 2024-07-09). URL:
https://gitlab.tuwien.ac.at/michael.wallner/relaxed-k-ary-trees.

11 A. J. Guttmann and S. G. Whittington. Two-dimensional lattice embeddings of connected
graphs of cyclomatic index two. J. Phys. A, 11(4):721–729, 1978. URL: http://stacks.iop.
org/0305-4470/11/721.

12 Anthony J. Guttmann. Analysis of series expansions for non-algebraic singularities. Journal
of Physics A: Mathematical and Theoretical, 48(4):045209, 2015. doi:10.1088/1751-8113/
48/4/045209.

13 Svante Janson, Tomasz Łuczak, and Andrzej Rucinski. Random graphs. Wiley-Interscience
Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000. doi:
10.1002/9781118032718.

14 Valery A. Liskovets. Exact enumeration of acyclic deterministic automata. Discrete Applied
Mathematics, 154(3):537–551, 2006. doi:10.1016/j.dam.2005.06.009.

15 Colin McDiarmid, Charles Semple, and Dominic Welsh. Counting phylogenetic networks. Ann.
Comb., 19(1):205–224, 2015. doi:10.1007/s00026-015-0260-2.

16 Remco van der Hofstad. Random graphs and complex networks. Vol. 1. Cambridge Series in
Statistical and Probabilistic Mathematics, [43]. Cambridge University Press, Cambridge, 2017.
doi:10.1017/9781316779422.

17 Michael Wallner. A bijection of plane increasing trees with relaxed binary trees of right height at
most one. Theoretical Computer Science, 755:1–12, 2019. doi:10.1016/j.tcs.2018.06.053.

18 Michael Wallner. Dyck paths and inversion tables. Permutation Patterns 2023, pages 142–144,
2023. URL: https://2023.permutationpatterns.com/booklet/bookletco.pdf#page=142.

AofA 2024

https://www.mat.univie.ac.at/~slc/wpapers/FPSAC2021/47.html
https://doi.org/10.1017/CBO9780511814068
https://doi.org/10.1007/s00224-014-9544-x
https://doi.org/10.1016/j.aam.2024.102704
https://doi.org/10.1145/322217.322228
https://doi.org/10.4230/LIPIcs.AofA.2020.11
https://doi.org/10.1016/j.jcta.2020.105306
https://doi.org/10.1016/j.jcta.2020.105306
https://doi.org/10.1007/BFb0032034
https://doi.org/10.1016/j.jcta.2019.105177
https://archive.softwareheritage.org/swh:1:dir:f9b3ed0c7c098f24ee8860808959b84e402dc276;origin=https://gitlab.tuwien.ac.at/michael.wallner/relaxed-k-ary-trees;visit=swh:1:snp:14b81123a1b20aac3b43249a8cfb4c4aa889e9b5;anchor=swh:1:rev:714673a8c2395d9f8f96e61189362d7b1562a4fa
https://gitlab.tuwien.ac.at/michael.wallner/relaxed-k-ary-trees
http://stacks.iop.org/0305-4470/11/721
http://stacks.iop.org/0305-4470/11/721
https://doi.org/10.1088/1751-8113/48/4/045209
https://doi.org/10.1088/1751-8113/48/4/045209
https://doi.org/10.1002/9781118032718
https://doi.org/10.1002/9781118032718
https://doi.org/10.1016/j.dam.2005.06.009
https://doi.org/10.1007/s00026-015-0260-2
https://doi.org/10.1017/9781316779422
https://doi.org/10.1016/j.tcs.2018.06.053
https://2023.permutationpatterns.com/booklet/bookletco.pdf#page=142

Matching Algorithms in the Sparse Stochastic
Block Model
Anna Brandenberger
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

Byron Chin
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

Nathan S. Sheffield # Ñ

Massachusetts Institute of Technology, Cambridge, MA, USA

Divya Shyamal
Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
In sparse Erdős–Rényi graphs, it is known that a linear-time algorithm of Karp and Sipser achieves
near-optimal matching sizes asymptotically almost surely, giving a law-of-large numbers for the
matching numbers of such graphs in terms of solutions to an ODE [9]. We provide an extension of this
analysis, identifying broad ranges of stochastic block model parameters for which the Karp–Sipser
algorithm achieves near-optimal matching sizes, but demonstrating that it cannot perform optimally
on general stochastic block model instances. We also consider the problem of constructing a matching
online, in which the vertices of one half of a bipartite stochastic block model arrive one-at-a-time, and
must be matched as they arrive. We show that, when the expected degrees in all communities are
equal, the competitive ratio lower bound of 0.837 found by Mastin and Jaillet for the Erdős–Rényi
case [14] is achieved by a simple greedy algorithm, and this competitive ratio is optimal. We then
propose and analyze a linear-time online matching algorithm with better performance in general
stochastic block models.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Matching Algorithms, Online Matching, Stochastic Block Model

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.16

Related Version Extended Version: https://doi.org/10.48550/arXiv.2403.02140

Acknowledgements We thank Elchanan Mossel for suggesting the problem, and David Jerison for
helpful comments.

1 Introduction

Real-life allocation problems, particularly those related to the display of ads in search engine
results, have motivated a substantial line of research investigating the problem of online
matching in random graphs. Most prior work on this problem assumes the vertices on one side
of a bipartite graph are drawn i.i.d. from an adversarially-chosen distribution. In that setting,
upper bounds on the competitive ratio are known [13]. However, in Erdős–Rényi graphs,
it is possible to exceed these bounds [14]. One might therefore hope that graphs arising in
nature tend to permit better online matching algorithms than adversarial distributions. In
this work, we consider matching problems in the stochastic block model, in which vertices
belong to one of a constant number of classes, and the probability of an edge between two
vertices depends only on their classes. This is a broad class of structured distributions on
graphs, which includes the Erdős–Rényi model as a special case. In stochastic block models,

© Anna Brandenberger, Byron Chin, Nathan S. Sheffield, and Divya Shyamal;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 16; pp. 16:1–16:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3781-0846
https://orcid.org/0009-0003-0742-4308
mailto:shefna@mit.edu
http://nathan-sheffield.github.io
https://orcid.org/0009-0000-5817-2022
https://orcid.org/0000-0001-5398-3248
https://doi.org/10.4230/LIPIcs.AofA.2024.16
https://doi.org/10.48550/arXiv.2403.02140
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Matching Algorithms in the Sparse Stochastic Block Model

neither the optimal online matching algorithm nor the (offline) matching number are known.
We make progress on both of these questions, finding expressions for the matching number
in a number of regimes, and proposing and analyzing several heuristics for online matching.

1.1 Preliminaries
The idea of a population divided into a fixed number of distinct but internally-homogeneous
groups is captured by the stochastic block model, first proposed by Holland et. al. to
model social networks [6].

▶ Definition 1 (Stochastic block model). For fixed q, consider q disjoint sets of vertices
(classes) S1, . . . , Sq, and a symmetric probability matrix associating a value pij ∈ [0, 1] to each
pair i, j of classes. Given these parameters, the associated stochastic block model is the
distribution over graphs obtained by including each edge (u, v) independently with probability
pσuσv

, where σu and σv are the classes to which u and v, respectively, belong.

If q = 1, we recover the Erdős–Rényi graph G(n, p) on n vertices with edge probability p. If
q = 2, where each class has n vertices and p12 = p, p11 = p22 = 0, we recover the bipartite
Erdős–Rényi graph G(n, n, p).

We are interested in the number of vertices in a maximum-cardinality matching on a
graph drawn from this distribution, which we call the matching number . We are also
interested in the problem of constructing a matching online.

▶ Definition 2 (Online bipartite matching problem). Given a bipartite stochastic block model,
we can define an associated online matching problem. An algorithm is given the classes of
n right vertices, and knows a distribution over the left classes. For each of n time-steps, a
new left-node is revealed (a left label is drawn from the distribution, and coins are flipped
according to the block model probabilities to determine which edges it has to the right vertices)
– the algorithm then decides which, if any, of these edges to add to M . Once it has made this
decision, it is never allowed to revisit that vertex.

The most interesting range of stochastic block model parameters turns out to be the
sparse regime, when all probabilities pij are Θ(1/n). When pij grows faster than 1/n, as n

grows to infinity the graph becomes dense enough such that with high probability, there is a
near perfect matching between Si and Sj . On the other hand, when pij grows slower than
1/n, the graph becomes so sparse that we can include almost every edge in M . Therefore,
we consider the regime in which pij = cij/n for some constants cij .

1.2 Background
In 1981, Karp and Sipser demonstrated that a simple linear-time heuristic achieves matchings
within o(n) of the true matching number of Erdős–Rényi graphs with high probability [9].
By associating the performance of that algorithm with a Markov chain and examining the
limiting differential equation, they were able to prove a law of large numbers on the matching
number of such graphs. In 1998, Frieze, Pittel, and Aronson improved the error estimate
of the Karp–Sipser algorithm in Erdős–Rényi graphs from o(n) to n1/5+o(1) [1]. In 2011,
Bohman and Frieze extended analysis of the Karp–Sipser algorithm to the model of graphs
drawn uniformly over a fixed degree sequence, showing that a log concavity condition is
sufficient for the algorithm to find near-perfect matchings in such graphs [2]. Because of its
simplicity, the Karp–Sipser algorithm has also received attention as a practical method for
data reduction; some recent work investigates efficient implementations [11, 12].

A. Brandenberger, B. Chin, N. S. Sheffield, and D. Shyamal 16:3

The online bipartite matching problem was first introduced by Karp, Vazirani and Vazirani
in 1990; they achieved a tight 1 − 1/e competitive ratio on worst-case inputs [10]. In 2009,
Feldman et. al. showed when the left vertices are instead drawn from an arbitrary known
distribution, with integral expected arrival rates, it is possible to get a competitive ratio
strictly better than 1−1/e [5]. For arbitrary distributions, the best known algorithm achieves
competitive ratio 0.716, and there is an upper bound of 0.823 [8, 13]. There has also been
work considering algorithms for specific left vertex distributions. Mastin and Jaillet found
that in G(n, n, p), the random bipartite graph where all edges are independent and equally
likely to exist, all greedy algorithms achieve competitive ratio at least 0.837 – they conjectured
that this lower bound is optimal, but were unable to compute the matching number [14].
Sentenac et. al. studied the problem in the 1-dimensional geometric model, where they
found expressions for both the matching number and the performance of a particular online
heuristic [16]. To the best of our knowledge, the only previous work that considers the
stochastic block model is by Soprano-Loto et. al., who consider the regime where the graph
is dense (i.e. all probabilities are constants not depending on n), and characterize when it is
possible to achieve an asymptotically near-perfect matching [17].

1.3 Main Contributions
We show that the Karp–Sipser algorithm achieves near-optimal matchings for probability
matrices pij satisfying any of the following conditions. However, the algorithm does not
achieve near-optimal matchings in general stochastic block models.

Equitable: We call a stochastic block model “equitable” if each vertex has the same
expected degree, i.e., for every i,

∑
j pij |Sj | =

∑
j cij |Sj |/n = c for some constant c. We

show that the asymptotic matching number for any such graph is αn + o(n) where α is
an explicit constant. See Theorem 5 for the full statement.
Sub-Critical: When

∑
j cij |Sj |/n < e for all i, we show that the model is in a sub-critical

regime similar to the one found for Erdős–Rényi graphs. We show that the asymptotic
matching number converges to the solution of an explicit ODE, see Theorem 9.
Bipartite Erdős–Rényi: We also determine, in terms of the solution of an explicit
ODE, the asymptotic matching number of G(kn, n, c/n), the bipartite graph with part
sizes kn and n and independent edge probability c/n; see Lemma 13. This case is of
particular interest as a simple example for which usual arguments about the Karp–Sipser
algorithm fail.

With regards to the online matching problem, we will first show that a simple strategy,
GREEDY, of matching to uniform random neighbours achieves the optimal 0.837 competitive
ratio in any equitable model. We then propose the more sophisticated heuristic, SHORT-
SIGHTED, of preferring the available class that maximizes the probability of finding a match
on the next step. While SHORTSIGHTED performs extremely close to the online optimal
in experiments, we are able to show analytically that it is not an asymptotically optimal
algorithm in general.

2 Analysis of the Karp–Sipser Algorithm for Offline Matching

2.1 Karp–Sipser Algorithm and Outline of Analysis
Karp and Sipser proposed the following greedy algorithm: whenever there exists a vertex of
degree 1 in the graph, choose one uniformly at random, add its edge to the matching, and
remove the vertex and its neighbor from the graph. When there are no degree 1 vertices,
instead choose a uniform random edge to add to the matching, removing both of its incident
vertices from the graph.

AofA 2024

16:4 Matching Algorithms in the Sparse Stochastic Block Model

When there exist degree 1 vertices it is always “safe” to add their edges in the sense that
there exists an optimal matching which includes these edges. Therefore, any “mistakes” the
algorithm makes can only happen after the first time the graph no longer contains any degree
1 vertices (we call the steps before this Phase 1 , and the steps after this Phase 2). The
analysis of this algorithm in the Erdős–Rényi graph setting proceeds as follows [9, 1]:
1. Conditioned on the state of a Markov process on small tuples of integers, the graph

maintains a simple distribution law even after several steps of the algorithm.
2. Estimating transition probabilities from the degree distribution, we can appeal to known

approximation theorems to conclude that the Markov process stays close to the solution
of a corresponding ODE as n → ∞ with high probability.

3. In Phase 2 of the algorithm, it is very likely that the algorithm finds a near-perfect
matching on the remaining graph. Since the algorithm makes only optimal decisions
in Phase 1, this means that overall it finds a matching within o(n) vertices of the true
optimal value, and so the matching number of the graph is described by solutions to the
ODE from step 2.

We apply steps analogous to 1 and 2 in the general stochastic block model. On the other
hand, we find that step 3 does not always hold – that is, there exist stochastic block models
in which Phase 2 does not find a near-perfect matching. We list some interesting cases in
which we can show Phase 2 does find a near-perfect matching, and give an example where a
precise analysis is possible even when it does not.

2.2 Convergence of Phase 1 Transitions to Continuous Approximation
In Appendix A, we show that to an observer tracking only the following values for all class
labels i, j: the number Eij of j-type half-edges (i.e. edges whose other endpoint lies in class
j) incident to label-i vertices, the number Ti of label-i vertices of degree exactly 1 (the “thin”
vertices), and the number Fi of label-i vertices of degree at least 2 (the “fat” vertices), the
system follows a Markov chain, whose transition probabilities we determine from the limiting
distribution of degrees in the block model. Letting Ēij = Eij

n , F̄i = Fi

n , and T̄i = Ti

n , where
n is the total number of vertices in the original graph, this analysis gives

E[∆Ēij] =
−ωij − ωji −

∑
l ωliδij −

∑
l ωljδji

n

E[∆F̄i] = −
(
∑

l ωli)
(

h̄i−T̄i

h̄i

)
−
∑

j

∑
l ωjlδliθi

n

E[∆T̄i] = −
(
∑

l ωil) − (
∑

l ωli)
(

T̄i

h̄i

)
−
∑

j

∑
l ωjlδli

(
T̄i

h̄i
− θi

)
n

,

where hi =
∑

l Eil, ωij = Ti∑
l

Tl
· Eij

hi
, δij = hi−Ti

hi
· λi

1−e−λi
· Eij

hi
, and θi = hi−Ti

hi
· λi

eλi −1 , for

λi a solution to λi(eλi −1)
eλi −1−λi

= hi−Ti

Fi
. These values come from our degree distribution estimates

in Appendix A, where hi is the total number of half-edges attached to class i, ωij is the
probability that a random degree-1 vertex is in class i and has neighbour in class j, δij is
the expected number of (additional) j-type half edges shared by the endpoint of a random
class-i half-edge, and θi is the probability that a random class-i half-edge is incident to a
degree-2 vertex.

This is a process that takes order n time steps, and where the expected change at each
time step scales like 1

n . Informally, we can observe that in the limit of n, the many small
steps should average out and produce a process evolving according to their expectations; this
suggests looking at the following system of equations:

A. Brandenberger, B. Chin, N. S. Sheffield, and D. Shyamal 16:5

d

dt
Ēij(t) = −ωij(t) − ωji(t) −

∑
l

ωli(t)δij(t) −
∑

l

ωlj(t)δji(t)

d

dt
F̄i(t) = −

(∑
l

ωli(t)

)(
h̄i(t) − T̄i(t)

h̄i(t)

)
−
∑

j

∑
l

ωjl(t)δli(t)θi(t)

d

dt
T̄i(t) = −

(∑
l

ωil(t)

)
−

(∑
l

ωli(t)

)(
T̄i(t)
h̄i(t)

)
−
∑

j

∑
l

ωjl(t)δli(t)
(

T̄i(t)
h̄i(t)

− θi(t)
)

with initial conditions Ēij(0) = cijS̄iS̄j , F̄i(0) = S̄i

(
1 −

(
1 +

∑
j cijS̄j

)
e

−
∑

j
cij S̄j

)
, and

T̄i(0) = S̄i

(∑
j cijS̄j

)
e

−
∑

j
cij S̄j , where cij and S̄i = |Si|/n are the connection probabilities

and label class sizes, respectively, of the stochastic block model instance. We justify this
passage to differential equations by Wormald’s theorem [19], which guarantees that, in
the limit of n, the evolution of Phase 1 stays close to the unique solution of this ODE
with probability approaching 1 (this is formally justified in Appendix B). This implies the
following:

▶ Lemma 3. If Y(t) = {Ēij , F̄i, T̄i} is a solution to the above ODE, with high probability the
total number of unmatched isolated vertices created in Phase 1 of the Karp–Sipser algorithm
is n

(
1 − 2τ −

∑
i F̄i(τ)

)
+ o(n), where τ is the first time such that T̄i(τ) = 0 for all i.

In the Erdős–Rényi case, studying Phase 2 of the Karp–Sipser algorithm reveals that
with high probability at most o(n) unmatched isolated vertices are created, meaning that the
algorithm is asymptotically optimal, and that the matching number is n

(
2τ + F̄i(τ)

)
+ o(n)

with high probability. However, this analysis turns out not to work for general stochastic block
model instances. We first illustrate a few examples (namely the equitable and sub-critical
cases) where, with a little bit of work, we can prove similar results; then, we examine where
the algorithm fails.

2.3 Equitable Case

▶ Definition 4. We call stochastic block model parameters equitable if there is some constant
c such that for all classes i,

∑
j

cij |Sj |
n = c.

In other words, although the edge density in some parts of the graph may be higher than
other parts, the expected degree of every vertex is c regardless of what label class it belongs
to. In these cases, we show that not only does the Karp–Sipser algorithm construct an
asymptotically-optimal matching, but that the matching size it constructs is asymptotically
the same as the matching number of the Erdős–Rényi graph G(n, c/n). The intuition behind
this claim is that, despite the nontrivial correlation between the edges of the graph, we expect
the degree distributions to look the same everywhere. The crucial point we need to justify to
make this intuition precise is that the degree distributions necessarily remain close to equal
across classes, given that they start that way.

▶ Theorem 5. With high probability, the matching number of an equitable stochastic block
model is

(
1 − x+ce−x+xce−x

2c

)
n + o(n), where x is the smallest solution to x = ce−ce−x , and

the Karp–Sipser algorithm achieves within o(n) of this value.

The theorem is proven with the help of the following three lemmas.

AofA 2024

16:6 Matching Algorithms in the Sparse Stochastic Block Model

▶ Lemma 6. Given an equitable stochastic block model, after Phase 1 of the Karp–Sipser
algorithm, with high probability for every i, Fi (number of vertices of degree at least 2; note
that this is the same as total number of vertices because at the end of Phase 1 there are no
vertices of degree 1) and hi (total number of incident edges) differ by at most o(n) from the
corresponding values in G(n, c

n).

Proof. This follows directly from our application of Wormald’s theorem. Observe that(
hi(t)

Si
, Fi(t)

Si
, Ti(t)

Si

)
satisfy a symmetric system of equations, and have a symmetric initial

condition, so the symmetry will be preserved by a solution. Since Wormald’s theorem
guarantees that with high probability the result of Phase 1 differs by at most o(n) from a
solution to this ODE, we have the desired statement. ◀

▶ Lemma 7. Fix a constant ϵ > 0, and suppose, at the start of Phase 2 of the Karp–Sipser
algorithm, the values of Fi/S̄i and hi/S̄i each differ by at most o(n) between classes. If the
Karp–Sipser algorithm is run until some class has average degree less than 2 + ϵ, with high
probability at most o(n) isolated vertices will have been produced since the start of Phase 2,
and all classes will have average degree 2 + ϵ + o(1)

Proof. In the regime where the average degree hi/Fi > 2 + ϵ for all classes i, we want to
argue that the number of steps between the times when the graph is free of thin vertices is
small, so that by bunching those runs of degree-1 stripping together we can again control
the evolution by an ODE. The following is a high-level treatment of the argument; formal
justification from Wormald’s theorem is given in Appendix B:

When we first remove a random edge, this may create some vertices of degree 1. In
removing those, we may create more vertices of degree 1. In general, the expected number of
new degree-1 vertices created when a degree-1 vertex of class i is removed is

∑
j

Eij

hi
δiθj ≤

(maxi δi) (maxj θj), where δi is the expected number of half-edges sharing a vertex with a
random class-i half-edge, and θi is the probability that a random class-i half-edge is attached
to a degree-2 vertex. Now, when we have that the average degree in each class is at least
2 + ϵ, and that the difference in average degree between any pair of classes i and j is very
small (say, less than γ), then we know by our degree estimates (see Appendix A) that
δiθj = λi

1−e−λi
· λj

eλj −1
< 1 − η for any pair i, j of classes, where η depends on γ and ϵ (the

existence of some γ > 0, η > 0 in terms of ϵ with this property is guaranteed by a continuity
argument, see Appendix B). So, the expected number of degree-1 vertices created for each
degree-1 vertex removed is at most a constant, 1 − η, that is bounded away from 1. The
size of a subcritical Galton–Watson tree with 1 − η expected offspring is very unlikely to
exceed O(1/η) – by a Chernoff bound, we can argue that it is exponentially unlikely in n to
achieve size nΩ(1). Thus, while we are within the region where average degrees are γ-close
and greater than 2 + ϵ, the duration of a “run” of degree-1 stripping is w.h.p. much smaller
than n, and we can appeal to the law of large numbers to claim the process evolves like its
expectation. Whenever the average degree is the same in all classes, the expected change in
the number of edges of a given type is proportional to the number of edges currently of that
type (all edges in the graph are equally likely to be chosen as the first edge removed, equally
likely to be the edge chosen one step into the run, etc). So, since average degrees start out
o(1) away from each other, we expect them to remain that way up until one of them drops
below 2 + ϵ.

Now, note that the rate of creation of isolated vertices on a given step is always proportional
to the fraction of thin vertices in the graph: when we remove a vertex (the neighbour of a
thin vertex), it has δi other neighbours in expectation, and by the Markov property shown

A. Brandenberger, B. Chin, N. S. Sheffield, and D. Shyamal 16:7

in Appendix A, we know that those neighbour edges are equally likely to be any of the edges
leaving the class. So, the number of vertices isolated at each step is in expectation at most δi

v

times the total number of degree-1 vertices, where v is the total number of vertices remaining
(i.e. not matched or isolated) in the graph. For a run of length no(1), there can only ever be
no(1) thin vertices present at any given moment, so we expect to create o(1) isolated vertices
in any given run. Thus, the total number created while we’re in this regime is o(n) with high
probability. ◀

▶ Lemma 8. If the Karp–Sipser algorithm is run to completion, starting from average degree
2 + ϵ + o(1) in every class, with high probability at most 2ϵn (1 − 2 log(2ϵ)) isolated vertices
are produced.

Proof. We’re no longer guaranteed that individual runs are short, so can’t argue that each
run isolates only o(1) vertices in expectation. Instead, we will bound the number of isolated
vertices by controlling the number of degree-1 vertices that are ever produced in this regime.
The only way to remove a thin vertex and create more than one in its place is to have its
neighbour have degree greater than 2. Since no class has average degree more than 2 + 2ϵ, we
know that the entire graph has at most 2nϵ edges associated with vertices of degree greater
than 2. Those edges are the only places we can branch out and create more degree-1 things
than we consume, so, throughout the course of the rest of the algorithm, there can never be
more than 2nϵ thin vertices in the graph at once.

As in Lemma 7, we observe that the expected number of vertices isolated in a single step
is at most δi

v ≤ 2
v times the total number of degree-1 vertices in the graph, where v is the

total number of remaining remaining. Using our bound on the number of degree-1 vertices,
and a law-of-large numbers argument, we can upper bound the number of isolated vertices
created in all remaining steps by 2ϵn +

∫ n

2ϵn
2
v 2ϵndv = 2ϵn (1 − 2 log(2ϵ)) . ◀

Proof of Theorem 5. In Phase 1, the Karp–Sipser algorithm is guaranteed to perform
optimally, and Lemmas 6, 7, and 8 gurantee that, for any constant choice of ϵ, with high
probability Phase 2 isolates only o(n) + 2ϵn (1 − 2 log(2ϵ)) vertices. We can make this
arbitrarily small by choice of ϵ; so, with high probability the total number of vertices isolated
in Phase 2 is o(n), meaning that overall the algorithm is within o(n) of optimal. Since
the ODE determining the evolution of Phase 1 evolves the same as in an Erdős–Rényi
graph with parameter c/n, the total number of lost vertices must be within o(n) of the
number that would be lost in G(n, c/n). The matching number of G(n, c/n) is known to be(

1 − x+ce−x+xce−x

2c

)
n + o(n), where x is the smallest solution to x = ce−ce−x [9, 1], so that

must also be the matching number in this case. ◀

2.4 Sub-Critical case
In the Erdős–Rényi case, Karp and Sipser proved that the number of unmatched non-isolated
vertices remaining in the graph after Phase 1 (which we follow recent literature in calling the
“Karp–Sipser core” [3]) is o(n) with high probability if c < e, and Θ(n) with high probability
if c > e [9]. Our above analysis implies that any equitable stochastic block model also follows
this critical transition at c = e. In this section, we examine criticality in the non-equitable
case. We prove the following theorem:

▶ Theorem 9. If
∑

j cijS̄j < e for all i, then the Karp–Sipser core has size o(n) with high
probability.

AofA 2024

16:8 Matching Algorithms in the Sparse Stochastic Block Model

Interestingly, however, we find that the converse is not true – in fact, it’s possible for the
model to be subcritical even when

∑
j cijS̄j > e for all i. We note the following facts:

▶ Fact 10 (Karp and Sipser [9]). The set of vertices removed by Phase 1 is fixed, regardless
of the order in which degree-1 vertices are stripped. So, if there exists some valid sequence of
degree-1 strippings that removes a given vertex v from the graph (either matching or isolating
it), that vertex is not in the Karp–Sipser core.

▶ Fact 11 (Implied by a result of Mossel, Neeman and Sly [15] for 2 classes; Sly and Chin [4]
for greater than 2 classes). For any constant d, in the limit of n the d-neighbourhood of any
vertex of G (i.e., the subgraph obtained by a BFS of depth d from the vertex) converges in
distribution to the first d levels of a multitype branching process, where nodes of type i have
independently Pois(cijS̄j) children of type j, and the root class corresponds to the class of
the vertex in G.

If we can show that, under certain conditions, with probability tending to 1 with d, there
exists a sequence of valid Karp–Sipser vertex removals in this tree, all of which are at depth
at most d, and which result in the root being removed, this then implies that the Karp–Sipser
algorithm is subcritical. This is because we know that, in the limit of n, any structure that
appears in the first d levels of the tree is equally likely to appear in the d-neighbourhood of
a given vertex in G; so, if with probability at least 1 - ϵ there is a way to remove the root of
such a tree for any root class, the expected number of vertices remaining in G after Phase 1
is at most ϵn. The following characterizes these conditions:

▶ Lemma 12. The probability of removing the root of this branching process tends to 1 in

the limit of d whenever the system xi = e
−
(∑

j
cij S̄je

−(
∑

k
cjkS̄kxk))

has no more than one
solution (x1, . . . , xq) in [0, 1]q.

The proof of Lemma 12 is given in the extended version of the paper, where it is derived as
a corollary of results about winning probabilities of games on multitype branching processes
(those results are an extension of work of Holroyd and Martin on Galton–Watson trees [7],
and may be of independent interest). We now prove the forward (true) direction of our claim.

Proof of Theorem 9. By the above analysis, it suffices to show that whenever
∑

j cijS̄j < e

for all classes i, the function

x1
. . .

xq

 7→

e

−
(∑

j
c1j S̄je

−(
∑

k
cjkS̄kxk))

. . .

e
−
(∑

j
cqj S̄je

−(
∑

k
cjkS̄kxk))

−

x1
. . .

xq

 has only one

root on [0, 1]q. Denoting e
−
(∑

j
cij S̄je

−(
∑

k
cjkS̄kxk))

as fi, the Jacobian of this function
looks like

f1

(∑
j

(
c1j S̄j

) (
cj1S̄1

)
e

−
(∑

k
cjkS̄kxk

))
− 1 . . . f1

(∑
j

(
c1j S̄j

) (
cjqS̄q

)
e

−
(∑

k
cjkS̄kxk

))
.

fq

(∑
j

(
cqj S̄j

) (
cj1S̄1

)
e

−
(∑

k
cjkS̄kxk

))
. . . fq

(∑
j

(
cqj S̄j

) (
cjqS̄q

)
e

−
(∑

k
cjkS̄kxk

))
− 1

 .

The sum of the entries in the ith row of this matrix is
fi

(∑
j

(
cijS̄je−(

∑
k

cjkS̄kxk) ·
∑

l

(
cjlS̄l

)))
− 1. By assumption, we know

∑
l

(
cjlS̄l

)
< e.

So, the above expression is strictly less than efi log fi − 1. For any value of fi, efi log fi is at

A. Brandenberger, B. Chin, N. S. Sheffield, and D. Shyamal 16:9

most 1 (taking the derivative, we find a unique maximum at fi = 1/e). So, we have shown
that the sum of every row of the Jacobian is negative everywhere. Now, suppose that this
function has two distinct roots, x = (x1, . . . , xq) and y = (y1, . . . , yq). Let i be the index
where yi − xi is maximal. We have increased xi by (yi − xi), and increased all the other
coordinates of x by at most (yi − xi). We know that the directional derivative of the ith
coordinate in the [1, . . . , 1]⊤ direction is negative, and that the partial derivative with respect
to every j ̸= i is positive; this implies that the ith coordinate of the function at y must be
smaller than the ith coordinate of the function at x, so they cannot both be roots. ◀

As a consequence of this, since it is guaranteed to be optimal in Phase 1, we know the
Karp–Sipser algorithm gives a near-optimal matching whenever

∑
j cijS̄j < e for all i. By

examining the system given in Lemma 12, however, we find that this is not a necessary
condition for subcriticality – the phase transition boundary is much more complicated.

2.5 Failure of the Karp–Sipser algorithm
In the previous sections we gave two instances where we can guarantee that the Karp–Sipser
algorithm achieves a near-optimal matching, both which use essentially the same framework
as the Erdős–Rényi case (i.e., showing that it can achieve within o(n) of a perfect matching
during Phase 2, either because all degrees are close to 2 in the equitable case, or because the
entire remaining graph has o(n) vertices in the subcritical case). However, the algorithm
does not return a near-optimal matching in general, and even when it does, this analytical
framework does not always work. For example, consider a stochastic block model with 4
classes, all of size n/4, and the following probability matrix:

0 100
n 0 0

100
n 0 10000

n 0
0 10000

n 0 100
n

0 0 100
n 0

 .

The matching number is very close to perfect. Even ignoring the edges between classes 2 and
3 entirely, we are left with two copies of G(n/4, n/4, 100

n), on which our equitable analysis
guarantees a matching containing more than a .99 fraction of vertices. However, directly
analyzing the Karp-Sipser algorithm, we find that Phase 1 finishes very quickly, because the
graph is dense enough that very few degree 1 vertices are created. Then, in Phase 2, for a
long time we are in the regime of short runs as described in our analysis of the equitable
case; in this regime, the algorithm chooses many of its edges uniformly at random, and so
likely choose many of them from between classes 2 and 3. Every edge choosen between
classes 2 and 3, however, effectively decreases the matching number by 2. Formalizing this
argument reveals that the Karp–Sipser algorithm on this graph finds a matching containing
only slightly more than 1/2 of the vertices; an illustration is given in Figure 1.

This suggests the need for a modified version of the Karp–Sipser algorithm that is given
the stochastic block model parameters, and takes into account the label classes of the vertices.
We propose the following: whenever the algorithm must choose a random edge, instead of
choosing uniformly over all edges it instead chooses uniformly from the edge type that we
estimate will create the fewest degree-1 vertices on this step. This algorithm performed well
in our experimental simulations for a range of block model parameters; we conjecture that it
performs near-optimally asymptotically. We have been unable to prove this, however. Part
of the reason for the difficulty of analysis lies in the fact that we no longer expect a perfect
matching to be possible in Phase 2 – the following section illustrates this with a simple
example.

AofA 2024

16:10 Matching Algorithms in the Sparse Stochastic Block Model

(a) Karp–Sipser. (b) Optimal.

Figure 1 A stochastic block model on which the Karp–Sipser algorithm performs suboptimally.

2.6 Bipartite Erdős–Rényi case
The bipartite graph G(n, n, c/n) with equal part sizes and i.i.d. edges corresponds to an
equitable stochastic block model: each vertex on the left and each vertex on the right has c

expected neighbours. So, with high probability, the Karp–Sipser algorithm performs optimally
and returns a matching the same size as that of G(2n, c/2n). However, the asymmetric case
G(kn, n, c/n) where k ̸= 1 is not equitable, because left vertices have c expected neighbours
while right vertices have kc of them. It is this case that we analyze in this section. Note
that, as before, the algorithm is guaranteed to be optimal for Phase 1; we need to show that
it’s also near optimal for Phase 2. However, now even the optimal algorithm on Phase 2 is
not guaranteed to find a near-perfect matching. Consider a graph with very unequal part
sizes, and very high c; for example, G(n, 10n, 1000/n). This graph is dense enough that we
expect at least 5n vertices to remain on the right after Phase 1, however we know that the
matching number of this graph is at most n – so, we can’t actually expect Phase 2 to find
a near-perfect matching. Thus, this is an example where the typical analytical framework
does not apply [9, 1]. However, we can still use the Karp-Sipser algorithm to determine the
matching numbers of such graphs. We sketch the argument.

▶ Lemma 13. Let Fl, Fr and E denote the number of non-isolated unmatched vertices on the
left, non-isolated unmatched vertices on the right, and edges in the graph after Phase 1 of the
Karp–Sipser algorithm. With high probability, there exists a matching of size min(Fl, Fr)−o(n)
on this graph. As a consequence, the asymptotic behavior of the matching numbers of bipartite
Erdős–Rényi graphs can be determined from solutions to the ODEs described in Section 2.2.

Proof. Assume without loss of generality that Fl ≤ Fr. We would like to show that there
exists a matching of size Fl − o(n). To do so, we recall by the Markov property (see
Appendix A) of the Karp-Sipser algorithm that the distribution of the graph G at this
point in the process is a uniform random configuration model with E edges on Fl + Fr

vertices, conditioned on being bipartite with part sizes Fl and Fr, and having min degree 2.
We’ll couple G with a graph G′ that’s drawn from a bipartite configuration model with E

edges, min degree 2, and parts both of size Fr. The way the coupling will work is to first
generate G′, then delete all but the first Fl vertices on the left (where “first” refers to some
arbitrary ordering), and redistribute the half-edges connected to the deleted vertices among
the remaining vertices on the left. Note there must exist some such randomized redistribution
process that causes the resulting graph to be distributed as G, since degree sequences of the
first Fl left vertices in a graph distributed as G′ are dominated by degree sequences of the
left vertices in a graph distributed as G.

A. Brandenberger, B. Chin, N. S. Sheffield, and D. Shyamal 16:11

To show that G with high probability contains a matching of size Fl − o(n), we draw
(G′, G) according to this coupling. By our analysis of Phase 2 of the Karp–Sipser algorithm
in equitable block models, we know that with high probability G′ contains a near-perfect
matching. So, in particular, there exists a matching in G′ that contains Fl − o(n) of the
first Fl vertices on the left. By construction of the coupling, all the edges involved in that
matching are also present in G, so this implies the existence of a matching of size Fl − o(n)
in G.

This shows a lower bound on the matching number of G(kn, n, c/n). Since Phase 1 of
the Karp–Sipser algorithm is optimal, and once Phase 1 ends the matching number is clearly
bounded by min(Fl, Fr), this lower bound is tight (up to o(n)). ◀

This analysis works because, even though the Karp–Sipser core does not admit a perfect
matching, we have an upper bound on its true matching number (namely, the size of the
smaller of the two parts) that we can show is nearly achieved. This is a natural approach
to analyzing the matching number of a random graph: try to show an upper bound on the
matching number of the Karp–Sipser core, and then show a variation of the Karp–Sipser
algorithm that achieves close to that upper bound on the core. It would be interesting to
find other block models where this approach is successful. A simple case we note as an open
direction is the bipartite setting where there is only one class on the left (i.e., the class graph
is “star shaped”). On such graphs, Label-Aware Karp–Sipser simplifies to “prefer edges to
the available right class with minimum average degree” – it seems conceivable that some
form of analogous argument could show that this is optimal.

3 Analysis of Online Matching Heuristics

In this section, we consider the problem of online matching in bipartite stochastic block
models with q left and q right classes. We assume that vertices are assigned classes uniformly
and independently at random, with classes of the right vertices known to the algorithm
ahead of time, and vertices on the left (along with all the edges incident to them) arriving
one-at-a-time. Uniformity of the class distribution is roughly without loss of generality;
variations could be approximated by further subdividing the classes.

Before discussing algorithms for online matching in stochastic block models, we recall
the simpler setting of G(n, n, c/n). First, note that any online algorithm that chooses not to
match a left vertex when it is adjacent to at least one available right vertex is sub-optimal.
Since, in this setting, all right vertices are indistinguishable, any online algorithm that always
matches when possible is optimal. This gives the following:

▶ Fact 14 (Mastin and Jaillet [14]). In the online setting, the expected size of a matching in
G(n, n, c/n) produced by an optimal online algorithm is given by

(
1 − ln(2−e−c)

c

)
n.

The stochastic block model setting allows for more nuance; designing optimal algorithms
is nontrivial in general. While it is possible to brute-force compute an optimal online strategy
in time Θ(nq+1) using dynamic programming, we leave open the question of whether such an
optimum can be achieved asymptotically in constant time per decision. Instead, we first show
that in the restricted class of equitable stochastic block models, a simple greedy heuristic
still achieves asymptotically optimal matchings. We then propose a more sophisticated
heuristic with good experimental performance, but demonstrate a case where it can be shown
analytically to be asymptotically sub-optimal.

AofA 2024

16:12 Matching Algorithms in the Sparse Stochastic Block Model

3.1 Analysis of GREEDY
First, consider the simplest possible matching heuristic. For each left vertex that arrives,
GREEDY chooses uniformly at random one of the available edges adjacent to that vertex to
add to the matching. While GREEDY is sub-optimal in general, we can show that it returns
an asymptotically optimal matching in any equitable block model.

▶ Lemma 15. In the equitable case, i.e. when all of the vertices have the same expected
degree c = 1

q

∑
i cij, GREEDY returns a matching of expected size

(
1 − ln(2−e−c)

c

)
n (as in

the bipartite Erdős-Rényi case; see Fact 14).

Proof. Let Rj denote the set of vertices in right class j, and R
(t)
j ⊆ Rj denote the subset

that remain unmatched after t steps. If the next left vertex to arrive has class i, the
probability that it has no available matches is

(∏q
j=1(1 − pij)|R(t)

j
|
)

. Conditional on at
least one available match, the probability that GREEDY chooses to match to a vertex of Rj

is pij |R(t)
j

|∑q

l=1
pil|R(t)

l
|

+ O
(

1∑
l

|R(t)
l

|

)
– this can be seen by replacing the selection process with

“repeatedly choose a random right vertex and match with probability pij”, which has the

same distribution up to O
(

1∑
l

|R(t)
l

|

)
replacement error. So, we have

|R(t+1)
j | ≈

|R(t)

j | − 1 with probability
∑q

i=1
1
q

(
1 − e−

∑q

l=1
pil|R(t)

l
|
)

pij |R(t)
j

|∑q

l=1
pil|R(t)

l
|

|R(t)
j | with probability 1 −

∑q
i=1

1
q

(
1 − e−

∑q

l=1
pil|R(t)

l
|
)

pij |R(t)
j

|∑q

l=1
pil|R(t)

l
|

.

Letting xj(τ) = |R(τn)
j

|
n , we can appeal to Wormald’s theorem to argue that this process

is controlled in the limit n → ∞ by the following ODE:

x′
j(τ) = −

q∑
i=1

1
q

(
1 − e−

∑q

l=1
cilxl(τ)

) cijxj(τ)∑q
l=1 cilxl(τ)

j ∈ {1, 2, . . . q},

with initial conditions xj(0) = 1
q for all j ∈ {1, 2, . . . q}. If we guess that the solution is

symmetric – that is, that xj(τ) = x(τ)
q for some x and all j, τ – then these equations simplify

to

x′(τ) = −
q∑

i=1

(
1 − e

−
∑q

l=1
cilx(τ)/q

)
cijx(τ)/q∑q

l=1 cilx(τ)/q
= −

q∑
i=1

(
1 − e−cx(τ)) cij

c
= 1 − e−cx(τ),

since when all the xj(τ) are equal, we also have all the x′
j(τ) equal. Solving this ODE yields

x(1) =
(

ln(2−e−c)
c

)
, meaning by Wormald’s that the expected matching size converges to(

1 − ln(2−e−c)
c

)
n. ◀

Note that, unlike in G(n, n, c/n), it is not the case that any strategy for matching
available vertices achieves this value – for example, the strategy of always preferring to match
class R1 will perform worse in general. It was important that we chose a strategy that evenly
distributed matches across right classes. We’ll now show that this lower bound is tight; i.e.,
that no algorithm can do asymptotically better than GREEDY on an equitable block model.

▶ Lemma 16. In an equitable stochastic block model, if there are a total of |R(t)| unmatched
vertices on the right, the probability of matching on the next step is maximized when those
|R(t)| vertices are equally distributed among all classes (that is, each right class r has
|R(t)

r | = |R(t)|
q unmatched vertices).

A. Brandenberger, B. Chin, N. S. Sheffield, and D. Shyamal 16:13

Proof. Let ρr = |R(t)
r |

|R(t)| denote the fraction of unmatched right vertices belonging to class r at
time t. The probability of there being no available edge in the next step of the algorithm is,

as n → ∞, 1
q

∑
l e−

∑
r

clrρr . By AM-GM inequality, this is at least
(∏

l e−
∑

r
clrρr

)1/q

=

e−
∑

l

1
q

∑
r

clrρr = e−
∑

r

1
q (
∑

l
clr)ρr = e−c, which is precisely the value obtained by setting

all ρr = 1
q . ◀

From this fact, we see that no algorithm can do asymptotically better than GREEDY.

▶ Theorem 17. The optimal competitive ratio for any online algorithm in an equitable
stochastic block model is matchingsize c−ln(2−e−c)

(2c−x+ce−x+xce−x) , where x is the smallest solution of
x = ce−ce−x .

Proof. First, note that this value is precisely what we’ve shown for the competitive ratio of
GREEDY; this can be found by dividing the asymptotic matching size we proved in that case
by the offline matching number we proved in Theorem 5. Therefore, it is left to establish that
no algorithm can do better than GREEDY. We proceed by contradiction - assume there is a
better algorithm, and consider the expected values of ρi as in Lemma 16 in this algorithm.
If the ρi’s stay within o(1) of equal over all time, then the algorithm looks asymptotically
identical to GREEDY. If at some point they become unequal, then at that time the algorithm
must fall behind GREEDY and never catch up, by Lemma 16. ◀

Note that this value is the competitive ratio lower bound conjectured by Mastin and Jaillet
to be tight for Erdős–Rényi graphs; as a special case, we have shown that conjecture [14].

3.2 A Less Greedy Algorithm

Although GREEDY is optimal in equitable models, it’s not difficult to describe non-equitable
models where it’s very far from optimal. For example, if pij < pil for all l, it is always strictly
better to match to vertices of class j than class l if possible (i.e. if one class is very rare to
match to, it’s good to take those matches when the chance arises), but GREEDY does not do
this. To correct this, one might consider always matching to the right class with the lowest
expected degree – however it’s easy to see that this is not optimal, since when all classes have
close to the same expected degree, it’s better to distribute matches more evenly across classes
than to focus on the one with the smallest expected degree. Determining the appropriate
extent to prefer rare classes versus trying to keep class sizes balanced is a non-trivial task.

A reasonable heuristic – which we’ll term SHORTSIGHTED– is to, at each step, minimize
the probability of being unable to match the next vertex (i.e., the probability that the next
left vertex to arrive has no available edges). That is, SHORTSIGHTED always chooses to
match to the available class l that minimizes

∑q
i=1

1
q

∏q
j=1(1 − pij)|R(t)

j
|−1j=l .

One might hope that looking a single step into the future is sufficient to determine the
optimal class to match to, and so SHORTSIGHTED is an asymptotically optimal approach.
Indeed, in a range of computer experiments we found that SHORTSIGHTED found a matching
of almost the same size as a brute-force optimal online algorithm. However, it turns out that
SHORTSIGHTED is not asymptotically optimal.

AofA 2024

16:14 Matching Algorithms in the Sparse Stochastic Block Model

L1

L2

R1

R2

p1,2 = 5
n

p1,2 = 1
n

p2,2 = 1
n

Figure 2 An example of stochastic block model parameters in which BRUTE-FORCE beats
SHORTSIGHTED. Here all classes are of size n

2 , and p2,1 = 0.

In the model shown in Figure 2, SHORTSIGHTED prefers class 1 whenever the number of
unmatched vertices of class R1 is at least 2 ln 2

5 n. By associating SHORTSIGHTED’s behaviour
in the limit n → ∞ with an ODE, we obtain that the expected size of the matching is
≈ 0.574946n (this analysis is outlined in Appendix B). To show this is suboptimal, consider the
following algorithm: prefer class R1 until .88n vertices have arrived, then thereafter prefer R2.
With essentially the same differential equation analysis as above, we find that the expected
size of the matching is ≈ 0.575597n. This algorithm out-performs SHORTSIGHTED by a
linear factor in n (albeit small, ≈ .0006n), implying that SHORTSIGHTED is asymptotically
sub-optimal.

References
1 Jonathan Aronson, Alan M. Frieze, and Boris G. Pittel. Maximum matchings in sparse random

graphs: Karp-sipser revisited. Random Struct. Algorithms, 12:111–177, 1998.
2 Tom Bohman and Alan M. Frieze. Karp–sipser on random graphs with a fixed degree sequence.

Combinatorics, Probability and Computing, 20:721–741, 2011.
3 Thomas Budzinski, Alice Contat, and Nicolas Curien. The critical Karp–Sipser core of random

graphs, 2022. arXiv:2212.02463.
4 Byron Chin and Allan Sly. Optimal reconstruction of general sparse stochastic block models,

2021. arXiv:2111.00697.
5 Jon Feldman, Aranyak Mehta, Vahab S. Mirrokni, and S. Muthukrishnan. Online stochastic

matching: Beating 1-1/e. CoRR, abs/0905.4100, 2009. arXiv:0905.4100.
6 Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:

First steps. Social Networks, 5(2):109–137, 1983. doi:10.1016/0378-8733(83)90021-7.
7 Alexander E. Holroyd and James B. Martin. Galton–watson games. Random Structures &

Algorithms, 59(4):495–521, 2021. doi:10.1002/rsa.21008.
8 Zhiyi Huang, Xinkai Shu, and Shuyi Yan. The power of multiple choices in online stochastic

matching, 2022. arXiv:2203.02883.
9 R. M. Karp and M. Sipser. Maximum matching in sparse random graphs. In 22nd Annual

Symposium on Foundations of Computer Science (SFCS 1981), pages 364–375, 1981. doi:
10.1109/SFCS.1981.21.

10 Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for on-line
bipartite matching. In Symposium on the Theory of Computing, 1990.

11 Kamer Kaya, Johannes Langguth, Ioannis Panagiotas, and Bora Uçar. Karp-Sipser based
kernels for bipartite graph matching, pages 134–145. Society for Industrial and Applied
Mathematics, 2020. doi:10.1137/1.9781611976007.11.

https://arxiv.org/abs/2212.02463
https://arxiv.org/abs/2111.00697
https://arxiv.org/abs/0905.4100
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1002/rsa.21008
https://arxiv.org/abs/2203.02883
https://doi.org/10.1109/SFCS.1981.21
https://doi.org/10.1109/SFCS.1981.21
https://doi.org/10.1137/1.9781611976007.11

A. Brandenberger, B. Chin, N. S. Sheffield, and D. Shyamal 16:15

12 Johannes Langguth, Ioannis Panagiotas, and Bora Uçar. Shared-memory implementation
of the karp-sipser kernelization process. In 2021 IEEE 28th International Conference on
High Performance Computing, Data, and Analytics (HiPC), pages 71–80, 2021. doi:10.1109/
HiPC53243.2021.00021.

13 Vahideh H. Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online stochastic matching:
Online actions based on offline statistics, 2011. arXiv:1007.1673.

14 Andrew Mastin and Patrick Jaillet. Greedy online bipartite matching on random graphs.
CoRR, abs/1307.2536, 2013. arXiv:1307.2536.

15 Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model threshold conjecture.
Combinatorica, 38(3):665–708, 2018.

16 Flore Sentenac, Nathan Noiry, Matthieu Lerasle, Laurent Ménard, and Vianney Perchet.
Online matching in geometric random graphs, 2023. arXiv:2306.07891.

17 Nahuel Soprano-Loto, Matthieu Jonckheere, and Pascal Moyal. Online matching for the
multiclass stochastic block model, 2023. arXiv:2303.15374.

18 Lutz Warnke. On wormald’s differential equation method, 2019. arXiv:1905.08928.
19 Nicholas C. Wormald. Differential Equations for Random Processes and Random Graphs. The

Annals of Applied Probability, 5(4):1217–1235, 1995. doi:10.1214/aoap/1177004612.

A Karp–Sipser Transition Probabilities

A.1 Passing to a Configuration Model
For analytical purposes, we consider the Karp–Sipser algorithm on multigraphs drawn from
a configuration model, and then justify why the results translate to stochastic block models.

▶ Definition 18 (Blocked configuration model). Let G be a graph drawn from a stochastic
block model. For each pair of labels i, j, let Eij denote the total number of edges between
vertices of label i and vertices of label j in G (when i = j, we let Eij denote twice the number
of edges lying within class i = j, so that Eij always refers to the number of j-type half-edges
attached to label-i vertices). Construct a random multigraph as follows: if i ̸= j, distribute
Eij half-edges among the i vertices and Eij half-edges among the j vertices uniformly at
random (à la balls-in-bins), then define edges by a uniform random pairing between the half
edges on the i and j sides. This process defines a distribution over multigraphs, because in
the process of “reshuffling” the half-edges of G we introduce the possibility of multiple edges
and self-loops.

Note that any result which holds with high probability in the blocked configuration model
also holds with high probability for the stochastic block model, so we are justified in proving
our results for this model instead (this is formally justified in the extended version of the
paper).

A.2 Markov Property of Karp–Sipser Algorithm
As we run the Karp–Sipser algorithm on a random multigraph, the distribution changes,
since the earlier steps of the algorithm have produced some effects conditional on the previous
states of the graph. Fortunately, it turns out that these effects have a simple description.

▶ Lemma 19. Suppose we generate a graph from the blocked configuration model and run the
Karp–Sipser algorithm for an arbitrary number of steps. Then conditioned on the following,
the resulting graph is still distributed according to the blocked configuration model.

AofA 2024

https://doi.org/10.1109/HiPC53243.2021.00021
https://doi.org/10.1109/HiPC53243.2021.00021
https://arxiv.org/abs/1007.1673
https://arxiv.org/abs/1307.2536
https://arxiv.org/abs/2306.07891
https://arxiv.org/abs/2303.15374
https://arxiv.org/abs/1905.08928
https://doi.org/10.1214/aoap/1177004612

16:16 Matching Algorithms in the Sparse Stochastic Block Model

For each pair of (i, k) of block model labels, the number Eij of edges between label class i

and j.
For each label class i, the number Ti of label-i vertices of degree exactly 1 (the “thin”
vertices).
For each label class i, the number Fi of label-i vertices of degree at least 2 (the “fat”
vertices).

Thus, if we collect all of these values into a tuple Y = (Eij , Ti, Fi), the algorithm’s progress
can be described by a Markov chain on Y .

The proof of this lemma is a relatively straightforward counting argument; it is described in
detail in the extended version of the paper.

A.3 Estimates on Degree Distributions
In order to determine transition probabilities of this Markov process, we first note the
following straightforward lemma about the degree distribution (whose proof we will again
defer to the extended version):

▶ Lemma 20. Fix a description tuple Y . Let nY be the tuple obtained by scaling every
element of Y by n, and let Gn be a multigraph drawn from a blocked configuration model
conditional on tuple nY . Choose a uniform half-edge incident to class i, and let v be its
incident vertex. In the limit as n → ∞, the degree of v converges in distribution to

P[d(v) = k] =

Ti∑
l

Eil
for k = 1

(
∑

l
Eil)−Ti∑

l
Eil

· λk−1
i

(k−1)!eλi(1−e−λi) for k > 1,

where λi is a solution to λieλi −λi

eλi −1−λi
= (
∑

l
Eil)−Ti

Fi
.

This allows us to determine the probability that a random edge is adjacent to a degree 2
vertex, which is important for understanding the evolution of the algorithm.

▶ Corollary 21. In particular, as n → ∞, the probability that a random edge into class i

connects to a vertex of degree exactly 2 tends to (
∑

l
Eil)−Ti

(
∑

l
Eil) · λi

eλi −1 .

The above lemma also allows us to determine the label distribution in the neighborhood
of a randomly chosen edge.

▶ Corollary 22. Let uv be a randomly chosen edge where u has label i and v has label j. As
n → ∞, the number of neighbors of u with label k tends to (

∑
l

Eil)−Ti∑
l

Eil
· λi

1−e−λi
· Eik

(
∑

l
Eil) .

A.4 Computing Transition Probabilities
From these degree distribution estimates, we produce estimates on the transition probabilities
of the Markov process. On each step of the algorithm, if there exist degree 1 vertices, the
algorithm chooses one of them and removes it and its neighbour. So, the graph loses one
edge from between class i and j whenever that degree 1 vertex has its edge between i and
j. When the neighbour vertex is in class i, the graph also loses edges equal to however
many neighbours it had in class j. Similar accounting can be made for the number of fat or
thin vertices in a class: the graph loses a fat vertex either by having it as the neighbour of
the degree 1 vertex we removed, or by having it initially have degree 2 and appear as the

A. Brandenberger, B. Chin, N. S. Sheffield, and D. Shyamal 16:17

neighbour of a removed neighbour, so that it’s then reduced to degree 1. A thin vertex is lost
whenever its the removed degree 1 vertex, whenever its the neighbour of the removed vertex,
or whenever its a neighbour of the neighbour of a removed vertex, but gain one whenever
a degree 2 vertex is a neighbour-of-the-neighbour. To make these expressions explicit, we
define the notation:

Let hi denote the total number of half-edges in class i, hi =
∑

l Eil.

Let ωij denote the probability that a randomly selected degree-1 vertex is in class i and
has its neighbour in class j, ωij = Ti∑

l
Tl

· Eij

hi
.

Let δij denote expected number of other j-type half-edges attached to the vertex a random
half-edge in class i is attached to. If λi is a solution to λi(eλi −1)

eλi −1−λi
= hi−Ti

Fi
, then, by our

degree estimates, δij = hi−Ti

hi
· λi

1−e−λi
· Eij

hi
.

Let θi denote the probability that a random half-edge attached to class i is attached to a
degree 2 vertex. Again, letting λi(eλi −1)

eλi −1−λi
= hi−Ti

Fi
, we have θi = hi−Ti

hi
· λi

eλi −1 .

Now, while there are degree-1 vertices remaining in the graph, we can write the expected
change in the description tuple after one step of the algorithm as

E[∆Eij] = −ωij − ωji −
∑

l

ωliδij −
∑

l

ωljδji

E[∆Fi] = −

(∑
l

ωli

)(
hi − Ti

hi

)
−
∑

j

∑
l

ωjlδliθi

E[∆Ti] = −

(∑
l

ωil

)
−

(∑
l

ωli

)(
Ti

hi

)
−
∑

j

∑
l

ωjlδli

(
Ti

hi
− θi

)
.

On the other hand, when there are no degree 1 vertices remaining, we choose an edge
uniformly at random, so, by similar reasoning,

E[∆Eij] = −
(

2Eij∑
k hk

)
−
(

2hi∑
k hk

)
δij −

(
2hj∑

k hk

)
δji

E[∆Fi] = −
(

2hi∑
k hk

)
−
∑

l

(
2hl∑
k hk

)
δliθi

E[∆Ti] =
∑

l

(
2hl∑
k hk

)
δliθi.

An important point to note is that the expected transitions above are “scale-invariant”,
meaning that they remain the same upon re-scaling all entries in Y by the same amount. So,
letting Ēij = Eij/n, T̄i = Ti/n, F̄i = Fi/n, we can write (for Phase 1 – Phase 2 is similar):

E[∆Ēij] =
−ωij − ωji −

∑
l ωliδij −

∑
l ωljδji

n

E[∆F̄i] = −
(
∑

l ωli)
(

h̄i−T̄i

h̄i

)
−
∑

j

∑
l ωjlδliθi

n

E[∆T̄i] = −
(
∑

l ωil) − (
∑

l ωli)
(

T̄i

h̄i

)
−
∑

j

∑
l ωjlδli

(
T̄i

h̄i
− θi

)
n

.

AofA 2024

16:18 Matching Algorithms in the Sparse Stochastic Block Model

B Conditions of Wormald’s Theorem

We on several occasions in this paper claim that particular Markov processes remain close to
a limiting system of differential equations. In this section, we step through for each of those
instances the justification of those claims. The key tool is a theorem of Wormald, restated in
its general form below. Here, n indexes a family of discrete time random processes, each of
which has “history” sequence Hn ∈ S+

n . The notation Yt is shorthand for y(Ht).

▶ Theorem 23 (Wormald [19]). Let a be fixed. For 1 ≤ l ≤ a, let y(l) :
⋃

n S+
n → R and

fl : Ra+1 → R, such that for some constant C and all l, |y(l)(ht)| < Cn for all ht ∈ S+
n for

all n. Suppose also that for some function m = m(n):
1. for some functions w = w(n) and λ = λ(n) with λ4 log n < w < n2/3/λ and λ → ∞ as

n → ∞, for all l and uniformly for all t < m,

P
[
|Y (l)

t+1 − Y
(l)

t | >

√
w

λ2√
log n

∣∣∣Ht

]
= o(n−3);

2. for all l and uniformly over all t < m, we always have

E(Y (l)
t+1 − Y

(l)
t |Ht) = fl(t/n, Y

(1)
t /n, . . . , Y

(a)
t /n) + o(1);

3. for each l, the function fl is continuous and satisfies a Lipschitz condition on D, where D is
some bounded connected open set containing the intersection of {(t, z(1), . . . , z(a)) : t ≥ 0}
with some neighbourhood of {(0, z(1), . . . , z(a)) : P(Y (l)

0 = z(l)n, 1 ≤ l ≤ a) ̸= 0 for some
n}.

Then,
1. For (0, ẑ(1), . . . , ẑ(a)) ∈ D, the system of differential equations

dzl

ds
= fl(s, z1, . . . , za), l = 1, . . . , a,

has a unique solution in D for zl : R → R passing through

zl(0) = ẑ(l), 1 ≤ l ≤ a

and which extends to points arbitrarily close to the boundary of D.
2. Almost surely,

Y l
t = nzl(t/n) + o(n)

uniformly for 0 ≤ t ≤ min{σn, m} and for each l, where zl(t) is the solution in (i) with
ẑ(l) = Y

(l)
0 /n, and σ = σ(n) is the supremum of those s to which a solution can be

extended.

For a simple proof of Wormald’s theorem, we refer the reader to Warnke’s recent exposi-
tion [18].

B.1 Phase 1 of the Karp–Sipser algorithm
The first time we make use of this differential equations method is in the analysis of the
first phase of the Karp–Sipser algorithm. We will outline how to apply Wormald’s theorem
in this case. Here, we take Y as we defined it, f as the derivative we wrote down for the
corresponding ODE, and note that with high probability, y(l)(ht) < 100(maxij cij)n for all

A. Brandenberger, B. Chin, N. S. Sheffield, and D. Shyamal 16:19

sufficiently large n (the Fi and Ti components of y(l)(ht) are clearly bounded by n; w.h.p.
the edge counts are all initially within a factor of 100 of their expectations, and once they
start that way they never increase). We take the stopping time m to be the first time all of
the Ti entries of Y drop below n0.01. Now,
1. Take for instance w = n0.5 and λ = log n. The probability that any vertex in the initial

graph has degree polynomial in n decays exponentially in n, and it can be observed that
the magnitude of a transition is bounded by twice the maximum degree, so we certainly
have the desired condition.

2. This convergence of expected transition size of the Markov process to f is precisely what
is guaranteed by the convergence of our degree estimates. Note that this convergence
holds as the total number of thin vertices, fat vertices, and edges is going to infinity, so
taking our stopping time to be m prevents border cases once these values drop down to
constant sizes.

3. To show that f is Lipschitz in the neighbourhood of solutions, it suffices to show that
solutions to z′(t) = f(t, z) always maintain constant average degree in each label class. To
do so, note that with high probability the initial average degrees are at most 100(maxij cij)
in each class, and then observe from the equations that whenever the average degree in a
given class i is more than 100 at some time t, −

∑
j Ē ′

ij(t) > F̄ ′
i(t) + T̄ ′

i (t).
Note that we have only shown that the conditions of the theorem hold with high probability
over initial graph configurations; clearly, this is sufficient for our desired result.

B.2 Phase 2 of the Karp–Sipser algorithm (equitable case)

We also use Wormald’s theorem to justify our analysis of the second phase of the algorithm
in the equitable case. Here, Yi is the state of the tuple after the ith run of the algorithm –
i.e., the ith time where there are no thin vertices. We define fl to be the expected change
in the tuple that one of these runs would incur if the transition probability estimates from
Appendix A held exactly and did not change throughout the run.

In order for this process to have the desired Lipschitz properties, we will need to define a
more restricted domain than the entire possible space of tuples. In particular, we will fix
some constants γ and ϵ, and consider the domain of Y to consist only of tuples where the
average degree into each class differs by at most γ, and is at least 2 + ϵ. The value of ϵ is
chosen in the analysis; to determine γ, we observe the following:

λi is defined such that λi(eλi −1)
eλ

i
−1−λi

is equal to the average degree of class i. This is
monotonically increasing in the average degree of class i; so there is some constant λ > 0
such that if the average degree in class i is at least 2 + ϵ, then λi > λ.
The function δiθi = λi

1−e−λi
· λi

eλi −1 is bounded above by 1 and monotonically decreasing
for λi > 0. So, there exists some constant η > 0 such that λ

1−e−λ · λ
eλ−1 < 1 − 2η.

λi, λj 7→ λi

1−e−λi
· λj

eλj −1
is uniformly continuous, so there exists some constant κ such

that |λi − λj | < κ implies that |
(

λi

1−e−λi
· λj

eλj −1

)
−
(

λi

1−e−λi
· λi

eλi −1

)
| < η – which, if

λi > 2 + ϵ, implies
(

λi

1−e−λi
· λj

eλj −1

)
< 1 − η.

When defined on the domain [2 + ϵ, ∞), λi is uniformly continuous as a function of
the average degree of i. So, we can define γ such that |average degree in class i −
average degree in class j| < γ implies |λi − λj | < κ whenever average degrees are greater
than 2 + ϵ.

AofA 2024

16:20 Matching Algorithms in the Sparse Stochastic Block Model

We will define the stopping time m of the process to be the first time it leaves this domain.
Note that, as in Phase 1, the value of |Y | is bounded by 100cmaxn with probability 1 − o(1),
since it is initially and can only decrease. We’re now ready to verify the criteria of Wormald’s
theorem.
1. Take again w = n0.5 and λ = log n. We can describe a single run of the algorithm as a

branching process: each degree-1 vertex created by the algorithm corresponds to a node
that has children according to the number of degree-2 vertices adjacent to its neighbour;
this corresponds to expected offspring number of δiθj < 1 − η. After each removal we are
uniform over graphs with the remaining statistics; so, as long as the branching process
size is o(n), we can treat the treat these offspring distributions roughly independently for
each node (in particular, as long as the branching process is o(n) with high probability,
all offspring distributions have expectation at most 1 − η

2 regardless of the values for the

other nodes). To prove that P
[
|Y (l)

t+1 − Y
(l)

t | >
√

w

λ2
√

log n

∣∣∣Ht

]
= o(n−3), we therefore just

need to show that the probability that a Galton–Watson tree with µ < 1 − η
2 reaches size

n0.25

(log n)5/2 is o
(1

n3

)
; this follows from a standard Chernoff bound.

2. The reason that E(Y (l)
t+1 − Y

(l)
t |Ht) = fl(t/n, Y

(1)
t /n, . . . , Y

(a)
t /n) + o(1) holds is because

we expect a constant run duration, and we know our initial degree estimates will hold
with small error terms when we remove a constant portion of the graph.

3. Continuity of fl is clear from continuity of our degree estimates and the fact that small
changes in the edge densities of the graph can’t bias the branching process too heavily.
Similar justification that it’s Lipschitz on the given domain can be found by examining
the degree estimate functions.

Since Y0/n is with high probability o(1) from having equal average degrees, and this
ODE keeps equal average degrees equal, with high probability the degrees stay within o(1)
of equal until the stopping time.

B.3 Analysis of SHORTSIGHTED
Define the 2-D Markov Chain Zt, where the first coordinate represented the number of
unmatched R0 vertices while the second coordinate represents the number of unmatched R1
vertices at time t during a run of SHORTSIGHTED. We have that Z0 = (|R0|, |R1|). If we
are in the regime where we prefer class 0, we have transition probabilities as follows:

P(Zt+1 = (x − 1, y)|Zt = (x, y)) = 1
2 (1 − (1 − p0,0)x) + 1

2 (1 − (1 − p1,0)x)

→ 1
2
(
1 − e−c0,0x/n

)
+ 1

2
(
1 − e−c1,0x/n

)
P(Zt+1 = (x, y − 1)|Zt = (x, y)) = 1

2 (1 − p0,0)x (1 − (1 − p0,1)y) + 1
2 (1 − p1,0)x (1 − (1 − p1,1)y)

→ 1
2e−c0,0x/n

(
1 − e−c0,1y/n

)
+ 1

2e−c1,0x/n
(
1 − e−c1,1y/n

)
P(Zt+1 = (x, y)|Zt = (x, y)) = 1

2 (1 − p0,0)x (1 − p0,1)y + 1
2 (1 − p1,0)x (1 − p1,1)y

→ 1
2e−c0,0x/ne−c0,1y/n + 1

2e−c1,0x/ne−c1,1y/n

We now verify the three conditions of Wormald’s:

A. Brandenberger, B. Chin, N. S. Sheffield, and D. Shyamal 16:21

1. This simply comes from the fact that at each time step, each coordinate of Zt can change
by at most 1.

2. We use the following fact from [14]: for n > 0, c ≤ n/2, and x ∈ [0, 1], we have∣∣∣∣e−cx −
(

1 − c

n

)nx
∣∣∣∣ ≤ c

ne

We can apply this term-wise to each of our probabilities, giving us the desired condition.
3. ex is Lipschitz continuous on [0, 1], therefore we have the third condition as well.
An essentially identical proof follows for the Markov chain where we prefer class 1. Therefore
we may apply Wormald’s theorem to treat these expect transitions as exact in the continuous
limit, and solve to determine the matching size. Verification of these conditions is similar for
GREEDY.

AofA 2024

Lexicographic Unranking Algorithms for the
Twelvefold Way
Amaury Curiel #

Sorbonne Université, CNRS, LIP6 - UMR 7606, Paris, France

Antoine Genitrini #

Sorbonne Université, CNRS, LIP6 - UMR 7606, Paris, France

Abstract
The Twelvefold Way represents Rota’s classification, addressing the most fundamental enumeration
problems and their associated combinatorial counting formulas. These distinct problems are
connected to enumerating functions defined from a set of elements denoted by N into another one
K. The counting solutions for the twelve problems are well known. We are interested in unranking
algorithms. Such an algorithm is based on an underlying total order on the set of structures we
aim at constructing. By taking the rank of an object, i.e. its number according to the total order,
the algorithm outputs the structure itself after having built it. One famous total order is the
lexicographic order: it is probably the one that is the most used by people when one wants to
order things. While the counting solutions for Rota’s classification have been known for years it is
interesting to note that three among the problems have yet no lexicographic unranking algorithm.
In this paper we aim at providing algorithms for the last three cases that remain without such
algorithms. After presenting in detail the solution for set partitions associated with the famous
Stirling numbers of the second kind, we explicitly explain how to adapt the algorithm for the two
remaining cases. Additionally, we propose a detailed and fine-grained complexity analysis based on
the number of bitwise arithmetic operations.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms; Theory
of computation → Generating random combinatorial structures

Keywords and phrases Twelvefold Way, Set partitions, Unranking, Lexicographic order

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.17

Related Version Full Version: https://hal.science/hal-04411470

Supplementary Material Software (Source Code): https://github.com/AMAURYCU/setpartition_
unrank [3], archived at swh:1:dir:b01a69e78b0fd972fdafc0c080421688cd9c9be6

Funding anr-fwf project PAnDAG ANR-23-CE48-0014-01.

Acknowledgements The authors thank the anonymous referees for their comments and suggested
improvements. All these remarks have increased the quality of the paper.

1 Introduction

The Twelvefold Way, a classification from the 1960s by Rota, was introduced to address
the most fundamental enumeration problems associated with their combinatorial counting
formulas. It has been extensively discussed in Stanley’s book [23, Section 1.9]. The distinct
problems are related to the enumeration of functions defined from a set of elements denoted by
N into another set denoted by K. The respective cardinalities of these sets are denoted as n

and k. Each set may consist of either distinguishable or indistinguishable elements, resulting
in consideration of four pairs of sets. Additional constraints pertain to the properties of the
functions, whether they are injective, surjective, or arbitrary. Consequently, we encounter
twelve cases when enumerating these functions. The counting solutions are well-known,
as presented in Stanley’s book [23, Section 1.9]. In Table 1, we illustrate the classical
combinatorial object enumerating each set of functions, in contrast to Stanley, who directly
presents the counting solution.

© Amaury Curiel and Antoine Genitrini;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 17; pp. 17:1–17:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Amaury.Curiel@lip6.fr
https://orcid.org/0009-0008-2416-4137
mailto:Antoine.Genitrini@lip6.fr
https://orcid.org/0000-0002-5480-0236
https://doi.org/10.4230/LIPIcs.AofA.2024.17
https://hal.science/hal-04411470
https://github.com/AMAURYCU/setpartition_unrank
https://github.com/AMAURYCU/setpartition_unrank
https://archive.softwareheritage.org/swh:1:dir:b01a69e78b0fd972fdafc0c080421688cd9c9be6;origin=https://github.com/AMAURYCU/setpartition_unrank;visit=swh:1:snp:f9a49d6aee1aa584fc947cfbe7d63150624f674b;anchor=swh:1:rev:6fe83b16cb6c88237b5345b8090cbe63d700463e
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Lexicographic Unranking for the Twelvefold Way

Table 1 The Twelvefold Way*

*The notation kn corresponds to the product k · (k − 1) · · · (k − n + 1); [n ≤ k] is the Iverson bracket returning 1
when n ≤ k and 0 otherwise;

{
·
·

}
and

(
·
·

)
stand respectively for the Stirling numbers of the second kind and the

binomial coefficients; and pk(n) is the number of integer partitions of n into k positive integers.

elts of N elts of K f is arbitrary f is injective f is surjective

1. 2. 3.
dist. dist. n-sequence in K n-permutation of K composition of N

with k subsets
enumeration kn kn k! ·

{
n
k

}
lex. unranking easy [7, Section 5] Section 4.1

4. 5. 6.
indist. dist. n-multisubset of K n-subset of K composition of n

with k terms
enumeration

(
k+n−1

n

) (
k
n

) (
n−1
n−k

)
lex. unranking see survey [7] and references therein

7. 8. 9.
dist. indist. partition of N partition of N partition of N

into ≤ k subsets into ≤ k elements into k subsets
enumeration

∑k
i=0

{
n
i

}
[n ≤ k]

{
n
k

}
lex. unranking Section 4.2 easy Theorem 11

10. 11. 12.
indist. indist. partition of n partition of n partition of n

into ≤ k parts into ≤ k parts {1} into k parts
enumeration pk(n + k) [n ≤ k] pk(n)

lex. unranking [20, Section 4.8] easy [20, Section 4.8]

In this paper, our focus lies in the generation of these classical combinatorial objects.
To initiate our exploration, we arrange each object within a given class in lexicographic
order. Subsequently, given the rank of an object, our goal is to construct it directly. This
process is referred to as a lexicographic unranking algorithm. For instance, among the six
permutations of {1, 2, 3}, the first one (with rank 0 in lexicographic order) is [1, 2, 3], followed
by the second one (with rank 1), which is [1, 3, 2], and so forth, culminating with the last one
(rank 5) being [3, 2, 1]. Consequently, the lexicographic unranking algorithm for the function
with rank 4 returns [3, 1, 2]. In Table 1, we provide references to such algorithms for 9 out of
the 12 cases. However, for cases 3, 7, and 9, no knowledge about lexicographic unranking
algorithms seems available in the literature. This paper introduces an approach to unranking
in lexicographic order for the set partitions of an n-set into k blocks (case 9). Furthermore,
we present extensions of this approach to address cases 3 and 7.

The problem of unranking objects emerges as one of the most fundamental challenge
in combinatorial generation, as seen in [21], and is applicable in various domains such as
software testing [17], optimization [9], or scheduling [24]. In different contexts, it serves
as the core problem for generating complex structures, as observed in phylogenetics [2]
and bioinformatics [1]. As mentioned earlier, to unrank, one must first establish a total
order over the objects in question. The often-utilized order is the lexicographic order due
to its ease of handling, leading to extensive study in the literature. However, Ruskey notes

A. Curiel and A. Genitrini 17:3

in [20, p. 59] that lexicographic generation is typically not the most efficient, thus requiring
particular care in lexicographic unranking. Knuth dedicates a section to the lexicographic
generation of combinatorial objects in [11], relating it to the special case of Gray codes.
Other combinatorial objects are also explored in Ruskey’s and Kreher and Stinson’s books
on combinatorial generation [20, 12]. Skiena focuses on the practical implementation of such
algorithms [22].

Usually, the approach for constructing structures using a recursive decomposition schema
involves leveraging this decomposition to build a larger object from smaller ones. This
method is extensively detailed in the well-known book by Nijenhuis and Wilf [18]. The
approach has been systematically applied to decomposable objects in the context of analytic
combinatorics, initially for recursive generation [6], and later for unranking methods [16].

Related work. Let us first quickly detail the classical unranking methods for the Twelvefold
Way. As indicated in Table 1, cases 1, 8, and 11 are straightforward. In fact, an n-sequence in
K consists of a word of length n over the finite alphabet K, making lexicographic unranking
direct. Cases 8 and 11 are extreme situations, both corresponding to the Iverson bracket
[n ≤ k]. As a result, the enumeration problems contain either one function (only when n ≤ k)
or none. The unranking method is trivial.

Cases 4, 5, and 6 are all associated with the enumeration of subsets and are directly related
to combination enumerations. Various algorithms to solve such lexicographic unranking
problems are relevant in the literature. In [7], we present a survey of the most efficient
methods with a modern algorithm complexity analysis. Moreover, we introduce a new
algorithm based on the factoradics number system, which is at least as efficient as the others.

Case 12 is associated with integer partition enumerations, and [12] presents an efficient
recursive algorithm. This algorithm follows lexicographic order but for the reverse standard
form of printing a partition. In standard form, partitions print the components from the
largest to the smallest, whereas this algorithm is based on the reverse printing (from the
smallest component to the largest one). It appears that, currently, there is no existing
lexicographic unranking method specifically designed for the standard form of printing.
case 10 can be considered an extension of case 12, much like case 7 is an extension of case 9.

The last three cases pertain to set partition problems. Various combinatorial objects,
such as permutations with a specific pattern [4], graph coloring [10], walks in graphs [5],
or trees for phylogenetics [2], are enumerated by set partitions. In a recent paper [14] the
uniform random generating for set partitions for given n and k is studied, in the context
of clustering algorithms. However, as far as we know, there is no lexicographic algorithm
that takes arguments n, k and the rank r, returning the r-th partition in lexicographic order.
Instead, there exists another classical object called a restricted growth sequence that is in
bijection with set partitions (see [15, 20]). The unranking approaches presented in these
works return such restricted growth sequences in lexicographic order. However, the natural
bijection from restricted growth sequences to partitions does not preserve the lexicographic
order.

Main results. To develop an efficient unranking generator for set partitions, we first
introduce the lexicographic order over set partitions. Some care must be taken since we are
dealing with sets of integers. Therefore, we use a standard printing of a set partition to
obtain a canonical representation. We then introduce an ad hoc combinatorial algorithm to
unrank set partitions in lexicographic order. Due to the very large integers manipulated in
the algorithms, of order of n ln n bits, our algorithm computes the necessary ones on-the-fly
in a lazy paradigm. The correctness and complexity of the algorithm are managed based

AofA 2024

17:4 Lexicographic Unranking for the Twelvefold Way

on specific combinatorial properties derived throughout the paper. Finally, we present
some experiments using a Go1 implementation for our algorithm. We leverage the simple
and efficient parallelism mechanism provided by this language to significantly reduce space
consumption without degrading time consumption for large values of n.

Organization of the paper. Following the introduction of the paper, Section 2 highlights
the combinatorial aspects of set partitions and presents some preliminary properties. In
Section 3, we introduce our method for unranking set partitions, providing key insights into
proving the correctness and complexity of our approach. Additionally, we present ideas for
running calculations in parallel and share experiments that validate our parallel approach.
Finally, Section 4 extends our algorithm to address cases 3 and 7 from the Twelvefold Way.

2 Preliminaries

2.1 Context of set partitions
▶ Definition 1. Let N be a set of n distinguishable elements. A partition π of N in k blocks
is a collection B1, B2, . . . , Bk of disjoint non-empty subsets of N such that every element
from N belongs to exactly one Bi, for i ∈ {1, . . . , k}.

As an example let N be {1, α, 2, 3, 4, β, 6, 12}. The collection {2, 3}, {4, 6, 12}, {β, 1, α} is
a partition of N in 3 blocks. In the rest of for paper, the set of positive integers from 1 to n

is denoted by JnK. We can identify a set N of n elements with JnK, thus from now we will
only be interested in partitions for JnK.

▶ Definition 2. Let 1 ≤ k ≤ n be two positive integers and N be JnK. The set of k-partitions
of N is denoted by Pn

k . The sequential form of a partition of Pn
k (i.e. a k-partitions of N)

is such that for all i ∈ JkK, the block Bi contains the smallest integer from JnK not present in
∪j<iBj . Furthermore for each block, it is represented in the increasing order of its elements.

For example {1}, {2, 3, 5}, {4, 6} is a 3-partition of J6K represented in its sequential form.
The sequential form is a canonical representation of the partition. As a shortcut, we will
from now represent a partition simply as 1/235/46. In the paper we have chosen to use the
terminology and the notations from Mansour [15].

▶ Fact. Let 1 ≤ k ≤ n be two positive integers. The number of partitions in Pn
k is the

Stirling number of the second kind denoted by
{

n
k

}
. It satisfies the following recurrence:

{
n

k

}
=

{{
n−1
k−1

}
+ k ·

{
n−1

k

}
if 1 < k < n;

1 otherwise, i.e. when k = 1 or k = n.
(1)

This sequence is stored in OEIS A0082772. We now introduce a natural order over k-partitions.

▶ Fact. Let A and B two subsets of positive integers. We say that A ≤ B iff either
A = B, or
A ⊂ B and max(A) < min(B \ A), or
B ⊂ A and min(A \ B) < max(B), or
min(A \ B) < min(B \ A).

The relation ≤ is a total order over subsets of JnK.

1 The Go language offers routines to manage concurrency.
2 OEIS stands for the On-line Encyclopedia of Integer Sequences.

https://oeis.org/A008277
https://go.dev/tour/concurrency

A. Curiel and A. Genitrini 17:5

For example {1, 3} ≤ {1, 3, 4} and {1, 3} ≤ {1, 4}. But we also have {1, 3, 4} ≤ {1, 4}.

▶ Fact. Let 1 ≤ k ≤ n be two positive integers. The lexicographic order3 over partitions
from Pn

k , in sequential form, is well defined using the latter order to compare two blocks: in
fact a partition in k blocks is a Cartesian product of k subsets of positive integers.

There is another classical representation for partitions called canonical form in [15]. A
partition in k blocks is represented as a word over a k-letters alphabet. For example the
partition 1/235/46 is represented by the word 122323. The ith letter is the index of the
block containing the integer i. Using this representation we can also define a lexicographic
order over partitions, but here we compare partitions that do not necessarily contain the
same numbers of blocks. The lexicographic order over the sequential form is not compatible
with the lexicographic order used for the sequentical form we are interested in. This can be
noted in the Table 2.

▶ Definition 3. Using the lexicographic order over the sequential form for partitions in Pn
k ,

we define a ranking function assigning to each partition its rank corresponding to the number
of k-partitions smaller than it in the lexicographic order.

Table 2 Ranking of the 3-partitions of J5K.

Rank Partition Canonical form [15] Rank Partition Canonical form [15]
0 1/2/345 12333 13 13/2/45 12133
1 1/23/45 12233 14 13/24/5 12123
2 1/234/5 12223 15 13/25/4 12132
3 1/235/4 12232 16 134/2/5 12113
4 1/24/35 12323 17 135/2/4 12131
5 1/245/3 12322 18 14/2/35 12313
6 1/25/34 12332 19 14/23/5 12213
7 12/3/45 11233 20 14/25/3 12312
8 12/34/5 11223 21 145/2/3 12311
9 12/35/4 11232 22 15/2/34 12331
10 123/4/5 11123 23 15/23/4 12231
11 124/3/5 11213 24 15/24/3 12321
12 125/3/4 11231

▶ Definition 4. Let 1 ≤ k ≤ n be two positive integers. Let P be a partition from Pn
k ,

represented in the sequential form as B1/B2/ . . . /Bk. An integer subset p is called prefix of
P if p ⊂ B1 and p ≤ B1.

For the partition 12/35/4, there are three possible prefixes ∅, 1 and 12. We can further
extend the definition of prefixes of a partition by letting N being any subset of JnK. Thus
removing the first block of the latter partition gives 35/4, we define prefixes of the 2-partition
(of {3, 4, 5}) to be ∅, 3 and 35. Here we formalize this extension.

▶ Definition 5. The definition of a prefix p of a partition is extended to any set N partitioned
in a sequence of blocks (with the first one being denoted by B1) such that p ≤ B1.

3 The lexicographic order of partitions from Pn
k in sequential form is a total order.

AofA 2024

17:6 Lexicographic Unranking for the Twelvefold Way

2.2 Combinatorial properties
We are now interested in counting results for partitions sharing the same prefix. These are
the core results for our unranking algorithm.

▶ Proposition 6. Let 1 ≤ k ≤ n be two positive integers. Let ℓ and d be two integers such
that either ℓ = d = 1 or 1 < ℓ ≤ d. For a given prefix 1 α2 α3 . . . αℓ−1 d, we define Sn

k (ℓ, d)
to be the number of partitions in Pn

k accepting this prefix of length ℓ: We have

Sn
k (ℓ, d) =

min(n−k−ℓ+1,n−d)∑
u=0

{
n − ℓ − u

k − 1

}(
n − d

u

)
.

Let us remark that the notation Sn
k (ℓ, d) is a bit confusing in the sense that it is relative

to the whole prefix 1 α2 α3 . . . αℓ−1 d. However the specific values of α2 up to αℓ−1 are not
modifying the values of Sn

k (ℓ, d).

Proof. First if ℓ = d = 1, then in the sequential form the first block necessarily contains 1.
Thus Sn

k (1, 1) = |Pn
k | =

{
n
k

}
=

∑n−k
u=0

{
n−1−u

k−1
}(

n−1
u

)
. The latter equality is given e.g. in [8,

p. 251, Table 251].
In the second case when 1 < ℓ ≤ d, we aim at counting the number of partitions in Pn

k

accepting 1 α2 α3 . . . αℓ−1 d as a prefix. In order to exhibit a combinatorial interpretation,
we rewrite Sn

k (ℓ, d) as

Sn
k (ℓ, d) =

min((n−ℓ)−(k−1),n−d)∑
u=0

{
n − (ℓ + u)

k − 1

}(
n − d

u

)
.

Once the prefix is given, it remains to complete the first block B1 from the partition, and
then to calculate how we can further partition the other elements in the next blocks. The
variable u in the sum corresponds to the number of elements that are appended to the prefix
to complete B1. Its value ranges from 0 up to the maximal number of elements that we can
append i.e. (n − ℓ) − (k − 1) because at least k − 1 among the remaining n − ℓ elements
must be assigned to the other k − 1 blocks. Obviously the number of possible elements u

is also upper bounded by the number of remaining elements, i.e. n − d. Once the number
u of elements for the completion of B1 is given, we choose u elements greater than d: the
number of possibilities is given by the binomial coefficient. Finally it remains to build the
other blocks of the partition: we partition n − (ℓ + u) elements into k − 1 blocks. Hence the
formula is proved. ◀

We introduce an example using Table 2 for P5
3 . If we are interested in the prefix 13, then

there are 3 partitions without completing block B1, in the sum, when u = 0 we get
{3

2
}

= 3.
The other possible value is u = 1 with the general term being

{2
2
}(2

1
)

= 2 as it appears in
the table.

In order to get a formula that is more efficient to calculate, we observe that the latter
numbers Sn

k (ℓ, d) depend essentially in three variables instead of four. The proof is direct
with some variable renaming.

