
A Reflection Principle for Potential Infinite Models
of Type Theory
Matthias Eberl #

LMU Munich, Germany

Abstract
Denotational models of type theory, such as set-theoretic, domain-theoretic, or category-theoretic
models use (actual) infinite sets of objects in one way or another. The potential infinite, seen as an
extensible finite, requires a dynamic understanding of the infinite sets of objects. It follows that
the type nat cannot be interpreted as a set of all natural numbers, [[nat]] = N, but as an increasing
family of finite sets Ni = {0, . . . , i − 1}. Any reference to [[nat]], either by the formal syntax or by
meta-level concepts, must be a reference to a (sufficiently large) set Ni.

We present the basic concepts for interpreting a fragment of the simply typed λ-calculus within
such a dynamic model. A type ϱ is thereby interpreted as a process, which is formally a factor
system together with a limit of it. A factor system is very similar to a direct or an inverse system,
and its limit is also defined by a universal property. It is crucial to recognize that a limit is not
necessarily an unreachable end beyond the process. Rather, it can be regarded as an intermediate
state within the factor system, which can still be extended.

The logical type bool plays an important role, which we interpret classically as the set
{true, false}. We provide an interpretation of simply typed λ-terms in these factor systems
and limits. The main result is a reflection principle, which states that an element in the limit has a
“full representative” at a sufficiently large stage within the factor system. For propositions, that is,
terms of type bool, this implies that statements about the limit are true if and only if they are true
at that sufficiently large stage.

2012 ACM Subject Classification Theory of computation → Lambda calculus; Theory of computation
→ Higher order logic; Theory of computation → Type theory; Theory of computation → Denotational
semantics

Keywords and phrases Indefinite extensibility, Potential infinite, Reflection principle

Digital Object Identifier 10.4230/LIPIcs.TYPES.2023.6

1 Introduction

In set theory, infinite sets are given by the dictum of the axiom of infinity. There is no idea
of “construction” or “approximation” involved – it is a static concept where only existence
is required, without any way to get to these sets. In contrast, consider the constructions
of infinite sets as limits of direct and inverse systems. These sets are approximated and
so can be understood from the perspective of a potential infinite. Moreover, they possess
the structure of their approximating parts. Finally, and most importantly from a finitistic
perspective, there is no necessity to “jump over” to an absolute, actual infinite limit set if all
states of the system are finite. Instead, if one takes care of all the stages of one’s investigation,
then a sufficiently large state within the system is sufficient and is a full substitute for an
infinite limit set.

From a consequent potentialist’s point of view, it is actually a misuse of language to call
a set infinite. Since the potentialist’s view is a form of finitism, and since sets are given by
their extension, every set is finite in this regard. Therefore, what can be considered infinite
is the type, say nat, whereas the set N would be more accurately described as indefinitely
extensible. Thus, the usual terminology, saying that a set is infinite, means that its type is

© Matthias Eberl;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Types for Proofs and Programs (TYPES 2023).
Editors: Delia Kesner, Eduardo Hermo Reyes, and Benno van den Berg; Article No. 6; pp. 6:1–6:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthias.eberl@mail.de
https://orcid.org/0000-0002-2410-3747
https://doi.org/10.4230/LIPIcs.TYPES.2023.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 Potential Infinite Models of Type Theory

infinite and that the extension of the type, i.e., the set of elements of that type, is given by
some indefinitely large state (or sufficiently large state) in an indefinitely extensible system
of finite sets.

A system, introduced in Section 2.1, formalizes a changing totality of objects, an “open”
and potentially unending process in which both the collection and its elements expand
simultaneously. This process allows a (relative) completion or compactification by constructing
a limit, which temporarily ends or “closes” the process.

The concept of partiality becomes relevant in extensible systems. It is a consequence of
the fact that objects can be generated, or if you prefer a less constructive language, detected,
so that they do not exist from the beginning. Partiality first appears in direct systems, where
objects do not exist at the initial stages. In this situation, partiality is not difficult to deal
with, but it becomes demanding in the function space construction, especially in the presence
of higher types.

A few words about the notation. The term “iff” is an abbreviation for “if and only if”.
N refers to the set of natural numbers {0, 1, 2, . . . }, N+ := N \ {0} and Ni := {0, . . . , i− 1}.
We write [A→ B] for the function space of all functions with domain A and codomain B,
and P(M) for the power set of M.

1.1 Extensibility, Coinduction and Domain Theory
A fundamental concept in the context of the potential infinite is extensibility. The main
modes of extensibility are the creation of new objects and the creation of new knowledge
about existing objects. However, we understand the latter as a differentiation of an object
or an identification of several objects. In the case of differentiation, there may be multiple
versions of an object at a later stage. When considering limit constructions, this is different
from the understanding of the accumulation of information. To illustrate this point, let us
consider inductive and coinductive definitions. These are related to adding and differentiating
objects respectively, but they are not the only way.
1. The dynamic reading of an inductive definition leads to an infinite process of creating

objects, related to direct systems.
2. The dynamic reading of a coinductive definition leads to an infinite process of differenti-

ating objects, related to inverse systems.

To give an example, let Seq denote finite 0-1-sequences and Seq∞ stand for infinite 0-1-
sequences. Then the algebra with constructors nil : {∗} → Seq and append : Seq×N2 → Seq

inductively defines the structure of Seq, whereby N2 = {0, 1}. The coinductive definition of
Seq∞ has one destructor-pair (head, tail) : Seq∞ → N2 × Seq∞ and defines a coalgebra. To
give these structural definitions a dynamic reading requires an index set, which will be N+

and N.
In case of inductive definitions one starts with the element ∗. The states of Seq are thus

Seq0 = {∗}, Seq1 = {()}, Seq2 = {(), 0, 1}, Seq3 = {(), 0, 1, 00, 01, 10, 11} and so on. The
inductive definition of Seq gives rise to a direct system (Seqi)i∈N+ with subset inclusion as
embedding. A direct system is more general than this construction by an inductive definition,
as it allows for the possibility of non-injective embeddings. This corresponds to the addition
and identification of objects in a single process and is relevant for a construction of quotients.

For a dynamic understanding of coinductive definitions, start with a “generic” element,
say s, so Seq∞

0 = {s}. The destructor-pair (head, tail) gives Seq∞
1 = {0s, 1s}, Seq∞

2 =
{00s, 01s, 10s, 11s}, and so on. The coinductive definition of Seq∞ allows one to increase
the knowledge about the sequence, which we understand as a process of differentiation. The



M. Eberl 6:3

projections proji′

i : Seq∞
i′ → Seq∞

i then remove this information gained by differentiation,
e.g., proj2

1(01s) = 0s. We read 01s ∈ Seq∞
2 and 0s ∈ Seq∞

1 as states of the same (infinite)
object, differing only in the amount of information that we have about that object. The
inverse system (Seq∞, proj) corresponds to subsets A ⊆ N if we take A = {i ∈ N | si = 1}
for (si)i∈N ∈ Seq∞.

This idea of differentiating objects is also related to Brouwer’s concept of (lawlike and
lawless) choice sequences within a spread – the standard text on this subject is [13]. However,
our approach does not involve the constructive reasoning that is inherent in the definition of
a spread.

Differentiating infinite objects differs from domain theory [1], where the ideal, infinite
elements are ideals (being infinite sets) of their approximating parts, which are the compact
elements. In domain theory, each approximation is seen as a different object, not as states
of one object, and the ideal completion uses the idea that sets are actual infinite. In other
words, the idea of differentiating infinite objects, as formulated in coinductive definitions and
inverse systems, is not present in domain theory. Domain theory uses inductive definitions
and least fixed point constructions.

Another way to get these ideal elements in domains is to think of an infinite domain
as a bilimit of finite domains. A bilimit is a limit construction where direct and inverse
limits coincide. One could interpret this coincidence as a reduction of inverse systems to
direct systems. In the approach here, the limit construction is, roughly speaking, between
the direct and the inverse limit, since the predecessor relation p7→ (which will be introduced
soon) is, again roughly speaking, between the embedding emb and the projection proj.
In Section 2.1 we will introduce such an embedding-projection pair, associated with the
predecessor relation p7→. Direct and inverse systems can then be seen as extreme situations of
adding and differentiating objects, while the system based on the predecessor relation p7→ is
in general a combination of both.

1.2 Formalizing the Potential Infinite
A potential infinite set M is a dynamic, finite set. To formalize this consequently, any
reference to M can only be made by reference to some finite state Mi. A completed totality
of all elements or all states of this set does not exist. For example, there exist states Ni of
the set of natural numbers, but there is neither a complete set N nor the complete family of
all sets Ni. The latter has to do with the fact that, for a consequent reading, this finitistic
view applies to meta-level concepts as well, in particular to the index set from which the
indices i are taken; see Section 1.4 for more on this.

In a first step we introduce indices i, given by a directed index set I, i.e., a set I of stages
together with a binary, reflexive and transitive relation ≤ so that any finite set of indices has
an upper bound. A potential infinite set is thus a family MI of states Mi, i ∈ I, where all
sets are finite.

