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Preface

The TYPES meetings are a forum to present new and ongoing work in all aspects of
type theory and its applications, especially in formalized and computer assisted reasoning
and computer programming. This volume constitutes the post-proceedings of the 29th
International Conference on Types for Proofs and Programs, TYPES 2023, that was held at
Universitat Politècnica de València (UPV), from 12 to 15 June 2023.

The meetings from 1990 to 2008 were annual workshops corresponding to five consecutive
EU-funded networking projects. Since 2009, TYPES has been run as an independent
conference series. Previous TYPES meetings were organised by Antibes (1990), Edinburgh
(1991), Båstad (1992), Nijmegen (1993), Båstad (1994), Torino (1995), Aussois (1996), Kloster
Irsee (1998), Lökeberg (1999), Durham (2000), Berg en Dal near Nijmegen (2002), Torino
(2003), Jouy-en-Josas near Paris (2004), Nottingham (2006), Cividale del Friuli (2007), Torino
(2008), Aussois (2009), Warsaw (2010), Bergen (2011), Toulouse (2013), Paris (2014), Tallinn
(2015), Novi Sad (2016), Budapest (2017), Braga (2018), Oslo (2019), Turin (2020), Leiden
(2021), Nantes (2022). The 2020 and 2021 editions were virtual, because of the SARSCoV-2
pandemics.

The TYPES areas of interest include, but are not limited to: Foundations of type
theory and constructive mathematics; Homotopy type theory; Applications of type theory;
Dependently typed programming; Industrial uses of type theory technology; Meta-theoretic
studies of type systems; Proof assistants and proof technology; Automation in computer-
assisted reasoning; Links between type theory and functional programming; Formalizing
mathematics using type theory; Type theory in linguistics.

The TYPES conferences are all based on contributed talks based on short abstracts,
reporting work in progress and work presented or published elsewhere. After the conference,
a post-proceedings volume is edited, comprising papers presenting original work that has not
previously been published. Papers submitted to the post-proceedings are subject to a full
peer-review process.

The conference program of TYPES 23 consisted of 61 contributed talks, and four invited
talks by Yannick Forster (Inria Nantes, France), Marie Kerjean (CNRS, Université Sorbonne
Paris Nord, France), Simona Ronchi Della Rocca (Università di Torino, Italy) and Andrej
Bauer (University of Ljubljana, Slovenia). The conference was a successful event with 92
registered participants. All the details of the conference can be found at https://types2023.
webs.upv.es/.

Concerning the post-proceedings, 10 papers were initially submitted, out of which 6 were
accepted. We thank all the authors and reviewers for their hard work to make this possible!

Delia Kesner, Eduardo Hermo Reyes and Benno van den Berg, June 2024.

29th International Conference on Types for Proofs and Programs (TYPES 2023).
Editors: Delia Kesner, Eduardo Hermo Reyes, and Benno van den Berg

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
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Classification of Covering Spaces and Canonical
Change of Basepoint
Jelle Wemmenhove1 #

Department of Mathematics and Computer Science, Eindhoven University of Technology,
The Netherlands

Cosmin Manea
Department of Mathematics and Computer Science, Eindhoven University of Technology,
The Netherlands

Jim Portegies
Department of Mathematics and Computer Science, Eindhoven University of Technology,
The Netherlands

Abstract
Using the language of homotopy type theory (HoTT), we 1) prove a synthetic version of the
classification theorem for covering spaces, and 2) explore the existence of canonical change-of-
basepoint isomorphisms between homotopy groups. There is some freedom in choosing how to
translate concepts from classical algebraic topology into HoTT. The final translations we ended up
with are easier to work with than the ones we started with. We discuss some earlier attempts to
shed light on this translation process. The proofs are mechanized using the Coq proof assistant and
closely follow classical treatments like those by Hatcher [6].

2012 ACM Subject Classification Mathematics of computing → Algebraic topology; Theory of
computation → Type theory; Theory of computation → Constructive mathematics

Keywords and phrases Synthetic Homotopy Theory, Homotopy Type Theory, Covering Spaces,
Change-of-Basepoint Isomorphism
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Supplementary Material Software (Source Code): https://gitlab.tue.nl/computer-verified-
proofs/covering-spaces [18]

archived at swh:1:dir:bea0c0af55e3ec9869679f3a5611cc5154a9ddbf

1 Introduction

Homotopy type theory (HoTT) is a variant of Martin-Löf type theory (MLTT) that can
be used as a synthetic language for developing the theory of algebraic topology, specifically
the subfield of homotopy theory. This means that the types in MLTT are given topological
interpretations. The main example is the identity type a =X b which in HoTT is interpreted
as the type of paths from a to b in a space X . Since identity types are primitive objects in
MLTT, one obtains a low-level encoding of the mathematical theory: definitions are simple
and you can quickly go on to prove interesting theorems.

Many classical results from algebraic topology and homotopy theory have already been
developed synthetically within HoTT, e.g. computations of homotopy groups of spheres
(Brunerie and Licata [2, 13], and Ljungström and Mörtberg [14]), the Blakers-Massey
theorem (Hou, Finster, Licata, and Lumsdaine [8]), and Van Kampen’s theorem (Hou and
Shulman [10]). Not every result, however, can be translated into homotopy type theory
directly: to prove a synthetic version of Brouwer’s fixed point theorem, for example, requires

1 Corresponding author
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1:2 Classification of Covering Spaces and Canonical Change of Basepoint

extending the base theory to so-called real-cohesive homotopy type theory [15]. In this
article, we build on the development of covering spaces in HoTT by Hou and Harper [9], and
Buchholtz and Hou’s work on cellular cohomology [3].

We prove a synthetic version of the classification of covering spaces and synthetically
explore the existence of canonical change-of-basepoint isomorphisms between homotopy
groups. Although these topics seem quite disparate, the motivation to develop these results
in HoTT was unitary: we had little experience in using HoTT as a synthetic language, so to
increase our knowledge we set out to prove an exercise from Hatcher’s Algebraic Topology [6]
(Exercise 3.3.11) in HoTT. The solution to this exercise required the development of the two
topics presented here. The results have been mechanized2 in the Coq proof assistant using
the Coq-HoTT library [1]. We were able to closely mirror the classical arguments used by
Hatcher, making extensive use of core HoTT concepts like “transport” and “truncations”.
With the aim of serving as an entry point for other newcomers to HoTT, we tried to keep
our proofs explicit.

Our low-level approach might suggest that HoTT is merely a formal language for re-
expressing existing concepts and proofs from algebraic topology. Yet for experts, HoTT does
provide new ways to think about their subjects and allows them to express new concepts in
high-level conceptual arguments, such as the development of so-called “higher groups” by
Buchholtz, Van Doorn, and Rijke [4].

The synthetic version of the classification of covering spaces is shown in Section 3, as
well as intermediate results like the lifting criterion. We use Hou and Harper’s definition
of covering spaces [9] and proof techniques like “extension by weak constancy” [5] to stay
close to the classical treatment by Hatcher [6]. In contrast, Buchholtz et al. prove the Galois
correspondence of covering spaces from a more abstract perspective using their theory of
higher groups [4, Thm. 7]. Finding the “right” translations of classical statement into HoTT
was an iterative process: after having proven a specific formulation of some theorem, we
would realize that the proof could strongly be simplified if we used a different, yet equivalent,
formulation. To shed some light on the translation process, Section 3 also discusses some of
our earlier attempts.

In Section 4, we prove conditions for the existence of canonical change-of-basepoint
isomorphisms between homotopy groups by looking at the triviality of the π1-action on these
groups. We were interested in the existence of such isomorphisms because we needed them
to define the degree of non-pointed maps between spheres. Hou [7] defines the degree of
such maps in a different way: on the level of sets, non-pointed maps between spheres are
equivalent to pointed ones, and for these it is easy to define a degree. Although this approach
seems quite different from ours, we prove a classical result relating basepoint-preserving
and free homotopy classes of maps, which illustrates that Hou’s approach also relies on the
triviality of the π1-actions for spheres.

Let us here also quickly mention a third way to turn non-pointed maps between spheres
into pointed ones. As part of recent work, Buchholtz et al.3 constructed a family of sphere
reparameterizations that can map any point on the sphere to the basepoint. As such any
non-pointed map between spheres can be transformed into a pointed one by post-composition
with the appropriate reparameterization.

Before moving on to the main results in Sections 3 and 4, we recall the homotopical
interpretation of types and discuss some techniques used throughout this article.

2 Code repository: https://gitlab.tue.nl/computer-verified-proofs/covering-spaces. The con-
tent of this article corresponds to version 0.3.

3 See Meyers’s talk The tangent bundles of spheres, available at https://www.youtube.com/watch?v=
9T9B9XBjVpk (timestamp 9:30 minutes).

https://gitlab.tue.nl/computer-verified-proofs/covering-spaces
https://www.youtube.com/watch?v=9T9B9XBjVpk
https://www.youtube.com/watch?v=9T9B9XBjVpk
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2 Background

2.1 Topological interpretation
We recall the basic notions from homotopy type theory necessary for understanding the
results in this article. For a full explanation of homotopy type theory, we refer to the
HoTT book [17]. It starts with a friendly introduction to type theory and its homotopical
interpretation, discusses the differences with MLTT, such as higher inductive types and the
univalence axiom, and provides notes on the historical development of these ideas. In this
section, we do highlight some nuances that might be missed on an initial reading of the book.

2.1.1 Spaces, points, paths, and higher paths
The key to reading type theoretical statements as topological statements is the identification-
as-paths interpretation: a type X is interpreted as a space, terms x : X are interpreted as
points in this space, and identity types a =X b are interpreted as the type of paths from
point a to b . Viewing the identity type a =X b as a space in itself, we obtain a type p =a=X b q

of paths-between-paths with p, q : a =X b . These paths-between-paths are called homotopies
in topology. Continuing this construction we get an infinite tower of higher-and-higher paths,
endowing every type X with the structure of an ∞-groupoid.
▶ Remark. Coming from a math background, it is easy to mistake “a type X is interpreted as
a space” as meaning that X is a topological space. This is incorrect! It is meant that X is a
space precisely in the sense that it has an ∞-groupoid structure. ∞-groupoids turn out to be
the right data structure for describing the (higher order) path-structure of genuine topological
spaces: from a topological space X ′ one can construct the fundamental ∞-groupoid Π∞(X ′)
and this ∞-groupoid is enough to prove many theorems in algebraic topology, specifically
the theorems belonging to the subfield of homotopy theory. Words like path and homotopy
are reused for elements of ∞-groupoids both to prevent the need for a new vocabulary and
to more easily tap into our spatial intuition. For an excellent discussion on the differences
between ∞-groupoids and topological spaces, see the introduction of Shulman’s work [15].

Even though identity types a =X b are interpreted as paths, they are also still thought of
as equalities. In calculations, it feels more natural to read a chain like a = . . . = z as a list of
equalities than as a composition of paths. The usual rules for equalities also still apply: for
example, an equality p : a =X b implies an equality apf (p) : f(a) =Y f(b) , where f : X → Y .
In HoTT, this statement is interpreted as saying that all functions are continuous, in the
sense that they preserve paths between points.

2.1.2 Type families, transport, and dependent paths
A type family P : X → Type is interpreted as a collection of spaces that “lie over” a base
space X . the space P (x) is also referred to as the fiber over x : X . The sigma type

∑
x:X P (x)

is called the total space of P and the first projection pr1 : (
∑

x:X P (x)) → X is a special map
called a fibration. These maps play an important role in classical homotopy theory, but in
HoTT it is easier to work with type families directly.

Given a path p : a =X b , points u : P (a) in the fiber over a can be “transported” along p
to the fiber P (b) , the result is denoted as transportP (p, u) : P (b) . Transporting along paths
behaves as expected: transport along a constant path reflx : x =X x leaves the points in P (x)
unchanged, transportP (reflx, u) ≡ u , transport along a composite path p � q : a =X b =X c is
the same as first doing transport along p and then along q ,

transportP (p � q, u) =P (c) transportP (q, transportP (p, u)) ,

TYPES 2023



1:4 Classification of Covering Spaces and Canonical Change of Basepoint

and transport along the reverse path p−1 : b =X a is the inverse of transport along p .
Chapter 2 of the HoTT book [17] contains a number of useful characterizations of transport
in different kinds of type families. Of special interest to us are the formulas for transport in
loop spaces, e.g. transport of a loop q : a =X a along p : a =X b equals conjugation with p ,

transportx 7→x=X x(p, q) =(b=X b) p
−1 � q � p . (1)

Transport also provides a convenient way to reason about paths in the total space. In
general, a path p̃ : (a, u) = (b, v) in the total space is equivalent to the combination of a path
p : a =X b in the base space and a path wp : (transportP (p, u) =P (b) v) in the fiber P (b) ,
see [17, Thm. 2.7.2]. A path of the form (transportP (p, u) =P (b) v) is called a dependent
path; it is interpreted as a path from u to v that lies over the path p . For example, the
dependent path (1) is interpreted as a path (i.e. a homotopy) from loop q : a =X a to loop
p−1 � q � p : b =X b that lies over p . The interpretation of dependent paths as lying over
paths in the base space is justified by the equivalence with paths in the total space. In fact,
to specify the paths that lie over some path p , it is easier to use dependent paths than
paths in the total space. This is because the equality appr1

(p̃) = p which picks out the paths
p̃ : (a, u) = (b, v) that lie over p is propositional and not judgemental.

Finally, we have the following result which says that transport commutes with operations
on the fibers of the type family.

▶ Lemma 1. Let P,Q : X → Type be two type families and let f( – ) :
∏

x(P (x) → Q(x)) be
a family of maps, then for all paths p : a =X b and points u : P (a) it holds that

transportQ(p, fa(u)) = fb(transportP (p, u)) .

Proof. Let p : a =X b , then there exists a dependent equality between fa and fb over p ,

apdf( – )
(p) : transportx 7→(P (x)→Q(x))(p, fa) = fb ,

and by Lemma 2.9.6 in the HoTT book [17], this is equivalent to what we need to show. ◀

2.1.3 Truncations and path-connectedness
In classical homotopy theory, the infinite structure of ∞-groupoids can be “truncated” to
make them easier to study. Such truncation operators are also available in HoTT, but here
their main use is as modalities that increase the logical expressiveness of the theory.

For example, propositional truncation is needed to accurately capture the concept of
path-connected spaces in homotopy type theory. A space X is called path-connected (or just
connected in HoTT, as there is no analogy to the topological notion of connectedness) if for
every two points a, b : X there merely exists a path between them; this is expressed as the
(propositionally) truncated type ∥a =X b∥ being inhabited. An explicit witness p : a =X b

would imply having a canonical choice of path, a form of constructive existence which is
stronger than mere existence.

Some types already have a truncated higher-order ∞-groupoid structure of their own,
truncating them again has no effect. A type Z for which ∥Z∥n ≃ Z is called an n-type. In
this article we will mainly encounter (−1)-types and 0-types. These are called propositions
and sets respectively, the types of propositions and sets are denoted by Prop and Set. Two
terms of a proposition are always equal, e.g. for p, q : ∥a =X b∥ it holds that p = q , and sets
are homotopy equivalent to a collection of points.



J. Wemmenhove, C. Manea, and J. Portegies 1:5

2.1.4 Loop spaces and homotopy groups
We briefly recall the definitions of loop spaces, homotopy groups, and induced maps on these.

The term reflx
n denotes the constant n-dimensional path (also called an n-cell) from x : X

to itself. It is defined recursively by

refln+1
x :≡ reflrefln

x
: (refln

x = refln
x) with refl0

x :≡ x ,

so refl1
x ≡ reflx : (x =X x) denoted the constant path and refl2

x : (reflx =X reflx) denotes the
constant homotopy between the constant path reflx and itself.

Given a pointed type (X,x0), the space Ωn(X,x0) :≡ (refln−1
x0

= refln−1
x0

) of n-cells is
called the n-th loop space of (X,x0) . It is a pointed type in itself, with the constant n-cell
refln

x0
: Ωn(X,x0) as the designated point. Thus, we have Ωn+1(X,x0) :≡ Ω(Ωn(X,x0)) .

The homotopy groups πn(X,x0) are defined as the sets of n-dimensional loops, meaning that
πn(X,x0) :≡ ∥Ωn(X,x0)∥0 .

Given a pointed map f : (X,x0) · → (Y, y0) with wf : f(x0) = y0 as its proof of
pointedness (which alternatively can also be denoted as a pair (f, wf ) : (X,x0) · → (Y, y0)),
there are induced maps f∗ : Ω(X,x0) → Ω(Y, y0) and f∗ : π1(X,x0) → π1(Y, y0) given by

f∗(p) :≡ w−1
f

� apf (p) �wf and f∗(|p|0) :≡ |w−1
f

� apf (p) �wf |0 with p : (x0 =X x0) .

Whichever version of f∗ is meant should be clear from context. Note that it suffices to define
f∗ : π1(X,x0) → π1(Y, y0) for terms of the form |p|0 since the codomain is a set, see the next
section.

2.2 Dealing with truncations
The topological results in this article are about connected spaces, so we are constantly
confronted with the fact that we only have truncated paths ∥a =X b∥ . Although they come
from non-truncated paths, we cannot freely use them as such.

The basic way to deal with truncated types is by using their induction principle: if the
goal is to prove an n-type, we may “strip” the truncation-bars from a truncated type ∥Z∥n

and use it as if it were the non-truncated type. In practice, this means that an n-truncated
term z : ∥Z∥n can be assumed to be of the form z ≡ |z′|n with z′ : Z . So, if W is an n-type,
we can define maps ∥Z∥n → W by only specifying the output on terms of the form |z|n .

The absence of canonical paths is also an issue in the classical algebraic topology when
doing constructions. There, the solution is to take an arbitrary path for the construction
and to then show that final result does not dependent of the specific path chosen. We can do
something similar in HoTT, with the caveat that the constructed object’s type has to be a
set. The magic ingredient is a technique called extension by weak constancy.

▶ Lemma 2 (Extension by weak constancy, cf. generalization [5, Thm. 1]). Let Z be a type
and W a set. If f : Z → W satisfies f(z1) =W f(z2) for all z1, z2 : Z , it can be extended to
a map g : ∥Z∥ → W such that g(|z|) ≡ f(z) for all z : Z .

Extension by weak constancy is used as follows to construct objects from truncated paths.
First, give the construction for an arbitrary, non-truncated path p : a =X b , i.e. define a
map w : (a =X b) → W , where W denotes the type of object to construct. Provided that
(i) W is a set, and (ii) w(p) = w(q) for all p, q : a =X b , the construction w can be extended
to a map w : ∥a =X b∥ → W . The inhabitant of the truncated path type, ∗ : ∥a =X b∥ , is
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inserted to obtain the final object, w∗ :≡ w(∗) : W . Additionally, it holds that w∗ = w(p) for
any explicit path p : a =X b . This is because the equality is a proposition, so the truncation
from ∗ can be stripped, from which it follows that

w∗ ≡ w(∗) ≡ w(|q|) ≡ w(q) = w(p) ,

where ∗ ≡ |q| for some q : a =X b .

2.3 Notation

We stick to the notation of the HoTT book, with some exceptions: we use Type instead of U
to denote the universe of types and we use f∗ to denote the induced maps on loop spaces
and fundamental groups instead of Ω(f) and π1(f) in order to stay closer to the notation
used by Hatcher [6]. As not to confuse f∗ with the shorthand notation for transport, like
p∗u = v, we prefer to write out transport in full, namely as (transportP (p, u) = v) .