▶ Proposition 7. Let n, k, d be integers with 0 ≤ k ≤ n and 0 ≤ d ≤ n. By defining

S̃n
k (d) =

min(n−k,n−d)∑
u=0

{
n − u

k

}(
n − d

u

)
, we get Sn

k (ℓ, d) = S̃n−ℓ
k−1(d − ℓ).

A. Curiel and A. Genitrini 17:7

We note that Sn
k (1, 1) = S̃n−1

k−1 (0) =
{

n
k

}
. Note that the 3-dimension sequence S̃ seems not to

be stored in OEIS. There exit several generalizations of Stirling numbers, but none of them
apparently corresponds to our sequence S̃.

▶ Corollary 8. The numbers S̃n
k (d) satisfy the following recurrence:

S̃n
k (d) =

S̃n−1

k−1 (d − 1) + k · S̃n−1
k (d − 1) if 1 ≤ k ≤ n and 1 ≤ d ≤ n;{

n+1
k+1

}
if d = 0 and 0 ≤ k ≤ n;

0 otherwise.
(2)

Note the later recurrence is similar to the one satisfied by Stirling numbers of the second
kind (but with here a third variable d giving some kind of level of numbers).

▶ Proposition 9. Let n, k, d be integers with 0 ≤ k ≤ n and 0 ≤ d ≤ n. The function S̃n
k (d)

can be represented as a binomial transform:

S̃n
k (d) =

min(n−k,d)∑
u=0

(−1)u

{
n + 1 − u

k + 1

}(
d

u

)
.

The main idea of the proof consists in proving that the two expressions given in Propositions 7
and 9 are satisfying the same recurrence and thus are equal.

Proof. In order to prove this new expression for S̃, we just have to prove that this expression
satisfy the recurrence stated in Corollary 8. Substituting d by 0 we get the base case. We
now consider the case where the three integers n, k, d satisfy 0 ≤ k ≤ n and 1 ≤ d ≤ n. Using
Proposition 9 in the case where 0 < k < n (the cases k = 0 or k = n are obvious) we have

S̃n−1
k−1 (d − 1) + k · S̃n−1

k (d − 1) =
min(n−k,d−1)∑

u=0
(−1)u

{
n − u

k

}(
d − 1

u

)

+ k ·
min(n−1−k,d−1)∑

u=0
(−1)u

{
n − u

k + 1

}(
d − 1

u

)
By using factorization and Stirling numbers of the second kind recurrence, we obtain:

S̃n−1
k−1 (d − 1) + k · S̃n−1

k (d − 1) =
min(n−k,d−1)∑

u=0
(−1)u

({
n + 1 − u

k + 1

}
−

{
n − u

k + 1

}) (
d − 1

u

)
.

After having telescoped the two sums we get the stated result. ◀

Finally, given two prefixes, one being smaller than the second one, the next proposition
allows to compute how many partitions are in-between the two prefixes. More formally:

▶ Proposition 10. Let 1 ≤ k ≤ n be two positive integers. Let d1 ∈ JnK \ {1}, d0 ∈ Jd1 − 1K
and ℓ > 1 be integers. For a given prefix 1 α2 α3 . . . αℓ−2 d0, the number of elements of Pn

k

that admit a length-ℓ prefix satisfying 1 α2 . . . αℓ−2 d0 d̃1 (for all d̃1 ranging from d0 + 1 to
d1) is given by

Rn
k (ℓ, d0, d1) = S̃n−ℓ

k−1(d0 − ℓ) − S̃n−ℓ
k−1(d1 + 1 − ℓ).

AofA 2024

17:8 Lexicographic Unranking for the Twelvefold Way

3 Methods for unranking set partitions

Merging the combinatorial properties stated in the previous section, we are now ready to
design algorithms to unrank set partitions in the lexicographic order.

3.1 Unranking algorithm design
Our aim consists in constructing the r-th partition related to a pair n, k in sequential form
for the lexicographic order. The constructions follow the next main lines. The global idea
consists in building the normalization of the partition. So we build together its block pattern
and its reversed factoradics (seeing the partition as a size-n permutation).

The building of the blocks is going from left to right;
The construction of a block is also from left to right, component by component using a
binary search approach;
Finally once the block pattern and the reversed factoradics are set, a slight adaptation of
the lexicographic permutation unranking algorithm gives the result.

The details for the correctness of our approach lies on the ranking function associated to
the set partitions.

We first present in detail the main function Unranking of Algorithm 1. Using a loop,
at each turn it defines the next block of the partition and then refine the value of the rank
related to the remaining part of the partition. The result B returned by Next_block
contains the indices of the components of the block that has been calculated and acc allows
to update the rank so that it is related to the remaining part of the partition that must still
be computed. With our previous definition, B is the normalization of the corresponding
partition block. At the end of the function a dynamic extraction is executed in an array
containing elements from 1 to n according to the indices in Res.

Algorithm 1 Lexicographic unranking of the partition with rank r in Pn
k .

1: function Unranking(n, k, r)
2: n′ := n
3: Res := []
4: while k > 1 do
5: (B, acc) := Next_block(n, k, r)
6: Append(Res, B)
7: r := r − acc
8: n := n − len(B)
9: k := k − 1

10: Append(Res, [0, 0, . . . , 0])
11: Res :=Extract(n′, Res)
12: return Res

1: function Extract(n, R)
2: L := [1, 2, . . . , n]
3: P := []
4: for r in R do
5: p := []
6: for i in r do
7: Append(p, L[i])
8: Remove(L, i)
9: Append(P, p)

10: return P

Remove(L, i) removes element with index i in L.

1: function Next_block(n, k, r)
2: Block := [0]; acc :=

{
n−1
k−1

}
3: if r < acc then
4: return (Block, 0)
5: d0 := 1; index := 2; inf := 2; sup := n
6: complete := F alse
7: while not complete do
8: while inf < sup do
9: mid := ⌊(inf + sup)/2⌋

10: if r >= acc+Rn
k (index−1, d0, mid−1) then

11: inf := mid + 1
12: else
13: sup := mid

14: mid := inf ; threshhold :=
{

n−index
k−1

}
15: acc := acc + Rn

k (index − 1, d0, mid − 2)
16: Append(Block, mid − index)
17: if r < threshhold + acc then
18: complete := T rue
19: else
20: index := index + 1
21: d0 := mid; inf := d0 + 1; sup := n
22: acc := acc + threshhold
23: return (Block, acc)

A. Curiel and A. Genitrini 17:9

The function Next_block takes parameters n, k, r and returns essentially the first block
of the r-th partition in Pn

k . In fact, using Table 2 the call Next_block(5, 3, 16) returns
0 1 1 (instead of 1 3 4), the latter block being obtained through a dynamic extraction of the
element 0 in [1, 2, 3, 4, 5] then the element 1 is extracted in the remaining part [2, 3, 4, 5] and
finally the element 1 in [2, 4, 5]. Constructing the blocks of indices instead of the blocks of
values allows to neglect about the remaining elements for the further blocks construction.
Note that obviously the last block of the partition contains only the indices 0 (Line 10 from
Unranking Algorithm) and the first element of a block is always index 0, both due to
the sequential form. Finally while calling Unranking(5, 3, 16), at the end of Line 10, Res

contains [[0 1 1][0][0]]. Reading the components from right to left we get the factoradics
0 0 1 1 0 of the number 8 corresponding to the lexicographic rank of the permutation
[1, 3, 4, 2, 5] (cf. [7] for details).

▶ Theorem 11. Unranking(n, k, ·) is a lexicographic unranking algorithm for set partitions
from Pn

k .

Proof key-ideas. The core of the function Next_block relies on the while loop (line 7).
When it is entered (let say for the i-th time), the variable Block contains the length-i prefix
of the normalized (final) block. Thus at this evaluation the loop determines (with a binary
search) the i + 1th element that is appended to Block. Then, we calculate if the block is
finished (line 17) or if we continue (line 19). ◀

3.2 Complexity analysis and experiments for unranking
In our implementation in Go4, we offer two approaches for the necessary Stirling numbers
calculations: either a precomputation of them or a computation on the fly of those that are
needed at each step. We never precompute the 3 dimension table S̃n

k (d). In fact, in many
bad cases these numbers are of order of n!, thus precomputing would be too expensive while
only few of the numbers are needed. We compute the necessary numbers S̃n

k (d) on the fly.
First let us recall the behavior of the sequence of Stirling numbers of the second kind

when k is ranging from 1 to n.

▶ Fact. Let 1 ≤ k ≤ n be two positive integers. The sequence
{

n
k

}
is unimodal and its

maximum is reached when kn ∼ n/ ln n. Around this value, we have log
{

n
kn

}
= Θ(n log n)5.

Furthermore, we have an upper bound valid for all 1 ≤ k ≤ n:

log
{

n

k

}
≤ (n − k) log k + log

(
n

k

)
≤ (n − k) log k + k log

(n · e

k

)
.

See the fundamental paper of Rennie and Dobson [19] to get a proof for these results.
In the following we propose six distinct implementations of the function S̃ presented in

Proposition 7 and underlying the function R from Proposition 10.
S_v1 direct implementation of the formula stated in Proposition 7;
S_v2 implementation of the formula from Proposition 7 taking into account the symmetry

of binomial coefficients, thus the sum contains half of the terms in comparison to S_v1
(and thus half of the multiplications);

S_v3 direct implementation of the formula stated in Proposition 9;

4 Go implementation and the material used for repeating the experiments are all available here.
5 In this paper we use the notation log for the logarithm in basis 2.

AofA 2024

https://github.com/AMAURYCU/setpartition_unrank

17:10 Lexicographic Unranking for the Twelvefold Way

S_v4 implementation of the formula from Proposition 9 taking into account the symmetry of
binomial coefficients, thus the sum contains half of the terms in comparison to S_v3;

S_v5 is our most efficient algorithm without precomputations. The calculation way consists
in deciding according whether a call to S_v2 or to S_v4 should be the most efficient,
according to the number of terms in the sums interacting with Propositions 7 and 9;

S_v6 same algorithm than S_v5 but with all necessary Stirling numbers of the second kind
precomputed.

The integers computed during the unranking algorithm are very large, thus a classical
complexity in the number of arithmetical operations is not precise. We hence are interested
in the bit-complexity, corresponding the the number of atomic operations on digits.

▶ Theorem 12. For the time complexity, the algorithm Unranking based on each of the
function S_v· has a bit-complexity bounded by

O

(
(n − k)3M(n)

n
ln n log k + k(n − k)2M(n)

n
ln n log

(n · e

k

))
,

where M(n) is the bit complexity for the multiplication of two numbers, each one containing
n bits.

The naïve multiplication algorithm satisfies M(n) = Θ(n2). But using, for example, Karat-
suba algorithm, we obtain M(n) = Θ(nlog 3) for the time complexity. In Go6, as soon as the
integers are greater than 240, Karatsuba multiplication algorithm is used. In our context,
almost all cases are thus based on the latter algorithm.

Proof. We are interested in a worst case complexity analysis when n is large and for k

ranging in JnK. We are using the same kind of analysis in bit complexity as the one presented
in [7, Section 4.3]. We compute an upper bound of the complexity in the central range of
the Stirling numbers of the second kind. The central range, when n tends to infinity, is
observed when k = Θ(n/ ln n). A detailed similar analysis is presented in the paper [13]. In
our context each Stirling number necessitates log

{
n
k

}
bits to be stored. They are multiplied

by binomial coefficients containing at most n bits. Thus Stirling numbers are separated in
blocks of n bits in order to use a multiplication of similar sizes numbers, inducing a time
complexity bounded by log

{
n
k

}
/n · M(n). Furthermore the number of calls the the function

S̃ is O((n − k) ln n) induced by the repetitive calls to the binary search algorithm. Compiling
all these upper bounds gives the stated bit-complexity. ◀

For approach S_v6, the following result establishes that the precomputation is negligible
in terms of time complexity compared to the unranking itself. However note that the memory
complexity is quadratic instead of linear (in n) by using the precomputation step.

▶ Proposition 13. The bit-complexity for the Stirling numbers precomputation is bounded by

O

(
k(n − k)2M(log k) + k2(n − k) log n

log k
M(log k)

)
.

In order to get the Stirling numbers on the fly, we use parallel compuatations. In fact, for
each block determination, we observe that only two neighbors columns from the triangle of
numbers are needed. Thus during the determination of a block, we compute in parallel the

6 Go documentation for big integers manipulations.

https://cs.opensource.google/go/go/+/master:src/math/big/nat.go

A. Curiel and A. Genitrini 17:11

Figure 1 Time (in seconds) for unranking a partition in P1000
k when k is ranging in J1000K.

next two columns that will be necessary for the next block. Computing column n − 1 from
column n costs less time than the unranking algorithm. Thus, with parallel computation of
the Stirling numbers, we achieve the same time complexity as the algorithm where Stirling
numbers are precomputed while consuming a O(n) amount of memory thus needing O(n2)
memory size.

In Figure 1, we run experiments7 by fixing n = 1000 and k ranging from 2 to 992 with
steps of 15 units. For each value of k, 500 uniform samples are computed and the average time
for the building of the partition is drawn for each Algorithm S_v1 up to S_v6. Obviously
Algorithms S_v2 and S_v4 are better than their naïve versions respectively S_v1 and S_v2.
It is interesting to note that the optimization S_v5, obtained by computing the most efficient
formula between Propositions 7 and 9. Finally we remark that the Algorithm S_v5 is
almost as efficient as S_v6 where all precomputation of Stirling numbers have been stored
before the computation of the partition. Strangely, for the smallest values of k, we note
that S_v5 is even faster than S_v6. This is probably due to the RAM accesses: in fact in
some preliminary experiments with computers equipped with DDR5 RAM Algorithm S_v6
is always faster than S_v5, and this is what is expected.

4 Extension and conclusion

As we observe in Table 1, both enumeration cases 3 and 7 are some extended version of the
enumeration case 9. An adaptation for the Ranking function allows to rank the families
counted by cases 3 and 7; then adapting the unranking algorithm solves these cases.

4.1 Ordered set partitions
Recall Stirling numbers of the second kind are counting the numbers of surjective functions
from set N to set K, where the elements of N are distinguishable and those of K are
indistinguishable. We can represent these functions as set partitions. Now, what happens

7 The experiments provided in this paper are driven by using a PC equipped with an Intel Xeon X5677
processor, 32GB of DDR4-SDRAM and running Debian GNU/Linux 12.

AofA 2024

17:12 Lexicographic Unranking for the Twelvefold Way

when elements of K are distinguished? These functions are counted by ordered Stirling
numbers of the second kind. In addition, they can be represented as ordered set partitions,
which are similar to set partitions except that the order of the subsets matters. For instance,
while in the world of unordered set partitions, elements 14/25/3; 14/3/25; 25/14/3; 25/3/14;
3/14/25 and 3/25/14 are equivalent and represented by the partition 14/25/3 in sequential
form, in the world of ordered set partition, the 6 elements are all different.

▶ Proposition 14. Let 1 ≤ k ≤ n, be two integers with n being the cardinality of set N . The
number of ordered set partitions of N in k (non empty disjoint) subsets is k! ·

{
n
k

}
. The

family of these partitions is denoted by On
k .

The proof is direct: the blocks in the sequential form of a set partition are distinguishable,
thus permuting them gives the associated ordered set partitions.

▶ Fact. Let 1 ≤ k ≤ n, be two integers, the lexicographic order on set partitions Pn
k is easily

extended to get the lexicographic order for the ordered set partitions from On
k .

We can now derive the enumeration core result in this new context.

▶ Proposition 15. Let 1 ≤ k ≤ n be two integers. Let ℓ and d be two integers such that
either ℓ = d = 1 or 1 < ℓ ≤ d. For a given prefix 1 α2 α3 . . . αℓ−1 d, we define T n

k (ℓ, d) to be
the number of ordered set partitions in On

k accepting this prefix.

T n
k (ℓ, d) =

min(n−k−ℓ+1,n−d)∑
u=0

k!
{

n − ℓ − u

k − 1

}(
n − d

u

)
.

This formula is the analogous to Sn
k (ℓ, d). Using the same variable changes, we also get a

three variable function, like S̃n
k (d). Then we can deduce an adaptation of our first algorithm

by replacing Stirling numbers of the second kind by ordered Stirling numbers of the second
kind and using the latter formula.

4.2 Bell’s set partitions
We denote by F the family of these functions. Such functions can be represented as unordered
set partitions with at most k blocks where k is the numbers of elements in K.
Let Ki ⊂ K be a subset of i distinguishable elements and Bi the functions that are surjective
from N into Ki. We have Bn

k =
⋃k

i=1 Bi and for a given i ∈ JkK, |Bi| =
{

n
i

}
. Obviously

|Bn
k | =

∑k
i=0 |Bi| =

∑k
i=0

{
n
i

}
. The cardinality of Bn

k is counted by the k-restricted Bell
numbers and finally, when k = n, we get the Bell numbers.

▶ Fact. Let 1 ≤ k ≤ n, be two integers, the lexicographic order on set partitions Pn
k is also

lexicographic for Bn
k .

▶ Proposition 16. Let 1 ≤ k ≤ n be two integers. Let ℓ and d be two integers such that
either ℓ = d = 1 or 1 < ℓ ≤ d. For a given prefix 1 α2 α3 . . . αℓ−1 d, we define Un

k (ℓ, d) to be
the number of Bell’s set partitions in Bn

k accepting of this prefix.

Un
k (ℓ, d) =

min(n−k−ℓ+1,n−d)∑
u=0

k∑
i=1

{
n − ℓ − u

i − 1

}(
n − d

u

)
.

As a final remark, the correctness of both previous algorithms is directly hanging to the
one for the set partition algorithm. What is remaining is their complexity analysis: it is not
difficult, and it will be written in a long version of this paper.

A. Curiel and A. Genitrini 17:13

References
1 N. Ali, A. Shamoon, N. Yadav, and T. Sharma. Peptide Combination Generator: a Tool

for Generating Peptide Combinations. ACS Omega, 5(11):5781–5783, 2020. doi:10.1021/
acsomega.9b03848.

2 O. Bodini, A. Genitrini, C. Mailler, and M. Naima. Strict monotonic trees arising from
evolutionary processes: Combinatorial and probabilistic study. Advances in Applied Math.,
133:102284, 2022. doi:10.1016/J.AAM.2021.102284.

3 Amaury Curiel and Antoine Genitrini. Set Partition Unranking. Software, swhId:
swh:1:dir:b01a69e78b0fd972fdafc0c080421688cd9c9be6 (visited on 2024-07-09). URL:
https://github.com/AMAURYCU/setpartition_unrank.

4 C. Defant. Highly sorted permutations and Bell numbers. Enumerative Combinatoricas and
Applications, 1(1), 2021. doi:10.48550/arXiv.2012.03869.

5 A. Dzhumadil’daev and D. Yeliussizov. Walks, partitions, and normal ordering. Electronic
Journal of Combinatorics, 22(4):4, 2015. doi:10.37236/5181.

6 P. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus for the random generation
of labelled combinatorial structures. Theoretical Computer Science, 132(1-2):1–35, 1994.
doi:10.1016/0304-3975(94)90226-7.

7 A. Genitrini and M. Pépin. Lexicographic Unranking of Combinations Revisited. Algorithms,
14(3), 2021. doi:10.3390/A14030097.

8 R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation
for Computer Science. Addison-Wesley, Reading, MA, second edition, 1989. URL: https:
//www-cs-faculty.stanford.edu/%7Eknuth/gkp.html.

9 I. Grebennik and O. Lytvynenko. Developing software for solving some combinatorial generation
and optimization problems. In 7th Int. Conf. on Application of Information and Communication
Technology and Statistics in Economy and Education, pages 135–143, 2017. URL: http:
//openarchive.nure.ua/handle/document/5498.

10 A. Hertz and H. Mélot. Counting the number of non-equivalent vertex colorings of a graph.
Discrete Applied Mathematics, 203:62–71, 2016. doi:10.1016/J.DAM.2015.09.015.

11 D. E. Knuth. The Art of Computer Programming, Volume 4A, Combinatorial Algorithms.
Addison-Wesley Professional, 2011. URL: https://www-cs-faculty.stanford.edu/~knuth/
taocp.html.

12 D. L. Kreher and D. R. Stinson. Combinatorial Algorithms: generation, enumeration, and
search. CRC Press, 1999. doi:10.1145/309739.309744.

13 G. Louchard. Asymptotics of the Stirling numbers of the second kind revisited. Applicable
Analysis and Discrete Mathematics, 7(2):193–210, 2013. doi:10.46298/dmtcs.501.

14 Q. Lutz, E. de Panafieu, M. Stein, and A. Scott. Active clustering for la-
beling training data. In Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
pages 8469–8480, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/
47841cc9e552bd5c40164db7073b817b-Abstract.html.

15 T. Mansour. Combinatorics of Set Partitions. Discrete Mathematics and Its Applications.
Taylor & Francis, 2012. doi:10.1201/b12691.

16 C. Martínez and X. Molinero. A generic approach for the unranking of labeled combinatorial
classes. Random Structures & Algorithms, 19(3-4):472–497, 2001. doi:10.1002/RSA.10025.

17 A. F. Myers. k-out-of-n:G System Reliability With Imperfect Fault Coverage. IEEE Transac-
tions on Reliability, 56(3):464–473, 2007. doi:10.1109/TR.2007.903229.

18 A. Nijenhuis and H. S. Wilf. Combinatorial algorithms. Computer science and applied
mathematics. Academic Press, New York, NY, 1975. URL: https://www2.math.upenn.edu/
~wilf/website/CombAlgDownld.html.

19 B.C. Rennie and A.J. Dobson. On stirling numbers of the second kind. Journal of Combinatorial
Theory, 7(2):116–121, 1969. doi:10.1016/S0021-9800(69)80045-1.

20 F. Ruskey. Combinatorial Generation, 2003.

AofA 2024

https://doi.org/10.1021/acsomega.9b03848
https://doi.org/10.1021/acsomega.9b03848
https://doi.org/10.1016/J.AAM.2021.102284
https://archive.softwareheritage.org/swh:1:dir:b01a69e78b0fd972fdafc0c080421688cd9c9be6;origin=https://github.com/AMAURYCU/setpartition_unrank;visit=swh:1:snp:f9a49d6aee1aa584fc947cfbe7d63150624f674b;anchor=swh:1:rev:6fe83b16cb6c88237b5345b8090cbe63d700463e
https://github.com/AMAURYCU/setpartition_unrank
https://doi.org/10.48550/arXiv.2012.03869
https://doi.org/10.37236/5181
https://doi.org/10.1016/0304-3975(94)90226-7
https://doi.org/10.3390/A14030097
https://www-cs-faculty.stanford.edu/%7Eknuth/gkp.html
https://www-cs-faculty.stanford.edu/%7Eknuth/gkp.html
http://openarchive.nure.ua/handle/document/5498
http://openarchive.nure.ua/handle/document/5498
https://doi.org/10.1016/J.DAM.2015.09.015
https://www-cs-faculty.stanford.edu/~knuth/taocp.html
https://www-cs-faculty.stanford.edu/~knuth/taocp.html
https://doi.org/10.1145/309739.309744
https://doi.org/10.46298/dmtcs.501
https://proceedings.neurips.cc/paper/2021/hash/47841cc9e552bd5c40164db7073b817b-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/47841cc9e552bd5c40164db7073b817b-Abstract.html
https://doi.org/10.1201/b12691
https://doi.org/10.1002/RSA.10025
https://doi.org/10.1109/TR.2007.903229
https://www2.math.upenn.edu/~wilf/website/CombAlgDownld.html
https://www2.math.upenn.edu/~wilf/website/CombAlgDownld.html
https://doi.org/10.1016/S0021-9800(69)80045-1

17:14 Lexicographic Unranking for the Twelvefold Way

21 Y. Shablya, D. Kruchinin, and V. Kruchinin. Method for Developing Combinatorial Generation
Algorithms Based on AND/OR Trees and Its Application. Mathematics, 8(6):962, 2020.
doi:10.3390/math8060962.

22 S. Skiena. The Algorithm Design Manual, Third Edition. Texts in Computer Science. Springer,
2020.

23 R. P. Stanley. Enumerative Combinatorics: Volume 1. Cambridge Univ. Press, 2011. doi:
10.1017/CBO9781139058520.

24 Y. Tamada, S. Imoto, and S. Miyano. Parallel Algorithm for Learning Optimal Bayesian
Network Structure. J. Mach. Learn. Res., 12:2437–2459, 2011. doi:10.5555/1953048.2021080.

https://doi.org/10.3390/math8060962
https://doi.org/10.1017/CBO9781139058520
https://doi.org/10.1017/CBO9781139058520
https://doi.org/10.5555/1953048.2021080

Periodic Behavior of the Minimal Colijn-Plazzotta
Rank for Trees with a Fixed Number of Leaves
Michael R. Doboli 1 #

Department of Mathematics, Stanford University, CA, USA

Hsien-Kuei Hwang #

Institute of Statistical Science, Academia Sinica, Taipei, Taiwan

Noah A. Rosenberg #

Department of Biology, Stanford University, CA, USA

Abstract
The Colijn-Plazzotta ranking is a certain bijection between the unlabeled binary rooted trees
and the positive integers, such that the integer associated with a tree is determined from the
integers associated with the two immediate subtrees of its root. Letting an denote the minimal
Colijn-Plazzotta rank among all trees with a specified number of leaves n, the sequence {an}
begins 1, 2, 3, 4, 6, 7, 10, 11, 20, 22, 28, 29, 53, 56, 66, 67 (OEIS A354970). Here we show
that an ∼ 2[2P (log2 n)]n, where P varies as a periodic function dependent on {log2 n} and satisfies
1.24602 < 2P (log2 n) < 1.33429.

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems

Keywords and phrases Colijn–Plazzotta ranking, recurrences, unlabeled trees

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.18

Funding Noah A. Rosenberg: National Institutes of Health grant R01 HG005855.

Acknowledgements We are grateful to Michael Fuchs and Daniel Krenn for discussions of this work,
and to Stephan Wagner for discussions and for comments on a draft of the manuscript.

1 Introduction

Consider an unlabeled binary rooted tree t with m(t) leaves. Colijn & Plazzotta [2] introduced
a ranking for the unlabeled binary rooted trees, according to which the rank f(t) of t is
determined from the ranks ℓ(t) of its left subtree and r(t) of its right subtree: f(t) = 1
for m(t) = 1, and f(t) = f

(
ℓ(t)

)[
f

(
ℓ(t)

)
− 1

]
/2 + 1 + f

(
r(t)

)
for m(t) ≥ 2. To compute

the Colijn-Plazzotta rank, or CP rank, of a tree t, the “left” and “right” subtrees of t are
arranged in a canonical order, such that f

(
ℓ(t)

)
≥ f

(
r(t)

)
.

The ranking f bijectively associates positive integers to unlabeled binary rooted trees –
which number 1, 1, 2, 3, 6, 11, 23, 46, 98 for trees of n = 1 to 10 leaves (the Wedderburn-
Etherington numbers, OEIS A001190). Among trees with n leaves, CP ranks vary greatly; for
example, the 8-leaf symmetric tree has rank 11 and the 8-leaf caterpillar has rank 2,598,062.

The CP rank has been proposed for various uses in the mathematical study of evolutionary
trees [2, 3, 9]. It provides a tree encoding with the property that similar shapes often have
nearby ranks, even if they possess different numbers of leaves. As a result, it gives a basis
for computing a distance between unlabeled trees of differing size – a useful metric for the
evolutionary trees that might be produced from genetic sequences in pathogens and other
organisms. Because highly balanced shapes have the smallest rank among trees with a fixed

1 Corresponding author.

© Michael R. Doboli, Hsien-Kuei Hwang, and Noah A. Rosenberg;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 18; pp. 18:1–18:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mdoboli@stanford.edu
https://orcid.org/0009-0001-2343-3461
mailto:hkhwang@stat.sinica.edu.tw
https://orcid.org/0000-0002-9410-6476
mailto:noahr@stanford.edu
https://orcid.org/0000-0002-1829-8664
https://doi.org/10.4230/LIPIcs.AofA.2024.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Periodic Behavior of the Minimal Colijn-Plazzotta Rank

number of leaves and highly unbalanced shapes have the largest rank, the CP rank can
serve as a measure of the balance of an unlabeled tree – for example, in studies that seek to
compare the balance of observed trees to that predicted by models of evolutionary processes.

The minimal and maximal CP ranks across all trees with a fixed number of leaves n

can assist in assessing the CP ranks of specific trees, for example by normalizing the CP
rank as a measure of tree balance. Rosenberg [9] studied the minimal and maximal CP
ranks across trees with n leaves, identifying the trees that give rise to those ranks. The
maximal rank, denoted bn, recursively follows bn = bn−1(bn−1 − 1)/2 + 2 for n ≥ 2, with
b1 = 1 [9, Theorem 9]. As a quadratic recursion of a form studied by Aho & Sloane [1], bn

has asymptotic growth bn ∼ 2β2n for a constant β ≈ 1.05653 [9, Corollary 14].
The minimal CP rank, denoted an, recursively follows [9, Theorem 6]

an =
{

1, n = 1
a⌈n/2⌉(a⌈n/2⌉ − 1)/2 + 1 + a⌊n/2⌋, n ≥ 2.

(1)

For n equal to a power of 2, Rosenberg [9] showed that the recursion for an is related to that
for bn, producing an ∼ 2αn for a constant α = β4, α ≈ 1.24602 [9, Theorem 13]. For general
n, however, Rosenberg [9] gave only an upper bound, an < (3

2)n [9, Proposition 15].
Here we obtain the asymptotic growth of an. Informally, our main result, obtained in

Theorems 6 and 9 and summarized in Corollary 10, states that the minimal Colijn-Plazzotta
rank an across trees with n leaves is approximately equal to 2[2P (log2 n)]n, where P is a
bounded periodic function of period 1. Moreover, the minimum and supremum of 2P are
given by constants c1 ≈ 1.24602 and c2 ≈ 1.33429.

Extremal properties of the non-differentiable periodic functions arising from recursions
such as eq. 1 that involve ⌊n/2⌋ and ⌈n/2⌉ are often difficult to characterize; many examples
therefore rely on case-dependent approaches. The computation here uses an inductive method
for studying the extrema.

2 An elementary improvement to the bounds on an

We begin by providing a refined exponential upper and lower bound on an for n ≥ 66 that
improves upon the (3

2)n exponential upper bound in [9].

▶ Proposition 1. For all integers n ≥ 66, 3(1.2)n < an < (1.34)n.

Proof. We proceed via induction on n. For the base case, we verify computationally from
eq. 1 that 3(1.2)n < an < (1.34)n for all integers 66 ≤ n ≤ 132. For the inductive hypothesis,
assume that 3(1.2)k < ak < (1.34)k for all k, 66 ≤ k < n. Because we have already considered
66 ≤ n ≤ 132, suppose n > 132. Writing an = 1

2 a⌈n/2⌉(a⌈n/2⌉ − 1) + a⌊n/2⌋ + 1, by the
inductive hypothesis, we have for the lower bound

an >
3(1.2)⌈n/2⌉[3(1.2)⌈n/2⌉ − 1]

2 + 3(1.2)⌊n/2⌋ + 1

= 9
2(1.2)2⌈n/2⌉ − 3

2(1.2)⌈n/2⌉ + 3(1.2)⌊n/2⌋ + 1

≥ 9
2(1.2)2⌈n/2⌉ +

[
− 3

2(1.2) + 3
]
(1.2)⌊n/2⌋ + 1 >

9
2(1.2)n + 1.2(1.2)⌊n/2⌋ + 1 > 3(1.2)n.

M. R. Doboli, H.-K. Hwang, and N. A. Rosenberg 18:3

For the upper bound, by the recursive formula for an and the inductive hypothesis,

an <
(1.34)⌈n/2⌉[(1.34)⌈n/2⌉ − 1]

2 + (1.34)⌊n/2⌋ + 1

= 1
2(1.34)2⌈n/2⌉ − 1

2(1.34)⌈n/2⌉ + (1.34)⌊n/2⌋ + 1

≤ 1
2(1.34)2⌈n/2⌉ +

(
− 1

2 + 1
)

(1.34)⌊n/2⌋ + 1

= 1
2(1.34)2⌈n/2⌉ + 1

2(1.34)⌊n/2⌋ + 1 ≤ 1
2(1.34)n+1 + 1

2(1.34)n/2 + 1

= (1.34)n +
[

− 0.33(1.34)n + 0.5(1.34)n/2 + 1
]

< (1.34)n,

where the last step follows by noting that −0.33(1.34)n + 0.5(1.34)n/2 + 1 < 0 for 1.34n/2 >

(0.5 +
√

1.57)/0.66, or n > 2 log[(0.5 +
√

1.57)/0.66]/ log 1.34 ≈ 6.6754. ◀

We continue now with a more precise analysis via the methods of [4].

3 Obtaining the periodically varying exponential order

Hwang et al. [4] studied recurrences with the nth term written in terms of ⌊ n
2 ⌋ and ⌈ n

2 ⌉.
Such recurrences can arise in tree problems, in which a quantity associated with the root is
written in terms of corresponding quantities for subtrees (see also e.g. [6, 8]). The floor and
ceiling function give rise to periodicity in the exponential orders of the associated sequences.

Theorem 5 of [4], which considers recurrences that involve ⌈ n
2 ⌉, enables asymptotic

evaluation of an from eq. 1. Denote {t} = t − ⌊t⌋, writing {t−} as the left-continuous version
of {t}: {t−} = 1 for integer t, and {t−} = {t} otherwise. In other words, {t−} = 1 − {−t}.

▶ Theorem 2 ([4]). Suppose f(n) = 2f(⌈ n
2 ⌉) + g(n) for n ≥ 2, where f(1) is given and

g(1) = 0. Suppose further that the function Gm(t) =
∑m

k=0 2−kg
(
⌈2kt⌉

)
converges uniformly

to G(t) =
∑∞

k=0 2−kg
(
⌈2kt⌉

)
for t ∈ [1, 2].

Then for n ≥ 1, we have f(n) = nP (log2 n) − Q(n), with P and Q defined by

P (t) = 2−{t−}
[
G

(
2{t−})

+ 2f(1)
]

Q(n) = G(n) − g(n) =
∞∑

k=1
2−kg(2kn).

The theorem states that for a class of recurrences in which f(n) is expressed in terms of
f(⌈ n

2 ⌉), f(n) can be written in terms of a periodic function P that varies with the fractional
part of log2 n. We rewrite an from eq. 1 in a form suited to the theorem.

Expanding eq. 1, for n ≥ 2, we have an = 1
2 a2

⌈n/2⌉ − 1
2 a⌈n/2⌉ + a⌊n/2⌋ + 1, with a1 = 1.

We augment the definition by writing a0 = 0. Writing an = 2gn − 1
2 , we have g0 = 1

4 , g1 = 3
4 ,

and for n ≥ 2, gn = g2
⌈n/2⌉ + hn, where hn = g⌊n/2⌋ − g⌈n/2⌉ + 11

16 , with h0 = 11
16 and h1 = 3

16 .
Let λn = log2 gn. Then λ0 = −2, λ1 = log2

3
4 , and for n ≥ 2, λn = 2λ⌈n/2⌉ + µn, where

µn = log2(1 + hn/g2
⌈n/2⌉) for n ≥ 2. We set µ1 = 0; a value for µ0 is not needed.

▶ Proposition 3. For n ≥ 2, the sequence λn can be written λn = nP (log2 n) − Q(n), where

P (t) = 2−{t−}
(

2λ1 +
∞∑

k=0
2−kµ⌈2k+{t−}⌉

)
(2)

Q(n) =
∞∑

k=1
2−kµ2kn. (3)

AofA 2024

18:4 Periodic Behavior of the Minimal Colijn-Plazzotta Rank

Proof. First, λn has the correct recursive form for the theorem: λn = 2λ⌈n/2⌉ + µn for n ≥ 2,
with λ and µ in the roles of f and g. λ1 is given, equaling log2

3
4 , and µ1 = 0 by definition.

Note that the µn depend on the λn, which is not the case for g(n) in Theorem 2 in
relation to f(n), so that Theorem 2 does not immediately apply. However, because f(n)
here is solved in closed form without error, we can check the conditions of the theorem –
which amounts to showing the convergence of an infinite series – and still apply the resulting
solution to λn.

If we can show uniform convergence of Gm(t) =
∑m

k=0 2−kµ⌈2kt⌉ to G(t) =∑∞
k=0 2−kµ⌈2kt⌉ on t ∈ [1, 2], then the proposition will follow by Theorem 2, with f re-

placed by λ and g by µ. To prove this uniform convergence result, we first note that

µn = log2

(
1 +

g⌊n/2⌋ − g⌈n/2⌉ + 11
16

g2
⌈n/2⌉

)
= log2

(
1 +

g⌊n/2⌋

g2
⌈n/2⌉

− 1
g⌈n/2⌉

+
11
16

g2
⌈n/2⌉

)
≤ log2

(
1 + 1

g⌈n/2⌉
− 1

g⌈n/2⌉
+

11
16

g2
⌈n/2⌉

)
= log2

(
1 +

11
16

g2
⌈n/2⌉

)
.

The inequality follows from g⌊n/2⌋ ≤ g⌈n/2⌉, which holds because gn = 1
2 (an + 1

2) and
{an}∞

n=1 is strictly increasing [9, Lemma 5]. Then {gn}∞
n=1 is also strictly increasing. We

conclude that there exists a constant upper bound on log2
[
1 + (11

16)/g2
⌈n/2⌉

]
that is applicable

for all n ≥ 1. Next, notice that

µn = log2

(
1 +

g⌊n/2⌋

g2
⌈n/2⌉

− 1
g⌈n/2⌉

+
11
16

g2
⌈n/2⌉

)
≥ log2

(
1 − 1

g⌈n/2⌉

)
.

Because {gn}∞
n=1 is strictly increasing and g2 = 5

4 , we can conclude that for all n ≥ 4,
µn ≥ log2

(
1 − 1/g⌈n/2⌉

)
≥ log2

(
1 − 1/g2

)
= log2

(1
5
)
. Hence, µn ≥ min

(
µ1, µ2, µ3, log2(1

5)
)

for all n ≥ 1, showing that µn is also bounded below by a constant applicable for all n ≥ 1.
Because µn is bounded below and above by constants applicable for all n, there exists

a constant M such that |µn| < M for all n ≥ 1. We use this constant to show that Gm(t)
converges uniformly to G(t) =

∑∞
k=0 2−kµ⌈2kt⌉ for t ∈ [1, 2]. Indeed, if we let gk(t) =

2−kµ⌈2kt⌉, we then have that Gm(t) =
∑m

k=0 gk(t). Because |gk(t)| = |2−kµ⌈2kt⌉| ≤ 2−kM

for all t ∈ [1, 2] and k ≥ 0 and
∑∞

k=0 2−kM = 2M < ∞, it follows by the Weierstrass M-test
that Gm(t) converges uniformly to G(t) on t ∈ [1, 2], as desired.

By Theorem 2, we deduce that λn = nP (log2 n) − Q(n), where P and Q are defined by

P (t) := 2−{t−}
[
G(2{t−}) + 2λ1

]
= 2−{t−}

(
2λ1 +

∞∑
k=0

2−kµ⌈2k+{t−}⌉

)
(4)

Q(n) := G(n) − µn =
∞∑

k=1
2−kµ2kn. (5)

◀

Examples of an, gn, hn, λn, µn, P (log2 n) and Q(n) for small values of n appear in Table 1.
Values for P (log2 n) and Q(n) are numerical approximations, and values for λn and µn are
rounded to four decimal places. To find the asymptotic growth of an, we use Proposition 3:

an = 2gn − 1
2 = 2(2λn) − 1

2 = 2[2nP (log2 n)−Q(n)] − 1
2 = 2[2−Q(n)] [2P (log2 n)]n − 1

2 .

M. R. Doboli, H.-K. Hwang, and N. A. Rosenberg 18:5

Table 1 Examples of an, gn, hn, λn, µn, P (log2 n) and Q(n) for 0 ≤ n ≤ 5. an is calculated
recursively using eq. 1, and gn is evaluated from an = 2gn − 1

2 . hn is evaluated as hn = g⌊n/2⌋ −
g⌈n/2⌉ + 11

16 , and λn as λn = log2 gn. µn is defined as log2(1 + hn/g2
⌈n/2⌉) for n ≥ 2 with µ1 = 0.

The values of P (log2 n) and Q(n) are approximated via eqs. 2 and 3, using the values of µn and λ1.

n an gn hn λn µn P (log2 n) Q(n)
0 0 0.25 0.6875 −2 - - -
1 1 0.75 0.1875 −0.4150 0 0.3173 0.7324
2 2 1.25 0.6875 0.3219 1.1520 0.3173 0.3127
3 3 1.75 0.1875 0.8074 0.1635 0.3237 0.1639
4 4 2.25 0.6875 1.1699 0.5261 0.3173 0.0994
5 6 3.25 0.1875 1.7004 0.0857 0.3496 0.0474

Figure 1 2P (t) as a function of t. 2P (t) is a periodic function with period 1. The plot computes
all µn for 1 ≤ n ≤ 2056 using µn = log2(1 + hn/g2

⌈n/2⌉) for n ≥ 2, where hn = g⌊n/2⌋ − g⌈n/2⌉ + 11
16

and gn = an
2 + 1

4 for n ≥ 2 with g1 = 3
4 and h1 = 3

16 ; an is defined by eq. 1. We use the µn to
approximate P (t) as in eq. 2, evaluating P (t) for all t = k/100000 for integers 0 ≤ k < 100000.

We use a lemma from A to show in B that Q(n) → 0 as n → ∞. It follows that an ∼
2[2P (log2 n)]n. The asymptotic exponential growth of an thus depends only on the value
of {log2 n}. Because P is a periodic function with period 1, we have that P [log2(2n)] =
P (1 + log2 n) = P (log2 n). The base of the exponent of a2n is the same as that of an for any
n. A plot of 2P (t) as a function of t ∈ [0, 1] appears in Figure 1.

The function in Figure 1 appears to have many discontinuities, the most visually apparent
of which lies at t = 0. In the next section, we show that 2P (t) has its supremum as P (t)
approaches 0 from the right and its minimum at t = 0.

4 The upper bound on the exponential order

From Section 3, an ∼ 2[2P (log2 n)]n. Hence, to find upper and lower bounds on the exponential
order of an, we must find the extreme values of 2P (log2 n). Because P is a 1-periodic function,
it suffices to find the extrema of 2P (t) on t ∈ [0, 1).

We obtain the upper bound in Theorem 6 and the lower bound in Theorem 9. The
proof of Theorem 6 requires an inequality that concerns a certain sum involving the µn. To
prove the inequality, Lemma 4 obtains a term-wise result for terms in the sum that have a
sufficiently high index. The term-wise result does not hold for terms with a small index, and
Lemma 5 addresses their sum all at once. The lemmas are proven in C.

AofA 2024

18:6 Periodic Behavior of the Minimal Colijn-Plazzotta Rank

▶ Lemma 4. µ2k+1 − 2−tµ⌈2k+t⌉ − λ1(2−t − 1) > −[µ2 − 2−tµ2 − λ1(2−t − 1)] for all integers
k ≥ 11 and all t ∈ (0, 1).

▶ Lemma 5. For all t ∈ (0, 1),

10∑
k=1

[
2−kµ2k+1 − 2−k−tµ⌈2k+t⌉ − 2−kλ1(2−t − 1)

]
> −

10∑
k=1

2−k
[
µ2 − 2−tµ2 − λ1(2−t − 1)

]
.

▶ Theorem 6. supt∈(0,1) 2P (t) = limt→0+ 2P (t).

Proof. Because 2x is a strictly increasing function with respect to x, finding the supremum
of 2P (t) on (0, 1) is equivalent to finding the supremum of P (t). For t ∈ (0, 1), {t−} = t.
Hence, applying the definition of P (t) from eq. 4,

lim
t→0+

P (t) = lim
t→0+

2−{t−}
(

2λ1 +
∞∑

k=0
2−kµ⌈2k+{t−}⌉

)
= 2λ1 +

∞∑
k=0

2−kµ2k+1.

Proving that P (t) < limt→0+ P (t) for t ∈ (0, 1) is equivalent to proving

2−t

(
2λ1 +

∞∑
k=0

2−kµ⌈2k+t⌉

)
< 2λ1 +

∞∑
k=0

2−kµ2k+1. (6)

Rearranging eq. 6 and noting 2 =
∑∞

k=0 2−k, we must prove
∑∞

k=0[2−kµ2k+1 −2−k−tµ⌈2k+t⌉ −
2−kλ1(2−t − 1)] > 0, or equivalently, extracting the k = 0 term,

µ2 − 2−tµ2 − λ1(2−t − 1) +
∞∑

k=1

[
2−kµ2k+1 − 2−k−tµ⌈2k+t⌉ − 2−kλ1(2−t − 1)

]
> 0. (7)

By Lemmas 4 and 5, we have the following:

[
µ2 − 2−tµ2 − λ1(2−t − 1)

]
+

10∑
k=1

[
2−kµ2k+1 − 2−k−tµ⌈2k+t⌉ − 2−kλ1(2−t − 1)

]
+

∞∑
k=11

[
2−k

[
µ2k+1 − 2−tµ⌈2k+t⌉ − λ1(2−t − 1)

]]

>
[
µ2 − 2−tµ2 − λ1(2−t − 1)

][
1 −

10∑
k=1

2−k −
∞∑

k=11
2−k

]
= 0.

The chain of inequalities verifies eq. 7, proving the theorem. ◀

5 The lower bound on the exponential order

We can use techniques similar to those of Section 4 to find the minimum of 2P (t) for t ∈ [0, 1).
Again, we need two lemmas, one for terms with a sufficiently large index, and another for
terms with small values for the index. The lemmas are proven in D.

▶ Lemma 7. For integers k ≥ 11 and all t ∈ (0, 1):

2−tµ⌈2k+t⌉ − 2−1µ2k+1 − λ1(2−1 − 2−t) > −[2−tµ2 − 2−1µ2 − λ1(2−1 − 2−t)].

M. R. Doboli, H.-K. Hwang, and N. A. Rosenberg 18:7

▶ Lemma 8. For all t ∈ (0, 1),

10∑
k=1

[
2−k−tµ⌈2k+t⌉ − 2−k−1µ2k+1 − 2−kλ1(2−1 − 2−t)

]
> −

10∑
k=1

2−k
[
2−tµ2 − 2−1µ2 − λ1(2−1 − 2−t)

]
.

▶ Theorem 9. mint∈[0,1) 2P (t) = 2P (0).

Proof. As before, 2x is an increasing function in x, so that finding the minimum of the
1-periodic 2P (t) is equivalent to finding the minimum of P (t) over [0, 1). We must show that

P (0) = 1
2

[
2λ1 +

∞∑
k=0

2−kµ2k+1

]
< 2−t

[
2λ1 +

∞∑
k=0

2−kµ⌈2k+t⌉

]
= P (t),

for all t ∈ (0, 1). Equivalently, replacing 2 by
∑∞

k=0 2−k, we must show
∑∞

k=0[2−k−tµ⌈2k+t⌉ −
2−k−1µ2k+1 − 2−kλ1(2−1 − 2−t)] > 0. Using Lemmas 7 and 8,

∞∑
k=0

[2−k−tµ⌈2k+t⌉ − 2−k−1µ2k+1 − 2−kλ1(2−1 − 2−t)]

> 2−tµ2 − 2−1µ2 − λ1(2−1 − 2−t) −
10∑

k=1
2−k

[
2−tµ2 − 2−1µ2 − λ1(2−1 − 2−t)

]

−
∞∑

k=11
2−k[2−tµ2 − 2−1µ2 − λ1(2−1 − 2−t)]

= [2−tµ2 − 2−1µ2 − λ1(2−1 − 2−t)]
[
1 −

10∑
k=1

2−k −
∞∑

k=11
2−k

]
= 0. ◀

6 Summary of exponential bounds

Theorems 6 and 9 produce the following corollary. We define two constants, c1 and c2:

c1 = 2P (0) = 2
1
2 (2λ1+

∑∞
k=0

2−kµ2k+1) ≈ 1.2460208329836624

c2 = limlog2 n→0+ 2P (log2 n) = 2(2λ1+
∑∞

k=0
2−kµ2k+1) ≈ 1.3342827071604892.

▶ Corollary 10. lim supn→∞[an/(2cn
2)] = 1, and lim infn→∞[an/(2cn

1)] = 1.

Proof. an ∼ 2[2P (log2 n)]n by Proposition 3, or limn→∞
[
an/

(
2[2P (log2 n)]n

)]
= 1. By The-

orem 6, the supremum of 2P (log2 n) on [0, 1) is attained as {log2 n} → 0+. By definition of
c2, the supremum is limlog2 n→0+ 2P (log2 n) = c2. Hence, lim supn→∞[an/(2cn

2)] = 1.
Similarly, by Theorem 9, the minimum of 2P (log2 n) is attained at {log2 n} = 0. The

minimum is thus 2P (0) = c1. We conclude that lim infn→∞[an/(2cn
1)] = 1. ◀

Note that the constant c1 is equal to the value of α in [9, Theorem 13], which finds
a2n ∼ 2α(2n). We can also improve on the upper bound an < (3

2)n from [9, Proposition 15],
producing a corollary that gives the strictest exponential upper bound possible for an.

▶ Corollary 11. an < 2cn
2 for all n ≥ 1.

AofA 2024

18:8 Periodic Behavior of the Minimal Colijn-Plazzotta Rank

Proof. By Proposition 3, an = 2 [2−Q(n)] [2P (log2 n)]n − 1
2 for all n ≥ 1. In B, we prove

Q(n) > 0 for every integer n ≥ 1. By Theorem 6, we have an = 2
[
2−Q(n)] [

2P (log2 n)]n − 1
2 <

2
[
2−Q(n)] [

2P (log2 n)]n
< 2

[
2P (log2 n)]n

< 2cn
2 . ◀

A result of [4] (see also [5]) enables a computation of E[P (t)], producing an approximation
for the mean of the exponential order 2P (t) over the unit interval for t: Theorem 3 of [4] obtains
the analogous quantity to E[P (t)] for recursions f(n) = f(⌊n/2⌋)+f(⌈n/2⌉)+g(n). To obtain
our next result, we follow its reasoning for a recursion of the form f(n) = 2f(⌈n/2⌉) + g(n).

We wish to compute the mean
∫ 1

0 P (t) dt. In the proof of Proposition 3, we showed that∑∞
k=0 2−kµ⌈2kt⌉ is bounded above by a constant applicable for all t, so that the 1-periodic

P (t) is also bounded on unit intervals for t, say t ∈ [0, 1]. To show that the bounded P (t) is
integrable on [0, 1], it remains to show that P (t) is continuous almost everywhere.

We show P (t) = 2−{t−}(2λ1 +
∑∞

k=0 2−kµ⌈2k+{t−}⌉) is continuous outside the countable
set S =

⋃∞
k=1 Sk, where Sk = {t : t ∈ [0, 1] and 2k+t ∈ N}. It suffices to show that

2λ1 +
∑∞

k=0 2−kµ⌈2k+{t−}⌉ = 2λ1 +
∑∞

k=0 2−kµ⌈2k+t⌉ is continuous for t ∈ (0, 1)\S.
For a positive integer N , recall from the proof of Proposition 3 the uniform convergence

of Gm(t) =
∑m

k=0 2−kµ⌈2kt⌉ on t = [1, 2] (and uniform boundedness of |µn| by M for
all n). Choose ϵN > 0 such that

∑∞
k=N+1 |2−kµ⌈2k+t⌉| < ϵN /2 for all t ∈ (0, 1). For

all t ∈ (0, 1)\S, given N , there exists δN > 0 such that for all x ∈ (t − δN , t + δN),
2λ1 +

∑N
k=0 2−kµ⌈2k+x⌉ = 2λ1 +

∑N
k=0 2−kµ⌈2k+t⌉. Therefore, for all x ∈ (t − δN , t + δN),∣∣∣∣(2λ1 +

∞∑
k=0

2−kµ⌈2k+t⌉

)
−

(
2λ1 +

∞∑
k=0

2−kµ⌈2k+x⌉

)∣∣∣∣ =
∣∣∣∣ ∞∑

k=N+1
2−k(µ⌈2k+t⌉ − µ⌈2k+x⌉)

∣∣∣∣.
Then

∣∣∑∞
k=N+1 2−k(µ⌈2k+t⌉ − µ⌈2k+x⌉)

∣∣ <
∑∞

k=N+1 |2−kµ⌈2k+t⌉| +
∑∞

k=N+1 |2−kµ⌈2k+x⌉| <

ϵN . We let N grow large, concluding that P (t) is continuous almost everywhere and integrable.
For the integral, with G(t) =

∑∞
k=0 2−kµ⌈2kt⌉, we have that

∫ 1
0 P (t) dt =

∫ 1
0 21−tλ1 dt +∫ 1

0 2−tG(2t) dt = λ1/log 2 +
∫ 1

0 2−tG(2t) dt. Define µ(v) = µ⌈v⌉. It remains to compute∫ 1

0
2−tG(2t) dt = 1

log 2

∫ 2

1
v−2G(v) dv = 1

log 2

∫ 2

1
v−2

∞∑
k=0

2−kµ(2kv) dv

DCT= 1
log 2 lim

m→∞

∫ 2

1

m∑
k=0

v−22−kµ(2kv) dv = 1
log 2 lim

m→∞

m∑
k=0

∫ 2

1
v−22−kµ(2kv) dv

= 1
log 2 lim

m→∞

m∑
k=0

∫ 2k+1

2k

y−2µ(y) dy = 1
log 2 lim

m→∞

∫ 2m+1

1
y−2µ(y) dy.

To justify use of the dominated convergence theorem (DCT), we note that for
v ∈ [1, 2], |

∑m
k=0 v−22−kµ(2kv)| ≤

∑m
k=0 |v−22−kµ(2kv)| ≤

∑∞
k=0 |v−22−kµ(2kv)| ≤∑∞

k=0 |2−kµ(2kv)|, a quantity that is uniformly bounded for all v. Next, notice that∫ 2m+1

1
y−2µ(y) dy =

2m+1∑
n=2

∫ n

n−1
y−2µ(y) dy =

2m+1∑
n=2

∫ n

n−1
y−2µ(⌈y⌉) dy

=
2m+1∑
n=2

µn

∫ n

n−1
y−2 dy =

2m+1∑
n=2

µn

n(n − 1) .

Therefore,

1
log 2 lim

m→∞

∫ 2m+1

1
y−2µ(y) dy = 1

log 2 lim
m→∞

2m+1∑
n=2

µn

n(n − 1) = 1
log 2

∞∑
n=2

µn

n(n − 1) .

M. R. Doboli, H.-K. Hwang, and N. A. Rosenberg 18:9

We have proven the following proposition.

▶ Proposition 12. The mean value of P (t) on the unit interval [0, 1] is∫ 1

0
P (t) dt = λ1

log 2 + 1
log 2

∞∑
n=2

µn

n(n − 1) .

By Jensen’s inequality on the convex function φ(x) = 2x, we obtain a numerical lower bound
on the mean of the exponential order 2P (t),∫ 1

0
2P (t)dt = E[2P (t)] ≥ 2E[P (t)] = 2

∫ 1

0
P (t)dt ≈ 1.2860382564771475.

Note that the mean values of P (t) and 2E[P (t)] represent means for uniformly distributed t;
they do not correspond to means over integers n with fixed ⌊log2 n⌋, as log2 n does not have
a uniformly distributed fractional part over integers n with fixed ⌊log2 n⌋.

7 Discussion

We have solved the problem of finding an exact expression for the asymptotic growth of an,
the minimal Colijn-Plazzotta rank among unlabeled binary rooted trees with n leaves. We
find that an has periodically varying exponential growth, with exponential order depending
on {log2 n} (Section 3). Its value lies in [1.246020832983662, 1.3342827071604892), where the
lower bound is achieved if {log2 n} = 0 and the upper bound is approached as {log2 n} → 0+

(Sections 5 and 4). We have obtained the tight upper bound an < 2cn
2 for all n ≥ 1, where

c ≈ 1.3342827071604892 (Corollary 11), improving upon an earlier bound.
The growth of an is slowest when n is a power of two and fastest when n is slightly larger

than a power of two. This result captures the “jumps” that occur in CP rank near powers
of two. For example, in [9, Figure 1] the ratio an/(2αn) for α ≈ 1.24602 is near 1 if n is a
power of two but sharply increases when n is one larger than a power of two. The jumps are
visible numerically: a32 = 2279 yet a33 = 20369, and a64 = 2598061 yet a65 = 207440176.
The dependence of the exponential growth of an on {log2 n} reflects these discontinuities.

Maranca & Rosenberg [7] studied an extension of CP rank to strictly and at-most-k-
furcating trees, k ≥ 2, where each internal node of a strictly k-furcating tree has exactly k

children, and each internal node of an at-most-k-furcating tree has at least two and at most
k children. For such trees, the same questions about the minimal and maximal rank among
trees with n leaves can be posed. The work of [4] contains theorems that can potentially be
used for asymptotics in these more general cases, whose analyses we defer to future work.

The Colijn-Plazzotta rank has been suggested for use in tree balance indices [3, 9]. Our
results characterize the minimal value of the rank across trees with a fixed number of nodes, so
that a statistic such as [f(t) − an]/(bn − an) or [log f(t) − log an]/(log bn − log an) normalized
to lie in [0, 1] can be used as a measure of the balance of a tree.

References
1 A. V. Aho and N. J. A. Sloane. Some doubly exponential sequences. Fibonacci Q., 11:429–437,

1973.
2 C. Colijn and G. Plazzotta. A metric on phylogenetic tree shapes. Syst. Biol., 67:113–126,

2018.
3 M. Fischer, L. Herbst, S. Kersting, L. Kühn, and K. Wicke. Tree balance indices: a compre-

hensive survey. Springer, Berlin, 2023.
4 H.-K. Hwang, S. Janson, and T.-H. Tsai. Exact and asymptotic solutions of a divide-and-

conquer recurrence dividing at half: theory and applications. ACM Trans. Alg., 13:47, 2017.

AofA 2024

18:10 Periodic Behavior of the Minimal Colijn-Plazzotta Rank

5 H.-K. Hwang, S. Janson, and T.-H. Tsai. Identities and periodic oscillations of divide-and-
conquer recurrences splitting at half. Adv. Appl. Math, 155:102653, 2024.

6 H.-K. Hwang and J.-M. Steyaert. On the number of heaps and the cost of heap construction.
In B. Chauvin, P. Flajolet, D. Gardy, and A. Mokkadem, editors, Mathematics and Computer
Science II. Trends in Mathematics, pages 295–310, Basel, 2002. Birkhäuser.

7 A.R.P Maranca and N.A. Rosenberg. Bijections between the multifurcating unlabeled rooted
trees and the positive integers. Adv. Appl. Math., 153:102612, 2024.

8 S.-Y. Oh and J. C. Kieffer. Fractal compression rate curves in lossless compression of balanced
trees. In 2010 IEEE International Symposium on Information Theory (ISIT) Proceedings,
pages 106–110, 2010.

9 N. A. Rosenberg. On the Colijn-Plazzotta numbering scheme for unlabaled binary rooted
trees. Discr. Appl. Math., 291:88–98, 2021.

Appendix

A Upper bound on x|µx|

We provide an upper bound for x|µx|. This bound is utilized in Sections 4 and 5, as well as
for a result in Section 3. First, we need an upper bound on | log2 x| for all positive reals x.

▶ Lemma 13. For all x > 0, | log2 x| ≤ 1
2 (log2 e) |x − 1

x |.

Proof. For x ≥ 1, we show log x ≤ 1
2 (x − 1

x). Writing a function f(x) = log(x) − x
2 + 1

2x ,
we have f(1) = 0 and f ′(x) = −(1 − x)2/(2x2) ≤ 0 for x ≥ 1. As a function that begins at
0 for x = 1 and is nonincreasing for x ≥ 1, f(x) ≤ 0 for x ≥ 1. For 0 < x < 1, we show
log x ≥ 1

2 (x− 1
x). This statement follows by noting 1

x > 1 and applying the case of x ≥ 1. ◀

Next, we need a uniform lower bound on the expression 1 + g⌊n/2⌋/g2
⌈n/2⌉ − 1/g⌈n/2⌉ +

11/(16g2
⌈n/2⌉) for n ≥ 66; the use of n ≥ 66 follows Proposition 1.

▶ Lemma 14. For all integers n ≥ 66, 1 + g⌊n/2⌋/g2
⌈n/2⌉ − 1/g⌈n/2⌉ + 11/(16g2

⌈n/2⌉) > 1
2 .

Proof. Because gn = (2an + 1)/4 is positive, we have that 1 + g⌊n/2⌋/g2
⌈n/2⌉ − 1/g⌈n/2⌉ +

11/(16g2
⌈n/2⌉) > 1 − 1/g⌈n/2⌉ ≥ 1 − 1/g33, where the last inequality follows from the mono-

tonicity of gn. We have 1 − 1/g33 ≈ 0.9999 > 1
2 , as desired. ◀

We are now ready for the main result of this appendix.

▶ Lemma 15. For all integers x ≥ 245, x|µx| < (2λ1 + µ2)/2.

Proof. First note that 1 + g⌊x/2⌋/g2
⌈x/2⌉ − 1/g⌈x/2⌉ + 11/(16g2

⌈x/2⌉) > 0 for x ≥ 245 by the
stronger result in Lemma 14. Using Lemma 13,

x|µx| = x

∣∣∣∣ log2

(
1 +

g⌊x/2⌋

g2
⌈x/2⌉

− 1
g⌈x/2⌉

+ 11
16g2

⌈x/2⌉

)∣∣∣∣
≤ x(log2 e)

2

∣∣∣∣
g⌊x/2⌋
g2

⌈x/2⌉
− 1

g⌈x/2⌉
+ 11

16g2
⌈x/2⌉

1 + g⌊x/2⌋
g2

⌈x/2⌉
− 1

g⌈x/2⌉
+ 11

16g2
⌈x/2⌉

+
g⌊x/2⌋

g2
⌈x/2⌉

− 1
g⌈x/2⌉

+ 11
16g2

⌈x/2⌉

∣∣∣∣
≤ x(log2 e)

2

[∣∣∣∣
g⌊x/2⌋
g2

⌈x/2⌉
− 1

g⌈x/2⌉
+ 11

16g2
⌈x/2⌉

1 + g⌊x/2⌋
g2

⌈x/2⌉
− 1

g⌈x/2⌉
+ 11

16g2
⌈x/2⌉

∣∣∣∣ +
∣∣∣∣g⌊x/2⌋

g2
⌈x/2⌉

− 1
g⌈x/2⌉

+ 11
16g2

⌈x/2⌉

∣∣∣∣]

≤ x(log2 e)
2

[g⌊x/2⌋
g2

⌈x/2⌉
+ 1

g⌈x/2⌉
+ 11

16g2
⌈x/2⌉

1 + g⌊x/2⌋
g2

⌈x/2⌉
− 1

g⌈x/2⌉
+ 11

16g2
⌈x/2⌉

+
g⌊x/2⌋

g2
⌈x/2⌉

+ 1
g⌈x/2⌉

+ 11
16g2

⌈x/2⌉

]
.

M. R. Doboli, H.-K. Hwang, and N. A. Rosenberg 18:11

Using Proposition 1 with the fact that gn = (2an + 1)/4, we have that for n ≥ 66,

2
(1.2)n

>
1
gn

= 4
2an + 1 >

4
2(1.34)n + 1 (8)

(1.2)n

2 + 1
4 <

an

2 + 1
4 = gn <

(1.34)n

2 + 1
4 . (9)

The bounds in eqs. 8 and 9 and Lemma 14 then yield

x|µx| <
x(log2 e)

2

[[(1.34)⌊x/2⌋

2 + 1
4(

(1.2)⌈x/2⌉

2

)2 + 2
(1.2)⌈x/2⌉ + 11

16

(
2

(1.2)⌈x/2⌉

)2]/(
1
2

)

+
(1.34)⌊x/2⌋

2 + 1
4

((1.2)⌈x/2⌉

2)2
+ 2

(1.2)⌈x/2⌉ + 11
16

(
2

(1.2)⌈x/2⌉

)2
]

= 3x(log2 e)
2

[(
(1.34)⌊x/2⌋

2 + 1
4

)(
2

(1.2)⌈x/2⌉

)2
+ 2

(1.2)⌈x/2⌉ + 11
16

(
2

(1.2)⌈x/2⌉

)2]
≤ 3x(log2 e)

2

[(
(1.34)x/2

2 + 1
4

)(
2

(1.2)x/2

)2
+ 2

(1.2)x/2 + 11
16

(
2

(1.2)x/2

)2]
= (3 log2 e)

[
x

(√
1.34
1.2

)x

+ x

(
1√
1.2

)x

+ 15
8 x

(
1

1.2

)x]
. (10)

Eq. 10 sums constant multiples of three terms of the form xax, where a < 1. For a < 1,
function f(x) = xax attains its maximum at xmax = −1/log a and is decreasing for x > xmax.
With

√
1.34/1.2, 1/

√
1.2 and 1/1.2 in the role of a, xmax evaluates to approximately 27.7880,

10.9696, and 5.4848, respectively. The sum of three decreasing functions is also decreasing.
It follows that for x ≥ −1/ log(

√
1.34/1.2) ≈ 27.7880, the quantity in eq. 10 is decreasing.

To show that the quantity in eq. 10 is less than (2λ1 + µ2)/2 for x ≥ 245, it suffices to
show that if x = 245 is inserted into eq. 10, the result is bounded above by (2λ1 + µ2)/2;
indeed, with x = 245, we get 0.15718 in eq. 10, while (2λ1 +µ2)/2 ≈ 0.1609640474436812. ◀

B Properties of Q(n)

We give two results about Q(n): Lemma 16 for Section 3, and Lemma 17 for Section 6.

▶ Lemma 16. limn→∞ Q(n) = 0.

Proof. We apply Lemma 15. For all n ≥ 245, noting (2λ1 + µ2)/2 < µ2/2 because λ1 < 0,

Q(n) =
∞∑

k=1
2−kµ2kn ≤

∞∑
k=1

2−k|µ2kn| <
∞∑

k=1
2−k µ2

2(2kn) ≤
∞∑

k=1
2−k µ2

2(2kn) .

For n ≥ 245, we have Q(n) < [µ2/(2n)]
∑∞

k=1 4−k = µ2/(6n), so Q(n) → 0 as n → ∞. ◀

▶ Lemma 17. For all positive integers n, Q(n) > 0.

Proof. By definition, µn = log2[1 + (g⌊n/2⌋ − g⌈n/2⌉ + 11
16)/g2

⌈n/2⌉]. For any integer n ≥ 1,
µ2n = log2[1 + (gn − gn + 11

16)/g2
n] = log2[1 + 11/(16g2

n)] > 0, noting gn > 0 because an > 0.
By definition of Q(n), for any positive integer n ≥ 1, Q(n) =

∑∞
k=1 2−kµ2kn =∑∞

k=1 2−kµ2kn > 0, where the last inequality follows because µ2kn > 0 for each k ≥ 1. ◀

AofA 2024

18:12 Periodic Behavior of the Minimal Colijn-Plazzotta Rank

C Proofs of Lemmas 4 and 5 for Section 4

This appendix proves Lemmas 4 and 5, used in the proof of Theorem 6. First, we prove two
additional lemmas, Lemmas 18 and 19, needed for the proof of Lemma 4.

▶ Lemma 18. µ2k+1 + 2λ1 + µ2 > [2k/(2k + 1)](µ⌈2k+t⌉ + 2λ1 + µ2) for all integers k ≥ 11
and all t ∈

[
log2(2k + 1), 1

)
.

Proof. Because we assume k ≥ 11 and t > 0, ⌈2k+t⌉ ≥ 245 and 2k + 1 ≥ 245. We apply
Lemma 15 twice, to ⌈2k+t⌉ and then to 2k + 1. From the first application, we obtain
⌈2k+t⌉|µ⌈2k+t⌉| < (2λ1 + µ2)/2, from which 2k |µ⌈2k+t⌉| < (2λ1 + µ2)/2.

From the second application, we obtain (2k + 1) |µ2k+1| < (2λ1 + µ2)/2. We then have

2k

2k + 1µ⌈2k+t⌉ − µ2k+1 ≤
∣∣∣∣ 2k

2k + 1µ⌈2k+t⌉

∣∣∣∣ +
∣∣µ2k+1

∣∣
<

1
2k + 1

2λ1 + µ2

2 + 1
2k + 1

2λ1 + µ2

2 = 1
2k + 1(2λ1 + µ2).

Adding µ2k+1 + [2k/(2k + 1)](2λ1 + µ2) to both sides, we obtain the result. ◀

▶ Lemma 19. µx + 2λ1 + µ2 > 0 for all integers x ≥ 1.

Proof. For 1 ≤ x ≤ 244, we verify the finite number of cases computationally. For x ≥ 245,
we can use Lemma 15 to obtain x|µx| < (2λ1 + µ2)/2. Noting that λ1 < 0, we have
|µx| < µ2/(2x), from which µx > −µ2/(2x) because µ2 > 0. We then have µx + 2λ1 + µ2 >

−µ2/(2x) + 2λ1 + µ2 ≥ −µ2/(2 · 245) + 2λ1 + µ2 ≈ 0.31957706816604603 ≥ 0. ◀

We are now ready to provide a lower bound on µ2k+1 − 2−tµ⌈2k+t⌉, applicable for all
k ≥ 1 and all t ∈ (0, 1), and independent of k. In particular, we prove Lemma 4.

Proof of Lemma 4. The desired inequality is equivalent to

µ2k+1 + 2λ1 + µ2 > 2−t(µ⌈2k+t⌉ + 2λ1 + µ2). (11)

By Lemma 19, µ⌈2k+t⌉ + 2λ1 + µ2 > 0 for all positive integer values of ⌈2k+t⌉, and
specifically for k ≥ 11 and t ∈ (0, 1). Therefore, the right-hand side of eq. 11 is strictly
decreasing in t other than at discontinuities: values of t at which ⌈2k+t⌉ increments by 1. For
fixed k, the discontinuities are precisely those values of t at which 2k+t is one of the integers
2k, 2k + 1, . . . , 2k+1 − 1, the values t = log2(2k + n) − k for integers n, 0 ≤ n ≤ 2k − 1.

To verify inequality 11 for all t ∈ (0, 1), it suffices to check points at which t approaches
a discontinuity from the right. For t → 0+, inequality 11 becomes µ2k+1 + 2λ1 + µ2 >

2−t(µ2k+1 + 2λ1 + µ2), which holds from the positivity of µ2k+1 + 2λ1 + µ2 > 0 by Lemma 19.
At t = log(2k +n)−k for integers 1 ≤ n ≤ 2k −1, because the discontinuity is approached

from the right, t > log2(2k + 1) − k, so that 2−t < 2−[log2(2k+1)−k] = 2k/(2k + 1). Lemma 18
gives µ2k+1 + 2λ1 + µ2 > [2k/(2k + 1)](µ⌈2k+t⌉ + 2λ1 + µ2) > 2−t(µ⌈2k+t⌉ + 2λ1 + µ2). ◀

Proof of Lemma 5. Moving terms with t to one side, we must prove, for all t ∈ (0, 1),

10∑
k=1

2−k(µ2k+1 + 2λ1 + µ2) > 2−t
10∑

k=1
2−k(µ⌈2k+t⌉ + 2λ1 + µ2). (12)

Because µ⌈2k+t⌉ + 2λ1 + µ2 > 0 by Lemma 19 for all k, 1 ≤ k ≤ 10, and t ∈ (0, 1), the
right-hand side of eq. 12 is decreasing except at values of t where ⌈2k+t⌉ increments by one:
set S = {log2(2k + n) − k : 1 ≤ k ≤ 10, 0 ≤ n ≤ 2k − 1}. Hence, to verify eq. 12 for all
t ∈ (0, 1), it suffices to examine only the limits as t approaches points in S from the right.

M. R. Doboli, H.-K. Hwang, and N. A. Rosenberg 18:13

First, for 0 ∈ S, as t → 0+, inequality 12 approaches
∑10

k=1 2−k(µ2k+1 + 2λ1 + µ2) >

2−t
∑10

k=1 2−k(µ2k+1 + 2λ1 + µ2), which holds by Lemma 19, noting t > 0.
Next, denote the points in finite set S′ = {log2(2k + n) − k : 1 ≤ k ≤ 10, 1 ≤ n ≤ 2k − 1}

by t1 < t2 < . . . < tK , where K = |S′|. Notice that if t ∈ (ti, ti+1] for some i, then the
right-hand side of inequality 12 is maximized as t → t+

i . Furthermore, for all t ∈ (ti, ti+1]:

2−t
10∑

k=1
2−k(µ⌈2k+t⌉ + 2λ1 + µ2) < lim

t→t+
i

2−t
10∑

k=1
2−k(µ⌈2k+t⌉ + 2λ1 + µ2)

< 2−ti

10∑
k=1

2−k(µ⌈2k+ti+ϵ⌉ + 2λ1 + µ2),

where ϵ > 0 satisfies ti+ϵ < ti+1 for all i, 1 ≤ i ≤ K−1; we can take ϵ = 1
2 min1≤i≤K−1(ti+1−

ti). Hence, to prove inequality 12, it suffices to prove the stronger inequality

10∑
k=1

2−k(µ2k+1 + 2λ1 + µ2) > 2−ti

10∑
k=1

2−k(µ⌈2k+ti+ϵ⌉ + 2λ1 + µ2). (13)

for each i, 1 ≤ i ≤ K. The advantage of inequality 13 over 12 is that it can be computationally
verified by testing a finite number of points. In particular, we consider each ti ∈ S′, choose
an appropriate ϵ (ϵ = 10−16 suffices), and verify inequality 13 with that ti and ϵ. ◀

D Proof of Lemmas 7 and 8 for Section 5

This appendix proves two lemmas used for Theorem 9. First, Lemma 20 gives a refined
upper bound for |µx| that improves upon Lemma 15. This lemma is needed for Lemma 7.

▶ Lemma 20. For all integers x ≥ 267, 2⌈log2 x⌉|µx| < (2λ1 + µ2)/2.

Proof. From eq. 10, |µx| ≤ 3(log2 e) [(
√

1.34/1.2)x + (1/
√

1.2)x + 15/
(
8(1.2)x

)
]. Because

2⌊log2 x⌋ ≤ 2log2 x = x, it follows that 2⌈log2 x⌉ ≤ 2(2⌊log2 x⌋) ≤ 2x. Hence, it suffices to prove
that 2x|µx| ≤ (2λ1 + µ2)/2 for integers x ≥ 267. That is, we can show the stronger inequality

2x(3 log2 e)
[(√

1.34
1.2

)x

+ 1
(
√

1.2)x
+ 15

8(1.2)x

]
<

2λ1 + µ2

2 .

As in A, the left-hand side is the sum of three terms of the form xax, where a < 1. By
the same argument, this sum is decreasing for x ≥ −1/ log(

√
1.34/1.2) ≈ 27.7880. Hence, it

suffices to show that the sum is less than (2λ1 +µ2)/2 at x = 267, which can be accomplished
computationally. Therefore, 2⌈log2 x⌉|µx| < (2λ1 + µ2)/2 for x ≥ 267. ◀

Proof of Lemma 7. Moving all the terms involving t to one side, we must prove

2−t(µ⌈2k+t⌉ + 2λ1 + µ2) > 2−1(µ2k+1 + 2λ1 + µ2). (14)

Lemma 19 finds that µ⌈2k+t⌉ + 2λ1 + µ2 > 0 for all k ≥ 11 and t ∈ (0, 1). Therefore,
except at discontinuities where 2k+t is an integer and ⌈2k+t⌉ increments by 1, the left-
hand side strictly decreases as we increase t. It suffices to check inequality 14 at those
discontinuities and as t → 1−. First, as t → 1−, inequality 14 becomes 2−t(µ2k+1 +2λ1+µ2) >

2−1(µ2k+1 + 2λ1 + µ2), a result that follows because µ2k+1 + 2λ1 + µ2 > 0 and 0 < t < 1.

AofA 2024

18:14 Periodic Behavior of the Minimal Colijn-Plazzotta Rank

Next, because t ∈ (0, 1), 2k+t is an integer if and only if t = log2(2k +n)−k for an integer
1 ≤ n ≤ 2k − 1. Plugging t = log2(2k + n) − k into inequality 14 yields [2k/(2k + n)](µ2k+n +
2λ1 + µ2) > 2−1(µ2k+1 + 2λ1 + µ2). Because µ2k+n + 2λ1 + µ2 > 0, it suffices to prove the
stronger inequality [2k/(2k+1 − 1)](µ2k+n +2λ1 +µ2) > 2−1(µ2k+1 +2λ1 +µ2), or equivalently,
[2k/(2k+1 − 1)]µ2k+n − 1

2 µ2k+1 > −
[1

2 /(2k+1 − 1)
]
(2λ1 + µ2).

By Lemma 20, which applies for k ≥ 11 because 2k + n ≥ 267, we have
2⌈log2(2k+n)⌉|µ2k+n| < (2λ1 + µ2)/2 and 2k+1|µ2k+n| < (2λ1 + µ2)/2. Furthermore, by
Lemma 15, we have that 2k+1|µ2k+1 | < (2λ1 + µ2)/2, from which (2k+1 − 1)|µ2k+1 | <

(2λ1 + µ2)/2. We then obtain

2k

2k+1 − 1µ2k+n − 1
2µ2k+1 ≥ −

∣∣∣∣ 2k

2k+1 − 1µ2k+n

∣∣∣∣ −
∣∣∣∣1
2µ2k+1

∣∣∣∣
≥ −1

2
1

2(2k+1 − 1)(2λ1 + µ2) − 1
2

1
2(2k+1 − 1)(2λ1 + µ2) = − 1

2(2k+1 − 1)(2λ1 + µ2). ◀

Proof of Lemma 8. Moving all the terms involving t to one side, we must prove

2−t
10∑

k=1
2−k(µ⌈2k+t⌉ + 2λ1 + µ2) >

10∑
k=1

2−k−1(µ2k+1 + 2λ1 + µ2). (15)

The terms in both summands are positive (Lemma 19). Therefore, except at the discontinuities
in the left-hand side, the left-hand side strictly decreases with t. Hence, it suffices to check
inequality 15 precisely at the discontinuities of the left-hand side and as t → 1−.

As t → 1−, the left-hand side of inequality 15 decreases to limt→1−1 2−t
∑10

k=1 2−k(µ2k+1 +
2λ1 + µ2) =

∑10
k=1 2−k−1(µ2k+1 + 2λ1 + µ2), verifying inequality 15 at t → 1−.

Hence, it remains to check inequality 15 at the discontinuities of the left-hand side,
the points in S′ = {log2(2k + n) − k : 1 ≤ k ≤ 10, 1 ≤ n ≤ 2k − 1} used in C. We can
computationally verify that inequality 15 holds for the finitely many points in S′. ◀

Binomial Sums and Mellin Asymptotics with
Explicit Error Bounds: A Case Study
Benjamin Hackl #

Department of Mathematics and Scientific Computing, University of Graz, Austria

Stephan Wagner #

Institute of Discrete Mathematics, TU Graz, Austria
Department of Mathematics, Uppsala University, Sweden

Abstract
Making use of a newly developed package in the computer algebra system SageMath, we show how
to perform a full asymptotic analysis by means of the Mellin transform with explicit error bounds.
As an application of the method, we answer a question of Bóna and DeJonge on 132-avoiding
permutations with a unique longest increasing subsequence that can be translated into an inequality
for a certain binomial sum.

2012 ACM Subject Classification Mathematics of computing → Generating functions; Mathematics
of computing → Enumeration; Mathematics of computing → Mathematical software

Keywords and phrases binomial sum, Mellin transform, asymptotics, explicit error bounds, B-terms

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.19

Related Version Full Version: https://arxiv.org/abs/2403.09408

Supplementary Material Software (Source Code): https://github.com/behackl/dependent_bterms
archived at swh:1:dir:da1b484042253b145f0ca5b3d5607c96bcf74771

Software (Computations): https://arxiv.org/src/2403.09408/anc/2024-bona-dejonge.ipynb

Funding Stephan Wagner : Supported by the Swedish research council (VR), grant 2022-04030.

1 Introduction

Sums involving binomial coefficients occur frequently in enumerative and analytic combina-
torics. For example,

n∑
k=0

1
k + 1

(
n + k

n

)(
n

k

)
yields the large Schröder numbers, which count (among other things) many different types of
lattice paths and permutations. The sum

⌊n/2⌋∑
k=0

(
n

2k

)
(2k)!
2kk!

counts involutions, or matchings in complete graphs. There is a well-established toolkit
for dealing with such sums, based on techniques such as the (discrete) Laplace method,
the Stirling approximation of factorials and binomial coefficients, and the Mellin transform.
See [5] for a comprehensive account of these and many other tools. While these methods
are well known and in some sense mechanical, it is still not straightforward to implement
them in a computer as they often involve ad-hoc estimates and careful splitting into different
cases/regions of summation that are analyzed separately. Moreover, while a lot of the
complications can often be hidden in O-terms, things become more involved when explicit
error bounds are desired.

© Benjamin Hackl and Stephan Wagner;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 19; pp. 19:1–19:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:benjamin.hackl@uni-graz.at
https://orcid.org/0000-0003-2998-9599
mailto:stephan.wagner@tugraz.at
https://orcid.org/0000-0001-5533-2764
https://doi.org/10.4230/LIPIcs.AofA.2024.19
https://arxiv.org/abs/2403.09408
https://github.com/behackl/dependent_bterms
https://archive.softwareheritage.org/swh:1:dir:da1b484042253b145f0ca5b3d5607c96bcf74771;origin=https://github.com/behackl/dependent_bterms;visit=swh:1:snp:2dafd87f8ebaba93557fe0395ca0a93f5f29196d;anchor=swh:1:rev:227d4b65b0396fc0c4b368c018b53558ee791b18
https://arxiv.org/src/2403.09408/anc/2024-bona-dejonge.ipynb
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Binomial Sums and Mellin Asymptotics with Explicit Error Bounds: A Case Study

This paper aims to make a contribution towards building a toolkit for asymptotic analysis
in the context of computer algebra, including guaranteed error bounds with explicit constants.
The example we use to illustrate the methods is based on a question from a recent paper by
Bóna and DeJonge [1]: let an be the number of 132-avoiding permutations of length n that
have a unique longest increasing subsequence, which is also the number of plane trees with
n + 1 vertices with a single leaf at maximum distance from the root, or the number of Dyck
paths of length 2n with a unique peak of maximum height. Moreover, let pn = an

Cn
, where

Cn = 1
n+1

(2n
n

)
is the n-th Catalan number. This can be interpreted as the probability that

a 132-avoiding permutation of length n chosen uniformly at random has a unique longest
increasing subsequence – equivalently, that a plane tree with n + 1 vertices has a single leaf
at maximum distance from the root, or that a Dyck path of length 2n has a unique peak of
maximum height.

▶ Problem 1 (Bóna and DeJonge [1]). Is it true that the sequence pn is decreasing for n ≥ 3?

While it would obviously be interesting to have a combinatorial proof, it turns out (as
we will explain in the following section) that the problem can be translated in a fairly
mechanical fashion (using generating functions) into a purely analytic problem: specifically,
the inequality

F (n) =
n∑

k=1
kσ(k)(k2 − 3n + 2)(2k2 − n)

(
2n

n − k

)
< 0 (1)

for all n ≥ 5, where σ(k) is the sum of divisors of k. The standard approach to deriving an
asymptotic formula for such a sum (cf. [4, Section 5]) involves the following steps:

Split the sum into “small” and “large” values of k.
Show that the contribution of large values is negligible.
Approximate the binomial coefficient

(2n
n−k

)
, e.g. by means of Stirling’s formula, for small

values of k.
Turn the sum into an infinite sum, again at the expense of a negligible error term.
Apply the Mellin transform to obtain an integral representation for the resulting infinite
sum.
Use residue calculus to derive the final asymptotic formula.

As we will see, the problem is complicated in this particular instance by the occurrence
of nontrivial cancellations, making precise estimates challenging. The asymptotic formula
(that will be proven in this paper)

F (n) =
(

2n

n

)(
− n2

8 + n

24 + o(n)
)

(2)

shows that the answer to the question of Bóna and DeJonge is affirmative for sufficiently
large n. However, the o-notation hides an error term that is potentially huge for small values
of n, so it is not clear what “sufficiently large” means. In order to show that pn is increasing
for all n ≥ 3, we will have to prove a version of (2) with explicit error bounds. To this end,
we present a new package for the computer mathematics system SageMath [11] that enhances
the core implementation of asymptotic expansions, and in particular the arithmetic with
SageMath’s analogue of O-terms with explicit error bounds, called B-terms. See Section 3
for a guided tour through the features of our package. We then demonstrate the practical
usage of our package in Section 4 in which we derive the desired explicit bounds for F (n).

B. Hackl and S. Wagner 19:3

2 Reducing the problem

One of the possible combinatorial interpretations of the sequence an is in terms of lattice
paths. Specifically, as it was mentioned before, an is the number of Dyck paths of length 2n

(i.e., lattice paths starting at (0, 0) and ending at (2n, 0) whose steps are either “up” (1, 1) or
“down” (1, −1)) with a unique peak of maximum height. Such a path can be decomposed
into two pieces: before and after the peak. The part before the peak needs to be a path that
finishes at its maximum height h (but does not reach it earlier, since the peak is unique), and
the path after the peak needs to be a path that starts at its maximum height h and never
returns to it (which can also be seen as the reflection of a path that finishes at its maximum
height but does not reach it earlier). Such paths were analyzed in [2] and [8]. Specifically, [8,
Proposition 2.1] states that the probability that a simple symmetric random walk of length n

never drops below 0 and finishes at its maximum height h (which can also be reached earlier)
is precisely

2[zn+1] 1
Uh+1(1/z) ,

where Uh+1 is the Chebyshev polynomial of the second kind of degree h + 1. A path that
finishes at its maximum height h without reaching that height before is obtained from a path
that finishes at its maximum height h − 1 by adding one more step up. Since every path of
length n has probability 2−n to occur under the model of a simple symmetric random walk,
it follows that the (ordinary) generating function for paths of maximum height h that finish
at the maximum and do not reach it earlier is∑

n≥0
2nxn+1 · 2[zn+1] 1

Uh(1/z) = 1
Uh(1/(2x)) .

