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Abstract
Ultrafinitism postulates that we can only compute on relatively short objects, and numbers beyond
a certain value are not available. This approach would also forbid many forms of infinitary reasoning
and allow removing certain paradoxes stemming from enumeration theorems. For a computational
application of ultrafinitist logic, we need more than a proof system, but a logical framework to
express both proofs, programs, and theorems in a single framework. We present its inference rules,
reduction relation, and self-encoding to allow direct proving of the properties of ultrafinitist logic
within itself. We also provide a justification why it can express all bounded Turing programs, and
thus serve as a “logic of computability”.
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Background

Ultrafinitism [42, 61, 79, 22, 47] postulates that we can only reason and compute relatively
short objects1

Tighter limit can be established using petahertz frequency [9] as a quantum limit for light-
based systems giving 1033 serial cycles during the lifetime of Earth.] [49, 28, 66, 48, 44, 46],
and numbers beyond certain value are not available [79, 66]. Some philosophers also question
the physical existence of real numbers beyond a certain level of accuracy [24]. This approach
would also forbid many forms of infinitary reasoning and allow removing many from paradoxes
stemming from a countable enumeration.

However, philosophers2 still disagree on whether such a ultrafinitist logic could be consist-
ent [17, 51], while constructivist mathematicians claim that “no satisfactory developments
exist” [74]. We present a proof system based on the Curry-Howard isomorphism [35] and
explicit bounds for computational complexity that answers the question.

This approach invalidates logical paradoxes that stem from a profligate use of transfinite
reasoning [6, 55, 67], and assures that we only state problems that are decidable by the limit
on input size, proof size, and the number of steps. This explicitly excludes phenomena of
undecidability by excluding them from our realm of valid statements [73]. Our approach
allows to express all Turing Machine programs that are bounded [34] by proof terms of the
logic3.

1 For example, a computation run by computer the size of Earth within the lifespan of Earth so far. Of
the order of 1093 as described by [28].

2 We cite physical and metaphysical arguments from previous work equally.
3 Up to fixed emulation overhead, see Emulation Complexity below in section 4.
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5:2 Ultrafinitist Logic

Explicitly bounding computational complexity also prevents a famous paradox of inference.
This paradox of classical theory of semantic information [4, 19] unjustly labels all mathematical
proofs as “trivial information”, because it can be inferred from the axioms.

1 Introduction

By finitism we understand the mathematical logic that tries to absolve us from transfinite
inductions [42]. Ultrafinitism4 goes even further by postulating a definite limit for the
complexity of objects that we can compute with [48, 44, 66, 49, 28, 20]. We assume these
without committing ourselves to adopt a fixed number as a limit.

In order to permit only ultrafinitist inferences, we postulate ultraconstructivism: we
permit only constructive proofs with a deadline. That is constructions that are not just
strictly computable, but for which there is a upper bound on the amount of computation
that is needed to resolve them. That means that we forbid proofs that go for an arbitrarily
long time and require totality for any proof or computation.

For the sake of generality, we will attach this deadline in the form of bounding function
that takes as arguments size variables (depths of input terms), and outputs the upper bound
on the number of steps that the proof is permitted to make (along with upper bound on the
size of the output). Depths of input terms are a convenient upper bound on the complexity
of normalized proof terms. (Normalized proof terms are those with opportunity for cut or
β-reduction.)

Our approach is inspired by the Curry-Howard isomorphism – the fact that the construct-
ive proofs always correspond to executable programs. It also follows inverse Curry-Howard
isomorphism: the philosophy that rejects logical inference which do not correspond to
programs computable in our universe5.

The philosophy of ultraconstructivism would similarly purport that while transfinitary
logics may be consistent, they are correspond to objects „out-of-this-world’ ’6, since our
observable universe is inherently finitary [49].

Contributions
To enumerate chief contributions of this paper:
1. First consistent ultrafinitist logic to the knowledge of the author. It allows bounding

by any and arbitrarily large computational limit (section 2.1), and consistent reasoning
resolving Wang’s Paradox[17]. Thus this logic is first formal theory to claim a purely
philosophical legacy of ultrafinitism [79, 66, 51, 10].

2. A decidable logic having meta-theory expressible in itself (see section 3.4).
3. Clear and comprehensive demonstration that assumptions of Gödel are too strong

[25, 26] when considering bounded logics. This is because decidability of bounded term
can be demonstrated by simple enumeration with a more generous bound. Most proofs are
elementary by enumeration. Proof of consistency is done by reduction to widely known
intuitionistic logic to make the paper accessible to second year students of computer
science or first year graduates in constructive mathematics (section 4).

4 Also called strict finitism by [51].
5 Given that all formal proofs in mathematically strict formal systems can be considered finite numbers

of connected steps in computation or hypercomputation.
6 Extra-universal.
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4. Candidate for a most expressive logic that allows explicitly bounded computable functions.
Ideal logic of computability must forbid all reasoning about uncomputable, and only
allow computable statements (with proofs corresponding to bounded Turing Machine
programs.) For all bounds that can be computed within the framework, we can also
compute the function bounded by these (section 4.3).

