
Finite Combinatory Logic with Predicates
Andrej Dudenhefner #

TU Dortmund University, Germany

Christoph Stahl #

TU Dortmund University, Germany

Constantin Chaumet #

TU Dortmund University, Germany

Felix Laarmann #

TU Dortmund University, Germany

Jakob Rehof #

TU Dortmund University, Germany
Lamarr Institute for Machine Learning and Artificial Intelligence, Dortmund, Germany

Abstract
Type inhabitation in extensions of Finite Combinatory Logic (FCL) is the mechanism underlying
various component-oriented synthesis frameworks. In FCL inhabitant sets correspond to regular tree
languages and vice versa. Therefore, it is not possible to specify non-regular properties of inhabitants,
such as (dis)equality of subterms. Additionally, the monomorphic nature of FCL oftentimes hinders
concise specification of components.

We propose a conservative extension to FCL by quantifiers and predicates, introducing a restricted
form of polymorphism. In the proposed type system (FCLP) inhabitant sets correspond to decidable
term languages and vice versa. As a consequence, type inhabitation in FCLP is undecidable. Based
on results in tree automata theory, we identify a fragment of FCLP with the following two properties.
First, the fragment enjoys decidable type inhabitation. Second, it allows for specification of local
(dis)equality constraints for subterms of inhabitants.

For empirical evaluation, we implement a semi-decision procedure for type inhabitation in FCLP.
We compare specification capabilities, scalability, and performance of the implementation to existing
FCL-based approaches. Finally, we evaluate practical applicability via a case study, synthesizing
mechanically sound robotic arms.
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1 Introduction

Type inhabitation in a type assignment system is the following problem: Given a type
environment Γ and a type τ , is there a term M which can be assigned the type τ in the
type environment Γ? Type inhabitation can be understood as the search for a program
(term M) which satisfies a given specification (type τ) under given assumptions (type
environment Γ). For (polymorphic) λ-calculi type inhabitation corresponds to program
synthesis from scratch [29, 30]. In comparison, for (variants of) combinatory logic type
inhabitation corresponds to program synthesis from given domain-specific components [31].
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2:2 Finite Combinatory Logic with Predicates

Finite Combinatory Logic with Intersection Types FCL(∩,≤) [32] is a monomorphic variant
of combinatory logic with intersection types [17] relativized to arbitrary bases. Type
inhabitation in FCL(∩,≤) is ExpTime-complete [32, Theorem 12], which provides the basis
for the Combinatory Logic Synthesizer (CLS) [8, 4]. CLS is a domain-agnostic program
synthesis framework, and it has been applied in the following areas: Object-oriented program
composition [7, 6], software product line design [25, 24], factory planning [37], motion
planning [34], simulation model construction [28], and cyber-physical systems [14].

Previously, two extensions of FCL(∩,≤) have been studied for which type inhabitation
is decidable. First, Bounded Combinatory Logic [18] relaxes monomorphism to bounded
schematism. Second, Finite Combinatory Logic with Boolean Queries [20] adds Boolean
connectives ∧, ∨, and ¬ atop the type language. A major limitation of FCL(∩,≤) and both
aforementioned extensions is that inhabitant sets correspond to regular tree languages and
vice versa [32, Corollary 11]. Therefore, neither theory allows for specification of non-regular
properties1 of inhabitants, such as (dis)equality of subterms. Additionally, monomorphism
(and also bounded schematism) oftentimes hinders concise specification of domain-knowledge.

In the present work, we propose Finite Combinatory Logic with Predicates (FCLP)
as a conservative extension to FCL(∩,≤), addressing the above shortcomings. The main
distinguishing property of FCLP is that inhabitant sets correspond to decidable term
languages and vice versa. The type language of FCLP encompasses intersection types with
the following three additions:
Literals: Literals are nullary type constructors, which may also occur in argument position

in combinatory terms ( facilitating a restricted form of dependent types [1]).
Quantifiers and Variables: Quantifiers bind variables in types, which allows for a restricted

form of polymorphism, improving conciseness of specification.
Predicates: Decidable predicates reference variables, and allow for specification of non-regular

properties of inhabitants.

The inclusion of decidable predicates entails undecidability of type inhabitation. The
main contribution of the present work is the identification of an expressive fragment of FCLP
which strictly includes FCL(∩,≤), and in which type inhabitation is decidable. We formally
describe a decision procedure for type inhabitation in the identified fragment. The decision
procedure is similar to the existing decision procedure for type inhabitation in FCL(∩,≤) [4,
Definition 29]. However, instead of representing an inhabitant set by a regular tree grammar
(or, a regular tree automaton), we represent an inhabitant set by means of the minimal
Herbrand model of a logic program2 (or, a tree automaton with term constraints [33]).

For empirical evaluation, an algorithm for the construction of inhabitants is implemented
in the Python programming language. The algorithm is evaluated on the basis of a case
study, undertaken for both FCL(∩,≤) and the identified fragment of FCLP.

Synopsis. The present work is structured as follows:
Section 2: Definition of FCLP (Definition 8), decidability of type checking (Theorem 18),

and undecidability of type inhabitation (Theorem 20).
Section 3: Fragment of FCLP (Problem 31) with decidable type inhabitation (Theorem 42).
Section 4: Implementation of FCLP in the Python programming language.
Section 5: Empirical evaluation of FCLP at the basis of a case study.
Section 6: Conclusion and remarks on future work.

1 Czajka et.al. [5] specify non-regular properties as external restrictions via term rewriting systems.
2 Kallat et.al. [27] combine regular tree grammars with SMT constraints in a logic program.
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2 FCLP

In this section we present the type assignment system Finite Combinatory Logic with
Predicates (FCLP). The system FCLP adds three new constructs to the existing Finite
Combinatory Logic with Intersection Types FCL(∩,≤) [32, Figure 3]. First, literals are both
types and term arguments, and facilitate a restricted form of dependent types. Second,
quantifiers bind literal variables and term variables in types, and allow for polymorphic
specification. Third, decidable predicates reference literal variables and term variables in
types, and describe term properties, which are difficult to specify otherwise.

Intersection types with covariant constructors [7, Definition 15] extended with literals
(Definition 1) constitute the core of the type language of FCLP.

▶ Definition 1 (Intersection Types with Covariant Constructors and Literals).

Intersection Types T ∋ σ, τ, ρ ::= ω | σ → τ | σ ∩ τ | c(σ) | l

where ω is the universal type, c ranges over an enumerable set of unary type constructors,
and l ranges over an enumerable set of literals.

The intersection type constructor (∩) is considered associative, commutative, and idem-
potent. Additionally, standard rules of intersection type subtyping [17, Definition 1.3] are
extended to covariant constructors in the following Definition 2.

▶ Definition 2 (Intersection Type Subtyping). The relation (≤) is the least preorder on
intersection types closed under the following rules:

σ ≤ ω ω ≤ ω → ω

σ ∩ τ ≤ σ σ ∩ τ ≤ τ if σ ≤ τ1 and σ ≤ τ2 then σ ≤ τ1 ∩ τ2
(σ → τ) ∩ (σ → ρ) ≤ σ → (τ ∩ ρ) if σ ≤ σ′ and τ ≤ τ ′ then σ′ → τ ≤ σ → τ ′

c(σ) ∩ c(τ) ≤ c(σ ∩ τ) if σ ≤ σ′ then c(σ) ≤ c(σ′)

If σ ≤ τ and τ ≤ σ, then we identify σ and τ , writing σ = τ .

▶ Remark 3. Some existing extensions of Finite Combinatory Logic [4, Chapter 3] contain the
binary product type constructor σ×τ . Observing the equivalence σ×τ = (σ×ω)∩ (ω×τ) [4,
Definition 5], we omit an explicit product type constructor and represent products as
intersections π1(σ) ∩ π2(τ), where π1 and π2 are unary type constructors. In general, an
n-ary constructor applied to σ1, . . . , σn is represented as the intersection

⋂n
i=1 ci(σi) using

unary type constructors c1, . . . , cn.
In practice, literals are partitioned in collections such as integers, floating point numbers,

or character strings. We write l : t to signify that the literal l belongs to a collection with
the collection identifier t.

We tacitly extend intersection types by literal variables, ranged over by α, β, γ, and define
parameterized types (the type language of FCLP) as follows.

▶ Definition 4 (Parameterized Types).