3 Classification of covering spaces

In this section we prove synthetic versions of the lifting criterion and the classification of
covering spaces. With the right translations into HoTT, we were able to obtain low-level
proofs that closely follow the their classical counterparts, e.g. those used by Hatcher [6].
Figuring out what the “right” translations were, however, took multiple attempts. Besides
giving the final versions of definitions and statements, we also discuss some earlier versions
and what trouble they caused us, so that others may learn from our experience.

▶ Note. There is an official notion of “correctness” for translation of classical statements
into HoTT. Homotopy type theory can be modeled in the topos of simplicial sets [12], and
simplicial sets have a geometric realization as CW complexes, i.e. actual topological spaces.
Statements in HoTT can thus be interpreted as statements about CW complices, and so it
can be checked that the translation of statements into HoTT is equivalent to the original
statements under this interpretation. Checking the correctness of translations in this way is
not the purpose of this article. We rely on the homotopical intuition build up over time by
the community and the a posteriori justification provided by proofs of classical results.

3.1 Covering spaces in HoTT

The study of covering spaces in HoTT was initiated by Hou and Harper [9]. They prove that
every covering space of a pointed space (X,x0) corresponds to a set with a π1(X,x0)-action
and they construct the universal covering space. We take their definition of a pointed covering
space as a starting point:

▶ Definition 3 (cf. [9, Def. 1&7]). Let (X,x0) be a pointed type. A covering space of X is
a set-valued type family F : X → Set . If F is equipped with a designated point u0 : F (x0) ,
the pair (F, u0) is called a pointed covering space.

Recall that type families naturally correspond to fibrations in HoTT. The requirement that F
takes values in Set guarantees the “sheetedness” of the covering space as it implies that each
fiber is homotopic to a discrete collection of points.
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Since types automatically inherit a notion of equality, we can also check a definition’s
correctness by inspecting its identity type.4 The classical classification theorem only distin-
guishes covering spaces up to fiberwise, base-point preserving homeomorphism, and, indeed,
the lemma below shows that Hou and Harper’s definition gives rise to the same notion of
equality. (Note that the notion of homeomorphism can only be expressed as homotopy
equivalence in HoTT.)

▶ Lemma 4 (Characterization of equality between pointed covering spaces). Let (F1, u1) and
(F2, u2) be pointed covering spaces over a pointed type (X,x0) . Then there is an equivalence

(F1, u1) = (F2, u2) ≃
∑

h :
∏

x
F1(x)≃F2(x)

h(x0, u1) =F2(x0) u2 .

This implies that two pointed covering spaces are equal if and only if there exists a basepoint-
preserving, fiberwise equivalence between them.

Proof. A term w : (F1, u1) = (F2, u2) is a path in the total space
∑

X F , so it is equivalent
to a path between functions h′ : F1 = F2 that satisfies

transportF 7→F (x0)(h′, u1) = u2 .

By functional extensionality, h′ corresponds to the family happly(h′) :
∏

x F1(x) = F2(x) .
Each happly(h′, x) : F1(x) = F2(x) is a path between types (technically, between types with
a proof that they are sets, but since being a set is a proposition in itself, this can be ignored),
so by univalence happly(h′, x) corresponds to an equivalence

idtoeqv(happly(h′, x)) : F1(x) ≃ F2(x) .

Thus h′ is corresponds 1-to-1 to the fiberwise equivalence h :
∏

x:X F1(x) ≃ F2(x) given
by h(x, –) :≡ idtoeqv(happly(h′, x)) . By path induction, it holds that

h(x, –) ≡ idtoeqv(happly(h′, x)) = transportF →F (x)(h′, –) ,

so the condition (transportF 7→F (x0)(h′, u1) = u2) satisfied by h′ is equivalent to the statement
h(x0, u1) = u2 , giving us an equivalence on the level of sigma types. ◀

3.2 Lifting criterion
The lifting criterion serves as a nice stepping stone towards the classification of covering
spaces. Not only is it used in the classical proof of the classification theorem, it also allows
us to practice with translating classical statements into homotopy type theory. First, we
obtain a direct translation of the lifting criterion, but it turns out that this translation can
be simplified whilst more closely reflecting the geometric ideas.

We define the lift of a map in homotopy type theory as follows.

▶ Definition 5. Let f : (Y, y0) · → (X,x0) be a pointed map with wf : f(y0) =X x0 its proof
of pointedness. A pointed lift of f to the covering space (F, u0) over (X,x0) is a dependent
map f̃ :

∏
y:Y F (f(y)) such that

transportF (wf , f̃(y0)) =F (x0) u0 .

4 This method of validating definitions in HoTT by checking if they produce the right type of equality
was suggested by Egbert Rijke at the 2023 HoTT/UF workshop.
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1:8 Classification of Covering Spaces and Canonical Change of Basepoint

Instead of defining the lift as a dependent map f̃ :
∏

y:Y F (f(y)) – meaning that f̃ maps
each point y : Y to a point in the fiber over f(y) – we could have stayed closer to the
classical definition and defined the lift as a map f̃ : Y →

∑
X F such that w

f̃
: pr1 ◦ f̃ = f .

These formulations are equivalent and both types deserve to be called lifts, but we prefer
to use the dependent map formulation because, in our experience, it was easier to work
with. We tried to use the classical formulation in an earlier attempt, but this required us
to use transport along w

f̃
every time we had to compare terms in the fibers over pr1(f̃(y))

and f(y) . This does not happen when defining the lift as a dependent map, because then
the equality pr1 ◦ f̃ ≡ f is a judgemental one.

Using Definition 5, the lifting criterion can be formulated directly in homotopy type
theory.

▶ Theorem 6 (direct translation, cf. [6, Prop. 1.33]). Let (F, u0) be a pointed covering space
over a pointed type (X,x0) . A pointed map f : (Y, y0) · → (X,x0) , with Y a connected type,
can be lifted to pointed lift f̃ :

∏
y:Y F (f(y)) if and only if

f∗(π1(Y, y0)) ⊂ pr1∗(π1(
∑

X F, (x0, u0))) . (2)

In proving Lemma 6, we found criterion (2) inconvenient to work with. The notation
f∗(π1(Y, y0)) conceals multiple truncations – a propositional-truncation to define the image of
a map and a set-truncation for π1 – which hinder access to the paths themselves. Furthermore,
Hou and Harper’s definition of covering spaces does not involve the (pointed) total space
(
∑

X F, (x0, u0)) , so we would prefer to have a version of criterion (2) that does not use it
either.

Upon closer inspection, criterion (2) can be expressed more succinctly as a statement
involving dependent paths. The criterion basically says that for any loop in type x0 =X x0 of
the form f∗(p) with p : y0 =Y y0 , there exists a loop of type (x0, u0) = (x0, u0) in the total
space lying over f∗(p) . In HoTT, the latter is interpreted as the existence of a dependent
loop

transportF (f∗(p), u0) =F (x0) u0 .

This gives us an equivalent alternative to criterion (2) as stated in the lemma below. Note
that the set-truncated π1’s are also replaced by untruncated path types. This is possible
because both statements are propositions.

▶ Lemma 7. Let (F, u0) be a pointed covering space over a pointed type (X,x0) and let
f : (Y, y0) · → (X,x0) be a pointed map. The following propositions are equivalent:

(i) f∗(π1(Y, y0)) ⊂ pr1∗(π1(
∑

X F, (x0, u0))) ;
(ii) for all loops p : y0 =Y y0 there exists a dependent loop of type

(transportF (f∗(p), u0) =F (x0) u0) .

The proof is a bit technical and involves a lot of truncations. We deal with these now so
we do not have to deal with them when proving the lifting criterion.

Proof. Since both conditions are propositions, it suffices to show that both statements imply
each other.

Assume that f∗(π1(Y, y0)) ⊂ pr1∗(π1(
∑

X F, (x0, u0))) and let p : y0 =Y y0 . Nat-
urally, the truncated loop f∗(|p|0) lies in f∗(π1(Y, y0)) , so by assumption it also lies in
pr1∗(π1(

∑
X F, (x0, u0))) , meaning that there merely exists a q′ : π1(

∑
X F, (x0, u0)) such

that pr1∗(q′) = f∗(|p|0) . The goal is to show that (transportF (f∗(p), u0) =F (x0) u0) , and
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since F (x0) is a set, this is a proposition. Hence, we can strip the “merely” in “merely exists”
and we can strip the truncation from π1(

∑
X F, (x0, u0)) ≡ ∥(x0, u0) = (x0, u0)∥0 to obtain

an explicit loop q : (x0, u0) = (x0, u0) which satisfies pr1∗(|q|0) = f∗(|p|0) . As q is a loop in
the total space, it can be split into its projection onto the base space appr1

(q) : x0 =X x0 and
a dependent loop of type (transportF (appr1

(q), u0) =F (x0) u0) in the fiber F (x0) . Therefore,
to show that (transportF (f∗(p), u0) =F (x0) u0) , it suffices to show that

appr1
(q) = f∗(p) .

This follows from the fact that q satisfies pr1∗(|q|0) = f∗(|p|0) : using the definitions of the
induced maps, this equality can be rewritten as |pr1∗(q)|0 = |f∗(p)|0 , which by Theorem 7.3.12
in [17], is equivalent to ∥pr1∗(q) = f∗(p)∥ . The truncation can be stripped, and the result
implies that

appr1
(q) = refl−1

x0
� appr1

(q) � reflx0 ≡ pr1∗(q) = f∗(p) .

Conversely, assume that for all loops p : y0 =Y y0 there exists a dependent path of the
form (transportF (f∗(p), u0) =F (x0) u0) . Let r : π1(X,x0) and assume that r lies in the image
f∗(π1(X,x0)) , meaning that there merely exists a p′ : π1(Y, y0) such that f∗(p′) = r . The
goal is to show the proposition that r′ lies in pr1∗(π1(

∑
X F, (x0, u0))) , so we can again

strip the truncations in “the mere existence of p′” to obtain an explicit loop p : y0 =Y y0
that satisfies f∗(|p|0) = r . To show that r lies in pr1∗(π1(

∑
X F, (x0, u0))) , it suffices to

construct a loop q : (x0, u0) = (x0, u0) that satisfies pr1∗(|q|0) = r . Since r = f∗(|p|0) ,
this latter property can be replaced by pr1∗(|q|0) = f∗(|p|0) . From here we can ignore the
loop r , making this part of the proof more similar to the previous part. To construct a loop
q : (x0, u0) = (x0, u0) it suffices to provide a loop q1 : x0 =X x0 in the base space and a
dependent loop of type (transportF (q1, u0) =F (x0) u0) over q1 . Choose q1 :≡ f∗(p) , then the
dependent loop of type (transportF (f∗(p), u0) =F (x0) u0) exists by assumption. Furthermore,
by construction it holds that appr1

(q) ≡ q1 ≡ f∗(p) , so it holds that

pr1∗(|q|0) ≡ |refl−1
x0

� appr1
(q) � reflx0 |0 = |appr1

(q)|0 = |f∗(p)|0 ≡ f∗(|p|0) . ◀

Replacing criterion (2) in the direct translation of the lifting criterion (Theorem 6) with
proposition (ii) from Lemma 7, we obtain a version of the lifting criterion that is better
suited to the language of homotopy type theory. We prove this version and, hence, also the
direct translation. The proof closely follows the argument used by Hatcher [6].

▶ Theorem 8 (Lifting criterion, cf. [6, Prop. 1.33]). Let (F, u0) be a pointed covering space
over a pointed type (X,x0) . A pointed map f : (Y, y0) · → (X,x0) , with Y a connected type,
can be lifted to a pointed lift f̃ :

∏
y:Y F (f(y0)) if and only if for all loops p : y0 =Y y0 there

exists dependent loop

transportF (f∗(p), u0) =F (x0) u0 ,

meaning that there exists a loop from u0 to u0 over f∗(p) in F .

Proof. Before we start, note that the point x0 : X is arbitrary, and hence we can perform
path induction on the path wf : f(y0) =X x0 that encodes f ’s pointedness. So assume that
we have a judgmental equality x0 ≡ f(y0) . This lets us replace every occurrence of x0 in the
theorem’s statement by f(y0) . Moreover, we also get to assume that the path wf itself is
judgmentally equal to the constant path, i.e. wf ≡ reflf(y0) .
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Assume that there exists a dependent loop of type (transportF (f∗(p), u0) =F (x0) u0) for
every loop p : y0 =Y y0 . Let y : Y . Since Y is connected, the mere path type ∥y0 =Y y∥
is inhabited, which we use to define the lift f̃(y) like Hatcher: first, we take an arbitrary
path q : y0 =Y y to construct f̃(y) by transporting the point u0 : F (x0) to the fiber F (f(y))
along the path apf (q) : f(y0) = f(y) ; we then show that f̃(y) is well-defined, i.e. that the
resulting construction did not depend on the specific choice of path q : y0 =Y y . This way of
constructing f̃(y) is justified because of extension by weak constancy (Lemma 2) as explained
in Section 2.2.

Let q : y0 =Y y be an arbitrary path; this gives a path apf (q) : f(y0) =X f(y). We then
define the lift f̃(y) as

f̃(y) :≡ transportF (apf (q), u0) : F (f(y)) .

It remains to show that this construction does not depend on the choice of path of type
y0 =Y y . Let q1, q2 : y0 =Y y , we need to show that

transportF (apf (q1), u0) = transportF (apf (q2), u0) .

We again follow Hatcher’s proof. Remark that apf (q1) � apf (q2)−1 is a loop in the type
f(y0) =X f(y0) of the form f∗(p) for some p : y0 =Y y0 , namely

apf (q1) � apf (q2)−1 = apf (q1 � q
−1
2 ) = refl−1

f(y0)
� apf (q1 � q

−1
2 ) � reflf(y0) ≡ f∗(q1 � q

−1
2 ) .

Hence, by assumption we have a dependent loop over apf (q1) � apf (q2)−1 ,

transportF (apf (q1) � apf (q2)−1, u0) =F (x0) u0 .

Transporting both sides back along apf (q2) , we see that apf (q1) and apf (q2) both send u0
to the same point in F (f(y)) :

transportF (apf (q1), u0) = transportF (apf (q2), u0) .

This concludes the construction of the lift f̃(y) .
Since wf ≡ reflf(y0) , proving that f̃ is a pointed lift reduces to showing that f̃(y0) = u0 .

To compute f̃(y0) , we utilize that we have access to an explicit loop refly0 : y0 =Y y0 . This
gives us that

f̃(y0) = transportF (apf (refly0), u0) ≡ transportF (reflf(y0), u0) ≡ u0 .

Conversely, assume that a pointed lift f̃ exists. Let p : y0 =Y y0 , then we need to show
that there exists a dependent loop of type (transportF (f∗(p), u0) =F (x0) u0) . The path p

gives rise to a dependent equality between f̃(y0) and itself over p in the family F ◦ f , namely

apd
f̃

(p) : transportF ◦f (p, f̃(y0)) =F (f(y0)) f̃(y0) .

By Lemma 2.3.10 in the HoTT book [17], transport along p in F ◦ f equals transport
along apf (p) in F , so we get a dependent loop at f̃(y0) in F ,

transportF (apf (p), f̃(y0)) =F (f(y)) transportF ◦f (p, f̃(y0)) =F (f(y)) f̃(y0) .

Since f̃ is pointed, i.e. f̃(y0) = u0 , this gives the dependent loop over f∗(p) that was sought:

transportF (f∗(p), u0) ≡ transportF (refl−1
f(y0)

� apf (p) � reflf(y0), u0)

= transportF (apf (p), u0) = transportF (apf (p), f̃(y0)) = f̃(y0) = u0 . ◀
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3.3 Classification theorem
After translating the lifting criterion, we are ready to state and prove the classification
of covering spaces in homotopy type theory. The theorem is given below. Note how the
subgroup associated to a covering space is not defined as the image of the covering map, but
is given in terms of dependent loops, like with the reformulated lifting criterion in Theorem 8.

▶ Theorem 9 (Classification, cf. [6, first half of Thm. 1.38]). Let (X,x0) be a pointed type, then
there exists an equivalence between pointed, connected covering spaces (F, u0) over (X,x0)
and subgroups of π1(X,x0) , obtained by associating to (F, u0) the subgroup H(F,u0) given by

H(F,u0)(|p|0) :≡ (transportF (p, u0) =F (x0) u0) ,

meaning that |p|0 : π1(X,x0) belongs to H(F,u0) : π1(X,x0) → Prop if there exists a loop
from u0 to u0 lying over p in F .

The theorem classifies connected covering spaces. Again, we follow Hou and Harper [9]’s
definition:

▶ Definition 10. A covering space F : X → Set is called connected if its total space
∑

X F

is connected.

Both the HoTT proof and the classical proof consists of two parts: showing that the
association in Theorem 9 is injective and surjective. Surjectivity is shown using the universal
covering space P constructed by Hou and Harper [9]. To show injectivity, the classical proof
uses the lifting criterion to construct maps between covering spaces X̃1 and X̃2 by lifting the
respective projections:

X̃1 X̃2 X̃1

X

p̃1

p1

p̃2

p2
p1

Unfortunately, we cannot use the lifting criterion for the same purpose in the HoTT-setting,
as the codomains of the maps we wish to construct are no longer spaces like X̃i , but families
Fi : X → Set . Therefore, we prove two new lemmas that give conditions for the existence
and uniqueness of maps between covering spaces defined as families of sets. They correspond
to the lifting criterion and the unique lifting property in the classical theory.

▶ Lemma 11. Let (F1, u1) and (F2, u2) be pointed covering spaces over a pointed type (X,x0)
with F1 connected. Then there exists a fiberwise map h :

∏
x:X F1(x) → F2(x) that preserves

the basepoint, meaning that h(x0, u1) = u2 , if and only if for all loops p : x0 =X x0 we have

(transportF1(p, u1) =F1(x0) u1) −→ (transportF2(p, u2) =F2(x0) u2) ,

meaning that existence of a loop from u1 to u1 over p in F1 implies existence of a loop
from u2 to u2 over p in F2 .

▶ Lemma 12. Let (F1, u1) and (F2, u2) be pointed covering spaces over a pointed type (X,x0)
with F1 connected. Then any two fiberwise maps h1, h2 :

∏
x:X F1(x) → F2(x) are equal if

they coincide in a single point, e.g. if h1(x0, u1) = h2(x0, u1) .

Since Lemma 11 serves as a “family of sets”-based version of the lifting criterion, its proof
is also similar to that of Theorem 8.
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Proof (Lemma 11). Assume that for all for all loops p : x0 =X x0 , existence of a dependent
loop of type (transportF1(p, u1) =F1(x0) u1) in F1 implies existence of a dependent loop of
type (transportF2(p, u2) =F2(x0) u2) in F2 . Let x : X and u : F1(x) . We construct h(x, u)
in the same way as the lift in the proof of the lifting criterion (Theorem 8), namely as
the transport of the designated point u2 : F2(x0) along a path to the fiber F2(x) . The
path which u2 is transported along is given in terms of a path in the total space of F1 .
Since F1 is connected, we only have the mere existence of such paths, so we need to show
that the construction of h(x, u) is path-independent. Like in the lifting criterion, we again
use extension by weak constancy (Lemma 2) to replicate this construction method in HoTT.

Take an arbitrary path of type (x0, u1) = (x, u) in the total space of F1 . This is
equivalent to an arbitrary path q : x0 =X x such that (transportF1(q, u1) =F1(x) u) . Since
transporting u1 along q yields u , it seems reasonable that transport of u2 along q should
give h(x, u) . So, define h(x, u) as:

h(x, u) :≡ transportF2(q, u2) : F2(x) .