5. Placing ultrafinitism and ultraconstructivism as candidate for realization of comput-
able foundations for mathematics programme (discussion in section 6.3).

6. All statements with bounds having a proof without bounds have a proof with bounds
too7 (see section 4.6 theorem 9).

We will further abbreviate the “Consistent Ultra-Finitist Logic” proposed in here as “UFL”
when speaking about higher order variant (with dependent Π,Σ types for quantification).

2 Syntax and inference

Due to size bounds and clarity of this paper, we first introduce propositional ultrafinitist
logic, and then describe interpretation of universal quantifier in a separate section.

2.1 Bounds
We express bounds as polyvariate functions of the natural numbers, called sizes. These
explicitly bound our proofs, depending on the size of input terms. While subtraction within
natural domain is permitted, only positive results of computation are permitted. All bound
functions are increasing with respect to all arguments (monotonic).

The bounds8 will be standing on one of two roles: as an upper bound on the proof
complexity, and there we will use symbol α as a placeholder, or to state an upper bound
on the depth of the normal form of the proof indicated by the symbol β. That is because
the number of constructors may sometimes bound a recursive examination of the proof of a
proposition.

Here ρρ is an exponentation, and iter (λv.ρ1, ρ2, ρ3) is an iterated composition of function
described by expression ρ1 with respect to an argument variable v; that iteration happens ρ2
times, and the function is applied to initial argument ρ3. The ρ1Jρ2/vK describes substitution
of bound variable v by ρ2, inside expression ρ1.

Any total function f(...) over naturals has a bounds b(...) function ∀x ∈ Nat .x ≤ n =⇒
f(x) ≤ b(n): given a range limited 9 by n, we can compute b(n) that is max

x≤n
f(x).

Conjecture Bounds terminate Since all iterations in bounds quantification terminate, all
bounds terminate.

2.2 Terms
All terms are explicitly limited, but we avoid labelling terms for which bounds can be easily
inferred (see below).

7 Thanks to anonymous reviewer for pointing importance of this result.
8 Using a bound on cost and depth of the term for each inference, we independently developed a very

similar approach to that used for cost bounding in higher-order rewriting [41].
9 This is not true for traditional real numbers R: hyperbola y = 1

x is unbounded around 0 because
lim
x→0

1
x = −∞.
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5:4 Ultrafinitist Logic

Size variables: v ∈ V

Size values n = 1
∣∣ S(n)

Term variables: x ∈ X

Positive naturals: i ∈ N \ {0}
Upper bounds: ρ ::= v

∣∣ i
∣∣ S(ρ)

∣∣∣∣ iter (λv.ρ, ρ, ρ)
∣∣ ρJρ/vK

∣∣ max(ρ, ρ)

Iteration is defined as:

iter (λv.e, 1, a) = eJa/vK
iter (λv.e, S(n), a) = iter (λv.e, n, eJa/vK)

Later we will explain how bounds expressions can be encoded in the same language as the
proof terms. At the level of basic logic we do not need this, but it will become useful when
we consider meta-reasoning (and encode entirety of the logic within its own proof terms.)

Data size bounds: α ::= ρ

Computation bounds: β ::= ρ

Types: τ ::= v
∣∣ τ ∧ τ

∣∣ τ ∨ τ
∣∣ τv →α

β τ
∣∣ ⊥

∣∣ ◦
∣∣ Type

Terms: E ::= x
∣∣ λx.E

∣∣ inr (E)
∣∣ inl (E)

∣∣ (E, E)
∣∣ ·∣∣ case E of

{
inl (x) → E;
inr (x) → E;

Environments: Γ ::= v1 : τ1
β1 , ..., vn : τn

βn

Judgements: J ::= Γ ⊢α
β E : τ

There is a special expression Type which is syntactically in τ . It is later used when
introducing dependent types, since Type lives both as a type and as a term. Translation
between proofs and types is later described in table 6.

Notation Av →α(v)
β(v) B binds proof variable x with type of A and size variable v, and

then bound in bounds α(v) for complexity and β(v) for depth of the normalized term. We
use notation α(v) instead of α to emphasize that both α(v) and β(v) are functions of size
variable v.

We could attach a pair of bounds to each proposition and judgement A(α,β) that would
describe both complexity α of computing the proof and a maximum depth β of the resulting
(normalized) witness. However, in most cases, one of these would be 1 or could be inferred
from the remaining information.

The occurs (x, E) is a count of free occurrences of variable x in term E. Free variables of
E are computed by free(E).