Parameterized Types φ,ψ ::= σ | ⟨α : t⟩ ⇒ φ | ⟨⟨x : σ⟩⟩ ⇒ φ | P ⇒ φ

where t ranges over collection identifiers and P ranges over decidable predicates3, possibly
containing literal variables and term variables, ranged over by x, y, z. A literal variable α is
bound in ⟨α : t⟩ ⇒ φ. A term variable x is bound in ⟨⟨x : σ⟩⟩ ⇒ φ.

3 A predicate P is decidable, if there exists an effective procedure deciding whether P holds for given
arguments. Syntactically, a predicate can be consider a first-order logic formula.
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2:4 Finite Combinatory Logic with Predicates

Combinatory terms which may contain literals in argument position (Definition 5) consti-
tute the term language of FCLP.

▶ Definition 5 (Combinatory Terms and Arguments).

Combinatory Terms C ∋M,N ::= A |M T

Combinatory Arguments T ::= M | l

where A,B,C range over an enumerable set of combinators.

▶ Definition 6 (Closed and Open Types, Substitutions). A parameterized type is closed,
if every occurrence of a literal variable and every occurrence of a term variable is bound;
otherwise the parameterized type is open. Literal variable substitution is denoted φ[α := l]
and term variable substitution is denoted φ[x := M ].

In addition to type environments (finite sets of typed combinators), we introduce literal
environments which contain pairs l : t, signifying that the literal l is associated with the
collection identifier t.

▶ Definition 7 (Type and Literal Environments).

Type Environment Γ ::= {A1 : φ1, . . . , An : φn} where φ1, . . . , φn are closed
Literal Environment ∆ ::= {l1 : t1, . . . , ln : tn}

Domain dom({A1 : φ1, . . . , An : φn}) = {A1, . . . , An}
dom({l1 : t1, . . . , ln : tn}) = {l1, . . . , ln}

Range ran({A1 : φ1, . . . , An : φn}) = {φ1, . . . , φn}
ran({l1 : t1, . . . , ln : tn}) = {t1, . . . , tn}

Finally, we give the rules of Finite Combinatory Logic with Predicates (FCLP), deriving
judgments Γ; ∆ ⊢M : φ, where φ is closed.

▶ Definition 8 (Finite Combinatory Logic with Predicates (FCLP)).
(A : φ) ∈ Γ

(Var)
Γ; ∆ ⊢ A : φ

Γ; ∆ ⊢M : P ⇒ φ P holds (P E)
Γ; ∆ ⊢M : φ

Γ; ∆ ⊢M : ⟨α : t⟩ ⇒ φ (l : t) ∈ ∆
(⟨⟩E)

Γ; ∆ ⊢M l : φ[α := l]
Γ; ∆ ⊢M : ⟨⟨x : σ⟩⟩ ⇒ φ Γ; ∆ ⊢ N : σ

(⟨⟨⟩⟩E)
Γ; ∆ ⊢M N : φ[x := N ]

Γ; ∆ ⊢M : σ σ ≤ τ (≤)
Γ; ∆ ⊢M : τ

Γ; ∆ ⊢M : σ → τ Γ; ∆ ⊢ N : σ (→E)
Γ; ∆ ⊢M N : τ

▶ Remark 9. The above rules (Var), (≤), (→E), together with the derivable intersection
introduction rule (Lemma 14) constitute the original FCL(∩,≤) type system [32, Figure 3].
The additional rules ⟨⟩E, ⟨⟨⟩⟩E, and PE mimic the pure type system application rule [1],
where proofs that a predicate holds are irrelevant.

The notion of paths [18] is an essential ingredient in the algorithmic treatment of inter-
section type subtyping. Algebraically, paths are prime factors [4, Definition 10] into which
each intersection type factorizes uniquely. In the following Definition 10 and Lemma 12 we
recollect the notion and corresponding key property of paths.

▶ Definition 10 (Path Decomposition [18, Lemma 1]).

P(ω) = ∅
P(σ → τ) = {σ → τ ′ | τ ′ ∈ P(τ)}
P(σ ∩ τ) = P(σ) ∪ P(τ)
P(c(σ)) = {c(τ) | τ ∈ P(σ)} ∪ {c(ω)}

P(l) = {l}



A. Dudenhefner, C. Stahl, C. Chaumet, F. Laarmann, and J. Rehof 2:5

▶ Remark 11. If σ ≤ τ , then for all τ ′ ∈ P(τ) there exists σ′ ∈ P(σ) such that σ′ ≤ τ ′ (easily
shown for each rule in Definition 2). Therefore, σ = τ implies P(σ) = P(τ).

▶ Lemma 12. We have ρ ≤ σ1 → · · · → σk → τ iff there exists a (possibly empty) set
{σ1

1 → · · · → σ1
k → τ1, . . . , σm

1 → · · · → σm
k → τm} ⊆ P(ρ) such that

1. σj ≤
⋂m

i=1 σ
i
j for j = 1 . . . k

2.
⋂m

i=1 τ
i ≤ τ

where the empty intersection denotes the universal type ω.

Proof. Immediate consequence of beta-soundness [2, Lemma 2.4] (shown inductively using
the definition of intersection type subtyping). ◀

The following Lemma 13 (cf. [32, Lemma 4]) characterizes derivable judgments in FCLP.

▶ Lemma 13 (Path Lemma). We have Γ; ∆ ⊢ AT1 . . . Tn : τ iff for some typed combinator
(A : e1 ⇒ · · · ⇒ em ⇒ ρ) ∈ Γ there exists a literal substitution θ such that
1. There exists a term substitution ξ such that for i = 1, . . . ,m we have

a. if ei = ⟨α : t⟩, then θ(α) = Ti is a literal and (Ti : t) ∈ ∆
b. if ei = ⟨⟨x : σ⟩⟩, then ξ(x) = Ti ∈ C and Γ; ∆ ⊢ Ti : θ(σ)
c. if ei = P , then ξ(θ(P )) holds

2. Let k = n −m + p where p is the number of predicates in {e1, . . . , em}, there exists a
(possibly empty) set {σ1

1→· · ·→σ1
k → τ1, . . . , σq

1→· · ·→σq
k → τ q} ⊆ P(θ(ρ)) such that

a. Γ; ∆ ⊢ Tm−p+j :
⋂q

i=1 σ
i
j for j = 1 . . . k

b.
⋂q

i=1 τ
i ≤ τ

Proof. The direction from right to left is obvious, observing that by Lemma 12 we have
θ(ρ) ≤ (

⋂q
i=1 σ

i
1)→· · ·→ (

⋂q
i=1 σ

i
k)→ τ . For the converse, we assume Γ; ∆ ⊢ AT1 . . . Tn : τ .

Necessarily, there is some (A : e1 ⇒ · · · ⇒ em ⇒ ρ) ∈ Γ such that each ei is addressed
by either (⟨⟩E), (⟨⟨⟩⟩E), or (PE). We collect the according literal and term instances in
substitutions θ and ξ and obtain properties (1.a)–(1.c). Let k = n−m+ p where p is the
number of predicates in {e1, . . . , em}. We have that Γ; ∆ ⊢ AT1 . . . Tn−k : θ(ρ) such that the
remaining k arguments are addressed by the rules (→E) and (≤) where (shown by reordering)
rule (≤) never follows rule (→E). Finally, by Lemma 12 we obtain properties (2.a)–(2.b). ◀

At first glance, the intersection introduction rule (∩I) of FCL(∩,≤) is missing from FCLP.
However, using the above Lemma 13 the rule (∩I) is derivable (cf. [4, Lemma 11]).

▶ Lemma 14. The following rule is derivable: Γ; ∆ ⊢M : σ Γ; ∆ ⊢M : τ (∩I)Γ; ∆ ⊢M : σ ∩ τ
.

Proof. We assume Γ; ∆ ⊢ M : σ and Γ; ∆ ⊢ M : τ and proceed by induction on the term
M = AT1 . . . Tn. W.l.o.g. σ ̸= ω ̸= τ . We have (A : e1 ⇒ · · · ⇒ em ⇒ ρ) ∈ Γ and
substitutions θ1, θ2, ξ1, ξ2 which satisfy Lemma 13.1 and agree on the free variables in ρ. Let
k = n−m+ p where p is the number of predicates in {e1, . . . , em}. We have subsets S1, S2 ⊆
P(θ1(ρ)) = P(θ2(ρ)) such that S1 ∪ S2 = {σ1

1 → · · · → σ1
k → τ1, . . . , σq

1 → · · · → σq
k → τ q}

which satisfy Lemma 13.2. By the induction hypothesis, we have Γ; ∆ ⊢ Tm−p+j :
⋂q

i=1 σ
i
j

for j = 1 . . . k, and we have
⋂q

i=1 τ
i ≤ σ ∩ τ . By Lemma 13 we obtain Γ; ∆ ⊢M : σ ∩ τ . ◀

Since intersection introduction is derivable and the additional rules (⟨⟩E),(⟨⟨⟩⟩E), and (PE)
refer to new type constructors, FCLP is a conservative extension of FCL(∩,≤).