It remains to show that any two paths in (x0, u1) = (x, u) produce the same point h(x, u) .
It suffices to show that any two paths q1, q2 : x0 =X x satisfying (transportF1(qi, u1) =F1(x) u)
yield the same value for h(x, u) . Let q1, q2 be such paths. Like in the proof of the lifting
criterion (Theorem 8), (q1 � q

−1
2 ) is a loop of type x0 =X x0 and it holds that

transportF1(q1 � q
−1
2 , u1) =F1(x0) u1 , and so transportF2(q1 � q

−1
2 , u2) =F2(x0) u2 .

It follows that (transportF2(q1, u2) =F2(x0) transportF2(q2, u2)) , so h(x, u) is well-defined.
To prove pointedness, we utilize that we have access to an explicit loop reflx0 : x0 =X x0

which satisfies (transportF1(reflx0 , u1) ≡ u1) . This allows us to compute h(x0, u1) :

h(x0, u1) = transportF2(reflx0 , u2) ≡ u2 .

Conversely, let h :
∏

x:X F1(x) → F2(x) be a basepoint-preserving, fiberwise map between
covering spaces, let p : x0 =X x0 be a loop and assume there exists a dependent loop of type
(transportF1(p, u1) =F1(x0) u1) . By Lemma 1, the family h(x, –) commutes with transport,
which implies the existence of a dependent loop at h(x0, u1) over p in F2 , namely

transportF2(p, h(x0, u1)) = h(x0, transportF1(p, u1)) = h(x0, u1) .

Since h(x0, u1) = u2 , we thus have a dependent loop of type (transportF2(p, u2) =F2(x0) u2) ,
which is what we needed. ◀

Proof (Lemma 12). Let h1, h2 :
∏

x:X F1(x) → F2(x) be fiberwise maps and w.l.o.g. assume
they coincide in u1, so h1(x0, u1) = h2(x0, u2) . Let x : X and u : F1(x) be arbitrary, the
goal is to prove the proposition h1(x, u) =F2(x) h2(x, u) . F1 is connected, so the mere path
type ∥(x0, u1) = (x, u)∥ is inhabited. As the goal is a proposition, the truncation can be
stripped, leaving an explicit path. This path is equivalent to a path p : x0 =X x that satisfies
(transportF1(p, u1) =F1(x0) u) . Lemma 1 implies that the families hi(x, –) commute with
transport, so

hi(x, u) = hi(x, transportF1(p, u1)) = transportF2(p, hi(x0, u1))

for i = 1, 2 . By the assumption h1(x0, u1) = h2(x0, u1) , we thus have h1(x, u) = h2(x, u) for
arbitrary x and u . ◀
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Using Lemma 11 and 12 as replacements for the lifting criterion and the unique lifting
property, we give a proof for the classification theorem in HoTT. Again, the proof itself
closely follows the argument used by Hatcher [6].

Proof (Theorem 9). We need to show that the association (F, u0) 7→ H(F,u0) is an equival-
ence, meaning that it is both injective and surjective.

The proof of surjectivity uses the universal covering space P : X → Set constructed by
Hou and Harper [9] ; the fibers P (x) are defined as the sets of paths from x0 to x

P (x) :≡ ∥x0 =X x∥0 .

Let H : π1(X,x0) → Prop be a subgroup. We follow Hatcher [6] for the construction of a
covering space FH . Let ∼x denote the relation on ∥x0 =X x∥0 defined by

q1 ∼x q2 :≡ H(q1 � q
−1
2 ) with q1, q2 : ∥x0 =X x∥0 .

Since H is closed under group operations, ∼x is an equivalence relation. The covering space
FH : X → Set is then defined as the set-quotient of P w.r.t ∼ :

FH(x) :≡ P (x)/ ∼x with designated point uH :≡ [ |reflx0 |0] : FH(x0) .

Connectedness of FH follows along similar lines as Lemma 3.11.8 in the HoTT book [17].
In order to reason about the terms v : FH(x) as being given by representatives v ≡ [p′]
with p′ : ∥x0 =X x∥ , we do need to perform induction on the quotient type. The (higher)
coherence conditions required are satisfied because a type being connected is a proposition.

We need to show that the subgroup H(FH ,uH ) is equal to H . This is equivalent to showing
that for all loops p : x0 =X x0 there is an equivalence

H(|p|0) ≃
(
transportFH (p, uH) =FH (x0) uH

)
( ≡ H(FH ,uH )(|p|0) ) .

(Being an equivalence is a proposition, so the truncation from loops in π1(X,x0) ≡
∥x0 =X x0∥0 can be stripped.) Let p : x0 =X x0 . By definition of (FH , uH) , the dependent
loop type (transportFH (p, uH) =FH (x0) uH) can be rewritten as [ |p|0] =FH (x0) [ |reflx0 |0]
because uH ≡ [ |reflx0 |0] and

transportFH (p, uH) ≡ transportFH (p, [ |reflx0 |0]) = [ |transportx 7→x0=X x(p, reflx0 )|0] = [ |p|0] ,

where we use that the family of maps [ |– |0] : (x0 =X x) → FH(x) commutes with transport
(Lemma 1). Since ∼x0 is an equivalence relation, [ |p|0] =FH (x0) [ |reflx0 |0] is equivalent to
|p|0 ∼x0 |reflx0 |0 , which, by definition, is equivalent to H(|p|0 � |reflx0 |0−1) and hence H(|p|0) .
Thus, the subgroups H(FH ,uH ) and H are equal.

We now show that the association (F, u0) 7→ H(F,u0) is injective. Assume that for two
connected, pointed covering spaces (F1, u1) and (F2, u2) , it holds that H(F1,u1) = H(F2,u2) .
By definition of these subgroups, this implies that for all loops p : x0 =X x0 we have(

transportF1(p, u1) =F1(x0) u1
)

≃
(
transportF2(p, u2) =F2(x0) u2

)
.

(Again, truncations can be stripped from loops in π1(X,x0) as the goal (F1, u1) = (F2, u2)
is a proposition.) By Lemma 11 there exist fiberwise maps h12 :

∏
x:X F1(x) → F2(x) and

h21 :
∏

x:X F2(x) → F1(x) such that h12(x0, u1) = u2 and h21(x0, u2) = u1 . By Lemma 12,
it holds that h21 ◦ h12 = idF1 and h12 ◦ h21 = idF2 , because these maps coincide in the
designated points (x0, u1) and (x0, u2) , namely

h21(x0, h12(x0, u1)) = u1 ≡ idF1(x0, u1) and h12(x0, h21(x0, u2)) = u2 ≡ idF2(x0, u2) .
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Hence, h12 and h21 are each other’s inverses, and so h12 is a basepoint-preserving, fiberwise
equivalence from (F1, u1) to (F2, u2). By Lemma 4 this means the pointed covering spaces
are equal, thus proving the classification theorem. ◀

4 Canonical change of basepoint

To develop the necessary theory to prove Exercise 3.3.11 from Hatcher’s Algebraic Topology [6]
– our initial goal – we needed the existence of change-of-basepoint isomorphisms between
homotopy groups of spheres, πn(Sn, x) ∼= πn(Sn, y) . Such isomorphisms were needed to
define the degree of a non-pointed map Sn → Sn . The degree is easy to define for pointed
maps, but for non-pointed maps you need a consistent way to associate πn(Sn, f(base)) with
πn(Sn, base) . In this section we prove some classical results on the existence of change-of-
basepoint isomorphisms for connected spaces in general.

In classical homotopy theory, any path p from a to b in a topological space X induces
a change-of-basepoint isomorphism between homotopy groups πn(X, a) ∼= πn(X, b) . The
isomorphism depends on the homotopy class of the path p . In the case that X is simply-
connected, the isomorphism can be considered canonical – there is only one class of paths
from a to b .

In homotopy type theory, this change-of-basepoint isomorphism is given by transport
along a path p : a =X b, but usually we do not have access to such a path explicitly. If X
is connected, all we have is that the mere path type ∥a =X b∥ is inhabited. However, if
transport along any specific path of type a =X b yields the same isomorphism, we can still
obtain an explicit isomorphism from ∥a =X b∥ via extension by weak constancy (Lemma 2).
The result we call a canonical change-of-basepoint isomorphism, since it is independent on
the path p : a =X b .
▶ Note. Because extension by weak constancy requires the constructed object’s type to be
a set, we cannot do away with the set-truncations in πn(X,x) ≡ ∥Ωn(X,x)∥0 as we often
could in Section 3.

The condition that transport along every path in a =X b results in the same map
πn(X, a) → πn(X, b) is equivalent to the condition that the fundamental group π1(X, a) acts
trivially on the higher homotopy groups πn(X, a) . The latter is a well-studied property.

▶ Definition 13 (π1-action). Let (X,x0) be a pointed type. The action of π1(X,x0) on the
higher homotopy groups πn(X,x0) is defined on truncated loops |p|0 : π1(X,x0) by

|p|0 . u :≡ transportπn(X, – )(p−1, u) ,

with u : πn(X,x0) . The inversion p−1 is to obtain a left action. The action is called trivial
if multiplication by any term p′ : π1(X,x0) leaves u : πn(X,x0) unchanged, i.e. p′ . u = u .

▶ Lemma 14. Let X be a type with points a, b : X. Then the following propositions hold:
(i) for all paths q1, q2 : a =X b we have (transportπn(X, – )(q1, –) = transportπn(X, – )(q2, –))

if the π1(X, a)-action on πn(X, a) is trivial.
(ii) the π1(X, a)-action on πn(X, a) is trivial if the mere path type ∥a =X b∥ is inhabited and

for all q1, q2 : a =X b it holds that (transportπn(X, – )(q1, –) = transportπn(X, – )(q2, –)) .

▶ Corollary 15. Let X be a type with points a, b : X . There exists a change-of-basepoint
isomorphism φ : πn(X, a) ∼= πn(X, b) which is canonical, in the sense that for all p : a =X b

it holds that φ = transportπn(X, – )(p, –) , if and only if the π1(X, a)-action on πn(X, a) is
trivial.
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Proof (Lemma 14). We first show part (i). Assume that the π1(X, a) action on πn(X, a) is
trivial. Since the goal is to show a proposition, this assumption can be stated as

transportπn(X, – )(p−1, u) = u ,

for any loop p : a =X a and u : πn(X, a) . Let q1, q2 : a =X b , then (q1 � q−1
2 ) is a loop of

type a =X a , so by assumption it holds that

transportπn(X, – )(q−1
2 , transportπn(X, – )(q1, u)) = transportπn(X, – )(q1 � q

−1
2 , u) = u ,

for all u : πn(X, a) . The result follows by applying transportπn(X, – )(q2, –) to both sides.
Now for part (ii). Assume the mere path type ∥a =X b∥ is inhabited and that for all

paths q1, q2 : a =X b it holds that (transportπn(X, – )(q1, –) = transportπn(X, – )(q2, –)) . Now
let p′ : π1(X, a) and u : πn(X, a) . Since the goal is to show a proposition, we may assume
that p′ ≡ |p|0 for some loop p : a =X a . We also strip the truncation from ∥a =X b∥ to obtain
an explicit path pab : a =X b . By assumption, transport along both paths (p−1 �pab) : a =X b

and pab : a =X b yields the same function, so

transportπn(X, – )(pab, transportπn(X, – )(p−1, u)) = transportπn(X, – )(p−1 � pab, u)

= transportπn(X, – )(pab, u) ,

for all u : πn(X, a) . Applying transportπn(X, – )(p−1
ab , –) to both sides yield the desired result

that (transportπn(X, – )(p−1, u) = u) . ◀

The following theorem collects some results on triviality of the π1-action in homotopy
type theory. Results (i) and (ii) cover the cases where (X,x0) :≡ (Sn, base) , giving us the
canonical change-of-basepoint isomorphisms πn(Sn, x) ∼= πn(Sn, y) we needed to define the
degree for non-pointed maps. In working on these results, we also managed to prove third,
more complicated result, for which we were unable to find a reference in the classical theory.

▶ Theorem 16. Let (X,x0) be a pointed type.
(i) If X is simply-connected, then the action of π1(X,x0) on πn(X,x0) is trivial for

all n ≥ 1;
(ii) The fundamental group π1(X,x0) is abelian if and only if the action of π1(X,x0) on

itself is trivial;
(iii) If merely for all loops p, q : Ω(X,x0) it holds that p�q = q �p , then the action of π1(X,x0)

on πn(X,x0) is trivial for all n ≥ 1 .

Results (i) and (ii) follow quickly in both the synthetic and classical setting.

Proof (Theorem 16, result (i)). Let X be a simply-connected space. We need to show
that (p′ . u =πn(X,x0) u) for all p′ : π1(X,x0) and u : πn(X,x0) ; this is a proposition, so
it suffices to show this claim for truncated loops p′ ≡ |p|0 only. Let p : x0 =X x0 , then
since X is simply-connected, there exists a mere homotopy

∥∥p−1 = reflx0

∥∥ between p−1

and the constant path reflx0 . Again, we can strip the truncation to obtain an explicit
homotopy h : p−1 = reflx0 , which implies that

|p|0 . u ≡ transportπn(X, – )(p−1, u) = transportπn(X, – )(reflx0 , u) ≡ u ,

for all u : πn(X,x0) . ◀
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Proof (Theorem 16, result (ii)). First, note that since truncation |– |0 : (x = x) → π1(X,x)
commutes with transport (Lemma 1), and transport in the loop space (x0 = x0) equals
conjugation (Lemma 2.11.2 in [17]), we have that for all loops p, q : x0 =X x0 ,

transportπ1(X, – )(p−1, |q|0) =
∣∣transportx 7→x=X x(p−1, q)

∣∣
0 =

∣∣p � q � p−1∣∣
0 ≡ |p|0 · |q|0 · |p|0

−1 ,

where the final equality is because of the definition of the group operations on π1(X,x) .
Now, assume that π1(X,x0) is abelian and let p′, q′ : π1(X,x0) . Since the goal is to show

a proposition, we may assume that p′ ≡ |p|0 and q′ ≡ |q|0 for some loops p, q : x0 =X x0 , so
by commutativity of π1(X,x0) we have that

transportπ1(X, – )(p−1, |q|0) = |p|0 · |q|0 · |p|0
−1 = |q|0 .

Conversely, assume that the π1(X,x0)-action on itself is trivial and let p′, q′ : π1(X,x0) .
Since the goal is to show a proposition, we may again assume that p′ ≡ |p|0 and q′ ≡ |q|0 for
some loops p, q : x0 =X x0 . Then, using the same equation as before, it holds that

|p|0 · |q|0 · |p|0
−1 = transportπ1(X, – )(p−1, |q|0) = |q|0 ,

so p′ · q′ ≡ |p|0 · |q|0 = |q|0 · |p|0 ≡ q′ · p′ . ◀

Before proving result (iii) of Theorem 16, let us discuss its assumption, namely that

“merely for all loops p, q : Ω(X,x0) it holds that p � q = q � p”. (3)

On the surface, this seems to just say that the fundamental group π1(X,x0) is abelian,
but statement (3) is stronger. Consider, for example, the space S1 ∨ S2 . Its fundamental
group is abelian, but the action of π1 on π2 is not trivial. If (3) could be weakened to just
demanding that the fundamental group π1(X,x0) is abelian, then S1 ∨ S2 would serve as a
counterexample to result (iii).

The subtle difference between these statements is caused by where the propositional
truncation, indicated by the word merely, is placed. In HoTT, there exists a map∥∥∥ ∏

p,q:Ω(X,x0)

p � q = q � p
∥∥∥ −→

∏
p,q:Ω(X,x0)

∥∥∥ p � q = q � p
∥∥∥ ,

but, in general, this is not an equivalence. The type on the left-hand side expresses
statement (3), the type on the right-hand side is equivalent, via Theorem 7.3.12 in [17], to
the statement that the fundamental group π1(X,x0) is abelian. According to Remark 3.8.4
in the HoTT book [17], it is admissible to assume that an inverse exists – which is equivalent
to assuming the axiom of choice – if the loop space Ω(X,x0) is a set. In general this is not
the case, as with the space S1 ∨ S2 .

What are the kind of spaces that satisfy the hypothesis in result (iii)? Classically,
loop spaces in which composition is commutative are called homotopy commutative. The
commutativity is allowed to only hold up to homotopy, which is the default setting for equality
between paths in homotopy type theory. By the Eckmann-Hilton argument, every H-space
has a commutative loop space, but not every commutative loop space arises in this way, e.g.
James Stasheff [16, Thm. 1.18] proved that CP3 has a commutative loop space. Hideyuki
Kachi [11] also presents a plethora of finite CW complexes with commutative loop spaces,
their focus is on simply-connected spaces – for which triviality of the π1-action is already
covered by result (i) – but they also briefly discuss non simply-connected CW complexes.

Proving result (iii) takes more work than results (i) and (ii).
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Proof (Theorem 16, result (iii)). Assume that merely for all loops p, q : Ω(X,x0) it holds
that p � q = q � p . We claim that it suffices to merely show that transport in Ωn is trivial, i.e.
that the type∥∥∥ ∏

p:Ω(X,x0)

∏
u:Ωn(X,x0)

transportΩn(X, – )(p−1, u) =Ωn(X,x0) u
∥∥∥ (4)

is inhabited. This type implies that for all loops p : x0 =X x0 and u : Ωn(X,x0) the mere path
type

∥∥transportΩn(X, – )(p−1, u) =Ωn(X,x0) u
∥∥ is inhabited, which by Theorem 7.3.12 in [17], is

equivalent to an equality between truncated loops, |transportΩn(X, – )(p−1, u)|0 =πn(X,x0) |u|0 .
As |– |0 : Ωn(X,x) → πn(X,x) commutes with transport by Lemma 1, this implies that

|p|0 . |u|0 ≡ transportπn(X, – )(p−1, |u|0) = |transportΩn(X, – )(p−1, u)|0 = |u|0 ,

which says that the action of π1(X,x0) on πn(X,x0) is trivial. (Since triviality of the
π1(X,x0)-action is a proposition, it suffices to only show the triviality for truncated loops of
the form |p|0 : π1(X,x0) and |u|0 : πn(X,x0) .)

We proceed to show statement (4) by induction on n . The base case n = 1 follows directly
from the assumption. Since (4) is a proposition, the “merely” part in the initial assumption
can be stripped, leaving us with the fact that composition in the loop space is commutative.
Together with Lemma 2.11.2 in [17], which says that transport in Ω(X,x) ≡ (x =X x) equals
conjugation, it holds that

transportΩ(X, – )(p−1, q) = p � q � p−1 = q for all loops p, q : (x0 =X x0) .

For the inductive step, assume that (4) holds for n, we need to show it holds for n+ 1 .
Since both the induction hypothesis and the goal are propositionally truncated, we can strip
both truncations. The resulting induction hypothesis says that transport in Ωn is trivial, i.e.

transportΩn(X, – )(p−1, u) =Ωn(X,x0) u for all p : x0 =X x0 and u : Ωn(X,x0) .

By functional extensionality, this gives an equality between maps Ωn(X,x0) → Ωn(X,x0) ,

hp : transportΩn(X, – )(p−1, –) = idΩn(X,x0) . (5)

Now, let p : x0 =X x0 and v : Ωn+1(X,x0) . The goal is to show that transport in Ωn+1 is
trivial, i.e.

transportΩn+1(X, – )(p−1, v) =Ωn+1(X,x0) v .