For example,

1
U3(1/(2x)) = x3

1 − 2x2 = x3 + 2x5 + 4x7 + · · ·

is the generating function for paths that finish at their maximum height 3 and do not reach
this height before the final step. The formula is even true for h = 0: 1

U0(1/(2x)) = 1 is indeed
the correct generating function in this case.

Since the paths we are interested in can be seen as pairs of paths that finish at their
maximum height and do not reach this height before, we find that the generating function of
an is

A(x) =
∞∑

n=0
anx2n =

∞∑
h=0

1
Uh(1/(2x))2 .

We can simplify the expression by means of the substitution x =
√

t
1+t . Note that this yields

1
2x = 1+t

2
√

t
= cosh(1

2 log t). Since Uh(cosh w) = sinh((h+1)w)
sinh w , this implies that

Uh(1/(2x)) =
sinh(h+1

2 log t)
sinh(1

2 log t)
= t−h/2 · 1 − th+1

1 − t
.

Thus

A(x) =
∞∑

h=0

th(1 − t)2

(1 − th+1)2 .

AofA 2024

19:4 Binomial Sums and Mellin Asymptotics with Explicit Error Bounds: A Case Study

Now we can obtain an alternative expression for an by applying Cauchy’s integral formula to
the generating function A(x). For suitable contours C and C′ around 0, we have

an = 1
2πi

∮
C

A(
√

z)
zn+1 dz = 1

2πi

∮
C′

∞∑
h=0

th(1 − t)2

(1 − th+1)2 · (1 + t)2n+2

tn+1 · (1 − t) dt

(1 + t)3

=
∞∑

h=0

1
2πi

∮
C′

(1 − t)3(1 + t)2n−1

tn+1−h(1 − th+1)2 dt,

using the substitution
√

z =
√

t
1+t (or equivalently z = t

(1+t)2). It follows that

an =
∞∑

h=0
[tn−h] (1 − t)3(1 + t)2n−1

(1 − th+1)2 = [tn+1]
∞∑

h=0

th+1

(1 − th+1)2 (1 − t)3(1 + t)2n−1

= [tn+1]
∞∑

k=1
σ(k)tk(1 − t)3(1 + t)2n−1 =

∞∑
k=1

σ(k)[tn+1−k](1 − t)3(1 + t)2n−1

=
n+1∑
k=1

σ(k)
((

2n − 1
n + 1 − k

)
− 3

(
2n − 1
n − k

)
+ 3

(
2n − 1

n − 1 − k

)
−

(
2n − 1

n − 2 − k

))
=

n+1∑
k=1

4kσ(k)(2k2 − 3n − 2)(2n − 1)!
(n + 1 − k)!(n + 1 + k)! .

We remark here that the identity [ta](1 + t)b =
(

b
a

)
that we are using even remains true for

negative a or for a > b if the binomial coefficient is considered to be 0 then. The manipulation
in the final step is consistent with this.

Problem 1 is equivalent to the inequality Cn+1an > Cnan+1 for n ≥ 3, and since
Cn+1 = 4n+2

n+2 Cn, it can also be expressed as (4n + 2)an > (n + 2)an+1. Hence we are left to
consider the inequality

n+1∑
k=1

4kσ(k)(2k2 − 3n − 2)(4n + 2)(2n − 1)!
(n + 1 − k)!(n + 1 + k)! >

n+2∑
k=1

4kσ(k)(2k2 − 3n − 5)(n + 2)(2n + 1)!
(n + 2 − k)!(n + 2 + k)! ,

which reduces to
n+2∑
k=1

8kσ(k)(k2 − 3n − 4)(2k2 − n − 2)(2n + 1)(2n − 1)!
(n + 2 − k)!(n + 2 + k)! < 0

after some manipulations. After multiplication by

n(n + 1)(n + 2)(2n + 3) = (2n)(2n + 2)(2n + 3)(2n + 4)
8 ,

this can be expressed as
n+2∑
k=1

kσ(k)(k2 − 3n − 4)(2k2 − n − 2)
(

2n + 4
n + 2 − k

)
< 0.

Finally, replacing n + 2 by n, what we have to prove in order to settle Problem 1 is that
n∑

k=1
kσ(k)(k2 − 3n + 2)(2k2 − n)

(
2n

n − k

)
< 0

for all n ≥ 5, which is precisely (1).

B. Hackl and S. Wagner 19:5

3 B-terms and asymptotics with explicit error bounds

In this section, we provide the necessary background on B-terms and their software imple-
mentation. We base our work on the module for computing with asymptotic expansions [7]
in SageMath [11]. While this module presently also offers some basic support for B-terms,
we have extended its capabilities to add support for computations involving an additional
monomially bounded variable (e.g., k with nα ≤ k ≤ nβ for some 0 ≤ α < β where n → ∞),
as well as Taylor expansions with explicit error bounds. These improvements are not yet
included in the module directly, but can be made available to your local installation of
SageMath simply by running

sage -pip install dependent_bterms

from your terminal. Alternatively, the module can be installed by executing a cell containing

!pip install dependent_bterms

from within a SageMath Jupyter notebook.
We will now briefly walk through the core functionalities of our toolbox. The central

interface is the function

AsymptoticRingWithDependentVariable,

which generates a suitable parent structure for our desired asymptotic expansions. Listing 1
demonstrates how it is used to instantiate the structure that will be used throughout the
following examples. We consider 1 = n0 ≤ k ≤ n4/7, i.e., α = 0 and β = 4/7.

Listing 1 Setup of the modified AsymptoticRing.
sage: import dependent_bterms as dbt
sage: AR, n, k = dbt.AsymptoticRingWithDependentVariable(
....: 'n^QQ', 'k', 0, 4/7, bterm_round_to =3, default_prec =5
....:)
sage: AR
Asymptotic Ring <n^QQ> over Symbolic Ring

The arguments passed to the interface are, in order,
growth_group – the (univariate) growth group1 modeling the desired structure of the
asymptotic expansions. For example, ’n^QQ’ represents terms like 42n9/13 or O(n7/42).
dependent_variable – a string representation of the symbolic variable being endowed
with asymptotic growth bounds, e.g., ’k’.
lower_bound_power – a real number α ≥ 0 representing the power to which the ring’s
independent variable is raised to obtain the lower monomial power.
upper_bound_power – a real number β > α ≥ 0, analogous to lower_bound_power, just
for the upper bound,
bterm_round_to – a non-negative integer or None (the default), determining the number
of floating point digits to which the coefficients of B-terms are automatically rounded. If
None, no rounding is performed.

1 See SageMath’s documentation on asymptotic expansions and the AsymptoticRing for an introduction
to the algebraic terminology used here.

AofA 2024

https://doc.sagemath.org/html/en/reference/asymptotic/sage/rings/asymptotic/asymptotic_ring.html

19:6 Binomial Sums and Mellin Asymptotics with Explicit Error Bounds: A Case Study

Any other keyword arguments (like default_prec in Listing 1 above) are passed to the
constructor of AsymptoticRing.

In this structure, arithmetic with asymptotic expansions in n can be carried out as
usual, see Listing 2. The default_prec parameter specified above controls the order of the
automatic expansions.

Listing 2 Arithmetic and automatic expansions in AsymptoticRing.
sage: (1 + 3*n) * (4*n^(-7/3) + 42/n + 1)
3*n + 127 + 42*n^(-1) + 12*n^(-4/3) + 4*n^(-7/3)
sage: prod ((1 + n^(-j)) for j in srange(1, 10)) * (1 + O(n^(-10)))
1 + n^(-1) + n^(-2) + 2*n^(-3) + 2*n^(-4) + 3*n^(-5) + 4*n^(-6)
+ 5*n^(-7) + 6*n^(-8) + 8*n^(-9) + O(n^(-10))
sage: n / (n - 1)
1 + n^(-1) + n^(-2) + n^(-3) + n^(-4) + O(n^(-5))

In the implementation of the AsymptoticRing shipped with SageMath, asymptotic
expansions internally rely on ordering their summands with respect to the growth of the
independent variable(s), regardless of attached coefficients.

In the extension of our dependent_bterms module, expansions are aware of the growth
range contributed by the dependent variable appearing in coefficients. In fact, in our modified
ring, expansions are ordered with respect to the upper bound of the coefficient growth
combined with the growth of the independent variable. This explains the – at first glance
counterintuitive – ordering of the summands in Listing 3. The individual growth ranges of
the summands are printed at the end of the listing.

Listing 3 Arithmetic involving the dependent variable.
sage: k*n^2 + O(n^(3/2)) + k^3*n
k^3*n + k*n^2 + O(n^(3/2))
sage: for summand in expr.summands.elements_topological ():
....: print(f"{summand}␣->␣{summand.dependent_growth_range ()}")
O(n^(3/2)) -> (n^(3/2) , n^(3/2))
k*n^2 -> (n^2, n^(18/7))
k^3*n -> (n, n^(19/7))

Automatic power series expansion (with an O-term error) also works natively in our
modified ring, see Listing 4. Observe that the error term O(n−15/7) would actually be able
to partially absorb some of the terms in the automatic expansion like (k/2 + 1/6)n−3. This
partial absorption is, however, not carried out automatically due to performance reasons.
Using the simplify_expansion function included in our module expands the symbolic
coefficients and enables the error terms to carry out all allowed (partial) absorptions.

Listing 4 Automatic expansions and manual simplifications.
sage: auto_expansion = exp ((1 + k)/n)
sage: auto_expansion
1 + (k + 1)*n^(-1) + (1/2*(k + 1)^2)*n^(-2) + (1/6*(k + 1)^3)*n^(-3)
+ (1/24*(k + 1)^4)*n^(-4) + O(n^(-15/7))
sage: dbt.simplify_expansion(auto_expansion)
1 + (k + 1)*n^(-1) + (1/2*k^2 + k + 1/2)*n^(-2)
+ (1/6*k^3 + 1/2*k^2)*n^(-3) + 1/24*k^4*n^(-4) + O(n^(-15/7))

Now let us turn to the core feature of our extension: B-terms. In a nutshell, B-terms are
O-terms that come with an explicitly specified constant and validity point. For example, the
term Bn≥10(42n3) represents an error term that is bounded by 42n3 for n ≥ 10.

B. Hackl and S. Wagner 19:7

Listing 5 demonstrates basic arithmetic with B-terms. It is worth spending a moment to
understand how the resulting constants are determined. In the first example, the B-term
Bn≥10(5/n) absorbs the exact term 3/n2 of weaker growth. It does so by automatically
estimating 3

n2 ≤ 3
10n (as the term is valid for n ≥ 10) and then directly absorbing the upper

bound; 53
10 = 5 + 3

10 .
The same mechanism happens in the second example. In order to avoid the (otherwise

rapid) accumulation of complicated symbolic expressions in the automatic estimates, we have
specified (via the bterm_round_to-parameter that we have set to 3) that B-terms should
automatically be rounded to three floating point digits. This is why the constant is given as
⌈(1 + 10−1/3) · 103⌉ · 10−3 = 293

200 .

Listing 5 Arithmetic with B-terms and the dependent variable.
sage: 7*n + AR.B(5/n, valid_from =10) + 3/n^2
7*n + B(53/10*n^(-1), n >= 10)
sage: AR.B(1/n, valid_from =10) + n^(-4/3)
B(293/200*n^(-1), n >= 10)
sage: AR.B(3*k^2/n^3, valid_from =10) + (1 - 2*k + 3*k^2 - 4*k^3)/n^5
B(3373/1000* abs(k^2)*n^(-3), n >= 10)

The third example in Listing 5 illustrates arithmetic involving the dependent variable,
which requires additional care. With 1 ≤ k ≤ n4/7 in place, the growth of the given B-term
ranges from Θ(n−3) to Θ(n−13/7). The growth of the explicit term that is added ranges
from Θ(n−5) to Θ(n−23/7). In this setting, we consider the explicit term to be of weaker
growth, as the lower bound of the B-term is stronger than the lower bound of the explicit
term, and likewise for the upper bound. Thus we may let the B-term absorb it. We do so by
first estimating∣∣∣∣1 − 2k + 3k − 4k3

n5

∣∣∣∣ ≤ (1 + 2 + 3 + 4)k3

n5 = 10k3

n5 .

As the power of k in this bound is larger than the maximal power of k in the B-term, we
may not yet proceed as above (otherwise we would increase the upper bound of the B-term,
which we must avoid). Instead, we use first use k ≤ n4/7, followed by n ≥ 10, to obtain

10k3

n5 ≤ 10k2n4/7

n5 = 10k2

n31/7 ≤ 10k2

1010/7 · n3 = 10−3/7 · k2

n3 ,

which the B-term can now absorb directly. Hence the value of the B-term constant is
determined by ⌈(3 + 10−3/7) · 103⌉ · 10−3 = 3373

1000 .
Finally, our module also provides support for B-term bounded Taylor expansion (again,

also involving the dependent variable) in form of the taylor_with_explicit_error function.
An example is given in Listing 6: we first obtain a Taylor expansion of f(t) = (1 − t2)−1

around t = (1 + k)/n + Bn≥10(k3/n3). Using the simplify_expansion function rearranges
the terms and lets the B-term absorb coefficients (partially) as far it is able to. Observe
that it may happen that the attempted simplification produces summands with a smaller
upper growth bound that the implementation cannot absorb (Bn≥10(k3/n3) vs. n−2 in this
case). The expansion is still correct; just not as compact as it could be. We can also use the
simplify_expansion function with the simplify_bterm_growth parameter set to True to
collapse the dependent variables in all B-terms by replacing them with their upper bounds,
resulting in a single “absolute” B-term.

AofA 2024

19:8 Binomial Sums and Mellin Asymptotics with Explicit Error Bounds: A Case Study

Listing 6 B-term bounded Taylor expansions.
sage: arg = (1 + k)/n + AR.B(k^3/n^3, valid_from =10)
sage: ex = dbt.taylor_with_explicit_error(
....: lambda t: 1/(1 - t^2), arg ,
....: order=3, valid_from =10)
sage: ex
1 + ((k + 1)^2)*n^(-2)
+ B((abs (7351/250*k^3 + 30*k^2 + 30*k + 10))*n^(-3), n >= 10)
sage: dbt.simplify_expansion(ex)
1 + k^2*n^(-2)
+ B((abs (7351/250*k^3 + 30*k^2 + 30*k + 10))*n^(-3), n >= 10)
+ (2*k + 1)*n^(-2)
sage: dbt.simplify_expansion(ex , simplify_bterm_growth=True)
1 + k^2*n^(-2) + B(41441/1000*n^(-9/7), n >= 10)

4 Asymptotic analysis

In the following, we provide the steps of the analysis of the sum F (n), aided by the software
package that was presented in the previous section. We will verify (1) for n ≥ N = 10000 by
means of an asymptotic analysis with explicit error terms. For n < N , one can verify the
inequality with a computer by determining F (n) explicitly in all cases.

All computations carried out in this section can be found in the SageMath notebook
located at

https://arxiv.org/src/2403.09408/anc/2024-bona-dejonge.ipynb,

and a corresponding static version (containing computations and results) is available at

https://arxiv.org/src/2403.09408/anc/2024-bona-dejonge.html.

4.1 Approximating the binomial coefficients
It is useful to divide the entire sum by

(2n
n

)
and to approximate the quotient. Note that we

have(2n
n−k

)(2n
n

) = n(n − 1) · · · (n − k + 1)
(n + 1)(n + 2) · · · (n + k) = n

n − k

k∏
j=1

n − j

n + j
= n

n − k

k∏
j=1

1 − j/n

1 + j/n
.

This can be rewritten as(2n
n−k

)(2n
n

) = n

n − k
exp

(k∑
j=1

log(1 − j/n) − log(1 + j/n)
)

= n

n − k
exp

(
−

k∑
j=1

∞∑
r=1

r odd

2jr

rnr

)
, (3)

an expression that will also be used later. It follows from it that(2n
n−k

)(2n
n

) ≤ n

n − k
exp

(
−

k∑
j=1

2j

n

)
≤ n

n − k
exp

(
−k2

n

)
. (4)

For small enough k, we can also obtain an asymptotic expansion. This will be discussed
later.

https://arxiv.org/src/2403.09408/anc/2024-bona-dejonge.ipynb
https://arxiv.org/src/2403.09408/anc/2024-bona-dejonge.html

B. Hackl and S. Wagner 19:9

4.2 The tails
In order to replace the binomial coefficient by a simpler expression that is amenable to a
Mellin analysis, we first have to handle the tails of the sum. For this purpose, we require an
explicit bound for the divisor function σ(k) in form of a constant A > 0 such that

σ(k) ≤ A · k · log log n (5)

for 1 ≤ k ≤ n when n ≥ N . Assume temporarily that N ≤ k ≤ n. Then, using an inequality
due to Robin [10],

σ(k)
k

≤ eγ log log k + 0.6483
log log k

≤ eγ log log n + 0.6483
log log N

≤
(

eγ + 0.6483
log log N

)
log log n.

For N = 10000, we can choose A = 52/25 ≥ eγ + 0.6483/ log log N , and we can let the
computer verify that (5) also holds for 1 ≤ k ≤ n = N .

For k > n
2 , (4) combined with the fact that the binomial coefficients

(2n
n−k

)
are decreasing

in k gives us(2n
n−k

)(2n
n

) ≤ 2e−n/4.

So we have

0 ≤ 1(2n
n

) ∑
n/2<k≤n

kσ(k)(k2 − 3n + 2)(2k2 − n)
(

2n

n − k

)
≤

∑
n/2<k≤n

4Ak6(log log n)e−n/4

≤ (A log log n)n7e−n/4,

since it is easily verified that
∑

n/2<k≤n k6 ≤ n7

4 for n > 5. Thus, the contribution of the
sum in this range is

1(2n
n

) ∑
n/2<k≤n

kσ(k)(k2 − 3n + 2)(2k2 − n)
(

2n

n − k

)
= Bn≥N

(52
25e−n/4n7 log log n

)
. (6)

Next, fix a constant α ∈ (1
2 , 3

4); the precise value is in principle irrelevant if one is only
interested in an asymptotic formula. However, for our computations with explicit error
bounds it is advantageous to take a value close to 3

4 , so we choose α = 7
10 . We bound the

sum over all k ∈ [nα, n/2]. Here, we have(2n
n−k

)(2n
n

) ≤ 2e−k2/n

by (4), thus (assuming that N is large enough that k2 ≥ n2α ≥ 3n whenever n ≥ N , which
we can easily verify for N = 10000 and α = 7/10)

0 ≤ 1(2n
n

) ∑
nα≤k≤n/2

kσ(k)(k2 − 3n + 2)(2k2 − n)
(

2n

n − k

)
≤

∑
nα≤k≤n/2

4Ak6(log log k)e−k2/n

≤ (4A log log n)
∑

nα≤k≤n/2

k6e−k2/n.

AofA 2024

19:10 Binomial Sums and Mellin Asymptotics with Explicit Error Bounds: A Case Study

The function t 7→ t6e−t2/n is decreasing for t ≥
√

3n, thus in particular for t ≥ nα under our
assumptions. This implies that (by a standard estimate for sums in terms of integrals)∑

nα≤k≤n/2

k6e−k2/n ≤ n6αe−n2α−1
+

∫ ∞

nα

t6e−t2/n dt.

The integral can be estimated by elementary means: for T = nα,∫ ∞

T

t6e−t2/n dt ≤ 1
T

∫ ∞

T

t7e−t2/n dt = n

2T

(
6n3 + 6n2T 2 + 3nT 4 + T 6)

e−T 2/n.

For large enough n ≥ N , this is negligibly small. This can be quantified with the help of
some explicit computations with B-terms. We find that

1(2n
n

) ∑
nα≤k≤n/2

(
2n

n − k

)
kσ(k)(k2 −3n+2)(2k2 −n) = Bn≥N

(25073
5000 e−n2/5

n
9
2 log log n

)
. (7)

4.3 Approximating the summands
So we are left with the sum over k < nα. Here, we can expand the exact expression in (3):
this can be done by cutting the sum over r at some point (we choose the cutoff at R = 9)
and estimating

0 ≤
k∑

j=1

∞∑
r=R
r odd

2jr

rnr
≤

k∑
j=1

2jR

RnR(1 − j2/n2)

by means of a geometric series (observe that the factor 1 − j2/n2 in the denominator stems
from the fact that we are only summing over odd r), and then further

k∑
j=1

2jR

RnR(1 − j2/n2) ≤ 2
RnR(1 − k2/n2)

(
kR +

∫ k

0
tR dt

)
= 2

RnR(1 − k2/n2)

(
kR + kR+1

R + 1

)
R=9= Bn≥N

((239
10000k10 + 2223

10000k9
)

n−9
)

,

followed by a Taylor expansion of the exponential multiplied with the expansion of n
n−k ,

cf. (3). The full and sufficiently precise asymptotic expansion can be found in our auxiliary
SageMath notebook. It reads(2n

n−k

)(2n
n

) = e−k2/n
(

1 − k4 + k2

6n3 + k8

72n6 + k2

n2 − k12

1296n9 − 3k6

20n5 + k16

31104n12

+ · · · + Bn≥N

(k24

10000n18

)
+ Bn≥N

(9k21

10000n16

)
+ · · ·

)
,

where the summands are ordered based on their individual upper growth bound (found from
substituting k = nα). The ellipses · · · indicate terms that are left out as the expression
would otherwise be very long. If it were required, this expansion could also be made more
precise. Let us now split the expression inside the brackets: let S(n, k) denote the sum of all
“exact” terms, and SB(n, k) the sum of all B-terms. We want to evaluate∑

1≤k<nα

kσ(k)
(
S(n, k) + SB(n, k)

)
(k2 − 3n + 2)(2k2 − n)e−k2/n.

B. Hackl and S. Wagner 19:11

Let us first deal with the error estimate: since |(k2 − 3n + 2)(2k2 − n)| ≤ 2k4 + 3n2 for all k

and n, it suffices to bound∑
1≤k<nα

kSB(n, k)σ(k)(2k4 + 3n2)e−k2/n

≤ (A log log n)
∑

1≤k<nα

SB(n, k)(2k6 + 3n2k2)e−k2/n

≤ (A log log n)
∑
k≥1

SB(n, k)(2k6 + 3n2k2)e−k2/n.

For a positive function f(t) that is increasing up to some maximum t0 and decreasing
thereafter, it is well known that

∑
k≥1 f(k) ≤ f(t0) +

∫ ∞
0 f(t) dt. This can now be applied

to t 7→ tje−t2/2 to find, with the help of computer algebra,∑
1≤k<nα

kSB(n, k)σ(k)(2k4 + 3n2)e−k2/n = Bn≥N

(146718899
10000

√
n log log n

)
. (8)

While this error is not quite as small as those collected so far, for n = 10000 it is still only
about 26.1% of the eventual main term.

Now we can consider the remaining sum∑
1≤k<nα

kσ(k)S(n, k)(k2 − 3n + 2)(2k2 − n)e−k2/n.

To this end, we first add back the terms with k ≥ nα and estimate their sum.
For k ≤ n3/4 the expansion in S(n, k) can be bounded above, S(n, k) ≤ c1 ≈ 4.372, and

for k ≥ n3/4 we have S(n, k) ≤ k20/(10000n15). As for the other factors in our summands,
we can bound (k2 − 3n + 2)(2k2 − n) from above by 2k4. For an estimate of σ(k) we use (5)
in the range k < n3/4, and for the remaining case of k ≥ n3/4 we use the well-known weaker
bound σ(k) ≤ k2. This leaves us with∑

nα≤k<n3/4

kσ(k)S(n, k)(k2 − 3n + 2)(2k2 − n)e−k2/n

≤ 2Ac1 log log n
∑

nα≤k<n3/4

k6e−k2/n = Bn≥N

(
12553
5000 e−n2/5

n19/4 log log n

)
, (9)

and ∑
k≥n3/4

kσ(k)S(n, k)(k2 − 3n + 2)(2k2 − n)e−k2/n

≤ 2
10000 n15

∑
k≥n3/4

k27e−k2/n = Bn≥N

(
3

2000e−n1/2
n11/2

)
, (10)

where the sums have been bounded using the same integral estimate as before.

4.4 Mellin transform
Having estimated all error terms related to pruning and completing the tails of the sum, we
now want to evaluate∑

k≥1
kσ(k)S(n, k)(k2 − 3n + 2)(2k2 − n)e−k2/n. (11)

AofA 2024

19:12 Binomial Sums and Mellin Asymptotics with Explicit Error Bounds: A Case Study

This sum is a linear combination of sums of the form∑
k≥1

kanbσ(k)e−k2/n. (12)

In the precision chosen in our accompanying SageMath worksheet, there are 121 such
summands, to be precise. Set t = n−1, refer to the sum in (12) as ga,b(t) and let da,b denote
the coefficients such that the sum in (11) can be written as

∑
a,b da,bga,b(t). The Mellin

transform (see [4] for a general reference) of ga,b(t) is given by

g∗
a,b(s) =

∫ ∞

0
ts−1

∑
k≥1

kat−bσ(k)e−k2t dt = ζ(2s − 2b − a − 1)ζ(2s − 2b − a)Γ(s − b).

By the Mellin inversion formula, the original function ga,b(t) can be recovered from its
transform via

ga,b(t) = 1
2πi

∫ c+i∞

c−i∞
ζ(2s − 2b − a − 1)ζ(2s − 2b − a)Γ(s − b)t−s ds

for c > a
2 + b + 1. We may shift the line of integration further left as long as we collect all

corresponding residues. In a first step, we shift the line of integration to c = 3/4. While in
some summands poles occur as far right as s = 7/2, a straightforward computation reveals
that, as mentioned in the introduction of this article, nontrivial cancellations take place:
after summing all contributions, non-zero residues in the half-plane where ℜ(s) ≥ 3/4 can
only be found for s = 1 and s = 2, where we collect a contribution of

∑
s0∈{1,2}

∑
a,b

da,b Res(ga,b(s), s = s0) = − 1
8t2 + 1

24t
= −n2

8 + n

24 , (13)

which proves the asymptotic main term given in (2).
We now need to determine an explicit error bound for these shifted integrals. To do so,

we investigate, individually for each summand, how far we can shift the line of integration to
the left (in half-integer units) until ℜ(s) = ca,b without collecting any further residues.

In a central region of ca,b + iw for |w| ≤ 100 we use rigorous integration via interval
arithmetic to determine the value of the shifted integrals. Outside, for |w| > 100, we
determine a suitable upper bound of the integrand. For Γ(ca,b + iw) where ca,b > 0 we use [3,
(5.6.9)], and when ca,b < 0 we first shift the argument to the right via the functional equation
Γ(s) = 1

s Γ(s + 1) and then proceed as before. For ζ(ca,b + iw) we bound the modulus from
above by ζ(3/2) if ca,b ≥ 3/2. When ca,b ≤ −1/2 we first apply the reflection formula [3,
(25.4.1)]; the resulting factors can all be estimated directly. For the special case of ca,b = 1/2
we use the bound proved by Hiary, Patel, and Yang in [9, Theorem 1.1] to obtain

|ζ(1/2 + iw)| ≤ 0.618 t1/6 log t ≤ 0.618 t1/2

for t ≥ 100. Letting a computer collect and combine all of these contributions then yields∣∣∣∣ ∑
a,b

1
2πi

∫ 3/4+i∞

3/4−i∞
g∗

a,b(s)t−s ds

∣∣∣∣
≤ 1

2π

∑
a,b

nca,b

∫ ∞

−∞
|g∗

a,b(ca,b + iw)| dw = Bn≥N

(406531
100 n3/4

)
. (14)

https://dlmf.nist.gov/5.6.E9
https://dlmf.nist.gov/25.4.E1

B. Hackl and S. Wagner 19:13

6000 8000 10000 12000 14000 16000 18000 20000

1

2

3

4

5
1e7

6000 8000 10000 12000 14000 16000 18000 20000

0.4

0.6

0.8

1.0

1.2

1.4

Figure 1 Comparison of the absolute value of the asymptotic main term −n2/8 + n/24 (red)
against the accumulated total error (blue) on the left. The right plot depicts the ratio of the error
bound to the main term.

5 Conclusion

Throughout Section 4 we have accumulated several explicit error terms. They are given in (6),
(7), (8), (9), (10), and (14). Combining them using crude estimates such as log log n ≤ n1/10

for n ≥ N proves the following theorem.

▶ Theorem 2. For n ≥ 10000, the binomial sum F (n) satisfies the asymptotic formula

F (n) =
(

2n

n

)(
− n2

8 + n

24 + Bn≥N

(38755553
5000 n3/4

))
.

Observe that for n = 10000 the certified error is already only approximately 62.1% of the
absolute value of the exact main term. Together with the direct verification for 5 ≤ n < N

this settles Problem 1. See Figure 1 for an illustration of the behavior of the total error
compared to the main term.

To conclude this paper, we briefly discuss an alternative approach that was kindly pointed
out to us by a referee. Recall that the task is to prove the inequality (1), i.e.,

F (n) =
n∑

k=1
kσ(k)(k2 − 3n + 2)(2k2 − n)

(
2n

n − k

)
< 0.

Now one can use the well-known generating function identity

∞∑
n=k

(
2n

n − k

)
xn = xk

∞∑
m=0

(
2m + 2k

m

)
xm = xk 1√

1 − 4x
C(x)2k,

where C(x) = 1−
√

4x
2x is the generating function for the Catalan numbers, see e.g. [6,

(5.72)]. This gives an expression for F (n) in terms of coefficients of functions involving C(x).
Specifically, we have

F (n) = 3n2
n∑

k=1
kσ(k)

(
2n

n − k

)
− n

n∑
k=1

k(7k2 + 2)σ(k)
(

2n

n − k

)

+
n∑

k=1
2k3(k2 + 2)σ(k)

(
2n

n − k

)

AofA 2024

19:14 Binomial Sums and Mellin Asymptotics with Explicit Error Bounds: A Case Study

= 3n2[xn] 1√
1 − 4x

∞∑
k=1

kσ(k)(xC(x)2)k

− n[xn] 1√
1 − 4x

∞∑
k=1

k(7k2 + 2)σ(k)(xC(x)2)k

+ [xn] 1√
1 − 4x

∞∑
k=1

2k3(k2 + 2)σ(k)(xC(x)2)k

= 3n2[xn] 1√
1 − 4x

f1(H(x)) − n[xn] 1√
1 − 4x

f2(H(x)) + [xn] 1√
1 − 4x

f3(H(x)),

where H(x) = xC(x)2 = 1−2x−
√

1−4x
2x , and f1, f2, f3 are given by the series

f1(z) =
∞∑

k=1
kσ(k)zk, f2(z) =

∞∑
k=1

k(7k2 + 2)σ(k)zk, f3(z) =
∞∑

k=1
2k3(k2 + 2)σ(k)zk.

At the singularity x = 1
4 , H(x) has the expansion

1 − 2
√

1 − 4x + 2(1 − 4x) + · · · ,

so we need the behavior of f1(z), f2(z), f3(z) around z = 1. This can be determined by
means of the Mellin transform: setting z = e−t, we obtain for instance

f1(e−t) =
∞∑

k=1
kσ(k)e−kt,

whose Mellin transform is Γ(s)ζ(s − 1)ζ(s − 2). Applying the inverse Mellin transform in the
same way as in Section 4.4 (though now with complex parameter t) yields

f1(e−t) = π2

3t3 − 1
2t2 + O(tK)

for any positive real K. This and analogous asymptotic formulas for f2 and f3 give us the
behavior of f1(H(x)), f2(H(x)) and f3(H(x)) at the dominant singularity 1

4 , from which
the asymptotic formula (2) can be obtained by means of contour integration and singularity
analysis. Carrying all of this out with explicit error terms comes with its own challenges,
though, as one now has to deal with complex asymptotics.

References
1 Miklós Bóna and Elijah DeJonge. Pattern avoiding permutations with a unique longest

increasing subsequence. Electron. J. Combin., 27(4):Paper No. 4.44, 11, 2020. doi:10.37236/
9506.

2 Mireille Bousquet-Mélou and Yann Ponty. Culminating paths. Discrete Math. Theor. Comput.
Sci., 10(2):125–152, 2008.

3 NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.1.12
of 2023-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F.
Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
URL: https://dlmf.nist.gov/.

4 Philippe Flajolet, Xavier Gourdon, and Philippe Dumas. Mellin transforms and asymptotics:
Harmonic sums. Theor. Comput. Sci., 144(1-2):3–58, 1995. doi:10.1016/0304-3975(95)
00002-E.

https://doi.org/10.37236/9506
https://doi.org/10.37236/9506
https://dlmf.nist.gov/
https://dlmf.nist.gov/
https://doi.org/10.1016/0304-3975(95)00002-E
https://doi.org/10.1016/0304-3975(95)00002-E

B. Hackl and S. Wagner 19:15

5 Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University Press,
Cambridge, 2009. doi:10.1017/CBO9780511801655.

6 Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics: a
foundation for computer science. Amsterdam: Addison-Wesley Publishing Group, 2nd ed.
edition, 1994.

7 Benjamin Hackl, Clemens Heuberger, and Daniel Krenn. Asymptotic expansions in SageMath.
http://trac.sagemath.org/17601, 2015. module in SageMath 6.10.

8 Benjamin Hackl, Clemens Heuberger, Helmut Prodinger, and Stephan Wagner. Analysis of
bidirectional ballot sequences and random walks ending in their maximum. Ann. Comb.,
20(4):775–797, 2016. doi:10.1007/s00026-016-0330-0.

9 Ghaith A. Hiary, Dhir Patel, and Andrew Yang. An improved explicit estimate for ζ(1/2 + it).
J. Number Theory, 256:195–217, 2024. doi:10.1016/j.jnt.2023.09.003.

10 G. Robin. Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J.
Math. Pures Appl. (9), 63:187–213, 1984.

11 The SageMath Developers. SageMath, March 2023. doi:10.5281/zenodo.593563.

AofA 2024

https://doi.org/10.1017/CBO9780511801655
http://trac.sagemath.org/17601
http://www.sagemath.org/
https://doi.org/10.1007/s00026-016-0330-0
https://doi.org/10.1016/j.jnt.2023.09.003
https://doi.org/10.5281/zenodo.593563

Multicoloured Hardcore Model: Fast Mixing and
Its Applications as a Scheduling Algorithm
Sam Olesker-Taylor # Ñ

Department of Statistics, University of Warwick, UK

Abstract
In the hardcore model, certain vertices in a graph are active: the active vertices must form an
independent set. We extend this to a multicoloured version: instead of simply being active or not,
the active vertices are assigned a colour; active vertices of the same colour must not be adjacent.

This models a scenario in which two neighbouring resources may interfere when active – eg,
short-range radio communication. However, there are multiple channels (colours) available; they only
interfere if both use the same channel. Other applications include routing in fibreoptic networks.

We analyse Glauber dynamics. Vertices update their status at random times, at which a uniform
colour is proposed: the vertex is assigned that colour if it is available; otherwise, it is set inactive.

We find conditions for fast mixing of these dynamics. We also use them to model a queueing
system: vertices only serve customers in their queue whilst active. The mixing estimates are applied
to establish positive recurrence of the queue lengths, and bound their expectation in equilibrium.

2012 ACM Subject Classification Mathematics of computing → Probabilistic algorithms

Keywords and phrases mixing time, queueing theory, hardcore model, proper colourings, independent
set, data transmission, randomised algorithms, routing, scheduling, multihop wireless networks

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.20

Acknowledgements The author would like to thank Frank Kelly for multiple detailed discussions on
this topic, as well as reading through the paper. Additionally, thanks go to Perla Sousi and Luca
Zanetti, who also read the paper. Their feedback has been invaluable in preparing this manuscript.

1 Introduction and Main Results

We extend the hardcore model, used for sampling independent sets, to a multicoloured
version. Given a graph G = (V, E), our objective is to colour a subset U ⊆ V of the vertices
such that if u, u′ ∈ U satisfy {u, u′} ∈ E, then u and u′ are painted with different colours. If
there is only one colour, then this condition requires that there is no pair of mutually adjacent
vertices. This is the definition of an independent set, so we recover the usual hardcore model.

We allow an arbitrary number K ∈ N of possible colours. If we required all vertices to
be selected – ie, U = V – then the condition is that no edge in the graph is monochromatic:
the endpoints must receive different colours. We thus recover the proper colouring model.
Our model models these two, sampling a properly coloured subset of vertices, or subgraph.

The motivation for this model comes from a desire for a decentralised (and randomised)
algorithm for resource sharing. Two examples of this are short-range radio communication,
where nearby agents on the same frequency interfere, and routing in fibreoptic networks.
Both K and G are given parameters, depending on the particular engineering set-up.

A popular method for sampling proper colourings or independent sets is via Glauber
dynamics. Our main result is on the mixing time of Glauber dynamics for the multicoloured
hardcore model, defined precisely below. We then use the system to model a queueing system.

Customers (eg, data packets) arrive to vertices at some (vertex-dependent) rate.
Coloured vertices are active: they serve their customers at some (vertex-dependent) rate.
Uncoloured vertices are inactive: they do not serve, but their queue can still grow.

We apply the mixing-time result to control the queue lengths, under certain conditions.
© Sam Olesker-Taylor;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oleskertaylor.sam@gmail.com
http://mathematicalsam.wordpress.com
https://orcid.org/0000-0001-9764-1645
https://doi.org/10.4230/LIPIcs.AofA.2024.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Multicoloured Hardcore Model: Fast Mixing and Application

A Glauber Dynamics
Let G = (V, E) be a graph and K ∈ N. Let n := |V |; write [K]0 := {0, 1, ..., K}. The state
space Ω of the system is a subset of configurations [K]V0 = {(ωv)v∈V | ωv ∈ [K]0 ∀ v ∈ V }.

▶ Definition A.1 (State Space). Let Ω := {ω ∈ [K]V0 | ω is proper}, where ω ∈ [K]V0 is
proper if

ωu ̸= ωv whenever {u, v} ∈ E and ωu + ωv > 0.

In a proper configuration, the colour of one vertex must be different to that of all its
neighbours, except that colour 0 is exempt from this condition. We view colour 0 as inactive.
A configuration is proper if the subgraph induced by its active vertices is properly coloured.

▶ Definition A.2 (Glauber-Type Dynamics). Let λ = (λv) ∈ (0, ∞)V and p = (pv) ∈ [0, 1]V .
We analyse the following continuous-time Markov chain, which we denote MCHΩ(λ, p).

Choose vertex v ∈ V to update at rate λv, simultaneously over all vertices.
Once vertex v ∈ V is chosen, toss a pv-biased coin: C ∼ Bern(pv).

If C = 1, then choose a (non-zero) colour k ∈ [K] uniformly at random. If colour k is
available for v – ie, no neighbour of v has colour k – then paint v with colour k.
Otherwise, deactivate v – ie, colour 0 – whether or not it was active before.

Denote the equilibrium distribution by π. The equilibrium active time, or service rate, is

sv :=
∑

ω∈Ω:ωv ̸=0 π(ω) for v ∈ V.

The usual Glauber dynamics for proper colourings proposes a colour chosen uniformly
amongst available colours. However, this requires whoever is making the colour choice to
know which colours are available for that vertex. This is unreasonable in the context of
routing algorithms in fibreoptic networks, for example. It is often much faster to check if a
single proposed colour is available than to find out which colours are available.

Our main theorem establishes fast mixing. First, we define mixing times precisely.

▶ Definition A.3 (Mixing Times). The total-variation distance between distributions µ and
π is

∥µ − π∥TV := maxA⊆Ω |µ(A) − π(A)| = 1
2

∑
ω∈Ω|µ(ω) − π(ω)|.

The mixing time of a Markov chain X = (Xt)t≥0 on Ω with invariant distribution π is

tmix(ε) := inf{t ≥ 0 | maxx∈Ω ∥Px[Xt ∈ ·] − π∥TV ≤ ε} for ε ∈ (0, 1).

▶ Theorem A (Fast Mixing). Suppose that there exists β > 0 such that

1
K

∑
u∈V :{u,v}∈E puλu/λv ≤ 1 − β for all v ∈ V.

Let λmin := minv∈V λv. If X, Y ∼ MCHΩ(λ, p), then

max
x,y∈Ω

∥∥Px[Xt ∈ ·] − Py[Y t ∈ ·]
∥∥

TV ≤ min
{

2ne−βλmint, 1
}

.

In particular,

tmix(ε) ≤ (βλmin)−1 log(2n/ε) for all ε ∈ (0, 1).

S. Olesker-Taylor 20:3

Remark A (Fast-Mixing Condition). The condition in Theorem A arises from requiring the
Wasserstein distance between X and Y to contract in a single step, uniformly. Distance is
measured vertex-wise: d(x, y) :=

∑
v∈V 1{xv ̸= yv} for x, y ∈ Ω. Namely, we prove that if

configurations x and y differ only in that vertex v is active in one but not the other, then
d
dtE(x,y)[d(Xt, Y t)]

∣∣
t=0 ≤ λv

(1
K

∑
u∈V :{u,v}∈E puλu/λv − 1

)
under some coupling. The given condition ensures this is negative, uniformly in x, y ∈ Ω. A
standard application of path coupling [6] extends this uniform contraction to all x, y ∈ Ω. △

The graph G and number K of colours are given by the application. In contrast, the
parameters (λv, pv)v∈V may be chosen by the operator. There are good heuristics for taking

λv ∝ dv and pv ∝ (K/dv) ∧ 1.

In short, high-degree nodes have more impact on their neighbours, and hence should be
updated faster: so, take λv ∝ dv. Further, if v is active with probability p′

v, then it remove a
total of p′

vdv colour choices in expectation (from its neighbours). There are K colours, so
vertices shouldn’t remove more than K in expectation: hence, svdv ∝ K; so, take pv ∝ K/dv.

We work in continuous time, so scaling all the rates λ inversely scales the mixing time.
We choose the normalisation

∑
v∈V λv = n; so, vertices each update at rate 1 on average.

▶ Corollary A (Heuristic-Driven Choice). Suppose that λv = dv/d̄ and pv ≤ 2
3 K/dv for all

v ∈ V , where d̄ := 1
n

∑
v∈V dv is the average degree. Let X, Y ∼ MCHΩ(λ, p). Then,

max
x,y∈Ω

∥∥Px[Xt ∈ ·] − Py[Y t ∈ ·]
∥∥

TV ≤ min
{

2ne−(δ/d̄)t/3, 1
}

,

where δ := minv∈V dv. In particular,

tmix(ε) ≤ 3(d̄/δ) log(2n/ε) for all ε ∈ (0, 1).

It is standard, or, at least, very common, in the hardcore-model (K = 1) literature to
require pv = p < 1/∆ for all v, where ∆ := maxv∈V dv is the maximum degree; see, eg,
[2, 15, 7] or [14, Theorem 5.9]. We take more care, requiring only pv < K/dv for each v; [10]
have a similar improvement, but restricted to the usual hardcore model (K = 1).

A consequence of requiring pv = p < 1/∆ is that the mixing time is often proportional
to ∆. Ours is proportional to d̄/dmin, which is often significantly smaller.

The bound p < 1/∆ is natural, up to a factor e. Indeed, for the (usual) hardcore model,
it has been known since Kelly [13] that the infinite ∆-regular tree has a critical threshold
at pc(∆) ≈ e/∆, for large ∆: the corresponding Gibbs distribution is unique if and only if
p < pc(∆). When p < pc(∆), known as the uniqueness regime to physicists, the “influence”
of one vertex on another decays exponentially in their relative distance. On the other hand,
long-rage correlations persist when p > pc(∆). See [1, §1.2] for more discussion on this.

Based on this, it appears that we should be able to only require pv ≤ (1 − η)eK/dv

and still obtain fast mixing. This would be a natural extension of the critical threshold:
pc(∆, K) := eK/∆. We demonstrate this via some simulations at the end of the paper.

We also investigate the proportion of time that vertices are active in equilibrium.

▶ Proposition A (Equilibrium Service Rates). Suppose that pv ≤ 1
3 K/d̃v for all v ∈ V , where

d̃v := max{du | u ∼ v or u = v} is the maximal degree in the neighbourhood of v ∈ V . Then,
1
3 pv ≤ sv ≤ pv for all v ∈ V.

Our proof is quite flexible, allowing more general pv. We discuss how to generalise it, and
tighten the bounds, after its proof. Again, we expect that we only need pv ≤ (1 − η)eK/dv.

AofA 2024

20:4 Multicoloured Hardcore Model: Fast Mixing and Application

B Queueing Network
Our next results concerns queue length in a network. The proof relies on fast mixing.

▶ Definition B (Queueing Network). Let λ, ν, µ ∈ (0, ∞)V and p ∈ [0, 1]V . Let X ∼
MCHΩ(λ, p). The state space of the queueing network is NV . For q ∈ NV and v ∈ V , let

qv,±
u := qu ± 1{u = v} for u ∈ V ;

that is, qv,± adds/removes one from the v-th queue. The transition rates given X = x are

q →

{
qv,+ at rate νv

qv,− at rate µv1{xv ̸= 0}
for each v ∈ V ;

that is, the v-th queue has arrivals at rate νv always and services at rate µv provided v is
active. We denote the law of this queueing network by QMCHΩ(λ, p; ν).

We show that the queues are jointly positive recurrent – ie, the expected time until all
queues are simultaneously empty is finite – under the fast-mixing conditions of Theorem A
and the assumption that the arrival rate νv is smaller than the equilibrium service rate sv.

▶ Theorem B (Stable Queues). Suppose that there exists β > 0 such that

1
K

∑
u∈V :{u,v}∈E puλu/λv ≤ 1 − β for all v ∈ V.

Suppose also that νv < sv for all v ∈ V . If Q ∼ QMCHΩ(λ, p; ν), then Q is positive recurrent:

τ := inf{t ≥ 0 | Qt = 0} satisfies Eq[τ] < ∞ for all q ∈ NV .

Moreover, if Q0 is in equilibrium, then, writing λmin := minv∈V λv,

E[Q0
v] ≤ 6n log(2n/e)

βλmin(sv − νv)2 for all v ∈ V.

We now evaluate this under the heuristic-driven choice from Corollary A.

▶ Corollary B (Heuristic-Driven Choice). Suppose that λv = dv/d̄ and pv ≤ 2
3 K/dv for all

v ∈ V , where d̄ := 1
n

∑
v∈V dv is the average degree. Let δ := minv∈V dv. Suppose also that

νv < sv for all v ∈ V . Let Q ∼ QMCHΩ(λ, p; ν). Then, in equilibrium,

E[Q0
v] ≤ 18d̄n log(2n/e)

δ(sv − νv)2 for all v ∈ V.

A related result was proved by Jiang et al [10] for the usual hardcore model (one colour).
Also, they restrict to the special case pv = p < 1/∆, where ∆ is the maximum degree.

2 Motivation and Related Work

Fibreoptic Routing Application
Our original motivation was to create a fully decentralised random access scheme for resource
sharing in fibreoptic routing networks. There, nodes are connected by links, and they
communicate with each other along routes, which are sequences of links. Multiple routes may
share a subset of links; such routes interfere. Each link has a collection of frequencies available.

S. Olesker-Taylor 20:5

A naive approach has the source node send the data to the first intermediary node on the
route, along with instructions of where to send on. That intermediary node processes the data
and sends it onto the next node. This continues until the data reaches its target destination.

It is possible for different frequencies to be used along the route, due to the intermediary
processing. When checking whether it is possible for a certain collection of routes to be
active simultaneously, it is enough to check that no individual link is overloaded. However,
the intermediary processing adds overhead. If the time it takes to transmit the data along
the link is larger than the processing time, then the overhead is unimportant. However, in
fibreoptic networks, data is sent along links extremely quickly, and the processing overhead
becomes the performance bottleneck.

Instead of processing and resending the data at an intermediary node, an optical switch is
configured. This switch is like a prism: light coming from a single source is sent in different
directions, depending on its colour. This allows a light path to be set up, removing the
processing overhead; however, the same frequency must be used throughout the entire route.

The difficulty is in choosing the frequency (colour) of the light path. Now, it is not enough
to simply check that each link is not overloaded marginally, as the colours are correlated. In
the set-up of the multicoloured hardcore model, the vertices correspond to routes, and two
routes (vertices) are adjacent, forming an edge, if they interfere – ie, share a link. Certainly,
not all routes will be able to be on simultaneously; an access scheme must be devised.

I originally learnt of this model from a talk by Walker [22] at the Algorithms and Software
for Quantum Computers event at the Isaac Netwon Institute. There, the speaker was looking
to quantum computation for solutions. I, as a probabilist, took a randomised approach.

The multicoloured hardcore model has the significant benefit of decentralisation. All
decisions made can be made by the individual vertices, without any need for synchronisation or
knowledge of the state of the other routes. A vertex can even request a light path blindly [11]:
the path is set up if it does not conflict with any other already-active paths; otherwise, an
error is returned to the initiator. Moreover, optical-switch reconfiguration is fast and easy.

The hardcore model is a popular and well-studied model for random access schemes where
there is only a single frequency: on or off. A toy model for this is local radio communication:
vertices represent pairs of agents who wish to communicate; nearby pairs of agents cannot
communicate simultaneously. Quite separately, Glauber dynamics are used to sample proper
colourings on a graph. It seems natural to combine these two, yielding a multicoloured
hardcore model which can model more complex interference situations, such as when multiple
independent radio frequencies are available. However, to the best of my knowledge, this
multicoloured hardcore set-up has not been studied before in the context of routing.

Multihop Wireless Networks

Another application of this type of random routing scheme is to multihop wireless networks.
In cellular and wireless local area networks, wireless communication only occurs on the last
link between a base station and the wireless end system. In multihop wireless networks,
there are one or more intermediate nodes along the path; these receive and forward packets
via the wireless links. There are several benefits to the multihop approach, including
extneded coverage and improved connectivity, higher transfer rates and the avoidance of wide
deployment of cables. Unfortunately, protocols, particularly those for routing, developed
for fixed or cellular networks, or the Internet, are not optimal for these, more complicated,
multihop wireless networks; see, eg, [5].

AofA 2024

20:6 Multicoloured Hardcore Model: Fast Mixing and Application

A highly prominent example of multihop wireless networks is in the development and
deployment of 5G cellular networks [21]. Conventional cellular networks employ well-planned
deployment of tower-mounted base stations. They are undergoing a fundamental change to
deployment of smaller base stations. Multihop relaying can be instrumental for tation. See
[8, §4.1] for more details, from which part of this paragraph was paraphrased.

A multihop network with a single transmission frequency falls precisely into the framework
of the (usual) hardcore model. Glauber dynamics is a powerful tool used to generated
randomised, approximate solutions to combinatorially difficult problems. Moreover, it often
has natural decentralised implementation. It has already been used in the past to design and
analyse distributed scheduling algorithms for multihop wireless networks; see, particularly,
[10, 4], from which this paragraph was paraphrased, as well as [16, 17, 3, 9, 19].

Multihop wireless networks with multiple transmission frequencies correspond precisely
to our model. To the best of our knowledge, it has received little attention. However, with
technological and engineering advances, it may become an important extension in the future.

(A)synchronicity
One aspect to point out is our lack of synchronicity: we use continuous time, so sites update
one at a time. In practice, engineering implementations often prefer synchronised updates.
This is the case in [10], where the (usual) hardcore model is analysed and an independent set
of vertices – ie, a set of vertices with no edges between them – is updated simultaneously. It
is crucial that it is an independent set: the changes to one vertex in the set do not affect the
other vertices, and the updates can be done independently, in a parallel, distributed manner.

The (independent) set of vertices still needs to be chosen in each step. In [10], the authors
simply prescribe a distribution q over the collection of all independent sets; no comment is
made on how to sample one. In principle, this distribution is very complicated, and perhaps
even needs approximating – eg, via Glauber dynamics for the (usual) hardcore model.

The path coupling technique that we use, and is used in [10], is robust to parallel updates,
provided one update does not affect the others – as for updating an independent set of
vertices. If N is the expected size of the independent set chosen – ie, N := ES∼q[|S|] – then
the mixing bound behaves as if time is sped up by a factor N . We consider single-site,
continuous-time updates for simplicity; but, our analysis extends to the parallel set-up, too.

Spin Systems in Statistical Mechanics
Spin systems are widely studied in statistical mechanics, crossing combinatorics, probability
and physics: these involve a graph G = (V, E) and a discrete set K of spins; each vertex
v ∈ V is assigned a spin k ∈ K. Adjacent vertices interact with each other. A zoo of examples
of spin systems is discussed extensively in the very recent paper by Peled and Spinka [18].

In proper colourings, K = {1, ..., K} and the constraint is hard: adjacent vertices must
not have the same colour. The hardcore model is similar with K = {0, 1}.
In the Ising model, K = {±1} and the constraint is soft: vertices prefer to be aligned
with their neighbours, with strength controlled by the inverse temperature β ≥ 0.

The multicoloured hardcore model is discussed in [18, §3.2.2]. It was originally introduced
by Runnels and Lebowitz [20] in the context of lattice gases.

The results of [20, 18] are specialised to Zd. The latter is most interested in the case where
the dimension d is much larger than the number K of colours. The motivating example for
this paper is the fibreoptic routing, for which the lattice Zd – particularly in high dimensions
– is not an appropriate model. Our results appear to be the first on general graphs.

S. Olesker-Taylor 20:7

Notation
We briefly recall some notation which is used throughout the paper.

The underlying graph is G = (V, E). Let n := |V | denote its number of vertices, and write
u ∼ v if {u, v} ∈ E. The degree of v ∈ V is dv :=

∑
u∈V 1{u ∼ v} = |{u ∈ V | u ∼ v}|.

There are K ∈ N colours, and we abbreviate [K]0 := {0, 1, ..., K}.
The update rates and probabilities are λ ∈ (0, ∞)V and p ∈ [0, 1]V , respectively.
The state space is Ω := {ω ∈ [K]V0 | ω is proper}, where ω ∈ [K]V0 is proper if

ωu ̸= ωv whenever {u, v} ∈ E and ωu + ωv > 0.

The multicoloured hardcore model is denoted MCHΩ(λ, p); its equilibrium distribution π.
For QMCHΩ(λ, p; ν), the arrival rates are ν ∈ (0, ∞)V and equilibrium service rates

sv :=
∑

ω∈Ω:ωv ̸=0 π(ω) for v ∈ V.

3 Proofs of Main Theorems

A Mixing
In this section, we use the classical path coupling argument of Bubley and Dyer [6] to upper
bound the mixing time. Throughout, X, Y ∼ MCHΩ(λ, p), under the “natural” coupling:

the vertex-update clocks are coupled, so the same vertex is chosen at the same time;
the subsequent coin toss and colour selection are also coupled.

This coupling is clearly coalescent:

Xt = Y t implies Xs = Y s for all s ≥ t.

Proof of Theorem A. We use path coupling, so must define a path space. We say that
x, y ∈ [K]V0 are adjacent if there is a unique v ∈ V such that xv ≠ yv and 0 ∈ {xv, yv}. In
other words, our path space is generated by activating an inactive vertex or deactivating an
active vertex; changing the colour of an already active vertex is not permitted. This space
is connected: let d(x, y) denote the distance between two configurations x, y ∈ [K]V0 ; then,
1{x ̸= y′} ≤ d(x, y) ≤ 2n for all x, y ∈ [K]V0 , going via the empty configuration (0, ..., 0) ∈ Ω.

For v ∈ V and x ∈ [K]V0 , denote the available colours at v in x by

Av(x) := {1, ..., K} \ ∪u∈V :{u,v}∈E{xu} = {k ∈ {1, ..., K} | xu ̸= k ∀ u ∼ v}.

Suppose that (X0, Y 0) = (x, y) ∈ Ω2 with d(x, y) = 1; say, 0 = xv ̸= yv. Consider the
first step of the process from these states. Suppose that vertex u ∈ V updates.

Suppose that u ̸∼ v. Then, Ax(u) = Ay(u), since xw = yw for all w ∼ u. Hence, we can
perform the same update in both X and Y . The relative distance is unchanged, unless
u = v, in which case the two coalesce.
Suppose that u ∼ v; in particular, u ̸= v. We may not have Au(x) = Au(y), but always

Au(x) ∪ {xu} = Au(y) ∪ {yu}.

Hence, |Au(x) △ Au(y)| ≤ 1. So, the probability that a proposed colour is valid for one
and not the other is at most 1/K. If this is the case, then the relative distance increases
by 1; otherwise, it remains unchanged. The probability some colour is proposed is pu.

AofA 2024

20:8 Multicoloured Hardcore Model: Fast Mixing and Application

It is in this last step that the assumption 0 ∈ {xv, yv} is used: without it, the symmetric
difference could be of size 2, giving a probability 2/K. Summing over u ∈ V , the relative
distance increases by 1 at rate at most 1

K

∑
u:u∼v puλu and decreases by 1 at rate λv. Hence,

d
dtEx,y[d(Xt, Y t)]

∣∣
t=0 ≤ λv

(1
K

∑
u:u∼v puλu/λv − 1

)
≤ −βλv,

with the last inequality using the (main) assumption of the theorem. This can be extended to
general x, y ∈ [K]V0 – ie, not requiring d(x, y) = 1 – by looking at contraction along geodesics,
in the usual manner for path coupling. Hence, recalling that λmin = minv λv,

max
x,y∈[K]V

0

d
dtEx,y

[
d(Xt, Y t)

]∣∣
t=0 ≤ −βλmin.

By the Grönwall inequality, integrating this and using 1{x ̸= y} ≤ d(x, y) ≤ 2n, we obtain

max
x,y∈[K]V

0

Px,y[Xt ̸= Y t] ≤ max
x,y∈[K]V

0

Ex,y[d(Xt, Y t)] ≤ 2ne−βt.

Finally, the coupling representation of total-variation distance implies that

max
x,y∈Ω

∥Px[Xt ∈ ·] − Py[Y t ∈ ·]∥TV ≤ min
{

2ne−βλmint, 1
}

. ◀

Remark. If preferred, instead of using a continuous-time version of path coupling, discretise
time: let X̃ℓ := Xδℓ and Ỹ ℓ := Y δℓ, where δ is some very small real number. Then,

Ex,y[d(X̃1, Ỹ 1)] ≤
(
1 − βλminδ + o(δ)

)
d(x, y) uniformly,

using the fact that the diameter is finite to obtain a uniform o(δ) term. Path coupling gives

Ex,y[d(X̃ℓ, Y ℓ)] ≤ 2n
(
1 − βλminδ + o(δ)

)
ℓ ≤ 2ne−βλminδℓ+o(δℓ)n.

Given t ≥ 0, let ℓ := ⌊t/δ⌋ ≥ t/δ − 1. Then,

Ex,y[d(Xt, Y t)] ≤ Ex,y[d(X̃ℓ, Ỹ ℓ)] ≤ 2ne−βt+o(1).

Finally, taking δ ↓ 0, we deduce the same bound as before.

We close this section with a discussion of the equilibrium service rates. Here, we assume

pv ≤ 1
3 K/d̃v where d̃v := max{du | u ∼ v or u = v} for v ∈ V.

Proof of Proposition A. The quantity we estimate is the proportion of colours available at
a vertex. This allows estimation of the probability an attempted colouring is successful.

Clearly, in equilibrium, each neighbour u of v is active with probability at most pu =
1
3 K/d̃u; in particular, sv ≤ pv. Hence, if Nv is the number of colours available at v, then

Nv ≲ Bin(dv, 1
3 K/dv) in equilibrium.

It can be shown that P[Bin(d, 1
3 k/d) ≥ 1

2 k] ≤ 1
3 whenever k ≤ 3d. This implies that

P[Nv ≥ 1
2 K] ≤ 1

3 .

Hence, upon refreshing, at least 1
2 of the colours are available with probability at least 2

3 . So,
the probability that the proposed colour is accepted is at least 1

3 . Thus, sv ≥ 1
3 pv. ◀

S. Olesker-Taylor 20:9

We discuss briefly extensions of this proof, including heuristics for an upper bound on sv.

Remark. If we require pv ≤ (1 − δ)K/d̃v, then the above argument says that at least a
proportion δ of the colours are free in expectation. If K (and d̃v) are large, then the Binomial
concentrates. There is then a probability δ that a uniformly proposed colour is available.

We can extend this, heuristically at least. If u, u′ ∼ v, then the colours at u and u′

should be approximately independent if K is large and the graph has few triangles. If
k1, ..., kK ∼iid Unif([K]), then 1

K |{k1, ..., kK}| ≈ 1/e, suggesting that, in fact, a proportion
1/e are available after K choices. This would suggest sv ≥ pv/e.

We can also try to iterate this argument. Instead of upper bounding the expected number
of colours taken by

∑
u:u∼v pu, we can bound by

∑
u:u∼v su. Suppose that sv does not vary

much over the vertices: sv ≈ s̄ := 1
n

∑
u su, the average of s; see, eg, Figure 2 later. Also,

assume graph regularity: dv = d, and pv = p, for all v. Then,
∑

u:u∼v su ≈ ds̄. This imposes

s̄ ≤ p(1 − ds̄/K); ie, s̄ ≤ p/(1 + pd/K).

Including the factor 1/e from the previous heuristic improves this to s̄ ≈ p/(1+e−1pd/K). △

B Queues
Next, we investigate the stability of the queueing network: ie, its positive recurrence (or
lack thereof) and expected queue length in equilibrium. The end goal is Theorem B. Similar
properties for a related model are established in [10, §V], using the usual Lyapunov function

Lt :=
∑

v∈V (Qt
v)2 for t ≥ 0 where Q = (Qt)t≥0 ∼ QMCHΩ(λ, p; ν).

There, the model is slightly simpler, with unit service times, rather than Exponentials.
Moreover, they require pv = p ≤ 1/∆ for all v ∈ V , where ∆ := maxv dv is the maximum
degree of the graph G = (V, E), and treat ∆ as a constant, which is absorbed into a final,
unquantified constant. For a sequence (Gn)n∈N of graphs, this implicitly assumes bounded
degrees: supn∈N ∆n < ∞. We allow much greater generality, both in G and in p.

We denote by τ the first time the queue is empty:

τ := inf
{

t ≥ 0 | Qt = 0, ∪s∈[0,t] Qs ̸= {0}
}

.

Positive recurrence is equivalent to having Eq[τ] < ∞ for some, and hence all, q ̸= 0.

Proof of Theorem B. We establish negative drift for an appropriate Lyapunov function L:

Lt := 1
2

∑
v∈V (Qt

v)2 for t ≥ 0. (1)

We fix some notation and conventions. By the memoryless property of the service times,
we may assume that the vertices are always providing service, but that a service attempt is
rejected if the vertex is inactive at the time of the attempt. Then, the arrivals and attempted
services form Poisson processes, independent of each other and the underlying MCH process.

Fix v ∈ V and t, T ≥ 0. Write Ŝv[T, T + t) for the number of attempted services by
vertex v between times T and T + t, and write ŝv := ŝv[T, T + t) := 1

t Ŝv[T, T + t) for
the average (attempted) service rate in this interval. Similarly, write Âv[T, T + t) and
âv := âv[T, T + t) := 1

t Âv[T, T + t) for the number of arrivals and average service rate,
respectively, between T and T + t.

Using these definitions, we have the following simple inequality:

QT +t
v ≤

[
Qt

v − Ŝv[T, T + t)
]

+ + Âv[T, T + t) = [Qt
v − tŝv]+ + tâv,

AofA 2024

20:10 Multicoloured Hardcore Model: Fast Mixing and Application

where [α]+ := max{α, 0} for α ∈ R. Hence, using [Qt
v − tŝv]+ ≤ Qt

v,

(QT +t
v)2 ≤ (QT

v − tŝv)2 + 2t[QT
v − tŝv]+âv + t2â2

v

≤ (QT
v)2 + 2tQT

v (âv − ŝv) + t2(â2
v + ŝv)2.

(2)

Plugging this into the definition (1) of L bounds its random increment:

LT +t − LT ≤ t
∑

v∈V QT
v (âv − ŝv) + 1

2 t2 ∑
v∈V (â2

v + ŝ2
v). (3)

Now, if τ̂v is the proportion of time during [T, T + t) that vertex v is active, then

tâv = Âv[T, T + t) ∼ Pois(tνv) and tŝv = Ŝv[T, T + t) ∼ Pois(tτ̂v).

To emphasise, the implicit Poisson variables are independent of the MCH process. Recall that

if P ∼ Pois(µ), then E[P] = µ and E[P 2] = µ + µ2.

Now, νv < sv, by assumption, and sv ≤ pv ≤ 1; also, τ̂v ≤ 1. Hence,

E[âv] = νv, E[â2
v] ≤ 2, E[ŝv] ≤ 1 and E[ŝ2

v] ≤ 2.

Plugging these into (3) bounds the (expected) drift:

E[LT +t − LT | (XT , QT)] ≤ t
∑

v∈V QT
v (νv − E[ŝv | XT]) + 3

2 nt2; (4)

the (attempted) service rate ŝv[T, T + t) depends only on XT , not QT .
It remains to handle E[ŝv | XT]. The attempted services are a thinned Poisson process. So,

E[ŝv | XT] = E[τ̂v | XT] and τv = 1
t

∑T +t
T 1{Xs

v ̸= 0}ds.

So, if we write µx,s for the law of Xs given X0 = x, then

E[ŝv | XT] = 1
t

∫ T +t

T
P[Xs ̸= 0 | XT]ds 1

t

∫ t

0 µXT ,s({ω ∈ Ω | ωv ̸= 0})ds.

This is very similar to the equilibrium (attempted) service rate

sv =
∑

ω∈Ω:ωv ̸=0 π(ω) = π({ω ∈ Ω | ωv ̸= 0});

in fact, by the ergodic theorem, ŝv[T, T + t) → sv as t → ∞. Quantitatively,

|E[ŝv | XT] − sv| =
∣∣ 1

t

∫ t

0 µXT ,s({ω ∈ Ω | ωv ̸= 0})ds − π({ω ∈ Ω | ωv ̸= 0})
∣∣

≤ 1
t

∫ t

0 |µXT ,s({ω ∈ Ω | ωv ̸= 0}) − π({ω ∈ Ω | ωv ̸= 0})|

≤ 1
t

∫ t

0 ∥µXT ,s − π∥TVds.

It is here that we apply the mixing result, Theorem A: for any x ∈ Ω and s ≥ 0,

∥µx,s − π∥TV ≤ min{2ne−βλmins, 1};

note that the first hypothesis of Theorem B is precisely that required for Theorem A. Then,∫ t

0 ∥µXT ,s − π∥TVds ≤ t0 + n
∫ t∨t0

t0
e−βλminsds

≤ t0 + (βλmin)−1 =: t1 where t0 := (βλmin)−1 log(2n).

S. Olesker-Taylor 20:11

In particular, this is independent of t, so vanishes once divided by t and t → ∞:

|E[ŝv | XT] − sv| ≤ t1/t → 0 as t → ∞.

We want to plug this bound into (4). Let εv := 1
2 (sv − νv) and tv := t1/εv. Then,

|E[ŝv | XT] − sv| ≤ εv whenever t ≥ tv for all v ∈ V.

Set t⋆ := maxv tv, so t⋆ ≥ tv Plugging this into (4),

E[LT +t − LT | (XT , QT)] ≤ −t
∑

v∈V QT
v (sv − νv − εv) + 3

2 nt2

≤ − 1
2 t

∑
v∈V QT

v (sv − νv) + 3
2 nt2 whenever t ≥ t⋆. (5)

This expression is negative for large enough ∥QT ∥. This establishes negative drift of L. Hence,
by the Foster–Lyapunov criterion (eg, [12, Proposition D.1]), (Qt)t≥0 is positive recurrent.

It remains to control the expected queue length in equilibrium. We start in equilibrium
and take the expectation of the increment (Qtv

v)2 − (Q0
v)2. By stationarity and (2),

0 = E[(Qtv
v)2 − (Q0

v)2] ≤ −tvE[Q0
v](sv − νv − εv) + 3

2 nt2
v,

using the same manipulations as before. Rearranging,

E[Q0
v] ≤ 3

2 ntv/(sv − νv − εv) ≤ 6nt1/(sv − νv)2.

Finally, t1 = (βλmin)−1(log(2n) + 1) = (βλmin)−1 log(2n/e). ◀

4 Simulations: Queue Lengths and Equilibrium Service Rate

We close the paper with a short discussion of some simulations. Specifically, we investigate
the queue lengths and the proportion of time that a vertex is active as a rolling average –
namely,

Q̂t
v := 1

t

∑t−1
s=0 Qs

v and ŝt
v := 1

t

∑t−1
s=0 1{Xs

v ̸= 0} for t ≥ 0.

Then, Q̂t
v → Eπ[Q0

v] and ŝt
v → sv, the expected equilibrium queue length and service rate.

Our choice of parameters is driven by the same heuristics as for Corollaries A and B:

λv := dv/d̄, pv := min{ 4
5 eK/dv, 3

4 } and νv := 1
3 pv for v ∈ V.

Notice the prefactor in pv: it is 4
5 e > 2, rather than 1

3 or 2
3 . This is to emphasise the fact

that we really can take pv close to eK/dv, yet still get high, and stable, service rates sv.
Figure 1 show the time-averaged queue lengths and service rates when the underlying graph

is an Erdős–Rényi graph. Figure 2 show the same for a random regular graph. The average
degree is 30 and K = 10 colours are used; so, almost all vertices satisfy pv = 4

5 eK/dv ≈ 0.5.
A collection of 10 vertices with typical degrees to be displayed are chosen randomly. Time is
scaled so that the average vertex update-rate is 1 – ie, scaled by 1

n

∑
v(λv + νv + 1).

We see that the empirical service rates settle down really quite quickly, and appear to be
remain stable. Moreover, the values sv to which they converge appear to be on the same
order as the proposal probabilities pv. This suggests many proposals are accepted, but not
too many: if sv ≈ pv, then perhaps a higher proposal probability pv could have been used.
In particular, we found that the normalised difference |sv − pv|/pv averaged around 60%.

AofA 2024

20:12 Multicoloured Hardcore Model: Fast Mixing and Application

Figure 1 The underlying graph is Erdős–Rényi with n = 500 vertices and edge probability 40/n.

Figure 2 The underlying graph is drawn uniformly over 40-regular graphs on n = 500 vertices.

The queue lengths, on the other hand, fluctuate a more. They are a bit more stable
in the random regular graph (Figure 2) compared with the Erdős–Rényi graph (Figure 1),
perhaps due to inhomogeneities. It is not even completely clear what they are converging to.

We suggest that this is likely caused by the inhomogeneities in the graph along with the
fact that we take νv = pv/3 ≈ 0.33pv, which is pretty close to sv ≈ 0.4pv. Indeed, the same
calculations (not shown) with νv = 0.2pv result in much more stable queues.

The primary objective is to get as large an equilibrium service rate sv as possible, or at
least its average s̄ = 1

n

∑
v sv. Since the 60% above is still quite a large rejection rate, we

also tested a slightly smaller value of pv: namely, we used pv = 2
3 eK/dv ≈ 0.45. However, we

found that s̄ was about 10% smaller for these parameters, for both random graph models.
A random d-regular graph locally looks like a d-regular tree, so it is not reasonable

to expect better than eK/d = pc(∆, K), the earlier critical threshold. Similarly, a sparse
Erdős–Rényi graph locally looks like a Bienaymé–Galton–Watson tree with Pois(d̄) degrees.

References
1 Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-dimensional

expanders and applications to the hardcore model. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science, pages 1319–1330. IEEE Computer Soc., Los Alamitos, CA,
2020. doi:10.1109/FOCS46700.2020.00125.

2 Nayantara Bhatnagar, Allan Sly, and Prasad Tetali. Decay of correlations for the hardcore
model on the d-regular random graph. Electron. J. Probab., 21:Paper No. 9, 42 pp., 2016.
doi:10.1214/16-EJP3552.

https://doi.org/10.1109/FOCS46700.2020.00125
https://doi.org/10.1214/16-EJP3552

S. Olesker-Taylor 20:13

3 R. Boorstyn, A. Kershenbaum, B. Maglaris, and V. Sahin. Throughput analysis in multihop
csma packet radio networks. IEEE Transactions on Communications, 35(3):267–274, March
1987. doi:10.1109/TCOM.1987.1096769.

4 Torsten Braun, Andreas Kassler, Maria Kihl, Veselin Rakocevic, Vasilios Siris, and Geert
Heijenk. Multihop wireless networks. In Vasilios Siris, Torsten Braun, Francisco Barcelo-
Arroyo, Dirk Staehle, Giovanni Giambene, and Yevgeni Koucheryavy, editors, Traffic and
QoS Management in Wireless Multimedia Networks: COST 290 Final Report, pages 201–265.
Springer US, Boston, MA, 2009.

5 Raffaele Bruno and Maddalena Nurchis. Survey on diversity-based routing in wireless mesh
networks: Challenges and solutions. Computer Communications, 33(3):269–282, February
2010. doi:10.1016/j.comcom.2009.09.003.

6 Ross Bubley and Martin Dyer. Path coupling: A technique for proving rapid mixing in
markov chains. In Proceedings of the 38th Annual Symposium on Foundations of Computer
Science, FOCS ’97, pages 223–, Washington, DC, USA, 1997. IEEE Computer Society.
doi:10.1109/SFCS.1997.646111.

7 Andreas Galanis, Qi Ge, Daniel Štefankovič, Eric Vigoda, and Linji Yang. Improved inapprox-
imability results for counting independent sets in the hard-core model. Random Structures
Algorithms, 45(1):78–110, 2014. doi:10.1002/rsa.20479.

8 Song-Nam Hong and Ivana Marić. Multihop wireless backhaul for 5g. In Ivana Marić,
Shlomo Shamai (Shitz), and Osvaldo Simeone, editors, Information Theoretic Perspectives
on 5G Systems and Beyond, pages 131–165. Cambridge University Press, Cambridge, 2022.
doi:10.1017/9781108241267.004.

9 L. Jiang and J. Walrand. A distributed csma algorithm for throughput and utility maximization
in wireless networks. IEEE/ACM Transactions on Networking, 18(3):960–972, June 2010.
doi:10.1109/TNET.2009.2035046.

10 Libin Jiang, Mathieu Leconte, Jian Ni, Rayadurgam Srikant, and Jean Walrand. Fast mixing of
parallel glauber dynamics and low-delay csma scheduling. IEEE Transactions on Information
Theory, 58(10):6541–6555, October 2012. doi:10.1109/TIT.2012.2204032.

11 Frank Kelly. Private communication, 2018.
12 Frank Kelly and Elena Yudovina. Stochastic Networks, volume 2 of Institute of Mathem-

atical Statistics Textbooks. Cambridge University Press, Cambridge, 2014. doi:10.1017/
CBO9781139565363.

13 Frank P. Kelly. Stochastic models of computer communication systems. Journal of the Royal
Statistical Society, 47(3):379–395, 415–428, 1985. arXiv:2345773.

14 David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing Times.
American Mathematical Society, Providence, RI, USA, second edition, 2017. doi:10.1090/
mbk/107.

15 Pinyan Lu, Kuan Yang, and Chihao Zhang. Fptas for hardcore and ising models on hypergraphs.
In 33rd Symposium on Theoretical Aspects of Computer Science, volume 47 of LIPIcs. Leibniz
Int. Proc. Inform., pages Art. No. 51, 14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016.

16 J. Ni and R. Srikant. Distributed csma/ca algorithms for achieving maximum throughput in
wireless networks. In 2009 Information Theory and Applications Workshop, pages 250–250,
2009. doi:10.1109/ITA.2009.5044953.

17 Jian Ni, Bo Tan, and R. Srikant. Q-csma: Queue-length based csma/ca algorithms for
achieving maximum throughput and low delay in wireless networks. In Proceedings of the 29th
Conference on Information Communications, INFOCOM’10, pages 271–275, Piscataway, NJ,
USA, 2010. IEEE Press.

18 Ron Peled and Yinon Spinka. Long-range order in discrete spin systems. arXiv:2010.03177
[math-ph], January 2024. doi:10.48550/arXiv.2010.03177.

AofA 2024

https://doi.org/10.1109/TCOM.1987.1096769
https://doi.org/10.1016/j.comcom.2009.09.003
https://doi.org/10.1109/SFCS.1997.646111
https://doi.org/10.1002/rsa.20479
https://doi.org/10.1017/9781108241267.004
https://doi.org/10.1109/TNET.2009.2035046
https://doi.org/10.1109/TIT.2012.2204032
https://doi.org/10.1017/CBO9781139565363
https://doi.org/10.1017/CBO9781139565363
https://arxiv.org/abs/2345773
https://doi.org/10.1090/mbk/107
https://doi.org/10.1090/mbk/107
https://doi.org/10.1109/ITA.2009.5044953
https://doi.org/10.48550/arXiv.2010.03177

20:14 Multicoloured Hardcore Model: Fast Mixing and Application

19 Shreevatsa Rajagopalan, Devavrat Shah, and Jinwoo Shin. Network adiabatic theorem: An
efficient randomized protocol for contention resolution. SIGMETRICS Perform. Eval. Rev.,
37(1):133–144, June 2009. doi:10.1145/2492101.1555365.

20 L. K. Runnels and J. L. Lebowitz. Analyticity of a hard-core multicomponent lattice gas.
Journal of Statistical Physics, 14(6):525–533, 1976. doi:10.1007/BF01012851.

21 Pol Torres Compta, Frank H. P. Fitzek, and Daniel E. Lucani. Network coding is the 5g
key enabling technology: Effects and strategies to manage heterogeneous packet lengths.
Transactions on Emerging Telecommunications Technologies, 26(1):46–55, January 2015. doi:
10.1002/ett.2899.

22 Nigel Walker. Design challenges in BT’s network. www.newton.ac.uk/seminar/23532, 2018.

https://doi.org/10.1145/2492101.1555365
https://doi.org/10.1007/BF01012851
https://doi.org/10.1002/ett.2899
https://doi.org/10.1002/ett.2899
www.newton.ac.uk/seminar/23532

Binary Search Trees of Permuton Samples
Benoît Corsini #

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

Victor Dubach #

Université de Lorraine, CNRS, IECL, F-54000 Nancy, France

Valentin Féray #

Université de Lorraine, CNRS, IECL, F-54000 Nancy, France

Abstract
Binary search trees (BST) are a popular type of structure when dealing with ordered data. They
allow efficient access and modification of data, with their height corresponding to the worst retrieval
time. From a probabilistic point of view, BSTs associated with data arriving in a uniform random
order are well understood, but less is known when the input is a non-uniform permutation.

We consider here the case where the input comes from i.i.d. random points in the plane with law
µ, a model which we refer to as a permuton sample. Our results show that the asymptotic proportion
of nodes in each subtree only depends on the behavior of the measure µ at its left boundary, while
the height of the BST has a universal asymptotic behavior for a large family of measures µ. Our
approach involves a mix of combinatorial and probabilistic tools, namely combinatorial properties of
binary search trees, coupling arguments, and deviation estimates.

2012 ACM Subject Classification Mathematics of computing → Trees; Mathematics of computing
→ Probabilistic algorithms

Keywords and phrases Binary search trees, random permutations, permutons

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.21

Related Version Full Version: https://arxiv.org/abs/2403.03151 [8]

Funding Benoît Corsini: has received funding from the European Union’s Horizon 2020 Research
and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No. 101034253.
Valentin Féray: partially supported by the Future Leader Program of the LUE initiative.

Acknowledgements The authors are grateful to Mathilde Bouvel for pointing out the preprint [13]
and for several stimulating discussions on the topic.

1 Introduction

1.1 Context and informal description of our results
A binary search tree (BST) is a rooted binary tree where nodes carry labels – which are real
numbers – and where, for each vertex v, all labels of vertices in the left-subtree (resp. right-
subtree) attached to v are smaller (resp. bigger) than that of v. Binary search trees are a
popular type of data structure for storing ordered data. One key feature is that the worst-case
complexity of basic operations (lookup, addition or removal of data) is proportional to the
height of the tree.

Given a BST T and a real number x distinct from the labels of T , there is a unique
way to insert x into T , i.e. there is a unique BST T +x obtained from T by adding a new
node with label x. Iterating this operation starting from the empty tree and a sequence
y = (y1, . . . , yn) of distinct values, we get a BST T ⟨y⟩ with n nodes. An example can be
found in Figure 1. The shape of T ⟨y⟩ (i.e. the underlying binary tree without node labels)

© Benoît Corsini, Victor Dubach, and Valentin Féray;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 21; pp. 21:1–21:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:benoitcorsini@gmail.com
mailto:victor.dubach@univ-lorraine.fr
https://orcid.org/0009-0005-1563-7682
mailto:valentin.feray@univ-lorraine.fr
https://orcid.org/0000-0002-9060-0696
https://doi.org/10.4230/LIPIcs.AofA.2024.21
https://arxiv.org/abs/2403.03151
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Binary Search Trees of Permuton Samples

depends only on the relative order of the numbers y1, . . . , yn, and not on their actual values.
We can thus assume without loss of generality that the sequence y is a permutation σ of the
integers from 1 to n, and we write T ⟨σ⟩ = T ⟨σ1, . . . , σn⟩ in this case.

2

2 2

2

4 4

4

1

1

62

41

63

2

41

63

insert 4 insert 1 insert 6

in
se
rt
3

insert 5

5

Figure 1 Iterative construction of the BST associated with the sequence y = (2, 4, 1, 6, 3, 5).

In the worst case, the tree T ⟨σ⟩ has height n − 1 and further operations will have a
linear complexity, which is far from optimal. However it has been proven by Devroye [10]
that, if σ is a uniformly random permutation of {1, . . . , n}, then the height h (T ⟨σ⟩) is
asymptotically equivalent to c∗ log n for some constant c∗. Assuming that σ is uniformly
distributed means that the data used to construct our BST arrived in a completely random
order, which is in general unrealistic. It seems therefore natural to study BSTs associated
with non-uniform random permutations, and in particular to see how Devroye’s result is
modified when changing the distribution of σ.

A first step in this direction has been performed in the papers [1, 7], where the BSTs
associated with random Mallows and record-biased permutations are studied, showing
interesting phase transition phenomena. In the current paper, we will consider some geometric
models of random permutations, sampled via i.i.d. random points in the plane with some
common distribution µ. These models will be referred to here as permuton samples, and
denoted by σn

µ ; they appear naturally in a recently developed theory of limiting objects for
large permutations, called permutons [14]. The goal of studying such models is twofold.
First, it is a much larger but still tractable family of models than those considered before
(permuton samples are indexed by probability measures on the square, while Mallows and
record-biased permutations are one-parameter families of models). Second, since permutons
describe the “large-scale shape” of permutations, it enlightens the connection between this
“large-scale shape” and the associated BST.

Our first result (Theorem 1) shows that, for a large family of permuton samples, the
asymptotic behavior of the BST height is the same as the one found by Devroye for uniform
permutations, namely that h

(
T ⟨σn

µ⟩
)

is asymptotically equivalent to c∗ log n. Our second
result (Theorem 13) studies another type of limit for the sequence of BSTs, using the
formalism of subtree size convergence recently introduced by Grübel in [13]. In this setting
and under some mild assumption, we prove convergence of the BST associated with permuton
samples, where the limit object depends on the permuton only through its “derivative” at
the left edge {0} × [0, 1] of the unit square [0, 1]2.

In the remaining part of the introduction, we present the model of permuton samples
and introduce some notation. Our main results are then stated and proved in Sections 2
and 3, and extra results are discussed in Section 4.

B. Corsini, V. Dubach, and V. Féray 21:3

1.2 Our model: binary search trees of permuton samples
There is a natural way to map a (generic) finite set of points P ⊂ R2 to a permutation σ⟨P⟩ and
a binary search tree T ⟨P⟩, which we describe now. Let P = {(x1, y1), . . . , (xn, yn)} be a set of
points in R2 with distinct x- and distinct y-coordinates, and let {(x(1), y(1)), . . . , (x(n), y(n))}
be its reordering such that x(1) < . . . < x(n). Then there exists a unique permutation
σ = σ⟨P⟩ of {1, . . . , n} such that (y(1), . . . , y(n)) and (σ1, . . . , σn) are in the same relative
order. We let T ⟨P⟩ := T ⟨y(1), . . . , y(n)⟩ and note that the trees T ⟨P⟩ and T ⟨σ⟨P⟩⟩ have the
same shape since their underlying data have the same relative order. These constructions
are illustrated in Figure 2.

(0.2, 0.3)

(0.3, 0.6)

(0.5, 0.1)

(0.6, 0.8)

(0.8, 0.5)

(0.9, 0.7)

σ〈P〉 = (2, 4, 1, 6, 3, 5)

P

T 〈P〉 =

0.3

0.60.1

0.80.5

0.7

(y(1), . . . , y(6)) = (0.3, 0.6, 0.1, 0.8, 0.5, 0.7)

Figure 2 A set of points in R2 and its associated permutation and binary search tree.

Now consider a probability measure µ on R2 and take a set Pn
µ of n i.i.d. points in R2

with distribution µ. In order to make sure that the associated permutation and BST are
well-defined, we need the coordinates of the points to be all distinct. To this extent, we
assume for the rest of this work that the projections of µ on both axes have no atom.
Moreover, since the permutation and the shape of the tree only depend on the relative
positions of the points, without loss of generality we can re-scale µ so that its support is in
[0, 1]2 and both its marginals are uniform (see [5, Remark 1.2] for details). Such measures are
called permutons, and are natural limit objects for large permutations (see e.g. [2, 14]). The
associated model of random permutations σ⟨Pn

µ ⟩ will then simply be denoted by σn
µ . This is a

broad generalization of the uniform measure on permutations of size n, which corresponds to
µ = Leb[0,1]2 . Such models have been considered in the literature under various perspectives,
see e.g. [5, 9, 11, 12, 15].

In the current paper, we are interested in the binary search tree T ⟨σn
µ⟩ of this random

permutation model. Since we will be interested only in the shape of this tree (height in
Section 2, subtree size convergence in Section 3), we may and will equivalently consider the
tree T ⟨Pn

µ ⟩ instead of T ⟨σn
µ⟩. Furthermore, for convenience, we shall work with a Poisson

point process PN
µ with intensity nµ, instead of the point process Pn

µ . This new process has
random size N ∼ Poisson (n), and conditionally given N it contains i.i.d. points distributed
under µ. This enables useful independence properties, which make the proofs of our results
easier. In the full paper [8], we explain in great detail how to “de-Poissonize” our results.