We want to express that two elements ai ∈Mi and ai′ ∈Mi′ at different stages i and i′

are equal. This equality is not given by an equivalence relation, but by a family of reflexive
relations p7→i′,i⊆Mi′ ×Mi for i′ ≥ i. We write ai′

p7→ ai for (ai′ , ai) ∈
p7→i′,i, saying that ai

is a predecessor of ai′ , and we use p7→ as an abbreviation for p7→i′,i. Reflexivity means that
ai

p7→ ai for all i ∈ I and ai ∈Mi. We do not require p7→ to be transitive.1 A system (MI ,
p7→)

1 The reason is this: The index set of the function space is I × J with pairs written as i → j (c.f. Section
2.2). Call an extension of the index from i → j to i → j′, j′ ≥ j, covariant and from i → j to i′ → j,
i′ ≥ i, contravariant. Then a combination of two different kind of extensions may fail to be a correct
extension. For an example, see [5].

TYPES 2023



6:4 Potential Infinite Models of Type Theory

consists of a family MI together with reflexive relations p7→. Later we will introduce further
properties in order to allow a function space construction, leading to the notion of a factor
system [5].

Let types ϱ ∈ Typ be given. In this paper they consist of some base types ι, including
type bool for propositions, which are interpreted classically as the Boolean values true and
false, and a type constructor →. So types are ϱ ::= ι | ϱ→ ϱ. A (typing) context Γ is a list
of types (ϱ0, . . . , ϱn−1). More explicitly we can write (x0 : ϱ0, . . . , xn−1 : ϱn−1) for the context
Γ, since we use a fixed list of variables x0, x1, x2, . . . in Section 3. The empty context is ()
and Γ.ϱ denotes the context Γ, extended by ϱ. We assume that for each type ϱ there is an
index set (Iϱ,≤), so each type comes with its own set of stages. For instance, the index set
for type nat is (N+,≤) with Mi = Ni for i ∈ N+.2 Another example is type bool with the
singleton set ({bool}, =) of one index bool and Mbool := B := {true, false}. For a typing
context Γ = (ϱ0, . . . , ϱn−1) define IΓ := Iϱ0 × · · · × Iϱn−1 and endow IΓ with the product
order.

Since we want to consider sets, relations and functions as objects, i.e., as elements of
further potential infinite sets, we have to consider elements as dynamic entities as well. A
dynamic object a of type ϱ is given by its states ai, i ∈ Iϱ. As with sets, any reference to a

can only be a reference to one of its states ai.
A dynamic object needs not be defined on all stages i ∈ Iϱ, so the index set Ia, for which

a state ai of a exists, is a subset of Iϱ, i.e., Ia ⊆ Iϱ. One of the basic requirements is that
every object has “sufficiently many” indices Ia. For natural numbers, or more generally
for base type objects, the situation is simple: If a number n occurs at stage n + 1, i.e.,
n ∈ Nn+1, it will be there for all future stages m > n + 1, i.e., n ∈ Nm, so the index set
In = {n + 1, n + 2, . . . } is an up-set. By up-set we mean a non-empty, upward closed
subset, in this case a subset of N+. For higher-order functions, however, the situation is less
straightforward and is one of the main challenges of this approach.

The concept of a potential infinite has two aspects, a cardinal aspect D and an ordinal
aspect ≪. Let C = (i0, . . . , in−1) ∈ IΓ be a list of indices i0 ∈ Iϱ0 , . . . , in−1 ∈ Iϱn−1 , for
Γ = (ϱ0, . . . , ϱn−1), called state context. Write C.i for the extension of C by i.
1. The cardinal aspect is given by a set DΓ ⊆ P(IΓ) for each context Γ. H ∈ DΓ says that

there are indefinitely many, or sufficiently many contexts in H.
2. The ordinal aspect is given by relations ≪Γ.ϱ ∈ DΓ.ϱ. Let C ≪ i stand for C.i ∈≪Γ.ϱ,

meaning that a stage i is indefinitely large, or sufficiently large relative to the state context
C.

The sets DΓ satisfy the following properties: Each set H ∈ DΓ is cofinal – recall that
cofinality of H means ∀C ∈ IΓ ∃C ′ ≥ C with C ′ ∈ H. This minimal requirement simply
states that we will always find a context in H beyond any bound. DΓ is closed under
supersets, so “more than indefinitely many is indefinitely many”. Furthermore, an up-set on
IΓ always has indefinitely many indices. Finally, the main restriction is that DΓ is closed
under intersections. This is necessary in order to guarantee that a relation between two
objects can be established on indefinitely many indices. This amounts to saying:

DΓ is a proper filter on {H ⊆ DΓ | H is cofinal} and DΓ contains all up-sets. (Filter)

2 The use of N+ instead of N as index set is done for technical reasons: A factor system has projections
between different states Ni, and there is no projection from Ni, i > 0 into N0 = ∅.



M. Eberl 6:5

We will use the locution D-many indices, which refers to a set in DΓ, and cofinal many
indices, which refers to a cofinal index set. The interpretation in a potential infinite structure,
which we introduce in Section 3, will be relative to D (and later also relative to ≪, when we
introduce the universal quantifier in a subsequent paper).

A basic theme of the potential infinite is dependency. In particular, there are no fixed
sets D and ≪, but these are parameters that depend on factors of the concrete mathematical
investigation and the state of it. Another way of expressing this is to say that D and ≪ are
intensional notions whose extension depends on the context of investigation. In the same way
that D and ≪ depend on the investigation, some concepts, in turn, depend on D and ≪; the
notion of continuity depends on D and the interpretation of the universal quantifier depends
on ≪. It is possible to define continuity on limit sets without reference to the underlying
system. The basic relation is then a family of PERs and we will explore this structure in
more detail in a separate paper. Moreover, in this paper we deal only with the cardinal
aspect, i.e., ≪ is not considered here.

1.3 Relation to Constructive Approaches
We are only investigating the idea of a potential infinite, not that of constructivity, decidability,
complexity or knowledge about existence, which are important concepts in intuitionism [14]
and in theories about computability [8]. The common models of intuitionistic logic, such
as Kripke models, or more generally topos-theoretic models [9], use unbounded universal
quantification. For instance, in a Kripke model, the validity of a universal quantified formula
uses a reference to all “future” nodes – there could be infinitely many of them and at each
such node the carrier set could be an infinite set as well. In our approach, only finite sets are
used, and in a consequent finitistic view only finitely many of them.

We use classical logic. This is because it has a simpler model than constructive models
and is more widely used. Furthermore, the results presented here rely on the fact that
classical logic has a finite number of truth values. This is an important difference from
intuitionistic logic, which has, if truth values are used at all, infinitely many of them.

The novel aspect of this potential infinite model is the introduction of state judgements,
which are refinements of typing judgements. If Γ ⊢ r : ϱ is such a typing judgement, then a
state judgement has the form C | r : i, where C is a stage of the context Γ and i is a stage of
the type ϱ. The idea that we can only refer to infinite objects via a specific state is reflected
in the fact that the primary object of interpretations is a state judgement C | r : i. It is
interpreted in a family of factor systems, which have only “local” application functions given
as

Appi,j : [Mi → Nj ]×Mi → Nj , (fi→j , ai) 7→ fi→j(ai).

Additionally, the typing judgement Γ ⊢ r : ϱ has an interpretation in the limit set. However,
the notion of a limit of a factor system depends on the notion of “indefinitely many stages”,
which we formalize as sets Dϱ. This is in particular relevant for the function space and the
possibility to define a “global” application function App : [M→N ]×M→ N , (f, a) 7→ f(a)
on limit sets, leading to a common extensional type structure [2]. The question which higher-
order functions exist and whether all local applications together yield a global application
depends on the properties of Dϱ. A global application function is available for all first-order
functions, however, this may not be the case for higher-order functions. In contrast, in a type
structure, also referred to as (typed) applicative structure, a global application is available for
all types. This holds analogously for Kripke applicative structures [10].

TYPES 2023



6:6 Potential Infinite Models of Type Theory

1.4 The Meta-Theory
The meta-theory in which the concepts are developed is classical higher-order logic, as
formalized in Church’s simple type theory [3]. This theory will also serve as the investigated
theory. At the object-level, we develop a potential infinite model in order to interpret typed
λ-terms. At the meta-level these two views of infinity are relevant:
1. One accepts actual infinity at the meta-level. In this case, a limit can be seen as the

usual actual infinite set beyond the system. This view allows a comparison of an actual
infinite model, given as limit structure, with the potential infinite part, i.e., the system.

2. One uses the view that infinity is an extensible finite. Then a limit is an intermediate
state of the system. This is the consistent realization of the finitistic approach.