The next part involves a lot of complicated equations. We use a theorem from the HoTT
book [17] to relate transport in Ωn+1 to transport in Ωn ; from there we use the induction
hypothesis, namely the path hp , to relate transport in Ωn to the identity on Ωn ; using the
previous two steps, we obtain an expression of transport in Ωn+1 as a conjugation of the
original (n+ 1)-dimensional loop v in Ωn+1 ; using that composition in Ωn+1 commutes, we
get that transport in Ωn+1 is trivial.

By Theorem 2.11.4 [17], transport in Ωn+1 can be related to transport in Ωn . Recall
that v : Ωn+1(X,x0) ≡ (refln

x0
= refln

x0
) , so

transportΩn+1(X, – )(p−1, v)
= (apdrefln

( – )
(p−1))−1 � (aptransportΩn(X, – )(p−1, – )(v)) � (apdrefln

( – )
(p−1)) , (6)

where apdrefln
( – )

(p−1) : transportΩn(X, – )(p−1, refln
x0

) =Ωn(X,x0) refln
x0

is a dependent equality
between refln

x0
and itself.
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Using the path hp from the induction hypothesis (5), the middle term in (6) can be
rewritten as

aptransportΩn(X, – )(p−1, – )(v) = transportφ 7→φ(refln
x0 )=φ(refln

x0 )(h−1
p , apidΩn (v))

= (apφ 7→φ(refln
x0 )(h−1

p ))−1 � apidΩn (v) � (apφ7→φ(refln
x0 )(h−1

p ))

≡ (apφ7→φ(refln
x0 )(h−1

p ))−1 � v � (apφ7→φ(refln
x0 )(h−1

p )) , (7)

where the second equality follows from Theorem 2.11.3 in [17]. The term apφ7→φ(refln
x0 )(h−1

p )
is of type refln

x0
≡ idΩn(refln

x0
) = transportΩn(X, – )(p−1, refln

x0
) , the reverse equality of the

term apdrefln
( – )

(p−1) in (6).

Combining equations (6) and (7), we have that transportΩn+1(X, – )(p−1, v) equals

(apdrefln
( – )

(p−1))−1 � (apφ7→φ(refln
x0 )(h−1

p ))−1 � v � (apφ7→φ(refln
x0 )(h−1

p )) � (apdrefln
( – )

(p−1)) .

Note that (apφ7→φ(refln
x0 )(h−1

p )) � (apdrefln
( – )

(p−1)) is a (n + 1)-dimensional loop of the type
refln

x0
= refln

x0
, just like v . Transportation in Ωn+1 thus comes down to conjugation with

some (n+ 1)-cell, just like in Ω1 . Since n+ 1 ≥ 2 , composition of (n+ 1)-cells in Ωn+1 is
commutative, which gives us that

transportΩn+1(X, – )(p−1, v) = p̃−1 � v � p̃ = v ,

with p̃ :≡ (apφ7→φ(refln
x0 )(h−1

p )) � (apdrefln
( – )

(p−1)) , i.e. transport in Ωn+1 is trivial. ◀

Relation to free pointedness
Whereas we used change-of-basepoint isomorphisms πn(Sn, x) ∼= πn(Sn, y) to define the
degree for non-pointed maps Sn → Sn , Hou [7] takes a different approach: they observe
that the degree-map (Sn → Sn) → Z takes values in a set, so it suffices to define the map on
the set-truncation ∥Sn → Sn∥0 . They then use that, on the level of sets, pointedness is free,
meaning that for n ≥ 1 the projection that forgets about pointedness is an equivalence, i.e.

∥(Sn, base) · → (Sn, base)∥0 ≃ ∥Sn → Sn∥0 .

In [3], Buchholtz and Hou provide an intuition as to why this map is an equivalence: for any
map f : Sn → Sn , the suspension susp(f) : Sn+1 → Sn+1 is automatically pointed and by
the Freudenthal suspension theorem all maps Sn+1 → Sn+1 are of this form.

Hou’s approach to defining the degree map and the approach in this article are more
similar than they appear on first sight. In this section, we show a classical statement relating
basepoint-preserving and free homotopy classes of functions. In HoTT, these are encoded
as the sets of pointed maps ∥(Z, z0) · → (X,x0)∥0 and non-pointed maps ∥Z → X∥0 . From
this classical statement, it follows that the forgetful map

∥(Z, z0) · → (X,x0)∥0 −→ ∥Z → X∥0

is an equivalence precisely when the π1(X,x0)-action on pointed maps ∥(Z, z0) · → (X,x0)∥0
is trivial. Moreover, for (Z, z0) :≡ (Sn, base) , the π1-action on ∥(Sn, base) · → (X,x0)∥0
coincides with the π1-action on higher homotopy groups πn under the equivalence

∥(Sn, base)) · → (X,x0)∥0
∼= πn(X,x0)

from Lemma 6.5.4 in the HoTT book [17]. Thus, in the end both approaches rest on the
triviality of the π1-action on the higher homotopy groups of spheres.
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Similar to the π1-action on higher homotopy groups (Definition 13), the π1-action on the
set of pointed maps is defined using transport. Following Hatcher [6], this action is defined
as a right action, as opposed to the action on higher homotopy groups which is a left action.

▶ Definition 17 (π1-action on pointed maps). Let (Z, z0) and (X,x0) be pointed types. The
action of π1(X,x0) on the set of pointed maps ∥(Z, z0) · → (X,x0)∥0 is defined on truncated
loops |p|0 : π1(X,x0) as

f . |p|0 :≡ transport∥(Z,z0) ·→(X, – )∥0(p, f)

with f : ∥(Z, z0) · → (X,x0)∥0 .

Alternatively, the π1-action on pointed maps can be expressed as follows.

▶ Lemma 18. Let (Z, z0) and (X,x0) be pointed types. For all loops p : x0 =X x0 and
truncated, pointed maps |(f, wf )|0 : ∥(Z, z0) · → (X,x0)∥0 , it holds that

|(f, wf )|0 . |p|0 = |(f, wf
� p)|0 ,

i.e. the π1-action only acts on the proof of pointedness wf : f(z0) =X x0 .

Proof. Let |p|0 : π1(X,x0) and |(f, wf )|0 : ∥(Z, z0) · → (X,x0)∥0 . Transport in the type
family ((Z, z0) · → (X, –)) ≡

∑
(g:Z→X) g(z0) =X (–) can be rewritten as

transport(Z,z0) ·→(X, – )(p, (f, wf )) = (f, transportf(z0)=( – )(p, wf )) . (8)

This follows from a more general statement where p is a free path (meaning that we also
have universal quantification over its endpoints), which holds by path induction. Using
equation (8) and that truncation |– |0 commutes with transport by Lemma 1, it holds that

transport∥(Z,z0) ·→(X, – )∥0(p, |(f, wf )|0) = |transport(Z,z0) ·→(X, – )(p, (f, wf ))|0
= |(f, transportf(z0)=( – )(p, wf ))|0 = |(f, wf

� p)|0 ,

where the final equality is by Theorem 2.11.2 in [17]. ◀

The π1-action on pointed maps coincides with the π1-action on higher homotopy groups,
modulo an inversion to account for the difference in left and right action.

▶ Lemma 19. Let (X,x0) be a pointed type, then there exists an equivalence

φ : ∥(Sn, base) · → (X,x0)∥0
∼= πn(X,x0) ,

and φ(f . p) = p−1 . φ(f) for loops p : π1(X,x0) and maps f : ∥(Sn, base) · → (X,x0)∥0 .

Proof. The equivalence φ comes from Lemma 6.5.4 in [17] . Moreover, we actually have a
family of equivalences φx : ∥(Sn, base) · → (X,x)∥0

∼= πn(X,x) . Let p′ : π1(X,x0) and
f : ∥(Sn, base) · → (X,x0)∥0 . The goal is to show a proposition, namely an equality in the
set πn(X,x0) , so we can assume that p′ ≡ |p|0 for some p : x0 =X x0 . By Lemma 1, the
family of equivalences commutes with transport, which gives us that

φ(f . |p|0) ≡ φ(transport∥(Sn,base) ·→(X, – )∥0 (p, f)) = transportπn(X, – )(p, φ(f)) = |p|0
−1 . φ(f) . ◀

We now show the classical statement relating basepoint-preserving homotopy classes
∥(Z, z0) · → (X,x0)∥0 and free homotopy classes ∥Z → X∥0 in homotopy type theory. Note
that the classical formulation requires Z to be restricted to the class of CW complexes, but
this is not necessary in HoTT since ∞-groupoids already behave well enough.
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▶ Lemma 20 (cf. [6, Prop. 4A.2]). Let (Z, z0) and (X,x0) be pointed types with X con-
nected. The map that forgets pointedness induces an equivalence between the orbit set
∥(Z, z0) · → (X,x0)∥0 / π1(X,x0) and ∥Z → X∥0 .

The proof is kind of similar to the classical proof, but one needs to be able to read through
the homotopical interpretation to see the correspondence.

Proof. First, note that pr1 : ((Z, z0) · → (X,x0)) → (Z → X) indeed induces a map

ψ : ∥(Z, z0) · → (X,x0)∥0 / π1(X,x0) −→ ∥Z → X∥0 ,

which is given by ψ([ |(f, wf )|0]) :≡ |f |0 . To show that ψ is well-defined, we need to prove
that for all maps f ′

1, f
′
2 : ∥(Z, z0) · → (X,x0)∥0 in the same orbit it holds that ψ(f ′

1) = ψ(f ′
2) .

(The higher coherence conditions are automatically satisfied because ∥Z → X∥0 is a set.)
If f ′

1 and f ′
2 are in the same orbit, this means there exists a truncated loop p′ : π1(X,x0)

and a path wp′ : (f ′
1 . p

′) = f ′
2 . (Technically, we have only mere existence of p′ and wp′ ,

but this can be stripped since ψ(f ′
1) = ψ(f ′

2) is a proposition). Since one endpoint of wp

is free, namely f ′
2 , we can perform path induction on wp′ , meaning that we may assume

f ′
2 ≡ (f ′

1 . p
′) . The goal is then to show that ψ(f ′

1) = ψ(f ′
1 . p

′) . We may also assume that
p′ ≡ |p|0 and f ′

1 ≡ |(f1, wf1)|0 for some p : x0 =X x0 and (f1, wf1) : (Z, z0) · → (X,x0) . By
the alternative expression for the π1(X,x0)-action (Lemma 18), it holds that

f ′
1 . p

′ ≡ |p|0 . |(f1, wf1)|0 = |(f1, wf1
� p)|0 ,

from which it follows that

ψ(f ′
1) ≡ ψ(|(f1, wf1)|0) ≡ |f1|0 ≡ ψ(|(f1, wf1

� p)|0) = ψ(f ′
1 . p

′) .

Next, we show that ψ is surjective. Let f : Z → X , the goal is to merely construct a term
f• : ∥(Z, z0) · → (X,x0)∥0 / π1(X,x0) such that ψ(f•) = |f |0 . (We may strip the truncation
from ∥Z → X∥0 because the goal is a proposition). Since X is connected, ∥f(z0) =X x0∥ is
inhabited. Note that the goal is to merely construct a term in the preimage of f , so we can
strip this truncation, which yields an explicit path p : f(z0) =X x0 . We use this path to
define f• , namely

f• :≡ [ |(f, p)|0] : ∥(Z, z0) · → (X,x0)∥0 / π1(X,x0) ,

and we have that ψ(f•) ≡ ψ([ |(f, p)|0]) ≡ |f |0 .
To show injectivity, consider two terms in ∥(Z, z0) · → (X,x0)∥0 / π1(X,x0) of the form

[ |(f1, wf1)|0] and [ |(f2, wf2)|0] which satisfy ψ([ |(f1, wf1)|0]) = ψ([ |(f2, wf2)|0]) , meaning
|f1|0 = |f2|0 . The goal is to show that [ |(f1, wf1)|0] = [ |(f2, wf2)|0] . (We may assume
the terms [ |(fi, wfi

)|0] to be of this form because the goal is a proposition, which not only
allows us to strip the truncation from ∥(Z, z0) · → (X,x0)∥0 , but also to consider specific
representatives of the equivalence classes.) By Theorem 7.3.12 in [17], the assumption
|f1|0 = |f2|0 is equivalent to a mere equality ∥f1 = f2∥ . Stripping the truncation gives an
explicit path h′ : f1 = f2 , and thus also a homotopy h :

∏
z f1(z) = f2(z) . The goal is

equivalent to showing that |(f1, wf1)|0 and |(f2, wf2)|0 belong to the same orbit, i.e. showing
there (merely) exists a loop p : π1(X,x0) such that |(f1, wf1)|0 . p = |(f2, wf2)|0 . Choose
p :≡ |w−1

f1
� h(z0) � wf2 |0 , then by Lemma 18 it holds that

|(f1, wf1)|0 . |w
−1
f1

� h(z0) � wf2 |0 = |(f1, wf1
� (w−1

f1
� h(z0) � wf2))|0 = |(f1, h(z0) � wf2)|0 .
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It thus suffices to show that (f1, h(z0) �wf2) = (f2, wf2) . To turn the equality h′ : f1 = f2
into an equality of pointed maps (f1, h(z0) � wf2) = (f2, wf2) , we need to show that
(transportf 7→f(z0)=x0(h′, h(z0) � wf2) = wf2) , which holds since

transportf 7→f(z0)=x0(h′, h(z0) � wf2) = h(z0)−1 � (h(z0) � wf2) = wf2 ,

the first equality follows from path induction on h′ . This concludes the proof that ψ is a
well-defined equivalence. ◀

By the previous lemma, the forgetful map ∥(Z, z0) · → (X,x0)∥0 −→ ∥Z → X∥0 is
an equivalence precisely when the π1-action on pointed maps is trivial. Hence, both the
free pointedness of maps ∥(Z, z0) · → (X,x0)∥0 , and the existence of canonical change-of-
basepoint isomorphisms πn(X,x) ∼= πn(X, y) , are consequences of trivial π1-actions, the
same π1-action, in fact, when (Z, z0) :≡ (Sn, base) .

5 Discussion and Conclusion

In this article, we developed parts of algebraic topology in the synthetic language provided
by homotopy type theory (HoTT). We proved a synthetic version of the classification of
covering spaces, and synthetically explored the existence of canonical change-of-basepoint
isomorphisms between homotopy groups.

Developing this theory synthetically required translating the classical definitions and
statements into HoTT and there is some freedom in picking what translation to use. Some
translations are easier to work with than others. For those interested in formalizing some
topics from algebraic topology in HoTT themselves, we recommend the following:
1. Use type families P : X → Type instead of the total space

∑
X P . Although this perspect-

ive takes some getting used to (especially when coming from classical mathematics), using
type families directly allows more relations to be encoded as judgmental equalities instead
of propositional ones, saving you from having to carry these around using transport.

2. Some direct translations using concepts from the HoTT book [17] can be simplified. In
the case of the lifting criterion, we found an alternative condition that saved us from a
lot of truncations (see Lemma 7).

We were able to closely mirror the classical proofs found in a standard reference like
Hatcher’s Algebraic Topology [6]. Extension by weak constancy (Lemma 2) proved vital to
reproduce classical constructions that rely on the mere existence of paths. The transport
operation does feature more prominently in HoTT proofs than in the classical ones: it is used
to construct both homotopy lifts, homotopy extensions, and to define dependent paths. The
notions of transport and dependent paths do faithfully represent the geometrical reasoning in
the classical proofs. (The abundance of transport operations did make us appreciate all the
lemmas in the HoTT book characterizing transport in different type families [17, Ch. 2].)

We see both advantages and disadvantages with the synthetic approach to algebraic
topology. The low-level encoding of mathematical concepts allows one to be more explicit
about the objects involved without being overwhelmed by notation, and the theory can be
mechanized in proof assistants much more easily. Truncations are a nice way to make explicit
the difference between constructive and platonic existence statements in mathematics, as
with the mere existence of a paths in a path-connected spaces. On the other hand, they are
a nuisance to deal with. In Section 3, we managed to avoid a lot of truncations since the
fibers F (x) of a covering space are sets, but we were not so lucky in Section 4. By the end
we had gotten used to working with them – and hopefully the reader with us.
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At the start of this project, we only had a passing knowledge of what made HoTT special
compared to the standard flavor of Martin-Löf type theory. Having formalized some classical
results from algebraic topology ourselves, we have gained a better understanding and deeper
appreciation for concepts like transport, truncations, and univalence.
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Abstract
Type inhabitation in extensions of Finite Combinatory Logic (FCL) is the mechanism underlying
various component-oriented synthesis frameworks. In FCL inhabitant sets correspond to regular tree
languages and vice versa. Therefore, it is not possible to specify non-regular properties of inhabitants,
such as (dis)equality of subterms. Additionally, the monomorphic nature of FCL oftentimes hinders
concise specification of components.

We propose a conservative extension to FCL by quantifiers and predicates, introducing a restricted
form of polymorphism. In the proposed type system (FCLP) inhabitant sets correspond to decidable
term languages and vice versa. As a consequence, type inhabitation in FCLP is undecidable. Based
on results in tree automata theory, we identify a fragment of FCLP with the following two properties.
First, the fragment enjoys decidable type inhabitation. Second, it allows for specification of local
(dis)equality constraints for subterms of inhabitants.

For empirical evaluation, we implement a semi-decision procedure for type inhabitation in FCLP.
We compare specification capabilities, scalability, and performance of the implementation to existing
FCL-based approaches. Finally, we evaluate practical applicability via a case study, synthesizing
mechanically sound robotic arms.
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1 Introduction

Type inhabitation in a type assignment system is the following problem: Given a type
environment Γ and a type τ , is there a term M which can be assigned the type τ in the
type environment Γ? Type inhabitation can be understood as the search for a program
(term M) which satisfies a given specification (type τ) under given assumptions (type
environment Γ). For (polymorphic) λ-calculi type inhabitation corresponds to program
synthesis from scratch [29, 30]. In comparison, for (variants of) combinatory logic type
inhabitation corresponds to program synthesis from given domain-specific components [31].
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2:2 Finite Combinatory Logic with Predicates

Finite Combinatory Logic with Intersection Types FCL(∩,≤) [32] is a monomorphic variant
of combinatory logic with intersection types [17] relativized to arbitrary bases. Type
inhabitation in FCL(∩,≤) is ExpTime-complete [32, Theorem 12], which provides the basis
for the Combinatory Logic Synthesizer (CLS) [8, 4]. CLS is a domain-agnostic program
synthesis framework, and it has been applied in the following areas: Object-oriented program
composition [7, 6], software product line design [25, 24], factory planning [37], motion
planning [34], simulation model construction [28], and cyber-physical systems [14].

Previously, two extensions of FCL(∩,≤) have been studied for which type inhabitation
is decidable. First, Bounded Combinatory Logic [18] relaxes monomorphism to bounded
schematism. Second, Finite Combinatory Logic with Boolean Queries [20] adds Boolean
connectives ∧, ∨, and ¬ atop the type language. A major limitation of FCL(∩,≤) and both
aforementioned extensions is that inhabitant sets correspond to regular tree languages and
vice versa [32, Corollary 11]. Therefore, neither theory allows for specification of non-regular
properties1 of inhabitants, such as (dis)equality of subterms. Additionally, monomorphism
(and also bounded schematism) oftentimes hinders concise specification of domain-knowledge.