2.3 Inference rules
With any term variable x we need to introduce an associated bound variable v.

Γ ⊢?
? A type x ∈ X v ∈ V

Γ, xv : A ⊢1
v x : A

var

Sometimes we might want to overestimate proof complexity for the sake of simplicity:

Γ ⊢α1
β1

e : A α1 ≤ α2 β1 ≤ β2

Γ ⊢α2
β2

subsume(e, α2, β2) : A
subsume
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Table 1 Encoding arithmetic operations, hyperoperation, and Ackermann function

The addition, multiplication, and exponentiation can be defined on bounds using S()
and iter (λx.ρ1, ρ2, ρ2):

hyper(a, b, 1) ≡ iter (λx.S(x), a, b)
hyper(a, b, S(1)) ≡ iter (λy.iter (λx.S(x), y, b), 1, 1)

Argument y is ignored in this special case.
hyper(a, b, S(S(n))) = iter (λx.hyper(x, a, n), b, n)

h = λg.λa.λb. case b of
{

1 → a;
S(c) → iter (λx.fxa, c, a);

hyper(a, b, n) = iter (λf.h(f), n, λg.g)
a + b = iter (λx.S(x), a, b)
a ∗ 1 = a

a ∗ S(b) = iter (λx.x + a, b, a)
a1 = a

aS(b) = iter (λx.x ∗ a, b, a)

a[S(n)]b = case b of
{

1 → a;
S(c) → iter (λx.x[n]b, c, a);

a + b ≡ hyper(a, b, 1)
a ∗ b ≡ hyper(a, b, S(1))
ab ≡ hyper(a, b, S(S(1)))
S(S(S(ack(m, S(S(S(n))))))) ≡ 2[m](S(S(S(n))))

Here = is for definition, and ≡ states equivalence of expressions. To avoid definition of
predecessor function, we use equivalence to express Ackermann function.
hyper(a, b, n), and a[n]c are alternative ways of introducing hyperoperations.
We use hyperoperations for clarity, showing that we can indeed express Ackermann
function as bounded iteration of function compositions.

Note that subsumption is necessary for case-expressions. Below we have typical rules for
construction and destruction of basic types:

Γ ⊢1
β · : ◦

unit

Γ ⊢α
β e : A

Γ ⊢α+1
β+1 inl (e) : A ∨ B

inl
Γ ⊢α

β e : B

Γ ⊢α+1
β+1 inr (e) : A ∨ B

inr

Γ ⊢α∨
β∨+1 a : L ∨ R Γ, xβ∨ : L ⊢αl

βl
l : B Γ, yβ∨ : R ⊢αr

βr
r : B

Γ ⊢α∨+max(αl,αr)+1
max(βl,βr) case a of

{
inl (x) → l;
inr (y) → r;

: B

case

Γ ⊢αa

βa
a : A Γ ⊢αb

βb
b : B

Γ ⊢αa+αb+1
max(βa,βb)+1 (a, b) : A ∧ B

pair

Γ ⊢α
β+1 e : A ∧ B i ∈ {l, r}

Γ ⊢α+1
β prjle : A

prl
Γ ⊢α

β+1 e : A ∧ B i ∈ {l, r}

Γ ⊢α+1
β prjre : B

prr

TYPES 2023



5:6 Ultrafinitist Logic

Please note that notation Av →α
β B has a size variable v declared as a depth of normal

form proof term having type A, and then bounds α and β apply to the computation of the
result.

Γ, xv : A ⊢α
β e : B x, v ̸∈ Γ

Γ ⊢αJ1/vK+1
βJ1/vK+1 λx.e : Av→α

βB
abs

Note that abstraction increases term depth by one, and application decreases it by
one10. All introduction rules (abs, pair, inl, inr) increase β by at least one11. Likewise all
non-functional (data) elimination rules (case, prl, prr) decrease depth expected from the
resulting normal form β by one.

Γ ⊢α1
β1

e : Av→α2
β2

B Γ ⊢α3
β3

a : A

Γ ⊢α1+α2Jβ3/vK+α3
β2Jβ3/vK e a : B

app

Please note that these rules all maintain bounded depth with no unbounded recursion.
We add an explicit bounded recursive definition (like the definition of the closure) with this
rule:

Γ ⊢α1
β1

f : Av→α2
β2

A Γ ⊢α3
β3

k : B Γ ⊢α4
β4

a : A

Γ ⊢α1+iter(λv.α2,β3,β4) +α3+α4
β1Jiter(λv.β2,β3,β4)/vK rec(f, k, a) : B

rec

Here the depth of the term must decrease at each step of the recursion. With the exception
of subsume, and rec these are all reinterpretations of rules for intuitionistic logic [11, 75, 72],
enriched with bounds on the proof length α and normalized depth of term t namely |t|d
as depth expression β. The rule rec allows for explicitly bounded recursion, as opposed to
traditional approaches that rely on an unbounded fixpoint12.

Note that we may quantify on higher order values, but we cannot recurse indefinitely: there
is always a limit to a number of function compositions allowed. Power of bounded function
composition gives an explicit limit to Peano Arithmetic induction[38]: any computational
application of Peano induction is unbounded. At the same time, we can use multiple
recursions over bounded number of functions, terms, not just natural numbers. Wired-in
explicit bounding also allows us to prove termination of arbitrary “towers” of function
compositions, like hyperoperations [7, 33, 71, 62]13, including Goodstein functions that
cannot be proven within PA itself[27].