1.3 Some probabilistic notation
Throughout this paper, “with high probability” (w.h.p.) means “with probability tending to
1, as n tends to ∞”. We also use the notation Xn = oP(Yn) to say that Xn/Yn converges
to 0 in probability, and we write X ⪯ Y (resp. X ⪰ Y) to denote that X is stochastically
smaller (resp. larger) than Y .

AofA 2024

21:4 Binary Search Trees of Permuton Samples

2 First main result: universal behavior of the BST height

2.1 Statement of the result and proof strategy
We denote by h(T) the height of a tree T , i.e. the maximal distance from a leaf to the root.
As mentioned in Section 1.1, Devroye [10] proved that for uniformly random permutations
σn of size n, the quantity h (T ⟨σn⟩) / log n converges in probability and in Lp (for all p ≥ 1)
to a constant c∗, defined as the unique solution to c log(2e/c) = 1 with c ≥ 2. We provide a
sufficient condition on a permuton µ, under which the same result holds for h

(
T ⟨PN

µ ⟩
)
. In

the following, a permuton µ is said to satisfy assumption (A1) if µ has a bounded density ρ
on the unit square [0, 1]2, which is continuous and positive on a neighborhood of {0} × [0, 1].

▶ Theorem 1 (Universality of BST height for permuton samples). Let µ be a permuton
satisfying assumption (A1), and let PN

µ be a Poisson point process with intensity nµ. Then,
as n → ∞, the following convergence holds in probability and in Lp for all p ≥ 1:

h
(
T ⟨PN

µ ⟩
)

c∗ log n −→ 1 .

Let us briefly overview the proof strategy of Theorem 1. We shall decompose the BST
drawn from a permuton sample as a top tree, to which hanging trees are attached. To this
end, consider β ∈ (0, 1) and set P(β) := PN

µ ∩ ([0, β] × [0, 1]). Then set Kβ := |P(β)| and let
y(1) < · · · < y(Kβ) be the ordered y-coordinates of the points in P(β). For each 0 ≤ k ≤ Kβ ,
define Ik = (y(k), y(k+1)) with the convention y(0) = 0 and y(Kβ+1) = 1. Finally, for each k,
define Pk(β) := PN

µ ∩
(

(β, 1] × Ik

)
. We call T ⟨P(β)⟩ and

(
T ⟨Pk(β)⟩

)
0≤k≤Kβ

respectively
the top tree and the hanging trees of T ⟨PN

µ ⟩. One can see that the top and hanging trees are
indeed subtrees of T ⟨PN

µ ⟩. Furthermore, the entire tree can be reconstructed by grafting the
hanging trees to some nodes of the top tree. In particular, this yields the following lemma:

▶ Lemma 2. For any β ∈ (0, 1):

h (T ⟨P(β)⟩) ≤ h
(
T ⟨PN

µ ⟩
)

≤ h (T ⟨P(β)⟩) + 1 + max
0≤k≤Kβ

{
h (T ⟨Pk(β)⟩)

}
.

I0

I1

I2

I3

I4

I5

I6

y(1)

y(2)

y(4)

y(3)

y(5)

y(6)

top tree hanging trees

Figure 3 A sample of points and its associated BST, decomposed as top and hanging trees. The
BST has been rotated of 90 degrees to the left, so that it can be drawn directly on the set of points.

B. Corsini, V. Dubach, and V. Féray 21:5

See Figure 3 for an illustration. Thus, controlling the height of T ⟨PN
µ ⟩ amounts to

controlling the heights of its top and hanging trees. This is done via different approaches: in
Sections 2.2 and 2.3 we prove that the top tree has height (c∗ + oP(1)) log n for well chosen β,
and in Sections 2.4 and 2.5 we prove that the hanging trees all have height oP(log n). Finally,
we combine these estimates in Section 2.6 to conclude the proof of Theorem 1.

2.2 Height modification by adding/removing points
We rely on comparison arguments to prove our results: the basic idea is to (locally) compare
the density of our permuton to a constant density, for which we can apply Devroye’s result.
However, while Poisson point processes possess nice monotonicity properties with respect to
their intensities, BSTs are much trickier to handle. Indeed, one can see that adding a single
point to a point set may halve the height of the associated BST. In this section, we develop
adequate tools for such comparison arguments.

We start with a simple lemma about genealogies in a BST, easily derived by construction.

▶ Lemma 3. Let y = (y1, . . . , yn) be a list of distinct numbers and T = T ⟨y⟩ be the associated
BST. If i < j are two indices then the following are equivalent:

yi is an ancestor of yj in T (the converse cannot hold);
there is no k < i such that yk is between yi and yj, i.e. such that (yi − yk)(yj − yk) < 0.

A chain in a tree T is a subset C of its nodes such that for every pair (v, w) in C, either
v is an ancestor of w, or the converse. We note that the height of T is the maximal size of a
chain, minus 1. By extension, if P = {(x1, y1), . . . , (xn, yn)} is a generic point set, we say
that C ⊆ P is a chain of T ⟨P⟩ if the corresponding nodes form a chain. Using Lemma 3, the
following result is proved immediately.

▶ Lemma 4. Let P− ⊆ P+ be two point sets with distinct x- and distinct y-coordinates.
Then, for any chain C of T ⟨P+⟩, the set C ∩ P− is a chain of T ⟨P−⟩. Consequently, if C is
a chain of maximal size in T ⟨P+⟩, we have

h (T ⟨P−⟩) ≥ h (T ⟨P+⟩) −
∣∣C ∩ (P+ \ P−)

∣∣ .
Combining the above lemma with standard thinning properties of Poisson point processes,

we get the following useful proposition.

▶ Proposition 5. Let ρ− ≤ ρ+ be two intensity functions defined on the same support S ⊆ R2,
and P−,P+ be two Poisson point processes with intensities ρ− and ρ+. Then, we have

h (T ⟨P−⟩) ⪰ Binomial
(

1 + h (T ⟨P+⟩) , inf
(x,y)∈S

ρ−(x, y)
ρ+(x, y)

)
− 1.

Proof. Write r := inf(x,y)∈S
ρ−(x,y)
ρ+(x,y) where, by convention, ρ−(x,y)

ρ+(x,y) = 1 if ρ+(x, y) = 0. We
couple P+ and P− according to the classical thinning process, meaning that P− is constructed
by keeping each point (x, y) of P+ independently with probability ρ−(x, y)/ρ+(x, y) ≥ r.

Let C be a chain of maximal size in P+, and set K := |C ∩ P−|. By Lemma 4:

h (T ⟨P−⟩) ≥ h (T ⟨P+⟩) −
∣∣C ∩ (P+ \ P−)

∣∣ = |C| − 1 −
∣∣C ∩ (P+ \ P−)

∣∣ = K − 1 .

Conditionally given P+ we have K ⪰ Binomial (|C|, r), and this concludes the proof. ◀

AofA 2024

21:6 Binary Search Trees of Permuton Samples

2.3 Controlling the height of the top tree
We can now use our tools to compare the BST of Poisson point processes with the BST of
uniformly random permutations.

▶ Proposition 6. Let R = [x1, x2] × [y1, y2] be a rectangle with non-empty interior and
ρ : R → (0,∞) be a continuous, positive intensity function. For each integer n, let PN

ρ be a
Poisson point process with intensity nρ. Let 0 < m ≤ M < ∞ be such that m ≤ ρ ≤ M , and
write η := M−m

m . Then for any ε > 0 we have:

lim
n→∞

P

[∣∣∣∣∣h
(
T ⟨PN

ρ ⟩
)

c∗ log n − 1

∣∣∣∣∣ > η + ε

]
= 0 . (1)

Moreover, for any p > 0, the sequence
(

h(T ⟨PN
ρ ⟩)

log n

)p

is uniformly integrable.

Proof. Write ζ := (x2 − x1)(y2 − y1) > 0 for the area of R. Also note that M/m = 1 + η

and m/M ≥ 1 − η. Using Proposition 5 with ρ− = nρ and ρ+ = nM on R, we obtain

h
(
T ⟨PN

ρ ⟩
)

⪰ Binomial
(

1 + h (T ⟨P+⟩) , m
M

)
− 1 ,

where T ⟨P+⟩ is the BST of a uniform permutation of random size Poisson (nζM). According
to [10, Theorem 5.1], h (T ⟨P+⟩) then behaves as c∗ log(|P+|) as n → ∞ in probability, which is
itself close to c∗ log n. Since Binomial (a log n, m/M) is concentrated around (am/M) log n,
we deduce:

h
(
T ⟨PN

ρ ⟩
)

≥ m

M

(
c∗ log n− oP(log n)

)
≥

(
1 − η − oP(1)

)
c∗ log n .

Similarly, using Proposition 5 with ρ− = nm and ρ+ = nρ we obtain

h (T ⟨P−⟩) ⪰ Binomial
(

1 + h
(
T ⟨PN

ρ ⟩
)
,
m

M

)
− 1 , (2)

where T ⟨P−⟩ is the BST of a uniform permutation of random size Poisson (nζm). We
proceed as before to conclude the proof of Equation (1).

For the uniform integrability claim, it suffices to establish boundedness of E
[

h(T ⟨PN
ρ ⟩)p

log(n)p

]
in n, for all p > 0. Conditionally given h

(
T ⟨PN

ρ ⟩
)
, write Sn+1 for a random variable with

distribution Binomial
(
1+h

(
T ⟨PN

ρ ⟩
)
, m

M

)
. Then, using Hoeffding’s inequality:

P
[
Sn <

m

2M
(
1+h

(
T ⟨PN

ρ ⟩
))

−1
∣∣∣ h (

T ⟨PN
ρ ⟩

)]
≤ e− m2

2M2 (1+h(T ⟨PN
ρ ⟩))

and therefore, by discriminating according to this event for any n ≥ e:

E

[
h

(
T ⟨PN

ρ ⟩
)p

log(n)p

]
≤ E

[
h

(
T ⟨PN

ρ ⟩
)p
e− m2

2M2 (1+h(T ⟨PN
ρ ⟩))

]
+ E

[(
(2M/m) · (Sn+1)−1

)p

log(n)p

]
.

Since the function x 7→ xpe− m2
2M2 (1+x) is bounded over R+, the first term is bounded in n.

For the second term, we use (a+ b)p ≤ 2p−1(ap + bp) along with (2) to deduce:

E

[(
(2M/m) · (Sn + 1)

)p

log(n)p

]
≤ 2p−1

(
2M
m

)p (
E

[
h (T ⟨P−⟩)p

log(n)p

]
+ 1

log(n)p

)
which is bounded in n by [10, Lemma 3.1] and Poisson estimates (indeed, recall that T ⟨P−⟩
is the BST of a uniform permutation of random size Poisson (nζm)). This concludes the
proof. ◀

B. Corsini, V. Dubach, and V. Féray 21:7

The weakness of the previous proposition is that η, which depends on the rectangle under
consideration, might be large. In the next statement we show that, for continuous positive
densities ρ, it is possible to choose rectangles for which the corresponding η is small.

▶ Corollary 7. Let D be a compact domain in the plane and ρ : D → (0,∞) be a continuous,
positive intensity function. Then for any ε > 0, there exists β > 0 such that for any rectangle
R = [x1, x1 + β] × [y1, y2] with non-empty interior contained in D:

lim
n→∞

P

[∣∣∣∣∣h
(
T ⟨PN

ρ ∩R⟩
)

c∗ log n − 1

∣∣∣∣∣ > ε

]
= 0 .

In particular, taking x1 = y1 = 0 and y2 = 1, the tree T ⟨PN
ρ ∩R⟩ is the top tree T ⟨P(β)⟩

defined in Section 2.1. This top tree therefore has height (c∗ + ε) log n, for small enough β

and under assumption (A1).

Proof. Let ε > 0 and assume that ε < minD ρ. By uniform continuity of ρ, we can find
β > 0 such that for any (x, y), (x′, y′) ∈ D, the inequality |x − x′| + |y − y′| ≤ β implies
|ρ(x, y) − ρ(x′, y′)| ≤ ε. Then consider R = [x1, x1 + β] × [y1, y2] contained in D. Define

f : y ∈ [y1, y2] 7→
∫ y

y1

ρ(x1, t)dt and g : y ∈ [y1, y2] 7→ y1 + (y2 − y1)f(y)/f(y2).

The function g is a C1 increasing map from [y1, y2] onto itself. Let P̃ denote the set of points
obtained after applying the transformation (x, y) 7→ (x, g(y)) to PN

ρ ∩R. This transformation
does not change the relative orders of points, therefore T ⟨P̃⟩ and T ⟨PN

ρ ∩R⟩ have the same
shape. Additionally, P̃ follows the law of a Poisson point process with intensity

n
ρ(x, g−1(y))
g′(g−1(y)) = n

f(y2)
y2 − y1

ρ(x, g−1(y))
ρ(x1, g−1(y))

on R. Thus we can apply Proposition 6 with η = 2ε
minD ρ−ε to obtain:

lim
n→∞

P

[∣∣∣∣∣h
(
T ⟨P̃⟩

)
c∗ log n − 1

∣∣∣∣∣ > η + ε

]
= 0 .

Since this holds for any small enough ε > 0, and η → 0 as ε → 0, the result follows. ◀

2.4 Extreme deviation bounds, via monotone subsequences
It remains to argue that the hanging trees simultaneously all have height oP(log n). A
“typical” horizontal band in Figure 3 contains O(1) points, but their maximum is actually
O(log n) (Proposition 11). The hanging trees are themselves BSTs of point processes, and
therefore they individually have height O(log log n) ≪ log n. To have this bound for all O(n)
hanging trees simultaneously, we need adequate deviation estimates for the BST height of
point processes. Such estimates are provided by Devroye for uniform BSTs [10], but the
monotonicity properties of BSTs are not good enough to use direct comparison arguments.
We solve this by relating the BST height of a point set to its longest monotone subsequences,
for which we have good monotonicity properties and deviation bounds.

Let σ be a permutation of {1, . . . , n}. An increasing subsequence of σ is a sequence of
indices i1 < · · · < ik such that σ(i1) < · · · < σ(ik). The maximum length of an increasing
subsequence of σ is then denoted by LIS (σ). We define similarly LDS (σ), the maximum
length of a decreasing subsequence of σ.

AofA 2024

21:8 Binary Search Trees of Permuton Samples

▶ Lemma 8. For any permutation σ, we have h (T ⟨σ⟩) ≤ LIS (σ) + LDS (σ).

Proof. Let i1 < · · · < ik be a sequence of integers such that σ(i1), . . . , σ(ik) label nodes on a
chain C of T ⟨σ⟩. Define IR (resp. IL) as the family of ij ’s such that the node following σ(ij)
in C lies in its right subtree (resp. left subtree). By construction, IR ∪ {ik} and IL ∪ {ik}
form respectively an increasing and a decreasing subsequence of σ. The lemma follows. ◀

Combining this lemma with [6, Proposition 3.2], we get that if ρ is an integrable function
then h

(
T ⟨PN

ρ ⟩
)

= oP(n). We will need a more quantitative version of this, valid only for
bounded functions ρ. We start with the following lemma, proved by a straightforward
application of the first moment method.

▶ Lemma 9. For each integer n, let σn be a uniform permutation of {1, . . . , n}. Then:

P
[
LIS (σn) ≥ n

log n

]
≤ exp (−n+ o(n)) .

Using the previous two lemmas and standard techniques, we obtain a useful corollary:

▶ Corollary 10. For any M > 0 and ε > 0, there exists n0 = n0(M, ε) such that the following
holds. For any 0 < ζ ≤ 1, any function ρ : [0, 1]2 → [0,∞) bounded by M and supported on
some rectangle [a, b] × [c, d] with (b− a)(d− c) ≤ ζ, and for any integer n > n0/ζ:

P
[
h

(
T ⟨PN

ρ ⟩
)
> 2εζn

]
≤ 4 exp

(
− ε

2ζn log(ζn)
)
.

We refer to [8] for the full proof. The key argument is that LIS and LDS are, unlike
the height of BSTs, monotone in their arguments: if P− ⊆ P+ are generic point sets,
then LIS (σ⟨P−⟩) ≤ LIS (σ⟨P+⟩), and likewise for LDS. We can thus compare PN

ρ to a
homogeneous Poisson point process with higher intensity, and use extreme deviation bounds
for the monotone subsequences of the latter.

2.5 Controlling the height of the hanging trees
Throughout the rest of this section, we use the notation of Section 2.1. For each integer
0 ≤ k ≤ Kβ , we let ζk := |Ik| be the vertical length of the band (β, 1] × Ik.

▶ Proposition 11. Let µ be a permuton. Assume that there exists β > 0 such that µ/[0,β]×[0,1]
has a continuous and positive density ρ : [0, β] × [0, 1] → (0,∞). Then the following holds.
1. There exists α > 0 such that maxk ζk ≤ α log n

n w.h.p. as n → ∞.
2. All powers of 1

log n maxk

∣∣Pk(β)
∣∣ are uniformly integrable.

Sketch of proof. The first item can be derived using standard results on “maximal spacings”.
Indeed, by a thinning procedure, maxk ζk is bounded above by the largest gap among
Poisson (nβm) i.i.d. uniform variables in [0, 1], where m is a lower bound for ρ. This is
known to concentrate around log(n)/(nβm) [16], which proves the first item. To prove the
second item, we can use that conditionally given P(β), the number

∣∣Pk(β)
∣∣ has distribution

Poisson (n(1−β)ζk). Then, conclude with item (1) and Poisson estimates. ◀

▶ Proposition 12. Let µ be a permuton satisfying (A1). Then for any β ∈ (0, 1) we have
the following convergence in probability as n goes to infinity:

1
log n max

0≤k≤Kβ

{
h (T ⟨Pk(β)⟩)

}
−→ 0.

B. Corsini, V. Dubach, and V. Féray 21:9

Proof. From Proposition 11, item (1), there exists α > 0 such that w.h.p. maxk ζk < α log n
n .

Work under this event, and conditionally given P(β). Then for each k, Pk(β) is distributed
like a Poisson point process with intensity nρ/[β,1]×[y(k),y(k+1)]. For each k, Corollary 10
applies with ρ restricted to [β, 1] × [y(k), y(k+1)] and ζ = α log n

n . With a union bound, we
deduce:

P
[

max
0≤k≤|P(β)|

h (T ⟨Pk(β)⟩) > δ log n
]

≤ 4(|P(β)| + 1) exp
(
− δ

4αα log n log(α log n)
)

for ζn = α log n large enough. But w.h.p. we have maxk ζk < α log n
n and |P(β)| < n, so the

unconditioned probability tends to 0 as n → ∞. This proves the proposition. ◀

2.6 Concluding the proof of the height theorem
Proof of Theorem 1. Fix ε > 0. Let D be a compact neighborhood of {0} × [0, 1] on which
ρ is continuous and positive, and let β = β(ε) > 0 be given by Corollary 7 applied to ρ on D.
Therefore, if T ⟨P(β)⟩ := T ⟨PN

µ ∩ ([0, β] × [0, 1])⟩ denotes the top tree of T ⟨PN
µ ⟩:

lim
n→∞

P
[∣∣∣∣h (T ⟨P(β)⟩)

c∗ log n − 1
∣∣∣∣ > ε

]
= 0 .

Furthermore, by Proposition 12, the quantity

1
log n max

0≤k≤Kβ

{
h (T ⟨Pk(β)⟩)

}
converges in probability to 0. Combined with Lemma 2, this implies that 1

log nh
(
T ⟨PN

µ ⟩
)

converges in probability to c∗.
Together with Proposition 6 and Proposition 11, Lemma 2 also implies uniform integra-

bility of all powers of 1
log nh

(
T ⟨PN

µ ⟩
)
. Therefore the convergence holds in Lp for all p ≥ 1,

concluding the proof of Theorem 1. ◀

3 Second main result: subtree size convergence of the BSTs

3.1 Some definition, and statement of the result
Next, we state a limit theorem for T ⟨PN

µ ⟩, in the sense of the subtree size convergence recently
introduced by Grübel [13]. We start by recalling this notion of convergence.

Identify nodes in a binary tree with finite words in the alphabet {0, 1} as follows: the
empty word ∅ corresponds to the root, and for a node v encoded by w, the words w0 and w1
encode respectively the left and right children of v. Let V = {0, 1}∗ be the set of all finite
words on {0, 1}, representing all nodes of the complete infinite binary tree. A labeled tree is
then identified with a function from a subset of V to R, where the domain of the function is
the set of nodes in the tree, and a node is mapped to its label. In particular, T (v) denotes
the label of the node v in T . We also write v ∈ T to indicate that the node v is in T . Given
a finite tree T and a node v ∈ V, define

t(T , v) := 1
|T |

∣∣∣{u ∈ T : v ⪯ u
}∣∣∣,

where v ⪯ u means that v is a prefix of u. In words, t(T , v) is the proportion of nodes in T
which are descendants of v.

AofA 2024

21:10 Binary Search Trees of Permuton Samples

Further write Ψ for the set of functions ψ : V → [0, 1] such that ψ(∅) = 1 and for any
v ∈ V, we have ψ(v) = ψ(v0) + ψ(v1). Then a sequence of binary trees (T n)n∈N is said to
converge to a function ψ ∈ Ψ if and only if t(T n, v) → ψ(v) for all v ∈ V. If that is the case,
we write Tn

ssc−→ ψ and refer to this as subtree size convergence.

We now define two important objects before stating our result. For any complete BST
T : V → (0, 1), we define Tleft : V → R as follows. First, for any v ∈ {0}∗, let Tleft(v) := 0.
Then if v = v′10k for some k ≥ 0, let Tleft(v) := T (v′). Informally, Tleft(v) is the right-most
ancestor of v to its left. Define similarly Tright such that Tright(v) := 1 for any v ∈ {1}∗ and
Tright(v) := T (v′) whenever v = v′01k for some k ≥ 0. We note that this definition implies
that Tleft(v) < T (v) < Tright(v) for any v ∈ V.

Given a probability measure m on [0, 1] without atoms, write ψm ∈ Ψ for the following
random object. First, let Y = (Y1, Y2, . . .) be an i.i.d. variables distributed according to m
and write T m := T ⟨Y ⟩ for the corresponding (infinite) BST. Then, let ψm := T m

right − T m
left.

This is well-defined, since T m is a.s. complete [10, Theorem 6.1]. It is immediate to check
that indeed ψm ∈ Ψ (almost surely). See Figure 4 for an example.

0.73

0.33

0.28 0.35

0.25

0.68

0.87

0.75

0.67 0.72

1

0.73

0.33 0.40

0.28 0.05 0.02 0.38 ?

0.02

? 0.12 0.13

0.25

0.27

Figure 4 Example of realizations of T m and ψm. Note that we do not have enough data to
compute two of the values of ψm on nodes in the third level.

We can now state our second main result. A permuton is said to satisfy assumption
(A2) if there exists a probability measure µ0 on [0, 1], without atoms, such that

1
xµ

(
[0, x] × ·

)
−→
x→0

µ0 (3)

for the weak topology. Assumption (A2) is weaker than (A1): in particular, (A2) holds
whenever µ admits a continuous density on a neighborhood of {0} × [0, 1].

▶ Theorem 13 (Subtree size convergence of BSTs for permuton samples). Let µ be a permuton
satisfying (A2). The following convergence in distribution holds for the subtree size topology:

T ⟨PN
µ ⟩ ssc−→ ψµ0 .

Note that the limit depends on µ only through µ0. The assumption that µ0 does not have
atoms is important. A first difficulty when µ0 has some atom is that the BST T ⟨Y1, Y2, . . . ⟩
where Y1, Y2, . . . , are i.i.d. variables with distribution µ0 is ill-defined, since some of the
Yi’s are equal. We can also see that, in this case, the limit of T ⟨Pn

µ ⟩ may not depend only
on µ0. Indeed, consider the permutons µ1 and µ2 supported by the sets y ≡ 1

2 + x mod 1
and y ≡ 1

2 − x mod 1. They both satisfy (3) with µ0 = δ1/2, but it is easy to see that their
BSTs have different limits in the sense of subtree size convergence.

B. Corsini, V. Dubach, and V. Féray 21:11

3.2 Preliminaries to the proof
We start with a variant of the Glivenko–Cantelli theorem for triangular arrays.

▶ Proposition 14. Let µ be a probability measure with a finite fourth moment, and distribution
function F (x) := µ((−∞, x]). For each n ≥ 1, let (Xi,n)1≤i≤n be i.i.d. random variables with
common distribution µ and let Fn(x) := 1

n

∣∣{i ≤ n : Xi,n ≤ x}
∣∣ be their empirical distribution

function. Then Fn converges a.s. uniformly to F .

Proof. A classical fourth moment computation, together with Borel–Cantelli lemma – see
e.g. [4, Theorem 6.1] – shows that, for any fixed x, Fn(x) converges a.s. to F (x). The rest
of the proof is similar to that of the classical Glivenko–Cantelli theorem which considers
a single sequence Xi of i.i.d. random variables instead of a triangular array, but does not
require a fourth moment condition; see e.g. [4, Theorem 20.6]. ◀

Under assumption (A2), we can prove convergence in distribution of the leftmost points
in PN

µ . The proof of the following proposition is rather technical, and can be found in [8].

▶ Proposition 15. Let µ be a permuton satisfying (A2), and let PN
µ =

{(
XN

i , Y
N

i

)
, 1≤ i≤N

}
be a Poisson point process with intensity nµ. Let

((
XN

(i), Y
N

(i)

))
1≤i≤N

be its reordering such

that XN
(1) < · · · < XN

(N). Then, for any fixed K ≥ 1, we have the following convergence in
distribution:(

Y N
(1), . . . , Y

N
(K)

)
−→

n→∞
(Yk)1≤k≤K

where (Yk)1≤k≤K is a sequence of i.i.d. random variables distributed according to µ0.

Finally, with the notation of Section 3.1, we can use the functions Tleft and Tright to
describe the descendants of nodes in T . The proof is straightforward.

▶ Lemma 16. Let y1, . . . , yn be distinct numbers and let T := T ⟨y1, . . . , yn⟩ be the corre-
sponding BST. Let u be a node in T and let k be such that T (u) = yk. Then:

t(T , u) = 1
|T |

∣∣∣{yk, . . . , yn

}
∩

(
Tleft(u), Tright(u)

)∣∣∣ .
3.3 Proof of subtree size convergence
Proof of Theorem 13. Write T N := T ⟨PN

µ ⟩. Since the subtree size topology is by definition
the pointwise convergence of the function (t(., u))u∈V, we need to prove the convergence
of finite-dimensional distributions. Namely we need to prove that, for any d ≥ 1 and
u1, . . . , ud ∈ V, we have the following convergence in distribution as n → ∞:(

t(T N , ui)
)

i≤d
−→

(
ψµ(ui)

)
i≤d

. (4)

Recall the notation of Proposition 15. Using Skorohod’s representation theorem [3, Section 6],
we might assume that the convergence(

Y N
(1), . . . , Y

N
(K)

)
−→

n→∞
(Yk)1≤k≤K (5)

holds almost surely. Since µ0 has no atoms, the numbers (Yk)k≥1 are a.s. distinct. Moreover
the tree T ⟨Y1, Y2, . . . ⟩ has a.s. shape V. Consequently, a.s. there exists a (random) threshold
K such that all nodes ui, i ≤ d belong to T ⟨Y1, . . . , YK⟩. Using (5), there exists a (random)

AofA 2024

21:12 Binary Search Trees of Permuton Samples

threshold n0 such that for all n ≥ n0, the relative order of (Y N
(1), . . . , Y

N
(K)) is the same as

that of (Y1, . . . , YK). Hence the trees T N
K := T ⟨Y N

(1), . . . , Y
N

(K)⟩ and T ∞
K := T ⟨Y1, . . . , YK⟩

have the same shape TK . Moreover for any v in TK , the labels T N
K (v) and T ∞

K (v) equal Y N
(i)

and Yi respectively, for the same index i. Therefore T N
K (v) → T ∞

K (v) as n → ∞, a.s. in the
probability space created by the application of Skorohod’s representation theorem.

Now, using Lemma 16 and the fact that each ui is filled in T N before step K = OP(1):

t
(
T N , ui

)
= 1
N

∣∣∣ {
Y N

1 , . . . , Y N
N

}
∩

(
T N

left(ui), T N
right(ui)

)∣∣∣ + oP(1) .

Consider the empirical distribution function FN (y) := 1
N

∣∣{Y N
1 , . . . , Y N

N } ∩ (−∞, y)
∣∣. Then:

t
(
T N , ui

)
= FN

(
T N

right(ui)
)

− FN

(
T N

left(ui)
)

+ oP(1) .

The random variable N ∼ Poisson (n) is well-concentrated around n, and conditionally
given N , the points Y N

1 , . . . , Y N
N are i.i.d. random variables in [0, 1]. Since µ is a permuton,

their common (conditional) distribution is the uniform distribution. From Proposition 14,
we infer that Fn converges a.s. uniformly on [0, 1] to the identity function (the earlier use of
Skorohod’s representation theorem implies that the (Y n

i)1≤i≤n are coupled in a nontrivial
way for different values of n, but Proposition 14 applies nevertheless).

Moreover, the above discussion implies that T N
right(ui) and T N

left(ui) converge a.s. to
T ∞

right(ui) and T ∞
left(ui) respectively. Therefore, a.s. in the probability space created by the

application of Skorohod’s representation theorem, for all i ≤ d we have:

t
(
T N , ui

)
= T ∞

right(ui) − T ∞
left(ui) + oP(1) = ψµ0(ui) + oP(1).

Since a.s. (joint) convergence implies (joint) convergence in distribution, (4) is proved. ◀

4 Extra results

In this last section, we briefly discuss some additional results and open questions. More
details can be found in the full paper [8].
De-Poissonization. As mentioned in the introduction, it is possible to state Theorems 1

and 13 for Pn
µ (a set of n i.i.d. points under µ) instead of PN

µ (a Poisson point process
with intensity nµ). In other words, it is possible to “de-Poissonize” the random size N
into a deterministic size n. This is rather technical, and hinges on the comparison method
of Proposition 5 along with standard estimates on the Poisson law.

Optimality of hypotheses in Theorem 1. Assumption (A1) is in some sense optimal for the
upper bound on the BST height. Indeed, in [8] we exhibit two permutons which do not
quite satisfy (A1), and whose BSTs are much deeper.

Universality of the lower bound for the BST height. On the other hand, we could not
construct a permuton µ such that h

(
T ⟨Pn

µ ⟩
)

is asymptotically smaller than c∗ log(n).
This leads us to conjecture that the BSTs of permuton samples always satisfy this lower
bound. In [8], we prove a partial result in this direction.

References
1 Louigi Addario-Berry and Benoît Corsini. The height of Mallows trees. Ann. Probab.,

49(5):2220–2271, 2021. doi:10.1214/20-AOP1503.
2 Frédérique Bassino, Mathilde Bouvel, Valentin Féray, Lucas Gerin, Mickaël Maazoun, and

Adeline Pierrot. Universal limits of substitution-closed permutation classes. J. Eur. Math.
Soc. (JEMS), 22(11):3565–3639, 2020. doi:10.4171/JEMS/993.

https://doi.org/10.1214/20-AOP1503
https://doi.org/10.4171/JEMS/993

B. Corsini, V. Dubach, and V. Féray 21:13

3 Patrick Billingsley. Convergence of probability measures. Wiley Ser. Probab. Stat. Chichester:
Wiley, 2nd ed. edition, 1999.

4 Patrick Billingsley. Probability and measure. Anniversary edition. Hoboken, NJ: John Wiley
& Sons, 2012.

5 Jacopo Borga, Sayan Das, Sumit Mukherjee, and Peter Winkler. Large deviation principle
for random permutations. International Mathematics Research Notices, rnad096, 2023. doi:
10.1093/imrn/rnad096.

6 Jacopo Borga, Ewain Gwynne, and Xin Sun. Permutons, meanders, and sle-decorated liouville
quantum gravity, 2022. Preprint arXiv:2207.02319. doi:10.48550/arXiv.2207.02319.

7 Benoît Corsini. The height of record-biased trees. Random Structures & Algorithms, 62(3):623–
644, 2023. doi:10.1002/rsa.21110.

8 Benoît Corsini, Victor Dubach, and Valentin Féray. Binary search trees of permuton samples,
2024. Preprint arXiv:2403.03151. doi:10.48550/arXiv.2403.03151.

9 Jean-Dominique Deuschel and Ofer Zeitouni. Limiting curves for i.i.d. records. Ann. Probab.,
23(2):852–878, 1995.

10 Luc Devroye. A note on the height of binary search trees. Journal of the ACM (JACM),
33(3):489–498, 1986.

11 Victor Dubach. Increasing subsequences of linear size in random permutations and the
Robinson–Schensted tableaux of permutons, 2023. Preprint arXiv:2307.05768. doi:10.48550/
arXiv.2307.05768.

12 Victor Dubach. Locally uniform random permutations with large increasing subsequences.
Combinatorial Theory, 3(3), 2023. doi:10.5070/C63362784.

13 Rudolf Grübel. A note on limits of sequences of binary trees. Discrete Mathematics &
Theoretical Computer Science, 25(Analysis of Algorithms), 2023. doi:10.46298/dmtcs.10968.

14 Carlos Hoppen, Yoshiharu Kohayakawa, Carlos Gustavo Moreira, Balázs Ráth, and Ru-
dini Menezes Sampaio. Limits of permutation sequences. J. Comb. Theory, Ser. B, 103(1):93–
113, 2013. doi:10.1016/j.jctb.2012.09.003.

15 Jonas Sjöstrand. Monotone subsequences in locally uniform random permutations.
Ann. Probab., 51(4):1502–1547, 2023. doi:10.1214/23-AOP1624.

16 Eric Slud. Entropy and maximal spacings for random partitions. Z. Wahrscheinlichkeitstheor.
Verw. Geb., 41:341–352, 1978. doi:10.1007/BF00533604.

AofA 2024

https://doi.org/10.1093/imrn/rnad096
https://doi.org/10.1093/imrn/rnad096
https://doi.org/10.48550/arXiv.2207.02319
https://doi.org/10.1002/rsa.21110
https://doi.org/10.48550/arXiv.2403.03151
https://doi.org/10.48550/arXiv.2307.05768
https://doi.org/10.48550/arXiv.2307.05768
https://doi.org/10.5070/C63362784
https://doi.org/10.46298/dmtcs.10968
https://doi.org/10.1016/j.jctb.2012.09.003
https://doi.org/10.1214/23-AOP1624
https://doi.org/10.1007/BF00533604

The Recurrence/Transience of Random Walks on a
Bounded Grid in an Increasing Dimension
Shuma Kumamoto #

Graduate School of Mathematical Science, Kyushu University, Fukuoka, Japan

Shuji Kijima #

Faculty of Data Science, Shiga University, Hikone, Japan

Tomoyuki Shirai #

Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan

Abstract
It is celebrated that a simple random walk on Z and Z2 returns to the initial vertex v infinitely
many times during infinitely many transitions, which is said recurrent, while it returns to v only
finite times on Zd for d ≥ 3, which is said transient. It is also known that a simple random walk
on a growing region on Zd can be recurrent depending on growing speed for any fixed d. This
paper shows that a simple random walk on {0, 1, . . . , N}n with an increasing n and a fixed N can
be recurrent depending on the increasing speed of n. Precisely, we are concerned with a specific
model of a random walk on a growing graph (RWoGG) and show a phase transition between the
recurrence and transience of the random walk regarding the growth speed of the graph. For the
proof, we develop a pausing coupling argument introducing the notion of weakly less homesick as
graph growing (weakly LHaGG).

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains

Keywords and phrases Random walk, dynamic graph, recurrence, transience, coupling

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.22

Funding Shuma Kumamoto: This work is supported by JST SPRING, Grant Number JPMJSP2136.
Shuji Kijima: This work is partly supported by JSPS KAKENHI Grant Number JP21H03396.
Tomoyuki Shirai: This work is partly supported by JSPS KAKENHI Grant Number JP20K20884,
JP22H05105, JP23H01077, and JP23K25774.

1 Introduction

The recurrence or transience is a classical and fundamental topic of random walks on infinite
graphs, see e.g., [16]: let X0, X1, X2, . . . be a random walk (or a Markov chain) on an infinite
state space V , e.g., V = Z, with X0 = v for v ∈ V . The random walk is said to be recurrent
at the initial state v if

∞∑
t=1

Pr[Xt = v] = ∞ (1)

holds, otherwise it is said to be transient. Intuitively, (1) means that the random walk is
“expected” to return to the initial state infinitely many times. An interesting fact is that a
simple random walk on Z or Z2 is recurrent, while a simple random walk on Zd is transient
for d ≥ 3, cf. [16].

Analysis of random walks on dynamic graphs has been developed in several contexts.
Random walks in random environment is a popular subject in probability theory, where
self-interacting random walks including reinforced random walks and excited random walks
have been intensively investigated as a relatively tractable non-Markovian process, see e.g.,
[9, 5, 15, 29, 30, 21]. The recurrence or transience of a random walk in a random environment

© Shuma Kumamoto, Shuji Kijima, and Tomoyuki Shirai;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 22; pp. 22:1–22:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kumamoto.shuma.693@s.kyushu-u.ac.jp
mailto:shuji-kijima@biwako.shiga-u.ac.jp
https://orcid.org/0000-0001-6061-2330
mailto:shirai@imi.kyushu-u.ac.jp
https://orcid.org/0000-0001-6269-5387
https://doi.org/10.4230/LIPIcs.AofA.2024.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 The Recurrence/Transience of RW on a Grid in an Increasing Dimension

is a major topic there, particularly random walks on growing subgraphs of Zd or infinitely
growing trees are the major targets [11, 12, 18, 1]. In distributed computing, analysis of
algorithms including random walks on dynamic graphs attracts increasing attention because
networks are often dynamic [7, 22, 2, 28]. Searching or covering networks, related to hitting
or cover times of random walks, are major topics there [8, 3, 14, 4, 24, 6, 20].

Existing works. As we stated above, a simple random walk on the infinite integer grid Zd

is recurrent for d = 1 and 2, while it is transient for d ≥ 3. Dembo et al. [12] investigated
a random walk on an infinitely growing region of Zd and showed a phase transition, that
is roughly speaking a random walk is recurrent if and only if

∑∞
t=1 πt(0) = ∞ holds under

certain conditions, where πt denotes the stationary distribution of the transition matrix at
time t. Huang [18] extended the argument of [12] and gave a similar or essentially the same
phase transition for more general graphs. The proofs are based on the edge conductance and
the central limit theorem on the assumption that every vertex of the dynamic graph has a
degree at most constant to time (or the size of the graph). Those arguments are sophisticated
and enhanced using the argument of evolving set and the heat kernel by recent works [10, 13].

Kumamoto et al. [23] were concerned with a specific model called random walk on growing
graph (RWoGG), which is parametrized by d : Z≥0 → Z≥0 representing the growing (inverse)
speed of the graph. Then, they investigated a simple random walk on {0, 1}n with an
increasing n, and showed that the random walk is recurrent if

∑∞
n=1 d(n)/2n = ∞, otherwise

transient. Notice that the degree of every vertex of the {0, 1}n skeleton graph infinitely grows
as n → ∞. They introduced the notion of less-homesickness as graph growing (LHaGG)
and gave a proof by a coupling argument, which is easier than the arguments based on the
conductance or heat kernel, for this specific object. However, the proof technique is not
simply applicable to a simple random walk on {0, . . . , N}n with an increasing n (and a fixed
N), and it remained as future work.

Result. This paper is concerned with the RWoGG model (see Sec. 2.1), and shows a phase
transition by the growing speed regarding a random walk being recurrent/transient for a lazy
simple random walk on {0, . . . , N}n with an increasing n and a fixed N . For this purpose,
we introduce the notion of weakly less-homesick as graph growing (weakly LHaGG; see Sec. 3)
and show sufficient conditions for a weakly LHaGG RWoGG to be recurrent (Thm. 2) or
transient (Thm. 4). The notion of weakly LHaGG is quite intuitive and natural, but we
have to develop a new technique of pausing coupling to prove that a lazy simple RWoGG is
weakly LHaGG. Then, we give the threshold

∑∞
k=1 d(k)/(2N)k = ∞ of the phase transition

(Thm. 6).

Other related works. It is another celebrated fact that a simple random walk on an infinite
k-ary tree is transient for k ≥ 2 [26, 27]. Amir et al. [1] introduced a random walk in a
changing environment model and investigated the recurrence and transience of random walks
in the model. They gave a conjecture about the conditions of the recurrence and transience
regarding the limit of a graph sequence and proved it for trees. Huang’s work [18] implicitly
implies a phase transition between the recurrence and transience of the random walk on
a growing k-ary tree regarding the growing speed of the graph, based on the conductance
arguments. Kumamoto et al. [23] explicitly showed the phase transition for a growing k-ary
tree under the RWoGG model, where they employ a coupling argument.

S. Kumamoto, S. Kijima, and T. Shirai 22:3

There is a lot of work on the recurrence or transience of random walks on growing trees in
the context of self-interacting random walks including reinforced random walks and excited
random walks, e.g., [19, 17]. They are non-Markovian processes, and in a bit different line
from [12, 1, 18, 23] and this paper.

Related to the cover time, which is another major topic on random walks, Cooper and
Frieze [8] investigated the covering rate of a random walk on the “web-graph” model, where
the graph grows at a constant speed. Kijima et al. [20] introduced the RWoGG model,
where the growing (inverse) speed of a graph is parameterized by d : Z≥0 → Z≥0, and they
investigated its covering rate.

Organization. As a preliminary, we describe the model of random walk on growing graph
(RWoGG) in Section 2. Section 3 introduces the notion of weakly LHaGG, and presents some
general theorems for sufficient conditions that a weakly LHaGG RWoGG is recurrent/transient.
Section 4 shows a phase transition between the recurrence and transience of a lazy simple
random walk on {0, . . . , N}n with an increasing n.

2 Preliminaries

2.1 Model
A growing graph is a sequence of (static) graphs G = G0, G1, G2, . . . where Gt = (Vt, Et) for
t = 0, 1, 2, . . . denotes a graph1 with a finite vertex set Vt and an edge set Et ⊆

(Vt

2
)
. For

simplicity, this paper assumes2 Vt ⊆ Vt+1 and Et ⊆ Et+1. In this paper, we assume |V∞| = ∞,
otherwise the subject is trivial; that is always recurrent. A random walk on a growing graph
is a Markovian series Xt ∈ Vt (t = 0, 1, 2, . . .).

In particular, this paper is concerned with a specific model, described as follows, cf. [20].
A random walk on a growing graph (RWoGG), in this paper, is formally characterized by a
3-tuple of functions D = (d, G, P). The function d : Z>0 → Z≥0 denotes the duration. For
convenience, let T d

n :=
∑n

i=1 d(i) for n = 1, 2, . . . and T d
0 = 0. We call the time interval3

[T d
n−1, T d

n) phase n for n = 1, 2, . . .; thus T d
n−1 =

∑n−1
i=1 d(i) is the beginning of the n-th phase,

but we also say that T d
n−1 is the end of the (n − 1)-st phase, for convenience. The function

G : Z>0 → G represents the graph G(n) = (V (n), E(n)) for the phase n, where G denotes
the set of all (static) graphs, i.e., our growing graph G satisfies Gt = G(n) for t ∈ [T d

n−1, T d
n).

Similarly, the function P : Z>0 → M is a function representing the “transition probability”
of a random walk on graph G(n) where M denotes the set of all transition matrices.

In summary, a RWoGG Xt (t = 0, 1, 2, . . .) characterized by D = (d, G, P) is temporally
a time-homogeneous finite Markov chain according to P (n) with the state space V (n) during
the time interval [T d

n−1, T d
n). Suppose X0 = o for o ∈ V (1). We define the return probability

at o by

Rd(t) = Pr[Xt = o] (= Pr[Xt = o | X0 = o]) (2)

at each time t = 0, 1, 2, We say o is recurrent by RWoGG D = (d, G, P) if
∞∑

t=1
Rd(t) = ∞ (3)

holds, otherwise, i.e.,
∑∞

t=1 Rd(t) is upper bounded, o is transient by D.

1 Every static graph is simple and undirected in this paper, for simplicity of the arguments.
2 Thus, the current position does not disappear in the next step.
3 Let [Td

n−1, Td
n) = {Td

n−1, Td
n−1 + 1, . . . , Td

n − 1}, for convenience. Notice that |[Td
n−1, Td

n)| = d(n).

AofA 2024

22:4 The Recurrence/Transience of RW on a Grid in an Increasing Dimension

2.2 Mixing time
Next, we briefly introduce some terminology for random walks on static graphs, or time-
homogeneous Markov chains, according to [25]. Suppose that X0, X1, X2, . . . is a random
walk on a static graph G = (V, E) characterized by a time-homogeneous transition matrix
P = (P (u, v)) ∈ RV ×V

≥0 where P (u, v) = Pr[Xt+1 = v | Xt = u]. A transition matrix P

is irreducible if ∀u, v ∈ V , ∃t > 0, P t(u, v) > 0. A transition matrix P is aperiodic if
gcd{t > 0 ; P t(v, v) > 0} = 1 for any v ∈ V . A Markov chain is ergodic if it is irreducible
and aperiodic. A probability distribution π over V is a stationary distribution if it satisfies
πP = π. It is well known that an ergodic P has a unique stationary distribution [25].

Let

d(t) := max
x∈V

∥P t(x, ·) − π∥T V . (4)

Then, the mixing time of P is given by

tmix(ϵ) := min {t ; d(t) ≤ ϵ} (5)

for ϵ ∈ (0, 1). We will use the following fact in the proof of Lemma 3 appearing later.

▶ Lemma 1. Suppose P is ergodic. Let πv denote the probability of v ∈ V in the stationary
distribution of P . If t ≥ tmix(πv

4) then d(t) ≤ πv

2 holds.

Proof. Let

d(t′) := max
x,y∈V

∥∥∥P t′
(x, ·) − P t′

(y, ·)
∥∥∥

T V
.

It is known that d(t) ≤ d(t) ≤ 2d(t) holds (cf. Lemma 4.10 in [25]). For convenience, let
t = tmix(πv

4) + s for s ≥ 0. Then,

d(t) ≤ d(t) (by Lem. 4.10 in [25])
≤ d

(
tmix(πv

4)
)

d(s) (by the submultiplicativity of d (cf. Lem. 4.11 in [25]))
≤ d

(
tmix(πv

4)
)

(since d(s) ≤ 1)
≤ 2d

(
tmix(πv

4)
)

(since d(t) ≤ 2d(t) (cf. Lem. 4.10 in [25]))

≤ 2πv

4 (by (5))

and we obtain the claim. ◀

3 Recurrence and Transience

This section presents sufficient conditions that RWoGG D = (d, G, P) is recurrent/transient.
Let t

G(k)
mix (ϵ) denote the mixing time of P (k) and let π

G(k)
o denote the probability of a vertex

o ∈ V in the stationary distribution of P (k) in the following. In this paper, we are mainly
concerned with RWoGG D = (d, G, P) satisfying

∞∑
k=1

τ∗(k)p(k) < ∞ (6)

where p(k) := π
G(k)
o and τ∗(k) := t

G(k)
mix

(
p(k)

4

)
. Roughly speaking, the condition (6) means

that the mixing times of D are not very large.

S. Kumamoto, S. Kijima, and T. Shirai 22:5

3.1 Recurrence
This section gives a sufficient condition that o is recurrent by D.

▶ Theorem 2. Suppose D = (d, G, P) satisfies (6). If d satisfies

∞∑
k=1

d(k)p(k) = ∞ (7)

then the initial vertex o is recurrent by D where p(k) = π
G(k)
o .

To prove Theorem 2, we prove the following lemma.

▶ Lemma 3. Any RWoGG D = (d, G, P) satisfies

Td
n∑

t=1
Rd(t) ≥ 1

2

n∑
k=1

d(k)p(k) − 1
2

n∑
k=1

τ∗(k)p(k) (8)

for any n ≥ 1, where recall τ∗(k) := t
G(k)
mix

(
p(k)

4

)
and p(k) := π

G(k)
o .

Proof. We prove the claim by an induction with respect to n. For n = 1, we prove

d(1)∑
t=1

Rd(t) ≥ 1
2 (d(1) − τ∗(1)) p(1) (9)

holds, where recall T d
1 = d(1) by definition. We consider two cases whether d(1) ≤ τ∗(1) or

not. If d(1) ≤ τ∗(1) then the right hand side of (8) ≤ 0. Clearly the left hand side of (8) ≥ 0,
and we obtain (8). Suppose d(1) > τ∗(1). Notice that∣∣∣Rd(t) − πG(1)

o

∣∣∣ ≤ 2p(1)
4 = 1

2p(1)

holds for t ≥ τ∗(1) by Lemma 1. It implies

Rd(t) ≥ πG(1)
o − 1

2p(1) = 1
2p(1)

for t ≥ τ∗(1), where recall p(1) = π
G(1)
o by definition. Then,

d(1)∑
t=1

Rd(t) ≥
d(1)∑

t=τ∗(1)

Rd(t) ≥
d(1)∑

t=τ∗(1)

1
2p(1) = 1

2(d(1) − τ∗(1))p(1)

holds. We obtain (9).
Inductively assuming (8) holds for n, we prove it for n+1. Noting that T d

n+1 = T d
n +d(n+1),

Td
n+1∑

t=1
Rd(t) =

Td
n∑

t=1
Rd(t) +

d(n+1)∑
t=1

Rd(T d
n + t)

≥ 1
2

n∑
k=1

d(k)p(k) − 1
2

n∑
k=1

τ∗(k)p(k) +
d(n+1)∑

t=1
Rd(T d

n + t) (10)

AofA 2024

22:6 The Recurrence/Transience of RW on a Grid in an Increasing Dimension

holds since
∑Td

n+1
t=1 Rd(t) ≥ 1

2
∑n

k=1 d(k)p(k) − 1
2

∑n
k=1 τ∗(k)p(k) holds by the inductive

assumption. Concerning the third term of (10), we can prove

d(n+1)∑
t=1

Rd(T d
n + t) ≥ 1

2(d(n + 1) − τ∗(n + 1))p(n + 1)

in a similar way as (9). Therefore,

(10) ≥ 1
2

n∑
k=1

d(k)p(k) − 1
2

n∑
k=1

τ∗(k)p(k) + 1
2 (d(n + 1) − τ∗(n + 1)) p(n + 1)

= 1
2

n+1∑
k=1

d(k)p(k) − 1
2

n+1∑
k=1

τ∗(k)p(k)

holds. We obtain the claim. ◀

Now, we prove Theorem 2.

Proof of Theorem 2. Recall the assumption (6),

Td
n∑

t=1
Rd(t) ≥ 1

2

n∑
k=1

d(k)p(k) − 1
2

n∑
k=1

τ∗(k)p(k) (by Lemma 3)

≥ 1
2

n∑
k=1

d(k)p(k) − 1
2

∞∑
k=1

τ∗(k)p(k) (τ∗(k)p(k) ≥ 0 for any k)

= 1
2

n∑
k=1

d(k)p(k) − C1 (by (6)) (11)

hold, where C1 is a positive constant. Thus, the hypothesis
∑∞

k=1 d(k)p(k) = ∞ implies∑∞
t=1 Rd(t) = ∞, which is what we want. ◀

Even if (6) does not hold, Lemma 3 implies that the weaker condition

lim
n→∞

n∑
k=1

(d(k) − τ∗(k))p(k) = ∞

guarantees the recurrence.

3.2 Weakly less homesick as graph growing
Before giving a sufficient condition for transience, we introduce the notion of weakly less-
homesickness as graph growing, which is a relationship between RWoGGs and plays an
important role in our analysis. Let Df = (f, G, P) and Df ′ = (f ′, G′, P ′) be RWoGGs, and
let Rf (t) and Rf ′(t) respectively denote their return probabilities at time t = 1, 2, We
say Df ′ = (f ′, G′, P ′) is weakly less-homesick than Df = (f, G, P) at time t if

t∑
k=1

Rf (k) ≥
t∑

k=1
Rf ′(k) (12)

holds.

S. Kumamoto, S. Kijima, and T. Shirai 22:7

In particular, this paper is mainly concerned with the weakly less-homesick relation
between Df = (f, G, P) and Dg = (g, G, P) with the same P (and G). We say P : Z>0 → M
is weakly less-homesick as graph growing (weakly LHaGG)4 if Dg = (g, G, P) is weakly
less-homesick than Df = (f, G, P) whenever

n∑
k=1

f(k) ≥
n∑

k=1
g(k) (13)

holds for any n ∈ Z>0, where we remark that G and P are common in Df and Dg. The
condition (13) implies the graph in Dg grows faster than Df , intuitively.

3.3 Transience
Next, we give a sufficient condition that o is transient by D.

▶ Theorem 4. Suppose RWoGG D = (d, G, P) is weakly LHaGG and satisfies (6). If d

satisfies
∞∑

k=2
d(k)p(k − 1) < ∞ (14)

then the initial vertex o is transient by D where p(k) = π
G(k)
o .

To prove Theorem 4, we prove the following lemma.

▶ Lemma 5. Suppose RWoGG D = (d, G, P) is weakly LHaGG. Let

g(k) := max (d(k), τ∗(k)) (15)

for k ≥ 1. Then, the sum of return probabilities of the RWoGG Dg = (g, G, P) satisfies

T g
n+1∑

t=1
Rg(t) ≤ g(1) + 3

2

n+1∑
k=2

g(k)p(k − 1) (16)

for n ≥ 1.

Proof. We prove the claim for each fixed n = 1, 2, Let

f(k) :=
{

g(k) (k ≤ n − 1)
∞ (k = n).

(17)

Let Zt (t = 0, 1, 2, . . .) denote a RWoGG Df = (f, G, P) with Z0 = o. Let Rf (t) denote the
return probability of Zt, i.e., Rf (t) = Pr[Zt = o] = Pr[Zt = o | Z0 = o]. Clearly, T f

n ≥ T g
n

holds for any n ≥ 1, hence the weakly LHaGG assumption implies

T∑
t=1

Rg(t) ≤
T∑

t=1
Rf (t) (18)

for any T .

4 Strictly speaking, weakly LHaGG should be a property of the sequence of transition matrices
P (1), P (2), P (3), For convenience of the notation, we say D = (f, G, P) is weakly LHaGG, in
this paper.

AofA 2024

22:8 The Recurrence/Transience of RW on a Grid in an Increasing Dimension

Suppose ZT g
n−1

= v. Then, Zt for t ∈ (T g
n , T g

n+1] is nothing but a time-homogeneous
random walk according to P (n) with the “initial state” ZT g

n−1
= v. For convenience, let

t = T g
n−1 + t′, then

t′ ≥ g(n) ≥ τ∗(n) (19)

by (15) and (17). This implies

T g
n+1∑

t=1
Rg(t) =

n+1∑
k=1

T g
k∑

t=T g
k−1+1

Rf (t)

=
T g

1∑
t=1

Rf (t) +
n+1∑
k=2

T g
k∑

t=T g
k−1+1

Rf (t)

≤ g(1) +
n∑

k=1

T g
k+1∑

t=T g
k

+1

Rf (t)

= g(1) +
n∑

k=1

T g
k+1∑

t=T g
k

+1

∑
v∈V (k−1)

Pr
[
Zt = o | ZT g

k−1
= v

]
Pr

[
ZT g

k−1
= v | Z0 = o

]

= g(1) +
n∑

k=1

g(k+1)∑
t′=1

∑
v∈V (k−1)

Pr
[
ZT g

k
+t′ = o | ZT g

k−1
= v

]
Pr

[
ZT g

k−1
= v | Z0 = o

]

≤ g(1) +
n∑

k=1

g(k+1)∑
t′=1

max
v∈V (k−1)

Pr
[
ZT g

k
+t′ = o | ZTk−1 = v

]

≤ g(1) +
n∑

k=1

g(k+1)∑
t′=1

(
p(k) + p(k)

2

)
(by (19))

= g(1) +
n∑

k=1

g(k+1)∑
t′=1

3
2p(k)

= g(1) + 3
2

n∑
k=1

g(k + 1)p(k)

= g(1) + 3
2

n+1∑
k=2

g(k)p(k − 1) (20)

holds. The claim is clear by (18) and (20). ◀

Now, we are ready to prove Theorem 4.

Proof of Theorem 4. Let

g(k) := max (d(k), τ∗(k))

for k ≥ 1. Notice that g(k) ≤ d(k) + τ∗(k) holds. We calculate
∑∞

t=1 Rd(t) using Lemma 5:

S. Kumamoto, S. Kijima, and T. Shirai 22:9

∞∑
t=1

Rd(t) = lim
n→∞

T g
n+1∑

t=1
Rd(t) ≤ lim

n→∞

T g
n+1∑

t=1
Rg(t) (since weakly LHaGG)

≤ lim
n→∞

{
g(1) + 3

2

n+1∑
k=2

g(k)p(k − 1)
}

(by Lemma 5)

= g(1) + 3
2

∞∑
k=2

g(k)p(k − 1) (21)

≤ d(1) + τ∗(1) + 3
2

∞∑
k=2

d(k)p(k − 1) + 3
2

∞∑
k=2

τ∗(k)p(k − 1)

≤ 3
2

∞∑
k=2

d(k)p(k − 1) + C (by (6))

holds with some constant C. Now it is easy to see that (14) implies
∑∞

t=1 Rd(t) < ∞,
meaning that D = (d, G, P) is transient. ◀

4 Random Walk on Growing Dimension Boxes

This section is concerned with a random walk on growing dimension boxes D = (d, G, P).
Let G(n) = (V (n), E(n)) be a graph given by

V (n) := {0, . . . , N}n0+n−1

E(n) := {(x, y) ; x, y ∈ V (n), ∥x − y∥1 = 1}

where n and N are (fixed) positive integers. Let o ∈ V (n) denote the origin vertex. Let
P G(n) for n ≥ 1 denote the transition probability of a lazy simple random walk on the static
graph G(n), which is given by

P G(n)
x,y =

1
2 (if x = y)

1
4(n0+n−1) (if ∥x − y∥1 = 1, xk ̸= yk and xk ̸∈ {0, N})

1
2(n0+n−1) (if ∥x − y∥1 = 1, xk ̸= yk and xk ∈ {0, N})
0 (otherwise)

for x, y ∈ V (n). Then, we are concerned with a RWoGG Xt (t = 0, 1, 2, . . .) according
to D = (d, G, P). If the graph grows at time t, we assume Xt = (x1, . . . , xn0+n−1) =
(x1, . . . , xn0+n−1, 0).

▶ Theorem 6. If D = (d, G, P) satisfies
∞∑

k=1

d(k)
(2N)k

= ∞

then o is recurrent, otherwise o is transient.

We will prove Theorem 6 based on Theorems 2 and 4. As a preliminary step, we remark
two facts. One is about the stationary distribution of P G(n), and it is not difficult to observe
that

p(n) = 1
(2N)n0+n−1 (22)

AofA 2024

22:10 The Recurrence/Transience of RW on a Grid in an Increasing Dimension

holds. The other is about the mixing time of P G(n), and we can prove

τ∗(n) ≤ 8N2 log2 (2N) (n0 + n − 1)3 (23)

by a standard coupling technique. Therefore, random walk on growing boxes satisfies (6).
Then, it is not difficult to see that Theorem 6 follows from the following Lemma 7.

▶ Lemma 7. Random walk on growing dimension boxes is weakly LHaGG.

Before the proof of Lemma 7, we prove Theorem 6.

Proof of Theorem 6. Notice that D satisfies (23) and it is weakly LHaGG by Lemma 7,
meaning that D satisfies the hypotheses of Theorems 2 and Theorem 4. By (22),

p(n) = 1
(2N)n0−1

1
(2N)n

where remark that 1
(2N)n0−1 is a constant since N and n0 are constants. If

∑∞
k=1

d(k)
(2N)k = ∞

then
∞∑

k=1
d(k)p(k) = 1

(2N)n0−1

∞∑
k=1

d(k)
(2N)k

= ∞

holds, which implies o is recurrent by Theorem 2. Similarly, if
∑∞

k=1
d(k)

(2N)k ≤ C holds for
some constant then

∞∑
k=2

d(k)p(k − 1) = 1
(2N)n0−2

∞∑
k=2

d(k)
(2N)k

≤ 1
(2N)n0−2 C

holds, which implies o is transient by Theorem 4. ◀

4.1 Proof of Lemma 7
We prove Lemma 7 by an artificial coupling. Due to the page limitation, we here explain a
proof sketch.

Let X = X0, X1, . . . be a RWoGG according to Df = (f, G, P), and let Rf (t) (t =
0, 1, 2, . . .) denote its return probability. Similarly, let Y = Y0, Y1, . . . be a RWoGG according
to Dg = (g, G, P), and let Rg(t) (t = 0, 1, 2, . . .) denote its return probability. Note that
X0 = Y0 = o. Suppose that

n∑
k=1

f(k) ≥
n∑

k=1
g(k) (24)

holds for any n ≥ 1. Then, we couple X and Y time asynchronously, so that Xt ≤ Yt holds
for any t = 0, 1, 2, . . ., which is established in three steps by the following Lemmas 8–10.

▶ Lemma 8. Suppose X and Y satisfy

Xt = o, Yt′ = o,

for t ≤ t′. Then, there is a coupling of X and Y such that

min {r ; r ≥ 0, Xt+r ̸= o} = min {r ; r ≥ 0, Yt′+r ̸= o} , (25)

i.e., X and Y stay at the origin vertex o for exactly the same r steps, where we define
min ∅ = ∞ for convenience.

S. Kumamoto, S. Kijima, and T. Shirai 22:11

Proof. Notice that each of X and Y remains at the origin vertex o with probability 1
2 , and

leaves the origin vertex o with probability 1
2 independent of dimensions. Then, we can

construct a coupling of X and Y . ◀

▶ Lemma 9. Suppose that |Xt| = |Yt′ | = 1, where t ≤ t′. Then, there is a coupling of X

and Y such that

min {r ; r > 0, Xt+r = o} ≤ min {r ; r > 0, Yt′+r = o} , (26)

i.e., X returns to the origin vertex o in a fewer steps than Y .

Sketch of proof. Without loss of generality, we may assume5 that Xt = (X1
t , X2

t , . . . , Xnt
t) =

(1, 0, . . . , 0) and Yt′ = (Y 1
t′ , Y 2

t′ , . . . , Y
mt′

t′) = (1, 0, . . . , 0), where we remark nt and mt respect-
ively denote the dimensions of Xt and Yt.

Let I(t) ∈ {1, . . . , nt} denote the index selected in the transition from Xt−1 to Xt, and let
J(t) ∈ {1, . . . , mt} denote the index selected in the transition from Yt−1 to Yt. For example,
when Xt−1 = (0, 0, 0), I(t) = 1 and X1

t = X1
t−1 + 1 then Xt = (1, 0, 0). Then, we couple

{I(t + r)}r=1,2,... and {J(t + r)}r=1,2,.... For θt+r ∈ {1, 2, . . . , nt+r}, let

Ψk(θt+r) :=
{

{ωt+r}r∈N
∣∣ ωk′ > nt+r for k′ < k and ωk = θt+r

}
and

Ψ̃(t + r) :=
{

{ωt+r}r∈N
∣∣ ωk′ > nt+r for k′ ≥ 1

}
for r ≥ 1. Let W = {Ws}s∈N satisfy Ws := J(t′ + s) for s ≥ 1. Suppose I(t + r) = θt+r.
Let s1 = k such that W ∈ Ψk(θt+1), and let S(1) := s1. Recursively, let sr = k′ such that
W ∈ Ψk′(θt+r) for r ≥ 2, and let S(r) := S(r − 1) + sr. Let Ψ(θt+r) :=

⋃∞
k=1 Ψk(θt+r).

Firstly, we claim that

Pr[I(t + r) = θt+r] = Pr [W ∈ Ψ(θt+r)] + 1
nt+r

Pr
[
W ∈ Ψ̃(t + r)

]
. (27)

Clearly,

Pr[I(t + r) = θt+r] = 1
nt+r

holds for the left-hand-side of (27). Notice that

t + r ≤ t′ + S(r) (28)

holds. Then, we can prove

Pr [W ∈ Ψ(θt+r)] + 1
nt+r

Pr
[
W ∈ Ψ̃(t + r)

]
= 1

nt+r
(29)

holds, which implies (27).
Next, we prove for any r and i ≤ nt+r that

Xi
t+r ≤ Y i

t′+s (30)

for S(r) ≤ s < S(r + 1). We consider two cases whether i ≤ nt+1 or not.

5 Suppose that |Yt| = |Y ′
t | = 1. Let Y i

t = Y ′j
t = 1. There is the coupling of Y and Y ′ such that Yt = o if

and only if Y ′
t = o.

AofA 2024

22:12 The Recurrence/Transience of RW on a Grid in an Increasing Dimension

(i) Consider the case i ≤ nt+1. Recall that Xi
t = Y i

t′ for i ≤ nt. We inductively prove that

Xi
t+r = Y i

t′+s (31)

for S(r) ≤ s < S(r + 1) with respect to r. Notice that

Y i
t′+S(r) = Y i

t′+s (32)

for S(r) ≤ s < S(r + 1) since I(t′ + s) > nt+r+1 for S(r) < s < S(r + 1). Suppose i is
chosen l times for Xt, . . . , Xt+r in the r steps, i.e.,

|{r′ | I(t + r′) = i, 1 ≤ r′ ≤ r}| = l.

Notice that i is chosen l times for Yt′ . . . , Yt′+S(r′) in the S(r′) steps. Then,

Pr
[
Xi

t+r′ − Xi
t+r′−1 = z

∣∣ I(t + r′) = i
]

= Pr
[
Y i

t′+S(r′) − Y i
t′+S(r′)−1 = z

∣∣∣ J(t′ + S(r′)) = i
]

holds for z ∈ {−1, 0, 1}. The inductive assumption Xi
t+r′−1 = Y i

t′+S(r′)−1 implies

Xi
t+r′ = Y i

t′+S(r′). (33)

We obtain (31).
(ii) Consider the case i > nt+1. Suppose i is chosen l times for Xt, . . . , Xt+r in the r steps,

i.e.,

|{r′ | I(t + r′) = i, 1 ≤ r′ ≤ r}| = l,

and let r′′ denote the minimum satisfying I(t + r′′) = i for 1 ≤ r′′ ≤ r. Clearly,
Xi

t+r′′−1 ≤ Y i
t′+S(r′′)−1. If Xi

t+r′′−1 = Y i
t′+S(r′′)−1, we can prove (30) for any s satisfying

S(r) ≤ s < S(r + 1) in a similar way as the case (i).
Thus, we consider the case Xi

t+r′′−1 < Y i
t+S(r′′)−1. Then, we can couple the transitions

Xi
t+r′−1 7→ Xi

t+r′ and Y i
t+S(r′)−1 7→ Y i

t+S(r′) such that

Pr
[
Xi

t+r′ − Xi
t+r′−1 = 0

∣∣ I(t + r′) = i
]

= Pr
[∣∣∣Y i

t′+S(r′) − Y i
t′+S(r′)−1

∣∣∣ = 1
∣∣∣ J(t′ + S(r′)) = i

]
= 1

2
Pr

[∣∣Xi
t+r′ − Xi

t+r′−1
∣∣ = 1

∣∣ I(t + r′) = i
]

= Pr
[
Y i

t′+S(r′) − Y i
t′+S(r′)−1 = 0

∣∣∣ J(t + S(r′)) = i
]

= 1
2

hold. Recall that Xi
t+r′′−1 < Y i

t+S(r′′)−1 implies Xi
t+r′′−1 + 1 ≤ Y i

t+S(r′′)−1. Thus, the
coupling implies Xi

t+r′′ ≤ Y i
t′+S(r′′). For other r′′′ ∈ {r′ ; I(t + r′) = i, 1 ≤ r′ ≤ r},

we can inductively prove (30) in a similar way.
Therefore, if Y returns to the origin vertex o at time t′ + S(r) then X returns to the
origin vertex o before the time t + r by (30). Clearly t + r ≤ t′ + S(r) by (28). We
obtain the claim. ◀

▶ Lemma 10. Let

τo := min {r ; r > 0, Xt+r = o} ,

τ ′
o := min

{
r ; r ≥ 0, Yt′+S(τo)+r = o

}
.

If Yt′+S(τo) ̸= o then there is a coupling of X and Y such that Xt+τo = Yt′+S(τo)+τ ′
o

= o,
i.e., X stops its time until Y returns to the origin vertex o.

S. Kumamoto, S. Kijima, and T. Shirai 22:13

Proof. Since

Pr
[
τ ′

o < ∞ or τ ′
o = ∞

∣∣ Yt′+S(τo) ̸= o
]

= 1

holds for any Yt′+S(τo) ∈ {0, 1, . . . , N}mt′+S(τo) . ◀

We prove Lemma 7 using Lemmas 8–10.

Proof of Lemma 7. Let

τx
o (n) := min {t ; t > τx

o (n − 1) , Xt = o} ,

τy
o (n) := min {t ; t > τy

o (n − 1) , Yt = o}

for n ≥ 1. For convenience, let τx
o (0) := 0 and τy

o (0) := 0. To begin with, we prove that
there is a coupling of X and Y such that

τx
o (n) ≤ τy

o (n) (34)

for any n ≥ 0. For n = 0, (34) is obvious. Inductively assuming that (34) holds for n, we
prove it for n + 1. If τy

o (n + 1) = ∞ then we have

τx
o (n + 1) ≤ τy

o (n + 1)

clearly, and we obtain (34) in this case. Then, we consider the case of τy
o (n + 1) < ∞. By

Lemma 10, X can stop at the vertex o at time τx
o (n) by the time τy

o (n). Therefore, we can
consider the coupling of Xτx

o (n) and Yτy
o (n). By Lemma 8, there exists tn ≥ 1 such that

Xτx
o (n)+s = o and Yτy

o (n)+s = o (35)

for any s satisfying 0 ≤ s < tn, and

Xτx
o (k)+tn

̸= o and Yτy
o (n)+tn

̸= o (36)

hold. If tn > 1 then (35) implies

τx
o (n + 1) = τx

o (n) + 1 and τy
o (n + 1) = τy

o (n) + 1.

This means that we have

τx
o (n + 1) ≤ τy

o (n + 1)

by the inductive assumption (34), and we obtain the equation (34) in the case tn > 1. Then,
we consider the case tn = 1. Notice that (35) and (36) imply

|Xτx
o (k)+tn

| = 1, |Yτy
o (k)+tn

| = 1,

and hence Lemma 9 implies that there is a coupling of X and Y such that

τx
o (n + 1) ≤ τy

o (n + 1) (37)

holds. Therefore, we obtain (34) in the case tn = 1. Thus, we obtain (34) for any n + 1. It is
not difficult to see from (34) that the random walk on growing dimension boxes is weakly
LHaGG. ◀

AofA 2024

22:14 The Recurrence/Transience of RW on a Grid in an Increasing Dimension

References
1 Gideon Amir, Itai Benjamini, Ori Gurel-Gurevich, and Gady Kozma. Random walk in

changing environment. Stochastic Processes and their Applications, 130(12):7463–7482, 2020.
doi:10.1016/j.spa.2020.08.003.

2 John Augustine, Gopal Pandurangan, and Peter Robinson. Distributed algorithmic foundations
of dynamic networks. SIGACT News, 47(1):69–98, March 2016. doi:10.1145/2902945.
2902959.

3 Chen Avin, Michal Koucký, and Zvi Lotker. How to explore a fast-changing world (cover time
of a simple random walk on evolving graphs). In Luca Aceto, Ivan Damgård, Leslie Ann Gold-
berg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata,
Languages and Programming, ICALP 2008, pages 121–132, 2008.

4 Chen Avin, Michal Koucký, and Zvi Lotker. Cover time and mixing time of random walks on
dynamic graphs. Random Structures & Algorithms, 52(4):576–596, 2018. doi:10.1002/rsa.
20752.

5 Itai Benjamini and David Wilson. Excited Random Walk. Electronic Communications in
Probability, 8:86–92, 2003. doi:10.1214/ECP.v8-1072.

6 Leran Cai, Thomas Sauerwald, and Luca Zanetti. Random walks on randomly evolving
graphs. In Andrea Werneck Richa and Christian Scheideler, editors, Structural Information
and Communication Complexity, SIROCCO 2020, pages 111–128, 2020.

7 Colin Cooper. Random walks, interacting particles, dynamic networks: Randomness can be
helpful. In Adrian Kosowski and Masafumi Yamashita, editors, Structural Information and
Communication Complexity, SIROCCO 2011, pages 1–14, 2011.

8 Colin Cooper and Alan Frieze. Crawling on simple models of web graphs. Internet Mathematics,
1(1):57–90, 2003.

9 Burgess Davis. Reinforced random walk. Probability Theory and Related Fields, 84(2):203–229,
1990. doi:10.1007/BF01197845.

10 Amir Dembo, Ruojun Huang, Ben Morris, and Yuval Peres. Transience in growing subgraphs
via evolving sets. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 53(3):1164–
1180, 2017. doi:10.1214/16-AIHP751.

11 Amir Dembo, Ruojun Huang, and Vladas Sidoravicius. Monotone interaction of walk and
graph: recurrence versus transience. Electronic Communications in Probability, 19:1–12, 2014.
doi:10.1214/ECP.v19-3607.

12 Amir Dembo, Ruojun Huang, and Vladas Sidoravicius. Walking within growing domains:
recurrence versus transience. Electronic Journal of Probability, 19:1–20, 2014. doi:10.1214/
EJP.v19-3272.

13 Amir Dembo, Ruojun Huang, and Tianyi Zheng. Random walks among time increasing
conductances: heat kernel estimates. Probability Theory and Related Fields, 175(1):397–445,
October 2019. doi:10.1007/s00440-018-0894-1.

14 Oksana Denysyuk and Luís Rodrigues. Random walks on evolving graphs with recurring
topologies. In Fabian Kuhn, editor, Distributed Computing, DISC 2014, pages 333–345, 2014.

15 Dmitry Dolgopyat, Gerhard Keller, and Carlangelo Liverani. Random walk in Markovian
environment. The Annals of Probability, 36(5):1676–1710, 2008. doi:10.1214/07-AOP369.

16 Richard Durrett. Probability: theory and examples. Cambridge University Press, Fifth edition,
2019.

17 Daniel Figueiredo, Giulio Iacobelli, Roberto Oliveira, Bruce Reed, and Rodrigo Ribeiro. On
a random walk that grows its own tree. Electronic Journal of Probability, 26:1–40, 2021.
doi:10.1214/20-EJP574.

18 Ruojun Huang. On random walk on growing graphs. Annales de l’Institut Henri Poincaré,
Probabilités et Statistiques, 55(2):1149–1162, 2019. doi:10.1214/18-AIHP913.

19 Giulio Iacobelli, Daniel R. Figueiredo, and Giovanni Neglia. Transient and slim versus recurrent
and fat: Random walks and the trees they grow. Journal of Applied Probability, 56(3):769–786,
2019. doi:10.1017/jpr.2019.43.

https://doi.org/10.1016/j.spa.2020.08.003
https://doi.org/10.1145/2902945.2902959
https://doi.org/10.1145/2902945.2902959
https://doi.org/10.1002/rsa.20752
https://doi.org/10.1002/rsa.20752
https://doi.org/10.1214/ECP.v8-1072
https://doi.org/10.1007/BF01197845
https://doi.org/10.1214/16-AIHP751
https://doi.org/10.1214/ECP.v19-3607
https://doi.org/10.1214/EJP.v19-3272
https://doi.org/10.1214/EJP.v19-3272
https://doi.org/10.1007/s00440-018-0894-1
https://doi.org/10.1214/07-AOP369
https://doi.org/10.1214/20-EJP574
https://doi.org/10.1214/18-AIHP913
https://doi.org/10.1017/jpr.2019.43

S. Kumamoto, S. Kijima, and T. Shirai 22:15

20 Shuji Kijima, Nobutaka Shimizu, and Takeharu Shiraga. How many vertices does a random
walk miss in a network with moderately increasing the number of vertices? In Proceedings of
the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pages
106–122, 2021. doi:10.1137/1.9781611976465.8.

21 Elena Kosygina and Martin PW Zerner. Excited random walks: results, methods, open
problems. Bulletin of the Institute of Mathematics Academia Sinica (New Series), 8(1), 2013.

22 Fabian Kuhn and Rotem Oshman. Dynamic networks: models and algorithms. SIGACT
News, 42(1):82–96, March 2011. doi:10.1145/1959045.1959064.

23 Shuma Kumamoto, Shuji Kijima, and Tomoyuki Shirai. An analysis of the recurrence/transi-
ence of random walks on growing trees and hypercubes, 2024. arXiv:2405.09102.

24 Ioannis Lamprou, Russell Martin, and Paul Spirakis. Cover time in edge-uniform stochastically-
evolving graphs. Algorithms, 11(10), 2018. doi:10.3390/a11100149.

25 David A. Levin and Yuval Peres. Markov chains and mixing times. American Mathematical
Society, Second edition, 2017.

26 Russell Lyons. Random walks and percolation on trees. The Annals of Probability, 18(3):931–
958, 1990.

27 Russell Lyons and Yuval Peres. Probability on Trees and Networks. Cambridge University
Press, USA, 2017.

28 Othon Michail and Paul G. Spirakis. Elements of the theory of dynamic networks. Commu-
nications of the ACM, 61(2):72, January 2018. doi:10.1145/3156693.

29 Laurent Saloff-Coste and Jessica Zúñiga. Merging for time inhomogeneous finite Markov
chains, Part I: Singular values and stability. Electronic Journal of Probability, 14:1456–1494,
2009. doi:10.1214/EJP.v14-656.

30 Laurent Saloff-Coste and Jessica Zúñiga. Merging for time inhomogeneous finite Markov
chains, Part II: Nash and log-Sobolev inequalities. The Annals of Probability, 39(3):1161–1203,
2011.

AofA 2024

https://doi.org/10.1137/1.9781611976465.8
https://doi.org/10.1145/1959045.1959064
https://arxiv.org/abs/2405.09102
https://doi.org/10.3390/a11100149
https://doi.org/10.1145/3156693
https://doi.org/10.1214/EJP.v14-656

The Alternating Normal Form of Braids and Its
Minimal Automaton
Vincent Jugé # Ñ

LIGM, CNRS & Univ Gustave Eiffel, Marne-la-Vallée, France
IRIF, CNRS & Université Paris Cité, France

June Roupin
LIGM, CNRS & Univ Gustave Eiffel, Marne-la-Vallée, France

Abstract
The alternating normal form of braids is a well-known normal form on standard braid monoids. This
normal form is regular: the language it identifies with is regular. We give a characterisation of the
minimal automaton of this language and compute its size, both in terms of number of states and of
transitions, depending on the number of generators of the monoid.

2012 ACM Subject Classification Mathematics of computing → Enumeration

Keywords and phrases Automata, braids, enumeration, normal forms

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.23

1 Introduction

The group of braids with n strands, commonly denoted by Bn, is the group of isotopy classes
of geometric braids with n strands. In [2], E. Artin proved that this group enjoyed the
following finite presentation:

Bn =
〈

σ1, . . . , σn−1

∣∣∣∣ σiσj = σjσi when j ⩾ i + 2
σiσi+1σi = σi+1σiσi+1

〉
.

The relations σiσj = σjσi are called commutation relations; relations σiσi+1σi = σi+1σiσi+1
are called braid relations. They come with the simplification relations σiσ

−1
i = ε, where ε

denotes the neutral element of the group. These three kinds of relations are illustrated in
Figure 1. Braid elements σ1, . . . , σn−1 are called Artin generators.

σ1

σ3 σ3

σ1 σ1

σ2
σ1

σ2
σ1

σ2
σ1 σ1

−1= = =

Figure 1 Commutation relation σ1σ3 = σ3σ1, braid relation σ1σ2σ1 = σ2σ1σ2 and simplification
relation σ1σ−1

1 = ε. The latter relation is valid only in the group Bn.

Braid groups enjoy numerous algebraic, combinatorial and geometric properties, many
of which are connected with the study of the (standard) braid monoid B+

n : this is the
monoid positively generated by the generators σi, i.e., the least subset of Bn containing
generators σ1, . . . , σn−1 (but not their inverses) and stable by product:

B+
n =

〈
σ1, . . . , σn−1

∣∣∣∣ σiσj = σjσi when j ⩾ i + 2
σiσi+1σi = σi+1σiσi+1

〉+

.

Here are some properties of the monoid B+
n [1, 4, 6, 8, 12, 14]:

© Vincent Jugé and June Roupin;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vincent.juge@univ-eiffel.fr
https://igm.univ-mlv.fr/~juge/
https://orcid.org/0000-0003-0834-9082
https://doi.org/10.4230/LIPIcs.AofA.2024.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 The Alternating Normal Form of Braids and Its Minimal Automaton

a) The braid monoid B+
n is simplifiable: whenever αβγ = αβ′γ, we have β = β′.

b) The left-divisibility ordering, defined by α ⩽L β whenever there exists a braid γ ∈ B+
n

(also denoted by α−1β) such that αγ = β, is a lattice: any two elements α and β have a
greatest common divisor α ∧ β and a least common multiple α ∨ β.

c) Similarly, the right-divisibility ordering, defined by β ⩾R α whenever there exists a
braid γ ∈ B+

n (also denoted by βα−1) such that β = γα, is a lattice.
d) The braid ∆n = σ1(σ2σ1)(σ3σ2σ1) · · · (σn−1σn−2 · · · σ2σ1), called the Garside element of

the monoid B+
n , is the least common multiple of the family of Artin generators for both

the left- and right-divisibility orderings. Both its left and its right divisors coincide with
the set of positive braids in which any two strands cross each other at most once; such
braids are called simple braids. Furthermore, ∆n obeys the relations ∆nσi = σn−i∆n,
which makes the inner automorphism ϕn : β 7→ ∆−1

n β∆n an involution of B+
n .

e) The function sn : β 7→ β ∧ ∆n, which selects the largest simple left divisor of a braid β,
obeys the identity sn(αβ) = sn(αsn(β)).

Properties a) to c) give rise to recursive decompositions, some of which we will focus on
below: Property a) allows factoring a braid into factors on which we will be able to work
independently, and Properties b) and c) will allow, under some conditions, to select the
largest divisor of a braid that belongs to a given set. For instance, the following result is a
consequence of Properties a) and b):
f) The submonoid B+

n−1, generated by σ1, . . . , σn−2 and called a parabolic submonoid of B+
n ,

is a sub-lattice of B+
n . Thus, each braid β ∈ B+

n has a largest left divisor in B+
n−1,

denoted by hn(β) and called the n-head of β: its left divisors are the left divisors of β

that belong to B+
n−1. The corresponding right divisor hn(β)−1β, denoted by bn(β), is

called the n-body of β.

The effect of the functions s4, h4 and b4 and of the automorphism ϕ4 on the
braid β = σ2σ3σ3σ1 is illustrated in Figure 2: s4 selects the largest simple left divisor
of β, which is not necessarily a prefix of the representation of β we started from; h4 selects
the largest left divisor of β that can be written without using the generator σ3, and b4 selects
the corresponding right divisor; finally, ϕ4 replaces each generator σi of β by σ4−i.

σ2

σ3

σ1

σ2
σ1 σ1

σ3

σ2

σ3 σ3

σ1

σ2
σ1

σ3 σ3

s4 ϕ4

h4 b4

s4(β)

h4(β)

β

ϕ4(β)

b4(β)

Figure 2 Applying s4, h4, b4 and ϕ4 to the braid β = σ2σ3σ3σ1.

The above presentation identifies each braid β ∈ B+
n with an equivalence class of words

over the alphabet An = {σ1, . . . , σn−1}. A normal form is then a language containing exactly
one word NF(β) in each equivalence class β, which will be a preferred representative of β.

V. Jugé and J. Roupin 23:3

For a normal form to be useful, the following tasks should be as easy as possible [8]:
deciding whether a word w belongs to the normal form;
transforming a word w representing a braid β into the word NF(β);
computing, given two words w = NF(β) and w′ = NF(β′), the word NF(ββ′).

In this article, we focus on the first question, for which a possible answer is: “the normal
form should be a regular set, and its minimal automaton should be small”.

In that context, among a plethora of other normal forms, let us mention three similar
normal forms on braids: the Garside normal form [7], the lexicographically minimal normal
form [13] and the alternating normal form [3, 5]: the Garside normal form is the most
well-known normal form on braid monoids, and all three are regular.

▶ Definition 1. The Garside normal form of a braid β ∈ B+
n is inductively defined as

the following factorisation of β into simple braids: we set Garn(β) = β when β is simple,
and Garn(β) = sn(β)Garn(sn(β)−1β) otherwise. If necessary, each simple divisor can then be
written as a product of generators σi.

▶ Definition 2. The lexicographically minimal normal form of a braid β ∈ B+
n is denoted

by LexMinn(β). It is the word representing the braid β ∈ B+
n that is minimal for the

lexicographic ordering induced by the ordering σ1 < σ2 < · · · < σn−1 on Artin generators.

Alternatively, the word LexMinn(β) may be inductively defined by LexMin2(σk
1) = σk

1 or,
if n ⩾ 3, by LexMinn(β) = LexMinn−1(β) when β ∈ B+

n−1, and

LexMinn(β) = LexMinn−1(hn(β))σn−1LexMinn((hn(β)σn−1)−1β)

otherwise.

▶ Definition 3. The alternating normal form of a braid β ∈ B+
n is denoted by Altn(β). It is

inductively defined by Alt2(σk
1) = σk

1 or, if n ⩾ 3, by Altn(β) = Altn−1(β) when β ∈ B+
n−1,

and Altn(β) = Altn−1(hn(β))ϕn(Altn(ϕn(bn(β)))) otherwise1.

This normal form is tightly connected to the rotating normal form [11], a similar normal form
defined on the dual braid monoid B+∗

n , which is the sub-monoid of Bn positively generated
by braids of the form σuσu−1 · · · σv+1σvσ−1

v+1σ−1
v+2 · · · σ−1

u . Below, we study the alternating
normal form, by constructing explicitly its minimal automaton and counting its states and
transitions.

Figure 3 presents the three representatives of the braid β = σ3σ2σ2σ3σ1σ1σ3 that belong
to the Garside, lexicographically minimal and alternating normal forms, illustrating that
these three words may all differ from each other.