The reflection principle, which is the main theorem of this paper, states in the first case
that all objects in the limit, including propositions, have a counterpart in the factor system.
So it says something like this: Whatever exists and holds under the assumption that actual
infinite sets exist, already exists and holds at a sufficiently large stage in the system. For
infinite objects, these can be seen as approximations. For type bool, which is interpreted
in classical logic as a finite set of truth values {true, false}, the values are the same in the
actual infinite limit set and at a finite stage of the system. This is because these values are
not approximated.

In the second case, the reflection principle is only a means to show the correctness of the
interpretation. However, a consistent realization requires that an infinite set on meta-level,
like the index set I, is only available at a stage j. A consequent realization in type theory
moreover uses a type in place of the index set, together with a term ≤, which is then shown
to be reflexive, transitive, and directed.

The use of a classical meta-theory instead of a constructive one is not essential here.
We could also take an intuitionistic type theory at meta-level and develop most of the
model theory in a pure constructive way. So we expect that the model construction can be
formalized in common proof assistants such as Coq, Lean or Agda. We need, however, a
bit of classical reasoning, at least when introducing the universal quantifier. To prove the
reflection principle with universal quantifier as an extension of Theorem 24, one has to do a
kind of Löwenheim-Skolem construction. This requires that a universal quantified formula is
either true (at all stages), or it is false at some stage and is false at all later stages, too. It is
of greater significance that, for a consequent realization, in which only potential infinities are
used at meta-level, the proof assistant must implement state judgments.

1.5 Structure of the Paper
We already started in Section 1.2 to formalize the potential infinite as a dynamic concept,
which replaces an actual infinite set with a factor system, which is, roughly, a generalization
of a direct and inverse system. The concept of factor systems was first introduced in [5]. In
Section 2 we reiterate the definition of a factor system and add further definitions that are
necessary for an interpretation. These are primarily the notions of a direct and inverse factor
system, which are required to interpret variables. We show the construction of the function
space between two factor systems and elucidate the notions of a target and a limit of a
factor system. As with direct and inverse systems, limits are targets that satisfy a universal
property and have a concrete construction. In Section 2.5 we demonstrate how to introduce
an application that makes limit sets a type structure.

Section 3 introduces a judgement for states, parallel to judgements for types. These are
defined on a fragment of the simply typed λ-calculus, which we call core fragment. Based
on these state judgements we give a first version of an interpretation of λ-terms in the core



M. Eberl 6:7

fragment, not including any constants. In particular, the present paper does not yet include
logic. We give an interpretation of types and terms with two parts, one is within the system,
the other is in its limit. Based on this interpretation we show a first version of a reflection
principle, which says that an element a of type ϱ in the limit set is reflected by an element
ai at some stage i ∈ Iϱ in the system. This element ai is an approximation of a, and at
the same time it fully represents a. If logic is included, then the representation includes all
propositions about these elements, so anything we can say about a is true if and only if it is
true for ai.

2 Factor Systems and their Limits

Factor systems and their limits have been introduced in [5]. In this paper, we summarize
their properties. The main concept is that of a factor system, those of a prefactor system
(with embeddings/projections) are afferent notions. In addition to that, we introduce the
notion of a stable system, which is a natural notion to prove stronger properties, although
these are not necessary here. We prove that stability is closed under both the function space
construction and the limit construction.

Relevant for the interpretation in Section 3 are the specific forms of a direct and inverse
factor system. A direct factor system is similar to a direct system, it is more specific in the
sense that the embedding is part of an embedding-projection pair. On the other hand it is
more general in the sense that equations hold only up to an equivalence relation. The same
holds for inverse factor systems and inverse systems. Moreover, we introduce the concept of
a homomorphism between two systems.

The subsequent Lemmata 9 and 10 are extended versions of corresponding lemmata
in [5], which use the property (Filter), not only cofinality. These versions are necessary to
prove Corollary 15, which states that the function space construction commutes with the
limit construction. This is a prerequisite for the definition of a model. Proposition 7 and
Corollary 12 describe how direct and inverse factor systems extend to the function space and
to the limit. Both are essential to prove the reflection principle for variables.

2.1 Factor Systems
I will always denote a non-empty directed index set with preorder ≤. A system is a pair
(MI ,

p7→) consisting of a family MI := (Mi)i∈I and reflexive (for i = i′) relations p7→ on
Mi′ ×Mi for i′ ≥ i. Two elements ai ∈Mi and bj ∈Mj are consistent, written as ai ≍ bj ,
iff there is an index i′ ≥ i, j and some ai′ ∈ Mi′ such that ai′

p7→ ai and ai′
p7→ bj . As

a convention, whenever we use a suffix i ∈ I for some element, this refers to the state,
e.g. ai ∈Mi. An important special case is that the relations p7→ are partial functions, which
is equivalent to:

ai ≍ bi ⇐⇒ ai
p7→ bi ⇐⇒ ai = bi (Fun)

for all ai, bi ∈Mi and all i ∈ I. A system that satisfies (Fun) is called standard. (MI ,
p7→)

is a prefactor system iff it is a system satisfying

ai′ ≍ ai ⇐⇒ ai′
p7→ ai (Factor)

for all ai ∈ Mi and ai′ ∈ Mi′ with i ≤ i′. The relation ≍ is then an equivalence relation
on a single set Mi with ai ≍ bi ⇐⇒ ai

p7→ bi ⇐⇒ bi
p7→ ai for ai, bi ∈Mi. In a prefactor

system bi′ ≍ ai′
p7→ ai implies bi′

p7→ ai, but sometimes we want to have the “dual” property

TYPES 2023



6:8 Potential Infinite Models of Type Theory

as well, which we call stability. Although we can do without stability for most properties, it
is an obvious requirement, and all natural examples satisfy this property. Note that a system
that satisfies (Fun) is automatically stable.

▶ Definition 1. A system (MI ,
p7→), and in particular the relation p7→, is called stable iff for

all i′ ≥ i, all ai′ ∈Mi′ and ai, bi ∈Mi

ai′
p7→ ai ≍ bi ⇒ ai′

p7→ bi. (Stab)

A family emb = (embi′

i )i≤i′ of ≍-embeddings consists of ≍-preserving maps embi′

i :
Mi → Mi′ satisfying embi

i(ai) ≍ ai and embi′′

i′ (embi′

i (ai)) ≍ embi′′

i (ai). The requirement
≍-preserving means that embi′

i (ai) ≍ embi′

i (bi) holds for ai ≍ bi, for all ai, bi ∈Mi. Similar
to a family of ≍-embeddings, ≍-projections proj = (proji′

i )i≤i′ consist of ≍-preserving
maps proji′

i : Mi′ → Mi satisfying proji
i(ai) ≍ ai and proji′

i (proji′′

i′ (ai′′)) ≍ proji′′

i (ai′′).
Moreover, ≍-embeddings emb together with ≍-projections proj form an ≍-embedding-
projection pair iff proji′

i (embi′

i (ai)) ≍ ai holds for all ai ∈Mi and all i ≤ i′.
The ≍-embeddings emb and ≍-projections proj are coherent if they satisfy for all indices

i ≤ i′ ≤ i′′

ai′
p7→ ai ⇒ embi′′

i′ (ai′) p7→ ai and (Emb)

ai′′
p7→ ai ⇒ proji′′

i′ (ai′′) p7→ ai resp. (Proj)

A ≍-embedding-projection pair (emb, proj) is coherent if emb and proj are both coherent.
Property (Emb) implies that embi′

i (ai)
p7→ ai holds for all ai ∈Mi, and in case that Property

(Fun) holds, p7→ is a partial surjection.

▶ Definition 2. A prefactor system with embeddings is a prefactor system (MI ,
p7→) with

coherent ≍-embeddings emb. A prefactor system with projections is a prefactor system
(MI ,

p7→) with coherent ≍-projections proj. A factor system is a prefactor system (MI ,
p7→)

with a coherent ≍-embedding-projection pair (emb, proj). A prefactor system is direct iff it
has coherent ≍-embeddings which satisfy

ai′
p7→ ai ⇐⇒ ai′ ≍ embi′

i (ai). (Dir)

A prefactor system is inverse iff it has coherent ≍-projections which satisfy

ai′
p7→ ai ⇐⇒ proji′

i (ai′) ≍ ai. (Inv)

If p7→, emb and proj are known, we often call MI a factor system (and likewise with
prefactor systems with embeddings/projections).

▶ Example 3. The embeddings emb in a direct system (MI , emb), with ai′
p7→ ai :⇐⇒

embi′′

i (ai) = embi′′

i′ (ai′) for some i′′ ≥ i, i′, are automatically ≍-embeddings, since they
preserve ≍. If there are ≍-projections proj, such that emb and proj form a ≍-embedding-
projection pair, then (MI ,

p7→, emb, proj) is a direct factor system.
An inverse system (MI , proj) satisfies (Fun), so the projections proj are automatically

≍-projections. If there are ≍-embeddings emb, such that emb and proj form a ≍-embedding-
projection pair, then (MI ,

p7→, emb, proj), with ai′
p7→ ai :⇐⇒ proji′

i (ai′) = ai, is an inverse
factor system.