▶ Corollary 15. Let Γ be a type environment such that ran(Γ) ⊆ T, let M be a combinatory
term which does not contain literals, and let τ be an intersection type. We have Γ; ∅ ⊢M : τ
iff Γ ⊢M : τ is a derivable judgment in the type assignment system FCL(∩,≤).

TYPES 2023



2:6 Finite Combinatory Logic with Predicates

Finally, we state the key decision problems: Intersection type checking (Problem 16) and
intersection type inhabitation (Problem 17).

▶ Problem 16 (Intersection Type Checking). Given a type environment Γ, a literal environ-
ment ∆, a combinatory term M , and an intersection type τ , does Γ; ∆ ⊢M : τ hold?

▶ Problem 17 (Intersection Type Inhabitation). Given a type environment Γ, a literal
environment ∆, and an intersection type τ , is there a combinatory term M such that
Γ; ∆ ⊢M : τ holds?

Viewing the judgment Γ; ∆ ⊢ M : τ in the context of component-oriented program
synthesis, the type environment Γ contains domain-specific components specified by corre-
sponding parameterized types, the literal environment ∆ contains possible parameters, and
the intersection type τ specifies desired programs.

While decidability of intersection type checking (Theorem 18) follows from Lemma 13,
intersection type inhabitation is undecidable (Theorem 20).

▶ Theorem 18. Intersection type checking Γ; ∆ ⊢M : τ is decidable.

Proof. By induction on M , and as immediate consequence of Lemma 13 and decidability of
each predicate occurring in parameterized types in ran(Γ). ◀

▶ Theorem 19. Intersection type inhabitation (Problem 17) is semi-decidable.

Proof. Since intersection type checking is decidable (Theorem 18), a semi-decision procedure
may enumerate and type check each combinatory term as a potential inhabitant. ◀

▶ Theorem 20. Intersection type inhabitation (Problem 17) is undecidable.

Proof. We reduce the halting problem to intersection type inhabitation. Let T be a Turing
machine and let P (x) be a predicate on combinatory terms stating that T halts on the empty
word after exactly size(x) steps (where size(M) is the number of combinator occurrences
in M). For any combinatory term M we have that P (M) is decidable. Let

Γ = {A : c(ω) ∩ (c(ω)→ c(ω)), B : ⟨⟨x : c(ω)⟩⟩ ⇒ P (x)⇒ d(ω)}

If Γ; ∅ ⊢M : d(ω) for some combinatory term M , then M is of shape BN and T halts on
the empty word after size(N) steps. Complementarily, if T halts on the empty word after
exactly k steps, then we have Γ; ∅ ⊢ BN : d(ω) where N = A(· · · (AA) · · · ) is of size k.
Therefore, T halts on the empty word iff there exists a term M such that Γ; ∅ ⊢M : d(ω). ◀

▶ Remark 21. Emptiness and finiteness of the set {M | Γ; ∆ ⊢ M : τ} of inhabitants are
orthogonal problems. The proof of the above Theorem 20 gives a finite set of inhabitants
with an undecidable emptiness question. Complementarily, let us consider the predicate
P ′(x) on combinatory terms stating that x = A or a given Turing machine T halts on the
empty word after at most size(x) steps. The corresponding set of inhabitants is non-empty,
and infinite iff T halts on the empty word.

Since intersection type checking in FCLP is decidable (Theorem 18), the set of inhabitants
{M | Γ; ∆ ⊢ M : τ} is decidable. Complementarily, the following Theorem 22 shows that
each decidable set of combinatory terms can be described by some set of inhabitants.

▶ Theorem 22. Let M be a decidable set of combinatory terms containing combinators
drawn from a finite set A. There exists a combinator B and a type environment Γ such that
M = {M | Γ; ∅ ⊢ BM : ω}.

Proof. Let Γ′ = {A : ω | A ∈ A} and Γ = Γ′ ∪ {B : ⟨⟨x : ω⟩⟩ ⇒ (x ∈ M) ⇒ ω} for a fresh
combinator B ̸∈ A. Since M⊆ {M | Γ′; ∅ ⊢M : ω}, we have Γ; ∅ ⊢ BM : ω iff M ∈M. ◀
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3 Decidable Inhabitation Fragment

While intersection type inhabitation (Problem 17) is undecidable in general (Theorem 20),
FCLP contains fragments which enjoy decidable inhabitation. By Corollary 15 one such
fragment is FCL(∩,≤), for which inhabitation is ExpTime-complete [32, Theorem 12].
In the remainder of this section we present a fragment of FCLP which strictly includes
FCL(∩,≤) and enjoys decidable inhabitation. The key idea is a reduction from intersection
type inhabitation (under certain restrictions on predicates) to emptiness of bottom-up tree
automata with term constraints [33].

The following Definition 23 specifies the arity of a parameterized type. If a combinator is
applied to a number of arguments exceeding the arity of its type, then the only type assigned
to such an application is the universal type ω.

▶ Definition 23 (Arity).

ar(⟨α : t⟩ ⇒ φ) = ar(⟨x : σ⟩ ⇒ φ) = 1 + ar(φ)
ar(P ⇒ φ) = ar(φ)

ar(ω) = ar(c(σ)) = ar(l) = ar(α) = 0
ar(σ → τ) = 1 + ar(τ) where τ ̸= ω

ar(σ ∩ τ) = max{ar(σ), ar(τ)}

▶ Lemma 24 (Maximal Arity). Given environments Γ, ∆, for a typed combinator (A : φ) ∈ Γ,
an n > ar(φ), combinatory arguments T1, . . . , Tn, and an intersection type τ , we have that if
Γ; ∆ ⊢ AT1 . . . Tn : τ , then τ = ω.

Proof. For Γ, ∆, and (A : e1 ⇒ · · · ⇒ em ⇒ ρ) ∈ Γ let n > ar(e1 ⇒ · · · ⇒ em ⇒ ρ) and
let n′ = n − ar(e1 ⇒ · · · ⇒ em ⇒ ω). By induction on ρ for any literal substitution θ

we have that σ′
1 → · · · → σ′

n′ → τ ′ ̸∈ P(θ(ρ)) for any types σ′
1, . . . , σ

′
n′ , τ ′. Assuming

Γ; ∆ ⊢ AT1 . . . Tn : τ , by Lemma 13.2.b we obtain ω ≤ τ , showing the claim. ◀

Combinatory terms can be naively represented as binary trees, having combinators
and literals as leaves and binary term application as inner nodes. However, the naive
representation is inappropriate for certain tree constraints. For example, brother equality
and disequality constraints [10] compare the terms M and N in the application M N for the
naive representation, which is of little interest in practice. In the following, we represent a
combinatory term AT1 . . . Tn as the tree with root A(n) with n children T1, . . . , Tn.

▶ Definition 25 (Tree Representation).

tree(l) = l

tree(AT1 . . . Tn) = A(n)(tree(T1), . . . , tree(Tn))

In general, for a combinator A we have infinitely many symbols A(0), A(1), A(2), . . ., which
is unsatisfactory for tree languages over a finite signature. Fortunately, relying on Lemma 24
for a typed combinator A : φ we can reasonably bound the arity by ar(φ) in the following
Definition 26.

▶ Definition 26 (Arity Respect). We say that a combinatory term AT1 . . . Tn respects arities
in Γ, if (A : φ) ∈ Γ, n ≤ ar(φ), and each Ti which is not a literal respects arities in Γ.

The set of combinatory terms M which contain literals from dom(∆) and respect arities
in Γ is denoted C(Γ,∆).

TYPES 2023



2:8 Finite Combinatory Logic with Predicates

The following Lemma 27 shows that for intersection type inhabitation in the fragment
corresponding to FCL(∩,≤) (cf. Corollary 15) it suffices to consider inhabitants which
respect arities in Γ.

▶ Lemma 27. Let Γ be a type environment such that ran(Γ) ⊆ T, let M be a combinatory
term which does not contain literals, and let τ be an intersection type. If Γ; ∅ ⊢M : τ , then
there exists a combinatory term N ∈ C(Γ, ∅) such that Γ; ∅ ⊢ N : τ .