In the present work, we propose Finite Combinatory Logic with Predicates (FCLP)
as a conservative extension to FCL(∩,≤), addressing the above shortcomings. The main
distinguishing property of FCLP is that inhabitant sets correspond to decidable term
languages and vice versa. The type language of FCLP encompasses intersection types with
the following three additions:
Literals: Literals are nullary type constructors, which may also occur in argument position

in combinatory terms ( facilitating a restricted form of dependent types [1]).
Quantifiers and Variables: Quantifiers bind variables in types, which allows for a restricted

form of polymorphism, improving conciseness of specification.
Predicates: Decidable predicates reference variables, and allow for specification of non-regular

properties of inhabitants.

The inclusion of decidable predicates entails undecidability of type inhabitation. The
main contribution of the present work is the identification of an expressive fragment of FCLP
which strictly includes FCL(∩,≤), and in which type inhabitation is decidable. We formally
describe a decision procedure for type inhabitation in the identified fragment. The decision
procedure is similar to the existing decision procedure for type inhabitation in FCL(∩,≤) [4,
Definition 29]. However, instead of representing an inhabitant set by a regular tree grammar
(or, a regular tree automaton), we represent an inhabitant set by means of the minimal
Herbrand model of a logic program2 (or, a tree automaton with term constraints [33]).

For empirical evaluation, an algorithm for the construction of inhabitants is implemented
in the Python programming language. The algorithm is evaluated on the basis of a case
study, undertaken for both FCL(∩,≤) and the identified fragment of FCLP.

Synopsis. The present work is structured as follows:
Section 2: Definition of FCLP (Definition 8), decidability of type checking (Theorem 18),

and undecidability of type inhabitation (Theorem 20).
Section 3: Fragment of FCLP (Problem 31) with decidable type inhabitation (Theorem 42).
Section 4: Implementation of FCLP in the Python programming language.
Section 5: Empirical evaluation of FCLP at the basis of a case study.
Section 6: Conclusion and remarks on future work.

1 Czajka et.al. [5] specify non-regular properties as external restrictions via term rewriting systems.
2 Kallat et.al. [27] combine regular tree grammars with SMT constraints in a logic program.
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2 FCLP

In this section we present the type assignment system Finite Combinatory Logic with
Predicates (FCLP). The system FCLP adds three new constructs to the existing Finite
Combinatory Logic with Intersection Types FCL(∩,≤) [32, Figure 3]. First, literals are both
types and term arguments, and facilitate a restricted form of dependent types. Second,
quantifiers bind literal variables and term variables in types, and allow for polymorphic
specification. Third, decidable predicates reference literal variables and term variables in
types, and describe term properties, which are difficult to specify otherwise.

Intersection types with covariant constructors [7, Definition 15] extended with literals
(Definition 1) constitute the core of the type language of FCLP.

▶ Definition 1 (Intersection Types with Covariant Constructors and Literals).

Intersection Types T ∋ σ, τ, ρ ::= ω | σ → τ | σ ∩ τ | c(σ) | l

where ω is the universal type, c ranges over an enumerable set of unary type constructors,
and l ranges over an enumerable set of literals.

The intersection type constructor (∩) is considered associative, commutative, and idem-
potent. Additionally, standard rules of intersection type subtyping [17, Definition 1.3] are
extended to covariant constructors in the following Definition 2.

▶ Definition 2 (Intersection Type Subtyping). The relation (≤) is the least preorder on
intersection types closed under the following rules:

σ ≤ ω ω ≤ ω → ω

σ ∩ τ ≤ σ σ ∩ τ ≤ τ if σ ≤ τ1 and σ ≤ τ2 then σ ≤ τ1 ∩ τ2
(σ → τ) ∩ (σ → ρ) ≤ σ → (τ ∩ ρ) if σ ≤ σ′ and τ ≤ τ ′ then σ′ → τ ≤ σ → τ ′

c(σ) ∩ c(τ) ≤ c(σ ∩ τ) if σ ≤ σ′ then c(σ) ≤ c(σ′)

If σ ≤ τ and τ ≤ σ, then we identify σ and τ , writing σ = τ .

▶ Remark 3. Some existing extensions of Finite Combinatory Logic [4, Chapter 3] contain the
binary product type constructor σ×τ . Observing the equivalence σ×τ = (σ×ω)∩ (ω×τ) [4,
Definition 5], we omit an explicit product type constructor and represent products as
intersections π1(σ) ∩ π2(τ), where π1 and π2 are unary type constructors. In general, an
n-ary constructor applied to σ1, . . . , σn is represented as the intersection

⋂n
i=1 ci(σi) using

unary type constructors c1, . . . , cn.
In practice, literals are partitioned in collections such as integers, floating point numbers,

or character strings. We write l : t to signify that the literal l belongs to a collection with
the collection identifier t.

We tacitly extend intersection types by literal variables, ranged over by α, β, γ, and define
parameterized types (the type language of FCLP) as follows.

▶ Definition 4 (Parameterized Types).

Parameterized Types φ,ψ ::= σ | ⟨α : t⟩ ⇒ φ | ⟨⟨x : σ⟩⟩ ⇒ φ | P ⇒ φ

where t ranges over collection identifiers and P ranges over decidable predicates3, possibly
containing literal variables and term variables, ranged over by x, y, z. A literal variable α is
bound in ⟨α : t⟩ ⇒ φ. A term variable x is bound in ⟨⟨x : σ⟩⟩ ⇒ φ.

3 A predicate P is decidable, if there exists an effective procedure deciding whether P holds for given
arguments. Syntactically, a predicate can be consider a first-order logic formula.
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Combinatory terms which may contain literals in argument position (Definition 5) consti-
tute the term language of FCLP.

▶ Definition 5 (Combinatory Terms and Arguments).

Combinatory Terms C ∋M,N ::= A |M T

Combinatory Arguments T ::= M | l

where A,B,C range over an enumerable set of combinators.

▶ Definition 6 (Closed and Open Types, Substitutions). A parameterized type is closed,
if every occurrence of a literal variable and every occurrence of a term variable is bound;
otherwise the parameterized type is open. Literal variable substitution is denoted φ[α := l]
and term variable substitution is denoted φ[x := M ].

In addition to type environments (finite sets of typed combinators), we introduce literal
environments which contain pairs l : t, signifying that the literal l is associated with the
collection identifier t.

▶ Definition 7 (Type and Literal Environments).

Type Environment Γ ::= {A1 : φ1, . . . , An : φn} where φ1, . . . , φn are closed
Literal Environment ∆ ::= {l1 : t1, . . . , ln : tn}

Domain dom({A1 : φ1, . . . , An : φn}) = {A1, . . . , An}
dom({l1 : t1, . . . , ln : tn}) = {l1, . . . , ln}

Range ran({A1 : φ1, . . . , An : φn}) = {φ1, . . . , φn}
ran({l1 : t1, . . . , ln : tn}) = {t1, . . . , tn}

Finally, we give the rules of Finite Combinatory Logic with Predicates (FCLP), deriving
judgments Γ; ∆ ⊢M : φ, where φ is closed.

▶ Definition 8 (Finite Combinatory Logic with Predicates (FCLP)).
(A : φ) ∈ Γ

(Var)
Γ; ∆ ⊢ A : φ

Γ; ∆ ⊢M : P ⇒ φ P holds (P E)
Γ; ∆ ⊢M : φ

Γ; ∆ ⊢M : ⟨α : t⟩ ⇒ φ (l : t) ∈ ∆
(⟨⟩E)

Γ; ∆ ⊢M l : φ[α := l]
Γ; ∆ ⊢M : ⟨⟨x : σ⟩⟩ ⇒ φ Γ; ∆ ⊢ N : σ

(⟨⟨⟩⟩E)
Γ; ∆ ⊢M N : φ[x := N ]

Γ; ∆ ⊢M : σ σ ≤ τ (≤)
Γ; ∆ ⊢M : τ

Γ; ∆ ⊢M : σ → τ Γ; ∆ ⊢ N : σ (→E)
Γ; ∆ ⊢M N : τ

▶ Remark 9. The above rules (Var), (≤), (→E), together with the derivable intersection
introduction rule (Lemma 14) constitute the original FCL(∩,≤) type system [32, Figure 3].
The additional rules ⟨⟩E, ⟨⟨⟩⟩E, and PE mimic the pure type system application rule [1],
where proofs that a predicate holds are irrelevant.

The notion of paths [18] is an essential ingredient in the algorithmic treatment of inter-
section type subtyping. Algebraically, paths are prime factors [4, Definition 10] into which
each intersection type factorizes uniquely. In the following Definition 10 and Lemma 12 we
recollect the notion and corresponding key property of paths.

▶ Definition 10 (Path Decomposition [18, Lemma 1]).

P(ω) = ∅
P(σ → τ) = {σ → τ ′ | τ ′ ∈ P(τ)}
P(σ ∩ τ) = P(σ) ∪ P(τ)
P(c(σ)) = {c(τ) | τ ∈ P(σ)} ∪ {c(ω)}

P(l) = {l}
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▶ Remark 11. If σ ≤ τ , then for all τ ′ ∈ P(τ) there exists σ′ ∈ P(σ) such that σ′ ≤ τ ′ (easily
shown for each rule in Definition 2). Therefore, σ = τ implies P(σ) = P(τ).

▶ Lemma 12. We have ρ ≤ σ1 → · · · → σk → τ iff there exists a (possibly empty) set
{σ1

1 → · · · → σ1
k → τ1, . . . , σm

1 → · · · → σm
k → τm} ⊆ P(ρ) such that

1. σj ≤
⋂m

i=1 σ
i
j for j = 1 . . . k

2.
⋂m

i=1 τ
i ≤ τ

where the empty intersection denotes the universal type ω.

Proof. Immediate consequence of beta-soundness [2, Lemma 2.4] (shown inductively using
the definition of intersection type subtyping). ◀

The following Lemma 13 (cf. [32, Lemma 4]) characterizes derivable judgments in FCLP.

▶ Lemma 13 (Path Lemma). We have Γ; ∆ ⊢ AT1 . . . Tn : τ iff for some typed combinator
(A : e1 ⇒ · · · ⇒ em ⇒ ρ) ∈ Γ there exists a literal substitution θ such that
1. There exists a term substitution ξ such that for i = 1, . . . ,m we have

a. if ei = ⟨α : t⟩, then θ(α) = Ti is a literal and (Ti : t) ∈ ∆
b. if ei = ⟨⟨x : σ⟩⟩, then ξ(x) = Ti ∈ C and Γ; ∆ ⊢ Ti : θ(σ)
c. if ei = P , then ξ(θ(P )) holds

2. Let k = n −m + p where p is the number of predicates in {e1, . . . , em}, there exists a
(possibly empty) set {σ1

1→· · ·→σ1
k → τ1, . . . , σq

1→· · ·→σq
k → τ q} ⊆ P(θ(ρ)) such that

a. Γ; ∆ ⊢ Tm−p+j :
⋂q

i=1 σ
i
j for j = 1 . . . k

b.
⋂q

i=1 τ
i ≤ τ

Proof. The direction from right to left is obvious, observing that by Lemma 12 we have
θ(ρ) ≤ (

⋂q
i=1 σ

i
1)→· · ·→ (

⋂q
i=1 σ

i
k)→ τ . For the converse, we assume Γ; ∆ ⊢ AT1 . . . Tn : τ .

Necessarily, there is some (A : e1 ⇒ · · · ⇒ em ⇒ ρ) ∈ Γ such that each ei is addressed
by either (⟨⟩E), (⟨⟨⟩⟩E), or (PE). We collect the according literal and term instances in
substitutions θ and ξ and obtain properties (1.a)–(1.c). Let k = n−m+ p where p is the
number of predicates in {e1, . . . , em}. We have that Γ; ∆ ⊢ AT1 . . . Tn−k : θ(ρ) such that the
remaining k arguments are addressed by the rules (→E) and (≤) where (shown by reordering)
rule (≤) never follows rule (→E). Finally, by Lemma 12 we obtain properties (2.a)–(2.b). ◀

At first glance, the intersection introduction rule (∩I) of FCL(∩,≤) is missing from FCLP.
However, using the above Lemma 13 the rule (∩I) is derivable (cf. [4, Lemma 11]).

▶ Lemma 14. The following rule is derivable: Γ; ∆ ⊢M : σ Γ; ∆ ⊢M : τ (∩I)Γ; ∆ ⊢M : σ ∩ τ
.

Proof. We assume Γ; ∆ ⊢ M : σ and Γ; ∆ ⊢ M : τ and proceed by induction on the term
M = AT1 . . . Tn. W.l.o.g. σ ̸= ω ̸= τ . We have (A : e1 ⇒ · · · ⇒ em ⇒ ρ) ∈ Γ and
substitutions θ1, θ2, ξ1, ξ2 which satisfy Lemma 13.1 and agree on the free variables in ρ. Let
k = n−m+ p where p is the number of predicates in {e1, . . . , em}. We have subsets S1, S2 ⊆
P(θ1(ρ)) = P(θ2(ρ)) such that S1 ∪ S2 = {σ1

1 → · · · → σ1
k → τ1, . . . , σq

1 → · · · → σq
k → τ q}

which satisfy Lemma 13.2. By the induction hypothesis, we have Γ; ∆ ⊢ Tm−p+j :
⋂q

i=1 σ
i
j

for j = 1 . . . k, and we have
⋂q

i=1 τ
i ≤ σ ∩ τ . By Lemma 13 we obtain Γ; ∆ ⊢M : σ ∩ τ . ◀

Since intersection introduction is derivable and the additional rules (⟨⟩E),(⟨⟨⟩⟩E), and (PE)
refer to new type constructors, FCLP is a conservative extension of FCL(∩,≤).

▶ Corollary 15. Let Γ be a type environment such that ran(Γ) ⊆ T, let M be a combinatory
term which does not contain literals, and let τ be an intersection type. We have Γ; ∅ ⊢M : τ
iff Γ ⊢M : τ is a derivable judgment in the type assignment system FCL(∩,≤).
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Finally, we state the key decision problems: Intersection type checking (Problem 16) and
intersection type inhabitation (Problem 17).

▶ Problem 16 (Intersection Type Checking). Given a type environment Γ, a literal environ-
ment ∆, a combinatory term M , and an intersection type τ , does Γ; ∆ ⊢M : τ hold?

▶ Problem 17 (Intersection Type Inhabitation). Given a type environment Γ, a literal
environment ∆, and an intersection type τ , is there a combinatory term M such that
Γ; ∆ ⊢M : τ holds?

Viewing the judgment Γ; ∆ ⊢ M : τ in the context of component-oriented program
synthesis, the type environment Γ contains domain-specific components specified by corre-
sponding parameterized types, the literal environment ∆ contains possible parameters, and
the intersection type τ specifies desired programs.

While decidability of intersection type checking (Theorem 18) follows from Lemma 13,
intersection type inhabitation is undecidable (Theorem 20).

▶ Theorem 18. Intersection type checking Γ; ∆ ⊢M : τ is decidable.

Proof. By induction on M , and as immediate consequence of Lemma 13 and decidability of
each predicate occurring in parameterized types in ran(Γ). ◀

▶ Theorem 19. Intersection type inhabitation (Problem 17) is semi-decidable.

Proof. Since intersection type checking is decidable (Theorem 18), a semi-decision procedure
may enumerate and type check each combinatory term as a potential inhabitant. ◀

▶ Theorem 20. Intersection type inhabitation (Problem 17) is undecidable.

Proof. We reduce the halting problem to intersection type inhabitation. Let T be a Turing
machine and let P (x) be a predicate on combinatory terms stating that T halts on the empty
word after exactly size(x) steps (where size(M) is the number of combinator occurrences
in M). For any combinatory term M we have that P (M) is decidable. Let

Γ = {A : c(ω) ∩ (c(ω)→ c(ω)), B : ⟨⟨x : c(ω)⟩⟩ ⇒ P (x)⇒ d(ω)}

If Γ; ∅ ⊢M : d(ω) for some combinatory term M , then M is of shape BN and T halts on
the empty word after size(N) steps. Complementarily, if T halts on the empty word after
exactly k steps, then we have Γ; ∅ ⊢ BN : d(ω) where N = A(· · · (AA) · · · ) is of size k.
Therefore, T halts on the empty word iff there exists a term M such that Γ; ∅ ⊢M : d(ω). ◀

▶ Remark 21. Emptiness and finiteness of the set {M | Γ; ∆ ⊢ M : τ} of inhabitants are
orthogonal problems. The proof of the above Theorem 20 gives a finite set of inhabitants
with an undecidable emptiness question. Complementarily, let us consider the predicate
P ′(x) on combinatory terms stating that x = A or a given Turing machine T halts on the
empty word after at most size(x) steps. The corresponding set of inhabitants is non-empty,
and infinite iff T halts on the empty word.

Since intersection type checking in FCLP is decidable (Theorem 18), the set of inhabitants
{M | Γ; ∆ ⊢ M : τ} is decidable. Complementarily, the following Theorem 22 shows that
each decidable set of combinatory terms can be described by some set of inhabitants.

▶ Theorem 22. Let M be a decidable set of combinatory terms containing combinators
drawn from a finite set A. There exists a combinator B and a type environment Γ such that
M = {M | Γ; ∅ ⊢ BM : ω}.

Proof. Let Γ′ = {A : ω | A ∈ A} and Γ = Γ′ ∪ {B : ⟨⟨x : ω⟩⟩ ⇒ (x ∈ M) ⇒ ω} for a fresh
combinator B ̸∈ A. Since M⊆ {M | Γ′; ∅ ⊢M : ω}, we have Γ; ∅ ⊢ BM : ω iff M ∈M. ◀
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3 Decidable Inhabitation Fragment

While intersection type inhabitation (Problem 17) is undecidable in general (Theorem 20),
FCLP contains fragments which enjoy decidable inhabitation. By Corollary 15 one such
fragment is FCL(∩,≤), for which inhabitation is ExpTime-complete [32, Theorem 12].
In the remainder of this section we present a fragment of FCLP which strictly includes
FCL(∩,≤) and enjoys decidable inhabitation. The key idea is a reduction from intersection
type inhabitation (under certain restrictions on predicates) to emptiness of bottom-up tree
automata with term constraints [33].

The following Definition 23 specifies the arity of a parameterized type. If a combinator is
applied to a number of arguments exceeding the arity of its type, then the only type assigned
to such an application is the universal type ω.

▶ Definition 23 (Arity).

ar(⟨α : t⟩ ⇒ φ) = ar(⟨x : σ⟩ ⇒ φ) = 1 + ar(φ)
ar(P ⇒ φ) = ar(φ)

ar(ω) = ar(c(σ)) = ar(l) = ar(α) = 0
ar(σ → τ) = 1 + ar(τ) where τ ̸= ω

ar(σ ∩ τ) = max{ar(σ), ar(τ)}

▶ Lemma 24 (Maximal Arity). Given environments Γ, ∆, for a typed combinator (A : φ) ∈ Γ,
an n > ar(φ), combinatory arguments T1, . . . , Tn, and an intersection type τ , we have that if
Γ; ∆ ⊢ AT1 . . . Tn : τ , then τ = ω.

Proof. For Γ, ∆, and (A : e1 ⇒ · · · ⇒ em ⇒ ρ) ∈ Γ let n > ar(e1 ⇒ · · · ⇒ em ⇒ ρ) and
let n′ = n − ar(e1 ⇒ · · · ⇒ em ⇒ ω). By induction on ρ for any literal substitution θ

we have that σ′
1 → · · · → σ′

n′ → τ ′ ̸∈ P(θ(ρ)) for any types σ′
1, . . . , σ

′
n′ , τ ′. Assuming

Γ; ∆ ⊢ AT1 . . . Tn : τ , by Lemma 13.2.b we obtain ω ≤ τ , showing the claim. ◀

Combinatory terms can be naively represented as binary trees, having combinators
and literals as leaves and binary term application as inner nodes. However, the naive
representation is inappropriate for certain tree constraints. For example, brother equality
and disequality constraints [10] compare the terms M and N in the application M N for the
naive representation, which is of little interest in practice. In the following, we represent a
combinatory term AT1 . . . Tn as the tree with root A(n) with n children T1, . . . , Tn.