Property e) provides us with a co-deterministic automaton that, once given as input a
word w = w0w1 · · · wk−1 representing a braid β, computes at each step the braid sn(w⩾i),
where w⩾i = wiwi+1 · · · wk−1: indeed, it suffices to observe that sn(w⩾i) = sn(wisn(w⩾i+1)),
and to precompute sn on braids of the form σiγ, where σi is an Artin generator and γ is
simple. This automaton itself helps proving that the three above normal forms are regular:
we check that w is in
1) Garside normal form by verifying that it starts with a prefix w<i = w0w1 · · · wi−1

representing sn(w), and then that w⩾i is in Garside normal form;

1 One may often find a mirrored version of this normal form, in which, instead of extracting the largest
left divisor of β in B+

n−1, one extracts the largest right divisor. The languages induced by both versions
are mirrors of each other.

AofA 2024

23:4 The Alternating Normal Form of Braids and Its Minimal Automaton

σ3
σ2 σ2

σ1

σ3

σ1

σ3 σ3
σ2 σ2

σ1 σ1

σ3 σ3 σ3
σ2 σ2

σ3 σ3

σ1 σ1

Gar4(β) LexMin4(β) Alt4(β)

Figure 3 Normal forms of the braid β = σ3σ2σ2σ3σ1σ1σ3. Vertical dashed bars separate the
simple braids σ3σ2, σ2σ3σ1 and σ1σ3 into which β was factored to give its Garside normal form.

2) lexicographically minimal normal form by verifying that each letter wi is the least Artin
generator that left-divides sn(w⩾i);

3) alternating normal form by finding the smallest index i such that wi = σn−1 (if any),
verifying that σn−1 is the only Artin generator left-dividing sn(w⩾i), and verifying that w<i

and ϕn(w⩾i) are in alternating normal form.
Similar arguments would prove that the rotating normal form is also regular.

Although such observations yield automata recognising the three above normal forms,
these automata are non-deterministic, and determinising them might result in unreasonably
large deterministic automata. Explicit minimal automata for the lexcicographically minimal
normal form were constructed in [9]; there, it is proved that the minimal automaton
recognising LexMinn(B+

n) has 2F2n+1 − n(n + 1)/2 − 2 ≈ 2Φ2n+1/
√

5 states, where Fk

is the kth Fibonacci number and Φ = (1 +
√

5)/2 is the Golden Ratio. Non-necessarily
minimal automata for the rotating normal form were constructed in [11]. The minimal
automaton of the Garside normal form, viewed as a language over the alphabet sn(B+

n) of
simple braids, has 2n−1 states and obn transitions, where obn is the nth ordered Bell number.
Finally, the minimal automata for the Garside normal form (viewed as a language over An,
choosing a canonical representative of each simple braid), for the alternating normal form
and for the rotating normal form have net yet been investigated.

In this article, we prove the following results.

▶ Theorems 19 & 20. The minimal automaton of the language Altn(B+
n) is an explicit

automaton An with sn states and tn transitions, where s1 = 1, t1 = 0, and

sn = 25 × 22n−3 − 9n2 + 3n + 7
27 and tn = (225n − 290)22n−5 − 9n3 − 9n2 + 93n − 77

81

whenever n ⩾ 2.

In particular, An has asymptotically 25 × 22n−3/27 states and an average of 3n/4 − 29/30
transitions per state; this largely exceeds the growth rate of the monoid B+

n , which is
only 3.233636 . . . [10]. Like the minimal automaton of LexMinn(B+

n), the size of An is
exponential in n; the exponent is larger, being 22 = 4 here instead of Φ2 ≈ 2.618.

2 Characterising words in alternating normal form

In this section, we briefly present key results paving the way for Theorem 10, which is an
“automata-flavoured” characterisation of words w ∈ A∗

n in alternating normal form. These
results are based on the ad hoc notions of chain, or chain containment and of rigid chain
containment, the latter two being braid invariants. Their full proofs are omitted in this
paper.

V. Jugé and J. Roupin 23:5

▶ Definition 4. Let u ⩾ v be two integers. The braid word σu→v = σuσu−1 · · · σv, which
is the only factorisation of the braid it represents, is called a (u, v)-chain. Then, we say
that a word w ∈ A∗

n contains a (u, v)-chain if σu→v is a subword of w, i.e., if w admits
a factorisation of the form w = w(u)σuw(u−1)σu−1 · · · w(v)σvw(v−1). If, furthermore, no
factor w(i) contains any occurrence of the letters σi or σi+1, we say that w rigidly contains
a (u, v)-chain.

Although the braid word σuσu+1 · · · σv is not a chain when u < v, it will also be denoted
by σu→v; considering such words may be useful since ϕn exchanges σu→v and σ(n−u)→(n−v).

▶ Lemma 5. Let u and v be two integers such that u ⩾ v, and let w and w′ be two words
representing the same braid β ∈ B+

n . If w contains a (u, v)-chain, so does w′. Similarly, if w

rigidly contains a (u, v)-chain, so does w′; in that case, we have β ⩾R σu→v.

Proof idea. It suffices to treat the case where w and w′ are related by a single commutation
or braid relation. Then, if w rigidly contains a (u, v)-chain, an induction on i shows
that β ⩾R σi→v whenever u ⩾ i ⩾ v. ◀

This generalises the property that containing a letter σu, i.e., a (u, u)-chain, is a braid
invariant.

▶ Lemma 6. Let v ⩽ n − 1 be an integer. A braid β ∈ B+
n contains an (n − 1, v)-chain if

and only if its n-body contains a letter σv.

Proof idea. Let hn(β) and bn(β) be represented by two braid words w ∈ A∗
n−1 and w′ ∈ A∗

n.
If their concatenation ww′ contains an (n − 1, v)-chain, the leftmost letter of that chain must
already belong to w′, and so must its rightmost letter σv. Conversely, if bn(β) contains a
letter σv, so does w′, and each occurrence of a letter σi ̸= σn−1 in w′ must be preceded by
an occurrence of the letter σi+1, thereby proving that w′ contains an (n − 1, v)-chain. ◀

To obtain the desired characterisation, we introduce the notions of left and right sets of a
braid.

▶ Definition 7. The left set of a braid β is defined as the set L(β) = {i : σi ⩽L β}, and the
right set of β is defined as the set R(β) = {i : β ⩾R σi}.

▶ Lemma 8. Let v ⩽ n − 1 be an integer and β ∈ B+
n be a braid such that L(β) = {n − 1}.

Either β is a chain or there exists an integer v ⩽ n − 1 such that σ(n−1)→vσv is a prefix of
each word representing β.

Proof idea. Assuming that β is not a chain, let σ(n−1)→vσu be a left divisor of β in which v

is chosen minimal. If u ⩾ v + 1, then u − 1 ∈ L(β), which is impossible; Lemma 6 proves
that u ⩾ v − 1, and the minimality of v forbids the case u = v − 1. ◀

The interest of these notions arises from the following result, which relates each
braid β ∈ B+

n with braids βσn→v ∈ B+
n+1:

▶ Proposition 9. Let v ⩽ n be an integer. A braid β ∈ B+
n contains an (n − 1, v − 1)-chain

if and only if L(β) = L(βσn→v).

Proof idea. If β contains no (n − 1, v − 1)-chain, bn(β) contains no letter σv−1: it is
the commutative product of two braids γ and γ′, with generators in {σ1, . . . , σv−2}
and {σv, . . . , σn−1}, respectively. But then, βσn→v = hn(β)σn→vγϕ↑(γ′), where the
morphism ϕ↑ maps each generator σi such that i ⩾ v to the generator σi+1. Since hn(β)
belongs to B+

n−1, it commutes with σn, which ends up left-dividing βσn→v, but not β.

AofA 2024

23:6 The Alternating Normal Form of Braids and Its Minimal Automaton

Conversely, if β contains an (n − 1, v − 1)-chain, every word w representing βσn→v

both contains an (n − 1, v − 1)-chain and rigidly contains an (n, v)-chain. However, we
can prove that each occurrence of a letter σi of the former chain lies to the left of the
occurrence of the letter σi+1 of the latter chain. Thus, w⩾1 rigidly contains an (n, v)-chain,
and Lemma 5 proves that the braid β′ represented by w⩾1 is right-divided by σn→v. This
means that β = w0(β′σ−1

n→v) is left-divided by w0, this reasoning being valid for each
letter w0 ∈ L(βσn→v). ◀

From these results, we can derive the following characterisation of the alternating normal
form Altn(B+

n).

▶ Theorem 10. A word w ∈ A∗
n belongs to Altn(B+

n) if and only if n = 2 or n ⩾ 3 and w

has a (necessarily unique) factorisation w = w(0)ϕn(w(1))ϕ2
n(w(2)) · · · ϕk

n(w(k)) such that:
1. each of the words w(0), w(1), . . . , w(k) belongs to Altn−1(B+

n−1);
2. each of the words ϕn−1(w(1)), ϕn−1(w(2)), . . . , ϕn−1(w(k)) belongs to Altn−1(B+

n−1) and
starts with the letter σn−2;

3. for all i ⩾ 1 and v ⩾ 1, if σ(n−1)→v is a prefix of ϕn(w(i+1))ϕ2
n(w(i+2)) · · · ϕk−i

n (w(k)),
the word w(i) contains an (n − 2, v − 1)-chain.

Proof idea. Given a braid β ∈ B+
n such that w = Altn(β), the factors w(i) are the n-heads

of the braids β(0), β(1), . . . given by β(0) = β and β(i+1) = ϕn(bn(β(i))). Statement 1 is true
by induction on n. Then, for all i ⩾ 1, we have L(hn(β(i))) ⊆ L(β(i)) = {1}; thus, w(i) starts
with the letter σ1, and ϕn exchanges the alternating normal forms of the braids hn(β(i))
and ϕn(hn(β(i))). In other words, ϕn−1(w(i)) starts with the letter σn−2 and coincides with
the word Altn−1(ϕn−1(hn(β(i)))), which proves statement 2. Finally, when i ⩾ 1, an induction
on k proves that w(i)ϕn(w(i+1)) · · · ϕi+k

n (w(i+k)) = Altn(β(i)), and since L(β(i)) = {1}, it
must coincide with its (non-empty) subset L(w(i)), thereby making statement 3 a consequence
of Lemma 6 and Proposition 9.

Conversely, given a factorisation w(0)ϕn(w(1)) · · · ϕk
n(w(k)) of a word w ∈ A∗

n that makes
statements 1 to 3 valid, we prove by induction on n and k that each word w(i) is the
alternating normal form of the n-head of the braid β(i), where β(0) is the word represented
by w and β(i+1) = ϕn(bn(β(i))). The induction hypothesis proves that both words w′ = w(0)

and w′′ = w(1)ϕn(w(2)) · · · ϕk−1
n (w(k)) are the alternating normal forms of braids β′ ∈ B+

n−1
and β′′ ∈ B+

n , and it remains to prove that L(β′′) ⊆ {1}, which we do by induction on k.
This is vacuously true when k = 0 and, when k ⩾ 1, the induction hypothesis ensures

that w(1) and w(2)ϕn(w(3)) · · · ϕk−2
n (w(k)) are the alternating forms of hn(β′′) and ϕn(bn(β′′)).

Since L(bn(β′′)) ⊆ {n − 1}, Lemma 8 proves that sn(bn(β′′)) coincides with a chain σn−1→v

that is a prefix of each word representing bn(β′′), including ϕn(w(2))ϕ2
n(w(3)) · · · ϕk−1

n (w(k)).
Thus, statement 3 proves that w(1), or, equivalently, hn(β′′), contains an (n − 2, v − 1)-chain.
Consequently, since L(β′′) = L(hn(β′′)bn(β′′)) = L(hn(β′′)sn(bn(β′′))) = L(hn(β′′)σn−1→v),
Proposition 9 proves that L(β′′) = L(hn(β′′)). But ϕn−1(w(1)) is the alternating normal form
of a braid that must coincide with ϕn−1(hn(β′′)), and its first letter is σn−2, which means
that the (n − 1)-head of ϕn−1(hn(β′′)) is empty, i.e., that L(ϕn−1(hn(β′′)) ⊆ {n − 2}. It
follows, as desired, that L(hn(β′′)) ⊆ {1}. ◀

3 Minimal automata

In this section, we explicitly build the minimal automaton of the language Ln = Altn(B+
n).

In order to do so, a crucial step lies in building the minimal automaton of the
language Altn(bn(B+

n)). Noting that bn(B+
n) coincides with the set of braids β ∈ B+

n

V. Jugé and J. Roupin 23:7

s1 s1 s1 s2

s3s4

A ′
1 A ′

2 A ′
3

σ1

σ1
σ1

σ2

σ2
σ2

σ1

Figure 4 Minimal automata A ′
1 to A ′

3 .

such that L(β) ⊆ {σn−1}, it turns out that ϕn(Altn(β)) = Altn(ϕn(β)) whenever β ∈ bn(B+
n).

Thus, we also look at the language L ′
n = Altn(ϕn(bn(B+

n))), which is connected to Ln by
the relation Ln = Ln−1ϕn(L ′

n). In particular, L ′
n is the language of alternating normal

forms of braids β ∈ B+
n such that L(β) ⊆ {σ1}; viewing B+

n as a subset of B+
n+1 proves

that L ′
n ⊆ L ′

n+1, which is the reason why we chose to study L ′
n and not its conjugate ϕn(L ′

n).
Both languages Ln and L ′

n are prefix-closed: when they contain a word w, they
also contain all its prefixes. Thus, we identify the minimal automaton of Ln with a
tuple An = (Vn,An, δn, ın), in which Vn denotes the set of states, all of which are accepting;
An is the alphabet; δn : Vn × An 7→ Vn denotes the transition function; and ın ∈ Vn

denotes the initial state of the automaton. Similarly, we identify the minimal automaton
of L ′

n with a tuple A ′
n = (V ′

n,An, δ′
n, ı′

n), and we shall first focus on constructing the
automata A ′

n. However, in order to define this latter automaton, we will first define an
auxiliary automaton A ′′

n = (V ′′
n ,An, δ′′

n, ı′′
n) that will recognise L ′

n but not be minimal; the
automaton A ′

n will be built by minimising A ′′
n .

The languages L ′
1 and L ′

2 consist of the empty word and of all words on the
alphabet A2 = {σ1}, respectively. Then, when n ⩾ 3, we focus on building the automata An

and A ′
n based on the automata An−1 and A ′

n−1. Of course, we may use Theorem 10 directly
to compute any automaton An; for instance, L ′

3 consists of words of the form (σ1σ∗
1σ2

2σ∗
2σ1)∗

and their prefixes, from which we deduce the automaton A ′
3 given in Figure 4.

Below, we proceed in four steps: first, we present a few preliminary results; second,
we construct an automaton A ′′

n that recognises the language L ′
n; third, we construct the

minimal automaton A ′
n of L ′

n; fourth, we construct the minimal automaton An of Ln itself.

3.1 Preliminary results
When n ⩾ 3, and due to Theorem 10, a word w ∈ A∗

n belongs to L ′
n if and only if w has a

factorisation w = w(0)ϕn(w(1)) · · · ϕk
n(w(k)) such that:

2.’ each word w(i) belongs to L ′
n−1;

3.’ for all i ⩾ 0 and v ⩾ 1, if σ(n−1)→v is a prefix of ϕn(w(i+1))ϕ2
n(w(i+2)) · · · ϕi+k

n (w(k)), the
word w(i) contains a (n − 2, v − 1)-chain.

These are variants of criteria 2 and 3. Criterion 3’ also requires, while reading a
word w ∈ L ′

n−1, recalling the least integer v (if any) for which w contains an (n − 2, v)-
chain. This integer is denoted by chn−1(w); when w contains no (n − 2, v)-chain at all, i.e.,
when w ∈ A∗

n−2, we set chn−1(w) = n − 1. In particular,
i) if k = 0, we simply have chn−1(w) = n − 1;
ii) if k = 1, the integer chn−1(w) may vary between 2 and n − 2;
iii) if k ⩾ 2, the word w contains the (n − 2, 1)-chain σ(n−2)→1, and chn−1(w) = 1.

The following results allow determining chn−1(w) in case ii).

AofA 2024

23:8 The Alternating Normal Form of Braids and Its Minimal Automaton

▶ Lemma 11. Let w be a word belonging to Ln, and let σu be its rightmost letter, or σu = σ1
if w is empty. For all v ⩽ n − 1, the word wσu→v also belongs to Ln; furthermore, if w

belongs to L ′
n, so does wσu→v. Finally, if n ⩾ 2 and w is a non-empty word in L ′

n, there
exist at least two integers x and y such that wσx and wσy belong to L ′

n+1.

Proof. We prove both statements of Lemma 11 separately. First, let ℓ be the length of w,
and let w′ = wσu→v. The first statement being immediate when ℓ = 0, we assume that ℓ ⩾ 1.
Since the braid word σuσu→v is the only representative of its braid, we have sn(σuσu→v) = σu.
A backward induction on i proves then that sn(w⩾i) = sn(w′

⩾i) for all i ⩽ ℓ − 1. It follows
from the remark 3) of page 4 that wσu→v ∈ Ln, and that L(wσu→v) = L(w), thereby proving
that wσu→v ∈ L ′

n if w ∈ L ′
n.

We prove the last statement by induction on n. If n = 2, the word w is of the form w = σℓ
1,

and wσ1 and wσ2 belong to L ′
3. If n ⩾ 3, let w = w(0)ϕn(w(1)) · · · ϕk

n(w(k)) be the
factorisation of w given in Theorem 10. If k = 0, the word w belongs to L ′

n−1, and
the induction hypothesis also proves that there exist two integers x and y for which wσx

and wσy belong to L ′
n. Otherwise, k ⩾ 1, and w both ends with some letter σu and contains

the letter σn−1, which proves that both wσu and wσn belong to L ′
n+1. ◀

▶ Lemma 12. Let w be a word belonging to both L ′
n−1 and L ′

n−2ϕn(L ′
n−2), and let w(0) be

its longest prefix belonging to A∗
n−2:

if w has a factorisation of the form w = w(0)σ(n−2)→v, then chn−1(w) = v;
otherwise, let v be the least integer such that wσv ∈ L ′

n−1: we have chn−1(w) = v + 1.

Proof. The first part of Lemma 12 being immediate, we focus on the second part. In that
case, let w(1) be the suffix of w such that w = w(0)w(1), and let β ∈ B+

n−1 be the braid
represented by w. By construction, w(1) belongs to ϕn−1(A∗

n−2), and w(1) = Altn−1(bn−1(β)).
Furthermore, by Lemma 6, chn−1(w) is simply the least letter of w(1), say, y.

In particular, when z ⩽ y − 2, the word wσz contains no (n − 2, z)-chain, and Lemma 6
prevents it from belonging to L ′

n−1. Conversely, the word ϕn−1(w(1)σy−1) = ϕn−1(w(1))σn−y

satisfies both criteria 2’ and 3’ that mark it as a member of L ′
n+1−y, and thus of L ′

n−1.
Moreover, w(1) is not a chain, so that the maximal chains that are prefixes of w(1) and
of w(1)σy−1 coincide with each other. Consequently, wσy−1 itself belongs to L ′

n−1. ◀

As a consequence of Lemma 12, for each word w in L ′
n−1, the integer chn−1(w) depends

only on whether σn−2σ1 is a subword of w and, if not, on the residual of w (i.e., on the
set {x ∈ A∗

n−1 : wx ∈ L ′
n−1}). For each automaton A = (V,An−1, δ, ı) recognising the

language L ′
n−1, the residual of a word w ∈ L ′

n−1 depends only on the state s = δ(ı, w) of A

to which w is mapped. Thus, below, for each state s of A ′
n−1, we simply note chn−1(s) the

common value of the integers chn−1(w) when δ′(ı′
n−1, w) = s and σn−2σ1 is not a subword

of w; if no such word w exists, we set chn−1(s) = 1.

3.2 Construction and correctness of the automaton A ′′
n

Here, we give a construction of an automaton A ′′
n that recognises the language L ′

n. This
automaton looks like its minimal equivalent A ′

n represented in Figure 5 when n = 4. The
semantics of its states is given in the beginning of the proof of Proposition 13.

▶ Proposition 13. Given an integer n ⩾ 4, let A ′
n−1 = (V ′

n−1,An−1, δ′
n−1, ı′

n−1) be the
minimal automaton recognising L ′

n−1. The language L ′
n is recognised by the (deterministic,

non-minimal) automaton A ′′
n = (V ′′

n ,An, δ′′
n, ı′′

n) defined as follows. The state set of A ′′
n is

given by V ′′
n = ((V ′

n−1×{⊤, ⊥}) ∪ P ′′
n)×{Idn, ϕn}, where we set P ′′

n = {pj
i : 2 ⩽ j ⩽ i ⩽ n−1};

its initial state is ı′′
n = (ı′

n−1, ⊥, Idn); and its transition function δ′′
n is given by:

V. Jugé and J. Roupin 23:9

a. δ′′
n((s, f, Idn), σi) = (δ′

n−1(s, σi), f, Idn) when chn−1(s) ̸= 2 or i ̸= 1;
b. δ′′

n((s, f, Idn), σ1) = (δ′
n−1(s, σ1), ⊤, Idn) when chn−1(s) = 2;

c. δ′′
n((pj

i , Idn), σn+1−i) = (pj
i−1, Idn) when pj

i−1 ∈ Pn;
d. δ′′

n((pj
i , Idn), σn−i) = (δ′

n−1(ı′
n−1, σ1→(n−i)σn−i), ⊥, Idn) when pj

i ∈ Pn;
e. δ′′

n((s, ⊥, Idn), σn−1) = (pj
n−1, ϕn) when 3 ⩽ j ⩽ n − 1 and chn−1(s) = j − 1;

f. δ′′
n((s, ⊤, Idn), σn−1) = (p2

n−1, ϕn);
g. δ′′

n((s, f, ϕn), σi) = (s′, f ′, ϕk+1
n) when δ′′

n((s, f, Idn), σn−i) = (s′, f ′, ϕk
n);

h. δ′′
n((s, f, ϕk

n), σi) is not defined in all other cases.

Proof. Let w = w(0)ϕn(w(1)) · · · ϕk
n(w(k)) be the factorisation a word w ∈ L ′

n given in
Theorem 10. Here is the intended semantics of the state δ′′

n(ı′′
n, w) to which w is sent. The

state δ′′
n(ı′′

n, w) shall be of the form (s, f, ϕk
n) or (pj

i , ϕk
n), thereby indicating whether the

factorisation of w contains an odd or an even number of factors. In general, i.e., when k = 0
or when ϕn(w(k)) is not a chain, we shall set s = (δ′

n−1(ı′
n−1, w(k)), f, ϕk

n), where f is a boolean
flag set to f = ⊤ (i.e., f = true) if w(k) contains an (n−2, 1)-chain, and f = ⊥ (i.e., f = false)
otherwise. However, if k ⩾ 1 and ϕn(w(k)) is an (n − 1, v) chain, let x = chn−1(w(k−1)): the
state δ′′

n(ı′′
n, w) shall be the pair (px+1

v , ϕk
n), thereby indicating that w(k) is an (n − 1, v)-chain

that can be extended to form an (n − 1, x + 1)-chain, but not more.
We can now prove by induction on ℓ that, for each word w ∈ L ′

n of length ℓ, the
state δ′′

n(ı′′
n, w) has the intended semantics, thereby demonstrating that A ′′

n recognises the
language L ′

n. The base case ℓ = 0 follows from our choice for ı′′
n; now, assuming that ℓ ⩾ 1

and that ℓ − 1 satisfies the inductive property, we wish to prove that ℓ also satisfies this
property, by considering the cases a and h separately.

Case a is the general case obtained when facing a state δ′′
n(ı′′

n, w) for which k is even:
reading a letter σi will just let the word w(k) grow inside the language L ′

n−1, without
changing the flag f or parity of k. By contrast, case b happens when f changes from ⊥ to ⊤:
indeed, the word w(k) already contained an (n − 2, 2)-chain, and adding a letter σ1 yields
an (n − 2, 1)-chain. Thus, the transition labelled σ1 targets the state (δ′

n−1(s, σ1), ⊤, Idn)
instead of the state (δ′

n−1(s, σ1), ⊥, Idn) that might otherwise have been expected.
Then, cases c and d focus on transitions leaving a state (pj

i , Idn): either we read
the letter σn+1−i (in case c) and we just transformed the (n − 2, i)-chain ϕn(w(k)) into
an (n − 2, i − 1)-chain ϕn(w(k))σi−1, or we read the letter σn−i (in case c), in which
case w(k)σn−i stops being a chain, and we should just remember the same amount of
information as if we were reading the word w(k)σn−i instead of w(0)ϕn(w(1))w(2) · · · w(k)σn−i.

Cases e and f focus on transitions labelled σn−1: they target the state (px+1
n−1s, ϕn),

where x is the least integer such that w(k) contained an (n − 2, x)-chain; that integer x is
given by Lemma 12 in case e, where w(k) contains no (n − 2, 1)-chain; it is just 1 in case f.

Finally, case g replicates all cases a to f, but when k is odd instead of even. And
case h consists in observing that cases a to g already cover all possible transitions of the
automaton A ′′

n . ◀

3.3 Construction, correctness and minimality of the automaton A ′
n

When n ⩾ 4, the automaton A ′′
n is not minimal. A first reason is that some states have the

same residuals, and should thus be merged; we recall that the residual of a state s ∈ V ′′
n

is the language L ′
n(s) of those words w ∈ A∗

n for which δ′′
n(s, w) exists and is accepting. A

second reason is that, when n ⩾ 5, some states of A ′′
n are not even accessible. Thus, we shall

transform A ′′
n into the minimal automaton A ′

n of L ′
n.

AofA 2024

23:10 The Alternating Normal Form of Braids and Its Minimal Automaton

▶ Definition 14. Given an integer n ⩾ 4, let A ′′
n = (V ′′

n ,An, δ′′
n, ı′

n) be the automaton built
in Proposition 13. The automaton A ′

n = (V ′
n,An, δ′

n, ı′
n) is defined from A ′′

n by
merging the states (ı′

n−1, ⊥, ϕk
n) and (pn−1

n−1, ϕk
n) for each ϕk

n ∈ {Idn, ϕn}; this amounts to
deleting the state (pn−1

n−1, ϕk
n) and redirecting toward (ı′

n−1, ⊥, ϕk
n) those transitions of A ′′

n

that were targeted toward (pn−1
n−1, ϕk

n);
deleting states of the form ((pj

i , Idn−1), ⊥, ϕk
n), where pj

i ∈ P ′
n−1 and ϕk

n ∈ {Idn, ϕn}.
In particular, the actual state set of A ′

n is V ′
n = ((V ′

n−1×{⊥})∪(V ′
n−1×{⊤})∪P ′

n)×{Idn, ϕn},
where P ′

n = P ′′
n \ {pn−1

n−1} and V
′
n−1 = V ′

n−1 \ (P ′
n−1 × {Idn−1}).

The reason why we shall merge the states ı′′
n = (ı′

n−1, ⊥, Idn) and (pn−1
n−1, Idn) is that

both states have only one outgoing transition, labelled by σ1, and whose target state
is δ′′

n(ı′′
n, σ1). Similarly, we shall merge the states (ı′

n−1, ⊥, ϕn) and (pn−1
n−1, ϕn). Below, we

will consider (pn−1
n−1, ϕk

n) as an alias for (ı′
n−1, ⊥, ϕk

n).
Then, we shall also delete states of the form ((pj

i , Idn−1), ⊥, ϕk
n) because they are not

accessible. Indeed, by construction of δ′′
n−1, every path in A ′′

n−1 (or in A ′
n−1) and ending

in such a state (pj
i , Idn−1) must have previously visited a state of the form (s, ϕn−1).

Thus, every word w for which δ′
n−1(ı′

n−1, w) = (pj
i , Idn−1) already contains an (n − 2, 1)-

chain, thereby proving that δ′′
n(ı′

n, w) = ((pj
i , Idn−1), ⊤, Idn). It follows, as announced,

that ((pj
i , Idn−1), ⊥, Idn) is inaccessible, and we prove similarly that ((pj

i , Idn−1), ⊥, ϕn) is
also inaccessible.

An example of this construction, when n = 4, is given in Figure 5, where we start from
the 4-state automaton A ′

3 , whose states are denoted by s1 to s4, and obtain the 20-state
automaton A ′

4 . We wish we had represented the automaton A ′
5 , thereby showing why

replacing V ′
n−1 by V

′
n−1 is important, but A ′

5 contains 86 states, which is difficult to read.
For the sake of readability, each state (si, f, ϕk

n) is denoted by sf
i, with a bar when ϕk

n = ϕn,
i.e., when k is odd. We added the dangling states (pj

i , ϕk
n), which are also denoted by pj

i ,
with a bar when ϕk

n = ϕn.
While the above paragraphs prove that the automaton A ′

n recognises the same language
as A ′′

n , i.e., the language L ′
n, we shall now prove that its states are accessible and have

pairwise distinct residuals. Once again, we proceed by induction and, since this result is
clear when n ⩽ 3, we assume that n ⩾ 4 and that A ′

n−1 is already known to be minimal.
In Lemma 15, we prove not only that each state of A ′

n is accessible, but also most states
can be reached via a word that does not contain any (n − 1, 1)-chain. This will be crucial
toward proving, in Lemma 16, that for any two distinct states s and s′, there exists a word
that can be read from s but not from s′, or from s′ but not from s.

▶ Lemma 15. The automaton A ′
n is strongly connected. Furthermore, for each state s in V

′
n,

i.e., each state s distinct from the states (pj
i , Idn) for which pj

i ∈ P ′
n, there exists a word w

that does not contain any (n − 1, 1)-chain and such that δ′
n(ı′

n, w) = s.

Proof. The result being visibly correct when n ⩽ 3, let us assume that n ⩾ 4. Given
a state s ∈ V ′

n−1, the induction hypothesis ensures that there exists a word w ∈ L ′
n−1

without (n − 1, 1)-chain for which δ′
n−1(ı′

n−1, w) = s. Since A ′
n−1 is strongly connected, it

also tells us that there exists a non-empty word w′ ∈ L ′
n−1 for which δ′

n−1(ı′
n−1, σ1w′) = ı′

n−1;
it follows that δ′

n(ı′
n, w′′) = (ı′

n−1, ⊤, Idn), where w′′ = σ1→(n−2)σ(n−2)→1w′.
Finally, for each state pj

i ∈ P ′
n, the word wj

i = σ1→(n−2)σ(n−2)→(j−1)σ(n−1)→i obeys the
relation δ′

n(ı′
n, wj

i) = (pj
i , ϕn); identifying the states (ı′

n−1, ⊥, ϕn) and pn−1
n−1 also makes this

construction valid when pj
i = pn−1

n−1. We complete the proof by observing that:
(s, ⊥, Idn) = δ′

n(ı′
n, w);

(s, ⊤, Idn) = δ′
n(ı′

n, w′′w);
(pj

i , ϕn) = δ′
n(ı′

n, wj
i), including when pj

i = pn−1
n−1, i.e., when (pj

i , ϕn) = (ı′
n−1, ⊥, ϕn);

V. Jugé and J. Roupin 23:11

s⊥
1 s⊥

2

s⊥
3s⊥

4

s⊤
1 s⊤

2

s⊤
3s⊤

4s⊥
1s⊥

2

s⊥
3 s⊥

4

s⊤
1s⊤

2

s⊤
3 s⊤

4 p2
3

p2
2

p2
3

p2
2

ch4(w) = 4ch4(w) = 3

ch4(w) = 2

ch
4 (w

) =
1

σ1

σ1

σ2

σ2

σ2

σ1

σ1
σ1

σ2

σ2

σ2

σ1

σ3

σ3

σ2

σ2

σ2

σ3

σ3
σ3

σ2

σ2

σ2

σ3 σ2

σ2

σ1

σ2

σ2

σ3

σ3

σ1

σ3

σ1

Figure 5 Automaton A ′
4 , which contains four copies of A ′

3 (circled in gray, two of which miss an
edge) and a few dangling states pj

i . Erasing dashed edges gives us an automaton that recognises the
language L ′

4 ∩ (L ′
3ϕ4(L ′

3)), in which p2
2 and p2

3 are no longer accessible, and whose states have been
split into four classes, coloured in brown, blue, green and red: a state s lies in the blue (resp., green,
red) class when ch4(w) = 2 (resp., 3, 4) for all the words w ∈ L ′

3ϕ4(L ′
3) such that δ′

4(ı′
4, w) = s. Once

a dashed edge has been taken, we just have ch4(w) = 1. Similarly, we have ch3(w) = 1 (resp., 2, 3) for
all the words w ∈ L ′

3 such that δ′
4(ı′

4, w) = s when s ∈ {s⊤
1 , s⊤

2 , s⊤
3 , s⊤

4 } (resp., {s⊥
3 , s⊥

4 }, {s⊥
1 , s⊥

2 }).

(s, ⊥, ϕn) = δ′
n((ı′

n−1, ⊥, ϕn), ϕn(w));
(s, ⊤, ϕn) = δ′

n((ı′
n−1, ⊥, ϕn), ϕn(w′′w));

(pj
i , Idn) = δ′

n((ı′
n−1, ⊥, ϕn), ϕn(wj

i)), including when (pj
i , Idn) = (ı′

n−1, ⊥, Idn) = ı′
n. ◀

▶ Lemma 16. The states of A ′
n have pairwise distinct residuals.

Proof. Let s and s′ be distinct states of A ′
n, and let w and w′ be non-empty words in L ′

n

such that δ′
n(ı′

n, w) = s and δ′
n(ı′

n, w′) = s′. In addition, let w(0)ϕn(w(1)) · · · ϕk
n(w(k))

and w′ (0)ϕn(w′ (1)) · · · ϕℓ
n(w′ (ℓ)) be their factorisations given by Theorem 10; we assume

that w and w′ were chosen so that k and ℓ are minimal.
We first prove that the states of the form (t, f, Idn) or (pj

i , Idn) have pairwise distinct
residuals. We call such states “Idn-states”, as opposed to “ϕn-states”:

If s is of the form (pi
i, Idn), including if i = n − 1, the only letter in L ′

n(s) is σn−i. On the
contrary, L ′

n(s′) contains at least two letters, both if s′ is of the form (pj
i , Idn) with i ̸= j,

since two such letters are σn−i or σn+1−i, or if s′ is of the form (t′, f ′, Idn), because of
Lemma 11 (which we can use because we forced w and w′ to be non-empty). Thus, each
state (pi

i, Idn) has a residual distinct from all other Idn-states.

AofA 2024

23:12 The Alternating Normal Form of Braids and Its Minimal Automaton

If s is of the form (pj
i , Idn), it is the only state such that δ′

n(s, σ(n+1−j)→(n−i)) = (pi
i, Idn).

Thus, the state δ′
n(s′, σ(n+1−j)→(n−i)) either fails to exist or does not coincide with (pi

i, Idn):
in both cases, s and s′ have distinct residuals.
If both s and s′ are of the form (t, f, Idn) and (t′, f ′, Idn), either t ̸= t′, in which case the
induction hypothesis proves that L ′

n(s) ∩ L ′
n−1 = L ′

n−1(t) ̸= L ′
n−1(t′) = L ′

n(s′) ∩ L ′
n−1,

or f ̸= f ′, in which case the chain σ(n−1)→2 belongs to exactly one of the residuals L ′
n(s)

and L ′
n(s′).

Similarly, all ϕn-states have distinct residuals.
Finally, assume that s is an Idn-state and that s′ is a ϕn-state. Let σu be the last letter of w,

with u ⩽ n−2, and let z = chn−1(s). We have δ′
n(s, σu→(n−1)) = (pz+1

n−1, ϕn). On the contrary,
either the state s1 = δ′

n(s′, σu) is a ϕn-state, in which case the state s2 = δ′
n(s′, σu→(n−2)) is

also a ϕn-state and δ′
n(s′, σu→(n−1)) = δ′

n(s2, σn−1) differs from (pz+1
n−1, ϕn), or s1 is an Idn-

state of the form (pi
n−1, Idn), in which case δ′

n(s′, σu→(n−1)) = δ′
n(s1, σ(u+1)→(n−1)) is also

an Idn-state. ◀

As a consequence of Lemmas 15 and 16, we obtain the following result.

▶ Proposition 17. The automaton A ′
n is the minimal automaton of the language L ′

n.

3.4 Construction, correctness and minimality of the automaton An

We finally construct the automata An as follows.

▶ Definition 18. First, A1 = A ′
1 is the automaton with one unique (necessarily initial) state

and no transition, and A2 = A ′
2 is the automaton with one unique state and one loop labelled

by σ1. Then, when n ⩾ 3, the state set and initial state of An are defined by Vn = Vn−1 ∪ V ′
n

and ın = ın−1, and the transition function δn is defined as follows:
δn(s, σu) = δn−1(s, σu) when s ∈ Vn−1 and u ⩽ n − 2;
δn(s, σn−1) = δ′

n(ı′
n, σ1) when s ∈ Vn−1;

δn(s, σu) = δ′
n(s, σn−u) when s ∈ V ′

n

The relation Ln = Ln−1ϕn(L ′
n) proves that this automaton recognises the set Ln. Then,

we prove by induction that each state s of An is accessible: when s ∈ Vn−1, this is just the
induction hypothesis, and when s ∈ V ′

n, Lemma 15 proves that s is accessible from δ′
n(ı′

n, σ1),
which is itself accessible via the one-letter word σn−1.

Our last task consists in proving that any two states s and s′ of An have pairwise
distinct residuals. When s and s′ belong to Vn−1, this is the induction hypothesis, and
when s and s′ belong to V ′

n, this is the irreducibility of A ′
n. Finally, when s ∈ Vn−1

and s′ ∈ V ′
n, let w be a word such that δn(ın, w) = s, and let σu be its last letter,

or σu = σ1 in case w is empty. Then, let w′ = σu→1. Lemma 11 proves that ww′

belongs to Ln−1, so that δn(s, w′σn−1) = δ′
n(ı′

n, σ1); this is a state of A ′
n that differs from

all states (pj
i , Idn). By contrast, if they ever exist, the state δn(s′, w′) = δ′

n(s′, ϕn(w′)) is
a ϕn-state, so that δn(s′, w′σn−1) = δ′

n(δ′
n(s′, ϕn(w′)), σ1) is a state (pi

n−1, Idn) – which may
be the state (pn−1

n−1, Idn) = ı′
n. From the above discussion results the following theorem.

▶ Theorem 19. The automaton An is the minimal automaton of the language Altn(B+
n).

4 Size of the minimal automata

This final section is devoted to evaluate the size of the minimal automaton An of the
language Altn(B+

n), both in terms of states and of transitions.

V. Jugé and J. Roupin 23:13

▶ Theorem 20. The automaton An has sn states and tn transitions, where s1 = 1, t1 = 0,
and

sn = 25 × 22n−3 − 9n2 + 3n + 7
27 and tn = (225n − 290)22n−5 − 9n3 − 9n2 + 93n − 77

81

whenever n ⩾ 2.

Proof. Below, let s′
n and t′

n denote the number of states and of transitions of the
automaton A ′

n. First, we have s′
1 = s′

2 = 1, s′
3 = 4 and t′

1 = 0, t′
2 = 1, t′

3 = 6. Then,
when n ⩾ 3, note that |P ′

n| = |P ′
n−1| + (n − 2). It follows that

s′
n = |V ′

n| = 2((|V ′
n−1| − |P ′

n−1|) + |V ′
n−1 + |P ′

n|) = 4s′
n−1 + 2(n − 2),

and an immediate induction proves that s′
n = (25 × 22n−5 − 6n + 4)/9 for all n ⩾ 3.

Furthermore, each state (pj
i , ϕk

n) is of out-degree 2 when i > j, and 1 when i = j; the
latter cases occurs n − 3 times, and thus, 2|P ′

n| − (n − 3) transitions leave a state (pj
i , Idn). In

addition, those Idn-states of A ′
n from which one can read a letter σn−1 are the states (s, f, Idn)

for which f = ⊤ or s is a ϕn−1-state of A ′
n−1; there are s′

n−1 states in the first family,
and s′

n−1/2 states in the second family but not in the first one. Consequently, in total, there
are

(t′
n−1 − (2|P ′

n−1| − (n − 4))) + t′
n−1 + (2|P ′

n| − (n − 3)) + 3s′
n−1/2

transitions leaving Idn-states, and t′
n = 4t′

n−1 + 3s′
n−1 + 2(2n − 5). Hence, another induction

proves that t′
n = ((25n − 35)22n−7 − 2n + 4)/3 for all n ⩾ 3.

Finally, s1 = s2 = 1, t1 = 0 and t2 = 1, whereas sn = sn−1 +s′
n and tn = tn−1 +sn−1 + t′

n

for all n ⩾ 3. Thus, an easy induction proves once again that sn = (25×22n−3−9n2+3n+7)/27
and tn = ((225n − 290)22n−5 − 9n3 − 9n2 + 93n − 77)/81 whenever n ⩾ 2. ◀

5 Open problems and perspectives

The above study of the minimal automaton leaves wide open a few questions, which we
intend to explore in follow-up work.

Linear-time recognition algorithm

Precomputing in time O(sn + tn) = O(n2n) the automaton An gives us an algorithm that
will then detect in time O(ℓ) whether an ℓ-letter word w ∈ A∗

n is in alternating normal form.
However, when ℓ is small, this precomputation may seem prohibitively costly. Instead, our
recursive description of the automata An and A ′

n also provides us with a simple algorithm
that will run in time O(nℓ). Indeed, we can simulate the execution of a path in An as follows:
1. a pointer indicates which is the largest letter σk−1 we have read so far, which means that

we are currently reading a word in the automaton A ′
k ;

2. each state of A ′
k can be represented by a list of the form s = (pv

u, ϕ?
i , fi+1, ϕ?

i+1, . . . , fk, ϕ?
k),

where pv
u ∈ P ′

i , each flag fj is a boolean ⊥ or ⊤, and each morphism ϕ?
j is either Idj or ϕj ;

3. our recursive description of the transition function δn makes it easy to compute in
time O(n) the list that represents the state δn(s, σa) for all letters σa ∈ An, provided
that this state is well-defined.

AofA 2024

23:14 The Alternating Normal Form of Braids and Its Minimal Automaton

Automaticity

Another natural question concerns the automaticity of the alternating normal form, which
can be summarised as follows. For each generator σi ∈ An, we wish to recognise those pairs
of words (w, w′) representing braids β and β′ such that β = σiβ

′ (this is left automaticity)
or β = β′σi (this is right automaticity). In practice, the words w and w′ having distinct
lengths, the pair (w, w′) shall be represented as a word on the alphabet (An ∪{•})2, where • is
a padding symbol; synchronous automaticity requires that the only padding symbol should be
the rightmost symbol of w′, and asynchronous automaticity allows placing padding symbols
wherever we want. It is shown in [5, Proposition 6.10] that the alternating normal form
is not asynchronously left-automatic. It might still be right-automatic; this should be the
subject of a subsequent article.

Rotating normal form

A close cousin to the alternating normal form is the rotating normal form, already mentioned in
the introduction. This normal form is not defined on the standard braid monoid B+

n itself, but
on the dual braid monoid B+∗

n positively generated by the generators σi,j = (σ(i+1)→j)−1σi→j .
This monoid enjoys properties similar to the properties a) to e) of page 2. However, there,
the Garside element is a braid δn for which the inner automorphism φn : β 7→ δ−1

n βδn is not
an involution of B+∗

n when n ⩾ 3, but is of order n.
Local criteria similar to Theorem 10 were found in [11], which help characterising words in

rotating normal form and proving that this normal form is regular. Nevertheless, the resulting
automaton is not yet guaranteed to be minimal, being analogous to our automaton A ′′

n rather
than to its minimal variant A ′

n. Thus, we intend to replicate our study of the alternating
normal form to the rotating normal form, possibly studying its right automaticity as well.

Random generation

In [13], V. Gebhardt and J. González-Meneses focus on the problem of generating uniformly at
random a braid β ∈ B+

n of length ℓ ⩾ 0. By identifying each braid β with the word MinLexn(β),
they reduce this problem to that of generating a word of length ℓ in a regular language,
whose minimal automaton they computed. A crucial step is then to compute the number
of paths of length ℓ, in the automaton, that may leave a given state s. Doing so efficiently
requires:

identifying the set of minimal forbidden patterns, i.e., the minimal words (for the prefix
ordering) that do not label a path leaving the state s;
applying inclusion-exclusion formulas based on that set;
using structural properties of that set to perform only polynomially many (and not
exponentially many) calls to inclusion-exclusion formulas.

As a result, they obtain an algorithm that generates β in time O(n4 log(n)ℓ3 log(ℓ)). It might
be possible to adapt this approach to efficiently count paths leaving a state of An, thereby
obtaining another sampling algorithm, with a similar complexity.

References
1 Sergei Adian. Fragments of the word ∆ in the braid group. Matematicheskie Zametki,

36(1):25–34, 1984. doi:10.1007/BF01139549.
2 Emil Artin. Theorie der Zöpfe. In Abhandlungen aus dem mathematischen Seminar der

Universität Hamburg, volume 4, pages 47–72. Springer, 1925. doi:10.1007/BF02950718.

https://doi.org/10.1007/BF01139549
https://doi.org/10.1007/BF02950718

V. Jugé and J. Roupin 23:15

3 Serge Burckel. The wellordering on positive braids. Journal of Pure and Applied Algebra,
120(1):1–17, 1997. doi:10.1016/S0022-4049(96)00072-2.

4 Ruth Charney. Artin groups of finite type are biautomatic. Mathematische Annalen, 292(1):671–
683, 1992. doi:10.1007/BF01444642.

5 Patrick Dehornoy. Alternating normal forms for braids and locally Garside monoids. Journal
of pure and applied algebra, 212(11):2413–2439, 2008. doi:10.1016/j.jpaa.2008.03.027.

6 Patrick Dehornoy, François Digne, Eddy Godelle, Daan Krammer, and Jean Michel.
Foundations of Garside theory, volume 22. Citeseer, 2015. doi:10.4171/139.

7 Pierre Deligne. Les immeubles des groupes de tresses généralisés. Inventiones mathematicae,
17:273–302, 1972. doi:10.1007/BF01406236.

8 David Epstein. Word processing in groups. CRC Press, 1992. doi:10.1201/9781439865699.
9 Ramón Flores and Juan González-Meneses. On lexicographic representatives in braid monoids.

Journal of Algebraic Combinatorics, 52(4):561–597, 2020. doi:10.1007/s10801-019-00913-7.
10 Ramón Flores and Juan González-Meneses. On the growth of Artin–Tits monoids and

the partial theta function. Journal of Combinatorial Theory, Series A, 190:105623, 2022.
doi:10.1016/j.jcta.2022.105623.

11 Jean Fromentin. The rotating normal form of braids is regular. Journal of Algebra, 501:545–570,
2018. doi:10.1016/j.jalgebra.2018.01.001.

12 Frank Garside. The braid group and other groups. The Quarterly Journal of Mathematics,
20(1):235–254, 1969. doi:10.1093/qmath/20.1.235.

13 Volker Gebhardt and Juan González-Meneses. Generating random braids. Journal of
Combinatorial Theory, Series A, 120(1):111–128, 2013. doi:10.1016/j.jcta.2012.07.003.

14 Jean Michel. A note on words in braid monoids. Journal of Algebra, 215(1):366–377, 1999.
doi:10.1006/jabr.1998.7723.

AofA 2024

https://doi.org/10.1016/S0022-4049(96)00072-2
https://doi.org/10.1007/BF01444642
https://doi.org/10.1016/j.jpaa.2008.03.027
https://doi.org/10.4171/139
https://doi.org/10.1007/BF01406236
https://doi.org/10.1201/9781439865699
https://doi.org/10.1007/s10801-019-00913-7
https://doi.org/10.1016/j.jcta.2022.105623
https://doi.org/10.1016/j.jalgebra.2018.01.001
https://doi.org/10.1093/qmath/20.1.235
https://doi.org/10.1016/j.jcta.2012.07.003
https://doi.org/10.1006/jabr.1998.7723

Analysis of Regular Sequences: Summatory
Functions and Divide-And-Conquer Recurrences
Clemens Heuberger1 # Ñ

Department of Mathematics, University of Klagenfurt, Austria

Daniel Krenn # Ñ

Fachbereich Mathematik, Paris Lodron University of Salzburg, Austria

Tobias Lechner #

Department of Mathematics, University of Klagenfurt, Austria

Abstract
In the asymptotic analysis of regular sequences as defined by Allouche and Shallit, it is usually
advisable to study their summatory function because the original sequence has a too fluctuating
behaviour. It might be that the process of taking the summatory function has to be repeated if
the sequence is fluctuating too much. In this paper we show that for all regular sequences except
for some degenerate cases, repeating this process finitely many times leads to a “nice” asymptotic
expansion containing periodic fluctuations whose Fourier coefficients can be computed using the
results on the asymptotics of the summatory function of regular sequences by the first two authors
of this paper.

In a recent paper, Hwang, Janson, and Tsai perform a thorough investigation of divide-and-
conquer recurrences. These can be seen as 2-regular sequences. By considering them as the
summatory function of their forward difference, the results on the asymptotics of the summatory
function of regular sequences become applicable. We thoroughly investigate the case of a polynomial
toll function.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics

Keywords and phrases Regular sequence, Divide-and-Conquer Recurrence, Summatory Function,
Asymptotic Analysis

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.24

Supplementary Material
Software (Code for Example 9): https://gitlab.com/cheuberg/fluctuation-find-min-max [8]

archived at swh:1:dir:e3d6789813ee435280117108c7bfd47809aeecc9

Funding Clemens Heuberger : This research was funded in part by the Austrian Science Fund (FWF)
[10.55776/DOC78]. For open access purposes, the author has applied a CC BY public copyright
license to any author-accepted manuscript version arising from this submission.

1 Introduction

1.1 Overview
The aim of [7] is the study of the asymptotic behaviour of the summatory functions of regular
sequences [1] – in simplest terms, a sequence x is called q-regular for some integer q ≥ 2 if
there are square matrices A0, . . . , Aq−1, a row vector u and a column vector w such that for
all integers n ≥ 0,

x(n) = uAn0 . . . Anℓ−1w (1)

1 Corresponding author

© Clemens Heuberger, Daniel Krenn, and Tobias Lechner;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 24; pp. 24:1–24:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:clemens.heuberger@aau.at
https://wwwu.aau.at/cheuberg
https://orcid.org/0000-0003-0082-7334
mailto:math@danielkrenn.at
https://www.danielkrenn.at
https://orcid.org/0000-0001-8076-8535
mailto:toblechner@edu.aau.at
https://doi.org/10.4230/LIPIcs.AofA.2024.24
https://gitlab.com/cheuberg/fluctuation-find-min-max
https://archive.softwareheritage.org/swh:1:dir:e3d6789813ee435280117108c7bfd47809aeecc9;origin=https://gitlab.com/cheuberg/fluctuation-find-min-max;visit=swh:1:snp:4c5976f8bc6f69a47e4c593ebe5bee8e221afda3;anchor=swh:1:rev:eff7aab95599c61ea5c9102aceedfa8736742e3b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Analysis of Regular Sequences

where (nℓ−1, . . . , n0) is the qary expansion of n; an alternative definition will be given in
Definition 1. Regular sequences have been introduced by Allouche and Shallit [1]; a plethora
of examples have also been given in the same publication. We highlight two prototypical
examples at this point: the binary sum of digits function and the worst case number of
comparisons in merge sort.

The main result of [7] is that the summatory function N 7→
∑

0≤n<N x(n) of a q-regular
sequence x has an asymptotic expansion

∑
0≤n<N

x(n) =
∑

λ∈σ(C)
|λ|>R

N logq λ
∑

0≤k<mC (λ)

(log N)k

k! Φλk(logq N) + O
(
N logq R(log N)κ

)
(2)

as N → ∞, where the Φλk are suitable 1-periodic continuous functions and σ(C), mC , R, κ

are a set, a function, and two quantities, respectively, depending on the regular sequence and
which will be explained in Theorem 3 below. An algorithm is given to compute the Fourier
coefficients of the periodic functions. The main question is whether there are λ ∈ σ(C)
with |λ| > R. In this case, we say that we established a good asymptotic expansion for the
summatory function of the regular sequence. Otherwise, (2) reduces to an error term. Note
that discussing the question of whether the periodic fluctuations vanish is beyond the scope
of this paper.

Studying the summatory function was motivated by the fact that in several well-known
examples of regular sequences, the sequences themselves are fluctuating too much so that it
is impossible to establish a good asymptotic expansion for the regular sequence itself. For
instance, for the binary sum of digits function s2, we have s2(2k − 1) = k and s2(2k) = 1 for
all integers k ≥ 0, so the most precise asymptotic expansion for s2(n) is s2(n) = O(log n)
for n → ∞. However, the summatory function might admit a good asymptotic expansion:
For the summatory function of the binary sum of digits function, we have

∑
0≤n<N s2(n) =

1
2 N log2 N+NΦ(log2 N) for some 1-periodic continuous function Φ as N → ∞; see Delange [3].
In this particular example, there is no error term; in general, an error term is to be expected.

However, a priori, it is not clear whether the summatory function of a regular sequence
will be smooth enough so that a good asymptotic expansion can be established. In fact, it is
known [1, Theorems 2.6 and 2.5] that the forward difference n 7→ x(n + 1) − x(n) of a regular
sequence x is again regular. This means that the summatory function of the forward difference
of the binary sum of digits function equals the binary sum of digits function and no good
asymptotic expansion can be obtained. Thus, as we are able to go forth (summatory function)
and back (forward difference), the question arises whether for every regular sequence, there is
a non-negative integer k such that its k-fold summatory function admits a good asymptotic
expansion. In this paper, we prove that this is the case for all regular sequences except for
some degenerate cases (Theorem 5).

For other regular sequences, the sequence itself might admit a good asymptotic expansion.
One example are sequences associated with divide-and-conquer schemes [11, 12], for example,
the worst case analysis of the number of comparisons in the merge sort algorithm. These are
closely related to the so-called “master theorems”; see the discussion in [12]. These sequences
are easily seen [12, Equation (2.1)] to be regular sequences (as long as the toll function is
regular). While Hwang, Janson, and Tsai [12] provide a direct proof for the asymptotic
behaviour and give plenty of examples, the question is whether these results can also be
obtained by using the results in [7]. In the present paper, we see such a sequence as the
summatory function of its forward difference, and we show that for polynomial toll functions,
we get a good asymptotic expansion in the vast majority of cases. The result is formulated in

C. Heuberger, D. Krenn, and T. Lechner 24:3

Theorems 7 and 8. In contrast to [12], we are not constrained to cases where the toll function
is asymptotically smaller than the sequence and Fourier coefficients can be computed using
the results of [7].

The remaining paper is structured as follows. In Section 1.2, we recall the definition and
the relevant results on regular sequences. This is followed in Section 1.3 by the statement of
our new result on the k-fold summatory function. In Section 1.4, we present the state of
the art for divide-and-conquer sequences and state our version the result in Section 1.5. An
explicit example is discussed in Section 1.6. Sections 2 and 3 are devoted to the proofs of
our theorems.

1.2 Regular Sequences: Definition and State of the Art
We recall the definition2 of a regular sequence; see Allouche and Shallit [1, 2] for character-
isations, properties, and an abundance of examples.

▶ Definition 1. Let q ≥ 2 be an integer. A sequence x ∈ CN0 is said to be q-regular3 if there
are a non-negative integer D, a family A = (Ar)0≤r<q of D × D matrices over C, a vector
u ∈ C1×D and a vector-valued sequence v ∈ (CD×1)N0 such that for all n ∈ N0, we have

x(n) = uv(n),

and such that for all 0 ≤ r < q and all n ∈ N0, we have

v(qn + r) = Arv(n). (3)

We call (u, A, v(0)) a linear representation of x and v the right vector-valued sequence
associated with this linear representation.

Note that (1) easily follows from (3) by induction; the other direction is contained in [1,
Lemma 4.1].

In [7] asymptotic properties were studied. To formulate an abbreviated version of its
main result, we first need to recall the notion of the joint spectral radius of a set of square
matrices as bounds on matrix products are relevant in view of the representation (1). We fix
a vector norm ∥ · ∥ on CD and consider its induced matrix norm.

▶ Definition 2. Let D be a positive integer and G be a finite set of D × D matrices over C.
1. The joint spectral radius of G is defined as

ρ(G) := lim
k→∞

sup{∥G1 . . . Gk∥1/k | G1, . . . , Gk ∈ G}.

2. We say that G has the simple growth property if

∥G1 . . . Gk∥ = O(ρ(G)k)

holds for all G1, . . . , Gk ∈ G and k → ∞.

For a family G = (Gi)i∈I of D × D matrices, we set ρ(G) := ρ({Gi | i ∈ I}) and we say
that G has the simple growth property if {Gi | i ∈ I} has the simple growth property.

2 Strictly speaking, this is an algorithmic characterisation of a regular sequence which is equivalent to the
definition given by Allouche and Shallit [1], who first introduced this concept: they define a sequence x
to be q-regular if the kernel{

x ◦ (n 7→ qjn + r)
∣∣ j, r ∈ N0 with 0 ≤ r < qj

}
is contained in a finitely generated module.

3 In the standard literature, the basis is frequently denoted by k instead of our q here.

AofA 2024

24:4 Analysis of Regular Sequences

We note that the joint spectral radius and the simple growth property are independent of
the chosen norm; cf. [9, Remark 4.2].

For a square matrix M , let σ(M) denote the set of eigenvalues of M and by mM (λ) the
size of the largest Jordan block of M associated with some λ ∈ C. In particular, we have
mM (λ) = 0 if λ /∈ σ(M). Finally, we let {z} := z − ⌊z⌋ denote the fractional part of a real
number z. We use Iverson’s convention: For a statement S, we set JSK = 1 if S is true and 0
otherwise; see also Graham, Knuth and Patashnik [6, p. 24].

▶ Theorem 3 ([7, Theorem A], [4, 5]). Let x be a q-regular sequence with linear representation
(u, A, w), and set

Br :=
∑

0≤s<r

As, C :=
∑

0≤s<q

As

for 0 ≤ r < q.
We choose R > 0 as follows: If A has the simple growth property, then we set R = ρ(A).

Otherwise, we choose R>ρ(A) such that there is no eigenvalue λ ∈ σ(C) with ρ(A)< |λ|≤R.
Then we have∑

0≤n<N

x(n) =
∑

λ∈σ(C)
|λ|>R

N logq λ
∑

0≤k<mC (λ)

(log N)k

k! Φλk({logq N})

+ O
(
N logq R(log N)max{mC (λ) : |λ|=R})

(4)

as N → ∞, where Φλk are suitable 1-periodic functions. If there are no eigenvalues λ ∈ σ(C)
with |λ| ≤ R, the O-term can be omitted.

For |λ| > R and 0 ≤ k < mC(λ), the function Φλk is Hölder continuous with any exponent
smaller than logq(|λ|/R).

Note that [7] also contains results on how to compute the Fourier coefficients of the periodic
fluctuations Φλk.

1.3 Summatory Functions of Regular Sequences
As announced in Section 1.1, within this paper, we show that for all regular sequences except
for some degenerate cases, there is a non-negative integer k such that the k-fold summatory
function admits a good asymptotic expansion. In order to formulate our result, we first fix a
notation for summatory functions.

▶ Definition 4. For a sequence x : N0 → CD (for some positive integer D), define the
sequence Σx : N0 → CD by

(Σx)(N) =
∑

0≤n<N

x(n).

We use the convention that Σ binds more strongly than evaluation, i.e., we write Σx(N)
instead of (Σx)(N).

We are now able to formulate our result.

▶ Theorem 5. Let x be a q-regular sequence with linear representation (u, A, w) and set
C :=

∑
0≤r<q Ar. Assume that C has a non-zero eigenvalue.

Then there is a non-negative integer k such that Σkx admits a good asymptotic expansion.

This theorem is proved in Section 2.

C. Heuberger, D. Krenn, and T. Lechner 24:5

1.4 Divide-and-Conquer Sequences: Definition and State of the Art
Hwang, Janson, and Tsai [12] study sequences x with

x(n) = αx
(⌊n

2

⌋)
+ βx

(⌈n

2

⌉)
+ g(n) (5)

for n ≥ 2, where α and β are two given positive constants, g is a given function, called the
toll function, and x(1) is given.

The simplest version of their result is summarised in the following theorem; more general
(weaker assumptions on g) versions are also available.

▶ Theorem 6 ([12, Corollary 2.14]). Let x be a sequence satisfying (5). Assume that there is
an ε > 0 such that g(n) = O(nlog2(α+β)−ε). Then

x(n) = nlog2(α+β)Φ({log2 n}) + O(nlog2(α+β)−ε)

for n → ∞ where Φ is a continuous, 1-periodic function.

1.5 Divide-and-Conquer Sequences: Polynomial Toll Function
For divide-and-conquer sequences g, a sequence satisfying the recurrence (5) can be seen as
a regular sequence: It is not hard to see that we have

x(2n) = (α + β)x(n) + g(2n),
x(2n + 1) = αx(n) + βx(n + 1) + g(2n + 1)

(6)

for n ≥ 1. Thus x is a 2-recursive sequence in the sense of [9] and therefore 2-regular by [9,
Corollary D]. Alternatively, a linear representation for x can also be constructed directly
from (6): the associated right vector-valued sequence consists of n 7→ x(n), n 7→ x(n + 1) and
the right vector-valued sequence associated to a linear representation of g; the matrices of the
linear representation can then easily be reconstructed from (6) and the linear representation
of g. The fact that (6) holds only for n ≥ 1 (instead of n ≥ 0) can be fixed; see [1, Proof of
Lemma 4.1] or [9, Theorem B].

As announced in Section 1.1, our goal is to see what can be said about the asymptotics
of x(n) for n → ∞ using Theorem 3. While the method works for arbitrary regular toll
functions; see Remark 14 (although good asymptotic expansions cannot be guaranteed in all
cases), we formulate our main result for polynomial toll functions; first versions are contained
in the master’s thesis [14] of the third author.

▶ Theorem 7. Let g(n) =
∑k

i=0 cin
i be a polynomial of degree k ≥ 1, x be a sequence

satisfying (5). Then the asymptotic behaviour of x(n) for n → ∞ can be described as follows,
where Φ and Ψ are 1-periodic continuous functions.

Case 1a. If α + β > 2k and 2k > max{α, β}, then

x(n) = nlog2(α+β)Φ({log2 n}) + nkΨ({log2 n}) + O(nlog2 max{α,β}).

Case 1b. If α + β > 2k and max{α, β} ≥ 2k, then

x(n) = nlog2(α+β)Φ({log2 n}) + O(nlog2 max{α,β}(log n)Jmax{α,β}=2kK).

Case 2. If α + β = 2k, then

x(n) = nk(log n)Φ({log2 n}) + nkΨ({log2 n}) + O(nlog2 max{α,β}+Jα=βKε)

for any ε > 0.

AofA 2024

24:6 Analysis of Regular Sequences

Case 3. If 2k > α + β > 2k−1, then

x(n) = nkΦ({log2 n}) + nlog2(α+β)Ψ({log2 n})

+ O(nlog2 max{α,β,2k−1}+Jmax{α,β}=2k−1Kε(log n)Jmax{α,β}<2k−1K)

for any ε > 0.
Case 4. If 2k−1 ≥ α + β, then

x(n) = nkΦ({log2 n}) + O(nk−1(log n)E),

where

E := 1 + Jα + β = 2k−1K(Jk ≥ 2 and ck−1 ̸= 0K + Jk = 1 and d0 + d1 ̸= 0K)

with

d0 := (1 − β)x(1) − g(1) + g(0), d1 := g(1) − (1 − β)x(1).

This theorem is proved in Section 3.
The case of a constant toll function is somewhat simpler.

▶ Theorem 8. Let g(n) = c0 be a constant toll function and let x be a sequence satisfying (5).
Let d0 and d1 be defined as in Theorem 7. Then the asymptotic behaviour of x(n) for n → ∞
can be described as follows, where Φ is a 1-periodic continuous function.

Case 1. If d0 = d1 = 0, then

x(n) = nlog2(α+β)Φ({log2 n}).

Case 2a. If d0 ̸= 0 or d1 ̸= 0, and α + β > 1, then

x(n) = nlog2(α+β)Φ({log2 n})

+ O(nlog2 max{α,β,1}+Jmax{α,β}=1Kε(log n)Jmax{α,β}<1K)

for any ε > 0.
Case 2b. If d0 ̸= 0 or d1 ̸= 0, and α + β ≤ 1, then

x(n) = O((log n)Jα+β=1 and d0+d1 ̸=0K).

This theorem is also proved in Section 3.

1.6 Example
We conclude this introductory section with one example to illustrate the results.

▶ Example 9. Consider the divide-and-conquer algorithm for finding the minimum and
the maximum of a list of n elements. The number x(n) of comparisons needed satisfies (5)
for n ≥ 3 with a = b = 1 and g(n) = 2 for n ≥ 3 and with x(1) = 0 and x(2) = 1; cf. [11,
Example 3.2].

By Theorem 8 (and [9, Theorem B] to deal with the fact that the divide-and-conquer
recurrence is only valid for n ≥ 3 instead of n ≥ 2; see Section 4 for details), we get

x(n) = nΦ({log2 n}) + O(nε)

for some 1-periodic continuous function Φ and any ε > 0. The Fourier coefficients of Φ can
be computed; cf. Figure 1.

C. Heuberger, D. Krenn, and T. Lechner 24:7

1.0

1.1

1.2

1.3

1.4

1.5

1.6

2 3 4 5 6 7 8 9 10

Figure 1 Comparison of the 1-periodic function Φ in the asymptotic expansion determined using
Theorem 8 with the empirical values of the sequence.

2 Summatory Functions: Proof of Theorem 5

Before proving Theorem 5, we collect two lemmata on the linear representations of summatory
functions and k-fold summatory functions.

The following lemma is implicitly shown in [7, Lemma 12.2], however, it is crucial for our
purposes, so we provide a precise formulation and will prove it for self-containedness.

▶ Lemma 10. Let x be a q-regular sequence with linear representation (u, A, w) and associated
right vector-valued sequence v. Set

Br :=
∑

0≤s<r

As for 0 ≤ r < q and C :=
∑

0≤s<q

As. (7)

Then we have

Σv(qN + r) = C Σv(N) + Brv(N) (8)

for all N ≥ 0 and 0 ≤ r < q.
Additionally, Σx is regular with linear representation (ũ, Ã, w̃) with

ũ := (u, 0),

Ãr :=
(

C Br

0 Ar

)
for 0 ≤ r < q,

w̃ :=
(

0
w

)
;

the associated right vector-valued sequence is
(

Σv
v

)
.

Proof. By definition, we have Σv(0) = 0. Let N ≥ 0 and 0 ≤ r < q. Then

Σv(qN + r) =
∑

0≤n<qN

v(n) +
∑

qN≤n<qN+r

v(n).

AofA 2024

24:8 Analysis of Regular Sequences

Replacing n by qm + s for m ∈ Z and 0 ≤ s < q in the first sum and replacing n by qN + s

for 0 ≤ s < r in the second sum yields

Σv(qN + r) =
∑

0≤m<N

∑
0≤s<q

v(qm + s) +
∑

0≤s<r

v(qN + s).

Using the linear representation yields

Σv(qN + r) =
∑

0≤m<N

∑
0≤s<q

Asv(m) +
∑

0≤s<r

Asv(N) = C Σv(N) + Brv(N).

In other words, we have shown (8).
As we have x = uv, we also have

Σx = u Σv = u Σv + 0 = ũ

(
Σv

v

)
.

We conclude that Σx has the given linear representation and associated right vector-valued
sequence. ◀

▶ Remark 11. In [7, Lemma 12.2], a very similar result appears in Equation (12.1) there.
The difference between Lemma 10 and that equation is an additional summand
(I − A0)JqN + r > 0K.

The reason for the additional summand is that in general, f(0) = A0f(0) (with the
notations there) does not hold, cf. also [10] for a discussion of this condition.

Iterating the results in Lemma 10 leads to the following lemma.

▶ Lemma 12. Let x be a q-regular sequence with linear representation (u, A, w), k ≥ 1,
and use the notations from (7). Then Σkx is q-regular with linear representation (ũ, Ã, w̃)
where Ãr is a block upper triangular matrix with diagonal blocks qk−1C, qk−2C, . . . , qC, C,
Ar for 0 ≤ r < q and ũ and w̃ are vectors; the associated right vector-valued sequence is
(Σkv, Σk−1v, . . . , Σv, v)⊤.

Proof. We claim that for m ≥ 1, there are matrices Mm,0, . . . , Mm,m−1 such that

Σmv(qN + r) = qm−1C Σmv(N) +
∑

0≤j<m

Mm,j Σjv(N) (9)

holds for all N ≥ 0 and 0 ≤ r < q.
We show (9) by induction on m. For m = 1, this is (8). To show (9) for m replaced by

m + 1, we use (8) for v replaced by the regular sequence with associated right vector-valued
sequence

(
Σv
v

)
studied in Lemma 10 and the linear representation given there. We obtain

Σm

(
Σv

v

)
(qN +r) = qm−1

(
qC

∑
0≤r<q Br

0 C

)
Σm

(
Σv

v

)
(N)+

∑
0≤j<m

M̃m,j Σj

(
Σv

v

)
(N)

for suitable matrices M̃m,j for 0 ≤ j < m. Considering the first block row of this equation
and collecting terms by powers of Σ leads to (9) with m replaced by m + 1.

Using (9) for 1 ≤ m ≤ k yields the linear representation as described in the lemma. ◀

Proof of Theorem 5. Let ρ be the joint spectral radius of A and r the spectral radius
(largest absolute value of an eigenvalue) of C.

C. Heuberger, D. Krenn, and T. Lechner 24:9

For some fixed k which will be chosen appropriately later, Lemma 12 yields a linear
representation of Σkx with the properties given there. Let C̃ :=

∑
0≤r<q Ãr.

The k-fold summatory function Σkx admits a good asymptotic expansion if the spectral
radius of C̃ is larger than the joint spectral radius of Ã. So we compute both.

By Lemma 12, C̃ is a block upper triangular matrix with diagonal blocks qkC, . . . , qC,
C. So the spectral radius of C̃ is qkr.

The joint spectral radius of a family of block upper triangular matrices is the maximum
of the joint spectral radii of the diagonal blocks; see [13, Proposition 1.5]. This implies that
the joint spectral radius of Ã is max{qk−1r, qk−2r, . . . , qr, r, ρ} = max{qk−1r, ρ}.

It is clear that qkr > qk−1r so the only condition which needs to be satisfied is qkr > ρ.
Such a k exists because r > 0 (as C has a non-zero eigenvalue). ◀

3 Divide-and-Conquer Recurrences: Proof of Theorems 7 and 8

For the proof of Theorems 7 and 8, we will first consider a general regular toll function g

and summarise our findings in the general case in Remark 14. Afterwards, we will specialise
to a polynomial toll function.

As announced in Section 1.1, we write x as the summatory function of the forward
difference of x, i.e.,

x(N) =
∑

0≤n<N

(x(n + 1) − x(n)) + x(0)

for N ≥ 0. Note that strictly speaking, x(0) is not defined in (5). However, we may assume
that g(1) and g(0) are somehow defined: they are not used in (5), but we can extend the
definition of g if g(0) and g(1) should be undefined.

In order to use Theorem 3, we need a linear representation of the forward difference of x.
A first step is the following lemma.

▶ Lemma 13. Let x be a sequence satisfying (5) for some toll function g and set x(0) := 0
and h(n) := x(n + 1) − x(n) for n ≥ 0. Then

h(2n) = βh(n) + g(2n + 1) − g(2n) + d0δ0(n),
h(2n + 1) = αh(n) + g(2n + 2) − g(2n + 1) + d1δ0(n)

(10)

for n ≥ 0 with d0, d1 as in Theorem 7 and δ0(n) := Jn = 0K for n ≥ 0.

Proof. We can rewrite (6) as

x(2n) = (α + β)x(n) + g(2n) − g(0)δ0(n),
x(2n + 1) = αx(n) + βx(n + 1) + g(2n + 1) + ((1 − β)x(1) − g(1))δ0(n)

(11)

for n ≥ 0.
Then (10) follows from

h(2n) = x(2n + 1) − x(2n),
h(2n + 1) = x(2n + 2) − x(2n + 1)

and inserting (11) into these equations. ◀

AofA 2024

24:10 Analysis of Regular Sequences

▶ Remark 14. Note that h occurs only as h(n) on the right-hand side of of (10). Therefore,
a right vector-valued sequence associated with h can be constructed by using h(n) in its first
component, then whatever is needed to express g(2n + 2) − g(2n + 1) and g(2n + 1) − g(2n),
followed by δ0(n). The matrices A0 and A1 of the linear representation will thus be in block
triangular form; the upper left diagonal elements of A0 and A1 being β and α, respectively.

Assume that the contributions of g to the linear representation are small in comparison to
α and β. Then the joint spectral radius of the linear representation of h will be max{α, β},
whereas the matrix C as in Theorem 3 will have a dominant eigenvalue α + β, which is larger
than the joint spectral radius. Thus we will have a good asymptotic expansion in this case.

We now turn to the case of a polynomial toll function.

▶ Lemma 15. Let x and h be as in Lemma 13 with a polynomial toll function g(n) =∑k
i=0 cin

i for some k ≥ 0 and some constants c0, . . . , ck with ck ̸= 0.
Set

b0j :=
k∑

i=j+1

(
i

j

)
2jci, b1j :=

k∑
i=j+1

(
i

j

)
(2i − 2j)ci,

a0ij := Jj = iK2i, a1ij :=
(

i

j

)
2j

for 0 ≤ i < k and 0 ≤ j < k and

br := (br(k−1), . . . , br0), Ãr := (arij)i=k−1,...,0
j=k−1,...,0

,

µr :=
{

β if r = 0,

α if r = 1,
Ar :=

µr br dr

0 Ãr 0
0 0 Jr = 0K

for r ∈ {0, 1} and

u := (1, 0, . . . , 0) ∈ C1×(k+2), w :=
{

(x(1), 0, . . . , 0, 1, 1)⊤ ∈ C(k+2)×1 if k ≥ 1,

(x(1), 1)⊤ ∈ C2×1 if k = 0.

Then (u, A, w) is a linear representation for h.
If d0 = d1 = 0, then (ũ, Ã, w̃) is also a linear representation for h where ũ, Ã, and w̃

arise from from u, A, and w by removing the last column, the last row and column, and the
last row, respectively.

We remark that Ar is an upper triangular matrix for r ∈ {0, 1} because
(

i
j

)
= 0 for j > i

(and indices in Ã0 and Ã1 are decreasing).

Proof. As a right vector-valued sequence v, we choose

n 7→ (h(n), nk−1, . . . , 1, δ0(n))⊤.

We immediately check that v(0) = w and that uv(n) = h(n) holds for all n ≥ 0.

C. Heuberger, D. Krenn, and T. Lechner 24:11

Using the binomial theorem repeatedly, we get

g(2n + 1) − g(2n) =
k∑

i=0
ci

i−1∑
j=0

(
i

j

)
2jnj =

k−1∑
j=0

b0jnj ,

g(2n + 2) − g(2n + 1) =
k∑

i=0
ci

i−1∑
j=0

(
i

j

)
2jnj(2i−j − 1) =

k−1∑
j=0

b1jnj ,

(2n)i = 2ini =
k−1∑
j=0

a0ijnj for 0 ≤ i < k,

(2n + 1)i =
i∑

j=0

(
i

j

)
2jnj =

k−1∑
j=0

a1ijnj for 0 ≤ i < k.

We verify that (10) translates into

v(2n + r) = Arv(n)

for r ∈ {0, 1} and n ≥ 0.
If d0 = d1 = 0, then A0 and A1 are block diagonal matrices. The lower right block is not

taken into account when multiplying by u, so the lower right block can be omitted.
Thus the result follows. ◀

▶ Lemma 16. Let x and h be as in Lemma 13 and g, (u, A, w) be as in Lemma 15. Assume
that k ≥ 1. Set C = A0 + A1.

Then ρ(A) = max{α, β, 2k−1} and σ(C) = {α + β, 2k, 2k−1, . . . , 2, 1}. If max{α, β} ̸=
2k−1, then A has the simple growth property.

Proof. By Lemma 15, A0 is an upper triangular matrix with diagonal elements β, 2k−1, . . . ,
1, 1 and A1 is an upper triangular matrix with diagonal elements α, 2k−1, . . . , 1, 0.

The joint spectral radius of a set of upper triangular matrices is the maximum of the
diagonal elements of the matrices; see [13, Proposition 1.5]. This implies that ρ(A) =
max{α, β, 2k−1}. By [9, Lemma 4.5], A has the simple growth property if the joint spectral
radius of A occurs only once as a maximum of corresponding diagonal elements of A0 and
A1. This is the case if max{α, β} ̸= 2k−1.

We also conclude that C is an upper triangular matrix with diagonal elements α + β, 2k,
2k−1, . . . , 2, 1. Thus the assertion for σ(C) follows. ◀

Proof of Theorem 7. To prove Theorem 7 using Theorem 3, we need to determine the
eigenvalues of C which are greater or equal than the joint spectral radius of A0 and A1 (with
the notations of Lemma 16) and the size of the largest Jordan block associated with any
such eigenvalue.

As ρ(A) = max{α, β, 2k−1} ≥ 2k−1 ≥ 1, it is clear that the only relevant eigenvalues of
C are contained in the set {α + β, 2k, 2k−1}.

The main case distinction of Theorem 7 concerns the order of α + β, 2k, and 2k−1.

Case 1: α+β > 2k. This implies that max{α, β} > 2k−1 and therefore ρ(A) = max{α, β}
and A has the simple growth property. The eigenvalue α + β of C is larger than the joint
spectral radius and is a simple eigenvalue. The eigenvalue 2k is also a simple eigenvalue.
If it is larger than the joint spectral radius, we are in Case 1a and have two asymptotic
terms larger than the error term. If 2k ≤ max{α, β}, we are in Case 1b and have one
asymptotic term larger than the error term; there is a logarithmic factor in the error term
if and only if 2k equals the joint spectral radius.

AofA 2024

24:12 Analysis of Regular Sequences

Case 2: α + β = 2k. In this case, 2k = α + β has algebraic multiplicity 2 as an eigenvalue
of C. We note that C − 2kI has the shape

C − 2kI =

2k − 2k
(

k
k−1

)
2kck b′

0 2k − 2k b′′

0 0 C ′

 =

0 k2kck b′

0 0 b′′

0 0 C ′

for some vectors b′, b′′ and some upper triangular matrix C ′ with diagonal elements
2k−1 − 2k, 2k−2 − 2k, . . . , 20 − 2k. As ck ̸= 0 by assumption, the kernel of C − 2kI has
dimension 1. We conclude that the size mC(2k) of the largest Jordan block of C associated
with the eigenvalue 2k equals 2. So we have a logarithmic factor in the asymptotic main
term.
We also note that max{α, β} ≥ 2k−1 holds in this case with equality if and only if
α = β = 2k−1. So the joint spectral radius ρ(A) equals max{α, β} and A has the simple
growth property unless α = β = 2k−1.
Case 3: 2k > α + β > 2k−1. In this case, we have max{α, β} > 2k−2 and C has two
simple dominant eigenvalues 2k and α + β. We do not have additional information about
the joint spectral radius. If max{α, β} ≠ 2k−1, then A has the simple growth property.
If max{α, β} < 2k−1, then the joint spectral radius of A is 2k−1. As C has 2k−1 as an
eigenvalue as well, there is a logarithmic factor in the error term in exactly this situation.
Case 4: 2k−1 ≥ α + β. In this case, we have max{α, β} < 2k−1, so ρ(A) = 2k−1 and A

has the simple growth property. There is only one eigenvalue of C larger than this joint
spectral radius, namely 2k. We have to determine mC(2k−1) in order to find out the
exponent of log n in the error term. The algebraic multiplicity of 2k−1 as an eigenvalue
of C equals 1 + Jα + β = 2k−1K. So if α + β < 2k−1, we have mC(2k−1) = 1 and a factor
log n in the error term.
We now consider the case α + β = 2k−1 and k ≥ 2. We note that C − 2k−1I has the shape

C − 2k−1I =

2k−1 − 2k−1 (

k
k−1

)
2kck

(
k−1
k−2

)
2k−1ck−1 +

(
k

k−2
)
2kck b′

0 2k − 2k−1 (
k−1
k−2

)
2k−2 b′′

0 0 2k−1 − 2k−1 b′′′

0 0 0 C ′

=

0 k2kck (k − 1)2k−1ck−1 + k(k − 1)2k−1ck b′

0 2k−1 (k − 1)2k−2 b′′

0 0 0 b′′′

0 0 0 C ′

for suitable vectors b′, b′′, b′′′ and a regular upper triangular matrix C ′. Subtracting 2kck

times the second row from the first row does not change the kernel, so we get

ker(C − 2k−1I) = ker

0 0 (k − 1)2k−1ck−1 b′ − 2kckb′′

0 2k−1 (k − 1)2k−2 b′′

0 0 0 b′′′

0 0 0 C ′

 .

We conclude that dim ker(C − 2k−1I) = 1 + Jck−1 = 0K and therefore mC(2k−1) =
1 + Jck−1 ̸= 0K.
Finally we turn to the case that α + β = 2k−1 and k = 1. Then we have

C − I =

0 2c1 d0 + d1
0 1 0
0 0 0

 .

C. Heuberger, D. Krenn, and T. Lechner 24:13

If d0 = d1 = 0, by the last statement of Lemma 15, the last row and column of C − I

are omitted and 1 has algebraic multiplicity 1 as an eigenvalue of C. We conclude
that dim ker C − I = 1 + Jd0 + d1 = 0K − Jd0 = 0KJd1 = 0K and therefore mC(2k−1) =
1 + Jd0 + d1 ̸= 0K.
So, to summarise, mC(2k−1) = 1 + E where E is defined in Theorem 7. ◀

Proof of Theorem 8. If d0 = d1 = 0, then Lemma 15 yields A0 = (β), A1 = (α), and
C = (α + β), so the joint spectral radius of A equals max{α, β} which is strictly less than
the unique eigenvalue α + β of C. As there is no eigenvalue of C less than the joint spectral
radius of A, there is no error term. The result follows in this case.

From now on, we assume that d0 ̸= 0 or d1 ̸= 0. Lemma 15 yields

A0 =
(

β d0
0 1

)
, A1 =

(
α d1
0 0

)
, C =

(
α + β d0 + d1

0 1

)
.

We see that the joint spectral radius of A is max{α, β, 1} and that C has eigenvalues α + β

and 1. It is now easy to deduce the assertions of the theorem. ◀

4 Details on Example 9

We proceed as outlined in Remark 14. Setting x(0) = 0 as usual, we have

x(n) = x(⌊n/2⌋) + x(⌈n/2⌉) + 2 − Jn = 2K − 2Jn = 1K − 2Jn = 0K

for n ≥ 0. Equivalently, we have

x(2n) = 2x(n) + 2 − Jn = 1K − 2Jn = 0K,

x(2n + 1) = x(n) + x(n + 1) + 2 − 2Jn = 0K

for n ≥ 0. Setting h(n) := x(n + 1) − x(n) leads to

h(2n) = h(n) + Jn = 1K,

h(2n + 1) = h(n) + Jn = 0K

for n ≥ 0. This defines a 2-regular sequence with a linear representation (u, A, w) with
associated right vector-valued sequence v defined by v(n) = (h(n), δ1(n), δ0(n)) with

A0 =

1 1 0
0 0 0
0 0 1

 , A1 =

1 0 1
0 0 1
0 0 0

 ,

u = (1, 0, 0), w = (0, 0, 1)⊤.

Here, δ1 is defined by δ1(n) := Jn = 1K for n ≥ 0.
We can now use SageMath4 to compute Fourier coefficients and to produce Figure 1.

4 The code for this example is available at https://gitlab.com/cheuberg/fluctuation-find-min-max
(mirrored at https://arxiv.org/src/2403.06589/anc); it uses the code accompanying [7] which is
available at at https://gitlab.com/dakrenn/regular-sequence-fluctuations.

AofA 2024

https://gitlab.com/cheuberg/fluctuation-find-min-max
https://arxiv.org/src/2403.06589/anc
https://gitlab.com/dakrenn/regular-sequence-fluctuations

24:14 Analysis of Regular Sequences

References
1 Jean-Paul Allouche and Jeffrey Shallit. The ring of k-regular sequences. Theoret. Comput.

Sci., 98(2):163–197, 1992. doi:10.1016/0304-3975(92)90001-V.
2 Jean-Paul Allouche and Jeffrey Shallit. Automatic sequences: Theory, applications, generaliza-

tions. Cambridge University Press, Cambridge, 2003. doi:10.1017/CBO9780511546563.
3 Hubert Delange. Sur la fonction sommatoire de la fonction “somme des chiffres”. Enseign.

Math. (2), 21:31–47, 1975. doi:10.5169/seals-47328.
4 Philippe Dumas. Joint spectral radius, dilation equations, and asymptotic behavior of radix-

rational sequences. Linear Algebra Appl., 438(5):2107–2126, 2013. doi:10.1016/j.laa.2012.
10.013.

5 Philippe Dumas. Asymptotic expansions for linear homogeneous divide-and-conquer recur-
rences: Algebraic and analytic approaches collated. Theoret. Comput. Sci., 548:25–53, 2014.
doi:10.1016/j.tcs.2014.06.036.

6 Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics. A
foundation for computer science. Addison-Wesley, second edition, 1994.

7 Clemens Heuberger and Daniel Krenn. Asymptotic analysis of regular sequences. Algorithmica,
82(3):429–508, 2020. doi:10.1007/s00453-019-00631-3.

8 Clemens Heuberger, Daniel Krenn, and Tobias Lechner. Fluctuation Find Min and
Max. Software, version 1.0., Austrian Science Fund (FWF) [10.55776/DOC78], swhId:
swh:1:dir:e3d6789813ee435280117108c7bfd47809aeecc9 (visited on 2024-07-10). URL:
https://gitlab.com/cheuberg/fluctuation-find-min-max.

9 Clemens Heuberger, Daniel Krenn, and Gabriel F. Lipnik. Asymptotic analysis of q-recursive
sequences. Algorithmica, 84(9):2480–2532, 2022. doi:10.1007/s00453-022-00950-y.

10 Clemens Heuberger, Daniel Krenn, and Gabriel F. Lipnik. A note on the relation between
recognisable series and regular sequences, and their minimal linear representations. J. Symbolic
Comput., 2024. doi:10.1016/j.jsc.2023.102295.