Proof. Assume Γ; ∅ ⊢M : τ where ran(Γ) ⊆ T; we proceed by induction on the number of
combinator occurrences in M . If M ∈ C(Γ, ∅) we obtain the claim, otherwise the derivation
of Γ; ∅ ⊢ M : τ contains a subderivation Γ; ∅ ⊢ AM1 . . .Mar(σ) M

′ : ρ for some (A : σ) ∈ Γ
and an intersection type ρ. By Lemma 24 we have ρ = ω. Therefore, we can derive
Γ; ∅ ⊢ AM1 . . .Mar(σ) : ρ, replace the original subderivation, and obtain the claim by the
induction hypothesis. ◀

In general, for intersection type inhabitation the following Remark 28 shows that inhabi-
tants which respect arities in Γ do not suffice.
▶ Remark 28. For the type environment Γ = {A : ω,B : ⟨⟨x : ω⟩⟩ ⇒ (x ̸= A) ⇒ l} we
have Γ; ∅ ⊢ B (AA) : l. Since ar(ω) = 0 we have B (AA) ̸∈ C(Γ, ∅). The only term
N ∈ C(Γ, ∅) such that Γ; ∅ ⊢ N : ω is the term N = A. Therefore, there is no combinatory
term M ∈ C(Γ, ∅) such that Γ; ∅ ⊢M : l.

We consider a fragment of FCLP for which any predicate occurring in parameterized
types in ran(Γ) is of specific shape (Definition 29 and Definition 30), motivated by tree
automata with term constraints [33].

▶ Definition 29 (Term Constraint). For a type environment Γ, a predicate occurring in a
parameterized type in ran(Γ) is a term constraint, if it is either x = M or x ̸= M where M
is (abusing notation) an open term (possibly containing variables) which respects arities in Γ.

▶ Definition 30 (Literal Constraint). A predicate P is a literal constraint if every free variable
occurring in P is a literal variable.

Restricting predicates to literal and term constraints we define the following inhabitation
problem.

▶ Problem 31 (Intersection Type Inhabitation with Literal and Term Constraints). Given a
type environment Γ such that each predicate occurring in a parameterized type in ran(Γ) is
a literal constraint or a term constraint, a literal environment ∆, and an intersection type τ ,
is there a combinatory term M ∈ C(Γ,∆) such that Γ; ∆ ⊢M : τ holds?

We follow the approach initiated by Frühwirth [23] (an overview is given by Jacquemard [26,
Section I.2]) and describe tree languages via finite sets of Horn clauses over certain first-order
signatures. The following Definition 32 establishes suitable first-order signatures, based on
environments and a set of intersection types.

▶ Definition 32 (Signature). For environments Γ,∆ and a finite set of intersection types Ξ
the signature Σ(Γ,∆,Ξ) contains the following:

nullary function symbols l for each l ∈ dom(∆)
n-ary function symbols A(n) for each (A : φ) ∈ Γ and n ≤ ar(φ)
unary predicates Qτ for each τ ∈ Ξ
unary predicates Qt for each t ∈ ran(∆)
a binary equality (=) predicate and a binary disequality (̸=) predicate
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The Herbrand universe over the signature Σ(Γ,∆,Ξ) is {tree(T ) | T ∈ C(Γ,∆)∪dom(∆)}.
Horn clauses over the signature Σ(Γ,∆,Ξ) are of shape H ← H1, . . . ,Hm, where H is the
head of the clause and H1, . . . ,Hm are antecedents of the clause. Specifically, we consider
Horn clauses with heads of shape either Qt(l) such that (l : t) ∈ ∆, or Qτ (A(n)(X1, . . . , Xn))
where X1, . . . , Xn are free first-order variables. Let us recall in the following Definition 33
the standard Herbrand semantics [36] for signatures Σ(Γ,∆,Ξ).

▶ Definition 33 (Model). Let Γ,∆ be environments, let M ∈ C(Γ,∆) be a combinatory
term, let Ξ be a finite set of intersection types, let H be a finite set of Horn clauses over the
signature Σ(Γ,∆,Ξ), and let τ ∈ Ξ be a type. We write H ⊩ Qτ (tree(M)) if Qτ (tree(M)) is
true in the smallest Herbrand model in which every Horn clause from H is true.

Next, given environments Γ (restricted to literal and term constraints) and ∆, and an
intersection type τ , we present a terminating algorithm INH which computes a set H of Horn
clauses such that for any M ∈ C(Γ,∆) we have Γ; ∆ ⊢M : τ iff H ⊩ Qτ (tree(M)).

▶ Definition 34 (Algorithm INHΓ,∆(τ,Ξ)). Let Γ be a type environment such that each
predicate occurring in a parameterized type in ran(Γ) is a literal constraint or a term
constraint and let ∆ be a literal environment. For an intersection type τ and a set Ξ of
intersection types let

INHΓ,∆(τ,Ξ) =

∅ if τ ∈ Ξ⋃
(A:φ)∈Γ

RECA
Γ,∆,τ,(Ξ∪τ)((), φ, (), ∅) otherwise

where Algorithm RECA
Γ,∆,τ,Ξ is defined as follows. The arguments of RECA

Γ,∆,τ,Ξ are
a list X⃗ of distinct first-order variables
a parameterized type φ
a list H⃗ of antecedents
a finite set H of Horn clauses

The result of RECA
Γ,∆,τ,Ξ(X⃗, φ, H⃗,H) is a set of Horn clauses computed as follows. Consider

the shape of φ:
Case φ is ⟨α : t⟩ ⇒ ψ: let Y be a fresh first-order variable and return⋃

(l:t)∈∆

RECA
Γ,∆,τ,Ξ((X⃗, Y ), ψ[α := l], (H⃗,Qt(Y ), Y = l),H ∪ {Qt(l)←})

Case φ is ⟨⟨x : σ⟩⟩ ⇒ ψ: let Y be a fresh first-order variable and return

RECA
Γ,∆,τ,Ξ((X⃗, Y ), ψ[x := Y ], (H⃗,Qσ(Y )),H ∪ INHΓ,∆(σ,Ξ))

Case φ is P ⇒ ψ such that P is closed: if P does not hold return ∅, otherwise return

RECA
Γ,∆,τ,Ξ(X⃗, ψ, H⃗,H)

Case φ is (X = M) ⇒ ψ where M may contain free first-order variables: return

RECA
Γ,∆,τ,Ξ(X⃗, ψ, (H⃗,X = tree(M)),H)

Case φ is (X ̸= M) ⇒ ψ where M may contain free first-order variables: return

RECA
Γ,∆,τ,Ξ(X⃗, ψ, (H⃗,X ̸= tree(M)),H)
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Case φ is ρ for some intersection type ρ: return

H ∪
ar(ρ)⋃
k=0

⋃
S⊆P(ρ)

Hk,S where Hk,S is defined as follows.

If S = {σ1
1 → · · · → σ1

k → τ1, . . . , σq
1 → · · · → σq

k → τ q} and
⋂q

i=1 τ
i ≤ τ , then let

Y1, . . . , Yk be fresh first-order variables, let σj =
⋂q

i=1 σ
i
j for j = 1 . . . k, and let n be the

length of the list (X⃗, Y1, . . . , Yk) in

Hk,S = {Qτ (A(n)(X⃗, Y1, . . . , Yk))← H⃗,Qσ1(Y1), . . . , Qσk
(Yk)} ∪

k⋃
j=1

INHΓ,∆(σj ,Ξ)

Otherwise, Hk,S = ∅.

The following Example 35 illustrates an invocation of Algorithm INH for the type
environment from Remark 28.

▶ Example 35. Consider the type environment Γ = {A : ω,B : ⟨⟨x : ω⟩⟩ ⇒ (x ̸= A) ⇒ l}
from Remark 28 where l is some literal. We have

INHΓ,∅(l, ∅)
= RECA

Γ,∅,l,{l}
(
(), ω, (), ∅

)
∪ RECB

Γ,∅,l,{l}
(
(), ⟨⟨x : ω⟩⟩ ⇒ (x ̸= A)⇒ l, (), ∅

)
= ∅ ∪ RECB

Γ,∅,l,{l}
(
(Y ), (Y ̸= A)⇒ l, (Qω(Y )), ∅ ∪ INHΓ,∅(ω, {l})

)
= RECB

Γ,∅,l,{l}
(
(Y ), l, (Qω(Y ), (Y ̸= A(0))), INHΓ,∅(ω, {l})

)
= INHΓ,∅(ω, {l}) ∪ {Ql(B(1)(Y ))← Qω(Y ), (Y ̸= A(0))}
= . . .