▶ Example 4. Consider (Ni)i∈N+ with the embedding-projection pair embi′

i : Ni → Ni′ ,
n 7→ n and proji′

i : Ni′ → Ni with n 7→ min(n, i− 1). In all three cases for p7→ they form an
≍-embedding-projection pair and ((Ni)i∈N+ ,

p7→, emb, proj) is a factor system:



M. Eberl 6:9

1. The standard model of the natural numbers has Ni′ ∋ n
p7→ n ∈ Ni for all n < i, which is

a direct factor system.
2. The definition n′ p7→ n :⇐⇒ proji′

i (n′) = n makes it an inverse factor system.
3. With n′ p7→ n for all n′ ∈ Ni′ and n ∈ Ni, the factor system (Ni)i∈N+ is direct and inverse.

The second example basically adds an infinite number to N, while the last example is
artificial, but shows the difference to direct an inverse limits when we pick up this factor
system again in Example 8. One can easily check that (Ni)i∈N+ is stable in all three cases,
and in the first two cases Property (Fun) is also satisfied.

▶ Lemma 5. Let MI be a prefactor system and given indices i′′ ≥ i′ ≥ i.
1. If MI is direct, then ai′′

p7→ ai implies ai′′
p7→ embi′

i (ai).
2. If MI is inverse, then ai′′

p7→ ai′ implies ai′′
p7→ proji′

i (ai′).

Proof. First, ai′′
p7→ ai implies embi′′

i′ (embi′

i (ai)) ≍ embi′′

i (ai) ≍ ai′′ by (Dir), hence
embi′′

i′ (embi′

i (ai))
p7→ ai′′ . From (Emb) we deduce embi′′

i′ (embi′

i (ai))
p7→ embi′

i (ai) and thus
ai′′

p7→ embi′

i (ai) by (Factor). For the second clause let ai′′
p7→ ai′ , then proji′′

i′ (ai′′) ≍ ai′ by
(Inv), hence proji′′

i (ai′′) ≍ proji′

i (proji′′

i′ (ai′′)) ≍ proji′

i (ai′). Consequently ai′′
p7→ proji′

i (ai′)
by (Inv) again, as claimed. ◀

Compare these properties with (Emb) and (Proj), which hold in any prefactor system
with embeddings/projections.

▶ Definition 6. A homomorphism Φ = (Φ0, (Φi)i∈I) between two systems (MI ,
p7→) and

(NJ ,
p7→) consists of maps Φ0 : I → J and Φi :Mi → NΦ0(i) such that Φ0 is monotone and

for all i ≤ i′

ai′
p7→ ai ⇒ Φi′

(ai′) p7→ Φi(ai). (1)

If (1) is an equivalence, then Φ is said to be strong. A homomorphism between two
prefactor systems with embeddings (MI ,

p7→, emb) additionally satisfies Φi′(embi′

i (ai)) =
embj′

j (Φi(ai)), j := Φ0(i), j′ := Φ0(i′), a homomorphism between two prefactor systems with
projections (MI ,

p7→, proj) satisfies Φi(proji′

i (ai′)) = projj′

j (Φi′(ai′)), and a homomorphism
between two factor systems satisfies both equations.

We call Φ injective (surjective) iff every map in Φ is injective (surjective resp.). An
isomorphism Φ between two systems (prefactor systems with embeddings/projections, factor
systems) is a homomorphism with a further homomorphism Ψ as its inverse, i.e., each part
of Ψ is inverse to that of Φ. So an isomorphism is automatically strong. We write MI ≃ NJ
if an isomorphism between MI and NJ exists.

In the following we will use homomorphisms Φ only for the special situation that I = J
and Φ0 is the identity map. In that case we do not mention Φ0.

2.2 The Function Space
The function space of two factor systems MI and NJ , denoted as [MI → NJ ], is a family
of (finite) sets [Mi → Nj ] indexed by pairs (i, j) ∈ I × J with product order, whereby
we write i → j for such an index in I × J . The set [Mi → Nj ] consists of all (total)
functions f :Mi → Nj which preserve ≍, i.e., which satisfy f(ai) ≍ f(bi) for ai ≍ bi. If the
relations p7→ are partial functions on MI and NJ , then ≍ is the identity on Mi and Nj and
[Mi → Nj ] simply consists of all functions from Mi to Nj .

TYPES 2023



6:10 Potential Infinite Models of Type Theory

Let f ∈ [Mi → Nj ], f ′ ∈ [Mi′ → Nj′ ] and i→ j ≤ i′ → j′, i.e., i ≤ i′ and j ≤ j′. The
basic relation p7→ on the function space is a logical relation [12]. It is thus defined as

f ′ p7→ f :⇐⇒ ai′
p7→ ai implies f ′(ai′) p7→ f(ai)

for all ai′ ∈ Mi′ and ai ∈ Mi. The embedding-projection pair for the function space is
defined in the usual way:

embi′→j′

i→j : [Mi → Nj ]→ [Mi′ → Nj′ ] f 7→ embj′

j ◦ f ◦ proji′

i ,

proji′→j′

i→j : [Mi′ → Nj′ ]→ [Mi → Nj ] f ′ 7→ projj′

j ◦ f ′ ◦ embi′

i .

▶ Proposition 7. IfMI and NJ are both factor systems, so is their function space. Moreover,
1. If p7→ satisfies (Fun) or (Stab) on NJ , so does p7→ on [MI → NJ ].
2. If MI is inverse and NJ direct, then [MI → NJ ] is direct.
3. If MI is direct and NJ inverse, then [MI → NJ ] is inverse.

Proof. This has been proven in [5], except for the statements about (Stab) and about direct
and inverse factor systems. Assume f ′ p7→ f ≍ g for f ′ ∈ [Mi′ → Nj′ ] and f, g ∈ [Mi → Nj ],
i → j ≤ i′ → j′, so that we have to show f ′ p7→ g. Let ai′

p7→ ai, and to confirm that
f ′(ai′) p7→ g(ai), use the stability condition on NJ applied to f ′(ai′) p7→ f(ai) ≍ g(ai).

Next, letMI be inverse and NJ direct. Assume first that f ′ p7→ f with f ′ ∈ [Mi′ → Nj′ ],
f ∈ [Mi → Nj ] and i → j ≤ i′ → j′. We wish to show that f ′ ≍ embi′→j′

i→j (f), which
is the same as f ′ ≍ embj′

j ◦ f ◦ proji′

i . Let ai′
p7→ bi′ and define bi := proji′

i (bi′). Then
proji′

i (ai′) ≍ bi since projections preserve ≍. It follows that ai′
p7→ bi since MI is inverse,

and thus f ′(ai′) p7→ f(bi). Consequently, f ′(ai′) ≍ embj′

j (f(bi)) = embj′

j ◦ f ◦ proji′

i (bi′), since
NJ is direct.

For the other direction assume f ′ ≍ embj′

j ◦ f ◦ proji′

i and let ai′
p7→ ai. We shall

prove that f ′(ai′) p7→ f(ai). Then ai′
p7→ ai implies proji′

i (ai′) ≍ ai since MI is inverse.
Now f and the embeddings preserve ≍, so embj′

j (f(proji′

i (ai′))) ≍ embj′

j (f(ai)). Certainly
f ′(ai′) ≍ embj′

j (f(ai)). This shows f ′(ai′) p7→ f(ai), since NJ is direct, as claimed. The
proof of the last statement is verified in a similar way. ◀

2.3 Targets and Limits
The subsequent concepts require sets D(I) from Section 1.2 with Property (Filter), whereby
we write Dϱ for D(Iϱ) and DΓ for D(IΓ). A target (M,

p7−→) for a system MI extends the
system “at the top”, i.e., the extension leads to a systemMĪ , called compactification ofMI ,
with index set Ī := I ∪ {top}, top as greatest index, and Mtop =M. Let a

p7−→ ai denote
a

p7→ ai provided that a ∈ M, and we also write Embi for embtop
i and Proji for projtop

i .
Relation p7→ on a target M, and consequently relation ≍ on M as well, is by definition the
identity. The extension of an element a ∈ M is Ext(a) := {ai ∈

⋃
i∈IMi | a

p7−→ ai}. A
target M for a system MI satisfies by definition

Ia := {i ∈ I | ∃ai ∈Mi a
p7−→ ai} ∈ D(I)

for all objects a ∈M. Moreover, if the system is a prefactor system, a prefactor system with
embeddings/projections or a factor system, then the compactification MĪ must have this
additional structure with its properties as well. Whereas the compactification of a system is
automatically a system, the compactification of a prefactor system requires for all a ∈M,
ai ∈Mi, ai′ ∈Mi′ and i ≤ i′

a
p7−→ ai′ , a

p7−→ ai ⇒ ai′
p7→ ai. (2)