11 Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai. Exact and asymptotic solutions
of a divide-and-conquer recurrence dividing at half: Theory and applications. ACM Trans.
Algorithms, 13(4):Art. 47, 43 pp., October 2017. doi:10.1145/3127585.

12 Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai. Identities and periodic oscillations of
divide-and-conquer recurrences splitting at half. Adv. in Appl. Math., 155:Paper No. 102653,
53, 2024. doi:10.1016/j.aam.2023.102653.

13 Raphaël Jungers. The joint spectral radius. Theory and applications, volume 385 of Lecture
Notes in Control and Information Sciences. Springer-Verlag, Berlin, 2009. doi:10.1007/
978-3-540-95980-9.

14 Tobias Lechner. Application of theory for regular sequences on divide and conquer algorithms.
Master’s thesis, University of Klagenfurt, 2024. urn:nbn:at:at-ubk:1-52067. URL: https:
//resolver.obvsg.at/urn:nbn:at:at-ubk:1-52067.

https://doi.org/10.1016/0304-3975(92)90001-V
https://doi.org/10.1017/CBO9780511546563
https://doi.org/10.5169/seals-47328
https://doi.org/10.1016/j.laa.2012.10.013
https://doi.org/10.1016/j.laa.2012.10.013
https://doi.org/10.1016/j.tcs.2014.06.036
https://doi.org/10.1007/s00453-019-00631-3
https://archive.softwareheritage.org/swh:1:dir:e3d6789813ee435280117108c7bfd47809aeecc9;origin=https://gitlab.com/cheuberg/fluctuation-find-min-max;visit=swh:1:snp:4c5976f8bc6f69a47e4c593ebe5bee8e221afda3;anchor=swh:1:rev:eff7aab95599c61ea5c9102aceedfa8736742e3b
https://gitlab.com/cheuberg/fluctuation-find-min-max
https://doi.org/10.1007/s00453-022-00950-y
https://doi.org/10.1016/j.jsc.2023.102295
https://doi.org/10.1145/3127585
https://doi.org/10.1016/j.aam.2023.102653
https://doi.org/10.1007/978-3-540-95980-9
https://doi.org/10.1007/978-3-540-95980-9
https://resolver.obvsg.at/urn:nbn:at:at-ubk:1-52067
https://resolver.obvsg.at/urn:nbn:at:at-ubk:1-52067

Patricia’s Bad Distributions
Louigi Addario-Berry #

Department of Mathematics and Statistics, McGill University, Montréal, Canada

Pat Morin #

School of Computer Science, Carleton University, Ottawa, Canada

Ralph Neininger1 #

Institute of Mathematics, Goethe University Frankfurt, Germany

Abstract
The height of a random PATRICIA tree built from independent, identically distributed infinite
binary strings with arbitrary diffuse probability distribution µ on {0, 1}N is studied. We show that
the expected height grows asymptotically sublinearly in the number of leaves for any such µ, but
can be made to exceed any specific sublinear growth rate by choosing µ appropriately.

2012 ACM Subject Classification Theory of computation → Sorting and searching

Keywords and phrases PATRICIA tree, random tree, height of tree, analysis of algorithms

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.25

Related Version Previous Version: https://doi.org/10.48550/arXiv.2403.05269

Acknowledgements This research was mainly done during the Sixteenth Annual Workshop on
Probability and Combinatorics at McGill University’s Bellairs Institute in Holetown, Barbados. We
thank Bellairs Institute for its hospitality and support. We also thank the referees and Jasmin
Straub for comments on a draft of this note.

1 Introduction and results

The PATRICIA tree is a space efficient data structure for strings which improves on the trie.
For the purpose of this note it is sufficient to introduce these tree structures for binary strings:
Label the nodes of the complete infinite rooted binary tree by the elements of ∪∞

k=0{0, 1}k,
starting at the root with ∅ and left and right child of a node labelled v ∈ {0, 1}k with v0 and
v1, respectively. Here, for v ∈ {0, 1}k with v = (v1, . . . , vk) we abbreviate v as v = v1 . . . vk

and denote vi := v1v2 . . . vki for i = 0, 1.
The coming definitions are depicted in Figure 1. For distinct infinite binary strings

x1, . . . , xn ∈ {0, 1}N a finite tree called a trie (or radix search tree) to represent the strings
x1, . . . , xn is constructed by first associating with each xi the infinite path in ∪∞

k=0{0, 1}k

consisting of the nodes whose labels are the prefixes of xi. The node labelled with the
shortest such prefix that is not a prefix of any xj with j ∈ {1, . . . , n} \ {i} becomes a leaf in
the trie representing string xi for i = 1, . . . , n. The resulting tree, which is a finite binary
tree with n leaves, is the trie representing x1, . . . , xn. Next, starting from the trie, all vertices
with out-degree 1 (i.e. with exactly one child) are deleted and the resulting gaps are closed
by merging the two nodes which formed a deleted edge. This results in the PATRICIA
tree, which was introduced independently by Morrison [21] and Gwehenberger [12] and first
systematically analysed by Knuth [17]. The PATRICIA tree contains all the information
needed to retrieve the strings and to perform operations such as sorting, searching and
selecting; for broad expositions, see [18, 20, 25].

1 Corresponding author

© Louigi Addario-Berry, Pat Morin, and Ralph Neininger;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 25; pp. 25:1–25:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:louigi.addario@mcgill.ca
https://orcid.org/0000-0001-7125-5746
mailto:morin@scs.carleton.ca
https://orcid.org/0000-0003-0471-4118
mailto:neininger@math.uni-frankfurt.de
https://orcid.org/0000-0003-3975-1293
https://doi.org/10.4230/LIPIcs.AofA.2024.25
https://doi.org/10.48550/arXiv.2403.05269
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Patricia’s Bad Distributions

PATRICIA trees have been analysed assuming various probabilistic models for the input
strings; where usually the infinite strings are assumed to be independent and identically
distributed over {0, 1}N. Note that atoms of such a distribution result in identical strings
with positive probability, and in this case the construction of the trie does not lead to a
finite tree. Hence, the law of the strings is usually assumed to be diffuse (non-atomic).
Special cases of such diffuse probability distributions have been considered in the analysis of
algorithms on strings such as the Bernoulli models, Markov model, dynamical sources or the
density model; see [23, 24, 6, 4, 14, 11, 19, 1, 15, 13] and the references given in these papers.

0

0

0

0

0 1

1

0

0 1

1

1

0

0 1

0

000

0 1

10

0 1

110

0 1

Figure 1 On the left the trie for the strings 00000 . . ., 00001 . . ., 0100 . . ., 0101 . . ., 1100 . . ., and
1101 . . . is shown. Its leaves are the full black vertices, the indicated children of the full black vertices
do not belong to the trie. Vertices with out-degree 1 within the trie are indicated by arrows. On the
right the resulting PATRICIA tree by deleting corresponding edges is shown.

In the present note we focus on the height of a PATRICIA tree, which is the maximal
(graph) distance of any leave from the root. The asymptotic behavior of the height of tries and
PATRICIA trees under the Bernoulli models is covered by Pittel [23, 24] and Devroye [5, 7].
For example, for the height HsyB

n of the PATRICIA tree constructed from n independent
strings under the symmetric Bernoulli model, i.e. all bits being independent and Bernoulli(1

2)
distributed, Pittel [23] obtained as n → ∞ that

HsyB
n

log2 n
→ 1 almost surely.

This shows an asymptotic 50% improvement of the PATRICIA tree over the trie, for which
the limit constant for the same probabilistic model is 2 instead of 1. For general diffuse laws
concentration of the height of PATRICIA trees is studied (assuming only independence of
the infinite strings not necessarily identical distribution) by Devroye [8] based on results
from [2]; see also [16] for concentration of the height of PATRICIA trees in the Bernoulli
model.

While such studies aim to show that the height behaves well with respect to applications
from algorithms, Evans and Wakolbinger [9, 10] studied these random tree structures as
tree-valued transient Markov chains from the perspective of Doob–Martin boundary theory.
They asked (private communication) how high PATRICIA trees can grow for arbitrary diffuse
probability distributions of the strings (see [10, Section 5] for specific examples). The subject

L. Addario-Berry, P. Morin, and R. Neininger 25:3

of the present note is to answer this question by Theorems 1 and 2: The expected height
grows always sublinearly, but can be made to exceed any fixed sublinear growth rate by the
choice of an appropriate diffuse law.

For a diffuse probability distribution µ on {0, 1}N and (Ξ(j))j∈N a sequence of independent
and identically distributed random strings with law µ we denote by Hµ

n the height of the
PATRICIA tree constructed from Ξ(1), . . . , Ξ(n).

▶ Theorem 1. For all diffuse probability distributions µ on {0, 1}N we have, as n → ∞, that

E[Hµ
n]

n
→ 0, and Hµ

n

n
→ 0 almost surely.

▶ Theorem 2. For any sequence α = (αn)n∈N of positive numbers with αn → ∞ as n → ∞
there exists a diffuse probability distribution ν = ν(α) on {0, 1}N such that for all n sufficiently
large

E[Hν
n]

n/αn
→ ∞, and Hν

n

n/αn
→ ∞ almost surely.

We call a law ν on {0, 1}N causing large expected heights E[Hν
n] bad since such laws are

undesirable from the point of view of the efficiency of algorithms based on PATRICIA trees.
The remaining part of the present note contains proofs of these two theorems.
▶ Remark 1. For the density model, which is a subclass of the diffuse distributions on {0, 1}N,
the asymptotics of Theorem 1 were obtained by Devroye [6, page 419]. There, also bad
distributions with asymptotic properties as in our Theorem 2 are constructed for sequences
αn = nε with 0 < ε < 1.

2 Proofs

2.1 Proof of Theorem 1
We start with a technical observation:

▶ Lemma 3. Suppose µ is a diffuse probability distribution on {0, 1}N, and let Ξ = (ξi)i∈N
be random with law µ. Then for all ε there exists k = k(ε) ∈ N such that for any string
v = v1 . . . vk ∈ {0, 1}k, P(ξ1 . . . ξk = v1 . . . vk) < ε.

Proof. Suppose for a contradiction that there exists ε > 0 such that for all k ∈ N there
is a string v1 . . . vk ∈ {0, 1}k such that P(ξ1 . . . ξk = v1 . . . vk) ≥ ε. Then by a compactness
argument shown below there exists an infinite string v = (vi)i∈N ∈ {0, 1}N such that for all
k ∈ N, P(ξ1 . . . ξk = v1 . . . vk) ≥ ε. The events {ξ1 . . . ξk = v1 . . . vk} are decreasing in k, so
this implies that

P(Ξ = v) = lim
k→∞

P(ξ1 . . . ξk = v1 . . . vk) ≥ ε ,

which contradicts the assumption that µ is diffuse.
It remains to show the existence of the infinite string v = (vi)i∈N ∈ {0, 1}N such that

for all k ∈ N, P(ξ1 . . . ξk = v1 . . . vk) ≥ ε. Consider {0, 1} as a topological space with the
discrete topology (all subsets being open) and {0, 1}N as the product space with the product
topology. As a product of compact spaces {0, 1}N is compact. It is also a Hausdorff space.
The projections Πk : {0, 1}N → {0, 1}k given by

(vi)i∈N
Πk7−→ v1 . . . vk

AofA 2024

25:4 Patricia’s Bad Distributions

are continuous for all k ∈ N. Hence, the set

Vk := {(vi)i∈N ∈ {0, 1}N |P(ξ1 . . . ξk = v1 . . . vk) ≥ ε}

=
⋃

v1...vk∈{0,1}k

P(ξ1...ξk=v1...vk)≥ε

Π−1
k ({v1 . . . vk})

is closed and thus compact in {0, 1}N. This implies that (Vk)k∈N is a nested sequence of
non-empty, compact sets. Now, Cantor’s intersection theorem implies

∞⋂
k=1

Vk ̸= ∅.

Any element v of
⋂∞

k=1 Vk has the desired property. ◀

Proof of Theorem 1. Fix a diffuse probability distribution µ on {0, 1}N. Let Ξ(j) = (ξ(j)
i)i∈N

for j ∈ N be independent, identically distributed with law µ and denote by Tn the PATRICIA
tree built from Ξ(1), . . . , Ξ(n).

We first show that Hµ
n /n → 0 almost surely. Fix any ε ∈ (0, 1/4). Let k = k(ε) be as

in Lemma 3, so that for any string v = v1 . . . vk ∈ {0, 1}k, if Ξ = (ξi)i∈N has law µ then
P(ξ1 . . . ξk = v1 . . . vk) < ε. To prove Hµ

n /n → 0 almost surely we first show that

P(∃ n0 ∀ n ≥ n0 : Hµ
n ≤ k + 2εn) = 1. (1)

Note that if the event

En,k :=
⋃

v1...vk∈{0,1}k

{|{1 ≤ j ≤ n : ξ
(j)
1 . . . ξ

(j)
k = v1 . . . vk}| ≥ 2εn}

does not occur then the subtrees of Tn rooted at nodes v ∈ {0, 1}k all have at most 2εn

leaves and so height less than 2εn; thus if En,k does not occur then Hµ
n ≤ k + 2εn. It follows

that

P(∃ n0 ∀ n ≥ n0 : Hµ
n ≤ k + 2εn)

≥ P(En,k occurs for at most finitely many values n)

= P
((

lim sup
n→∞

En,k

)c)
,

so to prove (1) it suffices to show that the probability of lim supn→∞ En,k is 0. For this,
simply note that

P(En,k) ≤
∑

v1...vk∈{0,1}k

P(|{1 ≤ j ≤ n : ξ
(j)
1 . . . ξ

(j)
k = v1 . . . vk}| ≥ 2εn)

≤ 2kP(Yn ≥ 2εn) ,

where Yn has the Binomial distribution Bin(n, ε); the second inequality holds since the events
that ξ

(j)
1 . . . ξ

(j)
k = v1 . . . vk are independent for distinct 1 ≤ j ≤ n, and each has probability

at most ε. A Chernoff bound then gives

P(En,k) ≤ 2ke−εn/2.

Since this is summable, it follows by the first Borel–Cantelli lemma that

P
(

lim sup
n→∞

En,k

)
= 0,

L. Addario-Berry, P. Morin, and R. Neininger 25:5

hence we obtain (1). Now, note that for any m0 ∈ N,{
Hµ

n

n
→ 0

}
=

∞⋂
m=m0

∞⋃
n0=1

∞⋂
n=n0

{
Hµ

n

n
≤ 3

m

}
.

Thus, for ε = 1
m with fixed m ≥ m0 we can choose n sufficiently large so that k(ε)/n ≤ ε

and obtain

{Hµ
n ≤ k(ε) + 2εn} ⊂

{
Hµ

n

n
≤ 3

m

}
and see that (1) implies Hµ

n /n → 0 almost surely.
Finally, note that by construction of the PATRICIA tree we deterministically have

Hµ
n ≤ n − 1, thus Hµ

n /n ≤ 1. Hence, we obtain from Hµ
n /n → 0 almost surely and dominated

convergence that E[Hµ
n]/n → 0. ◀

2.2 Proof of Theorem 2
As building blocks for our bad distributions we first define a set of auxiliary probability
distributions (µN , N ∈ N), on {0, 1}N as follows. For fixed N ∈ N we choose T uniformly
at random from {1, . . . , N2}. Independently of T , let (Bi)i∈N be independent Bernoulli(1

2)-
distributed random variables. Then define a sequence (ϑi)i∈N by

ϑi =

0, if i < T,

1, if i = T,

Bi−T , if i > T.

(2)

Now, µN is defined as the law of the string Θ = (ϑi)i∈N. Note that by definition µN is diffuse
for all N ∈ N. We use the notation

⟨Θ⟩ := min{i ∈ N | ϑi = 1}

for the index of the first entry of Θ equal to 1.

▶ Lemma 4. For any n ∈ {1, . . . , N} we have E[HµN
n] ≥ n − 2.

Proof. Let 1 ≤ n ≤ N ∈ N and Θ(1), . . . , Θ(n) be i.i.d. with law µN . We consider the set
A := {⟨Θ(1)⟩, . . . , ⟨Θ(n)⟩} ⊂ {1, . . . , N2}. By construction of the PATRICIA tree we have

HµN
n ≥ |A| − 1, (3)

where |A| denotes the cardinality of A, i.e., the number of distinct elements within the set
{⟨Θ(1)⟩, . . . , ⟨Θ(n)⟩}. For all 1 ≤ i < j ≤ n we have P(⟨Θ(i)⟩ = ⟨Θ(j)⟩) = 1/N2. Hence, we
obtain

E[|A|] ≥ n − E

 ∑
1≤i<j≤n

1{⟨Θ(i)⟩=⟨Θ(j)⟩}

 ≥ n − n2

2N2 ≥ n − 1, (4)

since n ≤ N . Now, (3) and (4) imply the assertion. ◀

Proof of Theorem 2. Without loss of generality we may assume that αn = o(n). There
exists an n0 ∈ N such that αn ≥ 8 for all n ≥ n0. We define βn := ⌊log2 αn⌋ − 2 and a
sequence (A(n))n∈N as a generalized inverse of (βn)n∈N by

A(n) := max{m ∈ N | βm ≤ n}, n ∈ N. (5)

AofA 2024

25:6 Patricia’s Bad Distributions

First, a probability distribution µ(α) on {0, 1}N is obtained in two stages. Let G be a random
variable with geometric distribution with parameter 1

2 , i.e., with P(G = k) = (1
2)k for k ∈ N.

Then define a sequence (λi)i∈N by

λi =

0, if i < G,

1, if i = G,

ϑi−G, if i > G,

(6)

where Θ = (ϑi)i∈N, conditional on {G = k}, has law µA(k) defined in (2) with A(·) defined
in (5). We then define µ = µ(α) as the law of Λ = (λi)i∈N. Since the µA(k) are diffuse, we
obtain that µ is diffuse.

Now, let Λ(j) = (λ(j)
i)i∈N for j ∈ N be independent with law µ. For n ≥ n0, by

construction,

Xn :=
∣∣∣{1 ≤ j ≤ n :

(
λ

(j)
1 , . . . , λ

(j)
βn

)
= (0, . . . , 0, 1)

}∣∣∣
is Bin(n, 2−βn)-distributed. To get rid of the floors in the definition of βn denote by X ′

n a
Bin(n, 4/αn)-distributed random variable. Note that 2−βn ≥ 4/αn. By Okamoto’s inequality,
see [22] or [3, Exercise 2.12] we have

P
(

Xn <
2n

αn

)
≤ P

(
X ′

n − 4n

αn
< − 2n

αn

)
≤ exp

(
− n(2/αn)2

2(4/αn)(1 − 4/αn)

)
≤ exp

(
− n

2αn

)
.

Hence, with high probability at least ⌈2n/αn⌉ of the n strings start with the prefix (0, . . . , 0, 1)
of length βn and thus have suffixes (λ(j)

βn+1, λ
(j)
βn+2, . . .) drawn independently from µA(βn)

for the respective j. For all n ≥ n0 we have ⌈2n/αn⌉ ≤ n ≤ A(βn). Hence, by Lemma 4,
⌈2n/αn⌉ such strings cause an expected height of at least 2n/αn − 2. Together we obtain for
all sufficiently large n, note also αn = o(n), that

E[Hµ
n] ≥ P

(
Xn ≥ 2n

αn

)
E

[
Hµ

n

∣∣∣Xn ≥ 2n

αn

]
≥

(
1 − exp

(
− n

2αn

)) (
2n

αn
− 2

)
≥ n

αn
.

Since the sequence (log αn) tends to infinity the present proof implies the existence of a
diffuse probability distribution ν = ν(α) on {0, 1}N such that E[Hν

n] ≥ n/ log αn for all
sufficiently large n ∈ N, hence

E[Hν
n]

n/αn
→ ∞.

To prove the second statement of Theorem 2 we use the following bound from Devroye
[8, page 21]: for any diffuse probability distribution µ on {0, 1}N and any t > 0,

P (Hµ
n ≤ E[Hµ

n] − t) ≤ exp
(

− t2

2E[Hµ
n + 1]

)
≤ exp

(
− t2

2n

)
. (7)

We now consider the probabilities

P
(

Hν
n ≤ n

log2 αn

)
= P

(
Hν

n ≤ E[Hν
n] −

(
E[Hν

n] − n

log2 αn

))
(8)

L. Addario-Berry, P. Morin, and R. Neininger 25:7

and note that for all sufficiently large n we have

E[Hν
n] − n

log2 αn

≥ n

log αn
− n

log2 αn

= n
log(αn) − 1

log2 αn

≥ n

log2 n
. (9)

Combining (7)–(9) we obtain

P
(

Hν
n ≤ n

log2 αn

)
≤ exp

(
− n

2 log4 n

)
for all sufficiently large n. Since these upper bounds are summable it follows from the first
Borel–Cantelli Lemma that lim infn→∞ Hν

n/(n/ log2 αn) ≥ 1 almost surely, hence

Hν
n

n/αn
→ ∞ almost surely.

Thus, ν has the properties claimed in Theorem 2. ◀

References
1 Ali Akhavi, Fréderic Paccaut, and Brigitte Vallée. Building Sources of Zero Entropy: Rescal-

ing and Inserting Delays. In Mark Daniel Ward, editor, 33rd International Conference
on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms
(AofA 2022), volume 225 of Leibniz International Proceedings in Informatics (LIPIcs), pages
1:1–1:28, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.AofA.2022.1.

2 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. A sharp concentration inequality
with applications. Random Structures Algorithms, 16(3):277–292, 2000. doi:10.1002/(SICI)
1098-2418(200005)16:3<277::AID-RSA4>3.0.CO;2-1.

3 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities. Oxford
University Press, Oxford, 2013. A nonasymptotic theory of independence, With a foreword by
Michel Ledoux. doi:10.1093/acprof:oso/9780199535255.001.0001.

4 Julien Clément, Philippe Flajolet, and Brigitte Vallée. Dynamical sources in information
theory: a general analysis of trie structures. Algorithmica, 29(1-2):307–369, 2001. Average-case
analysis of algorithms (Princeton, NJ, 1998). doi:10.1007/BF02679623.

5 Luc Devroye. A note on the probabilistic analysis of patricia trees. Random Structures &
Algorithms, 3(2):203–214, 1992. doi:10.1002/rsa.3240030209.

6 Luc Devroye. A study of trie-like structures under the density model. Ann. Appl.
Probab., 2(2):402–434, 1992. URL: http://links.jstor.org/sici?sici=1050-5164(199205)
2:2<402:ASOTSU>2.0.CO;2-F&origin=MSN.

7 Luc Devroye. Universal limit laws for depths in random trees. SIAM Journal on Computing,
28(2):409–432, 1998. doi:10.1137/S0097539795283954.

8 Luc Devroye. Universal asymptotics for random tries and PATRICIA trees. Algorithmica,
42(1):11–29, 2005. doi:10.1007/s00453-004-1137-7.

9 Steven N. Evans and Anton Wakolbinger. Radix sort trees in the large. Electronic Communic-
ations in Probability, 22(none):1–13, 2017. doi:10.1214/17-ECP77.

10 Steven N. Evans and Anton Wakolbinger. PATRICIA bridges. In Genealogies of interacting
particle systems, volume 38 of Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., pages
231–265. World Sci. Publ., Hackensack, NJ, [2020] ©2020.

11 Michael Fuchs, Hsien-Kuei Hwang, and Vytas Zacharovas. An analytic approach to the
asymptotic variance of trie statistics and related structures. ArXiv, abs/1303.4244, 2013. URL:
https://api.semanticscholar.org/CorpusID:14429040.

12 Gernot Gwehenberger. Anwendung einer binären Verweiskettenmethode beim Aufbau von
Listen. Elektronische Rechenanlagen, 10:223–226, 1968.

AofA 2024

https://doi.org/10.4230/LIPIcs.AofA.2022.1
https://doi.org/10.1002/(SICI)1098-2418(200005)16:3<277::AID-RSA4>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1098-2418(200005)16:3<277::AID-RSA4>3.0.CO;2-1
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1007/BF02679623
https://doi.org/10.1002/rsa.3240030209
http://links.jstor.org/sici?sici=1050-5164(199205)2:2<402:ASOTSU>2.0.CO;2-F&origin=MSN
http://links.jstor.org/sici?sici=1050-5164(199205)2:2<402:ASOTSU>2.0.CO;2-F&origin=MSN
https://doi.org/10.1137/S0097539795283954
https://doi.org/10.1007/s00453-004-1137-7
https://doi.org/10.1214/17-ECP77
https://api.semanticscholar.org/CorpusID:14429040

25:8 Patricia’s Bad Distributions

13 Jasper Ischebeck. Central limit theorems for fringe trees in patricia tries. Preprint
arXiv:2305.14900 [math.PR], 2023. doi:10.48550/arXiv.2305.14900.

14 Svante Janson. Renewal theory in the analysis of tries and strings. Theor. Comput. Sci.,
416:33–54, January 2012. doi:10.1016/j.tcs.2011.10.007.

15 Svante Janson. Central limit theorems for additive functionals and fringe trees in tries.
Electronic Journal of Probability, 27(none):1–63, 2022. doi:10.1214/22-EJP776.

16 Charles Knessl and Wojciech Szpankowski. Limit laws for the height in PATRICIA tries. J.
Algorithms, 44(1):63–97, 2002. Analysis of algorithms. doi:10.1016/S0196-6774(02)00212-2.

17 Donald E. Knuth. The art of computer programming. Volume 3. Addison-Wesley Series
in Computer Science and Information Processing. Addison-Wesley Publishing Co., Reading,
Mass.-London-Don Mills, Ont., 1973. Sorting and searching.

18 Donald E. Knuth. The art of computer programming. Vol. 3. Addison-Wesley, Reading, MA,
1998. Sorting and searching, Second edition [of MR0445948].

19 Kevin Leckey, Ralph Neininger, and Wojciech Szpankowski. Towards More Realistic
Probabilistic Models for Data Structures: The External Path Length in Tries under the
Markov Model, pages 877–886. Society for Industrial and Applied Mathematics, 2013.
doi:10.1137/1.9781611973105.63.

20 Hosam M. Mahmoud. Evolution of random search trees. Wiley-Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons, Inc., New York, 1992. A Wiley-Interscience
Publication.

21 Donald R. Morrison. Patricia—practical algorithm to retrieve information coded in alphanu-
meric. Journal of the ACM, 15:514–534, 1968.

22 Masashi Okamoto. Some inequalities relating to the partial sum of binomial probabilities.
Ann. Inst. Statist. Math., 10:29–35, 1958. doi:10.1007/BF02883985.

23 B. Pittel. Asymptotical growth of a class of random trees. Ann. Probab., 13(2):414–427, 1985.
doi:10.1214/aop/1176993000.

24 Boris Pittel. Paths in a random digital tree: limiting distributions. Adv. in Appl. Probab.,
18(1):139–155, 1986. doi:10.2307/1427240.

25 Wojciech Szpankowski. Average case analysis of algorithms on sequences. Wiley-Interscience
Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2001. With
a foreword by Philippe Flajolet. doi:10.1002/9781118032770.

https://doi.org/10.48550/arXiv.2305.14900
https://doi.org/10.1016/j.tcs.2011.10.007
https://doi.org/10.1214/22-EJP776
https://doi.org/10.1016/S0196-6774(02)00212-2
https://doi.org/10.1137/1.9781611973105.63
https://doi.org/10.1007/BF02883985
https://doi.org/10.1214/aop/1176993000
https://doi.org/10.2307/1427240
https://doi.org/10.1002/9781118032770

Limit Laws for Critical Dispersion on Complete
Graphs
Umberto De Ambroggio #

Department of Mathematics, LMU Munich, Germany

Tamás Makai #

Department of Mathematics, LMU Munich, Germany

Konstantinos Panagiotou # Ñ

Department of Mathematics, LMU Munich, Germany

Annika Steibel #

Department of Mathematics, LMU Munich, Germany

Abstract
We consider a synchronous process of particles moving on the vertices of a graph G, introduced by
Cooper, McDowell, Radzik, Rivera and Shiraga (2018). Initially, M particles are placed on a vertex
of G. In subsequent time steps, all particles that are located on a vertex inhabited by at least two
particles jump independently to a neighbour chosen uniformly at random. The process ends at the
first step when no vertex is inhabited by more than one particle; we call this (random) time step the
dispersion time.

In this work we study the case where G is the complete graph on n vertices and the number
of particles is M = n/2 + αn1/2 + o(n1/2), α ∈ R. This choice of M corresponds to the critical
window of the process, with respect to the dispersion time. We show that the dispersion time, if
rescaled by n−1/2, converges in p-th mean, as n → ∞ and for any p ∈ R, to a continuous and almost
surely positive random variable Tα. We find that Tα is the absorption time of a standard logistic
branching process, thoroughly investigated by Lambert (2005), and we determine its expectation. In
particular, in the middle of the critical window we show that E[T0] = π3/2/

√
7, and furthermore we

formulate explicit asymptotics when |α| gets large that quantify the transition into and out of the
critical window. We also study the random variable counting the total number of jumps that are
performed by the particles until the dispersion time is reached and prove that, if rescaled by n ln n,
it converges to 2/7 in probability.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains

Keywords and phrases Random processes on graphs, diffusion processes, stochastic differential
equations, martingale inequalities

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.26

Related Version Full Version: https://doi.org/10.48550/arXiv.2403.05372

Funding Konstantinos Panagiotou: All authors were supported by ERC Grant Agreement 772606-
PTRCSP.

1 Introduction

The dispersion process introduced by Cooper, McDowell, Radzik, Rivera and Shiraga [2]
consists of particles moving on the vertices of a given graph G. A particle is said to
be happy if there are no other particles occupying the same vertex and unhappy otherwise.
Initially, M ≥ 2 (unhappy) particles are placed on some vertex of G. Subsequently, at discrete
time steps, all unhappy particles move simultaneously and independently to a neighbouring

© Umberto De Ambroggio, Tamás Makai, Konstantinos Panagiotou, and Annika Steibel;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 26; pp. 26:1–26:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:deambrog@math.lmu.de
mailto:makai@math.lmu.de
mailto:kpanagio@math.lmu.de
https://www.mathematik.uni-muenchen.de/~kpanagio/
mailto:steibel@math.lmu.de
https://doi.org/10.4230/LIPIcs.AofA.2024.26
https://doi.org/10.48550/arXiv.2403.05372
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Limit Laws for Critical Dispersion on Complete Graphs

|ε−1| ln(ε2n) n1/2 ε−1 exp(Θ(ε2n))
Tn,M

ε
−Cn−1/2 0 Cn−1/2

Figure 1 The typical order of Tn,M when M = (1 + ε)n/2 and |ε| = o(1). Note that
|ε−1| ln(ε2n) and ε−1 exp(ε2n) are in Θ(

√
n) when |ε| = Θ(n−1/2), and so the transition

into and out of the critical window is smooth.

vertex selected uniformly at random, while the happy particles remain in place. The process
terminates at the first time step at which all particles are happy; we call this (random) time
step the dispersion time.

It is clear that if the number of particles is small – compared to the number of vertices in the
graph – then the dispersion time should be small as well. Intuitively, increasing the number of
particles makes it more and more difficult for the particles to disperse quickly. This transition
from ’fast’ to ’slow’ dispersion is quite well-understood and sharp when the underlying graph
is the complete graph on n vertices with loops, in which case we write Tn,M for the dispersion
time started with M particles at an arbitrary vertex. The typical order of Tn,M changes
rather abruptly around M = n/2. Indeed, if we write M = M(n) = (1 + ε)n/2 ∈ N for some
sequence ε = ε(n) ∈ [−1, 1], then in [2] it was established that Tn,M is typically

at most logarithmic in n when lim supn→∞ ε < 0 and
at least exponential in n when lim infn→∞ ε > 0.

The details of this apparent and abrupt transition from logarithmic to exponential time are
obviously of great interest and were investigated further in [3], where the authors studied
the typical order and the tails of Tn,M when ε = o(1), that is, when M = n/2 + o(n). In
this setting they showed that for any constant C > 0, if ε ≤ −Cn−1/2, then the process
typically finishes in Θ(|ε|−1 ln(ε2n)) steps, while if ε ≥ Cn−1/2, then a much larger number
ε−1 exp(Θ(ε2n)) of steps is required. Moreover, within the critical window corresponding
to the range |ε| = O(n−1/2), they showed that the process typically runs for Θ(n1/2) steps,
making the transition into and out of the critical window smooth, see also Figure 1.

In this paper we will perform a fine analysis of the dispersion process within the critical
window, that is, when M = n/2+O(

√
n). Our first main result establishes that the dispersion

time, scaled by n−1/2, converges in distribution to some continuous and almost surely positive
random variable. For a sequence of real-valued random variables (Zn)n∈N and a random
variable Z we write Zn

d−→ Z to denote that the sequence (Zn)n∈N converges to Z in
distribution.

▶ Theorem 1. Let α ∈ R and M = M(n) = n/2 + α
√

n + o(
√

n) ∈ N. Then there is a
continuous and almost surely positive random variable Tα such that, as n → ∞,

n−1/2Tn,M
d−→ Tα .

Within the proof of Theorem 1 we derive an explicit description of the distribution of Tα. In
order to specify it at this point we need to step back a bit and introduce some notation and
present some facts about the process. Let us write Ut for the (random) number of unhappy
particles at the end of step t, so that U0 = M , and let us fix some δ > 0. As we will argue
in Section 3, Ut drops rather quickly to Θ(n1/2) particles. In particular, with probability
at least 1 − δ, after t∗ ∼ 4

7 δn1/2 steps we have that Ut∗ ∼ n1/2/δ; here and everywhere else
“∼” will stand for “= (1 + o(1))” and asymptotic statements are, unless stated explicitly
otherwise, with respect to n → ∞ and uniform in all other parameters. After t∗ the process

U. De Ambroggio, T. Makai, K. Panagiotou, and A. Steibel 26:3

0 t′ 1000 3000 5000 7000
0
1
2

4

6

8
E[Tn,M] ∼

√
π3n/7 ≈ 6655

t

U
t

10
00

Iterated Mean

Figure 2 Three sample runs of the dispersion process with n = 107 and M = n/2,
where we depict the number of unhappy particles Ut, divided by 1000, at each step t. The
trajectory is revealed only after t′ = 500, where Ut′ ≈ 104 ≈ 3

√
n in all cases. The dotted

line represents the iterated mean of Ut. For the asymptotics of E[Tn,M] see (4).

(Ut)t≥t∗ of unhappy particles starts fluctuating significantly, see Figure 2 for outcomes of
a simulation study when M = n/2. In order to get a grip on it, we scale time and space
by a factor of n1/2 and establish that (n−1/2Ut∗+⌊s

√
n⌋)s≥0 converges weakly to a diffusion

process. Here weak convergence denotes, as usual, convergence in D([0, T], R) for all T < ∞,
where D([0, T], R) represents the space of all right-continuous functions from [0, T] to R with
left-limits.

▶ Lemma 2. Let α ∈ R and M = M(n) = n/2 + α
√

n + o(
√

n) ∈ N. Let δ > 0 and let

Tn,M,δ := inf{t > 0 : Ut ≤ n1/2/δ}

be the first step at which there are at most n1/2/δ unhappy particles. Then, as n → ∞, weakly(
n−1/2 UTn,M,δ+⌊sn1/2⌋

)
s≥0

→ X,

where X is a logistic branching process starting from X0 = δ−1. In particular, if we denote
by B a standard Brownian motion, then X uniquely satisfies the SDE

dXs =
(

2αXs − 7
4X2

s

)
ds +

√
XsdBs, s > 0, and X0 = δ−1. (1)

For more background on SDEs in general and the specific equation encountered here we refer
to Section 2. Let us mention only that stochastic processes satisfying (1) are well-studied
and are also called in the literature logistic Feller diffusions or Feller diffusions with logistic
growth. Generally, such processes satisfy an SDE of the form

dXs = (aXs − cX2
s)ds +

√
γXsdBs, s > 0, with initial condition X0 = x ≥ 0, (2)

AofA 2024

26:4 Limit Laws for Critical Dispersion on Complete Graphs

where a ∈ R and c, γ > 0. They appear in the context of population dynamics and
stochastically extend the deterministic logistic growth model that describes the evolution of a
population under the influences of natural birth, mortality and inter-individual competition.
A prime source on the topic is Lambert [7], who provides a thorough and detailed discussion
of the properties of solutions to (2).

With Lemma 2 at hand we show in Section 3, see Lemma 13 there, that the first step
at which the unhappy particles vanish, divided by n1/2, converges in distribution to the
absorption time of X, that is, the first time when X hits zero. Letting δ → 0 then yields the
claimed statement. In particular, Tα in Theorem 1 is the absorption time of the limiting
solution of (1) when the initial condition X0 → ∞; this limiting process, called standard
logistic branching process, is well-defined and well-studied, see for example [7] and Section 2.2.

The explicit descriptions of X and Tα pave the way to obtain further bits of information.
To achieve this we will exploit the following bounds, stating that n−1/2Tn,M has exponential
tails, that are an immediate consequence of the main theorems in [3].

▶ Theorem 3. Let α ∈ R and M = n/2 + α
√

n + o(
√

n) ∈ N. Then there is a constant
cα > 0 such that for all sufficiently large n

P
(
Tn,M ≤ n1/2/Acα

)
≤ e−A and P

(
Tn,M > Acαn1/2)

≤ e−A, A ≥ 1.

Together with our Theorem 1 this implies that for any p ∈ R we even obtain convergence in
Lp, in particular

n−p/2E
[
T p

n,M

]
∼ E

[
T p

α

]
, p ∈ R. (3)

We also obtain, without including the proof here, for M = n/2 + α
√

n + o(
√

n) the series
representation

E[Tα] = lim
n→∞

E
[
n−1/2Tn,M

]
= π3/2

√
7

+ 1√
7

∑
m≥1

Γ(m+1
2)

m!

(
8α√

7

)m

tm, α ∈ R,

where Γ(·) is the Gamma function and

tm :=
∑
k≥0

2
(m+1

2 + 2k)(m+3
2 + 2k)

= H(m−1)/4 − H(m−3)/4, m ∈ N0,

and Hx =
∑

k≥1
(1

k − 1
k+x

)
denotes the “x-th harmonic number”. Let us highlight the specific

case α = 0: when we are essentially at the critical point, then we obtain the beautiful formula

E[T0] = lim
n→∞

E
[
n−1/2Tn,n/2+o(

√
n)

]
= π3/2

√
7

, (4)

which is in the interval 2.104 ± 0.001, see also Figure 2. Our methods also allow us to study
the behavior of the transition in and out of the critical window, that is, E[Tα] when α → −∞
or α → ∞. Indeed we are able to show the following asymptotics

E[Tα] α→−∞∼ ln |α|
|α|

and E[Tα] α→∞∼
√

7π

8
e16α2/7

α2 .

So, when α gets big, then E[Tα] behaves (up to polynomial corrections) quadratic exponential
in α; already for α = 3 we obtain the enormous value E[T3] ≈ 5.894 · 107. On the other hand,
for negative α we get a moderate polynomial behavior with logarithmic corrections. Note

U. De Ambroggio, T. Makai, K. Panagiotou, and A. Steibel 26:5

that the large |α| asymptotics presented here are in perfect accordance with the transition in
and out of the critical window, see also Figure 1 and the discussion at the beginning of the
introduction.

Our second main result addresses the total number of jumps
∑

t≥0 Ut performed by the
particles. In contrast to the dispersion time, the total number of jumps, scaled by n ln n,
converges to a fixed quantity.

▶ Theorem 4. Let α ∈ R and M = M(n) = n/2 + α
√

n + o(
√

n) ∈ N. Then

1
n ln n

∑
t≥0

Ut
d−→ 2

7 .

In particular, each of the M ∼ n/2 particles performs on average typically ∼ 4
7 ln n jumps

before everybody settles, and this is independent of α. Indeed, our aforementioned analysis
of the early steps in Section 3, that is, the first o(n1/2) steps, shows that there are already
∼ 2

7 n ln n jumps in those steps of the process. With Lemma 2 and Theorem 1 in mind, it
is not surprising that the remaining Θ(n1/2) steps only contribute an additional of O(n)
number jumps, as n−1/2Ut is typically bounded for t = Θ(n1/2).

Theorem 1 and Lemma 2 actually suggest that a much stronger statement should be true.
We know that (n−1/2UTn,M,δ+⌊sn1/2⌋)s≥0 converges weakly to a logistic branching process X,
and so the total number of jumps should be close to n1/2A, where A :=

∫ ∞
0 Xsds, plus the

additional 2
7 n ln n jumps from the first Tn,M,δ steps. Thus the variations in the total number

of jumps should be linear in n; that is, there should be a (non-trivial) random variable S

such that

n−1
(∑

t≥0
Ut − 2

7n ln n

)
d→ S.

We leave it as an open problem to prove this conjecture.

Variations on the Theme

Our work opens up opportunities for studying a variety of models that are related to the
dispersion process or extensions of it. In a general setting, happiness can be defined as
a property of individual vertices and particles. More specifically, each vertex may have a
capacity, which, if exceeded, deems all particles on that vertex as unhappy. On the other
side, each particle p may have a stress level, which dictates an upper bound on the particles
that share a vertex with p so that p is still happy. We leave it as an open problem to study
the precise behavior in a general setting, where for example the empirical distributions of
the capacities and the stress levels fulfill appropriate convergence properties.

In a different line of research it would be challenging to provide detailed studies of
dispersion processes on graphs different than the complete graph. We believe, for example,
that our results also hold if the underlying graph is a sufficiently dense Erdős-Rényi random
graph Gn,p, which is obtained by retaining independently each edge of the complete graph
on n vertices with probability p. In particular, if, say, p = ω(n−1/2), guaranteeing that the
minimum degree is much larger than

√
n, then similar results as in Theorem 1 should hold,

as the process finishes after O(
√

n) rounds if the graph is complete. However, it might be
the case that even on much sparser graphs the behavior does not change (since, for example,
in most steps just an O(

√
n) number of particles move). We consider it as an important and

eminent challenge to study the effect of the edge probability p on the distribution of the
dispersion time.

AofA 2024

26:6 Limit Laws for Critical Dispersion on Complete Graphs

Related work

The dispersion process was also studied by Frieze and Pegden [6], who, apart from the
dispersion time, also considered the dispersion distance on the infinite line. They showed
that the dispersion distance is Θ(n) when there are n particles in the system, improving
upon previous results in [2]. A similar setup was considered by Shang [10], who studied the
dispersion distance on the infinite line in a non-uniform dispersion process.

Processes where particles move on the vertices of a graph have been widely studied over
the past decades; we refer the reader to [2] for references. Concerning processes whose scope
is to disperse particles on a discrete structure, arguably the best known such model is Internal
Diffusion Limited Aggregation (IDLA), see [1, 4, 8]. In this model, particles sequentially
start (one at a time) from a specific vertex designated as the origin. Each particle moves
randomly until it finds an unoccupied vertex; then it occupies it forever, meaning that it
does not move at subsequent process steps.

Another related and well-studied class of models are Activated Random Walks (ARWs)
that evolve on the d-dimensional lattice, see [9] for an extensive review. Roughly speaking,
we place particles on Zd, and some of them are initially active while others are asleep. The
rules of the process are then as follows. Whenever a particle is alone on a vertex, it falls
asleep with a certain rate. On the other hand, active particles jump according to independent
random choices, and whenever they encounter a particle that is asleep, they wake it up.

Outline

In Section 2 we present the main tool used during our proof, namely diffusion approximation,
and then in Section 3 we include a brief derivation of some of the aforementioned results,
primarily Lemma 2 and Theorem 1. The full paper containing all proofs is available at
arXiv:2403.05372.

2 Probabilistic Preliminaries

2.1 Diffusion Approximation
A main tool that we will use in the proof of Theorem 1 is the concept of diffusion approximation,
which allows us to approximate a Markov chain (Y (n))n∈N with values in R, by a continuous-
time stochastic process. More specifically, we examine convergence properties of (Y (n))n∈N

to a process satisfying a stochastic differential equation (SDE)

dXs = b(Xs)ds + σ(Xs)dBs, s > 0, (5)

where b, σ : R → R are suitable functions and B is a 1-dimensional standard Brownian
motion. In this section we provide an overview of the necessary results from stochastic
calculus. Additionally, we collect some properties of the limit process that will emerge within
the proof of Theorem 1. In what follows we denote discrete time by t ∈ N0 (so, for example,
Y (n) = (Y (n)

t)t∈N0), whereas s ≥ 0 represents continuous time.
Let us consider (5). A (weak) solution to (5) with initial value X0 = x ∈ R is a triple

(X, B,P), where P = (Ω, F , (Fs)s≥0, P) is a filtered probability space with the filtration
satisfying the usual conditions, i.e. (Fs)s≥0 is right-continuous and complete. Further,
X = (Xs)s≥0 and B = (Bs)s≥0 are continuous stochastic processes that are adapted to
(Fs)s≥0 such that

B is a standard 1-dimensional Brownian motion with respect to (Fs)s≥0, i.e. B is a
standard Brownian motion and Bs − Br is independent of Fr for any 0 ≤ r < s;

https://arxiv.org/abs/2403.05372

U. De Ambroggio, T. Makai, K. Panagiotou, and A. Steibel 26:7

Xs satisfies (5) and the initial condition, i.e.

Xs = x +
∫ s

0
b(Xr)dr +

∫ s

0
σ(Xr)dBr, s ≥ 0.

Moreover, we say that there is (weak) uniqueness if whenever (X, B,P) and (X̃, B̃, P̃) solve (5)
weakly and satisfy X0 = X̃0, then X and X̃ have the same law.

In order to get the diffusion approximation to work, we construct a sequence of right-
continuous and continuous-time stochastic processes from the given sequence (Y (n))n∈N

of discrete time Markov chains by using constant interpolation between the time points.
Then, under appropriate conditions specified in the subsequent theorem, (Y (n))n∈N converges
weakly to the solution of an SDE. With the necessary concepts at hand we are now ready to
present our main tool, and we refer for example to [5, Ch. 8] for an extensive treatment.

▶ Theorem 5 (Diffusion Approximation). Let b, σ : R → R be continuous functions and assume
that for any x ∈ R the SDE (5) possesses a unique solution such that X0 = x. Furthermore,
let h : N → R+ be a sequence with limn→∞ h(n) = 0 and for all n ∈ N let Y (n) = (Y (n)

t)t∈N0

be a discrete-time Markov chain with values in S(n) ⊆ R. Define, for all t ∈ N0, x ∈ S(n)

b(n)(x) :=
E

[
Y

(n)
t+1 − x | Y

(n)
t = x

]
h(n) , a(n)(x) :=

E
[
(Y (n)

t+1 − x)2 | Y
(n)

t = x
]

h(n) ,

and γ
(n)
p (x) := E

[
|Y (n)

t+1 − x|p | Y
(n)

t = x
]
/h(n) for p ≥ 2. Let a := σ2 and assume that for

all R < ∞

lim
n→∞

sup
x∈S(n),|x|≤R

|b(n)(x) − b(x)| = 0, lim
n→∞

sup
x∈S(n),|x|≤R

|a(n)(x) − a(x)| = 0,

and

lim
n→∞

sup
x∈S(n),|x|≤R

γ(n)
p (x) = 0 for some p ≥ 2.

Finally, assume that Y
(n)

0 → x as n → ∞. Then (Y (n)
⌊s/h(n)⌋)s≥0 converges weakly to a strong

Markov process X that satisfies the SDE (5) with X0 = x.

2.2 The (Standard) Logistic Branching Process
We already discussed in the introduction that the processes that will be relevant here are the
so-called logistic branching processes, given by the solution of

dXs = (aXs − cX2
s)ds +

√
γXsdBs, s > 0,

with X0 = x ≥ 0, a ∈ R and c, γ > 0, see also (2) (and (1) for the particular case that will
appear here). In the remainder of this section we collect some key properties that will be
handy. The first one is about the existence and uniqueness of solutions, see [7].

▶ Lemma 6. For all initial states x ≥ 0 and for all a ∈ R and c, γ > 0, there exists a unique
solution (Xa,c,γ,x, Ba,c,γ,x,Pa,c,γ,x) to (2). Moreover, Xa,c,γ,x is non-negative.

In what follows it will be convenient to consider a specific choice of the filtered probability
space Pa,c,γ,x = (Ω′, F ′, (F ′

s)s≥0, P′) (where all components depend on the parameters
a, c, γ, x) from the previous lemma that we construct as follows. Let Ω be the space of all
continuous maps [0, ∞) → R and let X be the coordinate process given by Xs(ξ) = ξ(s) for

AofA 2024

26:8 Limit Laws for Critical Dispersion on Complete Graphs

all s ≥ 0 and ξ ∈ Ω. Additionally, consider the σ-algebra F = σ{Xs | s ≥ 0} and equip the
measurable space (Ω, F) with the filtration (Fs)s≥0 given by Fs = σ{Xr | 0 ≤ r ≤ s} for
all s ≥ 0, which we may complete and right-continuously extend in order to fulfil the usual
conditions. Via the map Ω′ ∋ ξ′ 7→ Xa,c,γ,x(ξ′) ∈ Ω it is possible to switch from Pa,c,γ,x

to the canonical probability space (Ω, F , (Fs)s≥0, Pa,c,γ,x), where Pa,c,γ,x is the probability
measure given by Pa,c,γ,x(A) = P′((Xa,c,γ,x)−1(A)) for all A ∈ F . By this particular choice
we obtain that the coordinate process X on (Ω, F , (Fs)s≥0, Pa,c,γ,x) has the same law as
Xa,c,γ,x under P′, i.e. under Pa,c,γ,x the process X satisfies (2). The following corollary is
now an immediate consequence of Lemma 6, and a similar construction was also performed
in [7].

▶ Corollary 7. For all initial states x ≥ 0 and for all a ∈ R and c, γ > 0, there is a unique
solution (X, Ba,c,γ,x,Pa,c,γ,x) to (2), where X is the coordinate process and thus independent
of a, c, γ, x. Moreover, X is non-negative Pa,c,γ,x-almost surely, where Pa,c,γ,x denotes the
probability measure of Pa,c,γ,x.

For the rest of this paper we will adopt the above procedure and consider solutions to (2) only
with respect to the canonical probability space (Ω, F , (Fs)s≥0, Pa,c,γ,x). Our main object
of interest will be the time at which the logistic Feller diffusion X hits zero, which under
Pa,c,γ,x is given by the stopping time

T (ξ) = inf{s ≥ 0 : ξ(s) = 0}, ξ ∈ Ω.

The author of [7] establishes that T is finite Pa,c,γ,x-almost surely. Moreover, Xs = 0 for all
s ≥ T under Pa,c,γ,x, i.e. upon hitting zero the process becomes constant, which is why we
also refer to T as absorption time.

Within our context, it will be necessary to consider solutions to (2) with initial value
x → ∞. The required results are covered by the following statement, whose proof can be
found in [7] and for which we define the function θ : [0, ∞) → R by

θ(λ) :=
∫ λ

0
exp

(γ

4c
v2 − a

c
v
)

dv, λ ≥ 0. (6)

▶ Lemma 8. For all x ≥ 0, a ∈ R and c, γ > 0, the expectation of T under Pa,c,γ,x is finite
and

Ea,c,γ,x [T] = 1
c

∫ ∞

0

θ(λ)
λθ′(λ) (1 − exp(−xλ)) dλ.

In addition, the measures (Pa,c,γ,x)x≥0 converge weakly, as x → ∞, to the law Pa,c,γ,∞ of
the so-called standard logistic branching process. Under Pa,c,γ,∞, the hitting time T is a
continuous random variable which is finite almost surely and has finite expectation given by

Ea,c,γ,∞ [T] = sup
x≥0

Ea,c,γ,x [T] = 1
c

∫ ∞

0

θ(λ)
λθ′(λ) dλ.

3 Proof Strategy & Some Details

In the following lemma we investigate the early phase of the process. In particular we are
interested in the number of steps and the number of jumps until the number of unhappy
particles drops to Θ(n1/2).

U. De Ambroggio, T. Makai, K. Panagiotou, and A. Steibel 26:9

▶ Lemma 9. Let ϵ, δ > 0, α ∈ R and M = n/2 + α
√

n + o(
√

n) ∈ N. Let

Tn,M,δ := inf
{

t > 0 : Ut ≤ n1/2/δ
}

.

Then, for all sufficiently small δ > 0 and all sufficiently large n, with probability at least 1 − δ,∣∣∣∣Tn,M,δ − 4
7δn1/2

∣∣∣∣ ≤ ϵδn1/2 and

∣∣∣∣∣∣
∑

0≤t≤Tn,M,δ

Ut − 2
7n ln n

∣∣∣∣∣∣ ≤ ϵn ln n.

In particular, (roughly) 4
7 δn1/2 steps are required to drop below n1/2/δ unhappy particles,

and at this step the accumulated number of unhappy particles, which corresponds to the
total number of jumps, is (roughly) 2

7 n ln n. The lemma is established by considering the
number of unhappy particles for a relatively short number of steps, where the change of
the process can be precisely controlled by means of martingale concentration, exploiting the
subgaussian nature of the increments. We omit the details due to space limitations.

We focus on the late phase, which uses the diffusion approximation toolbox. We write

Ut+1 − Ut = Xt+1 − Yt+1,

where Xt+1 stands for the number of particles that were happy at step t but become unhappy
in step t + 1 (because some particle which was unhappy at time t moved onto their vertex)
and Yt+1 is the number of unhappy particles at time t that become happy at step t + 1
(because at time t + 1 they are alone on the vertex that they occupy). Moreover, define

Xt+1,h := 1[h ∈ Ut+1] and Yt+1,u := 1[u ∈ Ht+1]

where Ht+1/Ut+1 is the set of happy/unhappy particles at time t + 1 and, so that we can
write

Xt+1 =
∑

h∈Ht

Xt+1,h and Yt+1 =
∑

u∈Ut

Yt+1,u.

It is clear that, given Ut, we can compute E[Xt+1,h], E[Yt+1,u] and E[Xt+1,hYt+1,u] for any
h ∈ Ht and u ∈ Ut; the details are omitted. With this at hand, we then establish asymptotics
of the drift and variation for the number of unhappy particles, which we describe in the
following two lemmas.

▶ Lemma 10. Let ε = ε(n) = o(1), u : N → N and M = M(n) := (1 + ε)n/2 ∈ N. Then,
uniformly,

E
[
Ut+1 − Ut | Ut = u

]
= εu − u2

n

(
7
4 + 3ε

4

)
+ O

(
u

n
+ u3

n2

)
.

▶ Lemma 11. Let ε = ε(n) = o(1) and u : N → N be such that u = o(n2/3) and M =
M(n) := (1 + ε)n/2 ∈ N. Then, uniformly,

E
[
(Ut+1 − Ut)2 | Ut = u

]
= u + o(εu2 + u).

To continue we introduce the (continuous) time-shifted process

U ′
s := U⌊s⌋+Tn,M,δ

, s ≥ 0.

By applying Theorem 5 we will show that (n−1/2U ′
s
√

n
)s≥0 converges weakly to a diffusion.

Note that the following lemma is just a reformulation of Lemma 2 in the Introduction, as (7)
corresponds to the SDE (1).

AofA 2024

26:10 Limit Laws for Critical Dispersion on Complete Graphs

▶ Lemma 12. Let δ > 0. As n → ∞, the process (n−1/2U ′
s
√

n
)s≥0 converges weakly to a

process X that satisfies

dXs =
(

2αXs − 7
4X2

s

)
ds +

√
XsdBs, s > 0, and X0 = δ−1. (7)

Proof. We will apply Theorem 5 with h = h(n) = n−1/2 and Y
(n)

t := n−1/2U ′
t for t ∈ N0.

First, note that it is necessary to extend the SDE (7) in a way that it has a unique solution
not only for all initial values x ≥ 0, but for all x ∈ R. To this end, write a+ = max{a, 0} for
a ∈ R and consider the SDE

dXs =
(

2αX+
s − 7

4(X+
s)2

)
ds +

√
X+

s dBs, s > 0, with X0 = x ∈ R. (8)

Note that if the initial value x is negative, then X = x uniquely satisfies this SDE. For x ≥ 0,
recall that Corollary 7 guarantees the existence of a unique solution (X, B2α,7/4,1,x,P2α,7/4,1,x)
to (7) with X0 = x and such that X ≥ 0 almost surely. Hence, if x ≥ 0, (8) coincides with
(7) with initial value X0 = x and we conclude that (8) possesses a unique solution for all
x ∈ R.

Next, we employ Lemmas 10 and 11 with ε(n) = 2αn−1/2+o(n−1/2), as M = n/2+αn1/2+
o(n1/2). For this purpose, let R < ∞ and consider x ∈ S(n) ⊆ {0, n−1/2, 2n−1/2, ..., n1/2}
with |x| ≤ R. Then, Lemma 10 with u = xn1/2 implies that

b(n)(x) =
E

[
n−1/2U ′

t+1 − n−1/2U ′
t | n−1/2U ′

t = x
]

n−1/2 = 2αx − 7
4x2 + o

(
R + R3)

.

Further, as xn1/2 = o(n2/3) due to |x| ≤ R, it follows from Lemma 11 with u = xn1/2 that

a(n)(x) =
E

[
(n−1/2U ′

t+1 − n−1/2U ′
t)2 | n−1/2U ′

t = x
]

n−1/2 = x + o
(
R2)

. (9)

We therefore obtain that for any R < ∞

lim
n→∞

sup
x∈S(n),|x|≤R

∣∣∣∣b(n)(x) −
(

2αx − 7
4x2

)∣∣∣∣ = 0 and lim
n→∞

sup
x∈S(n),|x|≤R

|a(n)(x)−x| = 0. (10)

Moreover, we show

lim
n→∞

sup
x∈S(n),|x|≤R

|γ(n)
3 (x)| = 0, (11)

and

U ′
0 = UTn,M,δ

∼ n1/2/δ with probability 1 − o(1). (12)

The last two facts, whose proof is omitted here, together with (10) and the existence of a unique
solution to (8) guarantee that we can apply Theorem 5 to conclude that (n−1/2U ′

s
√

n
)s≥0

converges weakly to a process X that satisfies (7) with X0 = 1/δ, and the proof is finished. ◀

Recall from Corollary 7 that (X, B2α,7/4,1,x,P2α,7/4,1,x) represents a solution of (7) with
initial value x ≥ 0 and that the corresponding hitting time of zero is given by

T = inf{s ≥ 0 : Xs = 0} (13)

under the probability measure P2α,7/4,1,x. The next statement asserts that n−1/2T ′
n,M,δ,

where T ′
n,M,δ := Tn,M − Tn,M,δ, converges in distribution to T under P2α,7/4,1,1/δ.

U. De Ambroggio, T. Makai, K. Panagiotou, and A. Steibel 26:11

▶ Lemma 13. Let δ > 0. Then, as n → ∞, n−1/2T ′
n,M,δ

d→ T , with T given by (13) under
the probability measure P2α,7/4,1,1/δ.

Proof. Let s ≥ 0 and recall from Section 2.1 that, under P2α,7/4,1,1/δ, Xs = 0 is equivalent
to T ≤ s. Similarly, U⌊s⌋ = 0 if and only if Tn,M ≤ s, from which we obtain that T ′

n,M,δ =
Tn,M − Tn,M,δ ≤ s if and only if U ′

s = U⌊s⌋+Tn,M,δ
= 0. Hence,

P2α,7/4,1,1/δ(Xs = 0) = P2α,7/4,1,1/δ(T ≤ s) and P(U ′
s = 0) = P(T ′

n,M,δ ≤ s).

As Lemma 12 entails limn→∞ P
(
n−1/2U ′

s
√

n
= 0

)
= P2α,7/4,1,1/δ(Xs = 0), we conclude

lim
n→∞

P(n−1/2T ′
n,M,δ ≤ s) = P2α,7/4,1,1/δ(T ≤ s). ◀

With the convergence in distribution shown in the previous lemma at hand, we are now in
the position to prove Theorem 1.

Proof of Theorem 1. Recall from Lemma 9 that Tn,M,δ ≤ δn1/2 with probability at least
1 − δ for δ sufficiently small and n large enough. As Tn,M,δ is non-negative, this implies that

n−1/2T ′
n,M,δ ≤ n−1/2Tn,M ≤ δ + n−1/2T ′

n,M,δ with probability at least 1 − δ.

Applying Lemma 13, we therefore obtain that for all s ≥ 0

lim
n→∞

P(n−1/2Tn,M ≤ s) ≤ lim
n→∞

P(n−1/2T ′
n,M,δ ≤ s) = P2α,7/4,1,1/δ(T ≤ s)

and

lim
n→∞

P
(
n−1/2Tn,M ≥ s

)
≤ lim

n→∞
P

(
n−1/2Tn,M ≥ s, Tn,M,δ ≤ δn1/2)

+ δ

≤ P2α,7/4,1,1/δ

(
T ≥ s − δ

)
+ δ.

Note that P2α,7/4,1,x1(T ≥ τ) ≥ P2α,7/4,1,x2(T ≥ τ) for all x1 > x2 ≥ 0 and τ ≥ 0, since X

is almost surely continuous and needs a positive and finite amount of time to drop from x1
to x2. So, since according to Lemma 8 we have limδ→0 P2α,7/4,1,1/δ = P2α,7/4,1,∞ and T is
continuous, it therefore follows that

lim
δ→0

P2α,7/4,1,1/δ

(
T ≥ s − δ

)
≤ lim

δ→0
P2α,7/4,1,∞

(
T ≥ s − δ

)
= P2α,7/4,1,∞

(
T ≥ s

)
,

which yields

lim
n→∞

P(n−1/2Tn,M ≤ s) = P2α,7/4,1,∞(T ≤ s), s ≥ 0.

Thus, n−1/2Tn,M
d→ Tα, where Tα satisfies

P(Tα ≤ s) = P2α,7/4,1,∞(T ≤ s), s ≥ 0.

Moreover, P2α,7/4,1,∞(T > 0) = 1 implies that Tα is positive almost surely, and this completes
the proof of Theorem 1. ◀

AofA 2024

26:12 Limit Laws for Critical Dispersion on Complete Graphs

References
1 K. Bringmann, F. Kuhn, K. Panagiotou, U. Peter, and H. Thomas. Internal DLA: Efficient

simulation of a physical growth model. In Automata, Languages, and Programming, pages
247–258, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

2 C. Cooper, A. McDowell, T. Radzik, N. Rivera, and T. Shiraga. Dispersion processes. Random
Structures Algorithms, 53(4):561–585, 2018. doi:10.1002/rsa.20822.

3 U. De Ambroggio, T. Makai, and K. Panagiotou. Dispersion on the complete graph, 2023. An
extended abstract appeared in the Proceedings of EUROCOMB ’23. arXiv:2306.02474.

4 P. Diaconis and W. Fulton. A growth model, a game, an algebra, Lagrange inversion, and
characteristic classes. Rend. Sem. Mat. Univ. Politec. Torino, 49(1):95–119, 1991.

5 R. Durrett. Stochastic calculus – a practical introduction. Probability and Stochastics Series.
CRC Press, Boca Raton, FL, 1996.

6 A. Frieze and W. Pegden. A note on dispersing particles on a line. Random Structures
Algorithms, 53(4):586–591, 2018. doi:10.1002/rsa.20821.

7 A. Lambert. The branching process with logistic growth. Ann. Appl. Probab., 15(2):1506–1535,
2005. doi:10.1214/105051605000000098.

8 G. F. Lawler, M. Bramson, and D. Griffeath. Internal diffusion limited aggregation. Ann.
Probab., 20(4):2117–2140, 1992.

9 L. T. Rolla. Activated Random Walks on Zd. Probability Surveys, 17:478–544, 2020. doi:
10.1214/19-PS339.

10 Y. Shang. Longest distance of a non-uniform dispersion process on the infinite line. Inform.
Process. Lett., 164:106008, 5, 2020. doi:10.1016/j.ipl.2020.106008.

https://doi.org/10.1002/rsa.20822
https://arxiv.org/abs/2306.02474
https://doi.org/10.1002/rsa.20821
https://doi.org/10.1214/105051605000000098
https://doi.org/10.1214/19-PS339
https://doi.org/10.1214/19-PS339
https://doi.org/10.1016/j.ipl.2020.106008

Asymptotic Enumeration of Rooted Binary
Unlabeled Galled Trees with a Fixed Number of
Galls
Lily Agranat-Tamir1 #

Department of Biology, Stanford University, CA, USA

Michael Fuchs #

Department of Mathematical Sciences, National Chengchi University, Taipei, Taiwan

Bernhard Gittenberger #

Department of Discrete Mathematics and Geometry, Technische Universität Wien, Austria

Noah A. Rosenberg #

Department of Biology, Stanford University, CA, USA

Abstract
Galled trees appear in problems concerning admixture, horizontal gene transfer, hybridization, and
recombination. Building on a recursive enumerative construction, we study the asymptotic behavior
of the number of rooted binary unlabeled (normal) galled trees as the number of leaves n increases,
maintaining a fixed number of galls g. We find that the exponential growth with n of the number of
rooted binary unlabeled normal galled trees with g galls has the same value irrespective of the value
of g ≥ 0. The subexponential growth, however, depends on g; it follows cgn2g−3/2, where cg is a
constant dependent on g. Although for each g, the exponential growth is approximately 2.4833n,
summing across all g, the exponential growth is instead approximated by the much larger 4.8230n.

2012 ACM Subject Classification Mathematics of computing → Generating functions; Mathematics
of computing → Enumeration

Keywords and phrases galled trees, generating functions, phylogenetics, unlabeled trees

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.27

Funding Michael Fuchs: National Science and Technology Council grant NSTC-111-2115-M-004-
002-MY2
Noah A. Rosenberg: National Science Foundation grant BCS-2116322

1 Introduction

Rooted binary trees are a staple of mathematical phylogenetic analysis, as they are used to
represent diverse biological processes taking place in time – including the evolution of species,
the evolution of genes among those species, and the divergence of populations [9, 21, 24].
The root represents a common ancestor, and the leaves represent subsequent biological
entities, often in the present day. Viewed as objects evolving in time, by extension of
“vertical” inheritance that occurs in genetic transmission from parents to offspring, biological
divergences are viewed as taking place vertically on the tree. Mathematical phylogenetic
analyses of trees have produced rich contributions to algorithmic and combinatorial studies.

Certain evolutionary events, however, involve merging rather than divergence of biological
lineages. Such events include the recombination that occurs during gamete formation,
population admixture, horizontal gene transfer, and hybridization. To describe processes
that include these events, we must look beyond trees to phylogenetic networks [14, 17, 18].

1 corresponding author

© Lily Agranat-Tamir , Michael Fuchs, Bernhard Gittenberger, and Noah A. Rosenberg;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 27; pp. 27:1–27:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lilyat@stanford.edu
https://orcid.org/0000-0003-2211-0369
mailto:mfuchs@nctu.edu.tw
https://orcid.org/0000-0001-8891-6897
mailto:gittenberger@dmg.tuwien.ac.at
https://orcid.org/0000-0002-2639-8227
mailto:noahr@stanford.edu
https://orcid.org/0000-0002-1829-8664
https://doi.org/10.4230/LIPIcs.AofA.2024.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Unlabeled Galled Trees with a Fixed Number of Galls

Figure 1 Features of a gall in a galled tree. (A) A gall as a representation of a biological merging
event. Biological lineages a and b each bifurcate, with one branch of each bifurcation merging to
form lineage c. (B) Nomenclature for the various nodes in a gall.

Among the phylogenetic networks, galled trees are some of the simplest. As their name
suggests, they are tree-like, but they can contain certain internal nodes with in-degree 2
and out-degree 1, representing permitted classes of mergings. Galled trees are named for
the growths, termed galls, which appear in plants but which do not disrupt their tree-like
structure. They were first introduced in the study of recombination [15, 16, 23].

Mathematically, a galled tree allows each vertex or edge in a graph to be contained in at
most one cycle. An additional requirement is needed for galled trees to be meaningful for
biological processes such as hybridization. In a hybridization event, two biological lineages, a

and b, each bifurcate; a merging event occurs between two branches, one from each bifurcation,
producing a third lineage, c (Figure 1A). The structure of the event requires that when
viewed graphically, a gall – a cycle in the graph – contains at least four nodes. These include
a top node, two hybridizing nodes, and one hybrid node. Additional side nodes are permitted,
and we regard the hybridizing nodes as special side nodes (Figure 1B). The requirement that
galls have at least these four nodes (i.e. the top node must not be a hybridizing node) is
equivalent to a requirement that galled trees be normal.

Many enumerative problems on galled trees have been investigated [3, 4, 5, 22]; this study
concerns rooted binary unlabeled normal galled (non-plane) trees. Given number of galls
g, as the number of leaves n → ∞, what is the growth of the size of this class? The case
of g = 0 is the enumeration of rooted binary unlabeled trees, and we previously studied
g = 1 [1]. Building on a recurrence for rooted binary unlabeled normal galled trees with
n leaves and g galls, we obtain a generating function for g = 2. We find the asymptotic
behavior of the number of trees with n leaves and g = 2 galls, and we obtain asymptotics for
each g > 2. In our main result, Theorem 10, we report that the number of galled trees with
n leaves and g galls has the form βgn2g− 3

2 ρ−n, where ρ is the radius of convergence of the
generating function for the g = 0 case, and βg is a constant that depends solely on g.

2 Definitions

We define our concepts formally. We assume that all networks and trees are binary; we usually
drop the term binary. A rooted phylogenetic network is a directed acyclic graph in which four
properties hold. (i) There exists a unique node with in-degree 0 and out-degree 2. This node

L. Agranat-Tamir, M. Fuchs, B. Gittenberger, and N. A. Rosenberg 27:3

Figure 2 Rooted binary unlabeled galled trees. (A) A tree with no galls. (B) A galled tree with
one gall. (C) A galled tree with a root gall. (D) A galled tree with two galls. (E) A galled tree that
is not a normal galled tree and that is not included in the class of galled trees that we enumerate.

is the root node. (ii) Leaf nodes possess in-degree 1 and out-degree 0. (iii) Non-leaf, non-root
nodes possess in-degree 2 and out-degree 1 or in-degree 1 and out-degree 2. (iv) Edges are
directed away from the root. Nodes with in-degree 2 and out-degree 1 are reticulation nodes
(or hybrid nodes). Nodes with in-degree 1 and out-degree 2 are tree nodes.

A rooted galled tree is a rooted phylogenetic network with three additional properties.
(v) Each reticulation node ar has a unique ancestor node r so that exactly two non-overlapping
paths of edges connect r to ar. Ignoring the direction of the edges, the two paths from r to
ar produce a cycle Cr. The cycle is termed a gall. (vi) Consider galls Cr and Cs, associated
with reticulation nodes ar and as, ar ≠ as. The sets of nodes in the galls Cr and Cs are
disjoint. (vii) Ancestor node r and reticulation node ar are separated by two or more edges.
Condition (vii) encodes the requirement that we consider only normal galled trees (Figure 2).

We generally drop the terms rooted and normal, and refer only to galled trees, and where
a distinction is necessary, labeled and unlabeled galled trees. Although a galled tree is not
technically a tree due to the presence of cycles, we continue to refer to galled trees as trees.
We similarly refer to the galled trees rooted at internal nodes of a galled tree as subtrees. Our
view of galls as representations of biological merging events leads us to depict hybridizing
nodes and their associated hybrid node on a horizontal line, representing the simultaneity of
these nodes when a galled tree is taken to represent a structure evolving in time [2, 20].

A basic result describes the maximal number of galls possible in a galled tree with n

leaves. A gall contains three or more descendant subtrees: one from the reticulation node,
two from the hybridizing nodes, and one for each additional side node. Hence, the smallest
galled tree possesses n = 3 leaves. Adding a gall to a galled tree involves replacing one
subtree with at least three subtrees, so that each gall adds at least two leaves. For a tree
with g galls, the number of leaves satisfies n ≥ 2g + 1, or g ≤ ⌊ n−1

2 ⌋ [20].
We will need to consider compositions, ordered lists of positive integers that sum to a

specified value. We denote by C(a, b) the compositions of a natural number a into b parts.
C(a, b) is the set of ordered lists of positive integers of length b, (i1, i2, . . . , ib), with sum equal
to a. We denote by Cp(a, b) the subset of C(a, b) containing the palindromic compositions of
a, that is, the compositions (i1, i2, . . . , ib) for which ij = ib−j+1 for each j from 1 to b.

3 Previous work

We review a number of results. The rooted binary unlabeled galled trees generalize the
rooted binary unlabeled trees without galls. Letting Un denote the number of rooted binary
unlabeled trees with no galls and letting U(t) denote the generating function

∑
n≥0 Untn,

U(t) = t + 1
2U2(t) + 1

2U(t2). (1)

AofA 2024

27:4 Unlabeled Galled Trees with a Fixed Number of Galls

Denoting the radius of convergence by ρ, as t → ρ−, we have U(t) ∼ 1 − γ
√

1 − t/ρ, where
γ ≈ 1.1300 and ρ ≈ 0.4027 [8, p. 55] [10, pp. 476-477]. The asymptotic approximation for
the number of rooted binary unlabeled trees (with no galls) is,

Un = [tn]U(t) ∼ γ

2Γ(1
2)

n− 3
2 ρ−n. (2)

In our previous work on rooted binary unlabeled normal galled trees [1] (henceforth
“unlabeled galled trees”), we obtained a recursion enumerating the An unlabeled galled trees
with n leaves and another recursion enumerating the En,g unlabeled galled trees with a
specified number of galls g. We specifically considered the case of g = 1. We also studied the
asymptotics of An and En,1 through their generating functions. The generating function for
unlabeled galled trees, considering all possible numbers of galls, was found to be [1, eq. 36]

A(t) = t + 1
2A2(t) + 1

2A(t2) + 1 − 1
1 − A(t) + A(t)

2[1 − A(t)]2 + A(t)
2[1 − A(t2)] . (3)

The three leftmost terms, identical to the generating function U(t) (eq. (1)), arise from the
galled trees in which two subtrees descend immediately from the root. The other terms arise
from galled trees with a gall that contains the root, a root gall.

Using the asymptotics of implicit tree-like classes theorem [10, pp. 467-468], we obtained
the asymptotics of the number of galled trees with n leaves, An [1, eq. 42]: An = [tn]A(t) ∼[
δ/

(
2Γ(1

2)
)]

n− 3
2 α−n, where δ ≈ 0.2793 and α ≈ 0.2073. A(t) has convergence radius about

half that of U(t), so that galled trees are much more numerous than the trees without galls.
We also derived the generating function E1(t) and asymptotic growth of the number of

unlabeled galled trees with exactly one gall. We state these results as propositions.

▶ Proposition 1 ([1], eq. 48). The generating function E1(t) for the number of unlabeled
galled trees with 1 gall satisfies

E1(t) = 1
1 − U(t) − 1

[1 − U(t)]2 + U(t)
2[1 − U(t)]3 + U(t)

2[1 − U(t)][1 − U(t2)] . (4)

▶ Proposition 2 ([1], eq. 50). The asymptotic growth of the number En,1 of unlabeled galled
trees with n leaves and 1 gall satisfies

En,1 ∼ 1
2γ3Γ(3

2)
n

1
2 ρ−n = 1

γ3√
π

n
1
2 ρ−n. (5)

Proposition 2 follows from the fact that as t → ρ−, E1(t) ∼ 1/[2γ3(1 − t/ρ) 3
2]. E1(t) in eq. (4)

depends on U(t). Eq. (5) clarifies that the exponential growth of the number of unlabeled
galled trees with one gall is the same as that of the number of unlabeled galled trees with no
galls; only the subexponential growth differs. We will generalize this result.

4 Recursion

4.1 Recursion for g galls, En,g

In [1, eq. 27], we obtained a recursion for En,g, the number of unlabeled galled trees with n

leaves and exactly g galls; Table 3 reported the numerical values En,g up to n = 18. The
base cases are E1,0 = 1 and E1,g = 0 for g ≥ 1. We also write Em,ℓ = 0 when m is not a
positive integer, ℓ is not a positive integer, or both.

L. Agranat-Tamir, M. Fuchs, B. Gittenberger, and N. A. Rosenberg 27:5

▶ Proposition 3. For (n, g) with n ≥ 2 and 0 ≤ g ≤ ⌊ n−1
2 ⌋, the number of unlabeled galled

trees with n leaves and g galls is

En,g = 1
2

[(∑
c∈C(n,2)

∑
d∈C(g+2,2)

2∏
i=1

Eci,di−1

)
+ E n

2 , g
2

(6)

+
(n∑

k=3
(k − 2)

∑
c∈C(n,k)

∑
d∈C(g−1+k,k)

k∏
i=1

Eci,di−1

)
(7)

+
(⌊ n−1

2 ⌋∑
a=1

∑
c∈Cp(n,2a+1)

∑
d∈Cp

(
g−1+(2a+1),2a+1

)
a+1∏
i=1

Eci,di−1

)]
. (8)

The approach is to use a recursion at the root node. We sum over all products of possible
counts of subtrees, each with fewer than n leaves. Pairs of galled trees that are reflections of
one another over the root – or the axis connecting the top node to the reticulation node of
the root gall – are the same unlabeled galled tree, explaining the leading 1

2 . We add back
terms for galled trees that are symmetric over the root, which are not double-counted.

Line (6) in Proposition 3 enumerates galled trees with n leaves and g galls that do not
have a root gall. The first term traverses combinations of numbers of leaves in the two
subtrees summing to n by traversing compositions c of n into 2 parts

(
c ∈ C(n, 2)

)
. It also

traverses combinations of placements of the g galls in the two subtrees. Because subtrees
can possess 0 galls, these combinations are identified from compositions of g + 2 into 2 parts,
subtracting 1 gall in each part

(
d ∈ C(g + 2, 2)

)
. The second term adds back the galled trees

with identical subtrees; this term is nonzero only if both n and g are even.
Line (7) counts galled trees with n leaves and g galls that do have a root gall. It traverses

the possible number k of subtrees descending from side nodes, hybridizing nodes, and the
hybrid node of the root gall (3 to n, the number of leaves). It then traverses the k −2 possible
nodes in the root gall where the hybrid node can be placed: all k nodes except immediate
descendants of the root. We then traverse the possible combinations of the n leaves and g − 1
remaining (non-root) galls into the k subtrees, again allowing subtrees with no galls.

Line (8) adds back half the galled trees with n leaves and g galls that have a root gall and
that are symmetric over the reticulation node. Here, a is the possible number of subtrees of
the root gall on each side of the reticulation node, so that the root gall has 2a + 1 subtrees in
total. The composition of the n leaves into 2a + 1 subtrees and the composition of the g − 1
galls into those subtrees are both palindromic. Given these compositions, a tree is specified
by its subtrees of one side of the reticulation node and the subtree of the reticulation node.

4.2 Recursion for two galls, En,2

For g = 2, for n ≥ 2, the recursion for En,g becomes

En,2 = 1
2

[(n−1∑
c=1

2∑
d=0

Ec,dEn−c,2−d

)
+ E n

2 ,1

+
n∑

k=3
(k − 2)

∑
c∈C(n,k)

∑
d∈C(k+1,k)

k∏
i=1

Eci,di−1

+
⌊ n−1

2 ⌋∑
a=1

∑
c∈Cp(n,2a+1)

∑
d∈Cp(2a+2,2a+1)

a+1∏
i=1

Eci,di−1

]

AofA 2024

27:6 Unlabeled Galled Trees with a Fixed Number of Galls

= 1
2

[(
2

n−1∑
m=1

UmEn−m,2 +
n−1∑
m=1

Em,1En−m,1

)
+ E n

2 ,1

+
n∑

k=3
(k − 2)

n−1∑
m=k−1

∑
c∈C(m,k−1)

(k−1∏
i=1

Uci

)
kEn−m,1

+
⌊ n−1

2 ⌋∑
a=1

∑
c∈Cp(n,2a+1)

(a∏
i=1

Uci

)
Eca+1,1

]
. (9)

Recall here that Em,1 = 0 if m /∈ N. In the first line, m gives the number of leaves in the “left”
subtree of the root and n − m is the number in the “right” subtree (the left–right distinction
is solely for convenience, as we consider non-plane trees, in which the particular embedding
of a tree in the plane is disregarded). In the second line, k is the number of subtrees of the
root gall, m is the number of leaves across the k − 1 subtrees of the root gall that do not
contain a gall, and n − m is the number of leaves in the subtree with the second gall.

5 Analysis of En,2

5.1 Generating function

Using the recursion in eq. (9), we now find the generating function of En,2, which we define
by E2(t) =

∑
n≥0 En,2tn. Eq. (9) holds for all n ≥ 0 because En,2 = 0 for n ≤ 4 and En,1 = 0

for n ≤ 2. We can add terms involving U0, E0,1, and E0,2, all of which equal zero. Then

E2(t) =
∑
n≥0

En,2tn = 1
2

[∑
n≥0

((
2

n∑
m=0

UmEn−m,2

)
+

(n∑
m=0

Em,1En−m,1

)
+ E n

2 ,1

)
tn

︸ ︷︷ ︸
E2i (t)

+
∑
n≥0

(n∑
k=3

(k − 2)k
n−1∑

m=k−1

∑
c∈C(m,k−1)

(k−1∏
i=1

Uci

)
En−m,1

)
tn

︸ ︷︷ ︸
E2ii (t)

+
∑
n≥0

(⌊ n−1
2 ⌋∑

a=1

∑
c∈Cp(n,2a+1)

(a∏
i=1

Uci

)
Eca+1,1

)
tn

︸ ︷︷ ︸
E2iii (t)

]
. (10)

We now simplify the three terms of E2(t):

E2i (t) = 2
∑
m≥0

∑
n≥m

(Umtm)(En−m,2tn−m) +
∑
m≥0

∑
n≥m

(Em,1tm)(En−m,1tn−m) +
∑
n≥0

E n
2 ,1tn

= 2
∑
m≥0

(Umtm)
∑
ℓ≥0

(Eℓ,2tℓ) +
∑
m≥0

(Em,1tm)
∑
ℓ≥0

(Eℓ,1tℓ) +
∑
n≥0

En,1t2n

= 2U(t) E2(t) + E2
1 (t) + E1(t2). (11)

L. Agranat-Tamir, M. Fuchs, B. Gittenberger, and N. A. Rosenberg 27:7

For E2ii(t), we obtain

E2ii(t) =
∑
k≥3

(k − 2)k
∑

m≥k−1

∑
c∈C(m,k−1)

k−1∏
i=1

Uci
tci

∑
n≥m

En−m,1tn−m

=
∑
k≥3

(k − 2)k
∑
i1≥0

∑
i2≥0

. . .
∑

ik−1≥0
Ui1Ui2 · · · Uik−1ti1+i2+...+ik−1

∑
ℓ≥0

Eℓ,1tℓ

=
∑
k≥3

(k − 2)k Uk−1(t) E1(t) = E1(t)
[∑

k≥2
(k2 − 1) Uk(t)

]
= E1(t)

[(∑
k≥0

k2Uk(t)
)

− U(t) −
(∑

k≥0
Uk(t)

)
+ 1 + U(t)

]
= E1(t)

[
U(t) + U2(t)
[1 − U(t)]3 − 1

1 − U(t) + 1
]
. (12)

Finally, E2iii(t) becomes

E2iii(t) =
∑
a≥1

∑
m≥a

∑
c∈C(m,a)

a∏
i=1

Uci
t2ci

∑
n≥2m

En−2m,1tn−2m

=
∑
a≥1

∑
i1≥0

∑
i1≥0

. . .
∑
ia≥0

Ui1Ui2 · · · Uia
t2i1+2i2+...+2ia

∑
ℓ≥0

Eℓ,1tℓ

=
∑
a≥1

Ua(t2) E1(t) = E1(t)
1 − U(t2) − E1(t). (13)

Summing the three parts, we obtain the following proposition.

▶ Proposition 4. The generating function E2(t) for the number of unlabeled galled trees with
2 galls satisfies

E2(t) = E1(t)
2[1 − U(t)]

[
E1(t) + U(t) + U2(t)

[1 − U(t)]3 − 1
1 − U(t) + 1

1 − U(t2)

]
+ E1(t2)

2[1 − U(t)] . (14)

5.2 Asymptotic analysis
To analyze the asymptotics of E2(t) as t → ρ−, we take the highest-order terms in Proposi-
tion 4, that is, the terms with the highest power of 1 − t/ρ in the denominator. We recall
U(t) ∼ 1 − γ

√
1 − t/ρ. From Proposition 1, E1(t) ∼ 1/[2γ3(1 − t/ρ) 3

2]. We have:

E2(t) ∼ E2
1 (t)

2[1 − U(t)] + 2E1(t)
2[1 − U(t)]4 = 5

8γ7(1 − t/ρ)7/2 . (15)

To obtain a result for the coefficients En,2, we use the transfer formula (Corollary VI.1,
page 392 and Theorem VI.4, page 393 in [10]) – according to which, if f(t) is ∆-analytic
with a singularity at b, and f(t) ∼ (1 − t

b)−a as t
b → 1 with t in ∆, and a /∈ {0, −1, −2, . . . },

then [tn]f(t) ∼ na−1b−n/Γ(a). Here, ρ fulfills the role of b and 7
2 that of a.

▶ Proposition 5. The asymptotic growth of the number En,2 of unlabeled galled trees with n

leaves and 2 galls satisfies

En,2 ∼ 5
8γ7Γ(7

2)
n

5
2 ρ−n = 1

3γ7√
π

n
5
2 ρ−n. (16)

We note the appearance of ρ−n and n5/2 to obtain the following corollary.

▶ Corollary 6. The exponential growth of E2(t) is the same as that of U(t) and E1(t); however,
its subexponential growth is greater.