▶ Definition 25 (Tree Representation).

tree(l) = l

tree(AT1 . . . Tn) = A(n)(tree(T1), . . . , tree(Tn))

In general, for a combinator A we have infinitely many symbols A(0), A(1), A(2), . . ., which
is unsatisfactory for tree languages over a finite signature. Fortunately, relying on Lemma 24
for a typed combinator A : φ we can reasonably bound the arity by ar(φ) in the following
Definition 26.

▶ Definition 26 (Arity Respect). We say that a combinatory term AT1 . . . Tn respects arities
in Γ, if (A : φ) ∈ Γ, n ≤ ar(φ), and each Ti which is not a literal respects arities in Γ.

The set of combinatory terms M which contain literals from dom(∆) and respect arities
in Γ is denoted C(Γ,∆).
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The following Lemma 27 shows that for intersection type inhabitation in the fragment
corresponding to FCL(∩,≤) (cf. Corollary 15) it suffices to consider inhabitants which
respect arities in Γ.

▶ Lemma 27. Let Γ be a type environment such that ran(Γ) ⊆ T, let M be a combinatory
term which does not contain literals, and let τ be an intersection type. If Γ; ∅ ⊢M : τ , then
there exists a combinatory term N ∈ C(Γ, ∅) such that Γ; ∅ ⊢ N : τ .

Proof. Assume Γ; ∅ ⊢M : τ where ran(Γ) ⊆ T; we proceed by induction on the number of
combinator occurrences in M . If M ∈ C(Γ, ∅) we obtain the claim, otherwise the derivation
of Γ; ∅ ⊢ M : τ contains a subderivation Γ; ∅ ⊢ AM1 . . .Mar(σ) M

′ : ρ for some (A : σ) ∈ Γ
and an intersection type ρ. By Lemma 24 we have ρ = ω. Therefore, we can derive
Γ; ∅ ⊢ AM1 . . .Mar(σ) : ρ, replace the original subderivation, and obtain the claim by the
induction hypothesis. ◀

In general, for intersection type inhabitation the following Remark 28 shows that inhabi-
tants which respect arities in Γ do not suffice.
▶ Remark 28. For the type environment Γ = {A : ω,B : ⟨⟨x : ω⟩⟩ ⇒ (x ̸= A) ⇒ l} we
have Γ; ∅ ⊢ B (AA) : l. Since ar(ω) = 0 we have B (AA) ̸∈ C(Γ, ∅). The only term
N ∈ C(Γ, ∅) such that Γ; ∅ ⊢ N : ω is the term N = A. Therefore, there is no combinatory
term M ∈ C(Γ, ∅) such that Γ; ∅ ⊢M : l.

We consider a fragment of FCLP for which any predicate occurring in parameterized
types in ran(Γ) is of specific shape (Definition 29 and Definition 30), motivated by tree
automata with term constraints [33].

▶ Definition 29 (Term Constraint). For a type environment Γ, a predicate occurring in a
parameterized type in ran(Γ) is a term constraint, if it is either x = M or x ̸= M where M
is (abusing notation) an open term (possibly containing variables) which respects arities in Γ.

▶ Definition 30 (Literal Constraint). A predicate P is a literal constraint if every free variable
occurring in P is a literal variable.

Restricting predicates to literal and term constraints we define the following inhabitation
problem.

▶ Problem 31 (Intersection Type Inhabitation with Literal and Term Constraints). Given a
type environment Γ such that each predicate occurring in a parameterized type in ran(Γ) is
a literal constraint or a term constraint, a literal environment ∆, and an intersection type τ ,
is there a combinatory term M ∈ C(Γ,∆) such that Γ; ∆ ⊢M : τ holds?

We follow the approach initiated by Frühwirth [23] (an overview is given by Jacquemard [26,
Section I.2]) and describe tree languages via finite sets of Horn clauses over certain first-order
signatures. The following Definition 32 establishes suitable first-order signatures, based on
environments and a set of intersection types.

▶ Definition 32 (Signature). For environments Γ,∆ and a finite set of intersection types Ξ
the signature Σ(Γ,∆,Ξ) contains the following:

nullary function symbols l for each l ∈ dom(∆)
n-ary function symbols A(n) for each (A : φ) ∈ Γ and n ≤ ar(φ)
unary predicates Qτ for each τ ∈ Ξ
unary predicates Qt for each t ∈ ran(∆)
a binary equality (=) predicate and a binary disequality ( ̸=) predicate
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The Herbrand universe over the signature Σ(Γ,∆,Ξ) is {tree(T ) | T ∈ C(Γ,∆)∪dom(∆)}.
Horn clauses over the signature Σ(Γ,∆,Ξ) are of shape H ← H1, . . . ,Hm, where H is the
head of the clause and H1, . . . ,Hm are antecedents of the clause. Specifically, we consider
Horn clauses with heads of shape either Qt(l) such that (l : t) ∈ ∆, or Qτ (A(n)(X1, . . . , Xn))
where X1, . . . , Xn are free first-order variables. Let us recall in the following Definition 33
the standard Herbrand semantics [36] for signatures Σ(Γ,∆,Ξ).

▶ Definition 33 (Model). Let Γ,∆ be environments, let M ∈ C(Γ,∆) be a combinatory
term, let Ξ be a finite set of intersection types, let H be a finite set of Horn clauses over the
signature Σ(Γ,∆,Ξ), and let τ ∈ Ξ be a type. We write H ⊩ Qτ (tree(M)) if Qτ (tree(M)) is
true in the smallest Herbrand model in which every Horn clause from H is true.

Next, given environments Γ (restricted to literal and term constraints) and ∆, and an
intersection type τ , we present a terminating algorithm INH which computes a set H of Horn
clauses such that for any M ∈ C(Γ,∆) we have Γ; ∆ ⊢M : τ iff H ⊩ Qτ (tree(M)).

▶ Definition 34 (Algorithm INHΓ,∆(τ,Ξ)). Let Γ be a type environment such that each
predicate occurring in a parameterized type in ran(Γ) is a literal constraint or a term
constraint and let ∆ be a literal environment. For an intersection type τ and a set Ξ of
intersection types let

INHΓ,∆(τ,Ξ) =

∅ if τ ∈ Ξ⋃
(A:φ)∈Γ

RECA
Γ,∆,τ,(Ξ∪τ)((), φ, (), ∅) otherwise

where Algorithm RECA
Γ,∆,τ,Ξ is defined as follows. The arguments of RECA

Γ,∆,τ,Ξ are
a list X⃗ of distinct first-order variables
a parameterized type φ
a list H⃗ of antecedents
a finite set H of Horn clauses

The result of RECA
Γ,∆,τ,Ξ(X⃗, φ, H⃗,H) is a set of Horn clauses computed as follows. Consider

the shape of φ:
Case φ is ⟨α : t⟩ ⇒ ψ: let Y be a fresh first-order variable and return⋃

(l:t)∈∆

RECA
Γ,∆,τ,Ξ((X⃗, Y ), ψ[α := l], (H⃗,Qt(Y ), Y = l),H ∪ {Qt(l)←})

Case φ is ⟨⟨x : σ⟩⟩ ⇒ ψ: let Y be a fresh first-order variable and return

RECA
Γ,∆,τ,Ξ((X⃗, Y ), ψ[x := Y ], (H⃗,Qσ(Y )),H ∪ INHΓ,∆(σ,Ξ))

Case φ is P ⇒ ψ such that P is closed: if P does not hold return ∅, otherwise return

RECA
Γ,∆,τ,Ξ(X⃗, ψ, H⃗,H)

Case φ is (X = M) ⇒ ψ where M may contain free first-order variables: return

RECA
Γ,∆,τ,Ξ(X⃗, ψ, (H⃗,X = tree(M)),H)

Case φ is (X ̸= M) ⇒ ψ where M may contain free first-order variables: return

RECA
Γ,∆,τ,Ξ(X⃗, ψ, (H⃗,X ̸= tree(M)),H)
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Case φ is ρ for some intersection type ρ: return

H ∪
ar(ρ)⋃
k=0

⋃
S⊆P(ρ)

Hk,S where Hk,S is defined as follows.

If S = {σ1
1 → · · · → σ1

k → τ1, . . . , σq
1 → · · · → σq

k → τ q} and
⋂q

i=1 τ
i ≤ τ , then let

Y1, . . . , Yk be fresh first-order variables, let σj =
⋂q

i=1 σ
i
j for j = 1 . . . k, and let n be the

length of the list (X⃗, Y1, . . . , Yk) in

Hk,S = {Qτ (A(n)(X⃗, Y1, . . . , Yk))← H⃗,Qσ1(Y1), . . . , Qσk
(Yk)} ∪

k⋃
j=1

INHΓ,∆(σj ,Ξ)

Otherwise, Hk,S = ∅.

The following Example 35 illustrates an invocation of Algorithm INH for the type
environment from Remark 28.

▶ Example 35. Consider the type environment Γ = {A : ω,B : ⟨⟨x : ω⟩⟩ ⇒ (x ̸= A) ⇒ l}
from Remark 28 where l is some literal. We have

INHΓ,∅(l, ∅)
= RECA

Γ,∅,l,{l}
(
(), ω, (), ∅

)
∪ RECB

Γ,∅,l,{l}
(
(), ⟨⟨x : ω⟩⟩ ⇒ (x ̸= A)⇒ l, (), ∅

)
= ∅ ∪ RECB

Γ,∅,l,{l}
(
(Y ), (Y ̸= A)⇒ l, (Qω(Y )), ∅ ∪ INHΓ,∅(ω, {l})

)
= RECB

Γ,∅,l,{l}
(
(Y ), l, (Qω(Y ), (Y ̸= A(0))), INHΓ,∅(ω, {l})

)
= INHΓ,∅(ω, {l}) ∪ {Ql(B(1)(Y ))← Qω(Y ), (Y ̸= A(0))}
= . . .

= {Qω(A(0))←,
Qω(B(1)(Z))← Qω(Z), (Z ̸= A(0)),
Ql(B(1)(Y ))← Qω(Y ), (Y ̸= A(0))}

In accordance with Remark 28, in the smallest Herbrand model in which every Horn
clause from the above set INHΓ,∅(l, ∅) is true we have

Qω = {A(0)} = {tree(M) |M ∈ C(Γ, ∅) such that Γ; ∅ ⊢M : ω}
Ql = ∅ = {tree(M) |M ∈ C(Γ, ∅) such that Γ; ∅ ⊢M : l}

The following Example 36 illustrates the result of Algorithm INH in the presence of literal
constraints (cf. Section 5).

▶ Example 36. Consider the literal environment ∆ = {0 : int, 1 : int, 2 : int, 3 : int} and the
type environment Γ = {A : 0, B : ⟨α : int⟩ ⇒ ⟨β : int⟩ ⇒ (β = α+ 1)⇒ α→ β}. We have

INHΓ,∆(2, ∅)
= {Q0(A(0))←,

Q1(B(3)(X1, X2, X3))← Qint(X1), (X1 = 0), Qint(X2), (X2 = 1), Q0(X3),
Q2(B(3)(Y1, Y2, Y3))← Qint(Y1), (Y1 = 1), Qint(Y2), (Y2 = 2), Q1(Y3),
Qint(0)←, Qint(1)←, Qint(2)←}

In the smallest Herbrand model in which every Horn clause from the above set INHΓ,∆(2, ∅)
is true we have Q0 = {A(0)}, Q1 = {B(3)(0, 1, A(0))}, Q2 = {B(3)

(
1, 2, B(3)(0, 1, A(0))

)
}, and

Qint = {0, 1, 2}. Specifically, we have Qi = {tree(M) |M ∈ C(Γ,∆) such that Γ; ∆ ⊢M : i}
for i ∈ {0, 1, 2}. The literal 3 ∈ dom(∆) does not occur in Horn clauses in INHΓ,∆(2, ∅).

Termination of INHΓ,∆(τ,Ξ) is shown using an upper bound on the set Ξ of types and
the fact that Ξ strictly increases in recursive invocations of INHΓ,∆.
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▶ Lemma 37. For any type environment Γ, literal environment ∆, intersection type τ , and
set Ξ of intersection types we have that Algorithm INHΓ,∆(τ,Ξ) terminates.

Proof. Recursive invocations of INHΓ,∆ increase the set Ξ by the considered type τ , such
that for some literal substitution θ with range dom(∆) one of the following conditions holds:

τ = θ(σ) such that ⟨⟨x : σ⟩⟩ is a binder occurring in a parameterized type in ran(Γ)
τ =

⋂q
i=1 σ

i
j such that {σ1

1 → · · · → σ1
k → τ1, . . . , σq

1 → · · · → σq
k → τ q} ⊆ P(θ(ρ)) for

some ρ occurring in a parameterized type in ran(Γ) and k ≤ ar(θ(ρ))
Since Γ, ∆, the number of literal substitution θ with range dom(∆), and the number of
distinct subsets of P(θ(ρ)) are finite, the number of types τ obeying the above restriction is
finite. Therefore, the number of recursive invocations of INHΓ,∆ is finite. ◀

The following Theorem 38 shows that INHΓ,∆(τ, ∅) computes Horn clauses which charac-
terize inhabitants (respecting arities in Γ) of type τ .

▶ Theorem 38 (Correctness). Let Γ,∆ be environments such that each predicate occurring
in a parameterized type in ran(Γ) is a literal constraint or a term constraint, let Ξ be a set
of intersection types, let τ ∈ Ξ, and let H be the set INHΓ,∆(τ, ∅) of Horn clauses over the
signature Σ(Γ,∆,Ξ). We have Γ; ∆ ⊢M : τ iff H ⊩ Qτ (tree(M)) for any M ∈ C(Γ,∆).

Proof. W.l.o.g. we assume that distinct bound variables have distinct names and there is a
bijection µ between term variables and first-order variables such that in case ⟨⟨x : σ⟩⟩ ⇒ ψ of
Algorithm REC the chosen fresh first-order variable is µ(x).

For the implication from left to right, we assume Γ; ∆ ⊢M : τ and proceed by induction
on M . We have M = AT1 . . . Tn such that (A : φ) ∈ Γ, n ≤ ar(φ), and there exists a literal
substitution θ and a term substitution ξ satisfying properties of Lemma 13.

We have RECA
Γ,∆,τ,{τ}((), φ, (), ∅) ⊆ H containing the clause Qτ (A(n)(X1, . . . , Xn))← H⃗

such that for 1 ≤ i ≤ n the following properties hold.
If Ti is a literal, then Qt(Xi), (Xi = Ti) ∈ H⃗, introduced by case ⟨α : t⟩ ⇒ ψ such that
θ(α) = Ti and (Ti : t) ∈ ∆. Additionally, H contains the clause Qt(Ti)←.
If Ti is not a literal, then Qσ(Xi) ∈ H⃗ for some type σ such that Γ; ∆ ⊢ Ti : σ by either
Lemma 13.1.b or Lemma 13.2.a, and by the induction hypothesis H ⊩ Qσ(tree(Ti)).
If a literal constraint P occurs in φ, then θ(P ) holds by Lemma 13.1.c.
If a term constraint P occurs in φ, then µ(θ(P )) occurs in H⃗ and ξ(θ(P )) holds by
Lemma 13.1.c.

Using the substitution which maps Xi to tree(Ti) for i = 1, . . . , n each antecedent in H⃗ is
true in the considered smallest Herbrand model, and we obtain H ⊩ Qτ (tree(AT1 . . . Tn)).

For the implication from right to left, we assume H ⊩ Qτ (tree(M)) and proceed by induc-
tion on M . We have M = AT1 . . . Tn and H contains the clause Qτ (A(n)(X1, . . . , Xn))← H⃗ ,
constructed by RECA

Γ,∆,τ,Ξ for some set Ξ. Additionally, for some literal substitution θ and
the substitution which maps Xi to tree(Ti) for i = 1, . . . , n each antecedent in H⃗ is true in
the considered smallest Herbrand model, and the following properties hold.

If Ti is a literal, then (Ti : t) ∈ ∆ for some t. Additionally, (Xi = Ti) ∈ H⃗, introduced by
case ⟨α : t⟩ ⇒ ψ such that θ(α) = Ti.
If Ti is not a literal, then Qσ(Xi) ∈ H⃗ for some type σ and H ⊩ Qσ(tree(Ti)). By the
induction hypothesis we have Γ; ∆ ⊢ Ti : σ.
For any literal constraint P occurring in φ we have that θ(P ) holds.
Let ξ be a term substitution such that ξ(x) = Ti if µ(x) = Xi. For any term constraint
P occurring in φ, we have µ(θ(P )) ∈ H⃗ and ξ(θ(P )) holds.

By Lemma 13 we obtain Γ; ∆ ⊢ AT1 . . . Tn : τ . ◀
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The following Definition 39 gives the tree language over a signature Σ(Γ,∆,Ξ) for an inter-
section type τ ∈ Ξ described by a set of Horn clauses constructed in Algorithm INHΓ,∆(τ, ∅).

▶ Definition 39. Let H be a set of Horn clauses over the signature Σ(Γ,∆,Ξ) and let τ ∈ Ξ,
we call LH(τ) = {tree(T ) | T ∈ C(Γ,∆) ∪ dom(∆) such that H ⊩ Qτ (tree(T ))} the tree
language of τ in H.

We recall the shape of automata clauses by Reuß and Seidl in the following Definition 40,
for which emptiness of the corresponding tree language is decidable (Theorem 41).

▶ Definition 40 (Automata Clauses [33, Section 2]). An automata clause over the signature
Σ(Γ,∆,Ξ) is a Horn clause of the form

Q0(A(n)(X1, . . . , Xn))← Q1(X1), . . . , Qn(Xn), Xi1 = u1, . . . , Xik = uk, Xj1 ̸= v1, . . . , Xjm ̸= vm

where A(n) ∈ Σ(Γ,∆,Ξ) is an n-ary function symbol, Q0, . . . , Qn ∈ Σ(Γ,∆,Ξ) are unary
predicates, X1, . . . , Xn are distinct first-order variables, u1, . . . , uk, v1, . . . , vm are trees over
Σ(Γ,∆,Ξ) containing variables from {X1, . . . , Xn}, and i1, . . . , ik, j1, . . . , jm ∈ {1, . . . , n}.

The tree language LH(τ) corresponds to the language of a bottom-up tree automaton with
term constraints [33] described by automata clauses H and having the accepting states {Qτ}.
Therefore, emptiness of LH(τ) is decidable.

▶ Theorem 41 ([33, Theorem 14]). Given a set H of automata clauses over the signature
Σ(Γ,∆,Ξ) and τ ∈ Ξ, emptiness of the tree language LH(τ) is decidable.

Finally, we show decidability of intersection type inhabitation with literal and term
constraints by reduction to emptiness of bottom-up tree automata with term constraints.

▶ Theorem 42. Intersection type inhabitation with literal and term constraints (Problem 31)
is decidable.

Proof. Due to Theorem 38 and Theorem 41, it suffices to show that the set of Horn clauses
H = INHΓ,∆(τ, ∅) over the signature Σ(Γ,∆,Ξ) for some set Ξ of intersection types contains
only automata clauses.