M. Eberl 6:11

If M is a target for a prefactor system with embeddings MI , then this implies the
existence of ≍-embeddings Embi :Mi →M, satisfying Embi′(embi′

i (ai)) = Embi(ai) and

ai′
p7→ ai ⇒ Embi′(ai′) p7−→ ai for all i ≤ i′, (3)

ai ∈ Mi, ai′ ∈ Mi′ and a ∈ M. If M is a target for a prefactor system with projections
MI , then there are moreover ≍-projections Proji :M→Mi such that proji′

i (Proji′(a)) ≍
Proji(a) and

a
p7−→ ai ⇒ Proji′(a) p7→ ai for all i ≤ i′. (4)

If M is a target for a factor system, then Emb and Proj with these properties exist and
both form a ≍-embedding-projection pair. We write (M,

p7−→), (M,
p7−→, Emb), (M,

p7−→
, P roj) and (M,

p7−→, Emb, Proj), respectively, for these targets. If M is a target for a
prefactor system with projections MI , then the projections Proji can be defined by

Proji(a) := proji′

i (ai′) for some i′ ≥ i with a
p7−→ ai′ (5)

for a ∈ M. It follows from the properties of a prefactor system that Proji(a) is unique
modulo ≍. Since Embi′(ai′) p7−→ ai′ for ai′ ∈Mi′ by (3), we have for i ≤ i′

Proji(Embi′(ai′)) ≍ proji′

i (ai′). (6)

A target (M,
p7−→) for a system MI is a limit of MI iff for every further target (N ,

q7−→)
for MI there is a unique map Φ : N →M such that a

q7−→ ai implies Φ(a) p7−→ ai. If the
underlying system is a factor system or a prefactor system, then we call the limit factor
limit and prefactor limit, resp. It turns out, however, that a factor limit is the same as the
prefactor limit, and that this limit lim(MI) is unique modulo isomorphism. Therefore we
simply speak of a limit, or a limit set, if we want to distinguish it from a limit element in
this limit set.

▶ Example 8. Recall Example 3. If a direct system is also a direct factor system and
ai′

p7→ ai :⇐⇒ embi′′

i (ai) = embi′′

i′ (ai′) for some i′′ ≥ i, i′, then the factor limit is the direct
limit, i.e., lim(MI) = lim−→(MI). If an inverse system is additionally an inverse factor system
and ai′

p7→ ai :⇐⇒ proji′

i (ai′) = ai, then the factor limit lim(MI) is the inverse limit
lim←−(MI).

In the first case of Example 4 the limit is N (which is the direct limit as well as the factor
limit). In the second case the limit (inverse limit and factor limit) is N∞ := N ∪ {∞} with
∞ = (0, 1, 2, . . . ). In the third case the factor limit is a singleton set, which is neither the
direct nor the inverse limit.

2.4 Consistent Sets and Dynamic Elements
It is possible to define concrete targets and limits in the form of sets of states: A set
α ⊆

⋃
i∈IMi in a system MI is called a consistent set iff ai′

p7→ ai holds for all ai′ , ai ∈ α

with i′ ≥ i, and Iα := {i ∈ I | α ∩Mi ̸= ∅} ∈ D(I). If we already have a target M for a
prefactor system, then the set Ext(a) is such a consistent set for all a ∈M. The set of all
consistent sets in a (pre)factor systemMI is itself a target forMI with α

p7−→ ai :⇐⇒ ai ∈ α.
In other words, if M denotes the set of all consistent sets, then the target is (M,∋).

A dynamic element is a maximal (w.r.t. subset inclusion) consistent set, and for each
consistent set α in a prefactor system there is exactly one dynamic element αm such that
α ⊆ αm. Let EL(MI) denote the set of all of these dynamic elements, then

(EL(MI),∋) (7)

TYPES 2023



6:12 Potential Infinite Models of Type Theory

is a prefactor limit of MI . For the next two lemmata, recall that it is assumed that D(I) is
a filter as defined in (Filter).

▶ Lemma 9. Let α be a consistent set in a prefactor system (MI ,
p7→) and bi ∈ Mi, then

the following are equivalent:
1. bi ∈ αm.
2. α ∪ {bi} is a consistent set.
3. There are cofinal many i′ ∈ I with ai′

p7→ bi for some ai′ ∈ α.
4. ai′

p7→ bi for all ai′ ∈ α with i′ ≥ i.
5. There are D-many i′ ∈ I with ai′

p7→ bi for some ai′ ∈ α.

Proof. This has been shown in [5], except the last clause. For its equivalence to the other
statements notice that it follows from Clause 4. since Iα ∩ ↑ i ∈ D(I), and it implies Clause
3. since each set in D(I) is cofinal. ◀

▶ Lemma 10. Let α and β be consistent sets in a prefactor system (MI ,
p7→), then the

following are equivalent:
1. αm = βm.
2. ai ≍ bi for all i ∈ I with ai ∈ α and bi ∈ β.
3. ai ≍ bj for all i, j ∈ I with ai ∈ α and bj ∈ β.

Proof. The equivalence of 1. and 3. has been shown in [5], so it suffices to prove that 2. implies
bi ∈ αm for each bi ∈ β. We wish to find cofinal many ai′ ∈ α with ai′

p7→ bi and apply
Lemma 9. There are D-many i′ ≥ i with i′ ∈ Iα ∩ Iβ . For all ai′ ∈ α, bi′ ∈ β we have
ai′ ≍ bi′ by assumption, hence ai′

p7→ bi, since bi′
p7→ bi. ◀

If one, and hence all, of the conditions in Lemma 10 are true, then we write α ∼ β. Call
an element a ∈M of a targetM for a prefactor systemMI a limit (element) of a consistent
set α iff α ∼ Ext(a). Obviously, a is a limit of its extension Ext(a). If there is only one limit
element, we denote it as lim(α).

Given a factor system MI . Then EL(MI) is, up to isomorphism, the limit lim(MI),
whereby projections have been defined by (5) and embeddings are

Embi(ai) := {embi′

i (ai) ∈
⋃
j∈I
Mj | i′ ≥ i}m. (8)

LetM be a target for a systemMI , thenM is maximal (overMI) iff Ext(a) ∈ EL(MI)
for all a ∈M. M is extensional (overMI) iff Ext(a) ∼ Ext(b) implies a = b for all a, b ∈M.
M is complete (over MI) iff for all consistent sets α there is a limit element a, i.e., some
a ∈ M with Ext(a) ∼ α. One can characterize a limit lim(MI) also as a target that is
maximal, extensional and complete over MI .

▶ Proposition 11. Assume a prefactor system MI has been compactified with a target M,
yielding the extended prefactor system MĪ .
1. If MI is stable and M maximal over MI , then MĪ is stable, too.
2. If MI is direct and M extensional over MI , then MĪ is direct and Ia contains an

up-set for all a ∈M.
3. If MI is inverse and M maximal over MI , then MĪ is inverse and Ia = I for all

a ∈M.



M. Eberl 6:13

Proof.
1. In order to show stability ofMĪ it suffices to prove that a

p7−→ ai ≍ bi implies a
p7−→ bi for

all a ∈M. Indeed, there are cofinal many indices i′ ≥ i with a
p7−→ ai′ , and consequently

ai′
p7→ ai. Applying (Stab) yields ai′

p7→ bi for cofinal many indices i′ ∈ I. By Lemma 9
a

p7−→ bi follows, since Ext(a) is a maximal consistent set.
2. We claim that a

p7−→ ai ⇐⇒ a = Embi(ai) for a ∈ M. So assume a
p7−→ ai and we

first establish that a
p7−→ aj implies Embi(ai)

p7−→ aj for all j ∈ I. There are cofinal
many i′ ≥ i, j with a

p7−→ ai′ , ai′
p7→ ai and ai′

p7→ aj , hence ai′ ≍ embi′

i (ai), because
MI is direct. It follows that embi′

i (ai)
p7→ aj for cofinal many indices i′ ∈ I and thus

Embi(ai)
p7−→ aj . This proves Ext(a) ∼ Ext(Embi(ai)), so a and Embi(ai) are equal

sinceM is extensional overMI . The inverse implication a = Embi(ai)⇒ a
p7−→ ai holds

trivially. Moreover, a = Embi(ai) for a ∈M implies that Ia contains the up-set ↑ i.
3. We shall prove that a

p7−→ ai ⇐⇒ Proji(a) ≍ ai. For the forward implication assume
Proji(a) = proji′

i (ai′) for some ai′ with a
p7−→ ai′ . We establish that proji′

i (ai′) ≍ ai for
a

p7−→ ai by using the fact that MI is inverse and that a
p7−→ ai′ and a

p7−→ ai implies
ai′

p7→ ai.
For the backward implication assume Proji(a) = proji′

i (ai′) ≍ ai. To show a
p7−→ ai it

suffices to find cofinal many indices i′′ ≥ i′ with a
p7−→ ai′′ and ai′′

p7→ ai. To this aim,
we use maximality of M. Indeed, there are cofinal many indices i′′ ≥ i′ with a

p7−→ ai′′ ,
and to confirm that ai′′

p7→ ai it suffices to prove proji′′

i (ai′′) ≍ ai. Now ai′′
p7→ ai′ is a

consequence of a
p7−→ ai′′ and a

p7−→ ai′ , hence proji′′

i′ (ai′′) ≍ ai′ . Because ≍-projections
preserve ≍, we deduce proji′′

i (ai′′) ≍ proji′

i (proji′′

i′ (ai′′)) ≍ proji′

i (ai′) ≍ ai, as claimed.
For all i ∈ I there is some ai with a

p7−→ ai ≍ Proji(a), hence Iα = I. ◀

▶ Corollary 12. Assume a prefactor system MI has been compactified with a limit M,
yielding the extended prefactor system MĪ . If MI is stable (direct, inverse), then MĪ is
also stable (direct, inverse resp.).