AofA 2024

27:8 Unlabeled Galled Trees with a Fixed Number of Galls

6 Analysis of En,g

6.1 Generating function
We denote the generating function of the number of galled trees with exactly g galls by
Eg(t) =

∑
n≥0 En,gtn. Similarly to the case of g = 2, we use the recursion we had calculated

for En,g in Proposition 3 to derive the generating function. From Proposition 3, we can
decompose the generating function by

Eg(t) = 1
2

[∑
n≥0

((∑
c∈C(n,2)

∑
d∈C(g+2,2)

2∏
i=1

Eci,di−1

)
+ E n

2 , g
2

)
tn

︸ ︷︷ ︸
Egi (t)

+
∑
n≥0

(n∑
k=3

(k − 2)
∑

c∈C(n,k)

∑
d∈C(g−1+k,k)

k∏
i=1

Eci,di−1

)
tn

︸ ︷︷ ︸
Egii (t)

+
∑
n≥0

(⌊ n−1
2 ⌋∑

a=1

∑
c∈Cp(n,2a+1)

∑
d∈Cp(g−1+2a+1,2a+1)

a+1∏
i=1

Eci,di−1

)
tn

︸ ︷︷ ︸
Egiii (t)

]
. (17)

where En,g = 0 for pairs with n = 0 or n = 1 and g ≥ 1. The terms in the decomposition are

Egi(t) = 2
∑
m≥0

∑
n≥m

(Umtm)(En−m,gtn−m) +
g−1∑
j=1

∑
m≥0

∑
n≥m

(Em,jtm)(En−m,g−jtn−m)

+
∑
n≥0

E n
2 , g

2
tn

Egii(t) =
g−1∑
ℓ=1

∑
k≥3

(k − 2)
(

k

ℓ

) ∑
m≥k−ℓ

∑
c∈C(m,k−ℓ)

k−ℓ∏
i=1

Ucit
ci

×
∑
n≥m

∑
c̃∈C(n−m,ℓ)

∑
d∈C(g−1,ℓ)

ℓ∏
j=1

Ec̃j ,dj
tc̃j (18)

Egiii(t) =
⌊ g−1

2 ⌋∑
ℓ=0

∑
a≥1

(
a

ℓ

) ∑
m1≥a−ℓ

∑
c∈C(m1,a−ℓ)

a−ℓ∏
i=1

Ucit
2ci

×
∑

m≥m1+ℓ

∑
c̃∈C(m−m1,ℓ)

⌊ g−1
2 ⌋∑

b=ℓ

∑
d∈C(b,ℓ)

ℓ∏
j=1

Ec̃j ,dj
t2cj

∑
n≥2m

En−2m,g−1−2btn−2m,

(19)

where it is convenient to denote Un by En,0 for terms with g − 1 − 2b = 0 in Egiii(t).
In Egi(t), j is the number of galls in the left subtree of the root, supposing both subtrees

possess at least one gall. In Egii(t), ℓ is the number of subtrees of the root gall that possess at
least one gall; k is the number of subtrees of the root gall, so that

(
k
ℓ

)
counts ways to select

which ℓ subtrees possess galls; and m is the number of leaves in the k − ℓ remaining subtrees.

L. Agranat-Tamir, M. Fuchs, B. Gittenberger, and N. A. Rosenberg 27:9

Similarly, in Egiii(t), for symmetric root galls, ℓ is the number of subtrees of the left side
of the root gall that contain galls; a is the number of subtrees of the left side of the root gall;
m1 is the sample size in the a − ℓ subtrees that do not possess galls; m − m1 is the sample
size in the ℓ subtrees that do possess galls; and b is the number of galls in those ℓ subtrees.

We now solve each part of the decomposition:

Egi(t) = 2
∑
m≥0

(Umtm)
∑
ℓ≥0

(Eℓ,gtℓ) +
g−1∑
j=1

∑
m≥0

(Em,jtm)
∑
ℓ≥0

(Eℓ,g−jtℓ) +
∑
n≥0

En, g
2
t2n

= 2U(t) Eg(t) +
(g−1∑

j=1
Ej(t) Eg−j(t)

)
+ E g

2
(t2). (20)

where Eℓ(t) = 0 for ℓ /∈ N. The second part produces

Egii(t) =
g−1∑
ℓ=1

∑
k≥max(ℓ,3)

(k − 2)
(

k

ℓ

) ∑
i1≥0

∑
i2≥0

. . .
∑

ik−ℓ≥0
Ui1Ui2 · · · Uik−ℓ

ti1+i2+...+ik−ℓ

×
∑

d∈C(g−1,ℓ)

∑
j1≥0

∑
j2≥0

· · ·
∑
jℓ≥0

Ej1,d1Ej2,d2 · · · Ejℓ,dℓ
tj1+j2+...+jℓ

=
g−1∑
ℓ=1

(∑
k≥max(ℓ,3)

(k − 2)
(

k

ℓ

)
Uk−ℓ(t)

) ∑
d∈C(g−1,ℓ)

ℓ∏
j=1

Edj
(t)

=
g−1∑
ℓ=1

(
3U(t) − 2 + ℓ

[1 − U(t)]ℓ+2 + [[ℓ = 1]]
) ∑

d∈C(g−1,ℓ)

ℓ∏
j=1

Edj (t). (21)

Here, [[·]] denotes the Iverson bracket. Finally, for the third part,

Egiii(t) =
⌊ g−1

2 ⌋∑
ℓ=0

∑
a≥1

(
a

ℓ

) ∑
i1≥0

∑
i2≥0

. . .
∑

ia−ℓ≥0
Ui1Ui2 · · · Uia−ℓ

t2i1+2i2+...+2ia−ℓ

×
⌊ g−1

2 ⌋∑
b=ℓ

∑
d∈C(b,ℓ)

∑
j1≥0

∑
j2≥0

· · ·
∑
jℓ≥0

Ej1,d1Ej2,d2 · · · Ejℓ,dℓ
t2j1+2j2+...2jℓ

×
∑
j≥0

Ej,g−1−2btj

=
⌊ g−1

2 ⌋∑
ℓ=0

(∑
a≥1

(
a

ℓ

)
Ua−ℓ(t2)

) ⌊ g−1
2 ⌋∑

b=ℓ

∑
d∈C(b,ℓ)

(ℓ∏
j=1

Edj (t2)
)

Eg−1−2b(t)

=
⌊ g−1

2 ⌋∑
ℓ=0

(
1

[1 − U(t2)]ℓ+1 − [[ℓ = 0]]
) ⌊ g−1

2 ⌋∑
b=ℓ

∑
d∈C(b,ℓ)

(ℓ∏
j=1

Edj
(t2)

)
Eg−1−2b(t). (22)

6.2 Asymptotic analysis

Eg(t) is the sum 1
2 [Egi(t) + Egii(t) + Egiii(t)] (eq. (17)). We denote E ′

gi
(t) =(∑g−1

j=1 Ej(t) Eg−j(t)
)

+ E g
2
(t2) and have Eg(t) = 1

2[1−U(t)] [E
′
gi

(t) + Egii(t) + Egiii(t)]. From
eqs. (20)-(22), Eg(t) is a rational function in U(t) and Eℓ(t) for 1 ≤ ℓ ≤ g − 1, as well as in
U(t2) and Eℓ(t2) for 1 ≤ ℓ ≤ g − 1.

AofA 2024

27:10 Unlabeled Galled Trees with a Fixed Number of Galls

▶ Proposition 7. The generating function Eg(t) for the number of unlabeled galled trees with
g galls satisfies as t → ρ−

Eg(t) ∼ δg

γ4g−1(1 − t/ρ)2g−1/2 , (23)

where δg is a constant dependent on g satisfying δ1 = 1
2 , and for g ≥ 2,

δg = 1
2

g−1∑
ℓ=1

[
δℓδg−ℓ + (ℓ + 1)

∑
d∈C(g−1,ℓ)

ℓ∏
j=1

δdj

]
. (24)

Proof. We proceed by induction. The claim holds for g = 1 (Proposition 1) and g = 2
(eq. (15)), with δ2 = 1

2 [1
2

1
2 +2 1

2] = 5
8 . We assume inductively that for ℓ = 1, 2, . . . , g−1, Eℓ(t) ∼

δℓ/[γ4ℓ−1(1 − t/ρ)2ℓ−1/2], with constants δℓ as in eq. (24). By the inductive hypothesis, the
convergence radius of Eℓ(t) for each ℓ, 1 ≤ ℓ ≤ g − 1, is ρ. Because t2 < t for t < ρ, U(t2)
and Eℓ(t2) can be treated as constants when finding the asymptotic behavior of Eg(t). As a
result, using the inductive hypothesis, all terms in Eg(t) take the form c/[γm(1 − t/ρ)m/2],
and we must find the terms with the maximal power of 1/

√
1 − t/ρ.

We examine E ′
gi

(t), Egiii(t), and then Egii(t). By the inductive hypothesis,

E ′
gi

(t) ∼
g−1∑
j=1

[
δj

γ4j−1(1 − t/ρ)2j−1/2 · δg−j

γ4(g−j)−1(1 − t/ρ)2(g−j)−1/2

]

∼
g−1∑
j=1

δjδg−j

γ4g−2(1 − t/ρ)2g−1 (25)

Egiii(t) ∼
⌊ g−1

2 ⌋∑
ℓ=0

⌊ g−1
2 ⌋∑

b=ℓ

(
1

[1 − U(ρ2)]ℓ+1

∑
d∈C(b,ℓ)

ℓ∏
j=1

Edj
(ρ2)

)
δg−1−2b

γ4g−8b−5(1 − t/ρ)2g−4b−5/2 .

(26)

Because the largest power of 1/(1 − t/ρ) in Egiii(t) is less than 2g − 1, its largest power in
E ′

gi
(t), Egiii(t) does not affect the asymptotics of Eg(t).
For Egii(t), for any ℓ = 1, 2, . . . , g − 1, two quantities determine the power of 1/

√
1 − t/ρ:

both
∑

d∈C(g−1,ℓ)
∏ℓ

j=1 Edj (t) and [3U(t) − 2 + ℓ]/[1 − U(t)]ℓ+2 + [[ℓ = 1]]. First, according
to the inductive hypothesis, for each ℓ, 1 ≤ ℓ ≤ g − 1, noting

∑ℓ
j=1 dj = g − 1,

∑
d∈C(g−1,ℓ)

ℓ∏
j=1

Edj
(t) ∼

∑
d∈C(g−1,ℓ)

ℓ∏
j=1

δdj

γ4dj−1(1 − t/ρ)2dj−1/2

∼
∑

d∈C(g−1,ℓ)

∏ℓ
j=1 δdj

γ4g−4−ℓ(1 − t/ρ)2g−2−ℓ/2 . (27)

Second, for ℓ, 1 ≤ ℓ ≤ g − 1, from U(t) ∼ 1 − γ
√

1 − t/ρ,(
3U(t) − 2 + ℓ

[1 − U(t)]ℓ+2 + [[ℓ = 1]]
)

∼ ℓ + 1
γℓ+2(1 − t/ρ)(ℓ+2)/2 . (28)

L. Agranat-Tamir, M. Fuchs, B. Gittenberger, and N. A. Rosenberg 27:11

Combining eqs. (27) and (28), we obtain

Egii(t) ∼
g−1∑
ℓ=1

∑
d∈C(g−1,ℓ)

∏ℓ
j=1 δdj

γ4g−4−ℓ(1 − t/ρ)2g−2−ℓ/2 · ℓ + 1
γℓ+2(1 − t/ρ)(ℓ+2)/2

∼
g−1∑
ℓ=1

(ℓ + 1)
∑

d∈C(g−1,ℓ)
∏ℓ

j=1 δdj

γ4g−2(1 − t/ρ)2g−1 . (29)

The proof is concluded by noting

Eg(t) ∼

[
g−1∑
j=1

δjδg−j

γ4g−2(1 − t/ρ)2g−1 +
g−1∑
ℓ=1

(ℓ + 1)
∑

d∈C(g−1,ℓ)
∏ℓ

j=1 δdj

γ4g−2(1 − t/ρ)2g−1

]
1

2γ(1 − t/ρ)1/2

∼
∑g−1

ℓ=1
[
δℓδg−ℓ + (ℓ + 1)

∑
d∈C(g−1,ℓ)

∏ℓ
j=1 δdj

]
2γ4g−1(1 − t/ρ)2g−1/2

∼ δg

γ4g−1(1 − t/ρ)2g−1/2 . (30)

◀

▶ Theorem 8. The asymptotic growth of the number En,g of unlabeled galled trees with n

leaves and a fixed number of galls g ≥ 1 satisfies

En,g ∼ δg

γ4g−1Γ(2g − 1
2)

n2g− 3
2 ρ−n ∼ 22g−1δg

γ4g−1(4g − 3)!!
√

π
n2g− 3

2 ρ−n. (31)

Proof. The first step follows from the transfer formula. For the second step of eq. (31), we
recall Γ(n + 1

2) = [(2n − 1)!!/2n]
√

π with and 2g − 1
2 = (2g − 1) + 1

2 . ◀

The δg have a relationship with the Catalan numbers, Cm =
(2m

m

)
/(m + 1).

▶ Proposition 9. The numbers {δg}g≥1 satisfy 22g−1δg = C2g−1.

Proof. We prove the result by showing that the generating function D(t) =∑
g≥1 22g−1δgt2g−1 is the odd part of the generating function of the Catalan numbers,

CO(t) =
∑

g≥1 C2g−1t2g−1.
CO(t) satisfies CO(t) = 1

2
∑

n≥0[Cntn − Cn(−t)n] =
∑

n≥1 C2n−1t2n−1, where C(t) =
(1 −

√
1 − 4t)/(2t) is the generating function of the Catalan numbers. Hence, CO(t) =[

1 − 1
2 (

√
1 − 4t +

√
1 + 4t)

]
/(2t). From the recursion for δg (Proposition 7),

D(t) = t +
∑
g≥2

(g−1∑
ℓ=1

22g−2δℓδg−ℓ

)
t2g−1 +

∑
g≥2

[g−1∑
ℓ=1

(ℓ + 1)22g−2
∑

d∈C(g−1,ℓ)

ℓ∏
j=1

δdj

]
t2g−1

= t +
[∑

ℓ≥1
22ℓ−1δℓt

2ℓ−1
∑

g≥ℓ+1
22(g−ℓ)−1δg−ℓt

2(g−ℓ)−1
]
t

+
[∑

ℓ≥1
(ℓ + 1)(2t)ℓ

∑
g≥ℓ+1

∑
d∈C(g−1,ℓ)

ℓ∏
j=1

22dj−1δdj t2dj−1
]
t

= t + tD2(t) + t
∑
ℓ≥1

(ℓ + 1)[2tD(t)]ℓ

= t + tD2(t) + 2t2D(t)
[1 − 2tD(t)]2 + 2t2D(t)

1 − 2tD(t) . (32)

Solving for D(t), we obtain four solutions, only one of which has the correct limit of 0 as
t → 0; this root is equal to CO(t). ◀

AofA 2024

27:12 Unlabeled Galled Trees with a Fixed Number of Galls

▶ Theorem 10. The number of unlabeled galled trees with n leaves and any fixed number of
galls g ≥ 0 has asymptotic approximation

En,g ∼ 22g−1

(2g)! γ4g−1√
π

n2g− 3
2 ρ−n. (33)

Table 1 The subexponential portion cgn2g− 3
2 of the growth cgn2g− 3

2 ρ−n with the number of
leaves n of En,g, the number of galled trees with exactly g galls. Quantities are computed according
to eq. (2) for g = 0 and Theorems 8 and 10 for g ≥ 1.

Number of Exact Approximate
galls g constant cg value of cg n2g− 3

2

0 γ
2

√
π

0.3188 n− 3
2

1 1
γ3√

π
0.3910 n

1
2

2 5
15γ7√

π
= 8

24γ7√
π

= 1
3γ7√

π
0.0799 n

5
2

3 42
945γ11√

π
= 32

720γ11√
π

= 2
45γ11√

π
0.0065 n

9
2

4 429
135135γ15√

π
= 128

40320γ15√
π

= 1
315γ15√

π
2.8638 × 10−4 n

13
2

5 4862
34459425γ19√

π
= 512

3628800γ19√
π

= 2
14175γ19√

π
7.8062 × 10−6 n

17
2

Proof. The Catalan numbers satisfy Cn = 2n(2n − 1)!!/(n + 1)!, so that

22g−1δg

(4g − 3)!! = C2g−1

(4g − 3)!! = 22g−1[2(2g − 1) − 1]!!
(4g − 3)!! (2g − 1 + 1)! = 22g−1

(2g)! .

The case of g = 0 is included, as En,0 ∼ [2−1/(γ−1√
π)]n− 3

2 ρ−n = [γ/2
√

π]n− 3
2 ρ−n ∼ Un. ◀

Table 1 depicts the subexponential growth of En,g for each g from 1 to 5. For g = 1 and
g = 2, the theorem recovers the values obtained in Propositions 2 and 5.

▶ Corollary 11. The exponential growth of the number En,g of unlabeled trees with n leaves
and a fixed number of galls g ≥ 1 is the same as that of Un, the number of unlabeled trees with
no galls; however, the subexponential growth is greater by a factor of 4n2/[γ4(2g + 1)(2g + 2)].

7 Discussion

We have studied the number of rooted binary unlabeled galled trees with a fixed number of
galls, analyzing the exponential growth of this quantity as the number of leaves increases.
We have found that the exponential growth, with the increase in the number of leaves n,
of the number of galled trees with a fixed number of galls is independent of the number of
galls g (Corollary 11). This independence includes the case of g = 0 galls, the classic case of
rooted binary unlabeled trees. It also implies that the number of galled trees whose number
of galls is in some finite set G also has this same exponential growth.

The exponential growth with n of the number of galled trees with fixed g or with g in
a finite set of values contrasts with the much greater increase in An, the number of galled
trees with no restriction on the number of galls. This much larger growth for An is explained

L. Agranat-Tamir, M. Fuchs, B. Gittenberger, and N. A. Rosenberg 27:13

by the increase in the subexponential component with increasing g of the number of galled
trees with n leaves and g galls, and the fact that with no maximum number of galls, as n

increases, the number of terms in An =
∑⌊(n−1)/2⌋

g≥0 En,g grows without bound.
Our analysis produced a recursion for the Catalan numbers with odd indices: C2n−1 =∑n−1

m=1 C2m−1C2(n−m)−1 +
∑n−1

m=1(m + 1)2m
∑

d∈C(n−1,m) C2dj−1. The first part comes from
terms of Cn =

∑n−1
m=0 CmC(n−1)−m with odd m and (n − 1) − m; the second substitutes a

sum involving Catalan numbers with odd index for terms with even m and (n − 1) − m.
The difference across values of g in the growth of the number of trees with exactly g ≥ 0

galls lies in the subexponential component, cgn2g− 3
2 . Related problems involving labeled

phylogenetic networks show this same pattern, in which incrementing a constant associated
with network complexity does change the subexponential growth but not the exponential
growth. In particular, this pattern is seen with increasingly many reticulation nodes in
various network classes [6, 7, 11, 12, 13, 19]; the subexponential growth often includes a
factor of n2, as in our case.

Note additionally that beginning from g = 1, the constant cg in the asymptotic approxim-
ation for En,g decreases with g (eq. (31), Table 1). This property also holds for the labeled
normal networks of Fuchs et al. [11, 12, 13].

The study here deals with the asymptotic enumeration of galled trees when the number
of galls is fixed. Using the bivariate function A(t, u) =

∑
n≥0

∑
g≥0 En,gtnug, Section 5.6 of

our previous study of galled trees showed that for a fixed number of leaves, the number of
galls follows an asymptotic normal distribution [1, eq. 56]. The marginal analysis fixing the
number of galls contributes a perspective on the bivariate distribution different from that of
the previous analysis.

We comment that we could potentially have derived our generating functions by the
symbolic method [10]. Our approach instead began with constructive enumeration of possible
cases, continuing the analysis based on a recursion derived in our previous study of galled
trees [1] in order to find the generating functions. The symbolic method, which we defer to a
subsequent article, potentially leads to simpler derivations that enable quick comparisons of
relationships among enumerations for different types of galled trees.

By analyzing the asymptotics of En,g for arbitrary g, this work solves unsolved problems
from [1], who only analyzed En,1 and An =

∑⌊(n−1)/2⌋
g≥0 En,g. The analysis has potential to

assist in other scenarios with unlabeled phylogenetic networks indexed by a fixed quantity.

References
1 L. Agranat-Tamir, S. Mathur, and N. A. Rosenberg. Enumeration of rooted binary

unlabeled galled trees. Bulletin of Mathematical Biology, 86:45, 2024. doi:10.1007/
s11538-024-01270-8.

2 F. Bienvenu, A. Lambert, and M. Steel. Combinatorial and stochastic properties of ranked
tree-child networks. Random Structures and Algorithms, 60:653–689, 2022. doi:10.1002/rsa.
21048.

3 M. Bouvel, P. Gambette, and M. Mansouri. Counting phylogenetic networks of level 1 and 2.
Journal of Mathematical Biology, 81:1357–1395, 2020. doi:10.1007/s00285-020-01543-5.

4 G. Cardona and L. Zhang. Counting and enumerating tree-child networks and their subclasses.
Journal of Computer and System Sciences, 114:84–104, 2020. doi:10.1016/j.jcss.2020.06.
001.

5 K.-Y. Chang, W.-K. Hon, and S. V. Thankachan. Compact encoding for galled-trees and
its applications. In 2018 Data Compression Conference, pages 297–306, Snowbird, UT, 2018.
doi:10.1109/DCC.2018.00038.

AofA 2024

https://doi.org/10.1007/s11538-024-01270-8
https://doi.org/10.1007/s11538-024-01270-8
https://doi.org/10.1002/rsa.21048
https://doi.org/10.1002/rsa.21048
https://doi.org/10.1007/s00285-020-01543-5
https://doi.org/10.1016/j.jcss.2020.06.001
https://doi.org/10.1016/j.jcss.2020.06.001
https://doi.org/10.1109/DCC.2018.00038

27:14 Unlabeled Galled Trees with a Fixed Number of Galls

6 Y. S. Chang and M. Fuchs. Counting Phylogenetic Networks with Few Reticulation Vertices:
Galled and Reticulation-Visible Networks. Bull. Math. Biol., 86(7):76, 2024. doi:10.1007/
s11538-024-01309-w.

7 Y.-S. Chang, M. Fuchs, and G.-R. Yu. Galled tree-child networks. In 35th International
Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms, volume 302, Article 2 of Leibniz International Proceedings in Informatics, LIPIcs.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Wadern, 2024.

8 L. Comtet. Advanced Combinatorics. Reidel, Boston, 1974. doi:10.1007/978-94-010-2196-8.
9 J. Felsenstein. Inferring Phylogenies. Sinauer Associates Inc., Sunderland MA, 2004.

10 P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, Cambridge,
2009. doi:10.1017/CBO9780511801655.

11 M. Fuchs, B. Gittenberger, and M. Mansouri. Counting phylogenetic networks with few
reticulation vertices: tree-child and normal networks. Australasian Journal of Combinatorics,
73:385–423, 2019.

12 M. Fuchs, B. Gittenberger, and M. Mansouri. Counting phylogenetic networks with few
reticulation vertices: exact enumeration and corrections. Australasian Journal of Combinatorics,
81:257–282, 2021.

13 M. Fuchs, E.-Y. Huang, and G.-R. Yu. Counting phylogenetic networks with few reticulation
vertices: a second approach. Discrete Applied Mathematics, 320:140–149, 2022. doi:10.1016/
j.dam.2022.03.026.

14 D. Gusfield. ReCombinatorics. MIT Press, Cambridge MA, 2014.
15 D. Gusfield, S. Eddhu, and C. Langley. Efficient reconstruction of phylogenetic networks

with constrained recombination. In Proceedings of the IEEE Computer Society Conference on
Bioinformatics, pages 363–374, 2003. doi:10.1109/CSB.2003.1227337.

16 D. Gusfield, S. Eddhu, and C. H. Langley. The fine structure of galls in phylogenetic networks.
INFORMS Journal on Computing, 16:459–469, 2004. doi:10.1287/ijoc.1040.0099.

17 D. H. Huson, R. Rupp, and C. Scornavacca. Phylogenetic Networks: Concepts, Algorithms and
Applications. Cambridge University Press, Cambridge, 2010. doi:10.1017/CBO9780511974076.

18 S. Kong, J. C. Pons, L. Kubatko, and K. Wicke. Classes of explicit phylogenetic networks and
their biological and mathematical significance. Journal of Mathematical Biology, 84:47, 2022.
doi:10.1007/s00285-022-01746-y.

19 M. Mansouri. Counting general phylogenetic networks. Australasian Journal of Combinatorics,
83:40–86, 2022.

20 S. Mathur and N. A. Rosenberg. All galls are divided into three or more parts: recursive
enumeration of labeled histories for galled trees. Algorithms in Molecular Biology, 18:1, 2023.
doi:10.1186/s13015-023-00224-4.

21 C. Semple and M. Steel. Phylogentics. Oxford University Press, Oxford, 2003.
22 C. Semple and M. Steel. Unicyclic networks: compatibility and enumeration. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 3:84–91, 2006. doi:10.1109/
TCBB.2006.14.

23 Y. S. Song. A concise necessary and sufficient condition for the existence of a galled-tree.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3:186–191, 2006.
doi:10.1109/TCBB.2006.15.

24 T. Warnow. Computational Phylogenetics. Cambridge University Press, Cambridge, 2018.
doi:10.1017/9781316882313.

https://doi.org/10.1007/s11538-024-01309-w
https://doi.org/10.1007/s11538-024-01309-w
https://doi.org/10.1007/978-94-010-2196-8
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.1016/j.dam.2022.03.026
https://doi.org/10.1016/j.dam.2022.03.026
https://doi.org/10.1109/CSB.2003.1227337
https://doi.org/10.1287/ijoc.1040.0099
https://doi.org/10.1017/CBO9780511974076
https://doi.org/10.1007/s00285-022-01746-y
https://doi.org/10.1186/s13015-023-00224-4
https://doi.org/10.1109/TCBB.2006.14
https://doi.org/10.1109/TCBB.2006.14
https://doi.org/10.1109/TCBB.2006.15
https://doi.org/10.1017/9781316882313

Sharpened Localization of the Trailing Point of the
Pareto Record Frontier
James Allen Fill1 # Ñ

Department of Applied Mathematics and Statistics, The Johns Hopkins University,
Baltimore, MD, USA

Daniel Q. Naiman # Ñ

Department of Applied Mathematics and Statistics, The Johns Hopkins University,
Baltimore, MD, USA

Ao Sun #

Department of Applied Mathematics and Statistics, The Johns Hopkins University,
Baltimore, MD, USA

Abstract
For d ≥ 2 and i.i.d. d-dimensional observations X(1), X(2), . . . with independent Exponential(1)
coordinates, we revisit the study by Fill and Naiman (Electron. J. Probab., 25:Paper No. 92, 24
pp., 2020) of the boundary (relative to the closed positive orthant), or “frontier”, Fn of the closed
Pareto record-setting (RS) region RSn := {0 ≤ x ∈ Rd : x ̸≺ X(i) for all 1 ≤ i ≤ n} at time n,
where 0 ≤ x means that 0 ≤ xj for 1 ≤ j ≤ d and x ≺ y means that xj < yj for 1 ≤ j ≤ d. With
x+ :=

∑d

j=1 xj = ∥x∥1, let

F −
n := min{x+ : x ∈ Fn} and F +

n := max{x+ : x ∈ Fn}.

Almost surely, there are for each n unique vectors λn ∈ Fn and τn ∈ Fn such that F +
n = (λn)+ and

F −
n = (τn)+; we refer to λn and τn as the leading and trailing points, respectively, of the frontier.

Fill and Naiman provided rather sharp information about the typical and almost sure behavior of
F +, but somewhat crude information about F −, namely, that for any ε > 0 and cn → ∞ we have

P(F −
n − ln n ∈ (−(2 + ε) ln ln ln n, cn)) → 1

(describing typical behavior) and almost surely

lim sup F −
n − ln n

ln ln n
≤ 0 and lim inf F −

n − ln n

ln ln ln n
∈ [−2, −1].

In this extended abstract we use the theory of generators (minima of Fn) together with the first-
and second-moment methods to improve considerably the trailing-point location results to

F −
n − (ln n − ln ln ln n) P−→ − ln(d − 1)

(describing typical behavior) and, for d ≥ 3, almost surely

lim sup[F −
n − (ln n − ln ln ln n)] ≤ − ln(d − 2) + ln 2

and lim inf[F −
n − (ln n − ln ln ln n)] ≥ − ln d − ln 2.

2012 ACM Subject Classification Mathematics of computing → Stochastic processes

Keywords and phrases Multivariate records, Pareto records, generators, interior generators, minima,
maxima, record-setting region, frontier, current records, boundary-crossing probabilities, first moment
method, second moment method, orthants

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.28

1 Corresponding author

© James Allen Fill, Daniel Q. Naiman, and Ao Sun;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 28; pp. 28:1–28:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jimfill@jhu.edu
http://www.ams.jhu.edu/~fill/
https://orcid.org/0000-0003-1023-0398
mailto:daniel.naiman@jhu.edu
http://www.ams.jhu.edu/~dan/
mailto:asun17@jhu.edu
https://doi.org/10.4230/LIPIcs.AofA.2024.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Sharpened Localization of the Trailing Point of the Pareto Record Frontier

Related Version Full Version: https://arxiv.org/abs/2402.17221

Funding Research for all authors supported by the Acheson J. Duncan Fund for the Advancement
of Research in Statistics.

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction, background, and main results

Notation. Throughout this extended abstract we abbreviate the kth iterate of natural
logarithm ln by Lk and L1 by L, and we write x+ :=

∑d
j=1 xj and x× :=

∏d
j=1 xj for the

sum and product, respectively, of coordinates of the d-dimensional vector x = (x1, . . . , xd).
When 0 ≤ x the sum x+ equals the ℓ1-norm ∥x∥1, but we use the notation x+ more generally.
We denote coordinate-wise maximum and minimum of vectors by ∨ and ∧, respectively.

Unless otherwise noted, all results of this extended abstract hold for any dimension d ≥ 2.
The study of univariate records is well established ([1] is a standard reference), but

that of multivariate records remains under vigorous development. Fill and Naiman [6]
studied the stochastic process (Fn), where Fn is the boundary, or “frontier”, for Pareto
records (consult Definitions 1.1–1.2) in general dimension d when the observed sequence of
points X(1), X(2), . . . are assumed (as they are throughout this extended abstract, except
where otherwise noted) to be i.i.d. (independent and identically distributed) copies of a
d-dimensional random vector X with independent Exponential(1) coordinates Xj . Their
main goal was to sharpen (in various senses) the assertion in Bai et al. [2] “that nearly all
maxima occur in a thin strip sandwiched between [the] two parallel hyper-planes”

x+ = L n − L3 n − L[4(d − 1)] and x+ = L n + 4(d − 1) L2 n.

They did this largely by studying (separately) the maximum and minimum sums of coordinates
for points lying in Fn. The results for the maximum sum were rather sharp; less so for the
minimum sum. The main aim of this extended abstract is to use the theory of generators
(minima of Fn) and the first- and second-moment methods to improve considerably their
results about the minimum sum.

1.1 Pareto records and the record-setting region
For the reader’s convenience, and with the permission of the authors and the copyright
holder, this short subsection is excerpted largely verbatim from [6, Section 1.1].

We begin with some definitions. For a positive integer n, let [n] := {1, . . . , n}. Thus
[d][n] denotes the set of all functions from [n] into [d], or simply the set of all n-tuples with
each entry in {1, . . . , d}. For d-dimensional vectors x = (x1, . . . , xd) and y = (y1, . . . , yd),
write x ≺ y (respectively, x ≤ y) to mean that xj < yj (resp., xj ≤ yj) for j ∈ [d]. (We
caution that, with this convention, ≤ is weaker than ⪯, the latter meaning “≺ or =”; indeed,
(0, 0) ≤ (0, 1) but we have neither (0, 0) ≺ (0, 1) nor (0, 0) = (0, 1). This distinction will be
important for some of our later discussion of generators.) The notation x ≻ y means y ≺ x,
and x ≥ y means y ≤ x; the notation x < y means x ≤ y but x ̸= y, and y > x means x < y.

▶ Definition 1.1.
(a) We say that X(k) is a (Pareto) record (or that it sets a record at time k) if X(k) ̸≺ X(i)

for all 1 ≤ i < k.
(b) If 1 ≤ k ≤ n, we say that X(k) is a current record (or remaining record, or maximum)

at time n if X(k) ̸≺ X(i) for all 1 ≤ i ≤ n.

https://arxiv.org/abs/2402.17221

J. A. Fill, D. Q. Naiman, and A. Sun 28:3

For n ≥ 1 (or n ≥ 0, with the obvious conventions) let ρn (≡ ρd,n) denote the number of
remaining records at time n (when the dimension is d).

▶ Definition 1.2.
(a) The record-setting region at time n is the (random) closed set of points

RSn := {x ∈ Rd : 0 ≤ x ̸≺ X(i) for all 1 ≤ i ≤ n}.

(b) We call the (topological) boundary of RSn (relative to the closed positive orthant deter-
mined by the origin) its frontier and denote it by Fn.

Fn

x+ = F +
n

x+ = F −
n

λn

τn

x+ = F̂ −
n

x1

x2

Figure 1 Record frontier Fn based on n observations (for some n ≥ 10) resulting in 10 current
records (shown in red), with the three hyperplanes x+ = F +

n , x+ = F −
n , and x+ = F̂ −

n , the leading
point λn and the trailing point τn. Concerning the three hyperplanes, see Definition 1.4 and (1.2).
Generators (see Definition 4.1) are shown in green.

▶ Remark 1.3. The terminology in Definition 1.2(a) is natural since the next observation
X(n+1) sets a record if and only if it falls in the record-setting region. Note that

RSn = {x ∈ Rd : 0 ≤ x ̸≺ X(i) for all 1 ≤ i ≤ n

such that X(i) is a current record at time n},

and that the current records at time n all belong to RSn but lie on its frontier. Observe also
that Fn is a closed subset of RSn.

This extended abstract primarily concerns the stochastic process (Fn), and specifically
the process F − as defined (along with the process F +) next (see Figure 1).

▶ Definition 1.4. Recalling that Fn denotes the frontier of RSn, let

F −
n := min{x+ : x ∈ Fn} and F +

n := max{x+ : x ∈ Fn}. (1.1)

Almost surely, there are for each n unique vectors λn ∈ Fn and τn ∈ Fn such that F +
n = λn

and F −
n = τn; we call λn and τn the leading and trailing points, respectively, of the frontier.

Since the sets RSn decrease (weakly) with n, we have the following trivial consequence.

▶ Lemma 1.5. The process F − has nondecreasing sample paths.

AofA 2024

28:4 Sharpened Localization of the Trailing Point of the Pareto Record Frontier

1.2 The record-setting frontier; our two main theorems
Fill and Naiman first showed, in a precise sense [6, Theorem 1.4], that the difference between
the sum of coordinates (call it Yn) of a “generic” current record at time n and L n converges
in distribution to standard Gumbel. They next translated results from classical extreme
value theory due to Kiefer [7] to the setting of multivariate records to produce rather sharp
typical-behavior and almost-sure results about the process F +. For completeness, we repeat
their main result [6, Theorem 1.8] for F + here, except that we have rather effortlessly
extended part (b) of that theorem using Kiefer’s “first proof” as described in [6, proof of
Theorem 1.8(b)]. We remark that the difference between the top-boundary threshold at
about L n+d L2 n and bottom-boundary threshold at about L n+(d−1) L2 n is a noteworthy
feature of F +

n discussed further in [6, Section 1.3].

▶ Theorem 1.6 (Kiefer [7]). Consider the process F + defined at (1.1).
(a) Typical behavior of F +: F +

n − [L n + (d − 1) L2 n − L((d − 1)!)] L−→ G.

(b) Top boundaries for F +: For any sequence bn → ∞ that is ultimately monotone increas-
ing,

P(F +
n ≥ bn i.o.) = 1 or 0 according as

∑
e−bnbd−1

n diverges or converges.

In particular, for any k ≥ 2 we have

P

(
F +

n ≥ L n + d L2 n +
k∑

i=3
Li n + c Lk+1 n i.o.

)
=
{

1 if c ≤ 1;
0 if c > 1.

(c) Bottom boundaries for F +:

P(F +
n ≤ L n + (d − 1) L2 n − L3 n − L((d − 1)!) + c i.o.) =

{
1 if c ≥ 0;
0 if c < 0.

⌟

From Theorem 1.6 it follows in particular that

F +
n − L n

L2 n

P−→ d − 1

and

lim inf F +
n − L n

L2 n
= d − 1 < d = lim sup F +

n − L n

L2 n
a.s.

The results derived in [6] for F − are much less sharp than for F +. For the reader’s
convenience, we repeat those results here. Although parts (a) and (c1) were stated with
coefficient −3 [rather than −(2 + c)] for the L3 n term, the improvement we have noted here
is pointed out in [6, Remark 3.3].

▶ Theorem 1.7 ([6], Theorem 1.12). Consider the process F − defined at (1.1).
(a) Typical behavior of F −:

P(F −
n ≤ L n − (2 + c) L3 n) → 0 if c > 0, and

P(F −
n ≥ L n + cn) → 0 if cn → ∞.

J. A. Fill, D. Q. Naiman, and A. Sun 28:5

(b) Top outer boundaries for F −: P(F −
n ≥ L n + c L2 n i.o.) = 0 if c > 0.

(c1) Bottom outer boundaries for F −: P(F −
n ≤ L n − (2 + c) L3 n i.o.) = 0 if c > 0.

(c2) A bottom inner boundary for F −: P(F −
n ≤ L n − L3 n i.o.) = 1. ⌟

Recall that for real-valued random variables Zn and real numbers an, the condition
Zn = Op(an) means that Zn/an is bounded in probability.

The first of two main results of this extended abstract, Theorem 1.8, sharpens Theorem 1.7
considerably. In light of (i) the constant-order variability for a “generic” current record at
time n described in the opening paragraph of this subsection and (ii) Theorem 1.6(a), we
find it quite surprising that, properly centered but not scaled, F −

n has a limit in probability.

▶ Theorem 1.8. Consider the process F − defined at (1.1).
(a) Typical behavior of F −:

F −
n = L n − L3 n − L(d − 1) + Op

(
L3 n

L2 n

)
.

(b) Top outer boundaries for F −: If d ≥ 3, then

P(F −
n ≥ L n − L3 n − L(d − 2) + L 2 + c i.o.) = 0 if c > 0.

(c) Bottom outer boundaries for F −:

P(F −
n ≤ L n − L3 n − L d − L 2 − c i.o.) = 0 if c > 0.

Theorem 1.8 gives rise immediately to the following succinct corollary.

▶ Corollary 1.9. Consider the process F − defined at (1.1).
(a) Typical behavior of F −:

F −
n − (L n − L3 n) P−→ − L(d − 1)

and thus

F −
n − L n

L3 n

P−→ −1

and, yet more crudely,

F −
n − L n

L2 n

P−→ 0.

(b) Almost sure behavior for F −:

lim F −
n − L n

L2 n
= 0 a.s.

Further, for fixed d ≥ 3 we have the refinement

F −
n = L n − L3 n + O(1) a.s.

▶ Remark 1.10. We do not know how to improve Theorem 1.7(b) when d = 2.

AofA 2024

28:6 Sharpened Localization of the Trailing Point of the Pareto Record Frontier

Suppose now that instead of F −
n we consider the somewhat larger quantity

F̂ −
n := (minimum coordinate-sum of any current record at time n). (1.2)

(See Figure 1.) Our second main theorem concerns the process F̂ −; in summary, the same
results hold for F̂ − as for F − in Theorem 1.8, with a sharper remainder term for F̂ − in
part (a).

▶ Theorem 1.11. Consider the process F̂ − defined at (1.2).
(a) Typical behavior of F̂ −:

F̂ −
n = L n − L3 n − L(d − 1) + Op

(
1

L2 n

)
.

(b) Top outer boundaries for F̂ −: If d ≥ 3, then

P(F̂ −
n ≥ L n − L3 n − L(d − 2) + L 2 + c i.o.) = 0 if c > 0.

(c) Bottom outer boundaries for F̂ −:

P(F̂ −
n ≤ L n − L3 n − L d − L 2 − c i.o.) = 0 if c > 0.

As a corollary, the process F̂ − satisfies the same assertions as for F − in Corollary 1.9.
▶ Remark 1.12. Combining Theorems 1.8 and 1.11, we find that there is little difference
between the two processes, in the sense that

F̂ −
n − F −

n
P−→ 0,

because in fact 0 ≤ F̂ −
n − F −

n = Op

(
L3 n
L2 n

)
.

▶ Remark 1.13. Extending Theorem 1.11, we conjecture that

(L2 n)
(

F̂ −
n − [L n − L3 n − L(d − 1)]

)
(1.3)

has a nondegenerate limiting distribution. This is discussed further in Remark 3.3.

1.3 Outline of extended abstract
The proof of Theorem 1.8 relies on Theorem 1.11, so we tackle the latter first. In Sections
2–3 we apply the first moment method and the second moment method, respectively, to the
number of remaining records with suitably small coordinate-sum; this leads to the proof
of Theorem 1.11 in Appendix B. In Sections 4–5 of this extended abstract we review and
extend the theory of generators developed in [5]. In Section 6 we apply the first moment
method to the number of generators with suitably small coordinate sum; this, together with
the upper bounds on F̂ − in Theorem 1.11, leads to the proof of Theorem 1.8 in Section 7.
▶ Remark 1.14. Because F −

n ≤ F̂ −
n , Theorem 1.8(b) follows immediately from Theo-

rem 1.11(b), as does Theorem 1.11(c) from Theorem 1.8(c).

More notation. Throughout the extended abstract, the boundaries we consider will without
exception have the form

bn := L n − L3 n − L cn with cn > 0 and cn = Θ(1). (1.4)

Also, we will often use the notation

βn := ne−bn (1.5)

The dimension d ≥ 2 will always remain fixed as n → ∞.

J. A. Fill, D. Q. Naiman, and A. Sun 28:7

2 Stochastic lower bound on F̂ −
n via the first moment method

In this section we show how to obtain a suitable stochastic lower bound on F̂ −
n . See

Proposition 2.3 for the result. The idea, for a suitably chosen sequence (bn) is to apply the
first moment method (computation of sufficiently small mean, together with application of
Markov’s inequality) to the count ρn(bn), where

ρn(b) := #{remaining records r at epoch n with r+ ≤ b}. (2.1)

Asymptotic determination of the mean is obtained by suitably modifying the asymptotic
determination of the mean of ρn = ρn(∞) in [2, Section 2].

2.1 Upper (and lower) asymptotic bound(s) on mean

In the next lemma we determine detailed asymptotics for the mean of ρn(bn) when (bn) is a
boundary of interest in establishing Theorems 1.8 and 1.11. The proof is rather elementary,
but we defer it to Appendix A. We define

Jj(x) :=
∫ ∞

x

(L z)je−z dz. (2.2)

and note that Jj(x) ∼ (L x)je−x as x → ∞.

▶ Lemma 2.1. With the notation and assumptions of (1.4)–(1.5) and (2.2), as n → ∞ we
have

E ρn(bn) = [1 + O(n−1(L2 n)2)] 1
(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
(L n)d−1−jJj(βn), (2.3)

or, equivalently,

E ρn(bn) = 1
(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
(L n)d−1−jJj(βn)+O(n−1(L n)d−1−cn(L2 n)2). (2.4)

▶ Remark 2.2. We need only lead-order asymptotics for the mean in this section, but (as seen
in the proof of Lemma 3.1 found in the full-length paper) we require much more detailed
asymptotics for it in the next section – asymptotics with an additive o(1) remainder term, as
we have in (2.4).

2.2 Stochastic lower bound on F̂ −
n

We are now in position to apply Markov’s inequality to bound the probability of the event
{F̂ −

n ≤ bn} = {ρn(bn) ≥ 1}.

▶ Proposition 2.3 (Stochastic lower bound on F̂ −
n). With the notation and assumptions

of (1.4), as n → ∞ we have

P(F̂ −
n ≤ bn) ≤ E ρn(bn) = (1 + o(1)) 1

(d − 1)! (L n)d−1−cn .

AofA 2024

28:8 Sharpened Localization of the Trailing Point of the Pareto Record Frontier

3 Stochastic upper bound on F̂ −
n via second moment method

In this section we show how to obtain a suitable stochastic upper bound on F̂ −
n (and thus

also on F −
n). See Proposition 3.2 for the result. The idea, for a suitably chosen sequence

(bn), is to apply the second moment method (computation of sufficiently large mean and
sufficiently small variance, together with application of Chebyshev’s inequality) to the count
ρn(bn) [recall the definition (2.1)], which almost surely equals

ρ◦
n(bn) := #{remaining records r at epoch n with r+ < bn}. (3.1)

For the mean, we will use Lemma 2.1. The bound on the variance of ρn(bn) is obtained by
suitably modifying the already quite technical asymptotic determination of the variance of
ρn = ρn(∞) in [2, Section 2]; the determination here is quite a bit more technical still.

3.1 Upper bound on variance
We next show that the standard deviation of ρn(bn) is of smaller order of magnitude than the
mean – and by enough so that our proof (found in the full-length paper) of Theorem 1.8(b)
(for F̂ −, which implies the result for F −) using the first Borel–Cantelli lemma will succeed.
The rather long and rather computationally technical proof of the following result is left for
the full-length paper, where the reverse inequality (not needed in this extended abstract) is
also established.

▶ Lemma 3.1. With the notation and assumptions of (1.4), as n → ∞ we have

Var ρn(bn) ≤ (1 + o(1))E ρn(bn). (3.2)

3.2 Stochastic upper bound on F̂ −
n

We are now in position to utilize Chebyshev’s inequality to provide a bound on P(F̂ −
n ≥

bn) = P(ρ◦
n(bn) = 0) = P(ρn(bn) = 0).

▶ Proposition 3.2 (Stochastic upper bound on F̂ −
n). With the notation and assumptions

of (1.4), as n → ∞ we have

P(F −
n ≥ bn) ≤ P(F̂ −

n ≥ bn) ≤ (1 + o(1)) (d − 1)!(L n)−(d−1−cn) = O((L n)−(d−1−cn)).

Proof. The first asserted inequality follows because F −
n ≤ F̂ −

n . Moreover, using Chebyshev’s
inequality, Lemma 3.1, and Lemma 2.1, we find

P(F̂ −
n ≥ bn) ≤ P(ρn(bn) = 0) = P(ρn(bn) − E ρn(bn) ≤ −E ρn(bn))

≤ Var ρn(bn)
[E ρn(bn)]2 ≤ (1 + o(1)) [E ρn(bn)]−1

= (1 + o(1)) (d − 1)!(L n)−(d−1−cn)

= O((L n)−(d−1−cn)),

as desired. ◀

▶ Remark 3.3. Lemma 3.1 and the reverse inequality established in the full-length paper
suggest that the law of ρn(bn) might be well approximated by a Poisson distribution with the
same mean, but, after attempts using the Stein–Chen method (see, e.g., [4]) or the method
of moments, we have been unable to prove such an approximation even in the case that
E ρn(bn) has a limit λ ∈ (0, ∞). For fixed a ∈ R, let Rn(a) denote ρn(bn) when

bn = L n − L3 n − L(d − 1) + a

L2 n
, (3.3)

J. A. Fill, D. Q. Naiman, and A. Sun 28:9

i.e., when cn = (d − 1)e−a/ L2 n in (1.4). Even if a Poisson approximation should fail, we
certainly conjecture that Rn(a) converges in distribution to a nondegenerate R(a) as n → ∞
with P(R(a) = 0) continuous and strictly decreasing in a. In that case, it follows that (1.3)
has limiting distribution function a 7→ P(R(a) ≥ 1).

In particular, if R(a) is Poisson distributed for every a, then (1.3) converges in distribution
to −G∗, where G∗ has a Gumbel distribution with location − L[(d−1)!]

d−1 and scale 1
d−1 .

4 Characterization of generators

The unpublished manuscript [5] by Fill and Naiman developed the concept of generators
of multivariate records mainly in connection with an importance-sampling algorithm for
generating (simulating) records. We shall find the same concept crucial for our improvement
Theorem 1.8(c) to Theorem 1.7(c2), the latter of which was established using a quite different
idea, namely, a certain geometric lemma [6, Lemma 3.1]. Accordingly, in this section and
the next we review and extend the theory of generators developed in [5]. In this section we
provide a characterization of the set of generators that is useful in counting them.

▶ Definition 4.1. Suppose x ∈ [0, ∞)d.
(a) The closed positive orthant generated (or determined) by x is the set

O+
x := {y ∈ [0, ∞)d : y ≥ x}.

(b) The minimum points of the frontier Fn are called generators. We denote the set of
generators at time n by Gn.

▶ Remark 4.2.
(a) The record-setting region RSn equals the union ∪g∈Gn

O+
g of closed positive orthants.

The elements of Gn are called generators because RSn is the up-set in [0, ∞)d generated
by Gn with respect to the partial order ≤.

(b) The almost surely unique generator with minimum coordinate-sum is the trailing point
τn, just as the remaining record with maximum coordinate-sum is the leading point λn.

There are 11 generators in Figure 1, including the trailing point τn at the intersection
of Fn and the dotted hyperplane (line) marked with x+ = F −

n . In terminology we shall
establish shortly, 9 of these are interior (i.e., 2-dimensional) generators and 2 of them are
1-dimensional generators.

We now proceed to characterize the set of generators.
Denote the ρ ≡ ρn current records at a given time n by r(1), . . . , r(ρ) (listed here in

arbitrary, but fixed, order). The record-setting region S ≡ RSn is then the closed set

S = ∩ρ
i=1

[
∪d

k=1O+
(

r
(i)
k e(k)

)]
= ∪d

k1=1 · · · ∪d
kρ=1 ∩ρ

i=1O+
(

r
(i)
ki

e(ki)
)

= ∪d
k1=1 · · · ∪d

kρ=1 O+
(

∨ρ
i=1r

(i)
ki

e(ki)
)

= ∪k∈[d][ρ] O+
(

R
(Π1(k))
1 , . . . , R

(Πd(k))
d

)
,

where e(k) denotes the kth standard basis vector and for j ∈ [d] and k ∈ [d][ρ] we have defined
the ordered partition Π(k) = (Π1(k), . . . , Πd(k)) of [ρ] by

Πj(k) := k−1({j}) = {i ∈ [ρ] : ki = j},

and for j ∈ [d] and P ⊆ [ρ] we have defined

R
(P)
j := ∨i∈P r

(i)
j .

AofA 2024

28:10 Sharpened Localization of the Trailing Point of the Pareto Record Frontier

Therefore we have the neat representation

S =
⋃

O+
(

R
(Π1)
1 , . . . , R

(Πd)
d

)
, (4.1)

where the union here is taken over all ordered partitions Π = (Π1, . . . , Πd) of [ρ] into d sets;
each Πj is allowed to be empty, in which case R

(Πj)
j := 0. This shows immediately that

every element of G ≡ Gn has in each coordinate either 0 or the value of some record in that
coordinate.

To simplify our characterization of generators, we begin by considering only “interior”
generators. For any point x ∈ O+

0 , let ν(x) denote the set of non-zero coordinates of x, and
observe that x lies in the interior of O+

0 if and only if ν(x) = [d]. We call such a point x an
interior point.

Observe that a point x of the form
(

R
(Π1)
1 , . . . , R

(Πd)
d

)
appearing in (4.1) is interior if

and only if all the cells Π of the partition are nonempty. Next, note that x ∈ (0, ∞)d is of
such a form if and only if there exist d distinct indices i1, . . . , id such that xj = r

(ij)
j for

j ∈ [d].
We are now in position to state and (in Appendix C) prove a characterization of the set I

of interior generators. (Note that I ⊂ G ⊂ S.)

▶ Theorem 4.3. A point g ∈ [0, ∞)d belongs to I if and only if
(i) g ∈ S, and
(ii) there exist d distinct indices i1, . . . , id such that

gj = r
(ij)
j = min

{
r

(iℓ)
j : ℓ ∈ [d]

}
for every j ∈ [d]. (4.2)

▶ Remark 4.4. Theorem 4.3 gives an injection from the set of interior generators into the set
of ordered d-tuples of remaining records.

Now that we have characterized the interior generators, it is straightforward to char-
acterize G in terms of projections of the current records to lower-dimensional coordinate
subspaces, but some care must be taken to ensure that the almost sure property of having no
coordinate ties remains true after projection. To begin a careful description, given a subset
T = {j1, . . . , jt} of [d] with |T | = t ∈ [d] and 1 ≤ j1 < · · · < jt ≤ d, define the projection
mapping πT : Rd → Rt by

πT (x1, . . . , xd) := (xj1 , . . . , xjt
),

and define the injection mapping ιT : Rt → Rd by

ιT (x1, . . . , xt) := ∨t
k=1xjk

e(jk).

Recall that ν(x) denotes the set of nonzero coordinates of a point x ∈ [0, ∞)d. Define the set
of T -generators to be the set

GT := G ∩ {x : ν(x) = T}

and observe that G is the disjoint union

G = ∪T ⊆[d]GT .

This observation, together with a characterization of each GT , thus provides a characterization
of G. A characterization of each GT is obtained by combining the following theorem with
Theorem 4.3.

J. A. Fill, D. Q. Naiman, and A. Sun 28:11

To set up the statement of the theorem, consider the image

RT := πT (R) =
{

πT (r(i)) : i ∈ [ρ]
}

⊂ R|T |

under πT of the set R :=
{

r(i) : i ∈ [ρ]
}

of current records, and note that RT inherits the
property of “no ties in any coordinate” from R. Let IT denote the set of interior generators
of RT , and let G′

T := ιT (IT) denote the injection of IT into Rd.

▶ Theorem 4.5. For every T ⊆ [d] we have GT = G′
T .

In light of Theorem 4.5 (which is proved in Appendix C), we call the number of nonzero
coordinates of a generator its dimension. Figure 2 shows the generators of various dimensions
for an example with d = 3.

x1

x2

x3

g

Figure 2 Example of a record frontier in dimension d = 3 with ρ = 8 remaining records shown in
red and the resulting γ = 17 generators: three one-dimensional generators shown in violet, eight
two-dimensional generators shown in blue, and six three-dimensional (interior) generators shown in
green. The lower boundary of one of the orthants O+

g is shown using dashed lines.

▶ Example 4.6. Suppose d = 4 and the current records are (2, 8, 3, 7) and (5, 1, 4, 6). Then
|G| = 8, because |GT | = 1 for precisely eight nonempty subsets T of [4] and |GT | = 0
otherwise. The eight subsets T for which |GT | = 1 are

G{1} = {(5, 0, 0, 0)}; G{2} = {(0, 8, 0, 0)}; G{3} = {(0, 0, 4, 0)};
G{4} = {(0, 0, 0, 7)}; G{1,2} = {(2, 1, 0, 0)}; G{1,4} = {(2, 0, 0, 6)};

G{2,3} = {(0, 1, 3, 0)}; G{3,4} = {(0, 0, 3, 6)}.

Thus there are four one-dimensional generators, four two-dimensional generators, and no
generators with dimension exceeding two.

AofA 2024

28:12 Sharpened Localization of the Trailing Point of the Pareto Record Frontier

5 The expected number of generators

The proof of Theorem 1.8(c) requires a tight upper bound on the expected number of
generators at time n with suitably small coordinate-sum. In this section we warm up with a
result of independent interest, giving an asymptotic approximation for the expected total
number of generators at time n. We remark in passing that such an approximation proves
useful in the analysis of the importance-sampling record-generating scheme described in [5,
Sections 2–4].

5.1 Exact expressions
Let γd,n (respectively, ιd,n) denote the number of generators (resp., interior generators) after
a given number n of d-dimensional observations. Our first result relates the expectations of
these two quantities.

▶ Lemma 5.1. For integers d ≥ 0 and n ≥ 0, we have

E γd,n =
d∑

k=0

(
d

k

)
E ιk,n, (5.1)

Proof. This is immediate from Theorem 4.5 and the discussion preceding that theorem. ◀

In Lemma 5.1, note that ι0,n = δ0,n: There is a single 0-dimensional generator (namely,
the origin in Rd) if n = 0 and no 0-dimensional generators otherwise. Also note that ιd,n = 0
if n < d.

The next result (proved in Appendix C) gives an exact expression for E ιd,n for n ≥ d ≥ 1.
We write nk for the falling factorial power

n(n − 1) · · · (n − k + 1) = k!
(

n
k

)
.

▶ Lemma 5.2. For integers n ≥ d ≥ 1, we have

E ιd,n = nd

∫
(0,1]d

xd−1
× (1 − x×)n−d dx. (5.2)

▶ Remark 5.3.
(a) The exact expression (5.2) in Lemma 5.2 may be compared to a similar expression for

E ρd,n derived in [2, Section 2]: For d ≥ 1 and n ≥ 1 we have

E ρd,n = n

∫
(0,1]d

(1 − x×)n−1 dx. (5.3)

In fact, by expanding the factor xd−1
× appearing in the integrand in (5.2) as

[1 − (1 − x×)]d−1 =
d−1∑
j=0

(−1)j

(
d − 1

j

)
(1 − x×)j ,

one sees that the expected counts of interior generators and expected counts of remaining
records are related by

E ιd,n = nd
d−1∑
j=0

(−1)j

(
d−1

j

)
n − d + j + 1 E ρd,n−d+j+1

for n ≥ d ≥ 1. But we do not know of any use for this connection.

J. A. Fill, D. Q. Naiman, and A. Sun 28:13

(b) An alternative expression to (5.3) is

E ρd,n =
n∑

j=1
(−1)j−1

(
n

j

)
j−(d−1) =: Ĥ(d−1)

n ,

a so-called Roman harmonic number studied by [8], [9], [10].

5.2 Asymptotics

From here we follow the same outline as for the expected number of remaining records in
Bai et al. [2] to obtain an asymptotic expansion for E ιd,n (see our Theorem 5.7, the main
result of Section 5). Accordingly, we begin by considering a Poissonized analogue of E ιd,n,
whose proof is rather simple and is included in the full-length paper.

▶ Lemma 5.4. For integers d ≥ 1 and n ≥ 0, define

ι̂d,n := nd

∫
[0,1)d

xd−1
× exp(−nx×) dx.

Then, for fixed d, as n → ∞ we have

ι̂d,n = (L n)d−1
d−1∑
j=0

(−1)jΓ(j)(d)
j!(d − 1 − j)! (L n)−j + O((n L n)d−1e−n).

We next bound the difference between ι̂d,n and

ι̃d,n := nd

∫
[0,1)d

xd−1
× (1 − x×)n dx. (5.4)

▶ Lemma 5.5. For fixed d ≥ 1, as n → ∞ we have

0 ≤ ι̂d,n − ι̃d,n = O(n−1(L n)d−1).

Proof. We utilize the elementary inequality

e−nt(1 − nt2) ≤ (1 − t)n ≤ e−nt

for n ≥ 1 and 0 ≤ t ≤ 1 (see [3, Lemma 5]). This yields

0 ≤ ι̂d,n − ι̃d,n ≤ nd+1
∫

[0,1)d

xd+1
× exp(−nx×) dx.

Proceeding just as in the proof of Lemma 5.4, we find that the last expression here is
O(n−1(L n)d−1). ◀

▶ Theorem 5.6. For fixed d ≥ 1, as n → ∞ the expected number of interior generators at
time n in dimension d satisfies

E ιd,n = (L n)d−1
d−1∑
j=0

(−1)jΓ(j)(d)
j!(d − 1 − j)! (L n)−j + O(n−1(L n)d−1).

AofA 2024

28:14 Sharpened Localization of the Trailing Point of the Pareto Record Frontier

Proof. Comparing (5.2) and (5.4) and then invoking Lemma 5.5, we see that

E ιd,n = nd

(n − d)d
ι̃d,n−d = [1 + O(n−1)] ι̃d,n−d

= [1 + O(n−1)]
[
ι̂d,n−d + O(n−1(L n)d−1)

]
= [1 + O(n−1)] ι̂d,n−d + O(n−1(L n)d−1).

But, according to Lemma 5.4,

ι̂d,n−d = [L(n − d)]d−1
d−1∑
j=0

(−1)jΓ(j)(d)
j!(d − 1 − j)! [L(n − d)]−j + O((n L n)d−1e−n)

= (L n)d−1
d−1∑
j=0

(−1)jΓ(j)(d)
j!(d − 1 − j)! (L n)−j + O(n−1(L n)d−2).

Thus

E ιd,n = [1 + O(n−1)] (L n)d−1
d−1∑
j=0

(−1)jΓ(j)(d)
j!(d − 1 − j)! (L n)−j + O(n−1(L n)d−1)

= (L n)d−1
d−1∑
j=0

(−1)jΓ(j)(d)
j!(d − 1 − j)! (L n)−j + O(n−1(L n)d−1),

as claimed. ◀

Combining (5.1) and (5.2), we can obtain an exact expression for E γd,n. Similarly,
combining (5.1) and Theorem 5.6 we obtain the following asymptotic expansion in powers of
logarithm for E γd,n after a little rearrangement.

▶ Theorem 5.7. For fixed d ≥ 1, as n → ∞ the expected number of generators at time n in
dimension d satisfies

E γd,n = (L n)d−1
d−1∑
j=0

ad,j(L n)−j + O(n−1(L n)d−1),

where

ad,j :=
j∑

k=0

(
d

d − j + k

)
(−1)kΓ(k)(d − j + k)

k!(d − 1 − j)! .

⌟

▶ Remark 5.8. Concerning Theorem 5.7:
(a) In particular, ad,0 = 1, so E γd,n has lead-order asymptotics

E γd,n = (L n)d−1 + O((L n)d−2);

this is (d − 1)! times as large as the lead-order asymptotics for the expected number of
remaining records, namely,

E ρd,n = (L n)d−1

(d − 1)! + O((L n)d−2).

J. A. Fill, D. Q. Naiman, and A. Sun 28:15

(b) For d = 2 and n ≥ 0, we have

E γ2,n = Hn + 1 = E ρ2,n + 1,

where Hn :=
∑n

k=1 k−1 is the nth harmonic number; and in fact it is easy to see that
γ2,n = ρ2,n + 1. For d = 3 and n ≥ 0, we have

E γ3,n = H2
n + H(2)

n + 1 = 2E ρ3,n + 1,

where H
(2)
n :=

∑n
k=1 k−2 is the nth second-order harmonic number; and in fact γ3,n =

2ρn + 1, as established in [5, Corollary 6.6]. There is not such a simple relationship
between the exact values of ρd,n and γd,n for d ≥ 4; confer [5, Remark 6.7].

(c) We hope to extend the work of Section 5.2 by finding at least lead-order asymptotics for
the variance, and also a normal approximation or other limit theorem, for the number
γd,n of generators after n observations.

6 Stochastic lower bound on F −
n via the first moment method

In this section we show how to obtain a suitable stochastic lower bound on F −
n . See

Proposition 6.2 for the result. The idea, for a suitably chosen sequence (bn) is to apply the
first moment method (computation of sufficiently small mean, together with application of
Markov’s inequality) to the count

γn(b) := (number of generators at epoch n with coordinate-sum ≤ b).

The bound on the mean of γn(bn) is obtained by suitably modifying the proof of Theorem 5.7
[compare also the similar treatment of ρn(bn) in Section 3 and the full-length paper].

▶ Lemma 6.1. With the notation and assumptions of (1.4)–(1.5) and (2.2), as n → ∞ we
have

E γn(bn) ≤ (1 + o(1)) (L n)d−1

(d − 1)! (cn L2 n)d−1(L n)−cn . (6.1)

Proof. We will be very brief here. Following very closely along the lines of Section 5, one
finds that

E γn(bn) ∼ 1
(d − 1)!

∫ L n

ne−bn

(L n − L z)d−1zd−1e−z dz

≤ (L n)d−1

(d − 1)!

∫ ∞

ne−bn

zd−1e−z dz

∼ (L n)d−1

(d − 1)! (ne−bn)d−1 exp(−ne−bn)

= (L n)d−1

(d − 1)! (cn L2 n)d−1(L n)−cn . ◀

We are now in position to utilize Markov’s inequality.

▶ Proposition 6.2 (Stochastic lower bound on F −
n). Fix d ≥ 2. If 1 ≤ cn = O(1) and

b ≡ bn := L n − L3 n − L cn,

then

P(F −
n ≤ bn) ≤ E γn(bn) ≤ (1 + o(1)) (L n)d−1

(d − 1)! (cn L2 n)d−1(L n)−cn .

AofA 2024

28:16 Sharpened Localization of the Trailing Point of the Pareto Record Frontier

7 Proof of Theorem 1.8

In this section we prove Theorem 1.8.

Proof of Theorem 1.8.
(a) This follows readily from Propositions 6.2 and 3.2 (or one can invoke Theorem 1.11

instead of Proposition 3.2).
(b) As noted in Remark 1.14, this is immediate from Theorem 1.11(b), already established

in Appendix B.
(c) This follows in the same fashion as our given proof of Theorem 1.11(c), now using

Proposition 6.2 in place of Proposition 2.3. We leave the routine details to the reader. ◀

References
1 Barry C. Arnold, N. Balakrishnan, and H. N. Nagaraja. Records. Wiley Series in Probability

and Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York, 1998. A
Wiley-Interscience Publication. doi:10.1002/9781118150412.

2 Zhi-Dong Bai, Luc Devroye, Hsien-Kuei Hwang, and Tsung-Hsi Tsai. Maxima in hypercubes.
Random Structures Algorithms, 27(3):290–309, 2005. doi:10.1002/rsa.20053.

3 Zhi-Dong Bai, Hsien-Kuei Hwang, Wen-Qi Liang, and Tsung-Hsi Tsai. Limit theorems for the
number of maxima in random samples from planar regions. Electron. J. Probab., 6:no. 3, 41,
2001. doi:10.1214/EJP.v6-76.

4 A.D. Barbour, Lars Holst, and Svante Janson. Poisson Approximation. Oxford studies in
Probability. Oxford University Press, New York, 1992.

5 James Allen Fill and Daniel Q. Naiman. Generating Pareto records, 2019. arXiv:1901.05621.
arXiv:1901.05621.

6 James Allen Fill and Daniel Q. Naiman. The Pareto record frontier. Electron. J. Probab.,
25:Paper No. 92, 24, 2020. doi:10.1214/20-ejp492.

7 J. Kiefer. Iterated logarithm analogues for sample quantiles when pn ↓ 0. Proceedings of
the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California,
Berkeley, Calif., 1970/1971), Vol. I: Theory of statistics, pages 227–244, 1972.

8 Daniel E. Loeb and Gian-Carlo Rota. Formal power series of logarithmic type. Adv. Math.,
75(1):1–118, 1989. doi:10.1016/0001-8708(89)90079-0.

9 Steven Roman. The logarithmic binomial formula. Amer. Math. Monthly, 99(7):641–648, 1992.
doi:10.2307/2324994.

10 J. Sesma. The Roman harmonic numbers revisited. J. Number Theory, 180:544–565, 2017.
doi:10.1016/j.jnt.2017.05.009.

A Proof of Lemma 2.1

This appendix is devoted to the (elementary) proof of Lemma 2.1.

Proof of Lemma 2.1. We will prove (2.3) by separately considering (a) upper and (b) lower
bounds. Before beginning, we note that the mean in question has the exact expression

E ρn(bn) = n

∫
x≥0: x+≤bn

e−x+(1−e−x+)n−1 dx = n

(d − 1)!

∫ bn

0
yd−1e−y(1−e−y)n−1 dy. (A.1)

A key technical tool we will use is the pair of elementary inequalities

e−nt(1 − nt2) ≤ (1 − t)n ≤ e−nt (A.2)

https://doi.org/10.1002/9781118150412
https://doi.org/10.1002/rsa.20053
https://doi.org/10.1214/EJP.v6-76
https://arxiv.org/abs/1901.05621
https://doi.org/10.1214/20-ejp492
https://doi.org/10.1016/0001-8708(89)90079-0
https://doi.org/10.2307/2324994
https://doi.org/10.1016/j.jnt.2017.05.009

J. A. Fill, D. Q. Naiman, and A. Sun 28:17

for n ≥ 1 and 0 ≤ t ≤ 1 (see [3, Lemma 5]). Also, note from the definition (2.2) of the
function Jj that

Jj(x) ∼ (L x)je−x as x → ∞ (A.3)

and that for 1 ≤ x < y we have

0 < Jj(x) − Jj(y) ≤ (L y)j(e−x − e−y) = (L y)je−y(ey−x − 1). (A.4)

(a) Utilizing the upper bound in (A.2) immediately we derive

E ρn+1(bn+1)

= n + 1
(d − 1)!

∫ bn+1

0
yd−1e−y(1 − e−y)n dy

≤ n + 1
(d − 1)!

∫ bn+1

0
yd−1 exp

(
−ne−y − y

)
dy (A.5)

= 1 + n−1

(d − 1)!

∫ n

ne−bn+1
(L n − L z)d−1e−z dz

≤ 1 + n−1

(d − 1)!

∫ n+1

ne−bn+1
[L(n + 1) − L z]d−1e−z dz

= 1 + n−1

(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
[L(n + 1)]d−1−j

∫ n+1

ne−bn+1
(L z)je−z dz

= 1 + n−1

(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
[L(n + 1)]d−1−j [Jj(ne−bn+1) − Jj(n + 1)].

That is,

E ρn(bn) ≤ 1 + (n − 1)−1

(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
(L n)d−1−j [Jj((n − 1)e−bn) − Jj(n)]. (A.6)

By the note following (2.2), Jj(n) ∼ (L n)je−n. Moreover, by (A.4) we have

0 < Jj((n − 1)e−bn) − Jj(βn)
≤ (L βn)je−βn [exp(e−bn) − 1]
∼ (L βn)je−βne−bn = (L βn)je−βnn−1cn L2 n = O

(
(L βn)je−βnn−1 L2 n

)
.

Thus

E ρn(bn) ≤ 1
(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
(L n)d−1−jJj(βn) + O(n−1(L n)d−1−cn L2 n)

= [1 + O(n−1 L2 n)] 1
(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
(L n)d−1−jJj(βn),

bettering the claim in the upper-bound direction for the mean at (2.3).

AofA 2024

28:18 Sharpened Localization of the Trailing Point of the Pareto Record Frontier

(b) Utilizing the lower bound in (A.2), we find from (A.1) that

E ρn(bn) = n

(d − 1)!

∫ bn

0
yd−1e−y(1 − e−y)n−1 dy

≥ n

(d − 1)!

∫ bn

0
yd−1e−y(1 − e−y)n dy

≥ n

(d − 1)!

∫ bn

0
yd−1 exp

(
−ne−y − y

) (
1 − ne−2y

)
dy. (A.7)

We derive that the added term in (A.7) satisfies

n

(d − 1)!

∫ bn

0
yd−1 exp

(
−ne−y − y

)
dy

= 1
(d − 1)!

∫ n

βn

(L n − L z)d−1e−z dz

= 1
(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
(L n)d−1−j [Jj(βn) − Jj(n)].

But Jj(n) ∼ e−n(L n)j , whence the added term in (A.7) is lower-bounded by

1
(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
(L n)d−1−jJj(βn) − O(e−n(L n)d−1).

So it remains to show that the subtracted term in (A.7) can be absorbed into the remainder
term in (2.4), which we will do in similar (but easier) fashion to upper-bounding E ρn(bn).
Indeed, the subtracted term satisfies

0 <
n2

(d − 1)!

∫ bn

0
yd−1 exp

(
−ne−y − 3y

)
dy = n−1

(d − 1)!

∫ n

βn

z2(L n − L z)d−1e−z dz

(A.8)

≤ n−1(L n)d−1

(d − 1)!

∫ ∞

βn

z2e−z dz

∼ n−1(L n)d−1

(d − 1)! β2
ne−βn

= n−1(L n)d−1

(d − 1)! c2
n(L2 n)2(L n)−cn = O(n−1(L2 n)2(L n)d−1−cn)

= O

n−1(L2 n)2 1
(d − 1)!

d−1∑
j=0

(−1)j

(
d − 1

j

)
(L n)d−1−jJj(βn)

 ,

as desired. ◀

B Proof of Theorem 1.11

In this appendix we prove Theorem 1.11.

Proof of Theorem 1.11.
(a) This follows readily from Propositions 2.3 and 3.2. Here are some details. For a ∈ R, let

bn(a) := L n − L3 n − L(d − 1) + a

L2 n
, (B.1)

J. A. Fill, D. Q. Naiman, and A. Sun 28:19

as at (3.3); this is an instance of (1.4) with cn = (d − 1)e−a/ L2 n. By Proposition 2.3,

P(F̂ −
n ≤ bn(a)) ≤ (1 + o(1)) 1

(d − 1)! (L n)d−1−cn → 1
(d − 1)!e

(d−1)a;

the last expression here tends to 0 as a → −∞. Similarly, by Proposition 3.2,

P(F̂ −
n ≥ bn(a)) ≤ (1 + o(1))(d − 1)!(L n)−(d−1−cn) → (d − 1)!e−(d−1)a,

and the last expression here tends to 0 as a → ∞. It follows that the sequence of
distributions of (1.3) is tight, i.e., that Theorem 1.11(a) holds.

(b) Like F − (Lemma 1.5), the process F̂ − has nondecreasing sample paths. From this
it follows that if (bn) is (ultimately) monotone nondecreasing and (nj) is any strictly
increasing sequence of positive integers, then

{F̂ −
n ≥ bn i.o.(n)} ⊆ {F̂ −

nj+1
≥ bnj

i.o.(j)}.

To complete the proof of part (b), we choose bn ≡ L n − L3 n − L(d − 2) + L 2 + c with
c > 0 and nj ≡ 2j , bound P(F̂ −

nj+1
≥ bnj

) using Proposition 3.2, and apply the first
Borel–Cantelli lemma.
Here are the details. If n is even, then

bn/2 = L(n/2) − L3(n/2) − L(d − 2) + L 2 + c = L n − L3(n/2) − L(d − 2) + c

≥ L n − L3 n − L(d − 2) + c,

the last expression being the one in Proposition 3.2 with cn ≡ e−c(d − 2). Thus, by that
proposition,

P(F̂ −
nj+1

≥ bnj
) = P(F̂ −

nj+1
≥ bnj+1/2)

≤ P(F̂ −
nj+1

≥ L nj+1 − L3 nj+1 − L(d − 2) + c)

= O((L nj+1)−[d−1−e−c(d−2)]) = O((j + 1)−[1+(1−e−c)(d−2)]),

which is summable.
(c) To prove part (c) [which, as noted in Remark 1.14, will also follow immediately once we

prove Theorem 1.8(c)], we begin with an argument similar to that for part (b). If (bn)
is (ultimately) monotone nondecreasing and (nj) is any strictly increasing sequence of
positive integers, then

{F −
n ≤ bn i.o.(n)} ⊆ {F −

nj
≤ bnj+1 i.o.(j)}.

To complete the proof of part (c), we choose bn ≡ L n−L3 n−L d−L 2−c with c > 0 and
nj ≡ 2j , bound P(F −

nj
≤ bnj+1) using Proposition 2.3, and apply the first Borel–Cantelli

lemma.
Here are the details. First note that

b2n = L(2n) − L3(2n) − L d − L 2 − c ≤ L n − L3 n − L d − c,

the bounding expression being the one in Proposition 2.3 with cn ≡ ecd. Thus, by that
proposition,

P(F −
nj

≤ bnj+1) ≤ P(F −
nj

≤ L nj − L3 nj − L d − c)

= O((L nj)−[ecd−(d−1)]) = O(j−[1+(ec−1)d]),

which is summable. ◀

AofA 2024

28:20 Sharpened Localization of the Trailing Point of the Pareto Record Frontier

C Proofs of Theorems 4.3 and 4.5 and Lemma 5.2

Proof of Theorem 4.3. First suppose g ∈ I. Then (i) is automatic from the definition
of I. Moreover, we know from our earlier discussion of generators that (ii) holds for
g =

(
R

(Π1)
1 , . . . , R

(Πd)
d

)
with the possible exception of the second equality in (4.2). But if

that equality does not hold, let j, ℓ ∈ [d] with j ̸= ℓ satisfy

r
(iℓ)
j < R

(Πj)
j .

We then move iℓ from the cell Πℓ to the cell Πj in order to form a new partition, call it Π′.
Then

g >
(

R
(Π′

1)
1 , . . . , R

(Π′
d)

d

)
∈ S,

so g is not a generator.
Next we prove the converse. If g has these two properties, then g ∈ (0, ∞)d belongs to S,

so all that is left to show is that g is a minimum (with respect to ≤) of S. Suppose that
x < g; we will complete the proof by showing that x ̸∈ S.

Let j0 satisfy xj0 < gj0 . Then

xj0 < gj0 = r
(ij0)
j0

(C.1)

using (4.2) for the equality. Additionally, for j ̸= j0 we have

xj ≤ gj < r
(ij0)
j , (C.2)

where the second inequality holds by (4.2) because

gj = r
(ij)
j = min

{
r

(iℓ)
j : ℓ ∈ [d]

}
,

which almost surely is strictly smaller than r
(ij0)
j because ij ̸= ij0 . Combining (C.1) and (C.2),

we see that x ≺ r(ij0), and so x ̸∈ S. ◀

Proof of Theorem 4.5. Let t = |T |. There is no loss of generality (and there is some
ease in notation) in supposing that T = [t], and thus x ∈ GT if and only if x ∈ G and
xt+1 = · · · = xd = 0. Let x = (x1, . . . , xt, 0, . . . , 0) satisfy ν(x) = t. We will show that x ∈ GT

– equivalently, that x ∈ G – if and only if πT (x) ∈ IT – equivalently, that x ∈ ιT (IT) = G′
T .

Indeed, for x to be a generator, there are two requirements: (i) x ∈ S, and (ii) x is a
minimum of S. The requirement (i) is that for each i there should exist j ∈ [d] such that
xj ≥ r

(i)
j . However, since we assume that r(i) ≻ 0, such j must belong to [t]. We have thus

argued that x is in S = RS(R) (the record-setting region determined by the points in R) if
and only if πT (x) ∈ RS(RT).

The requirement (ii) is that y < x must imply y /∈ S. But note that y < x if and only if
y is of the form y = (y1, . . . , yt, 0, . . . , 0) with πT (y) < πT (x). Thus requirement (ii) can be
rephrased thus: If y = (y1, . . . , yt, 0, . . . , 0) with πT (y) < πT (x), then y /∈ RS – equivalently,
by what we argued in connection with requirement (i), that πT (y) /∈ RS(RT).

So we have argued that x is a generator if and only if πT (x) ∈ IT , i.e., if and only if
x ∈ G′

T . This is as desired. ◀

J. A. Fill, D. Q. Naiman, and A. Sun 28:21

Proof of Lemma 5.2. To facilitate the statement and proof of Lemma 5.2, and in order
to follow more closely the analogous treatment of remaining records in [2, Section 2], we
may and do switch from Exponential(1) observation coordinates to observations uniformly
distributed in [0, 1)d. Referring to Theorem 4.3(ii), let us say that the d-tuple (X(i1), . . . ,

X(id)) of observations (where the indices ij are distinct elements of [n]) generates an epoch-n
interior generator g if those d observations are all remaining records at epoch n and

gj = X
(ij)
j = min{X

(iℓ)
j : ℓ ∈ [d]} for every j ∈ d.

Note that every interior generator is generated by precisely one such generating d-tuple. Thus
E ιd,n equals nd times the probability that (X(1), . . . , X(d)) generates an interior generator.
Condition on the value y := (x(1), . . . , x(d)) of this d2-tuple. According to Theorem 4.3, in
order for y to generate an interior generator, two conditions are required. One is that

x
(ℓ)
j ≥ x

(j)
j for every ℓ, j ∈ d with ℓ ̸= j. (C.3)

Let x :=
(

x
(1)
1 , . . . , x

(d)
d

)
. The other condition is that the remaining n − d observations each

need to fall outside O+
x , guaranteeing the condition x ∈ S required by Theorem 4.3(i).

Therefore,

E ιd,n = nd

∫
y:(C.3) holds

[
1 −

∏
(1 − x

(j)
j)
]n−d

dy,

a d2-dimensional integral which reduces effortlessly to a d-dimensional integral:

E ιd,n = nd

∫
[0,1)d

[
∏

(1 − xj)]d−1 [1 −
∏

(1 − xj)]n−d dx

= nd

∫
(0,1]d

xd−1
× (1 − x×)n−d dx,

as desired. ◀

AofA 2024

Statistics of Parking Functions and Labeled Forests
Stephan Wagner #

Institute of Discrete Mathematics, TU Graz, Austria
Department of Mathematics, Uppsala University, Sweden

Mei Yin #

Department of Mathematics, University of Denver, CO, USA

Abstract
In this paper we obtain some new results on the enumeration of parking functions and labeled forests.
We introduce new statistics both for parking functions and for labeled forests that are connected
to each other by means of a bijection. We determine the joint distribution of two statistics on
parking functions and their counterparts on labeled forests. Our results on labeled forests also serve
to explain the mysterious equidistribution between two seemingly unrelated statistics in parking
functions recently identified by Stanley and Yin and give an explicit bijection between the two
statistics.

2012 ACM Subject Classification Mathematics of computing → Enumeration; Mathematics of
computing → Generating functions

Keywords and phrases parking function, labeled forest, generating function, Pollak’s circle argument,
bijection

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.29

Funding Stephan Wagner : Supported by the Swedish research council (VR), grant 2022-04030.
Mei Yin: Supported by the University of Denver’s Professional Research Opportunities for Faculty
Fund 80369-145601.

Acknowledgements The authors benefited from participation in the Workshop on Analytic and
Probabilistic Combinatorics at the Banff International Research Station in November 2022 and
also from participation in the 34th International Conference on Probabilistic, Combinatorial and
Asymptotic Methods for the Analysis of Algorithms in Taipei in June 2023.

1 Introduction

In this paper we obtain some new results on the enumeration of parking functions and labeled
forests. We introduce new statistics both for parking functions and for labeled forests and
connect them by means of a bijection. We determine the joint distribution of two statistics
on parking functions and their counterparts on labeled forests. Our enumerative results
for parking functions and for labeled forests inform each other. In particular, our results
on labeled forests serve to explain the mysterious equidistribution between two seemingly
unrelated statistics in parking functions recently identified by Stanley and Yin [16] and give
an explicit bijection between the two statistics.

We begin with the necessary definitions. In the parking function scenario due to Konheim
and Weiss [9], there are n parking spaces on a one-way street, labeled 1, 2, . . . , n in consecutive
order. A line of m ≤ n cars enters the street, one by one. The ith car drives to its preferred
spot πi and parks there if possible; if the spot is already occupied then the car parks in the
first available spot after that. The list of preferences π = (π1, . . . , πm) is called a parking
function if all cars successfully park. (The parking function is called “classical” when m = n.)
We denote the set of parking functions by PF(m, n), where m is the number of cars and n is
the number of parking spots. Using the pigeonhole principle, we see that a parking function

© Stephan Wagner and Mei Yin;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 29; pp. 29:1–29:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stephan.wagner@tugraz.at
https://orcid.org/0000-0001-5533-2764
mailto:mei.yin@du.edu
https://orcid.org/0000-0002-3706-9357
https://doi.org/10.4230/LIPIcs.AofA.2024.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Statistics of Parking Functions and Labeled Forests

π ∈ PF(m, n) must have at most one value = n, at most two values ≥ n − 1, and for each k

at most k values ≥ n − k + 1, and any such function is a parking function. Equivalently, π is
a parking function if and only if

#{k : πk ≤ i} ≥ m − n + i, for i = n − m + 1, . . . , n. (1)

We make two immediate observations from (1). The first observation is that parking functions
are invariant under the action of the symmetric group Sm permuting the m cars, that is,
permuting the list of preferences π. The second observation is that when some πi takes values
in the set {1, 2, . . . , n − m + 1}, changing πi to any other value in the set {1, 2, . . . , n − m + 1}
has no effect on π being a parking function.

One of the most fundamental results on parking functions is that the number of parking
functions is | PF(m, n)| = (n − m + 1)(n + 1)m−1. A famous combinatorial proof in the
classical case was given by Pollak (unpublished but recounted in [5] and [12]). See also Pitman
and Stanley [15] for a generalization of Pollak’s circle argument. The combinatorial argument
boils down to the following easily verified statement: Let G denote the group of all m-tuples
(a1, . . . , am) ∈ [n + 1]m with componentwise addition modulo n + 1. Let H be the subgroup
of G generated by (1, 1, . . . , 1). Then every coset of H contains exactly n − m + 1 parking
functions. Interpreted probabilistically, the combinatorial operation involves assigning m

cars on a circle with n + 1 spots and recording those car assignments where spot n + 1 is left
empty after circular rotation. Since there are n − m + 1 missing spaces for the assignment of
any preference sequence, any preference sequence π has n − m + 1 rotations that are valid
parking functions. Our parking function proofs will be based on refinements of Pollak’s proof
technique, where we investigate the individual parking statistics for each car the moment it
is parked on the circle.

This new line of approach first appeared in a paper by Stanley and Yin [16] and is extended
in this paper, where we introduce the new statistics leading elements and size of level set on
parking functions π ∈ PF(m, n) and examine their joint distributions. The statistic leading
elements was introduced in [16] earlier for classical parking functions π ∈ PF(n, n) and
counts the total number of cars whose desired spot is the same as that of the first car. It
was shown in [16, Theorem 4.2] via a generating function approach that for classical parking
functions the leading elements statistic is equidistributed with the widely-studied 1’s statistic
that counts the total number of cars whose desired spot is spot 1. This feature of parking
functions is quite mysterious as these two parking function statistics seem unrelated and
are not of the same nature. While the leading elements statistic is invariant under circular
rotation, it does not satisfy permutation symmetry as permuting the entries might change
the first element. On the other hand, though the 1’s statistic is invariant under permuting
all the entries, it does not exhibit circular rotation invariance. Indeed, only one out of n + 1
rotations of an assignment of n cars on a circle with n+ 1 spots gives a valid parking function.
It is thus intriguing what is hidden behind the pair of statistics (leading elements, 1’s). By
casting parking functions in the context of labeled forests, this question will be answered in
our paper. We explain the gist of our argument below.

Let [n] = {1, 2, . . . , n} and [n]0 = {0, 1, . . . , n}. Let T (n) denote the set of all rooted trees
T on the vertex set [n]0 with root 0. More generally, let F(m, n) denote the set of all rooted
forests F with n + 1 vertices and m edges (equivalently, n − m + 1 distinct tree components)
such that a specified set of n − m + 1 vertices are the roots of the different trees. We label
the roots of F by {01, 02, . . . , 0(n − m + 1)} and the non-root vertices by {1, 2, . . . , m}. The
fact that the cardinalities of classical parking functions and of rooted trees are the same, i.e.,

| PF(n, n)| = |T (n)|,

S. Wagner and M. Yin 29:3

and more generally

| PF(m, n)| = |F(m, n)|,

has motivated much work in the study of connections between the two combinatorial structures.
One bijective construction between parking functions and labeled forests goes back to Foata
and Riordan [5]. Their construction is for the special case m = n and is referred to as a
breadth first search (with a queue) on rooted trees. See Yan [17, Section 1.2.3] and also
Chassaing and Marckert [1]. We will show that under the bijective correspondence induced
by breadth first search, the seemingly unrelated leading elements statistic and the 1’s statistic
for classical parking functions both become degree statistics. One of them (the root degree)
is classical, while the other (degree of the parent of a fixed vertex) appears to be new.