Heads of clauses in H are either Qt(l) for some (l : t) ∈ ∆ (constructed in case ⟨α : t⟩ ⇒ ψ)
or Qτ (A(n)(X⃗, Y1, . . . , Yk)) where n is the length of the list (X⃗, Y1, . . . , Yk) (constructed in
the intersection type case), which are both of proper shape. It remains to show that any
antecedent in clauses in H is of proper shape. We consider the individual cases in which
antecedents are constructed in Algorithm REC.
Case ⟨α : t⟩ ⇒ ψ: The constructed antecedents are Qt(Y ) and Y = l for some fresh first-

order variable Y and (l : t) ∈ ∆.
Case ⟨⟨x : σ⟩⟩ ⇒ ψ: The constructed antecedent is Qσ(Y ) for some fresh first-order vari-

able Y and σ ∈ Ξ.
Case P ⇒ ψ such that P is closed: No antecedents are constructed.
Case (X = M) ⇒ ψ where M may contain free variables: The constructed antecedent

is (X = tree(M)). Since Γ contains only closed parameterized types, any literal variable
in M is substituted by some literal in dom(∆) and any term variable in M is substituted
by some first-order variable. Therefore, (X = tree(M)) is of proper shape.

Case (X ̸= M) ⇒ ψ where M may contain free variables: The constructed antecedent
is (X ̸= tree(M)), which analogously to the above case is of proper shape.

Case ρ: The constructed antecedents are Qσ1(Y1), . . . , Qσk
(Yk) for some fresh first-order

variables Y1, . . . , Yk and σ1, . . . , σk ∈ Ξ.
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Finally, we need to ensure that each first-order variable Z occurring in the head of the con-
structed clause Qτ (A(n)(X⃗, Y1, . . . , Yk))← H⃗,Qσ1(Y1), . . . , Qσk

(Yk) in the last case occurs
in exactly one antecedent Qσ(Z) for some σ ∈ Ξ or Qt(Z) for some t ∈ ran(∆). This trivially
holds for the above fresh first-order variables Y1, . . . , Yk. The remaining first-order variables
Y ∈ X⃗ are introduced in case ⟨α : t⟩ ⇒ ψ (with the corresponding antecedent Qt(Y )) and in
case ⟨⟨x : σ⟩⟩ ⇒ ψ (with the corresponding antecedent Qσ(Y )). ◀

Concluding the presentation of the decidable fragment of FCLP, we give remarks on its
complexity bounds (Remark 43), extensions (Remark 44), and alternatives (Remark 45).
▶ Remark 43. Complexity bounds for emptiness of bottom-up tree automata with term
constraints are not known [33, Section 6]. Therefore, we cannot give complexity bounds for
intersection type inhabitation with literal and term constraints. Additionally, we do not
impose complexity bounds on predicate evaluation (besides decidability).
▶ Remark 44. The class of bottom-up tree automata with term constraints is closed under
Boolean operations [33, Proposition 6]. Therefore, existing techniques extending FCL(∩,≤)
by a Boolean query language [20] are applicable.
▶ Remark 45. There are other classes of constrained tree automata [26] which could be
used to obtain a decidable fragment of FCLP. One example are generalized encompassment
automata [11, Definition 1], which are more expressive than bottom-up tree automata with
term constraints. However, the presentation of such automata as sets of Horn clauses resulting
from an inhabitation algorithm appears challenging.

4 Implementation

In practical applications one is rarely interested in solving just the inhabitation decision
problem, but rather in computing one, several, or all inhabitants. Therefore, we consider the
following synthesis problem, which is a slightly modified version of Problem 17.

▶ Problem 46 (Synthesis). Given a type environment Γ, a literal environment ∆, and an
intersection type τ , enumerate combinatory terms M for which Γ; ∆ ⊢M : τ holds.

Furthermore, when solving particular problems via synthesis, we want to interpret the
resulting combinatory terms as solutions for those problems.

A framework [21] addressing Problem 46 was implemented on the basis of the existing
Combinatory Logic Synthesizer (CLS)4 using the Python programming language.

In this section we discuss the implementation, and evaluate how the added features of
FCLP help modeling, and improve performance compared to FCL(∩,≤), using maze solving
(Problem 52) as a benchmark example.
▶ Remark 47. The presented framework does not make use of Python’s built-in type system
for synthesis, and implements types as Python classes.

4.1 Usage
The framework is implemented as a Python library, requiring Python version 3.10 or later. It
does not rely on any additional libraries. For the sake of brevity, an embedded domain-specific
language (eDSL), shown in Figure 1, was created for writing parameterized types.

4 https://github.com/cls-python/cls-python
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Constructor Python

ω Omega()
σ → τ σ ** τ

σ ∩ τ σ & τ

c(σ) ’c’@σ

Literal l : t Literal(l,t)
Variable α LVar(’α’)

Constructor Python

⟨x : t⟩ Use(’x’, ’t’)
⟨⟨α : τ⟩⟩ Use(’α’, τ)

Predicate P using
variables v0, . . . , vn With(lambda v0,...,vn:P )

. . .⇒ τ DSL(). . . . .In(τ)

Figure 1 Embedded DSL for parameterized and intersection types in Python.

▶ Example 48 (eDSL). The parameterized type ⟨α : int⟩ ⇒ ⟨⟨x : σ⟩⟩ ⇒ ⟨⟨y : σ⟩⟩ ⇒ (x = y)⇒
⟨β : int⟩ ⇒ (β = α+ 1)⇒ c(α)→ c(β)→ (c(4) ∩ c(ω)) corresponds to the following eDSL
term:

DSL (). Use(’α’, ’int ’). Use(’x’, σ). Use(’y’, σ)
.With( lambda x y: x == y). Use(β, ’int ’). With( lambda α β: β = α + 1)
.In((’c’@LVar(α)) ** (’c’@LVar(β)) **

(’c’@Literal (4, ’int ’) & ’c’@(Omega ())))

▶ Remark 49. The operator ** was chosen to represent the arrow type constructor, since it
is the only right associative operator available in Python.

In order to synthesize inhabitants, we need to define a type environment, a literal
environment, and an intersection type as a query. A type environment is a dict, mapping
combinators to their types, where combinators can be any Hashable Python object. Types
can be formed via the eDSL or by instantiating appropriate subclasses of the class Type. A
literal environment is a dict, mapping collection identifiers (represented as str) to literals,
which can be any Python objects. The three main operations of the framework are:

FiniteCombinatoryLogic(...).inhabit(...) to initialize the synthesis procedure and
compute an intermediate result representation,
enumerate_terms to extract combinatory terms from the intermediate representation,
interpret_term to interpret a combinatory term as a solution in the problem domain.

Given a type environment Γ, literal environment ∆, and a type τ , we can use the above
operations to enumerate elements of the set {M | Γ,∆ ⊢M : τ} by the following steps. First,
we generate an intermediate representation of the synthesis results.

results = FiniteCombinatoryLogic(repository = Γ, literals = ∆).inhabit(τ)

Second, we enumerate up to n distinct terms.

terms = enumerate_terms(τ, results, n)

A term is represented as a tuple, such that its first projection is the associated combinator,
and the following projections are representations of the arguments. Finally, we interpret
these terms to obtain solutions in the problem domain.

solutions = [interpret_term(term) for term in terms]

Each combinator can be equipped with a computational component, realized by implementing
the Callable protocol. In this step each callable combinator is interpreted by calling it on
its interpreted arguments.
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4.2 Synthesis Procedure
In contrast to Algorithm INH (Definition 34), the implemented synthesis procedure is not
limited to the decidable fragment. While this makes inhabitation undecidable, in most
practical applications the advantages of unrestricted predicates outweigh potential lock-ups.

Given a type environment Γ, literal environment ∆, and intersection type τ , the synthesis
process is structured as follows.
Preprocessing: For each typed combinator (C : e1 ⇒ · · · ⇒ em ⇒ ρ) ∈ Γ, we first generate

the set of substitutions determined by ∆ and the literal quantifiers in e1, . . . , em. Next,
we use these substitutions to evaluate all literal constraints in e1, . . . , em, discarding
substitutions which violate at least one constraint. The remaining substitutions are
stored alongside the combinator. Afterward, we remove all literal quantifiers and literal
constraints from e1, . . . , em. Finally, for each arity k up to ar(ρ), we decompose ρ into
possible pairs of k argument types and a return type.

Generating Horn clauses: For each typed combinator (C : e1 ⇒ · · · ⇒ em ⇒ ρ) ∈ Γ, each
literal substitution θ for C, and each arity k, if the intersection of the return types is
a subtype of τ , a Horn clause is created analogous to the last case of Algorithm INH.
Further Horn clauses are generated by recursion on each argument type, as well as on
each type occurring in term quantifiers in e1, . . . , em.

Enumeration: Given the above set of Horn clauses and a number n, we enumerate up to n
inhabitants in a bottom-up manner. In this step we resolve term quantifiers by enumerating
inhabitants of the type quantified over, placing them at the respective argument position
in a given combinator and substituting the respective term variables in the remaining
constraints by those inhabitants. If this leads to violated constraints, we discard those
terms. Similarly, literals are placed at positions corresponding to their quantifier position.

4.3 Solutions in a Maze
The additions of FCLP compared to FCL(∩,≤) improve upon the expressiveness of specifica-
tion, and it was observed that more concise modeling can lead to performance improvements.
Consider the following example of finding solutions in a maze.

▶ Definition 50 (Maze). Let n ∈ N, an n× n-maze is a function M : {0, . . . , n− 1}2 → B
indicating whether a position is free or blocked.

▶ Definition 51 (Maze Solution). A solution to an n × n-maze M is a finite sequence(
(x0, y0), . . . , (xl, yl)

)
such that:

(x0, y0) = (0, 0) and (xl, yl) = (n− 1, n− 1),
for each i ∈ {0, . . . , l} we have (xi, yi) ∈ dom(M) and M(xi, yi) = true,
for each i ∈ {0, . . . , l − 1} we have |xi − xi+1|+ |yi − yi+1| = 1.

▶ Problem 52 (Maze Solving). Given an n× n-maze M, enumerate solutions to M.

Variants of maze solving are common, miniature benchmark examples5 for component-
oriented synthesis [9, 4, 19]. Domain-specific components for maze solving encompass
movement directions and the maze layout. Specification capabilities, scalability, and perfor-
mance of the framework in the case of maze solving translate well to software product line
design [25], factory planning [37], and cyber-physical system design [14].

5 Of course, if one is solely interested in maze solving, a domain-specific algorithm using dynamic
programming is recommended instead of domain-agnostic component-oriented synthesis.
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Let us explore an approach to maze solving in FCL(∩,≤). Given an n× n-maze M we
construct the following type environment ΓM

FCL.

ΓM
FCL = {Freex,y : isfree(x, y) | (x, y) ∈ dom(M) such that M(x, y) = true}∪

{Start : pos(0(ω), 0(ω)),

Up :
⋂

(x,y)∈dom(M)

(isfree(x, y)→ pos(x, y + 1)→ pos(x, y)),

Down :
⋂

(x,y)∈dom(M)

(isfree(x, y)→ pos(x, y − 1)→ pos(x, y)),

Left :
⋂

(x,y)∈dom(M)

(isfree(x, y)→ pos(x+ 1, y)→ pos(x, y)),

Right :
⋂

(x,y)∈dom(M)

(isfree(x, y)→ pos(x− 1, y)→ pos(x, y))}

For better legibility, we allow for binary constructors as described in Remark 3. Combinators
Freex,y denote witnesses that the space at coordinates x and y is free. Combinators Up,
Down, Left and Right denote movement in the corresponding direction. Since FCL(∩,≤)
does not allow for literals, numbers need to be encoded by constructors (0(ω), 1(ω), . . . , n(ω))
and the position shifts need to be computed beforehand.

▶ Example 53. Consider a 2 × 2 maze M in which exactly the position (1, 0) is blocked.
In order to synthesize (not necessarily loop-free) solutions in M, we enumerate elements
of the set {M | ΓM

FCL ⊢ M : pos(1(ω), 1(ω))}, resulting in combinatory terms such as:(
Right Free1,1 (Down Free0,1 Start)

)
. Given the appropriate interpretation for the

movement combinators, we can interpret the term as the solution
(
(0, 0), (0, 1), (1, 1)

)
,

shown in the below Figure 2.

Figure 2 A 2× 2 maze with a solution in red. Position (0, 0) is in the top-left corner.

While the above shows that FCL(∩,≤) can model Problem 52, we identify three improve-
ments that can be made using FCLP.

Quantifiers can be used to avoid intersections spanning all positions in the maze.
Since we expect each combinator to be fully applied (have exactly as many arguments as
the arity of its type), we model positions as parameters.
The combinators Freex,y act as predicates for the movement combinators. Using FCLP,
we can use predicates directly, removing those combinators.

Applying the above improvements, we construct the type environment ΓM
FCLP together with

the literal environment ∆ = {0 : int, . . . , n− 1 : int}.
ΓM

FCLP = {Start : pos(0, 0),
Up : ⟨α : int⟩ ⇒ ⟨β : int⟩ ⇒ ⟨γ : int⟩ ⇒ (γ = β+1)⇒M(α, β)⇒ ⟨⟨p : pos(α, γ)⟩⟩ ⇒ pos(α, β),
Down : ⟨α : int⟩ ⇒ ⟨β : int⟩ ⇒ ⟨γ : int⟩ ⇒ (γ = β−1)⇒M(α, β)⇒ ⟨⟨p : pos(α, γ)⟩⟩ ⇒ pos(α, β),
Left : ⟨α : int⟩ ⇒ ⟨β : int⟩ ⇒ ⟨γ : int⟩ ⇒ (γ = α+1)⇒M(α, β)⇒ ⟨⟨p : pos(γ, β)⟩⟩ ⇒ pos(α, β),
Right : ⟨α : int⟩ ⇒ ⟨β : int⟩ ⇒ ⟨γ : int⟩ ⇒ (γ = α−1)⇒M(α, β)⇒ ⟨⟨p : pos(γ, β)⟩⟩ ⇒ pos(α, β)}

Clearly, the above type environment ΓM
FCLP is more concise compared to the type envi-

ronment ΓM
FCL. Additionally, we do not need to manually compute the position shifts to

construct ΓM
FCLP beforehand, as was needed for ΓM

FCL.
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Performance Evaluation
Using the modeling techniques introduced with FCLP, we observe improved performance.
Figure 3 shows synthesis execution time to find all solutions using different type environments,
up to a maze size of 70×70. All benchmarks were performed on the same machine6 using the
implementation at hand. Environments ΓM

FCLP(lit), ΓM
FCLP(pos), ΓM

FCLP(pred) each correspond to
an improvement identified above, namely using literals for coordinates, using term quantifiers
for the position, and using a predicate for free positions respectively.

Size ΓM
FCL ΓM

FCLP(lit) ΓM
FCLP(pos) ΓM

FCLP(pred) ΓM
FCLP

10× 10 1.3 s 0.5 s 0.3 s 0.1 s 0.1 s

20× 20 21.9 s 8.0 s 6.4 s 2.4 s 1.9 s

30× 30 125.2 s 41.0 s 30.7 s 12.8 s 9.8 s

40× 40 464.7 s 130.2 s 97.9 s 42.3 s 32.4 s

50× 50 1279.8 s 322.2 s 239.5 s 103.2 s 78.5 s

60× 60 3038.5 s 645.4 s 486.3 s 214.2 s 160.2 s

70× 70 > 5000 1195.6 s 893.5 s 384.9 s 299.4 s

Figure 3 Benchmarks for different maze sizes and different type environments.

While the data shows that all approaches scale at an exponential rate given the size,
using ΓM

FCLP leads to a performance increase of one order of magnitude compared to ΓM
FCL,

with each modeling technique contributing to the speed-up. The performance increase of
ΓM

FCLP compared to ΓM
FCL can be attributed to the following three factors:

1. ΓM
FCLP(lit) reduces the size of the type of each movement combinator.

2. ΓM
FCLP(pos) induces fewer subtype checks due to restricted term shape.

3. ΓM
FCLP(pred) reduces the number of combinators.

A benchmark using ΓM
FCL and the latest version of the prior implementation of CLS in

Python was conducted, leading to a time of 276 s for a 10 × 10 maze. The difference to
the prior implementation stems from the fact that the implementation at hand focuses on
performance, while the previous focuses on formal verification [4].

For performance evaluation, frameworks based on Bounded Combinatory Logic [18] or
based on Finite Combinatory Logic with Boolean Queries [20] are of no consequence. Neither
bounded polymorphism nor Boolean connectives are suited to model maze solving. Therefore,
the resulting performance is close to the prior implementation of CLS.

Loop-free solutions
As observed above, utilizing quantifiers and predicates can lead to significant speed-ups in
certain use-cases. Interestingly, predicates also model specifications, for which an effective
model in FCL(∩,≤) is unclear.

Consider the maze presented in Figure 4 and solutions, that do not visit any position more
than once (loop-free). In each movement combinator a predicate can require each visited
position to be unique in a given term, thereby only allowing for loop-free solutions. During
enumeration, terms containing at least one loop are discarded and the procedure will return

6 AMD Ryzen 7 5800X (3.8 GHz), 16 GB DDR4 RAM
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Figure 4 A 5× 5 maze with exactly two loop-free solutions (in red and blue).

exactly two solutions, after which it halts. In contrast, for FCL(∩,≤) we need to rely on a
generate-and-test approach. Such an approach would enumerate infinitely many candidates
(including those, which contain arbitrary many loops) and filter out those containing loops.
In particular, the procedure as a whole would search indefinitely for a third loop-free solution.
Furthermore, adjusting the size of the maze in Figure 4, there are arbitrary many looping
solutions whose length lie between the two loop-free solutions. The FCLP approach discards
solutions containing at least one loop early, and thereby never considers solutions with
multiple loops. In comparison, the FCL(∩,≤) approach has no such mechanism, leading to
exponentially more candidates to be checked and therefor an arbitrary long time between
the two loop-free solutions.

It is possible to model loop-free solutions in the synthesis framework based on Finite
Combinatory Logic with Boolean Queries [20]. In particular, negation is suitable to express
that a position is not yet visited. However, a performance evaluation has shown that such
an approach is infeasible for mazes beyond size 5× 5.

5 Case Study: Robotic Arms

We evaluate practical applicability of FCLP by means of a case study in which robotic arms
are synthesized from a set of 28 modular components [15]. The individual components are
modeled as typed combinators such that inhabitants of specific types can be interpreted
as assembly instructions for robotic arms. The assembly instructions are executed in CAD
software, assembling 3D models of robotic arms. Analysis tools, which are part of the
CAD software, confirm that the assembled robotic arms are mechanically sound, individual
components do not interfere which each other, and mechanical joints kinematically work
as intended. These properties hold for all robotic arms up to six degrees of freedom (six
moving joints) synthesized in the case study, a total of 364 arms containing on average 140
components each. Due to the chain-like nature of robotic arms we argue that higher degrees
of freedom also exhibit these properties.

In previous work [14] conducting the same case study utilizing FCL(∩,≤), numerical
constraints necessitate an exponential number of combinators. There are a number of
common numerical constraints of high importance, such as the degrees of freedom, the total
drawn current, total weight of the assembly, or the torque of motors. In previous work
such constraints are modeled as families of the following typed combinators, which specify
individual cases.