= {Qω(A(0))←,
Qω(B(1)(Z))← Qω(Z), (Z ̸= A(0)),
Ql(B(1)(Y ))← Qω(Y ), (Y ̸= A(0))}

In accordance with Remark 28, in the smallest Herbrand model in which every Horn
clause from the above set INHΓ,∅(l, ∅) is true we have

Qω = {A(0)} = {tree(M) |M ∈ C(Γ, ∅) such that Γ; ∅ ⊢M : ω}
Ql = ∅ = {tree(M) |M ∈ C(Γ, ∅) such that Γ; ∅ ⊢M : l}

The following Example 36 illustrates the result of Algorithm INH in the presence of literal
constraints (cf. Section 5).

▶ Example 36. Consider the literal environment ∆ = {0 : int, 1 : int, 2 : int, 3 : int} and the
type environment Γ = {A : 0, B : ⟨α : int⟩ ⇒ ⟨β : int⟩ ⇒ (β = α+ 1)⇒ α→ β}. We have

INHΓ,∆(2, ∅)
= {Q0(A(0))←,

Q1(B(3)(X1, X2, X3))← Qint(X1), (X1 = 0), Qint(X2), (X2 = 1), Q0(X3),
Q2(B(3)(Y1, Y2, Y3))← Qint(Y1), (Y1 = 1), Qint(Y2), (Y2 = 2), Q1(Y3),
Qint(0)←, Qint(1)←, Qint(2)←}

In the smallest Herbrand model in which every Horn clause from the above set INHΓ,∆(2, ∅)
is true we have Q0 = {A(0)}, Q1 = {B(3)(0, 1, A(0))}, Q2 = {B(3)

(
1, 2, B(3)(0, 1, A(0))

)
}, and

Qint = {0, 1, 2}. Specifically, we have Qi = {tree(M) |M ∈ C(Γ,∆) such that Γ; ∆ ⊢M : i}
for i ∈ {0, 1, 2}. The literal 3 ∈ dom(∆) does not occur in Horn clauses in INHΓ,∆(2, ∅).

Termination of INHΓ,∆(τ,Ξ) is shown using an upper bound on the set Ξ of types and
the fact that Ξ strictly increases in recursive invocations of INHΓ,∆.
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▶ Lemma 37. For any type environment Γ, literal environment ∆, intersection type τ , and
set Ξ of intersection types we have that Algorithm INHΓ,∆(τ,Ξ) terminates.

Proof. Recursive invocations of INHΓ,∆ increase the set Ξ by the considered type τ , such
that for some literal substitution θ with range dom(∆) one of the following conditions holds:

τ = θ(σ) such that ⟨⟨x : σ⟩⟩ is a binder occurring in a parameterized type in ran(Γ)
τ =

⋂q
i=1 σ

i
j such that {σ1

1 → · · · → σ1
k → τ1, . . . , σq

1 → · · · → σq
k → τ q} ⊆ P(θ(ρ)) for

some ρ occurring in a parameterized type in ran(Γ) and k ≤ ar(θ(ρ))
Since Γ, ∆, the number of literal substitution θ with range dom(∆), and the number of
distinct subsets of P(θ(ρ)) are finite, the number of types τ obeying the above restriction is
finite. Therefore, the number of recursive invocations of INHΓ,∆ is finite. ◀

The following Theorem 38 shows that INHΓ,∆(τ, ∅) computes Horn clauses which charac-
terize inhabitants (respecting arities in Γ) of type τ .

▶ Theorem 38 (Correctness). Let Γ,∆ be environments such that each predicate occurring
in a parameterized type in ran(Γ) is a literal constraint or a term constraint, let Ξ be a set
of intersection types, let τ ∈ Ξ, and let H be the set INHΓ,∆(τ, ∅) of Horn clauses over the
signature Σ(Γ,∆,Ξ). We have Γ; ∆ ⊢M : τ iff H ⊩ Qτ (tree(M)) for any M ∈ C(Γ,∆).

Proof. W.l.o.g. we assume that distinct bound variables have distinct names and there is a
bijection µ between term variables and first-order variables such that in case ⟨⟨x : σ⟩⟩ ⇒ ψ of
Algorithm REC the chosen fresh first-order variable is µ(x).

For the implication from left to right, we assume Γ; ∆ ⊢M : τ and proceed by induction
on M . We have M = AT1 . . . Tn such that (A : φ) ∈ Γ, n ≤ ar(φ), and there exists a literal
substitution θ and a term substitution ξ satisfying properties of Lemma 13.

We have RECA
Γ,∆,τ,{τ}((), φ, (), ∅) ⊆ H containing the clause Qτ (A(n)(X1, . . . , Xn))← H⃗

such that for 1 ≤ i ≤ n the following properties hold.
If Ti is a literal, then Qt(Xi), (Xi = Ti) ∈ H⃗, introduced by case ⟨α : t⟩ ⇒ ψ such that
θ(α) = Ti and (Ti : t) ∈ ∆. Additionally, H contains the clause Qt(Ti)←.
If Ti is not a literal, then Qσ(Xi) ∈ H⃗ for some type σ such that Γ; ∆ ⊢ Ti : σ by either
Lemma 13.1.b or Lemma 13.2.a, and by the induction hypothesis H ⊩ Qσ(tree(Ti)).
If a literal constraint P occurs in φ, then θ(P ) holds by Lemma 13.1.c.
If a term constraint P occurs in φ, then µ(θ(P )) occurs in H⃗ and ξ(θ(P )) holds by
Lemma 13.1.c.

Using the substitution which maps Xi to tree(Ti) for i = 1, . . . , n each antecedent in H⃗ is
true in the considered smallest Herbrand model, and we obtain H ⊩ Qτ (tree(AT1 . . . Tn)).

For the implication from right to left, we assume H ⊩ Qτ (tree(M)) and proceed by induc-
tion on M . We have M = AT1 . . . Tn and H contains the clause Qτ (A(n)(X1, . . . , Xn))← H⃗,
constructed by RECA

Γ,∆,τ,Ξ for some set Ξ. Additionally, for some literal substitution θ and
the substitution which maps Xi to tree(Ti) for i = 1, . . . , n each antecedent in H⃗ is true in
the considered smallest Herbrand model, and the following properties hold.

If Ti is a literal, then (Ti : t) ∈ ∆ for some t. Additionally, (Xi = Ti) ∈ H⃗, introduced by
case ⟨α : t⟩ ⇒ ψ such that θ(α) = Ti.
If Ti is not a literal, then Qσ(Xi) ∈ H⃗ for some type σ and H ⊩ Qσ(tree(Ti)). By the
induction hypothesis we have Γ; ∆ ⊢ Ti : σ.
For any literal constraint P occurring in φ we have that θ(P ) holds.
Let ξ be a term substitution such that ξ(x) = Ti if µ(x) = Xi. For any term constraint
P occurring in φ, we have µ(θ(P )) ∈ H⃗ and ξ(θ(P )) holds.

By Lemma 13 we obtain Γ; ∆ ⊢ AT1 . . . Tn : τ . ◀
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The following Definition 39 gives the tree language over a signature Σ(Γ,∆,Ξ) for an inter-
section type τ ∈ Ξ described by a set of Horn clauses constructed in Algorithm INHΓ,∆(τ, ∅).

▶ Definition 39. Let H be a set of Horn clauses over the signature Σ(Γ,∆,Ξ) and let τ ∈ Ξ,
we call LH(τ) = {tree(T ) | T ∈ C(Γ,∆) ∪ dom(∆) such that H ⊩ Qτ (tree(T ))} the tree
language of τ in H.

We recall the shape of automata clauses by Reuß and Seidl in the following Definition 40,
for which emptiness of the corresponding tree language is decidable (Theorem 41).

▶ Definition 40 (Automata Clauses [33, Section 2]). An automata clause over the signature
Σ(Γ,∆,Ξ) is a Horn clause of the form

Q0(A(n)(X1, . . . , Xn))← Q1(X1), . . . , Qn(Xn), Xi1 = u1, . . . , Xik = uk, Xj1 ̸= v1, . . . , Xjm ̸= vm

where A(n) ∈ Σ(Γ,∆,Ξ) is an n-ary function symbol, Q0, . . . , Qn ∈ Σ(Γ,∆,Ξ) are unary
predicates, X1, . . . , Xn are distinct first-order variables, u1, . . . , uk, v1, . . . , vm are trees over
Σ(Γ,∆,Ξ) containing variables from {X1, . . . , Xn}, and i1, . . . , ik, j1, . . . , jm ∈ {1, . . . , n}.