2.5 Targets and Limits on the Function Space
Consider two factor systems MI and NJ with limits M and N resp. Then

[M→D N ] := {f :M→N | If ∈ D(I × J )}

is a target for [MI → NJ ], but not necessarily a limit. We now state a condition which
guarantees that [M →D N ] is indeed a limit. So let ζ be a consistent set on the factor
system [MI → NJ ], and α a consistent set on the factor system MI . Define

App(ζ, α) := ζ(α) := {fi→j(ai) | fi→j ∈ ζ and ai ∈ α}. (Appl)

It is easy to see that this set satisfies bj′
p7→ bj for all j ≤ j′ and bj , bj′ ∈ ζ(α). However,

ζ(α) is not necessarily a consistent set. For that, If [Ia] ∈ D(J ) must be the case, whereby
H[I ′] := {j ∈ J | ∃i ∈ I ′ i→ j ∈ H} for H ⊆ I × J and I ′ ⊆ I. This is ensured when the
following condition for D is met for all sets I and J :

H ∈ D(I × J ) and I ′ ∈ D(I) implies H[I ′] ∈ D(J ). (D)

We will require Condition (D) for the rest of this paper.

▶ Lemma 13. The application defined by (Appl) is extensional, i.e., for all ζ, ζ ′ ∈ EL([MI →
NJ ]) we have:

ζ(α) = ζ ′(α) for all α ∈ EL(MI) implies ζ = ζ ′.

TYPES 2023



6:14 Potential Infinite Models of Type Theory

Proof. Assume ζ(α) = ζ ′(α) for all α ∈ EL(MI) and let fi→j ∈ ζ. We will show that
fi→j ∈ ζ ′, which proves the lemma. Choose indices i′ → j′ ∈ Iζ ∩ Iζ′ ∩ ↑(i→ j) ∈ D(I ×J )
and let f ′

i′→j′ ∈ ζ ′. We wish to show f ′
i′→j′

p7→ fi→j . Since this is the case for D-many indices
i′ → j′, we have shown fi→j ∈ ζ ′ by Lemma 9, which suffices.

Now assume ai′
p7→ ai for ai′ ∈Mi′ and ai ∈Mi, so that we have to prove f ′

i′→j′(ai′) p7→
fi→j(ai). For α := Embi′(ai′) ∈ EL(MI) we know that ai ∈ α, by maximality and (3).
Further, f ′

i′→j′(ai′) ∈ ζ ′(α) = ζ(α) and fi→j(ai) ∈ ζ(α) implies f ′
i′→j′(ai′) p7→ fi→j(ai),

because ζ(α) is a consistent set. ◀

▶ Proposition 14. Let M and N be a targets for the factor systems MI and NJ resp.
Assume Condition (D) holds. If N is maximal (extensional, complete) over NJ , so is
[M→D N ] over [MI → NJ ].

Proof. First we shall prove the claim about maximality, so let gi→j ∈Mi→j and we apply
Lemma 9. Assume there is a set H ∈ D(I × J ) with f

p7−→ fi′→j′
p7→ gi→j for i′ → j′ ∈ H,

then it suffices to show f
p7−→ gi→j . By the definition of p7−→ it must be checked that

f(a) p7−→ gi→j(ai) for a
p7−→ ai.

There are D-many indices i′ ≥ i with a
p7−→ ai′ , since Ia ∩ ↑ i ∈ D(I). They satisfy

ai′
p7→ ai, because a

p7−→ ai′ and a
p7−→ ai. Applying Condition (D) give us D-many indices

j′ ∈ H[Ia ∩ ↑ i], which all satisfy f(a) p7−→ fi′→j′(ai′) p7→ gi→j(ai). So maximality of N yields
f(a) p7−→ gi→j(ai), showing the maximality of [M→D N ].

For extensionality we prove that f = g, provided Ext(f) ∼ Ext(g). So let a ∈ M and
we claim that f(a) = g(a). For all i → j ∈ If ∩ Ig and fi→j ∈ Ext(f), gi→j ∈ Ext(g) we
have fi→j ≍ gi→j by definition. Condition (D) shows that

J ′ := (If ∩ Ig)[Ia] ∈ D(J ),

and for all these indices i ∈ Ia and j ∈ J ′ we have a
p7−→ ai for some ai ∈ Mi, f(a) p7−→

fi→j(ai), g(a) p7−→ gi→j(ai) and fi→j(ai) ≍ gi→j(ai). This yields Ext(f(a)) ∼ Ext(g(a)),
since the elements of Ext(f(a)) and Ext(g(a)) are consistent (i.e., in ≍-relation to each other)
for cofinal many indices j ∈ J . We now appeal to extensionality of N to get f(a) = f(b).

To show completeness of [M →D N ] over [MI → NJ ] let ζ be a consistent set in
[MI → NJ ]. We define a limit element f :M→N of ζ by

f(a) := limit element of β := {gi→j(ai) | gi→j ∈ ζ ∩ [Mi → Nj ] and a
p7−→ ai}

for all a ∈ M. This function is well-defined: If a
p7−→ ai, a

p7−→ bi and fi→j , gi→j ∈
ζ ∩ [Mi → Nj ], then ai ≍ bi follows and consequently fi→j(ai) ≍ gi→j(bi); note that
ai ≍ bi ⇐⇒ ai

p7→ bi and the same for fi→j(ai) ≍ gi→j(bi). This implies that any two
elements in β are consistent. Condition (D) guarantees that If = Iζ [Ia] ∈ D(J ). The set β

is thus a consistent set and completeness of N ensures that a limit element of β exists.
We claim that f is a limit of ζ. Let f

p7−→ fi→j and gi→j ∈ ζ with fi→j , gi→j ∈ Mi→j

and we have to show fi→j
p7→ gi→j . Given bi

p7→ ai, both in Mi, so it suffices to show that
fi→j(bi)

p7→ gi→j(ai). Take a := Embi(ai) = Embi(bi), then a
p7−→ ai and a

p7−→ bi, hence
f(a) p7−→ fi→j(bi) and gi→j(ai) ∈ β. Since f(a) is a limit element of β, it follows that
β ∼ Ext(f(a)), and thus fi→j(bi) ≍ gi→j(ai) by Lemma 10, so we are done. ◀

Recall that limits are targets which are maximal, extensional and complete. Recall
also that EL([MI → NJ ]) is a limit of [MI → NJ ] and that limits are unique modulo
isomorphism.



M. Eberl 6:15

▶ Corollary 15. Given two factor systems MI and NJ with limits M and N resp. Assume
Condition (D) holds, then [M→D N ] is a limit of [MI → NJ ]. Equivalently stated, there
is an isomorphism [EL(MI)→D EL(NJ )] ≃ EL([MI → NJ ]).

3 Towards Models and Interpretations

This section contains the first steps towards an interpretation of a typed λ-term in a factor
system and a limit of it. Let types ϱ ∈ Typ be given by ϱ ::= ι | ϱ→ ϱ for base types ι. We
assume that type bool is one of these base types. For each type ϱ let a non-empty, directed
set Iϱ of indices be given and let DΓ := D(IΓ) be a filter which satisfies (Filter). Maps
on indices, such as Embi, extend in an obvious way to state contexts C = (i0, . . . , in−1) as
products, e.g. EmbC = Embi0 × · · · × Embin−1 .

Given also a basic version of a simply typed λ-calculus (without constants) and for
convenience we use a fixed list of variables x0, x1, x2, . . . within the Church-style λ-terms
r ::= xk | rr | λxϱ

k r. We apply the usual conventions for λ-terms [11].

3.1 Judgements for Types and States
Typing judgements Γ ⊢ r : ϱ with Γ = (ϱ0, . . . , ϱn−1) are defined recursively as follows:

(Var)
k < n

Γ ⊢ xk : ϱk

(App)
Γ ⊢ r : ϱ→ σ Γ ⊢ s : ϱ

Γ ⊢ rs : σ
(Abs)

Γ.ϱ ⊢ r : σ

Γ ⊢ λxϱ
n r : ϱ→ σ

We can write more explicitly (x0 : ϱ0, . . . , xn−1 : ϱn−1, xn : ϱn) for the context Γ.ϱn, so
λ-abstractions binds the last variable of the context.3 When we speak of typed terms this
refers to this typing judgement. It is well known that each term r in the simply typed
λ-calculus has a unique type for a given context Γ.