2.3.1 Implicit universal quantification
In the propositional logic above, provability allows us to confirm statements with ∀ for all
variables on top. Given that statement of existence of bounded proof term x for witness
bounded by result size v can be interpreted in the following way in unbound logic ∃v ∈
N+.∃x.|x|d ≤ v .

10 This allows us to correctly treat Church encoding.
11 For unit, the inner proof term would have null depth, since there is no term there. Thus depth is 0 + 1

instead of β + 1.
12 Fixpoint may not exist, thus leading not only to arbitrarily long computation, but also to undecidability

in cases where computation may never end.
13 See table 1 to see how hyperoperations and Ackermann function can be encoded using iter for bounded

iteration of function composition.
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So av →α
β b becomes the following statement in unbounded logics ∀v.∀a.(|a|d < v) →

a → b ∧ |b|d < β ∧ c(b) < α. That is: we can infer that fact for all a below an arbitrarily
large depth, and bound the depth and computational complexity of the resulting witness.

This concludes our treatment of Ultrafinitist Propositional Logic (UFPL).

2.3.2 Quantification with dependent types
It is customary in constructive mathematics and theorem proving to use dependent types
instead of usual universal and existential quantifiers [52].

Please note that just like one can define intuitionistic propositional logic with just
implication and then encode both sum and product types[36], so Π type can express both
universal quantification and plain implication, while Σ type can express both existential
quantification and product type. Since implication can already express sum and product
types in polymorphic calculus, we will only show how to modify rules for implication and
lambda to make the Π type that corresponds to universal quantification.

While it is usual to introduce universal quantification directly in calculi without proof
terms, we will introduce them with Π types, like is now customary in dependently typed
languages.

First we need a rule to introduce a type variable:
Γ ⊢α

β t type
Γ, v < β, xv : t ⊢1

v x : t
tyvar

This rule allows us to use variables at type level, and together with Π and Σ types allow
to express quantification.

For the inequalities, it suffices to ensure that they are not cyclic and thus unsatisfiable.
Note that inequality stems from the fact that value is always no longer than its encoding as
a type.

Γ ⊢α1
β1

A type Γ, xv : A ⊢α2(v)
β2(v) B type x, v ̸∈ Γ

Γ ⊢α1+α2J1/vK
max(β1,β2J1/vK)+1 Π(xv : A) →α2

β2
B type

forall-form

Please note that similarly to the treatment of lambda abstraction as proof of implication,
we estimate the computational cost of dependent product by substituting free variables
with 1, but now we still need to consider the same substitution in the resulting Π type.

Treatment of universal quantifier bears usual similarity[52] to abs and app rules:
Γ, xv : A ⊢α

β e : B

Γ ⊢αJ1/vK+1
βJ1/vK+1 λ(x : A).e : Π(xv : A) →α

β B
forall-intro

Elimination works the same way as for usual application, since computation works after
type erasure.

Γ ⊢α1
β1

e : Av→α2
β2

B Γ ⊢α3
β3

a : A

Γ ⊢α1+α2Jβ3/vK+α3
β2Jβ3/vK e a : BJA/xK

forall-app

This allows us to replace implication and by extension, all UFPL types. It also allows for
quantification of higher order values.

We leave introducing Σ-types to interested students of type theory, since they are not
essential to our argument that we may have a decidable higher order logic.

Since introduction creates the proof term in the same way, the proof terms can be
enumerated in the same way as shown in section 4.4 on page 13.

TYPES 2023



5:8 Ultrafinitist Logic

Table 2 Simplication of bounds. May rewrite left to right.

(1) a ∗ xe + b ∗ xf ≤ (a + b) ∗ xf

(2) a ∗ xe ∗ yg ≤ a ∗ xf ∗ yh

(3) iter (λv.e, g, x) ≤ iter (λw.f, h, x)
(4) iter (λv.v ∗ a, e, x) = ae ∗ x

(5) iter (λv.v + a, e, x) = x + a ∗ e

(6) iter (λv.ve, g, x) = xeg

Assumptions:
x, y ≥ 1 are data size variables in the environment,
1 ≤ e ≤ f and 1 ≤ g ≤ h are arbitrary positive and increasing expressions,
a, b, c... ≥ 1 are constants.

3 Application of the logic

3.1 Using proofs
Each proof ultimately leads to a judgment Γ ⊢α

β e : A. We may resolve all upper bound
variables v1, v2, ..., vn in the α to get an upper bound on computational complexity of the
statement, and in β to get an upper bound on normalized term resulting from the proof.
This way all proofs are ultra-finitary statements: Only as long as α is less than our assumed
limit, we will consider the proof valid and proof computation to be available within the given
time.

3.2 Simplifying upper bounds
Our inference rules rely on computing upper bounds and their inequality. Here we note a
few inequalities that simplify reasoning about these bounds, albeit at the cost of making
them somewhat looser.