The tree language LH(τ) corresponds to the language of a bottom-up tree automaton with
term constraints [33] described by automata clauses H and having the accepting states {Qτ}.
Therefore, emptiness of LH(τ) is decidable.

▶ Theorem 41 ([33, Theorem 14]). Given a set H of automata clauses over the signature
Σ(Γ,∆,Ξ) and τ ∈ Ξ, emptiness of the tree language LH(τ) is decidable.

Finally, we show decidability of intersection type inhabitation with literal and term
constraints by reduction to emptiness of bottom-up tree automata with term constraints.

▶ Theorem 42. Intersection type inhabitation with literal and term constraints (Problem 31)
is decidable.

Proof. Due to Theorem 38 and Theorem 41, it suffices to show that the set of Horn clauses
H = INHΓ,∆(τ, ∅) over the signature Σ(Γ,∆,Ξ) for some set Ξ of intersection types contains
only automata clauses.

Heads of clauses in H are either Qt(l) for some (l : t) ∈ ∆ (constructed in case ⟨α : t⟩ ⇒ ψ)
or Qτ (A(n)(X⃗, Y1, . . . , Yk)) where n is the length of the list (X⃗, Y1, . . . , Yk) (constructed in
the intersection type case), which are both of proper shape. It remains to show that any
antecedent in clauses in H is of proper shape. We consider the individual cases in which
antecedents are constructed in Algorithm REC.
Case ⟨α : t⟩ ⇒ ψ: The constructed antecedents are Qt(Y ) and Y = l for some fresh first-

order variable Y and (l : t) ∈ ∆.
Case ⟨⟨x : σ⟩⟩ ⇒ ψ: The constructed antecedent is Qσ(Y ) for some fresh first-order vari-

able Y and σ ∈ Ξ.
Case P ⇒ ψ such that P is closed: No antecedents are constructed.
Case (X = M) ⇒ ψ where M may contain free variables: The constructed antecedent

is (X = tree(M)). Since Γ contains only closed parameterized types, any literal variable
in M is substituted by some literal in dom(∆) and any term variable in M is substituted
by some first-order variable. Therefore, (X = tree(M)) is of proper shape.

Case (X ̸= M) ⇒ ψ where M may contain free variables: The constructed antecedent
is (X ̸= tree(M)), which analogously to the above case is of proper shape.

Case ρ: The constructed antecedents are Qσ1(Y1), . . . , Qσk
(Yk) for some fresh first-order

variables Y1, . . . , Yk and σ1, . . . , σk ∈ Ξ.
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Finally, we need to ensure that each first-order variable Z occurring in the head of the con-
structed clause Qτ (A(n)(X⃗, Y1, . . . , Yk))← H⃗,Qσ1(Y1), . . . , Qσk

(Yk) in the last case occurs
in exactly one antecedent Qσ(Z) for some σ ∈ Ξ or Qt(Z) for some t ∈ ran(∆). This trivially
holds for the above fresh first-order variables Y1, . . . , Yk. The remaining first-order variables
Y ∈ X⃗ are introduced in case ⟨α : t⟩ ⇒ ψ (with the corresponding antecedent Qt(Y )) and in
case ⟨⟨x : σ⟩⟩ ⇒ ψ (with the corresponding antecedent Qσ(Y )). ◀

Concluding the presentation of the decidable fragment of FCLP, we give remarks on its
complexity bounds (Remark 43), extensions (Remark 44), and alternatives (Remark 45).
▶ Remark 43. Complexity bounds for emptiness of bottom-up tree automata with term
constraints are not known [33, Section 6]. Therefore, we cannot give complexity bounds for
intersection type inhabitation with literal and term constraints. Additionally, we do not
impose complexity bounds on predicate evaluation (besides decidability).
▶ Remark 44. The class of bottom-up tree automata with term constraints is closed under
Boolean operations [33, Proposition 6]. Therefore, existing techniques extending FCL(∩,≤)
by a Boolean query language [20] are applicable.
▶ Remark 45. There are other classes of constrained tree automata [26] which could be
used to obtain a decidable fragment of FCLP. One example are generalized encompassment
automata [11, Definition 1], which are more expressive than bottom-up tree automata with
term constraints. However, the presentation of such automata as sets of Horn clauses resulting
from an inhabitation algorithm appears challenging.

4 Implementation

In practical applications one is rarely interested in solving just the inhabitation decision
problem, but rather in computing one, several, or all inhabitants. Therefore, we consider the
following synthesis problem, which is a slightly modified version of Problem 17.

▶ Problem 46 (Synthesis). Given a type environment Γ, a literal environment ∆, and an
intersection type τ , enumerate combinatory terms M for which Γ; ∆ ⊢M : τ holds.

Furthermore, when solving particular problems via synthesis, we want to interpret the
resulting combinatory terms as solutions for those problems.

A framework [21] addressing Problem 46 was implemented on the basis of the existing
Combinatory Logic Synthesizer (CLS)4 using the Python programming language.

In this section we discuss the implementation, and evaluate how the added features of
FCLP help modeling, and improve performance compared to FCL(∩,≤), using maze solving
(Problem 52) as a benchmark example.
▶ Remark 47. The presented framework does not make use of Python’s built-in type system
for synthesis, and implements types as Python classes.

4.1 Usage
The framework is implemented as a Python library, requiring Python version 3.10 or later. It
does not rely on any additional libraries. For the sake of brevity, an embedded domain-specific
language (eDSL), shown in Figure 1, was created for writing parameterized types.

4 https://github.com/cls-python/cls-python
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Constructor Python

ω Omega()
σ → τ σ ** τ

σ ∩ τ σ & τ

c(σ) ’c’@σ

Literal l : t Literal(l,t)
Variable α LVar(’α’)

Constructor Python

⟨x : t⟩ Use(’x’, ’t’)
⟨⟨α : τ⟩⟩ Use(’α’, τ)

Predicate P using
variables v0, . . . , vn With(lambda v0,...,vn:P )

. . .⇒ τ DSL(). . . . .In(τ)

Figure 1 Embedded DSL for parameterized and intersection types in Python.

▶ Example 48 (eDSL). The parameterized type ⟨α : int⟩ ⇒ ⟨⟨x : σ⟩⟩ ⇒ ⟨⟨y : σ⟩⟩ ⇒ (x = y)⇒
⟨β : int⟩ ⇒ (β = α+ 1)⇒ c(α)→ c(β)→ (c(4) ∩ c(ω)) corresponds to the following eDSL
term:

DSL (). Use(’α’, ’int ’). Use(’x’, σ). Use(’y’, σ)
.With( lambda x y: x == y). Use(β, ’int ’). With( lambda α β: β = α + 1)
.In((’c’@LVar(α)) ** (’c’@LVar(β)) **

(’c’@Literal (4, ’int ’) & ’c’@(Omega ())))

▶ Remark 49. The operator ** was chosen to represent the arrow type constructor, since it
is the only right associative operator available in Python.

In order to synthesize inhabitants, we need to define a type environment, a literal
environment, and an intersection type as a query. A type environment is a dict, mapping
combinators to their types, where combinators can be any Hashable Python object. Types
can be formed via the eDSL or by instantiating appropriate subclasses of the class Type. A
literal environment is a dict, mapping collection identifiers (represented as str) to literals,
which can be any Python objects. The three main operations of the framework are:

FiniteCombinatoryLogic(...).inhabit(...) to initialize the synthesis procedure and
compute an intermediate result representation,
enumerate_terms to extract combinatory terms from the intermediate representation,
interpret_term to interpret a combinatory term as a solution in the problem domain.

Given a type environment Γ, literal environment ∆, and a type τ , we can use the above
operations to enumerate elements of the set {M | Γ,∆ ⊢M : τ} by the following steps. First,
we generate an intermediate representation of the synthesis results.

results = FiniteCombinatoryLogic(repository = Γ, literals = ∆).inhabit(τ)

Second, we enumerate up to n distinct terms.

terms = enumerate_terms(τ, results, n)

A term is represented as a tuple, such that its first projection is the associated combinator,
and the following projections are representations of the arguments. Finally, we interpret
these terms to obtain solutions in the problem domain.

solutions = [interpret_term(term) for term in terms]

Each combinator can be equipped with a computational component, realized by implementing
the Callable protocol. In this step each callable combinator is interpreted by calling it on
its interpreted arguments.
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4.2 Synthesis Procedure
In contrast to Algorithm INH (Definition 34), the implemented synthesis procedure is not
limited to the decidable fragment. While this makes inhabitation undecidable, in most
practical applications the advantages of unrestricted predicates outweigh potential lock-ups.