▶ Definition 16. Let ι denote a base type. The positive and negative types are defined as

Typ+ ∋ ϱ+ ::= ι | ϱ− → ϱ+ and Typ− ∋ ϱ− ::= bool | ϱ+ → ϱ−.

For an index i ∈ Iϱ with ϱ ∈ Typ+ we write i ∈ Idx+, and similar for i ∈ Idx−.
Moreover, Typc ∋ ϱc ::= ι | ϱ+ → ϱc | ϱ− → ϱc.

For example, nat is a positive type, nat→ nat→ bool is a negative type, bool→ bool is
both and nat→ nat is neither. Obviously Typ+ ∪Typ− ⊆ Typc and ϱ ∈ Typ+ ∩Typ− ⇐⇒
ϱ ::= bool | ϱ→ ϱ. In order to formulate the rules for states, we use a fragment of the simply
typed λ-calculus, which we refer to as the core fragment. This fragment is constrained in
such a way that contexts Γ = (ϱ0, . . . , ϱn−1) contain only positive or negative types, that is,

ϱk ∈ Typ+ ∪ Typ− for all ϱk in Γ. (9)

A more general definition would permit the use of further base types in place of the
negative type bool. This requires that the base type in question has a finite set of objects and
an interpretation analogous to that of type bool in Definition 18. The primary motivation
for this definition is the existence of suitable rules for state judgements of variables and the
fact that positive types can be interpreted as direct factor systems and negative types as
inverse factor systems.

▶ Lemma 17. The typed term Γ ⊢ r : ϱ is in the core fragment iff Γ→ ϱ ∈ Typc.

3 This style is basically the de Bruijn level notation of λ-terms, see e.g. [6].

TYPES 2023



6:16 Potential Infinite Models of Type Theory

This lemma follows easily by induction on Γ ⊢ r : ϱ. Therein Γ → σ is defined by
()→ σ := σ and Γ.ϱ→ σ := Γ→ (ϱ→ σ); the index C → i is defined in the same way as
Γ→ σ. We now introduce judgements for states of the form C | r : i. They require a typing
judgement Γ ⊢ r : ϱ such that C → i ∈ IΓ→ϱ. The rules are based on the typing rules4,
whereby C = (i0, . . . , in−1).

(Var+)
j ≥ ik ∈ Idx+

C | xk : j
(Var−)

j ≤ ik ∈ Idx−

C | xk : j

(App)
C | r : i→ j C | s : i

C | rs : j
(Abs)

C.i | r : j

C | λxϱ
n r : i→ j

The condition j ≥ ik in Rule (Var+) is a consequence of the fact that objects aik
of

positive type exist at all later stages j as embj
ik

(aik
). The condition j ≤ ik in Rule (Var−)

is related to the fact that we find unique restrictions of a relation, but not unique extensions.
Note that for an index ik ∈ Idx+ ∩ Idx− both of the rules for variables apply. In this case,
however, there is only one index, so both rules are the same.

A term usually has several state judgement, not only one. Indeed, we expect that there
are D-many of them and it seems necessary to prove this stronger property in order to
guarantee that at least one judgement exists. However, we have not shown that all terms of
the core fragment have a state judgement. It is possible to define sets DΓ, similar as in [4],
but with a reorder of the context Γ that takes the positive types first, and afterward the
negative ones. In a subsequent paper we will present such a definition of sets DΓ satisfying
Condition (D) and a proof that each term in the above mentioned fragment has indeed
D-many state judgements.

3.2 Interpretation of Types
An interpretation of a type ϱ has a static and a dynamic part. Although the limit is uniquely
defined from a structural perspective, the extension, i.e., the set of elements in the limit,
depends on the stage of the meta-level investigation, assuming a consequent finitistic view.
In this case, the limit is not the absolute end of the extensible system. As the investigation
progresses, both the system and the limit increase. The main part of the interpretation is
the factor system – the limit is necessary to prove that the definition in the factor system is
correct.

Let ([[ϱ]]i)i∈Iϱ be the factor system that interprets type ϱ, which consists of finite sets
[[ϱ]]i. The limit, up to isomorphism, is then [[ϱ]] := EL(([[ϱ]]i)i∈Iϱ

), see Section 2.4. These
limit sets give rise to an extensional type structure if we use (Appl) as application. Recall
Lemma 13 and our assumption of Condition (D).

▶ Definition 18. An interpretation [[ ]] of types assigns to a type ϱ a factor system ([[ϱ]]i)i∈Iϱ

and a limit [[ϱ]] of it. So the pair (([[ϱ]]i)i∈Iϱ
, [[ϱ]]) interprets the type ϱ. This interpretation

shall satisfy the following properties:
1. For a base type ι, ([[ι]]i)i∈Iι

is a direct factor system.
2. Type bool is interpreted by the factor system B{bool} with Bbool = B = {true, false} and

limit B.
3. The interpretation of ϱ→ σ is the factor system [([[ϱ]]i)i∈Iϱ

→ ([[σ]]j)j∈Iσ
] together with

the limit [[[ϱ]]→D [[σ]]].

4 One may also combine both rules into one. The rules are however more readable if one keeps them
separated.



M. Eberl 6:17

Since Condition (D) holds, it follows from Corollary 15 that the function space [[[ϱ]]→D

[[σ]]] is indeed the limit of the underlying factor system [([[ϱ]]i)i∈Iϱ
→ ([[σ]]j)j∈Iσ

]. Definition
18 extends to contexts Γ in the usual way by taking products.

▶ Example 19. The standard interpretation of the natural numbers [[nat]] = N is the limit
of the direct factor system ([[nat]]i)i∈N+ with [[nat]]i = Ni.5 Of course, there are other
non-standard models of nat with non-standard natural numbers as well. These non-standard
numbers do not appear at the limit step, but at some stage within the system.

The next lemma is required for the reflection principle stated in Theorem 24. Its proof
proceeds by induction on Definition 16 and uses Proposition 7 and Corollary 12.

▶ Lemma 20. Given an interpretation of types [[ ]] and let i ≤ i′ with i, i′ ∈ Iϱ for a type ϱ.
1. If ϱ ∈ Typ+, then the factor system ([[ϱ]]i)i∈Iϱ is direct and a

p7−→ ai implies a
p7−→

embi′

i (ai).
2. If ϱ ∈ Typ−, then the factor system is inverse and a

p7−→ ai′ implies a
p7−→ proji′

i (ai′).

3.3 Interpretation of Terms and a First Version of the Reflection
Principle

The interpretation of terms in the type structure of the limit sets is the common interpretation.
What is new is the interpretation in the factor system. This part of the interpretation requires
a state judgement, so it is defined only for the core fragment, defined in Section 3.1.

▶ Definition 21. A Γ-environment is a list of elements A ∈ [[Γ]] := [[ϱ0]]× · · · × [[ϱn−1]] for
Γ = (ϱ0, . . . , ϱn−1). The value [[r]]A ∈ [[ϱ]] of a typed term Γ ⊢ r : ϱ is defined recursively on
the derivation of the judgement Γ ⊢ r : ϱ relative to a Γ-environment A ∈ [[Γ]]:

[[xk]]A := Ak for Γ ⊢ xk : ϱk,

[[rs]]A := [[r]]A([[s]]A) for Γ ⊢ r : ϱ→ σ and Γ ⊢ s : ϱ,

[[λxϱ
n r]]A(B) := [[r]]A.B for Γ.ϱ ⊢ r : σ and B ∈ [[ϱ]].

▶ Definition 22. A C-environment is a list of elements a ∈ [[Γ]]C := [[ϱ0]]i0 ×· · ·× [[ϱn−1]]in−1

for C = (i0, . . . , in−1). The value [[r]]ia:C ∈ [[ϱ]]i of a term with C | r : i relative to a
C-environment a ∈ [[Γ]]C is defined recursively on the derivation of the state judgement
C | r : i:

[[xk]]ja:C := embj
ik

(ak) for C | xk : ik and ϱk ∈ Typ+,

[[xk]]ja:C := projik
j (ak) for C | xk : ik and ϱk ∈ Typ−,

[[rs]]ja:C := [[r]]i→j
a:C ([[s]]ia:C) for C | r : i→ j and C | s : i,

[[λxϱ
n r]]i→j

a:C (b) := [[r]]ja.b:C.i for C.i | r : j and b ∈ [[ϱ]]i.

By definition, the value [[r]]ia:C depends on the way the judgement C | r : i has been
derived. So different derivations could lead to different values, making this definition incorrect.
The value [[rs]]ja:C seemingly depend on the chosen index i used in [[s]]ia:C . A consequence
of the main Theorem 24 is that the value [[r]]ia:C is indeed independent (modulo ≍) of the
derivation of the state judgement C | r : i.