First, we note that all variables are positive naturals because they represent the data of
non-zero size: x ≥ 1.

That means that the following laws are true, assuming that x, y, ... ≥ 1 are data size
variables in the environment, 1 ≤ e ≤ f and 1 ≤ g ≤ h are arbitrary positive expressions,
and a, b, c... ≥ 1 are constants. For easier use, the rules are presented in left-to-right order,
just like conventional rewrite rules.

We may thus use these rules to loosen the bound in such a way as to reduce the size of
the bound expression and make it a sum of a single term in all variables and an additional
constant term. This reduction may be delayed until we have bound to verify.

We may use inference rules leaving “type holes”[57] instead of bounds, which could be
named “bound holes”, and let them be filled by the framework interpreter.

3.3 Reduction
Reduction relation is defined as small step semantics [60] in order to preserve number of
computational steps made over the course of evaluation. See table 3 on page 9.

When performing application, we expect substitution to take work proportional to the
number of occurrences of the variable, like changing links on directed acyclic graph of
the term.
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Table 3 Reduction rules.

e
w�

k
e′

case e of
{

inl (x) → b;
inr (y) → c;

w�
k

case e′ of
{

inl (x) → b;
inr (y) → c;

eval-case-arg

k = occurs (x, b)

case inl (a) of
{

inl (x) → b;
inr (y) → c;

w�
k
bJa/xK

eval-case-left

k = occurs (y, c)

case inr (a) of
{

inl (x) → b;
inr (y) → c;

w�
k
cJa/yK

eval-case-right

k = occurs (x, e)
(λx.e)f

w�
k
eJf/xK

eval-app

e
w�

n
e′ i ∈ {l, r}

ini(e)
w�

n
ini(e′)

eval-sum

prjl (a, b)
w�

1a
eval-prl

prjr (a, b)
w�

1b
eval-prr

al

w�
n
a′

l

(al, ar)
w�

n
(a′

l, ar)
eval-pairleft

ar

w�
n
a′

r

(al, ar)
w�

n
(al, a′

r)
eval-pairright

For discussion of efficient reduction of lambda terms please read [45, 5], since here we
focus on demonstration with a simplified cost model.

3.4 Self-encoding
3.4.1 Natural numbers
In this section we will encode bounds, propositions (types) and proof terms as proof terms
within UFPL. Thus J..K corresponds to LISP quote.

Below we use notation B (v) for de Brujin index of the variable [15].

TYPES 2023



5:10 Ultrafinitist Logic

Table 4 Encoding natural numbers.

Natβ =
(

rec(x, J◦ ∨xK, β)J◦K
)

zero = inl (·) :11 Nat1
succ = λxv →1

v+1 inr (x) :1v+1 Natv → Natv+1

Table 5 Encoding bounds.

Varβ = Natβ

Boundβ+1 = Var ∨ Natβ ∨ ◦ ∨ (Boundβ , Boundβ)
∨ (Boundβ , Boundβ)
∨ (Boundβ , Boundβ)
∨ (Boundβ , (Boundβ , Var))
∨ (Boundβ , (Var, Boundβ))

JvK = inl (inl (inl (B (v))))
JiK = inl (inl (inr (i)))
J·K = inl (inl (inr (·)))
Jρ1 + ρ2K = inl (inr (inr ((Jρ1K, Jρ2K))))
Jρ1 ∗ ρ2K = inr (inl (inl ((Jρ1K, Jρ2K))))
Jρρ2

1 K = inr (inl (inr ((Jρ1K, Jρ2K))))
Jiter (λv.ρ1, ρ2, ρ3)K = inr (inr (inl ((B (v), Jρ1K, (Jρ2K, Jρ3K)))))
Jρ1 Jρ/vKK = inr (inr (inr ((Jρ1K, (Jρ2K,B (v))))))

3.4.2 Encoding bounds
Now we may encode bounds (table 5), types (table 6), and proof terms (table 7).

This encoding allows us to make operations on types akin to generic programming in
Haskell [50].

Our inference rules rely on computing bounds and their inequalities. Given that all
variables are positive naturals because they represent the data of non-zero size: x ≥ 1, we
may simplify these bounds with a set of simple inequalities.

3.4.3 Encoding proof terms
Note that every type term in normal form is longer than its own type.

▶ Theorem 1 (Encoding). All bound, type, proof, or proposition of UFPL can be encoded as
a proof term of UFPL.

Details are visible in the tables 4-7.

Table 6 Encoding types.

JA ∨ BK = inl (inl ((JAK, JBK)))
JA ∧ BK = inl (inr ((JAK, JBK)))
JAv →α

β BK = inr (inl ((λx : A.JBK, (λv : Natv .JαK, λv : Natv .JβK))))
J◦K = inr (inr (·))
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Table 7 Encoding terms.