Generally, statistics based on degrees and other aspects of labeled trees have been studied
extensively. A well-known generalization of Cayley’s tree theorem includes the degrees of all
vertices as additional statistics [7, 14]. Another interesting example is the enumeration of
labeled trees with respect to their indegrees: there are two versions of defining indegrees, both
leading to the same enumeration formula. In the global orientation (see e.g. [14]), all edges
are oriented towards the root; in the local orientation (see [13]), they are oriented towards
the higher label. For many more interesting statistics of labeled trees, see for instance [3]
(descents), [11] (inversions, which were also connected to parking functions in [6]), or [10]
(runs).

This paper is organized as follows. In Section 2 we extend the statistic leading elements
(denoted lel(π)) for classical parking functions that was studied by Stanley and Yin [16] to
general parking functions π ∈ PF(m, n). We also introduce a new statistic, size of level set
(denoted slev(π)), for parking functions π ∈ PF(m, n) that extends the notion of the 1’s
statistic (denoted ones(π)) for classical parking functions and study the joint distribution of
the level set statistic and the leading elements statistic. We establish the generating function
for the pair of statistics (slev(π), lel(π)) using variations of Pollak’s argument.

In Section 3, we apply the aforementioned bijection between parking functions and labeled
forests that is based on breadth first search. By means of this bijection, we find that the pair
of statistics (slev(π), lel(π)) on the set of parking functions PF(m, n) is equidistributed with
the pair of statistics (deg(0), deg(p)) on the set of rooted forests F(m, n), where deg(0) is the
root degree of a rooted forest (the total number of children of all roots 01, 02, . . . , 0(n−m+1)),
and deg(p) is the number of children of the parent p of the vertex labeled 1 (by degree, we
generally mean more precisely the number of children of a vertex in a rooted tree, which is 1
less than the degree in the graph-theoretical sense for non-root vertices).

The pair of statistics (deg(0), deg(p)) is further considered in Section 4. In particular, we
directly prove a formula for the number of rooted forests in F(m, n) for which deg(0) and
deg(p) take on given values by means of a combinatorial argument. In the special case m = n

(i.e., for labeled trees), the two statistics deg(0) and deg(p) also have the same distribution.
We provide an explicit bijection for this fact.

In Section 5, we finally examine the asymptotic properties of the statistics investigated in
our paper using standard probabilistic tools.

2 Statistics on parking functions

In this section we investigate the joint distribution of the pair of statistics (slev(π), lel(π))
on parking functions π ∈ PF(m, n). The precise definitions of the individual statistics read
as follows:

AofA 2024

29:4 Statistics of Parking Functions and Labeled Forests

Leading elements: total number of cars whose desired spot is the same as that of the first
car, denoted lel(π). This statistic was recently introduced (in the special case m = n) by
Stanley and Yin [16].
Size of level set: total number of cars whose desired spot is in the range {1, 2, . . . , n−m+1},
denoted slev(π). When m = n, the level set statistic reduces to the 1’s statistic for classical
parking functions, which counts the total number of cars whose desired spot is spot 1,
often denoted ones(π). The level set statistic slev(π) has not been considered before, but
the 1’s statistic ones(π) has been widely studied.

Our results for PF(m, n) are extensions of corresponding results for classical parking functions
PF(n, n) in [16]. As mentioned in the introduction, we will expand upon Pollak’s ingenious
circle argument [5] for the street parking model to derive our results.

The following lemma was proven before using other means, see for example Kenyon
and Yin [8, Corollary 3.4]. Our direct combinatorial argument below will shed light on the
structure of parking functions and will be useful in the proof of Theorem 4. As implied
by the necessary and sufficient condition (1), changing π1 = 1 to whichever value below
n − m + 1 will still keep π a parking function. The number of parking functions π ∈ PF(m, n)
with π1 ∈ {1, 2, . . . , n − m + 1} is thus n − m + 1 times the number of parking functions
π ∈ PF(m, n) with π1 = 1.

▶ Lemma 1. We have

#{π ∈ PF(m, n) : π1 = 1} = (n − m + 2)(n + 1)m−2,

which implies that

#{π ∈ PF(m, n) : π1 ∈ {1, 2, . . . , n − m + 1}} = (n − m + 1)(n − m + 2)(n + 1)m−2.

Proof. The statement is trivially true for m = 1. For m ≥ 2, we assign cars 2, . . . , m

independently on a circle of length n + 1. Taking circular rotation into consideration, the car
assignments give rise to (n − m + 2)(n + 1)m−2 valid parking functions. Note that car 1 will
always be able to park if its desired spot is spot 1. Our conclusion readily follows. ◀

The following lemma allows us to split a parking function in PF(m, n) into an arbitrary
map whose range is precisely the set {1, 2, . . . , n − m + 1} (that is relevant for the statistic
slev) and a parking function on a smaller domain. It will be very useful in proving our results
on the distribution of statistics on PF(m, n).

▶ Lemma 2. Consider a function π : [m] → [n]. Fix the elements of π that are equal to one
of 1, 2, . . . , n−m+1, and suppose that there are s ≥ 0 such elements (this is precisely slev(π)).
Let the other elements be πj1 , πj2 , . . . , πjm−s

, and define a new function π̃ : [m − s] → [m − 1]
by π̃i = πji − (n − m + 1). Then π is a parking function in PF(m, n) if and only if π̃ is a
parking function in PF(m − s, m − 1).

▶ Remark 3. For s = 0, there is no valid parking function in view of (1). This is consistent
with the fact that PF(m, m − 1) is (trivially) empty.

Proof. We make use of the characterization (1) of parking functions. For any i > m − n, we
have

#{k : πk ≤ i} = s + #{k : π̃k ≤ i − (n − m + 1)}.

So the condition in (1) is equivalent to

#{k : π̃k ≤ i − (n − m + 1)} ≥ m − n + i − s

S. Wagner and M. Yin 29:5

for i = m − n + 1, m − n + 2, . . . , n. Substituting h = i − (n − m + 1), this becomes

#{k : π̃k ≤ h} ≥ h + 1 − s (2)

for h = 0, 1, . . . , m−1. This is precisely the condition for a parking function in PF(m−s, m−1),
except for one detail: the conditions start at h = 0 rather than h = s. However, for h < s, (2)
is trivially satisfied. This completes the proof. ◀

Lemma 2 means that every parking function in PF(m, n) can be uniquely decomposed
into an arbitrary function πa : A → [n − m + 1] on a set A ⊆ [m] of cardinality s and a
function that is equivalent to a parking function πp in PF(m − s, m − 1).

As a consequence of the decomposition in Lemma 2, we will now be able to prove results
on the distributions of the statistics slev(π) and lel(π). We start with the joint distribution
of slev(π) and lel(π), which is determined by the following theorem.

▶ Theorem 4. Let s, t ≥ 1. We have

#{π ∈ PF(m, n) : slev(π) = s and lel(π) = t}

=
(

m − 2
s − 1, t − 1, m − s − t

)
(n − m + 1)s(m − 1)m−s−t+1

+
(

m − 1
t − 1, s − t, m − s

)
s(n − m + 1)(n − m)s−tmm−s−1.

We will revisit this formula later in the context of rooted forests. The generating function
for the joint distribution of slev(π) and lel(π) is obtained in a straightforward fashion by
summing over all s and t.

▶ Corollary 5.∑
π∈PF(m,n)

xslev(π)ylel(π) = (n − m + 1)xy
[
(m − 1)((n − m + 1)x + y + m − 1)m−2

+(xy + (n − m)x + 1)(xy + (n − m)x + m)m−2]
. (3)

Proof of Theorem 4. Let us count parking functions π ∈ PF(m, n) for which slev(π) = s.
Lemma 2 shows that we can decompose π into an arbitrary function πa from A to [n−m+1],
where |A| = s and A ⊆ [m], and a (function equivalent to a) parking function πp in
PF(m − s, m − 1). For lel(π), we distinguish two cases:

The spot of the first car does not lie in {1, 2, . . . , n − m + 1}. In this case, 1 /∈ A, and the
value of lel(π) is determined by the function πp. Recall that by Pollak’s argument, for
every possible map from [m − s] to [m], there are s possible rotations that will turn it
into a parking function in PF(m − s, m − 1). Thus in a randomly chosen parking function,
each car (other than the first) takes the same spot as car 1 with the same probability
1
m , and all the cars are independent. So lel(π) follows a binomial distribution in this
case, and there are s

(
m−s−1

t−1
)
(m − 1)m−s−t possibilities for πp such that lel(π) = t. Since

there are
(

m−1
s

)
choices for the set A (the domain of πa) and (n − m + 1)s choices for the

function πa itself, we obtain a total contribution of(
m − 1

s

)
· (n − m + 1)s · s

(
m − s − 1

t − 1

)
(m − 1)m−s−t

=
(

m − 2
s − 1, t − 1, m − s − t

)
(n − m + 1)s(m − 1)m−s−t+1.

AofA 2024

29:6 Statistics of Parking Functions and Labeled Forests

The corresponding generating function is

m∑
s=1

(
m − 1

s

)
(n − m + 1)sys(m − 1 + y)m−s−1xs

= (n − m + 1)xy(m − 1)((n − m + 1)x + y + m − 1)m−2.

The spot of the first car lies in {1, 2, . . . , n − m + 1}. Then 1 ∈ A, and lel(π) is completely
determined by the function πa. Each element of A\{1} has the same probability 1

n−m+1 of
being mapped to the same element as car 1 by πa, and all these elements are independent.
So given s, lel(π) follows a binomial distribution in this case as well, and given πa(1),
there are

(
s−1
t−1

)
(n − m)s−t possibilities for the map πa such that lel(π) = t. There are now(

m−1
s−1

)
choices for the set A, n − m + 1 choices for the spot of the first car, and smm−s−1

possible choices for πp, so this case yields a contribution of(
s − 1
t − 1

)
(n − m)s−t ·

(
m − 1
s − 1

)
(n − m + 1) · smm−s−1

=
(

m − 1
t − 1, s − t, m − s

)
s(n − m + 1)(n − m)s−tmm−s−1.

The generating function associated with this case is

m∑
s=1

(
m − 1
s − 1

)
y(n − m + 1)(n − m + y)s−1smm−s−1xs

= (n − m + 1)xy(xy + (n − m)x + m)m−2(xy + (n − m)x + 1).

Combining the two contributions, we obtain Theorem 4 and Corollary 5. ◀

Specializing the generating function by setting x = 1 or y = 1, we immediately obtain
the distributions of lel(π) and slev(π). These are given in the following two corollaries.

▶ Corollary 6. Taking x = 1 in (3), we have∑
π∈PF(m,n)

ylel(π) = (n − m + 1)y(y + n)m−1.

▶ Corollary 7. Taking y = 1 in (3), we have∑
π∈PF(m,n)

xslev(π) = (n − m + 1)x ((n − m + 1)x + m)m−1
.

Observe that the generating functions in Corollaries 6 and 7 are identical for m = n (up
to renaming the variable). In this case, slev(π) becomes the statistic ones(π) (number of 1’s
in the parking function).

3 Breadth first search

In this section we explore the implications of the breadth first search (BFS) algorithm
connecting parking functions PF(m, n) and rooted forests F(m, n). This allows us to transfer
results from parking functions to forests. Our construction will extend the corresponding
construction between classical parking functions PF(n, n) and rooted trees T (n) by Foata and
Riordan [5, Section 3]. That our construction is a bijection may be similarly argued as in [5],

S. Wagner and M. Yin 29:7

01

1 4

3 9

02 03

6

04

2

5

7

8

Figure 1 Rooted spanning forest.

with minor adaptations. We will not go over all the technical details here, but will provide
the explicit formulas for the generalized construction and illustrate the correspondence with
a concrete example.

A forest F ∈ F(m, n) may be represented by an acyclic function f , where for a non-root
vertex i, fi = j indicates that vertex j is the parent of vertex i in a tree component of the
forest. Take m = 9 and n = 12. See Figure 1 representing an element of F ∈ F(9, 12), which
corresponds to the acyclic function f given below:

i = 1 2 3 4 5 6 7 8 9
fi = 01 04 4 01 2 03 5 2 4

. (4)

We read the vertices of the forest in breadth first search (BFS) order. That is, read root
vertices in order first, then all vertices at level 1 (children of a root), then those at level 2
(distance 2 from a root), and so on, where vertices at a given level are naturally ordered
in order of increasing predecessor, and, if they have the same predecessor, increasing order.
See [17, Section 1.2.3] for a description of this graph searching algorithm in the language of
computer science. Applying BFS to the forest F in Figure 1, we have

v01, . . . , v04, v5, . . . , v13 = 01, 02, 03, 04, 1, 4, 6, 2, 3, 9, 5, 8, 7.

We let σ−1
f be the vertex ordering once we remove the root vertices and σf be the inverse

order permutation of σ−1
f .

i = 1 2 3 4 5 6 7 8 9
σ−1

f (i) = 1 4 6 2 3 9 5 8 7
σf (i) = 1 4 5 2 7 3 9 8 6

.

We further let t(f) = (r1, . . . , r12) with ri recording the degree of vi, starting with v01 and
ending with v12 (ignoring the final vertex v13), that is,

t(f) = (2, 0, 1, 1, 0, 2, 0, 2, 0, 0, 1, 0).

The sequence t(f) is referred to as the forest specification of F .
Via the breadth first search, a generic forest F ∈ F(m, n) may thus be uniquely charac-

terized by its associated specification t(f) and order permutation σf . Furthermore, the pair
(t(f), σf) must satisfy certain balance and compatibility conditions. For exact definitions of
these conditions, see [8, Section 2.2] and the references therein. Indeed, if we let C(m, n) be
the set of all feasible pairs, then C(m, n) is in one-to-one correspondence with F(m, n). It
turns out that C(m, n) is also in one-to-one correspondence with the set of parking functions
PF(m, n), which we now describe.

AofA 2024

29:8 Statistics of Parking Functions and Labeled Forests

For a parking function π ∈ PF(m, n), the associated specification is s(π) = (r1, . . . , rn),
where rk = #{i : πi = k} records the number of cars whose parking preference is spot k. The
order permutation τπ ∈ Sm, on the other hand, is defined by τπ(i) = #{j : πj < πi, or πj =
πi and j ≤ i}, and so is the permutation that orders the list, without switching elements
that are the same. In words, τπ(i) is the position of the entry πi in the non-decreasing
rearrangement of π. For example, for π = (3, 1, 3, 1), τπ(1) = 3, τπ(2) = 1, τπ(3) = 4, and
τπ(4) = 2. We can easily recover a parking function π by replacing i in τπ with the ith
smallest term in the sequence 1r1 . . . nrn . As in the case of rooted forests, all feasible pairs
(s(π), τπ) for parking functions constitute the set C(m, n).

Combining the above perspectives, we see that the breadth first search algorithm bijectively
connects parking functions and rooted forests, where (t(f), σf) = (s(π), τπ). Continuing
with our earlier example, for the forest F ∈ F(9, 12) in Figure 1 with acyclic function
representation f given by (4), we have

s(π) = (2, 0, 1, 1, 0, 2, 0, 2, 0, 0, 1, 0),

and

i = 1 2 3 4 5 6 7 8 9
τ−1

π (i) = 1 4 6 2 3 9 5 8 7
τπ(i) = 1 4 5 2 7 3 9 8 6

.

We form the non-decreasing rearrangement sequence associated with s(π):

12, 31, 41, 62, 82, 111 = 1, 1, 3, 4, 6, 6, 8, 8, 11.

Replacing i in τπ with the ith smallest term in this sequence yields the corresponding parking
function π ∈ PF(9, 12) given below:

i = 1 2 3 4 5 6 7 8 9
πi = 1 4 6 1 8 3 11 8 6

.

This bijective construction between parking functions and rooted forests has some inter-
esting implications that are listed in the following theorem.

▶ Theorem 8. The following statistics are equidistributed:
The number of times πi appears in a parking function π ∈ PF(m, n) equals the degree of
the parent of vertex i in the corresponding forest F ∈ F(m, n).
The number of times 1, 2, . . . , n − m + 1 appears in a parking function π ∈ PF(m, n)
respectively equals the degree of the root vertex 01, 02, . . . , 0(n−m+1) in the corresponding
forest F ∈ F(m, n).

Proof. This is due to our specific construction. From a forest F to a parking function π, we
have

πi =
{

j if fi = 0j for some j = 1, 2, . . . , n − m + 1,

(n − m + 1) + σf (fi) otherwise.

Conversely, from a parking function π to a forest F , we have

fi =
{

0j if πi = j for some j = 1, 2, . . . , n − m + 1,

τ−1
π (πi − (n − m + 1)) otherwise.

The second claim is clear. For the first claim, we note that πi = πj corresponds to fi = fj ,
i.e., vertices i and j have the same parent.

S. Wagner and M. Yin 29:9

In our illustrative example, the number of times each entry of π appears is given by the
vector w⃗ = (2, 1, 2, 2, 2, 1, 1, 2, 2), whose entries coincide with the respective degree of the
parent of vertex i for i ∈ {1, 2, . . . , 9}. An immediate consequence of this fact is that

9∑
i=1

wi =
4∑

i=1
deg2(0i) +

13∑
i=5

deg2(i) = 15.

We also observe that the number of times 1, 2, 3, 4 appears in π respectively agrees with the
degrees of the roots 01, 02, 03, 04 in the forest F , both yielding the vector (2, 0, 1, 1). ◀

4 Statistics on trees and forests

In the bijection described in the previous section, the number of times π1 occurs in the
parking function (the statistic lel(π)) corresponds to the degree deg(p) of the parent p of
vertex 1 (see Theorem 8). Moreover, the total number of times 1, 2, . . . , n − m + 1 occur
in the parking function (our statistic slev(π)) corresponds to the total root degree deg(0),
i.e., the sum of the degrees of all roots. Hence, the pair (deg(0), deg(p)) follows the same
joint distribution as the pair (slev(π), lel(π)). The following generating function identity is
therefore an automatic consequence of Corollary 5.

▶ Theorem 9.∑
F ∈F(m,n)

xdeg(0)ydeg(p) = (n − m + 1)xy
[
(m − 1)((n − m + 1)x + y + m − 1)m−2

+(xy + (n − m)x + 1)(xy + (n − m)x + m)m−2]
. (5)

When m = n, the rooted spanning forest F ∈ F(m, n) reduces to a rooted tree T ∈ T (n).
We recognize from Corollaries 6 and 7 that ones(π) and lel(π) are equidistributed. The
breadth first search algorithm maps them to deg(0) and deg(p), respectively, so those are
equidistributed as well. In words, the distribution of the number of children of the root
0 of a rooted labeled tree follows the same distribution as the number of children of the
parent of vertex 1 (or indeed by symmetry the parent of any fixed vertex). The property of
being parent of a specific vertex induces a bias towards higher degrees, which turns out to
be equivalent to the bias induced by being the root (which necessarily has at least one child).
The following procedure provides an explicit bijection for the equidistribution of deg(0) and
deg(p).
1. Remove the edge connecting vertices 1 and p.
2. Connect vertices 0 and 1 by an edge.
3. Interchange vertices 0 and p.

See Figure 2 for the general procedure and Figure 3 for an example. This map has the
extra benefit of being an involution. Moreover, the degrees of all vertices except 0 and p are
preserved. Some nice features are hence introduced in the corresponding parking function
bijection, where in our example

π = (8, 4, 5, 1, 2, 1, 1, 5, 6) ↔ π′ = (5, 8, 2, 2, 1, 5, 5, 4, 9).

We see that ones(π) and lel(π) are switched, but the frequencies of the non-1 and non-leading
elements are preserved up to permutation. In the example, the non-1 and non-leading
elements in π are 5 (occurring twice), 2, 4, and 6. Those in π′ are 2 (occurring twice), 4, 8,
and 9.

AofA 2024

29:10 Statistics of Parking Functions and Labeled Forests

0

p

1

p

0

1

Figure 2 A bijective map between deg(0) and deg(p) (illustration).

0

4

5

3 8

1

6 7

2

9

0

5

3 4

8

1 6 7

2

9

Figure 3 A bijective map between deg(0) and deg(p) (example).

The counting formula in our next proposition is equivalent to Theorem 4 in view of the
bijection between parking functions and forests. In the following, we also illustrate it with a
combinatorial proof of the statement in the setting of forests.

▶ Proposition 10. Let s, t ≥ 1. We have

#{F ∈ F(m, n) : deg(0) = s and deg(p) = t}

=
(

m − 2
s − 1, t − 1, m − s − t

)
(n − m + 1)s(m − 1)m−s−t+1

+
(

m − 1
t − 1, s − t, m − s

)
s(n − m + 1)(n − m)s−tmm−s−1.

Proof. As a starting point, we recall the well-known result that the number of rooted forests
with vertex set [a] and b components whose root labels are given is baa−b−1 (see [14]). Thus
the number of such rooted forests with one distinguished vertex (possibly one of the roots)
is baa−b, and by symmetry the number of such rooted forests where a vertex in the first
component is distinguished must be aa−b. Now in order to prove our formula, we distinguish
two cases:

Case 1. The parent p of vertex 1 is not one of the roots. A forest F with this property
as well as deg(0) = s and deg(p) = t can be uniquely constructed as follows:

S. Wagner and M. Yin 29:11

Choose a label r ∈ [m] \ {1} (m − 1 possibilities).
Choose two disjoint sets of labels {x1, x2, . . . , xs−1} and {y1, y2, . . . , yt−1} from [m]\{1, r}
(for which there are

(
m−2

s−1,t−1,m−s−t

)
possibilities).

Choose a rooted forest on [m] \ {1} with root labels r, x1, x2, . . . , xs−1, y1, y2, . . . , yt−1
and a distinguished vertex p in the first component (there are (m − 1)m−s−t possibilities,
as explained above). Note that potentially p = r.
Split the distinguished vertex p into two vertices, labeled p and 1 respectively, where p is
the parent and 1 is the child, and all former children of p now become children of 1.
Add roots 01, 02, . . . , 0(n − m + 1), and connect each of the vertices r, x1, x2, . . . , xs−1
with one of these roots by an edge. There are (n − m + 1)s possibilities for this.
Add edges between vertex p and y1, y2, . . . , yt−1. Note that p is indeed the parent of 1 in
this construction, and that deg(0) = s as well as deg(p) = t.

It is easy to reverse the procedure given a forest with deg(0) = s and deg(p) = t for which p

is not one of the roots. So to summarize, we have(
m − 2

s − 1, t − 1, m − s − t

)
(n − m + 1)s(m − 1)m−s−t+1

possible forests in this case, which accounts for the first term in our formula. Case 1 is
illustrated in the special case n = m = 13, s = 3 and t = 2 in Figure 4. The choice of root
labels is r = 5, {x1, x2} = {3, 13} and {y1} = {9}.

5 3 13 9

12 7 8 2 6 11

4 10

r x1 x2 y1

p

0

5 3 13

9

12 7 8 2 6

11

1 10

4

Figure 4 Illustration of the procedure: the rooted forest (top) with the distinguished vertex p

indicated by a thick node, and the final tree (bottom).

Case 2. The parent p of vertex 1 is one of the roots. Again, there is a unique way to
construct all these forests:

AofA 2024

29:12 Statistics of Parking Functions and Labeled Forests

Select a set of labels {x1, x2, . . . , xs−1} from [m] \ {1} in
(

m−1
s−1

)
ways.

Construct a rooted forest with vertex set [m] and root labels 1, x1, x2, . . . , xs−1 (there
are smm−s−1 possibilities).
Among the labels x1, x2, . . . , xs−1, choose the siblings of vertex 1; there are

(
s−1
t−1

)
possible

choices.
Pick one of the n − m + 1 roots 01, 02, . . . , 0(n − m + 1) as the parent p of vertex 1, and
connect it and all the siblings chosen in the previous step to it by an edge.
Lastly, pick one of the other n − m roots as parent for each of the remaining vertices with
label in the set {x1, x2, . . . , xs−1}. This step yields (n − m)s−t possibilities.

Putting these together gives us the second term and thus completes the proof. ◀

5 Limit distributions

In this section we conclude the paper with some asymptotic observations on the statistics
investigated in our paper. We consider the scenario where m is a linear function of n, and
determine the limit distributions of the statistics lel and slev (for parking functions) and
deg(0) as well as deg(p) (for rooted forests), respectively.

▶ Proposition 11. Let s be a fixed positive integer, and take m = cn for some 0 < c ≤ 1 as
n → ∞. Consider the parking preference π ∈ PF(m, n) chosen uniformly at random, and let
lels(π) be the number of cars with the same preference as car s. Then lels(π)−1 d→ Poisson(c),
i.e., for every fixed nonnegative integer j,

P (lels(π) = 1 + j | π ∈ PF(m, n)) ∼ cje−c

j! .

Proof. By permutation symmetry, we only need to prove this result for s = 1, where lels(π)
is exactly lel(π). We divide both sides of the generating function for lel(π) in Corollary 6
through by (n−m+1)(n+1)m−1. The right side becomes the probability generating function
of S(m, n) = 1 +

∑m−1
i=1 Xi, where the Xi are independent Bernoulli random variables:

Xi =
{

0, probability n/(n + 1),
1, probability 1/(n + 1).

Hence we have a standard case of the law of rare events, leading to a Poisson limit distribution.
◀

▶ Corollary 12. Let s be a fixed positive integer, and take m = cn for some 0 < c ≤ 1
as n → ∞. Consider the labeled forest F ∈ F(m, n) chosen uniformly at random, and let
deg(ps) be the degree of the parent ps of vertex s. Then deg(ps) − 1 d→ Poisson(c).

Proof. By permutation symmetry, we only need to prove this result for s = 1, where deg(ps)
is exactly deg(p). Since lel(π) and deg(p) are equidistributed (by Theorem 8), the statement
follows from Proposition 11. ◀

▶ Proposition 13. Take m = cn for some 0 < c < 1 as n → ∞. Consider the parking
preference π ∈ PF(m, n) chosen uniformly at random. Then we have

slev(π) − c(1 − c)n√
c2(1 − c)n

d→ N (0, 1).

S. Wagner and M. Yin 29:13

Proof. We proceed as in the proof of Proposition 11 and divide both sides of the generating
function for slev(π) in Corollary 7 through by (n − m + 1)(n + 1)m−1. The right side becomes
the probability generating function of S(m, n) = 1+

∑m−1
i=1 Xi, where the Xi are independent

Bernoulli random variables:

Xi =
{

0, probability m/(n + 1),
1, probability (n − m + 1)/(n + 1).

The probabilities converge to c and 1 − c respectively, and the standard central limit theorem
applies. This means that slev(π) may be approximated by N (0, 1) after standardization. ◀

▶ Corollary 14. Take m = cn for some 0 < c < 1 as n → ∞. Consider the labeled forest
F ∈ F(m, n) chosen uniformly at random. Then we have

deg(0) − c(1 − c)n√
c2(1 − c)n

d→ N (0, 1).

Proof. Since slev(π) and deg(0) are equidistributed (again by Theorem 8), this is the same
proof as for Proposition 13. ◀

▶ Remark 15. The asymptotic analysis of the special case ones(π) for π ∈ PF(n, n) was
conducted by Diaconis and Hicks [2]. The limit distribution of the root degree in labeled
trees is classical [4, Example IX.6]. Both ones(π) − 1 and deg(0) − 1 can be approximated
by Poisson(1).

References
1 Philippe Chassaing and Jean-François Marckert. Parking functions, empirical processes, and

the width of rooted labeled trees. Electron. J. Combin., 8(1):Research Paper 14, 19, 2001.
doi:10.37236/1558.

2 Persi Diaconis and Angela Hicks. Probabilizing parking functions. Adv. in Appl. Math.,
89:125–155, 2017. doi:10.1016/j.aam.2017.05.004.

3 Ömer Eğecioğlu and Jeffrey B. Remmel. Bijections for Cayley trees, spanning trees, and
their q-analogues. J. Combin. Theory Ser. A, 42(1):15–30, 1986. doi:10.1016/0097-3165(86)
90004-X.

4 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
2009.

5 Dominique Foata and John Riordan. Mappings of acyclic and parking functions. Aequationes
Math., 10:10–22, 1974. doi:10.1007/BF01834776.

6 António Guedes de Oliveira and Michel Las Vergnas. Parking functions and labeled trees.
Sém. Lothar. Combin., 65:Art. B65e, 10, 2010/12.

7 Frank Harary and Edgar M. Palmer. Graphical enumeration. Academic Press, New York-
London, 1973.

8 Richard Kenyon and Mei Yin. Parking functions: from combinatorics to probability. Methodol.
Comput. Appl. Probab., 25(1):Paper No. 32, 30, 2023. doi:10.1007/s11009-023-10022-5.

9 Alan G. Konheim and Benjamin Weiss. An occupancy discipline and applications. SIAM J.
Appl. Math., 14:1266–1274, 1966.

10 Marie-Louise Lackner and Alois Panholzer. Runs in labelled trees and mappings. Discrete
Math., 343(9):111990, 16, 2020. doi:10.1016/j.disc.2020.111990.

11 C. L. Mallows and John Riordan. The inversion enumerator for labeled trees. Bull. Amer.
Math. Soc., 74:92–94, 1968. doi:10.1090/S0002-9904-1968-11888-9.

12 John Riordan. Ballots and trees. J. Combinatorial Theory, 6:408–411, 1969.

AofA 2024

https://doi.org/10.37236/1558
https://doi.org/10.1016/j.aam.2017.05.004
https://doi.org/10.1016/0097-3165(86)90004-X
https://doi.org/10.1016/0097-3165(86)90004-X
https://doi.org/10.1007/BF01834776
https://doi.org/10.1007/s11009-023-10022-5
https://doi.org/10.1016/j.disc.2020.111990
https://doi.org/10.1090/S0002-9904-1968-11888-9

29:14 Statistics of Parking Functions and Labeled Forests

13 Heesung Shin and Jiang Zeng. A bijective enumeration of labeled trees with given indegree
sequence. J. Combin. Theory Ser. A, 118(1):115–128, 2011. doi:10.1016/j.jcta.2010.07.
001.

14 Richard P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. doi:10.1017/
CBO9780511609589.

15 Richard P. Stanley and Jim Pitman. A polytope related to empirical distributions, plane
trees, parking functions, and the associahedron. Discrete Comput. Geom., 27(4):603–634, 2002.
doi:10.1007/s00454-002-2776-6.

16 Richard P. Stanley and Mei Yin. Some enumerative properties of parking functions, 2023.
arXiv: 2306.08681.

17 Catherine H. Yan. Parking functions. In Handbook of enumerative combinatorics, Discrete
Math. Appl. (Boca Raton), pages 835–893. CRC Press, Boca Raton, FL, 2015.

https://doi.org/10.1016/j.jcta.2010.07.001
https://doi.org/10.1016/j.jcta.2010.07.001
https://doi.org/10.1017/CBO9780511609589
https://doi.org/10.1017/CBO9780511609589
https://doi.org/10.1007/s00454-002-2776-6

Depth-First Search Performance in Random
Digraphs
Philippe Jacquet # Ñ

Inria Saclay Ile de France, 1 Rue Honoré d’Estienne d’Orves, 91120 Palaiseau, France

Svante Janson # Ñ

Department of Mathematics, Uppsala University, Sweden

Abstract
We present an analysis of the depth-first search algorithm in a random digraph model with independ-
ent outdegrees having an arbitrary distribution with finite variance. The results include asymptotics
for the distribution of the stack index and depths of the search. The search yields a series of trees of
finite size before and after the exploration of a giant tree. Our analysis mainly concerns the giant
tree. Most results are first order. This analysis proposed by Donald Knuth in his next to appear
volume of The Art of Computer Programming gives interesting insight in one of the most elegant
and efficient algorithm for graph analysis due to Tarjan.

2012 ACM Subject Classification Mathematics of computing Ñ Trees

Keywords and phrases Depth First Search, random digraph, Analysis of Algorithms

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.30

Funding Svante Janson: Supported by the Knut and Alice Wallenberg Foundation and the Swedish
Research Council (VR).

1 Introduction

This paper is a continuation of our earlier paper [6], which studies a special case using a
simpler method. The motivation of both paper is a new section in Donald Knuth’s The Art
of Computer Programming [7], which is dedicated to Depth-First Search (DFS) in a digraph.
The DFS is an important computing tool dedicated to the exploration of large unstructured
dataset, mostly organised as large directed graphs, and the DFS is the fundation of the daily
crawling process of the graph of the Web performed by Google [9]. Briefly, the DFS starts
with an arbitrary vertex, and explores the arcs from that vertex one by one. When an arc
is found leading to a vertex that has not been seen before, the DFS explores the arcs from
it in the same way, in a recursive fashion, before returning to the next arc from its parent.
This eventually yields a tree containing all descendants of the the first vertex (which is the
root of the tree). If there still are some unseen vertices, the DFS starts again with one of
them and finds a new tree, and so on until all vertices are found. We refer to [7] for details
as well as for historical notes. (See also S1–S2 in Section 2.) Note that the digraphs in [7]
and here are multi-digraphs, where loops and multiple arcs are allowed. (Although in our
random model they are few and usually not important.) The DFS algorithm generates a
spanning forest (the depth-first forest) in the digraph, with all arcs in the forest directed
away from the roots. Our main purpose is to study the properties of the depth-first forest,
starting with a random digraph G; in particular we study the distribution of the stack index
and the depth of vertices in the depth-first forest.

The random digraph model that we consider has n vertices and a given outdegree
distribution P. The outdegrees (number of outgoing arcs) of the n vertices are independent
random numbers with this distribution. The endpoint of each arc is uniformly selected at
random among the n vertices, independently of all other arcs. (Therefore, an arc can loop

© Philippe Jacquet and Svante Janson;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2024).
Editors: Cécile Mailler and Sebastian Wild; Article No. 30; pp. 30:1–30:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:philippe.jacquet@inria.fr
https://sites.google.com/view/philippe-pierre-jacquet
https://orcid.org/0000-0001-7919-1206
mailto:svante.janson@math.uu.se
http://www2.math.uu.se/~svante/
https://orcid.org/0000-0002-9680-2790
https://doi.org/10.4230/LIPIcs.AofA.2024.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Depth-First Search Performance in Random Digraphs

back to the starting vertex, and multiple arcs can occur.) We consider asymptotics as nÑ 8

for a fixed outdegree distribution. In [6], we studied the case when the outdegree distribution
is geometric. In the present paper, we generalise this and let P be an arbitrary distribution;
however, we assume throughout the paper that the outdegree distribution P has a finite
second moment.

▶ Remark 1. Related results are proved by Enriquez, Faraud and Ménard [3] for DFS in an
undirected Erdős–Rényi graph Gpn, λ{nq; the case when λ “ 1 ` ε for small ε ą 0 is studied
further by another argument by Diskin and Krivelevich [2]. DFS in the random digraph
Dpn, pq has also been considered previously, for example in the proof of [8, Theorem 3].
Although this is for a different random graph model, DFS on Gpn, λ{nq is the same as DFS
on the Erdős–Rényi digraph Dpn, λ{nq, which is essentially the same as the digraph studied
in the present paper with outdegree distribution Popλq. Hence, the main result of [3], which
shows convergence of the depth profile in the depth-first forest to a certain deterministic
limit, is essentially the special case P “ Popλq of our result for the depths (Theorem 6). The
proofs are quite different. See also Enriquez, Faraud, Ménard and Noiry [4], where related
results are given for the (undirected) configuration model.

We analyze the process dptq of depths of the vertices, in the order they are found by
the DFS. For the geometric outdegree distribution studied in [6], dptq is a Markov chain,
which was used in our proofs. For general outdegree distributions, this is no longer true.
We show in Section 2 that we can use the size Iptq of the stack of arcs kept by the DFS
as a substitute; this is a Markov chain, and we obtain limit results for the stack size with
deviation in OL2pn1{2q. (See Section 1.1 below for notation.) In a second step (Section 3),
this is used to derive limit results for the depths dptq, but the results obtained are within
deviation in oppnq which is close to the order of the result. We give also an alternative
approach in Section 4 where the depths dptq are analysed directly by a different method; the
results there are preliminary and less complete, but it seems that this method yields sharper
results that the method in Section 3, with deviation within Oppn

βq with β arbitrary close to
4{5; thus the worst case error is now negligible compared to the main order.

Many details and further results will be given in the forthcoming full paper.

1.1 Some notation

We denote the given outdegree distribution by P. We let η denote random variables with
this distribution. In particular, we denote the outdegree of vertex v by ηpvq. Recall that
our standing assumption is that these outdegrees are i.i.d. (independent and identically
distributed) with ηpvq „ P. We let vt denote the t-th vertex found by the DFS, and simplify
notation by letting ηt :“ ηpvtq be its outdegree. It follows from the construction of the DFS
that also the random variables ηt, t “ 1, . . . , n are i.i.d. with distribution P; this fundamental
property will be used repeatedly without further mention.

We assume throughout that the second moment E η2 ă 8. This is essential for some
results (e.g. results on asymptotic normality), but we conjecture that many results hold
assuming only that the first moment E η ă 8.

The mean outdegree, i.e., the expectation E η of P, is denoted by λ. In analogy with
branching processes, we say that the random digraph is subcritical if λ ă 1, critical if λ “ 1,
and supercritical if λ ą 1.

Let dpvq be the depth of vertex v, and let dptq :“ dpvtq.
As usual, w.h.p. means with high probability, i.e., with probability 1 ´ op1q as nÑ 8.

P. Jacquet and S. Janson 30:3

For random variables Xn and positive numbers an, we write Xn “ oppanq if, as nÑ 8,
Xn{an

p
ÝÑ 0, i.e., if for every ε ą 0, we have Pp|Xn| ą εanq Ñ 0. Furthermore, Xn “ Oppanq

means that the family tXn{anu is bounded in probability, i.e., if for every ε ą 0 there exists
C such that Pp|Xn| ą Canq ă ε for all n. Xn “ oL2panq means E

“

|Xn{an|
2‰ Ñ 0, and

Xn “ OL2panq means E
“

|Xn{an|
2‰ “ Op1q.

Geppq denotes the geometric distribution with parameter p P p0, 1s; thus ξ „ Geppq means
that ξ is a random variable with

Ppξ “ kq “ p1 ´ pqkp, k “ 0, 1, 2, . . . (1.1)

We write x` :“ maxpx, 0q.

2 Stack index analysis

As said above, unlike the special case P “ Gep1 ´ pq studied in [6], in general the depth
dptq does not follow a Markov chain. Therefore, we instead first consider the stack index
Iptq defined below, which does evolve as a Markov chain; many arguments for Iptq below are
similar to arguments for dptq in [6, Section 2].

The DFS can be regarded as keeping a stack of unexplored arcs, for which we have seen
the start vertex but not the endpoint. The stack evolves as follows:

S1. If the stack is empty, pick a new vertex v that has not been seen before (if there is no
such vertex, we have finished). Otherwise, pop the last arc from the stack, and reveal its
endpoint v (which is uniformly random over all vertices). If v already is seen, repeat.

S2. (v is now a new vertex) Reveal the outdegree ηpvq of v and add to the stack ηpvq new
arcs from v, with unspecified endpoints. GOTO S1.

Let Iptq be the size of the stack when vt is found (but before we add the arcs from vt).
After vt is found, and the ηt arcs from vt have been added to the stack, the stack size is thus
Iptq ` ηt. We next perform step S1 one or several times. As long as the stack is not empty,
we find each time an already seen vertex with probability t{n, and in this case we repeat S1.
Hence, conditioned on Iptq and ηt, for k ě 1, the probability that S1 is performed exactly k
times is

´ t

n

¯k´1´
1 ´

t

n

¯

, (2.1)

provided 1 ď k ď Iptq ` ηt, and if none of these events occur, then S1 is repeated a last
time and a new vertex is picked that will be the root of a new tree in the depth-first forest
(unless we have finished the DFS). Note that (2.1) equals the probability Ppξ “ kq with
ξt „ Gep1 ´ t{nq, see (1.1). Thus, we can write

Ipt` 1q “
`

Iptq ` ηt ´ 1 ´ ξt

˘`
, 1 ď t ă n, (2.2)

where ξt „ Gep1 ´ t{nq is a random variable independent of the history; more precisely,
the random variables ηt p1 ď t ď nq and ξt p1 ď t ă nq are all independent. We start the
stochastic recursion (2.2) with Ip1q “ 0.

We define

ζt :“ ηt ´ ξt ´ 1. (2.3)

Thus, (2.2) can be written Ipt` 1q “
`

Iptq ` ζt

˘`. We see also that, for 1 ď t ă n,

vt`1 is a root ðñ Iptq ` ζt ă 0 ðñ Ipt` 1q ą Iptq ` ζt. (2.4)

AofA 2024

30:4 Depth-First Search Performance in Random Digraphs

Note that the random variables ζt are independent, but have different distributions. We
define also

rIptq :“
t´1
ÿ

i“1
pηi ´ 1 ´ ξiq “

t´1
ÿ

i“1
ζi (2.5)

and

I˚ptq :“ min
1ďjďt

rIpjq. (2.6)

It follows from the recursion (2.2) and induction that

Iptq “ rIptq ´ I˚ptq. (2.7)

By (2.5) and (2.7),

rIpt` 1q “ rIptq ` ζt “ I˚ptq ` Iptq ` ζt (2.8)

and thus it follows from (2.4) and (2.6) that, for 1 ď t ă n,

vt`1 is a root ðñ Iptq ` ζt ă 0 ðñ rIpt` 1q ă I˚ptq ðñ I˚pt` 1q ă I˚ptq. (2.9)

Obviously, v1 is also a root, with Ip1q “ rIp1q “ I˚p1q “ 0.
We have

E ζt “ E ηt ´ E ξt ´ 1 “ λ´
t{n

1 ´ t{n
´ 1 “ λ´

1
1 ´ t{n

. (2.10)

Hence, uniformly in t{n ď θ˚ for any fixed θ˚ ă 1,

E rIptq “
t´1
ÿ

i“1
E ζi “ pt´ 1qλ´

t´1
ÿ

i“1

1
1 ´ i{n

“ nrιpt{nq `Op1q, (2.11)

where

rιpθq :“
ż θ

0

´

λ´
1

1 ´ x

¯

dx “ λθ ` logp1 ´ θq. (2.12)

Let, as in [6],

θ0 :“
`

1 ´ λ´1˘` “

#

1 ´ λ´1, λ ą 1,
0, λ ď 1,

(2.13)

and let θ1 is the largest root in r0, 1q of rιpθ1q “ 0; thus

logp1 ´ θ1q “ ´λθ1 (2.14)

and θ1 equals the survival probability of a Bienayme–Galton–Watson (BGW) process with
Popλq offspring distribution. Define

rι`pθq :“ rrιpθqs` “

#

λθ ` logp1 ´ θq, 0 ď θ ď θ1,

0, θ1 ď θ ď 1,
(2.15)

It is easy to see that if λ ď 1, then rι`pθq “ 0 for all θ P r0, 1s, while if λ ą 1, then rι`pθq ą 0
for 0 ă θ ă θ1 (where 0 ă θ1 ă 1), with a maximum at θ0 “ 1 ´ λ´1.

We now can argue similarly to [6], using Iptq instead of dptq. The proof of [6, Theorem 2.4]
applies with very minor differences, and yields:

P. Jacquet and S. Janson 30:5

▶ Theorem 2. Suppose that the outdegree distribution has finite variance. Then

max
1ďtďn

∣∣Iptq ´ nrι`pt{nq
∣∣ “ OL2pn1{2q. (2.16)

Furthermore, for every ε ą 0, we also have

max
1ďtďp1´εqn

∣∣rIptq ´ nrιpt{nq
∣∣ “ OL2pn1{2q. (2.17)

We can use Theorem 2 to show the following results, extending [6, Theorems 4.1 and 4.3]
to general outdegree distributions. The proofs are similar to the ones in [6]; details will be
given in the full paper.

▶ Theorem 3. Suppose that the outdegree distribution has finite variance. Let N be the
number of trees in the depth-first forest. Then

N “ ψn`OL2pn1{2q, (2.18)

where

ψ :“ 1 ´ θ1 ´
λ

2 p1 ´ θ1q
2. (2.19)

Figure 1 shows the parameter ψ as a function of the average degree λ.

Figure 1 ψ, as function of λ.

▶ Theorem 4. Suppose that the outdegree distribution has finite variance. Let T1 be the
largest tree in the depth-first forest.

(i) If λ ď 1, then |T1| “ oppnq.
(ii) If λ ą 1, then the largest tree in the depth-first forest has order |T1| “ θ1n`OL2pn1{2q.

Furthermore, the second largest tree has order |T2| “ oppnq.

More precise results will be given in the full paper.

AofA 2024

30:6 Depth-First Search Performance in Random Digraphs

3 Stack size and depth

We can recover the depth of the vertices from the stack size process, or more precisely, from
the process rIptq defined above; this uses a method that has been used by several authors in
the study of other random trees, see for example [5, (1.1)] and [1, Proposition 4].

When vertex vt is found by the DFS, the stack consist of all future arcs from the ancestors
of vt in the depth-first forest. Hence, the stack size Iptq is the total number of future arcs
from the ancestors of vt. As the DFS continues, it first explores the descendants of vt. During
this period, the ancestors of vt are still ancestors of the current vertex, and their future arcs
remain the same as when vt was found. Hence, if vs is a descendant of vt, then Ipsq ě Iptq.
Moreover, we then also have I˚psq “ I˚ptq by (2.9), since no new root has been found,
and thus, by (2.7), rIpsq ě rIptq. On the other hand, when the DFS has finished exploring
decendants of vt, then it has explored all arcs from vt and the DFS next backtracks to the
ancestors of vt by exploring the future edges of the ancestors of vt one by one. If another
vertex vu is found in this way, then Ipuq ă Iptq; furthermore, I˚puq “ I˚ptq as above, and
thus rIpuq ă rIptq. Finally, if no further new vertex is found in the same tree as vt, then the
DFS next finds a new root vu; in this case, Ipuq “ 0 ď Iptq, and, by (2.9), I˚puq ă I˚ptq.
Hence, rIpuq ă rIptq holds in this case too. This leads to the following characterisation.
(Details will be given in the full paper.)

▶ Lemma 5.
(i) For any s, t P rns, vs is a descendant of vt if and only if s ą t and

min
tďiďs

rIpiq “ rIptq. (3.1)

(ii) For any t ě 1, the ancestors of vt are the vertices vs corresponding to the weak right-to-
left minima of prIpsqq1ďsďt, excluding s “ t. Hence the depth dptq of vt is the number
of such right-to-left minima.

Let Gηpzq :“
ř

k Ppη “ kqzk be the probability generating function of η. For θ P r0, 1s,
let ηθ be a random variable obtained by thinning the outdegree η and keeping each arc with
probability 1 ´ θ, independently; thus ηθ has probability generating function

Gηθ
pzq “ Gη

`

θ ` p1 ´ θqz
˘

“ Gη

`

1 ´ p1 ´ θqp1 ´ zq
˘

. (3.2)

Note that the number of outgoing arcs from vt to vertices that are not discovered earlier
has the distribution of ηθ with θ “ t{n. Let ρpθq be the survivability probability that the
Bienayme–Galton–Watson (BGW) process with offspring distribution ηθ has infinite size. It
satisfies the identity:

1 ´ ρpθq “ Gηθ
p1 ´ ρpθqq “ Gη

`

θ ` p1 ´ θqp1 ´ ρpθqq
˘

“ Gη

`

1 ´ p1 ´ θqρpθq
˘

. (3.3)

We have E ηθ “ p1 ´ θqλ. Hence, if p1 ´ θqλ ą 1, then ρpθq ą 0; otherwise ρpθq “ 0.
Define

rℓpθq :“
ż θ

0
ρpxq dx, 0 ď θ ď θ0, (3.4)

and

rℓ`pθq :“

$

’

’

&

’

’

%

rℓpθq “
şθ

0 ρpxq dx, 0 ď θ ď θ0,

rℓpqθq, where qθ P p0, θ0q and rιpqθq “ rιpθq, θ0 ă θ ă θ1,

0, θ1 ď θ ď 1.
(3.5)

If λ ď 1, this simply means rℓpθq :“ 0 for all θ P r0, 1s.

P. Jacquet and S. Janson 30:7

Using Lemma 5 and Theorem 2 we can obtain the following result; the detailed argument
(given in the full paper) is unfortunately rather long.

▶ Theorem 6. We have

max
1ďtďn

∣∣dptq ´ nrℓ`pt{nq
∣∣ “ oL2pnq. (3.6)

4 Depth analysis

In this section we sketch an alternative approach where we study the depth directly, without
using the stack index. Details will be given in the full paper. In particular, for simplicity
we approximate below generating functions and other quantities by their limits as nÑ 8,
sometimes omitting careful estimates of the errors. We consider only the case λ ą 1, since
otherwise there is no giant tree and the depth dt is small for all t.

Recall that the outdegree η has the p.g.f. Gηpzq “
ř

k Ppη “ kqzk, and that at time t, the
number of outgoing arcs from vt that lead to vertices not already seen has the distribution
ηθ with p.g.f. Gηθ

pzq “ η pθ ` p1 ´ θqzq, see (3.2).

4.1 Splitting the giant tree
Recall the definitions of θ0 and θ1 from (2.13)–(2.14). It is easily seen that these are,
roughly, the proportions of discovered nodes when we find the top of the giant tree, and
when we leave the giant tree, respectively. Let ε P p0, 1q be a fixed number which will be
specified later. We divide the interval r0, nθ1s into three intervals: Un “ r0, θ0n ´ n1´εs

called the climbing zone, Dn “ rθ0n` n1´ε, θ1ns, called the descending zone, and the band
Bn “ rθ0n´ n1´ε, θ0n` n1´εs, called the neutral zone.

For t P Un, we say that vt is a ladder vertex if for all t1 P Un: t1 ą t ñ dpt1q ě dptq. In
other words, t is a right minimum of the function dptq in U . For an integer i, we define d´1

1 piq

as the last integer t in Un such that dptq “ i (provided such a t exists); note that then vt is a
ladder vertex. Also, we say that t is an up-time if vt is a ladder vertex and t is the first time
it is visited.

As a property of DFS, the ladder vertices are also revisited in the descending zone. Let v
be a ladder vertex visited at time t in the climbing zone. When revisited the depth would be
back at dptq, see Figure 2.

4.2 Average interval between two up-times
Assume that t P Un is an up-time of a ladder vertex vt with depth dptq “ i. Then (assuming
that vt is not the last ladder vertex) the next up-time t1 finds the next ladder vertex vt1 .
Clearly, vt1 must be a child of vt in the DFS, so its depth dpt1q “ i ` 1, and it is the first
child such that the DFS does not return to vt before the end of Un. Given an up-time t, the
future events in Un, including the value of t1, are independent of the past history of the DFS.
If we ignore the variation of θ in the interval rt, t1s, then the DFS there can be regarded as
a BGW tree Tθ (rooted at vt) with offspring distribution ηθ; since we assume that θ ă θ0,
the BGW tree Tθ is supercritical. We denote by gθpzq the generating function of the total
number of vertices in Tθ when the number is finite; it satisfies the fixed point equation:

gθpzq “ zGηθ
pgθpzqq. (4.1)

thus gθp1q “ 1 ´ ρpθq, the BGW tree extinction probability in (3.3).

AofA 2024

30:8 Depth-First Search Performance in Random Digraphs

Figure 2 The DFS in the giant tree: the climbing phase (left) and the descending phase (right)
through ladder vertices.

We denote by Hpz, θq the probability generating function of the number of visited nodes
in the subtrees of the root of Tθ before hitting an infinite subtree, under the condition that
the root has indeed an infinite subtree. Let H 1 denote the derivative with respect to the first
variable z.

▶ Theorem 7. We have the identity

Hpz, θq “ 1 `
z ´ 1

1 ´ gθpzq
(4.2)

and thus the expectated number of visited nodes in the BGW tree is

H 1p1, θq “ 1
1 ´ gθp1q

“
1
ρpθq

“ Oppθ0 ´ θq´1qq. (4.3)

The p.g.f. of the number of visited vertices between two consecutive up-times t and t1 is thus
asymptotically, with θ “ t{n

H

ˆ

z, θ ˘O
´ 1
npθ0 ´ θq2

¯

˙

(4.4)

and the average number of new visited vertices is H 1p1, θq `O
` 1

npθ0´θq4

˘

.

Proof. If k is the number of children of the root in the BGW tree Tθ, then the generating
function of the number of subtrees before finding an infinite one is

ř

ℓăk z
ℓp1 ´ ρpθqqℓρpθq.

The generating function of the number of visited vertices in the BGW tree before finding an
infinite subtree is thus zρpθq

ř

ℓăkpgθpzqq
ℓ. Summing over the offspring distribution we get

the unconditional generating function

z
ρpθq

1 ´ gθpzq
pGηθ

p1q ´Gηθ
pgθpzqqq “

ρpθq

1 ´ gθpzq
pz ´ gθpzqq

“ ρpθq

ˆ

z ´ 1
1 ´ gθpzq

` 1
˙

. (4.5)

To get the p.g.f. Hpz, θq of the number of discovered nodes conditioned on Tθ having at least
one infinite subtree, one must divide by ρpθq, which is the probability that the BGW tree is
infinite. The error term comes from the fact that the fraction of discovered vertices varies

P. Jacquet and S. Janson 30:9

during the interval in the proportion of the size of the interval divided by n. If we look at
the generating function Hpz, θq it turns out (see the appendix) that the interval multiplied
by pθ0 ´ θq2 is bounded in probability, thus a variation of θ of order O

`

pθ0 ´ θq´2{n
˘

. ◀

Let ∆i be the time interval between two consecutive up-times t and t1 such that dptq “ i.
To get the number upt, t1q of up-times in an interval pt, t1s one must find the probability that
∆i `∆i`1 ` ¨ ¨ ¨ `∆i`k ď t1 ´ t. Since the up-times are renewal points in the interval Un, we
have, given that t is an up-time,

"

Pp∆i ` ∆i`1 ` ¨ ¨ ¨ ` ∆i`k ą t1 ´ tq “ Ppupt, t1q ă kq

Pp∆i ` ∆i`1 ` ¨ ¨ ¨ ` ∆i`k ď t1 ´ tq “ Ppupt, t1q ě kq.
(4.6)

Thus by Chebychev’s inequality, we have the Chernoff type bounds

@x ą 0 :
#

Ppupt, t1q ă kq ď Hpex, t{nqke´pt1´tqx

Ppupt, t1q ě kq ď Hpe´x, t1{nqkept
1
´tqx (4.7)

The estimate of these probabilities will come from an easy application of generating
functions.

▶ Lemma 8. When the quantity θ is smaller than but close to θ0, we have ρpθq “ 1´gθp1q “
2λ3

λ2
pθ0 ´ θq ` Oppθ0 ´ θq2q where λ2 “ G2

ηp1q. Furthermore the generating function gθpzq

has a radius of convergence which is 1 ` λ4

2λ2
pθ0 ´ θq2 ` Oppθ0 ´ θq3q, and for z such that

|z ´ 1| ! pθ0 ´ θq2 we have

gθpzq “ 1 ´ 2λ
3

λ2
pθ0 ´ θq `

z ´ 1
λpθ0 ´ θq

`O
´

pz ´ 1q2

pθ0 ´ θq3 ` pθ0 ´ θq2
¯

. (4.8)

Hpz, θq “ 1 `
λ2pz ´ 1q

2λ3pθ0 ´ θq
`O

´

pz ´ 1q2

pθ0 ´ θq3 ` pθ0 ´ θq2
¯

(4.9)

H 1p1, θq “ λ2

2λ3pθ0 ´ θq
`Op1q. (4.10)

Proof. In Appendix A. ◀

▶ Lemma 9. Let ε ą 0 and 1´ε
2 ă α ă 1 ´ ϵ. For a,A ą 0 there exist B ą 0 and C ą 0

such that for t ă t1 P Un with an1´ε ď t1 ´ t ď An1´ε we have

P
ˆ

upt, t1q ě
1

H 1p1, θq pt
1 ´ t`Bnαq

˙

ă expp´Cn2α´1´εq, (4.11)

P
ˆ

upt, t1q ă
1

H 1p1, θ1q pt
1 ´ t´Bnαq

˙

ă expp´Cn2α´1´εq. (4.12)

Proof. Now t and t1 can be within n1´ε from nθ0 which has an impact on the estimate of
logHpex, θq. For the super-critical BGW tree, we know from Lemma 8 and its proof that
H 1p1, θq “ Oppθ0 ´ θq´1q and that, for |x| ! pθ0 ´ θq2,

Hpex, θq ď exp
ˆ

xH 1p1, θq `D
x2

pθ0 ´ θq3

˙

(4.13)

for some D ą 0.
For (4.11), let t1 ´ t “ kH 1p1, θq ´ Bnα for some B ą 0 and 0 ă α ă 1 ´ ε. Thus

k “ 1
H1p1,θq pt

1 ´ t ´ Bnαq which makes k of the order n1´εpθ0 ´ θq Á n1´2ε. We use the
estimates (4.7). The quantity Hpex, θqke´pt1´tqx in (4.7) is smaller than expp Dkx2

pθ0´θq3 ´Bxn
αq,

AofA 2024

30:10 Depth-First Search Performance in Random Digraphs

since the terms in kxH 1p1, θq cancel. The minimal value of this quantity is reached for
x “ B

2Dkn
αpθ0´θq

3 which is of order B
2Dpt1´tqn

αpθ0´θq
3H 1p1, θq À nα´1`εpθ0´θq

2 ! pθ0´θq
2.

This minimal value is expp´ B2

4kD pθ0 ´ θq3H 1p1, θqn2αq ď expp´Cn2α´1´εq for some C ą 0.
The proof of (4.12) is essentially the same. ◀

At this point it is tempting to take the optimal value for α to be p1´ εq{2 with ε close to
0. But in fact this would ignore that the quantities H 1p1, θq and H 1p1, θ1q may differ by a
factor bounded away from 1, which would introduce an error greater than the term Bnα.
This in fact reduce the possibilities for 1 ´ ε and α for a consistent deviation probability.
The values ε “ 1{5 and α “ 3{5 seem to be the limiting values that we can achieve as we
show next.

▶ Theorem 10. For all β ą 4
5 for all t P Un we have dptq “ n

şt{n

0 ρpθqdθ ` oppn
βq.

Proof. Assume first that t is an up-time, and that there is an increasing sequence of up-
times (not necessarily consecutive) t0, t1, . . . , tℓ with t0 “ 0 and tℓ “ t with the constraint
that for all i ă ℓ: ti`1 ´ ti ď An1´ε. Since up0, tq “

ř

i upti, i` 1q, it turns out that
the probability that there exists i such that upti, ti`1q ą 1

H1p1,ti{nq
pti`1 ´ ti ` Bnαq is

smaller than n expp´Cn2α´1´εq as shown in Lemma 9. Therefore with high probability
ř

i upti, ti`1q ď
ř

i
ti`1´ti

H1p1,ti{nq
`Opnα`εq, provided that 2α´ 1 ´ ε ą 0.

Similarly with high probability
ř

i upti, ti`1q ě
ř

i
ti`1´ti

H1p1,ti`1{nq
´Opnα`εq. Since both

ÿ

i

ti`1 ´ ti
H 1p1, ti{nq

“ n

ż t{n

0

dθ

H 1p1, θq `Opn1´εq (4.14)

ÿ

i

ti`1 ´ ti
H 1p1, ti`1{nq

“ n

ż t{n

0

dθ

H 1p1, θq ´Opn1´εq (4.15)

it follows that with high probability up0, tq “ n
şt{n

0
dθ

H1p1,θq`Opn1´εq`Opnα`εq, provided that
2α´1´ε ą 0. The smallest error order is when 1´ε “ α`ε, thus when 1´ε “ α`ε ą 4{5.

When t is not an up-time, the same result holds since the extra depth explored after the
last up-time is Oppn

2εq, well within the error term Opnβq. ◀

4.3 Average interval between two down times

During the descent phase of the giant tree (i.e. the values of t in Dn), the DFS revisits
all ladder vertices met during the ascending phase. The process consists of exploring the
remaining outgoing neighbours of the ladder vertices that have not been visited during the
ascending phase.

We notice that given the ladder times, the remaining outdegrees of the ladder vertices
form a sequence of independent random variable.

Let t the time at which a ladder vertex is again revisited. Let t1 be the first time at
which it was visited during the ascending period, thus dpt1q “ dptq. Let θ “ t{n P pθ0, θ1q

and upθq “ t1{n. We have the following theorem.

▶ Theorem 11. The p.g.f. of the remaining degree is asymptotically

η̃θpzq “ p1 ´ upθqq
Gηpzq ´ 1 ` ρpupθqq

z ´ 1 ` p1 ´ upθqqρpupθqq
. (4.16)

P. Jacquet and S. Janson 30:11

Proof. Let η̃θ,kpzq be the generating function of the remaining degree of the vertex vt

assuming the latter has outdegree k. Then, asymptotically,

η̃θ,kpzq “
ÿ

ℓăk

p1 ´ apupθqq
ℓ
apupθqqzk´1´ℓ (4.17)

“ apupθqq
zk ´ p1 ´ apupθqqqk

z ´ 1 ` apupθqq
(4.18)

where apθq “ p1 ´ θqρpθq is the probability that a new vertex has not yet been visited and is
the root of an infinite BGW tree.

Summing over all outdegrees weighted by their probabilities we get the unconditional
generating function of the remaining outdegree: apupθqqGηpzq´Gηp1´apupθqqq

z´1`apupθqq which is equal to
apupθqq

Gηpzq´1`ρpupθqq
z´1`apupθqq since (3.3) yields Gηp1´apupθqqq “ Gηupθq

`

1´ρpupθqq
˘

“ 1´ρpupθqq.
The above expression has value ρpupθqq at z “ 1 and therefore must be divided by this factor
in order to get the p.g.f. η̃θpzq. ◀

The “down-times” in Dn bear some symmetries with the up-times in Un, with time
reversed.

▶ Theorem 12. The p.g.f. of the number of visited vertices between two consecutive down-
times is asymptotically

Hθpzq “ p1 ´ upθqq
gθpzq

z ´ 1 ` ρ pupθqq

p1 ´ θqpgθpzq ´ 1q ` p1 ´ upθqqρ pupθqq
(4.19)

and the average number of visited vertices is H 1

θp1q “ 1
ρpupθqq

λ´ 1
1´upθq

1
1´θ ´λ

.

Proof. We have Hθpzq “ η̃θpθ ` p1 ´ θqgθpzqq, which simplifies using (3.2) and (4.1). ◀

Let ∆̄i be the number of new visited nodes between two consecutive down-times t and t1 such
that dpt1q “ i. To get the number dpt, t1q of down-times between t and t1 we use the renewal
property of the sequence of down-times. With a similar reasoning as in (4.6)–(4.7) we get

"

Pp∆̄i ` ∆̄i´1 ` ¨ ¨ ¨ ` ∆̄i´k ą t1 ´ tq “ Ppdpt, t1q ă kq

Pp∆̄i ` ∆̄i´1 ` ¨ ¨ ¨ ` ∆̄i´k ď t1 ´ tq “ Ppdpt, t1q ě kq.
(4.20)

and

@x ą 0 :
#

Ppdpt, t1q ă kq ď p∆̄t1{npe
xqqke´pt1´tqx

Ppdpt, t1q ě kq ď p∆̄t{npe
´xqqkept

1
´tqx.

(4.21)

We have a theorem whose proof is absolutely similar to the proof of Theorem 10:

▶ Theorem 13. For all β ą 4
5 with high probability for all t P Dn we have dptq “ n

şθ1
t{n

dθ

H
1

θp1q
`

Opnβq.

For θ P rθ0, θ1s, define pℓpθq “
şθ1
θ

dτ

H
1

θp1q
. Since dptq “ dpt1q, where asymptotically

t{n “ θ P rθ0, θ1s and t1{n “ upθq P r0, θ0s, we obtain from Theorems 10 and 13, recalling
(3.4),

pℓpθq “

ż upθq

0
ρpxq dx “ rℓpupθqq. (4.22)

AofA 2024

30:12 Depth-First Search Performance in Random Digraphs

▶ Theorem 14. We have the identity upθq “ qθ in (3.5).

Proof. Theorem 12 yields

pℓ1pθq “ ´
1

H
1

θp1q
“ ´

ρpupθqq

λ´ 1
1´upθq

1 ´ p1 ´ θqλ

1 ´ θ
. (4.23)

Furthermore rℓ1pθq “ ρpθq by (3.4). Hence, (4.22) implies

dupθq
dθ “

pℓ1pθq

rℓ1pupθqq
“

1
1´θ ´ λ

1
1´upθq ´ λ

. (4.24)

Similarly, the identity rιpqθq “ rιpθq in (3.5) yields, recalling (2.12),

dqθ
dθ “

rι1pθq

rι1pqθq
“

1
1´θ ´ λ

1
1´qθ

´ λ
. (4.25)

Since upθ0q “ qθ0 “ θ0, the differential equations (4.24) and (4.25) have the same solution.
We call the function θ ÞÑ qθ the mirror function; note that it only depends of average
outdegree without any further consideration on the details of the outdegree distribution. All
computations done we have qθ “ 1` 1

λW´1
`

´p1 ´ θqepθ´1qλ˘ using the branch W´1p¨q of the
Lambert W function, see Figure 3 for λ “ 2. ◀

Figure 3 The mirror function for λ “ 2.

▶ Remark 15. Theorems 6 and 13 show that pℓpθq “ rℓ`pθq for θ P rθ0, θ1s. Furthermore, the
identity upθq “ qθ follows also directly from Theorem 6 and (3.5) together with dptq “ dpt1q.

5 An example

We take the example of a constant outdegree. In the case of outdegree 2, Gηpzq “ z2, λ “ 2,
and θ0 “ 1

2 . Consider for simplicity only θ P r0, θ0s. Then, (3.3) has the explicit solution

ρpθq “ 1 ´

´

θ
1´θ

¯2
, and Theorems 2 and 6 show that if t{nÑ θ, then

1
n
Iptq

L2
ÝÑ rι`pθq “ 2θ ` logp1 ´ θq, (5.1)

1
n
dptq

L2
ÝÑ rℓ`pθq “ ´2 logp1 ´ θq ´

θ

1 ´ θ
, (5.2)

P. Jacquet and S. Janson 30:13

In the case of higher constant outdegree, say 8, ρ must be calculated from the implicit formula
(3.3), for θ ď θ0 “ 1 ´ 1

8 . Larger outdegrees can be treated similarly. Figure 4 displays the
average depth and index for constant outdegree 2 and 8. We notice that for η “ 2, the stack
size is smaller than the depth. This might be a surprise because at each new discovered node
the stack stores the whole set of outgoing arcs, while the depth increases by at most 1. The
reason is that in this case η “ 2, and thus, although the stack keeps all unexplored arcs for
all ancestors, this is at most one arc for each ancestor and many ancestor have no arc left.
For η larger this disappears, and the stack size becomes larger than the depth.

6 Conclusion

We have presented an analysis of the Depth-First Search algorithm by Tarjan in a model of
random graphs recently introduced by Don Knuth. We have presented a version of the stack
model which can be analyzed as a Markov chain and is much easier to analyse than the real
depth. The latter requires new insights in a model of Bienaymé–Galton–Watson trees with a
varying extinction probability, in particular when close to the sub-critical case.

Figure 4 The limit of 1
n
Iptq (dashed) and 1

n
dptq (solid) as functions of θ “ t{n for θ P r0, θ0s, for

the example η “ 2 (left), η “ 8 (right).

References
1 Jürgen Bennies and Götz Kersting. A random walk approach to galton–watson trees. J.

Theoret. Probab., 3:777–803, 2000.
2 Sahar Diskin and Michael Krivelevich. On the performance of the depth first search algorithm

in supercritical random graphs. Electron. J. Combin., 3, 2022.
3 Nathanaël Enriquez, Gabriel Faraud, and Laurent Ménard. Limiting shape of the depth first

search tree in an erdős-rényi graph. Random Structures Algorithms, 2:501–516, 2020.
4 Nathanaël Enriquez, Gabriel Faraud, Laurent Ménard, and Nathan Noiry. Depth first

exploration of a configuration model. Electron. J. Probab., 53, 2022.
5 Jean-François Le Gall and Yves Le Jan. Branching processes in lévy processes: the exploration

process. Ann. Probab., 1:213–252, 1998.
6 Philippe Jacquet and Svante Janson. Depth-first search performance in a random digraph

with geometric outdegree distribution. La Matematica, 2024.
7 Donald E. Knuth. The Art of Computer Programming. Preliminary draft, URL: https://cs.

stanford.edu/˜knuth/fasc12a.ps.gz, 2022.
8 Michael Krivelevich and Benny Sudakov. The phase transition in random graphs: a simple

proof. Random Structures Algorithms, 2:131–138, 2013.
9 Jayant Madhavan, David Ko, Łucja Kot, Vignesh Ganapathy, Alex Rasmussen, and Alon

Halevy. Google’s deep web crawl. Proceedings of the VLDB Endowment, 2:1241–1252, 2208.

AofA 2024

https://cs.stanford.edu/~knuth/fasc12a.ps.gz
https://cs.stanford.edu/~knuth/fasc12a.ps.gz

30:14 Depth-First Search Performance in Random Digraphs

A Appendix

Proof of Lemma 8. We want first to determine the first fixed point gθp1q of Gηθ
. We have

the expansion

Gηpyq “ 1 ` λpy ´ 1q ` λ2

2 py ´ 1q2 `Oppy ´ 1q3q (A.1)

where λ2 is G2
ηp1q. Thus

Gηθ
pyq “ Gηpθ ` p1 ´ θqyq “ 1 ` p1 ´ θqλpy ´ 1q ` p1 ´ θq2λ2

2 py ´ 1q2 `Oppy ´ 1q3q

(A.2)

We look at the fixed point equation Gηθ
pyq ´ y “ 0 which is equivalent to

λpθ0 ´ θqpy ´ 1q ` λ2p1 ´ θq2

2 py ´ 1q2 `Oppy ´ 1q3q “ 0 (A.3)

The natural root is 1 but the other root is 1 ´ 2 λpθ0´θq
λ2p1´θq2 ` Oppθ0 ´ θq2q which yields the

claimed result since 1
1´θ “ λ`Opθ0 ´ θq.

To determine the function gθpzq one must solve the equation zGηθ
pyq “ y which writes:

1 ´
1
z
` p1 ` λpθ0 ´ θq ´

1
z
qpy ´ 1q ` λ2p1 ´ θq2

2 py ´ 1q2 `Oppy ´ 1q3q “ 0. (A.4)

Retaining only the second order (the extra order will be in Oppθ0 ´ θq3q we get an equation
which is degenerate when

`

1 ` λpθ0 ´ θq ´ 1
z

˘2
´ 2λ2p1 ´ θq2p1 ´ 1

z q “ 0, i.e. when 1 ´ 1
z “

λ2
pθ0´θq2

2λ2p1´θq2 ` Oppθ0 ´ θq3q. In the above expression we can substitute p1 ´ θq with 1
λ to a

Oppθ0 ´ θq3q error term.
Assuming |z ´ 1| ! pθ0 ´ θq2 we have the expression of the root y “ gθpzq:

y “ 1 ´ 2λ
3

λ2
pθ0 ´ θq `

z ´ 1
λpθ0 ´ θq

`O
´

pz ´ 1q2

pθ0 ´ θq3 ` pθ0 ´ θq2
¯

. (A.5)

Now the expression of Hpz, θq satisfies

Hpz, θq “ 1 `
z ´ 1

1 ´ gθpzq
(A.6)

“ 1 `
z ´ 1

2 λ3

λ2
pθ0 ´ θq ´ z´1

λpθ0´θq `O
`

pz´1q2

pθ0´θq3 ` pθ0 ´ θq2
˘

(A.7)

“ 1 `
λ2pz ´ 1q

2λ3pθ0 ´ θq

¨

˝

1
1 ´

λ2pz´1q
2λ4pθ0´θq2 `O

`

pz´1q2

pθ0´θq4 ` pθ0 ´ θq
˘

˛

‚ (A.8)

“ 1 `
λ2pz ´ 1q

2λ3pθ0 ´ θq
`

λ2
2pz ´ 1q2

4λ7pθ0 ´ θq3 `O
´

|z ´ 1|3

pθ0 ´ θq5 ` |z ´ 1|
¯

(A.9)

“ 1 `
λ2pz ´ 1q

2λ3pθ0 ´ θq
`O

´

pz ´ 1q2

pθ0 ´ θq3 ` |z ´ 1|
¯

(A.10)

In particular,

H 1p1, θq “ λ2

2λ3pθ0 ´ θq
`Op1q. (A.11)

P. Jacquet and S. Janson 30:15

Since the terms added after the unity are small compared to 1 we can equivalently state that

Hpz, θq “ exp
ˆ

λ2pz ´ 1q
2λ3pθ0 ´ θq

`O
´

pz ´ 1q2

pθ0 ´ θq3 ` |z ´ 1|
¯

˙

. (A.12)

We also have by (4.2), still assuming |z ´ 1| ! pθ0 ´ θq2,

Hpz, θq ´ 1 ´ pz ´ 1qH 1p1, θq “ z ´ 1
1 ´ gθpzq

´
z ´ 1

1 ´ gθp1q

“ pz ´ 1q gθpzq ´ gθp1q
`

1 ´ gθpzq
˘`

1 ´ gθp1q
˘ (A.13)

Furthermore, by taking the derivative of the fixed point equation zGηθ
pgθpzqq “ gθpzq, we

find, using (A.2) and (A.5),

g1θpzq “
Gηθ

pgθpzqq

1 ´ zG1
ηθ
pgθpzqq

“
gθpzq{z

´λpθ0 ´ θq ´ p1 ´ θq2λ2pgθpzq ´ 1q ` op|θ0 ´ θ|2q

“
1

λpθ0 ´ θq ` op|θ0 ´ θ|2q
“ O

`

pθ0 ´ θq´1˘. (A.14)

Thus (A.13) and the mean-value theorem together with (A.5) yield

Hpz, θq ´ 1 ´ pz ´ 1qH 1p1, θq “ O
`

|z ´ 1|2{pθo ´ θq3˘. (A.15)

We can rewrite this as, for |x| ! pθ0 ´ θq2, using the estimate (A.11),

Hpex, θq “ exp
ˆ

xH 1p1, θq `O
´ x2

pθ0 ´ θq3

¯

˙

. (A.16)

◀

AofA 2024

	p000-Frontmatter
	Preface

	p001-BerzunzaOjeda
	1 Introduction and main results
	1.1 Organization of the paper
	1.2 Some notation

	2 Moment computations
	3 Proof of Theorems 3
	4 Proof of Theorems 5
	5 Application to simply generated trees

	p002-Chizewer
	1 Representations of Trees
	2 A New Succinct Encoding for Weakly Tame Classes
	2.1 Our encoding
	2.2 Proof of Size and Operation Time Bounds

	3 Asymptotics for a Family of Recursions

	p003-Fang
	1 Introduction
	2 Preliminaries
	3 Some basic results
	4 Better upper bound for binary alphabet
	5 Open questions

	p004-Svihla
	1 Introduction
	2 Haar-like Wavelets on k-Regular Trees
	3 Sparsification of k-Regular Covariance Matrices
	3.1 Interlude on Hypergeometric Functions
	3.2 Expectation and Variance of Internal Path Length
	3.3 Sparsification of Large, Random, k-Regular Covariance Matrices

	4 Discussion

	p005-Janson
	1 Introduction
	2 HyperBitT
	3 HyperBitBit and HyperBitBitBit
	4 HyperTwoBits
	5 Performance comparisons
	6 Further Improvements
	A Proof of Lemma 1
	B Implementation details

	p006-Albenque
	1 Introduction
	2 Block-decomposition of tree-rooted maps
	3 Asymptotic enumeration
	3.1 Asymptotic enumeration of 2-connected tree-rooted maps
	3.2 Enumerative phase transition for block-weighted tree-rooted maps

	4 Probabilistic study of tree-rooted maps
	4.1 Definition of the probabilistic model and Bienaymé–Galton–Watson trees
	4.2 Phase transition for the sizes of the largest blocks
	4.3 Scaling limit in the critical and supercritical cases

	5 Perspectives

	p007-Banderier
	1 Introduction
	1.1 q-enumeration and Gibbs distributions
	1.2 Composition schemes and Gibbs distributions

	2 Main theorem: Gibbs models and phase transitions with respect to q
	3 Applications: phase transitions from negative binomial to Rayleigh to Gaussian
	3.1 Fixed-point-biased permutations avoiding a pattern of length three
	3.2 Returns to zero in Dyck and Motzkin paths
	3.3 Boundary contacts for quarter-plane walks
	3.4 Friendly two-watermelons without wall: contacts and returns

	4 Extensions to other constructions: new phase transitions from negative binomial to chi to Gaussian
	4.1 Number of wall contacts in watermelons
	4.2 Returns to zero in coloured walks

	5 Conclusion

	p008-Chang
	1 Introduction
	2 The Component Graph Method
	3 Networks with Few and Many Reticulation Nodes
	4 Proof of the Main Results
	5 Conclusion

	p009-Ischebeck
	1 Introduction
	2 Perturbation of the data
	3 On Weak Convergence in D[0,1]
	4 Proof of Theorem 1
	5 Further cost measures
	5.1 Number of swaps
	5.1.1 Hoare's partition
	5.1.2 Lomuto's partition

	5.2 Number of bit comparisons

	p010-Burghart
	1 Introduction and main results
	1.1 B-trees and their insertion algorithm
	1.2 Main results

	2 The bijection
	3 The permutations associated with a history
	3.1 Preparatory lemmas
	3.2 The algorithm
	3.3 An example
	3.4 Proofs

	4 The number of histories
	5 Statistics of B-trees via historic trees
	6 Conclusion and perspective

	p011-Hainzl
	1 Introduction
	2 Main results
	3 Decomposition of tree walks
	3.1 Kernel walks
	3.2 A recursion for the generating function of tree walks of excess xi

	4 A refined normalisation of the spectral measure and some curious identities
	5 Computational experiments

	p012-Greenwood
	1 Lattice walks
	1.1 Walks in restricted regions
	1.2 Weighted walks
	1.3 Weyl chambers

	2 Results
	3 Extracting asymptotics
	4 Proof sketch
	4.1 Encoding as a diagonal
	4.2 Computing critical points
	4.3 Finding contributing critical points
	4.4 Evaluating the Cauchy integral
	4.5 Example analysis: axial regime

	5 Next steps

	p013-Wagner
	1 Introduction
	2 Preliminaries
	2.1 The binary search tree distribution and the shape functional
	2.2 The total number of fringe subtrees of a given shape or size

	3 The lower bound
	4 The upper bound
	4.1 Bounding the contribution of small fringe subtrees
	4.2 Bounding the contribution of medium-sized fringe subtrees
	4.3 Bounding the contribution of large fringe subtrees

	5 Discussion and outlook

	p014-Morters
	1 Introduction and statement of results
	2 Local coupling
	2.1 First step: Coupling to a random labelled tree
	2.2 Second step: Coupling to the killed branching random walk

	3 The killed branching random walk
	3.1 Background on branching random walks without killing
	3.2 Convergence of the total number of particles

	4 Outlook

	p015-GhoshDastidar
	1 Introduction and Main Result
	2 Bijections and recurrences
	3 Asymptotics of relaxed k-ary trees
	3.1 Transformation into a Dyck-like recurrence
	3.2 Heuristic analysis
	3.3 Explicit bounds
	3.4 Proof of Theorem 1 on relaxed k-ary trees

	4 Conclusion and Outlook

	p016-Brandenberger
	1 Introduction
	1.1 Preliminaries
	1.2 Background
	1.3 Main Contributions

	2 Analysis of the Karp–Sipser Algorithm for Offline Matching
	2.1 Karp–Sipser Algorithm and Outline of Analysis
	2.2 Convergence of Phase 1 Transitions to Continuous Approximation
	2.3 Equitable Case
	2.4 Sub-Critical case
	2.5 Failure of the Karp–Sipser algorithm
	2.6 Bipartite Erdős–Rényi case

	3 Analysis of Online Matching Heuristics
	3.1 Analysis of GREEDY
	3.2 A Less Greedy Algorithm

	A Karp–Sipser Transition Probabilities
	A.1 Passing to a Configuration Model
	A.2 Markov Property of Karp–Sipser Algorithm
	A.3 Estimates on Degree Distributions
	A.4 Computing Transition Probabilities

	B Conditions of Wormald's Theorem
	B.1 Phase 1 of the Karp–Sipser algorithm
	B.2 Phase 2 of the Karp–Sipser algorithm (equitable case)
	B.3 Analysis of SHORTSIGHTED

	p017-Curiel
	1 Introduction
	2 Preliminaries
	2.1 Context of set partitions
	2.2 Combinatorial properties

	3 Methods for unranking set partitions
	3.1 Unranking algorithm design
	3.2 Complexity analysis and experiments for unranking

	4 Extension and conclusion
	4.1 Ordered set partitions
	4.2 Bell's set partitions

	p018-Doboli
	1 Introduction
	2 An elementary improvement to the bounds on a_n
	3 Obtaining the periodically varying exponential order
	4 The upper bound on the exponential order
	5 The lower bound on the exponential order
	6 Summary of exponential bounds
	7 Discussion
	A Upper bound on x |mu_x|
	B Properties of Q(n)
	C Proofs of Lemmas 4 and 5 for Section 4
	D Proof of Lemmas 7 and 8 for Section 5

	p019-Hackl
	1 Introduction
	2 Reducing the problem
	3 B-terms and asymptotics with explicit error bounds
	4 Asymptotic analysis
	4.1 Approximating the binomial coefficients
	4.2 The tails
	4.3 Approximating the summands
	4.4 Mellin transform

	5 Conclusion

	p020-Olesker-Taylor
	1 Introduction and Main Results
	A Glauber Dynamics
	B Queueing Network

	2 Motivation and Related Work
	3 Proofs of Main Theorems
	A Mixing
	B Queues

	4 Simulations: Queue Lengths and Equilibrium Service Rate

	p021-Corsini
	1 Introduction
	1.1 Context and informal description of our results
	1.2 Our model: binary search trees of permuton samples
	1.3 Some probabilistic notation

	2 First main result: universal behavior of the BST height
	2.1 Statement of the result and proof strategy
	2.2 Height modification by adding/removing points
	2.3 Controlling the height of the top tree
	2.4 Extreme deviation bounds, via monotone subsequences
	2.5 Controlling the height of the hanging trees
	2.6 Concluding the proof of the height theorem

	3 Second main result: subtree size convergence of the BSTs
	3.1 Some definition, and statement of the result
	3.2 Preliminaries to the proof
	3.3 Proof of subtree size convergence

	4 Extra results

	p022-Kumamoto
	1 Introduction
	2 Preliminaries
	2.1 Model
	2.2 Mixing time

	3 Recurrence and Transience
	3.1 Recurrence
	3.2 Weakly less homesick as graph growing
	3.3 Transience

	4 Random Walk on Growing Dimension Boxes
	4.1 Proof of Lemma 7

	p023-Juge
	1 Introduction
	2 Characterising words in alternating normal form
	3 Minimal automata
	3.1 Preliminary results
	3.2 Construction and correctness of the automaton A''_n
	3.3 Construction, correctness and minimality of the automaton A'_n
	3.4 Construction, correctness and minimality of the automaton A_n

	4 Size of the minimal automata
	5 Open problems and perspectives

	p024-Heuberger
	1 Introduction
	1.1 Overview
	1.2 Regular Sequences: Definition and State of the Art
	1.3 Summatory Functions of Regular Sequences
	1.4 Divide-and-Conquer Sequences: Definition and State of the Art
	1.5 Divide-and-Conquer Sequences: Polynomial Toll Function
	1.6 Example

	2 Summatory Functions: Proof of Theorem 5
	3 Divide-and-Conquer Recurrences: Proof of Theorems 7 and 8
	4 Details on Example 9

	p025-Addario-Berry
	1 Introduction and results
	2 Proofs
	2.1 Proof of Theorem 1
	2.2 Proof of Theorem 2

	p026-DeAmbroggio
	1 Introduction
	2 Probabilistic Preliminaries
	2.1 Diffusion Approximation
	2.2 The (Standard) Logistic Branching Process

	3 Proof Strategy & Some Details

	p027-Agranat-Tamir
	1 Introduction
	2 Definitions
	3 Previous work
	4 Recursion
	4.1 Recursion for g galls, E_{n,g}
	4.2 Recursion for two galls, E_{n,2}

	5 Analysis of E_{n,2}
	5.1 Generating function
	5.2 Asymptotic analysis

	6 Analysis of E_{n,g}
	6.1 Generating function
	6.2 Asymptotic analysis

	7 Discussion

	p028-Fill
	1 Introduction, background, and main results
	1.1 Pareto records and the record-setting region
	1.2 The record-setting frontier; our two main theorems
	1.3 Outline of extended abstract

	2 Stochastic lower bound on widehat F^-_n via the first moment method
	2.1 Upper (and lower) asymptotic bound(s) on mean
	2.2 Stochastic lower bound on F^^-_n

	3 Stochastic upper bound on widehat F^-_n via second moment method
	3.1 Upper bound on variance
	3.2 Stochastic upper bound on widehat F_n^-

	4 Characterization of generators
	5 The expected number of generators
	5.1 Exact expressions
	5.2 Asymptotics

	6 Stochastic lower bound on F^-_n via the first moment method
	7 Proof of Theorem 1.8
	A Proof of Lemma 2.1
	B Proof of Theorem 1.11
	C Proofs of Theorems 4.3 and 4.5 and Lemma 5.2

	p029-Wagner
	1 Introduction
	2 Statistics on parking functions
	3 Breadth first search
	4 Statistics on trees and forests
	5 Limit distributions

	p030-Jacquet
	1 Introduction
	1.1 Some notation

	2 Stack index analysis
	3 Stack size and depth
	4 Depth analysis
	4.1 Splitting the giant tree
	4.2 Average interval between two up-times
	4.3 Average interval between two down times

	5 An example
	6 Conclusion
	A Appendix