Given a type environment Γ, literal environment ∆, and intersection type τ , the synthesis
process is structured as follows.
Preprocessing: For each typed combinator (C : e1 ⇒ · · · ⇒ em ⇒ ρ) ∈ Γ, we first generate

the set of substitutions determined by ∆ and the literal quantifiers in e1, . . . , em. Next,
we use these substitutions to evaluate all literal constraints in e1, . . . , em, discarding
substitutions which violate at least one constraint. The remaining substitutions are
stored alongside the combinator. Afterward, we remove all literal quantifiers and literal
constraints from e1, . . . , em. Finally, for each arity k up to ar(ρ), we decompose ρ into
possible pairs of k argument types and a return type.

Generating Horn clauses: For each typed combinator (C : e1 ⇒ · · · ⇒ em ⇒ ρ) ∈ Γ, each
literal substitution θ for C, and each arity k, if the intersection of the return types is
a subtype of τ , a Horn clause is created analogous to the last case of Algorithm INH.
Further Horn clauses are generated by recursion on each argument type, as well as on
each type occurring in term quantifiers in e1, . . . , em.

Enumeration: Given the above set of Horn clauses and a number n, we enumerate up to n
inhabitants in a bottom-up manner. In this step we resolve term quantifiers by enumerating
inhabitants of the type quantified over, placing them at the respective argument position
in a given combinator and substituting the respective term variables in the remaining
constraints by those inhabitants. If this leads to violated constraints, we discard those
terms. Similarly, literals are placed at positions corresponding to their quantifier position.

4.3 Solutions in a Maze
The additions of FCLP compared to FCL(∩,≤) improve upon the expressiveness of specifica-
tion, and it was observed that more concise modeling can lead to performance improvements.
Consider the following example of finding solutions in a maze.

▶ Definition 50 (Maze). Let n ∈ N, an n× n-maze is a function M : {0, . . . , n− 1}2 → B
indicating whether a position is free or blocked.

▶ Definition 51 (Maze Solution). A solution to an n × n-maze M is a finite sequence(
(x0, y0), . . . , (xl, yl)

)
such that:

(x0, y0) = (0, 0) and (xl, yl) = (n− 1, n− 1),
for each i ∈ {0, . . . , l} we have (xi, yi) ∈ dom(M) and M(xi, yi) = true,
for each i ∈ {0, . . . , l − 1} we have |xi − xi+1|+ |yi − yi+1| = 1.

▶ Problem 52 (Maze Solving). Given an n× n-maze M, enumerate solutions to M.

Variants of maze solving are common, miniature benchmark examples5 for component-
oriented synthesis [9, 4, 19]. Domain-specific components for maze solving encompass
movement directions and the maze layout. Specification capabilities, scalability, and perfor-
mance of the framework in the case of maze solving translate well to software product line
design [25], factory planning [37], and cyber-physical system design [14].

5 Of course, if one is solely interested in maze solving, a domain-specific algorithm using dynamic
programming is recommended instead of domain-agnostic component-oriented synthesis.
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Let us explore an approach to maze solving in FCL(∩,≤). Given an n× n-maze M we
construct the following type environment ΓM

FCL.

ΓM
FCL = {Freex,y : isfree(x, y) | (x, y) ∈ dom(M) such that M(x, y) = true}∪

{Start : pos(0(ω), 0(ω)),

Up :
⋂

(x,y)∈dom(M)

(isfree(x, y)→ pos(x, y + 1)→ pos(x, y)),

Down :
⋂

(x,y)∈dom(M)

(isfree(x, y)→ pos(x, y − 1)→ pos(x, y)),

Left :
⋂

(x,y)∈dom(M)

(isfree(x, y)→ pos(x+ 1, y)→ pos(x, y)),

Right :
⋂

(x,y)∈dom(M)

(isfree(x, y)→ pos(x− 1, y)→ pos(x, y))}

For better legibility, we allow for binary constructors as described in Remark 3. Combinators
Freex,y denote witnesses that the space at coordinates x and y is free. Combinators Up,
Down, Left and Right denote movement in the corresponding direction. Since FCL(∩,≤)
does not allow for literals, numbers need to be encoded by constructors (0(ω), 1(ω), . . . , n(ω))
and the position shifts need to be computed beforehand.

▶ Example 53. Consider a 2 × 2 maze M in which exactly the position (1, 0) is blocked.
In order to synthesize (not necessarily loop-free) solutions in M, we enumerate elements
of the set {M | ΓM

FCL ⊢ M : pos(1(ω), 1(ω))}, resulting in combinatory terms such as:(
Right Free1,1 (Down Free0,1 Start)

)
. Given the appropriate interpretation for the

movement combinators, we can interpret the term as the solution
(
(0, 0), (0, 1), (1, 1)

)
,

shown in the below Figure 2.

Figure 2 A 2× 2 maze with a solution in red. Position (0, 0) is in the top-left corner.

While the above shows that FCL(∩,≤) can model Problem 52, we identify three improve-
ments that can be made using FCLP.

Quantifiers can be used to avoid intersections spanning all positions in the maze.
Since we expect each combinator to be fully applied (have exactly as many arguments as
the arity of its type), we model positions as parameters.
The combinators Freex,y act as predicates for the movement combinators. Using FCLP,
we can use predicates directly, removing those combinators.

Applying the above improvements, we construct the type environment ΓM
FCLP together with

the literal environment ∆ = {0 : int, . . . , n− 1 : int}.
ΓM

FCLP = {Start : pos(0, 0),
Up : ⟨α : int⟩ ⇒ ⟨β : int⟩ ⇒ ⟨γ : int⟩ ⇒ (γ = β+1)⇒M(α, β)⇒ ⟨⟨p : pos(α, γ)⟩⟩ ⇒ pos(α, β),
Down : ⟨α : int⟩ ⇒ ⟨β : int⟩ ⇒ ⟨γ : int⟩ ⇒ (γ = β−1)⇒M(α, β)⇒ ⟨⟨p : pos(α, γ)⟩⟩ ⇒ pos(α, β),
Left : ⟨α : int⟩ ⇒ ⟨β : int⟩ ⇒ ⟨γ : int⟩ ⇒ (γ = α+1)⇒M(α, β)⇒ ⟨⟨p : pos(γ, β)⟩⟩ ⇒ pos(α, β),
Right : ⟨α : int⟩ ⇒ ⟨β : int⟩ ⇒ ⟨γ : int⟩ ⇒ (γ = α−1)⇒M(α, β)⇒ ⟨⟨p : pos(γ, β)⟩⟩ ⇒ pos(α, β)}

Clearly, the above type environment ΓM
FCLP is more concise compared to the type envi-

ronment ΓM
FCL. Additionally, we do not need to manually compute the position shifts to

construct ΓM
FCLP beforehand, as was needed for ΓM

FCL.
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Performance Evaluation
Using the modeling techniques introduced with FCLP, we observe improved performance.
Figure 3 shows synthesis execution time to find all solutions using different type environments,
up to a maze size of 70×70. All benchmarks were performed on the same machine6 using the
implementation at hand. Environments ΓM

FCLP(lit), ΓM
FCLP(pos), ΓM

FCLP(pred) each correspond to
an improvement identified above, namely using literals for coordinates, using term quantifiers
for the position, and using a predicate for free positions respectively.

Size ΓM
FCL ΓM

FCLP(lit) ΓM
FCLP(pos) ΓM

FCLP(pred) ΓM
FCLP

10× 10 1.3 s 0.5 s 0.3 s 0.1 s 0.1 s

20× 20 21.9 s 8.0 s 6.4 s 2.4 s 1.9 s

30× 30 125.2 s 41.0 s 30.7 s 12.8 s 9.8 s

40× 40 464.7 s 130.2 s 97.9 s 42.3 s 32.4 s

50× 50 1279.8 s 322.2 s 239.5 s 103.2 s 78.5 s

60× 60 3038.5 s 645.4 s 486.3 s 214.2 s 160.2 s

70× 70 > 5000 1195.6 s 893.5 s 384.9 s 299.4 s

Figure 3 Benchmarks for different maze sizes and different type environments.

While the data shows that all approaches scale at an exponential rate given the size,
using ΓM

FCLP leads to a performance increase of one order of magnitude compared to ΓM
FCL,

with each modeling technique contributing to the speed-up. The performance increase of
ΓM

FCLP compared to ΓM
FCL can be attributed to the following three factors:

1. ΓM
FCLP(lit) reduces the size of the type of each movement combinator.