5 Here we assume that the interpretation of type nat is the set N of all natural numbers, which is an
actual infinite set if one accepts actual infinities at meta-level. If not, N is an arbitrary large finite set,
which corresponds to a set in the implicitly given factor system at meta-level, i.e., N is Nj for some
sufficiently large index j depending on the stages of the meta-level investigation.

TYPES 2023



6:18 Potential Infinite Models of Type Theory

▶ Definition 23. Given a pair (A, a) with a Γ-environment A and a C-environment a such
that A

p7−→ a. The interpretation of a typed term Γ ⊢ r : ϱ with state judgement C | r : i

relative to (A, a) is the pair ([[r]]A, [[r]]ia:C) ∈ [[ϱ]]× [[ϱ]]i.

One would expect that A
p7−→ a implies [[r]]A

p7−→ [[r]]ia:C . Indeed, this is the content of
the next theorem, which is also the main theorem.

▶ Theorem 24. Given a typed term Γ ⊢ r : ϱ with C | r : i. If A ∈ [[Γ]], a ∈ [[Γ]]C are variable
assignments with A

p7−→ a, then

[[r]]A
p7−→ [[r]]ia:C .

Proof. The proof proceeds by induction on the derivation of C ⊢ r : i. For a variable xk of a
positive type we apply Lemma 20. This yields

[[xk]]A = Ak
p7−→ embj

ik
(ak) = [[xk]]ja:C ,

since Ak
p7−→ ak. A similar consideration holds for negative types. For application and

abstraction the claim follows from the fact that p7−→ is a logical relation. ◀

Consider the case of a closed term r : ϱ. Let us assume that ϱ is some data type, then the
theorem states that [[r]] p7−→ [[r]]i. Recall that the predecessor relation p7→ is seen as a directed
equality between two states of the same object. We can thus read p7−→, which is nothing
more than p7→ applied limits, as an equality between [[r]] and [[r]]i. As indicated in Section 1.1,
[[r]]i is a strong form of an approximation of [[r]].

Due to the use of logical relations on higher types, application and λ-abstraction respect
this equality. Since the type bool of propositions is part of the calculus, the equality holds also
for truth values. The relation [[r]] p7−→ [[r]]i for type bool, with the only values true and false

in classical logic, is the identity. Consequently, truth in the limit and truth in a sufficiently
large stage of the factor system coincide. Theorem 24 is the main result, and at the same
time this theorem is necessary to show that the basic definition of the interpretation of a
term, as introduced in Definition 22, is correct.

▶ Corollary 25. Let Γ ⊢ r : ϱ be a typed term with i ≤ i′, C | r : i and C | r : i′. Then
[[r]]i′

a:C
p7→ [[r]]ia:C holds for all C-environments a ∈ [[Γ]]C .

Proof. Define A := EmbC(a). Then A
p7−→ a follows from Condition (Emb), hence

[[r]]A
p7−→ [[r]]i′

a:C and [[r]]A
p7−→ [[r]]ia:C by Theorem 24, and therefore [[r]]i′

a:C
p7→ [[r]]ia:C by

Condition (Factor). ◀

The independence of the value [[r]]ia:C (modulo ≍) from the state judgement follows from
Corollary 25 if we take i = i′.

4 Conclusion and Further Work

We presented a model that can be used to interpret a fragment of the simply typed λ-calculus
(which we called core fragment) based on the assumption that infinite sets are potential
infinite. We gave a formalization of the potential infinite based on the filters D and sets ≪
within these filters. This allows one to avoid any notion of actual infinity. The function space
in this model is a family of finite function spaces and the model already has an interpretation
of the logical type bool with the usual two truth values.



M. Eberl 6:19

We introduced an interpretation of λ-terms from the core fragment which has a dynamic
part, the factor system, and a static part, the limit of the factor system. Nevertheless, both
parts are necessary, because from a dynamic point of view, the construction of a limit is not
the end of the process, but an intermediate state.

The next step is to extend the λ-calculus to constants, in particular to the logical constants
of implication and universal quantifier. The challenge here is that the universal quantifier
is not continuous and cannot be interpreted as a higher-order functional. The solution is
to introduce an additional rule with a side condition C ≪ i on the state judgments. The
correctness of the interpretation uses the fact that propositions have “stable truth values”
in the sense that for each proposition there is a stage in the model where the truth value
of the proposition does not change anymore during further extensions. A corresponding
interpretation for first-order logic has been given in [4].

The reflection principle from Theorem 24 then states that all objects and propositions
(propositions are specific terms of type bool) in the limit are reflected in a sufficiently large
state in the system. The interpretation is possible on the core fragment of simple type theory,
not for all terms. However, this fragment includes a version of a classical higher-order logic.
Unlike other models, such as domain theory [1], it does not require (actual) infinite sets at
all, and it includes logic.6

We do not expect that the theorem about the reflection principle can be extended from the
core fragment to all terms of simply typed λ-calculus without some kind of further restrictions.
This is because variables of function type correspond to arbitrary functions, which can also be
used to define higher-order functions by λ-abstraction. From the perspective of extensibility,
this necessitates the consideration of both covariant (with respect to the codomain) and
contravariant (with respect to the domain) extensions simultaneously. For instance, the
totality of higher-order functions requires that, for each argument, which could be a function
f of type nat→ nat, there must be a value. However, f is not given as a single entity. So
one must identify a property that guarantees totality and conditions that ensure invariance,
that is, existing properties must be preserved by future extensions of f . This is a significant
challenge for higher-order functions and it is related to properties of the filter D. It is also
the reason that for arbitrary functions, there are no simple state judgements as formulated
in the rules (Var+) and (Var−). A future task will be to identify conditions under which
the core fragment can be extended to include function variables.

References
1 Samson Abramsky and Achim Jung. Domain theory. In Handbook of logic in computer science.

Oxford University Press, 1994.
2 Hendrik Pieter Barendregt. The lambda calculus - its syntax and semantics, volume 103 of

Studies in logic and the foundations of mathematics. North-Holland, Amsterdam, 1985.
3 Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic Logic,

5(2):56–68, 1940. doi:10.2307/2266170.
4 Matthias Eberl. A model theory for the potential infinite. Reports on Mathematical Logic,

57:3–30, 2022. doi:10.4467/20842589rm.22.001.16658.
5 Matthias Eberl. Higher-order concepts for the potential infinite. Theoretical Computer Science,

945:113667, 2023. doi:10.1016/j.tcs.2022.12.017.

6 The idea of a logic-enriched type theory [7] separates propositions from the underlying type theoretic
framework. In our approach the logic is inside type theory, but the interpretation of the universal
quantifier has an extra treatment.

TYPES 2023

https://doi.org/10.2307/2266170
https://doi.org/10.4467/20842589rm.22.001.16658
https://doi.org/10.1016/j.tcs.2022.12.017


6:20 Potential Infinite Models of Type Theory

6 Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract syntax and variable
binding. In Proc. 14th LICS Conf., pages 193–202. IEEE, Computer Society Press, 1999.
doi:10.1109/LICS.1999.782615.

7 Nicola Gambino and Peter Aczel. The generalised type-theoretic interpretation of constructive
set theory. The Journal of Symbolic Logic, 71(1):67–103, 2006. doi:10.2178/jsl/1140641163.

8 John Longley and Dag Normann. Higher-order computability, volume 100. Springer, 2015.
doi:10.1007/978-3-662-47992-6.

9 Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: A first introduction to
topos theory. Springer Science & Business Media, 2012. doi:10.1007/978-1-4612-0927-0.

10 John C. Mitchell and Eugenio Moggi. Kripke-style models for typed lambda calculus. Annals
of Pure and Applied Logic, 51(1-2):99–124, 1991. doi:10.1016/0168-0072(91)90067-V.

11 Rob Nederpelt and Herman Geuvers. Type theory and formal proof: an introduction. Cambridge
University Press, 2014.

12 Gordon Plotkin. Lambda-definability and logical relations. Edinburgh University, 1973.
13 Anne S. Troelstra. Choice sequences. A chapter of intuitionistic mathematics. Oxford logic

guides, volume 44. Clarendon Press, 1979.
14 Anne S. Troelstra and Dirk van Dalen. Constructivism in mathematics. vol. i, volume 121 of.

Studies in Logic and the Foundations of Mathematics, 26, 1988.

https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.2178/jsl/1140641163
https://doi.org/10.1007/978-3-662-47992-6
https://doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.1016/0168-0072(91)90067-V

	1 Introduction
	1.1 Extensibility, Coinduction and Domain Theory
	1.2 Formalizing the Potential Infinite
	1.3 Relation to Constructive Approaches
	1.4 The Meta-Theory
	1.5 Structure of the Paper

	2 Factor Systems and their Limits
	2.1 Factor Systems
	2.2 The Function Space
	2.3 Targets and Limits
	2.4 Consistent Sets and Dynamic Elements
	2.5 Targets and Limits on the Function Space

	3 Towards Models and Interpretations
	3.1 Judgements for Types and States
	3.2 Interpretation of Types
	3.3 Interpretation of Terms and a First Version of the Reflection Principle

	4 Conclusion and Further Work