JxvK = inl (inl (inl (inl ((B (x), v)))))
Jsubsume(A, B)K = inl (inl (inl (inr ((JBKBound, JAK)))))
JunitK = inl (inl (inr (inl (·))))
Jinl (A)K = inl (inl (inr (inr (A))))
Jinr (A)K = inl (inr (inl (inl (A))))
JprjlAK = inl (inr (inl (inr (A))))
JprjrAK = inl (inr (inr (inl (A))))
J(A, B)K = inl (inr (inr (inr ((JAK, JBK)))))
JABK = inr (inl (inl (inl ((JAK, JBK)))))
Jλxv.AK = inr (inl (inl (inr (((B (x),B (v)) , JAK)))))
Jrec(v, A, B)CK = inr (inl (inr (inl (((B (v), JAK) , (JBK, JCK))))))

4 Properties of the logic

When implementing the computation seems straightforward, we will just establish the finite
limit for the computation that should be taken as a proof. That is what we describe as
problem is decidable by the limit of a given complexity. This approach explicitly describes
undecidable problems as those that require an infinite number of steps to solve.

4.1 Consistency
Here we will only use well-known proof of consistency of intuitionistic logic [11, 75, 72]14.
We do not use the self-encoding presented in section 3.4.

▶ Theorem 2 (Consistency of UFL). UFPL is consistent, if intuitionistic propositional logic
is consistent.

Proof. After elision of bounds15, we interpret the rule subsume as id = λx.x. Then we see
the standard proof rules for intuitionistic logic. The consistency follows from the consistency
of intuitionistic logic. ◀

4.2 Expressivity
▶ Theorem 3 (At least as expressive as PRA.). UFL can express all Primitive Recursive
programs.

Proof. It is easy to show that our logic can emulate bounded loop programs[53] which has
power equivalent to primitive recursive functions[64]. Every bounded loop can be encoded by
iter (λv.loop, x, n), then every flat logical statement can be encoded with a tuple containing
states of the variables. ◀

One could muse that this class does not cover all Bounded Turing Machine[34] programs.
In order to support these, we would need to define more general bounding functions.

14 The proof above is totally independent of previous conjectures.
15 Elision of bounds is only used once to prove consistency.
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One can replace upper bound expressions with arbitrary bounding functions expressed in
simply typed lambda calculus (see section 3.4). These are the operations used in inference
rules. However, such functions are more difficult to bound and compute themselves.

It has been proven that any function whose complexity is bounded by primitive recursive
function is also primitive recursive[16], which means that estimating our complexities could
become an impossibly long endeavour, but logically consistent one.

To give an example of simplified Ackermann function which is the best known example of
function beyond PRA [70, 3], evaluation takes A(5) = 222216

− 3[40]. That means that these
evaluations quickly get out of hand and indeed outside of any reasonable limits.

The encoding of Ackermann function is through hyperoperation in table 1.

4.3 Bounded Turing completeness
An evidence of stronger expressivity may be found by encoding bounded Turing Machine
programs in UFPL. This proof uses encoding similar to 3.4, but for a Turing Machine. For a
reference on encoding of Turing machines in lambda calculus see [2].

For any complexity bound f(x) expressible in the language of ultrafinitist logic, and an
algorithm that satisfies it and emulation function with complexity of e(f)(x) – that is an
encoding e(f) of f , applied to the argument x of f – which we can encode this emulation as
a bound.

▶ Theorem 4 (Emulation complexity). Assume a time complexity c(x) for program (or proof)
s that can be encoded as UFL bounds. If we can emulate (encode evaluation) of f(x) with an
overhead e for each step, then we can prove that complexity of evaluating s is e ∗ c(x) + cc(x).

Where cc(x) is complexity of evaluating complexity bounds for the encoding c(x).

Proof. Given each step of emulation encoded as s(x), where x is a current state, emulation
with a complexity function encoded as f(x) can be executed by iter (λv.s, f(x), x).

Assuming that e(f) is function emulation in UFPL, we can write proof expression
iter (λx.e(f)(x), e(c)(x), x). This expression evaluated encoded s and has exactly the assumed
complexity ◀

The most complex part of the proof may be logically inferring the right complexity c(x)
and totality of the function f within this number of steps.

▶ Theorem 5 (Bounded Turing Machine emulation). For programs of Bounded Turing Machine
f over alphabet size |a| and number of states |s| with complexity that can be encoded in UFL,
we can prove time complexity of lg2(|a|) + lg2(|s|) ∗ |c| + |cc| with UFPL. Note that |cc| is
cost to evaluate complexity function itself.

Proof. We use emulation argument for Bounded Turing machines that may be limited by
bounds described above, it is too with O

(
log2(a) ∗ f(x)

)
, where a is the bound on the size

of alphabet and number of states of the machine.
For the Bounded Turing machine we encode tape as pair of lists, with current position at

the top of both lists.
Then we encode the following steps:
examine the alphabet character: O (log(|a|))
examine finite state machine for a character: O (log(|s|))
move one step up or down the tape by moving the top from one line list to the other:
O (1);
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if we want to write at the current position, we take the top element from the right list,
and put the new one.