2. ΓM
FCLP(pos) induces fewer subtype checks due to restricted term shape.

3. ΓM
FCLP(pred) reduces the number of combinators.

A benchmark using ΓM
FCL and the latest version of the prior implementation of CLS in

Python was conducted, leading to a time of 276 s for a 10 × 10 maze. The difference to
the prior implementation stems from the fact that the implementation at hand focuses on
performance, while the previous focuses on formal verification [4].

For performance evaluation, frameworks based on Bounded Combinatory Logic [18] or
based on Finite Combinatory Logic with Boolean Queries [20] are of no consequence. Neither
bounded polymorphism nor Boolean connectives are suited to model maze solving. Therefore,
the resulting performance is close to the prior implementation of CLS.

Loop-free solutions
As observed above, utilizing quantifiers and predicates can lead to significant speed-ups in
certain use-cases. Interestingly, predicates also model specifications, for which an effective
model in FCL(∩,≤) is unclear.

Consider the maze presented in Figure 4 and solutions, that do not visit any position more
than once (loop-free). In each movement combinator a predicate can require each visited
position to be unique in a given term, thereby only allowing for loop-free solutions. During
enumeration, terms containing at least one loop are discarded and the procedure will return

6 AMD Ryzen 7 5800X (3.8 GHz), 16 GB DDR4 RAM
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Figure 4 A 5× 5 maze with exactly two loop-free solutions (in red and blue).

exactly two solutions, after which it halts. In contrast, for FCL(∩,≤) we need to rely on a
generate-and-test approach. Such an approach would enumerate infinitely many candidates
(including those, which contain arbitrary many loops) and filter out those containing loops.
In particular, the procedure as a whole would search indefinitely for a third loop-free solution.
Furthermore, adjusting the size of the maze in Figure 4, there are arbitrary many looping
solutions whose length lie between the two loop-free solutions. The FCLP approach discards
solutions containing at least one loop early, and thereby never considers solutions with
multiple loops. In comparison, the FCL(∩,≤) approach has no such mechanism, leading to
exponentially more candidates to be checked and therefor an arbitrary long time between
the two loop-free solutions.

It is possible to model loop-free solutions in the synthesis framework based on Finite
Combinatory Logic with Boolean Queries [20]. In particular, negation is suitable to express
that a position is not yet visited. However, a performance evaluation has shown that such
an approach is infeasible for mazes beyond size 5× 5.

5 Case Study: Robotic Arms

We evaluate practical applicability of FCLP by means of a case study in which robotic arms
are synthesized from a set of 28 modular components [15]. The individual components are
modeled as typed combinators such that inhabitants of specific types can be interpreted
as assembly instructions for robotic arms. The assembly instructions are executed in CAD
software, assembling 3D models of robotic arms. Analysis tools, which are part of the
CAD software, confirm that the assembled robotic arms are mechanically sound, individual
components do not interfere which each other, and mechanical joints kinematically work
as intended. These properties hold for all robotic arms up to six degrees of freedom (six
moving joints) synthesized in the case study, a total of 364 arms containing on average 140
components each. Due to the chain-like nature of robotic arms we argue that higher degrees
of freedom also exhibit these properties.

In previous work [14] conducting the same case study utilizing FCL(∩,≤), numerical
constraints necessitate an exponential number of combinators. There are a number of
common numerical constraints of high importance, such as the degrees of freedom, the total
drawn current, total weight of the assembly, or the torque of motors. In previous work
such constraints are modeled as families of the following typed combinators, which specify
individual cases.

Ci1,i2,i3,i4 : Assembly(i1(ω))→ Assembly(i2(ω))→ Assembly(i3(ω))→ Assembly(i4(ω))
such that 0, ..., n are unary type constructors,
i1, i2, i3, i4 ∈ {0, ..., n},
and i4 = i1 + i2 + i3 + k
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Each of the above typed combinators Cii,i2,i3,i4 refers to individual numbers ii, i2, i3 of
specific parts in each connected assembly, and the accumulated number i4 of specific parts
increased by a constant k. The number of such combinators is exponential in the number of
connected assemblies (the arity of the type) multiplied by the number of distinct constraints
of interest. The number of connected assemblies depends on the granularity of the model,
but even for a case study of this scale a typical number is five, and requests usually employ
at least three constraints. The value range n for the constraints is usually no more than ten.
This leads to repositories of enormous size, containing tens of thousands of combinators for
typical requests. In practice, this large number of essentially redundant combinators impairs
debugging and deteriorates performance of the inhabitation algorithm.

In the later case study [15] the described issues are tackled using FCLP. The above family
of typed combinators is condensed to the following single typed combinator:

C : ⟨α1 : int⟩ ⇒ ⟨α2 : int⟩ ⇒ ⟨α3 : int⟩ ⇒ ⟨α4 : int⟩ ⇒ (α4 = α1 + α2 + α3 + k)⇒
⟨⟨x1 : Assembly(α1)⟩⟩ ⇒ ⟨⟨x2 : Assembly(α2)⟩⟩ ⇒ ⟨⟨x3 : Assembly(α3)⟩⟩ ⇒ Assembly(α4)

with ∆ ⊇ {0 : int, . . . , n : int}

The above combinator C concisely expresses the described numeric constraint for the particu-
lar assembly. Literal variables α1, α2, α3 refer to individual numbers of specific parts in each
connected assembly. The literal variable α4 refers to the accumulated number of specific parts
increased by a constant k, which is described by the literal constraint α4 = α1 + α2 + α3 + k.
As a result, such combinators closely represent the individual component in the actual use-
case [15]. The number of required combinators per component is constant, and independent
from specified constraints. Since each predicate is a literal constraint (Definition 30), the
corresponding inhabitation problem is decidable (Theorem 42).

The ability to cleanly handle constraints allows leveraging combinatory logic synthesis to
explore the robotic arm design space efficiently and glean information about it.

6 Conclusion

The present work conservatively extends the type system FCL(∩,≤) [32] by literals, quanti-
fiers, and predicates. While the inhabitation problem in the resulting type system FCLP
(Definition 8) is undecidable (Theorem 20), we give an expressive fragment of FCLP for
which inhabitation is decidable (Theorem 42). The particular fragment is based on results
for tree automata with term constraints by Reuß and Seidl [33], and allows for specification
of certain local (dis)equality constraints (Definition 29) for subterms of inhabitants. The
main contribution of the present work is a terminating algorithm INH which given a type
environment, a literal environment, and an intersection type computes a logic program (set
of Horn clauses) which represents all inhabitants.

For empirical evaluation, an algorithm for inhabitant enumeration (Problem 46) is
implemented in the programming language Python. The implementation, as part of a
larger synthesis framework [21], is shown superior to an existing FCL(∩,≤)-based framework
CLS [4] with respect to specification capabilities, scalability, and performance. Finally,
practical applicability is demonstrated via a case study in the area of cyber-physical systems.

There are several directions for further research.
First, it is worth investigating type inhabitation for more expressive type languages in the

setting of combinatory logic. Polymorphic set-theoretic types [12, 13] constitute a promising
candidate for type-based component-oriented program synthesis.

Second, there is room for exploration of more expressive fragments of FCLP with de-
cidable type inhabitation. A promising candidate could be obtained by using generalized
encompassment automata [11, Definition 1] instead of (the less expressive) bottom-up tree
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automata with term constraints. Another candidate could rely on automata with disequality
constraints [16, Definition 1]. Such automata are used by Czajka et.al. [5] to externally
restrict sets of inhabitants via term rewriting systems. It appears appealing to internalize
such restrictions as part of the specification language.

Third, the present work focuses on inhabitants which respect arities in the given type
environment. This restriction is based on the observation that in practice not every domain-
specific component is a function. However, the subtyping rule ω ≤ ω → ω is in conflict with
this observation. It is intriguing to explore semantics of combinatory logic with intersection
types [17] without the subtyping rule ω ≤ ω → ω.

Fourth, satisfiability of literal constraints, such as β = α + 1, could be addressed in
algorithm INH by a principled approach, for example based on SMT. Besides potential
performance improvements, such an approach may allow for a countably infinite parameter
space (literal environment).

Fifth, efficient enumeration procedures [35, 22] for tree languages focus on regular
structures. Besides the naive generate-and-test approach in the present work, there is no
practical enumeration procedure for trees accepted by bottom-up tree automata with term
constraints. It is unclear whether methods known from logic programming, such as sideways
information passing [3], are applicable.
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