Together they make a single step of the Turing machine at the cost of O (log(|a|) + log(|s|)).
◀

We encode variable bindings as a dictionary with cost of O (lg2 | Var |), where Var is
number of variables used. All operations not involving substitution should remain at O (1)
complexity within emulation.

▶ Lemma 6 (Self-emulation). ULF self-emulation of function with integral bound |cc| is
feasible within O (|cc| ∗ lg2 | Var |).

Overall we can infer that for each algorithm of bounded complexity B that we may
encode in ULF, we may use ULF self-emulation to find a proof with complexity of at most
e∗B ∗ lg2 | Var |. All steps of ULF are O (1) with respect to inferred bounds on computational
complexity, with the exception of function application and variable substitution which are
O (lg2 | Var |))

▶ Theorem 7 (Emulation completeness). If the bounds that can be encoded within the bounds
function, the UFPL is complete for proving its own bounds up to the cost of self-emulation e.

Since we can encode any statement in UFPL in UFPL itself, this likely would mean the
proof of emulation completeness can be written in the UFPL itself.

There are complex ways of proving completeness that apply in the realm of non-idempotent
intersection type systems, but they use a more abstract notion of complexity[1].

4.4 Decidability of bounded statements
▶ Theorem 8 (Decidability). Every valid proposition with a fixed bound on input n can be
checked by enumerating inputs, and is thus decidable.

This comes at the cost of complexity that increases by α(n) ∗ an, where n is the depth
of input, since we need to enumerate all inputs of depth n. Proof follows directly from
enumeration, and bounds.

Proof. Let’s try to enumerate the terms that can be constructed for a given bounds, without
using subsume rule:

Bounds function will contain a given number n of successor functions, and iter expressions.
Each time we make a single inference rule, and construct a slightly more complex term, we
add a successor function or iter expression, the number of different proof tree shapes equals
to the number of ternary trees constructible with n nodes. This number is defined as OEIS
A001764 [39] and given by the algebraic term (3n

n )
2n+1 . Given that for each of n nodes we can

choose one of the 12 rules (12n different choices), we have at most O

 12n

(
3n

n

)
2n+1

 different

proofs with the complexity given by a term of n nodes.
With the inclusion of subsumption rule, we can only decrease the n, so at most:∑
i=1..n

O
(

12n

2n + 1

(
3n

n

))
= O

(
12n

(
3n

n

))
Since number of proofs is finite, we can decide the provability after they are exhausted. ◀
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Thus all judgements with bounds are decidable. This property is shared with some other
resource bounded logics [1].

Given that exponential lower bound has been established for implicational intuitionistic
logic [37], we expect that lower bound for ultrafinitist logic will also be exponential and thus
the proposed bound is asymptotically tight.

4.5 Paradox of undecidability
Expressing any statements about undecidability implicitly requires unbounded computational
effort. Since all our proofs and arguments are explicitly bounded, there is no room to
state undecidability. Thus we conclude that this paradox is removed from ultrafinitist logic:
statement of undecidability is invalid as a proposition. All valid propositions are decidable.

This is not as outrageous as it superficially seems, since we already know that compu-
tation models that would allow transfinite number of steps would also make all functions
computable [30].

4.6 Finitary completeness
Let’s assume we have upper bounds on all variables within an intuitionistic theorem.

Can we prove it with UFL?

▶ Theorem 9 (Preservation of bounded intuitionistic theorems). Any intuitionistic theorem
bounded by definite integers in UFL can be proven in UFL.

Proof. Let’s enumerate complexities of computing intuitionistic proof for a given set of
inputs bounded by given value. We may enumerate these proofs, and thus take maximum
length of the computation. This maximum length will be upper bound on all proofs. ◀

This proof uses 4.4, and 3.4. Naturally this means that all statements with bounds but
proof without bounds will also have proof with bounds.

5 Related work

The philosophical problem with transfinite arguments has been spotted long before [42,
61, 79, 22, 47]. Automatic theorem provers like Coq require a monotonically decreasing
bounding function in the ordinal domain for each inductive definition [56, 58, 8]. This makes
all recursive definitions well-founded[56], but since transfinite ordinals are permitted, it also
allows theories outside computable universe.

The computation of a bounding function may turn out to take unfeasible amount of time.
Cost calculi for functional languages attempt to assign cost to certain operations in order to
reason about time and space complexity [65]. But these approaches do not require all proofs
and propositions to carry the cost as we do.

Philosophers have postulated distinction between feasible computations and unfeasible
ones [79], however it was considered unclear whether it is possible to realize this distinction
on the basis of a logic [74], with some claiming that such a logic could not be consistent
[17, 51].

There exist logics that implicitly constrain computational complexity of the proofs, for
example Bounded Arithmetic [12, 43, 14] that is restricted to computations in polynomial
time. However, most of them are significantly weaker than class of primitive recursive
functions, which is widely considered to contain most useful programs. This would put
the logician in a position of trying to state a widely known facts about objects that are
inexpressible within the logic.
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6 Discussion

6.1 Explicit bounds versus implicit structural recursion

It is long known that unbounded logics may give rise to paradoxes [23, 13], and the use
of implicit techniques [14], including bounded recursion [43], structural recursion [59], well-
founded sets [56], or predicative bounding [21] were developed.

Using explicit bounds provides a more obvious solution, which is easier to prove correct,
and parallels development of an explicit mathematical limit [69, 29], starting from Eudoxus’
method of exhaustion [18], through implicit notion of terminus [76] to a modern concept of a
mathematical limit of a function [78]16.

6.2 Open problem of directly proving bounded Turing completeness

Note that the proof above mentions Turing completeness, if we can prove that all bounds
can be expressed by the bounds functions defined above. While the usual examples of fast
growing functions like Ackermann [70, 3, 40], or Goodstein [27, 38] are expressible by bounded
composition of functions, the clarity is still elusive. (Of course such fast growing functions
would quickly surpass any reasonable limit.)

We still search for a proof of bounded Turing completeness that would not use a recursive
argument, where we replace bound functions with arbitrary bounded lambda expressions.
That is because our induction principle would have to be more complex to include the latter.

Interested student may prove Turing completeness by encoding to Kleene normal form
with iteration on top [31]. In this logic, Kleene normal form may be made explicit.

6.3 Computability as foundation of mathematics

Finite descriptions of the proofs and their objects are most rational foundations of mathem-
atics. These objects are all definable by bounded Turing computability.

Attempts to define hypercomputation beyond bounded Turing machine immediately lead
to physical impossibilities [54]. At the same time computability or bounded Turing machine
and total computable functions have been translated between multiple mathematical models.
Hence we conjecture that the only mathematical proof principle that is immune to rational
doubt is the bounded Turing machine, and ultrafinitist logic.

A logic that allows expression of any bounded Turing function and nothing else could be
rightly called a logic of computable functions, and a best candidate for encoding foundations
of mathematics. Alternative attempts to narrow set theory by predicativism [21, 68] are
subject to critique[77] that motivates further search.

That is because we can encode axioms that are incomputable as function parameters
with assumed types, and use these to prove or disprove theorems of traditional axiomatic
theories without endangering consistency of the underlying logical framework.

16 Interestingly delta-epsilon definition is formalizable for computable functions, by assuming that as n
approaches the limit the smaller computable environment is taken. Of course both delta and epsilon
would have to be a finite expansions (approximations) instead of possibly transcendental value. This
would give a definition of “computable limit”.
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6.4 Automated theorem proving

Interesting avenue for future work would be to define a full type theory, dependently typed
language and an automatic prover for these inference rules. Improving on the bound of
O

((3n
n

))
for deciding subtheorems would be possible, since we only need to consider normal

forms. It would be exciting to prove metatheoretic results about the UFL in itself, and verify
it with an automatic theorem prover.

Since meta-reasoning always results in longer proofs than original theorems, the UFL
may also allow us to prove consistency of ultrafinitist arithmetic, enabling to second Hilbert
problem [32], and potentially allowing self-verifiable formalization of mathematics.

Theories for uncomputable are only indirectly formalisable within such framework as
functions taking uncomputable actions (like infinite recursor of Peano arithmetic) as argu-
ments. Previously created theories are prone to high complexity and errors due to difficulty
at maintaining expressivity and consistency together. Simplicity of proving the hierarchy
of universes as hierarchy of complexities, and expanding ultrafinitist logic with strongly
normalizable dependent types gives us hope that such automated theorem proving framework
would be simpler.

Since the logic includes upper bounds for all functions, we may use these and proof
irrelevance to automatically and safely optimize proofs as well. For example, we could
automatically replace computation of naturals defined by successor function with computation
defined on positional binary numbers.

6.5 Proving decidability in strictly finite domain

The explicit bounding of all objects, including proofs in this work is used to prevent undecid-
ability within finite domain [63].

7 Conclusion

We have shown a possible consistent logic for inference with a strictly bounded number of
steps. This allows us to limit our statements by the length of acceptable proof, and thus
define statements that are both true, and computable within Bremermann-Gorelik limit [28]
This inference system explicitly bounds both the length of the resulting proof, and the bounds
on the depth of the normalized result term. This allows avoiding inconsistencies suggested
by philosophical work, and at the same time steers away from relatively weak logics with
implicit complexity like Bounded Arithmetic [43], which capture polynomial time hierarchy.
It also shows how much we gain by making explicit bounds, since these may be tighter than
with implicit complexity approaches. While Emulation Complexity is the powerful approach
to proving expressivity of this logic, it would be nice to see a proof with tighter bounds on
what we may prove with it17.

We strive to prove that all bounded computable functions are expressible within this
framework, and thus we propose this logic as a “logic of practical computability”.

17 A promising avenue of work would be proving that amortized complexity by replacing single bound
variable by a vector of monotonic bound variables. Another approach would be attempt to obtain
tighter bounds directly by separately counting beta-reduction steps and substitutions, instead of all
reduction steps and substitutions together [1].
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