Ci1,i2,i3,i4 : Assembly(i1(ω))→ Assembly(i2(ω))→ Assembly(i3(ω))→ Assembly(i4(ω))
such that 0, ..., n are unary type constructors,
i1, i2, i3, i4 ∈ {0, ..., n},
and i4 = i1 + i2 + i3 + k
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Each of the above typed combinators Cii,i2,i3,i4 refers to individual numbers ii, i2, i3 of
specific parts in each connected assembly, and the accumulated number i4 of specific parts
increased by a constant k. The number of such combinators is exponential in the number of
connected assemblies (the arity of the type) multiplied by the number of distinct constraints
of interest. The number of connected assemblies depends on the granularity of the model,
but even for a case study of this scale a typical number is five, and requests usually employ
at least three constraints. The value range n for the constraints is usually no more than ten.
This leads to repositories of enormous size, containing tens of thousands of combinators for
typical requests. In practice, this large number of essentially redundant combinators impairs
debugging and deteriorates performance of the inhabitation algorithm.

In the later case study [15] the described issues are tackled using FCLP. The above family
of typed combinators is condensed to the following single typed combinator:

C : ⟨α1 : int⟩ ⇒ ⟨α2 : int⟩ ⇒ ⟨α3 : int⟩ ⇒ ⟨α4 : int⟩ ⇒ (α4 = α1 + α2 + α3 + k)⇒
⟨⟨x1 : Assembly(α1)⟩⟩ ⇒ ⟨⟨x2 : Assembly(α2)⟩⟩ ⇒ ⟨⟨x3 : Assembly(α3)⟩⟩ ⇒ Assembly(α4)

with ∆ ⊇ {0 : int, . . . , n : int}

The above combinator C concisely expresses the described numeric constraint for the particu-
lar assembly. Literal variables α1, α2, α3 refer to individual numbers of specific parts in each
connected assembly. The literal variable α4 refers to the accumulated number of specific parts
increased by a constant k, which is described by the literal constraint α4 = α1 + α2 + α3 + k.
As a result, such combinators closely represent the individual component in the actual use-
case [15]. The number of required combinators per component is constant, and independent
from specified constraints. Since each predicate is a literal constraint (Definition 30), the
corresponding inhabitation problem is decidable (Theorem 42).

The ability to cleanly handle constraints allows leveraging combinatory logic synthesis to
explore the robotic arm design space efficiently and glean information about it.

6 Conclusion

The present work conservatively extends the type system FCL(∩,≤) [32] by literals, quanti-
fiers, and predicates. While the inhabitation problem in the resulting type system FCLP
(Definition 8) is undecidable (Theorem 20), we give an expressive fragment of FCLP for
which inhabitation is decidable (Theorem 42). The particular fragment is based on results
for tree automata with term constraints by Reuß and Seidl [33], and allows for specification
of certain local (dis)equality constraints (Definition 29) for subterms of inhabitants. The
main contribution of the present work is a terminating algorithm INH which given a type
environment, a literal environment, and an intersection type computes a logic program (set
of Horn clauses) which represents all inhabitants.

For empirical evaluation, an algorithm for inhabitant enumeration (Problem 46) is
implemented in the programming language Python. The implementation, as part of a
larger synthesis framework [21], is shown superior to an existing FCL(∩,≤)-based framework
CLS [4] with respect to specification capabilities, scalability, and performance. Finally,
practical applicability is demonstrated via a case study in the area of cyber-physical systems.

There are several directions for further research.
First, it is worth investigating type inhabitation for more expressive type languages in the

setting of combinatory logic. Polymorphic set-theoretic types [12, 13] constitute a promising
candidate for type-based component-oriented program synthesis.

Second, there is room for exploration of more expressive fragments of FCLP with de-
cidable type inhabitation. A promising candidate could be obtained by using generalized
encompassment automata [11, Definition 1] instead of (the less expressive) bottom-up tree
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automata with term constraints. Another candidate could rely on automata with disequality
constraints [16, Definition 1]. Such automata are used by Czajka et.al. [5] to externally
restrict sets of inhabitants via term rewriting systems. It appears appealing to internalize
such restrictions as part of the specification language.

Third, the present work focuses on inhabitants which respect arities in the given type
environment. This restriction is based on the observation that in practice not every domain-
specific component is a function. However, the subtyping rule ω ≤ ω → ω is in conflict with
this observation. It is intriguing to explore semantics of combinatory logic with intersection
types [17] without the subtyping rule ω ≤ ω → ω.

Fourth, satisfiability of literal constraints, such as β = α + 1, could be addressed in
algorithm INH by a principled approach, for example based on SMT. Besides potential
performance improvements, such an approach may allow for a countably infinite parameter
space (literal environment).

Fifth, efficient enumeration procedures [35, 22] for tree languages focus on regular
structures. Besides the naive generate-and-test approach in the present work, there is no
practical enumeration procedure for trees accepted by bottom-up tree automata with term
constraints. It is unclear whether methods known from logic programming, such as sideways
information passing [3], are applicable.
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Abstract
Most categorical models for dependent types have traditionally been heavily set based: contexts
form a category, and for each we have a set of types in said context – and for each type a set of terms
of said type. This is the case for categories with families, categories with attributes, and natural
models; in particular, all of them can be traced back to certain discrete Grothendieck fibrations. We
extend this intuition to the case of general, not necessarily discrete, fibrations, so that over a given
context one has not only a set but a category of types.

We argue that the added structure can be attributed to a notion of subtyping that shares
many features with that of coercive subtyping, in the sense that it is the product of thinking about
subtyping as an abbreviation mechanism: we say that a given type A′ is a subtype of A if there is a
unique coercion from A′ to A. Whenever we need a term of type A, then, it suffices to have a term
of type A′, which we can “plug-in” into A.

For this version of subtyping we provide rules, coherences, and explicit models, and we compare
and contrast it to coercive subtyping as introduced by Z. Luo and others. We conclude by suggesting
how the tools we present can be employed in finding appropriate rules relating subtyping and certain
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Introduction

The notion of subtyping is often quite tricky because of its double nature: on the one hand,
it is meant to represent a relation so simple that one would like to not be bothered to look
too much into it but, on the other hand, programming languages do not do well with things
that are left unsaid. In [27, §15.1], subtyping A ≤ B is defined as a relation between two
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types A and B such that, if a term of type A is provided, than it can be “safely” used in
a context where B is expected, and the program should not falter if this happens. This is
often called the principle of safe substitution, and is encoded via a new typing rule that goes
by the name of subsumption.

(Sub)Γ ⊢ a : A Γ ⊢ A ≤ B
Γ ⊢ a : B (1)

The problem with subsumption is that it threatens to break certain structures and properties
such as canonicity or induction principles. Many variants of subtyping have been proposed,
and one in particular has proved itself to be well-behaved with respect to such issues, and
that is coercive subtyping [21].

In the present work we tackle the problem of subtyping from the point of view of its
categorical semantics: we extend a known model to naturally include a notion of subtyping
(Section 1), and show how this turns out to be in fact quite closely related to coercive subtyping
(Section 2). We then study some examples and applications (Section 3), and conclude by
observing some properties that that this new notion intrinsically shows (Section 4).

1 Categorical models of dependent types

The relation between type theory and category theory is one which has been widely studied,
and has in the years produced a large variety of models and structures. The interest of the
present work is in those that strongly employ objects and techniques coming from the theory
of Grothendieck fibrations.

1.1 Grothendieck fibrations
Fibrations were introduced by A. Grothendieck [9] for purposes pertaining to algebraic
geometry, but were soon found extremely useful to describe certain phenomena in logic [16].
We will recall key results and definitions when needed, but we refer to [3, Chapter 8] for a
detailed introduction.

▶ Definition 1 (Cartesian morphism). Let p : E → B a functor and s : B → A a morphism in
E. We say that s is p-cartesian or cartesian over σ : Θ→ Γ if p(s) = σ and for any other
r : C → A and τ such that p(r) = σ ◦ τ there is a unique t : C → B in E such that p(t) = τ

and s ◦ t = r.

C

B A E

Ξ

Θ Γ B

s

r

σ

σ◦τ

τ

p

(2)

We say that s is a (p-)cartesian lifting of σ, and it is often denoted sA,σ : σ∗A→ A.

▶ Definition 2 (Fibration). A functor p : E → B is a fibration if for all A in E, each
σ : Θ→ pA has a cartesian lifting. We also say that E is fibered over B or that E is over B.
Oftentimes B is called the base category and E the total category of p.
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From the point of view of the logic, we can consider B to be a category of contexts and
substitutions/terms, and E to be a category of formulae/types, so that each formula is
sent to its corresponding context: using fibrations in this way is very much in the spirit of
classical categorical logic (see for instance [17, 24, 12, 23]). Asking that for each term and
formula there exists a lifting, then, amounts to asking that substitution can be computed
and that it indeed produces a formula in then new context. A classical example is that of
the Lindenbaum-Tarski algebra for a given first-order theory (Section 3.1).

A particular feature of fibrations is that they induce a factorization system on their total
category, because for any given r : C → A, we can always instantiate the diagram in (2) as
follows,

C

σ∗A A E

Θ

Θ Γ B

sA,σ

r

σ

σ
id

p

producing a factorization of r. We refer to [26] for a review of its main features. Maps in the
left class of such factorization system, meaning maps that are sent to identities, are called
vertical.

▶ Proposition 3 (Vertical/cartesian factorization system). Consider p : E → B a fibration. The
classes of vertical and cartesian morphisms form an orthogonal factorization system on E . It
additionally has the following properties:
1. if g and gf are vertical, then so is f ;
2. pullbacks of vertical maps along cartesian ones exist and are vertical.

If cartesian maps can be thought of as substitutions, vertical maps relate formulae/types in
the same context precisely in a way that “does nothing” to the underlying terms.

Not only are vertical maps part of a factorization system, but they can be shown to form
a category: more precisely, for each context Γ in B, one can define a category EΓ having for
objects those in E that are sent to Γ, and for morphisms those in E that are vertical over
idΓ. This intuition is part of one of the most meaningful results of the theory, again due to
Grothendieck.

▶ Theorem 4 ([9]). There exists a 2-equivalence

Fib(B) ∼= Psd[Bop,Cat]

between the 2-category of fibrations (with base B), functors preserving cartesian maps, and
natural transformations, and that of contravariant pseudofunctors (from B), pseudonatural
transformations, and modifications.

From left to right, a fibration is sent to a (pseudo)functor that computes for each Γ its
fiber EΓ. From right to left, it performs what is called the Grothendieck construction of a
(pseudo)functor, which to an F : Bop ⇝ Cat, maps the fibration p :

∫
F → B, where objects

of
∫
F are pairs (Γ, A) with Γ in B and A in F (Γ).

Relevant classes of fibrations are those that correspond to functors, which are called split,
those whose fibers are preorders, which are called faithful, and those whose fibers are sets,
which are called discrete.
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1.2 Categories with families
▶ Definition 5 (Category with families, [7]). A category with families (cwf) is the data of

a small category B with terminal object ⊤;
a functor Ty : Bop → Set;
a functor Tm :

∫
Tyop → Set

for each Γ in B and A in Ty(Γ) an object Γ.A in B, together with two projections
pA : Γ.A → Γ and vA ∈ Tm(Γ.A,Ty pA(A)) such that for each σ : Θ → Γ and a ∈
Tm(Tyσ(A)) there exists a unique morphism Θ → Γ.A making the obvious triangles
commute.

In particular, Ty(Γ) is a set, the set of types in context Γ, and Tm(Γ, A) is again a set,
the set of terms of type A in context Γ. The terminal object is meant to model the empty
context, while the last condition is what provides context extension – since we are about to
give a simpler, equivalent form of it, we do not dwell on it any longer.

Following Theorem 4, we can turn Definition 5 upside down. What we get is the
(equivalent, see [2, Prop. 1.2]) notion of natural model.

▶ Definition 6 (Natural model, [2]). A natural model is the data of
a small category B with terminal object ⊤;
a discrete fibration u : U → B;
a discrete fibration u̇ : U̇ → B;
a fibration morphism Σ: u̇→ u with a right adjoint functor.

In this case u collects types and u̇ collects terms, as both are fibered on contexts.

Γ ⊢ A Type Γ ⊢ a : A

u(A) = Γ u̇(a) = Γ, Σ(a) = A

u in Fibdisc(B) u̇ in Fibdisc(B)

The fibration morphism (i.e. a functor making the diagram below commute) Σ maps to each
term its type, while ∆ computes for each A what in Definition 5 is called vA, meaning a
variable in A “transported” to the context Γ.A.

U̇ U

B
uu̇

Σ

∆

⊣

(Σ) Γ ⊢ a : A
Γ ⊢ A Type

(∆) Γ ⊢ A Type
Γ.A ⊢ vA : A (3)

1.3 Generalized categories with families
Our intuition, now, is that we want to use the theory of fibrations to generalize categories
with families (or natural models) to the case where fibers over a given context are no longer
a set, but a (small) category. If we manage to do this swiftly, we will have found a model for
dependent types that introduces and additional relation between types in the same context,
so that this relation does imply absolutely no substitution. This leads us to the following
definition.

▶ Definition 7 (Generalized category with families, [5, 4]). A generalized category with families
(gcwf) is the data of

a small category B (with terminal object ⊤)1;

1 Existence of the terminal object is needed in case one wants to model the empty context – which one
often wants to do. We only put its existence as conditional because we want to begin comparing gcwfs
with comprehension categories, and they in turn do not require it.
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a fibration u : U → B;
a fibration u̇ : U̇ → B;
a fibration morphism Σ: u̇ → u with a right adjoint functor, and unit and counit with
cartesian components.

Notice that the adjoint pair in Definition 7 is not fibered, as ∆ does not make the desired
triangle commute and unit and counit have cartesian components.

Of course a gcwf with discrete u, u̇ is a regular cwf, so that a gcwf is simply a generalization
of a well-known model. We choose the name as to remark that this new structure falls
into a long tradition of models, which categories with families is perhaps one of the most
prominent exponents of, but these could be very easily called “generalized natural models”,
or something entirely different (cf. [5]). We conclude this section with one last result relating
gcwfs to other notable structures, namely comprehension categories [11], as to show that our
path did not stray much away from known territory.

▶ Theorem 8 ([6, 4]). There is a biequivalence between (the 2-category of) gcwfs and (the
2-category of) comprehension categories.

A generalized category with families, then, is precisely as good a model as a comprehension
category. The purpose of introducing the new structure, though, lies in the clarity of its use,
and we hope that the rest of the present work will be a witness to that.
▶ Remark 9. In our exposition we put aside two elements in the discussion on categorical
models for dependent types. The first is of course the issue of coherence: since fibrations
involve pseudofunctors, equations for identities and, especially, associativity only hold up to
vertical isomorphism, while it is usually preferable to have substitution “on the nose”. If one
so wishes, the reader is invited to only use split fibrations, meaning those that correspond
to strict functors, and morphisms that preserve the splitting. A thorough discussion on the
topic can be found in [30, §3].

Another sensitive topic is that of definitional equality. For the moment, having other
purposes in mind, we settle for interpreting it as identity of objects (in the category over
each context) and, therefore, rarely make explicit coherence rules involving it, as they are
all trivial from our definitions. This is of course not unprecedented both for the literature
on categorical semantics of type theory at large (cf. the largely influential [12] and [7]) and
for semantics at large, as it lies in the path of the approach better known as denotational
semantics (cf. [29]).

2 Vertical maps induce a notion of subtyping

The idea that vertical maps could nicely relate types in the same context is of course not new.
The most closely related precedent to this is perhaps [25], followed by the notes in [32], where,
quite radically, functors were interpreted to be type refinement systems. Our work is similar
in spirit – though one should really be careful of the difference between “type refinement”
and “subtyping” [32, §2.2] – but of course based on fibrations instead on functors, hence
with a special focus on substitution.

2.1 Two new judgements
Now that we are all set, let us describe what it is that we can say in a gcwf, that was
not already available in the discrete case. To the two judgements pertaining to types and
terms, we add two new ones involving subtyping, and collect them all in Table 1. We read

TYPES 2023



3:6 Categorical Models of Subtyping

Table 1 Judgements of the theory.

Γ ⊢ A Type Γ ⊢ a : A Γ ⊢ A′ ≤f A Γ ⊢ a :g A

u(A) = Γ u̇(a) = Γ, Σ(a) = A f : A′ → A, u(f) = idΓ g : Σa → A, u(g) = idΓ

the new judgements, respectively, as A′ is a subtype of A, as witnessed by f and a is a
term of type a subtype of A, as witnessed by g. Recall that vertical maps enjoy some nice
properties (Proposition 3), and their combination provides us with structural rules for the
new judgements.

▶ Proposition 10 (Structural subtyping rules). The following rules are satisfied by a gcwf.

Γ ⊢ a :g A′ Γ ⊢ A′ ≤f A(Sbsm) Γ ⊢ a :fg A

Γ ⊢ A′ ≤f A Γ ⊢ A′′ ≤g A
′

(Trans)
Γ ⊢ A′′ ≤fg A

Γ.A ⊢ B′ ≤f B Γ ⊢ a :g A(Sbst)
Γ ⊢ B′[a] ≤u̇(∆gηa)∗f B[a]

Γ ⊢ A′ ≤f A Γ ⊢ B Type
(Wkn)

Γ.B ⊢ A′ ≤(uϵB)∗f A

Intuitively, Subsumption and Transitivity are both due to the fact that vertical maps compose
to vertical maps, while Substitution and Weakening make use of the substitution structure
due to the fibration part of the system. We refer to the appendix for further details.

Note that a gcwf is also equipped with a notion of “sub-typing” for terms as well. However,
the hom-set U̇Γ(a, b) of vertical arrows over Γ is in bijection with the set of vertical arrows
f : Σa → Σb such that (u̇∆f)u̇ηa = u̇ηb (see [6, Lemma 3.16]). Therefore a term a is a
sub-term of b precisely when the type of a is a sub-type of the type of b, and substituting
b (i.e. reindexing along u̇ηb) is the same as substituting a, modulo the fact that Σa is a
sub-type of Σb.

2.2 Comparison with coercive subtyping

As we said in the introduction, it turns out that the calculus resulting in this generalization
comes close to coercive subtyping. We hope to convince the reader that, despite all the
technical differences, they actually entertain the same spirit.

The basic idea of coercive subtyping is that subtyping is modelled as an abbreviation
mechanism: A is a subtype of B, if there is a unique coercion c from A to B, written
as A <c B. Then, if a hole in a context requires an object of type B, it is legal to
supply an object a of type A – it is equivalent to supplying the object c(a). [22]

A coercion c from A to B is technically a term of the function type A→ B, hence computing
c(a) amounts to function application. Coercions are added “manually” to a given type theory,
as they are a priori not part of the calculus, and the resulting system is shown both to be a
conservative extension of the original one and to act well with respect to canonicity.

Let us now collect in a table the main similarities and differences between coercive
subtyping and subtyping via vertical maps. We then will consider each point in detail.
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coercive subtyping categorical subtyping
Γ ⊢ f : A′ → A f : A′ → A vertical over Γ
judgements added to the calculus judgements “added” to the classical model
no witnesses for typing judgements witnesses for typing judgements
f is unique f is not necessarily unique
(Sbsm) via substitution (Sbsm) via composition
satisfies (Trans) satisfies (Trans)
satisfies (Sbst) satisfies (Sbst)
satisfies (Wkn) satisfies (Wkn)
satisfies congruence satisfies congruence

The main technical difference is of course what coercions are, as on one side they are function
terms, on the other they are (particular) morphisms in the total category. In some sense this
difference is unavoidable: if one starts from the traditional syntax of a type theory, syntactic
objects are all that is available, while if one looks at a very general model as if it was a
syntax (and one would have some merit in doing so, see Section 3.1), then they have more
objects at hand. In both cases, though, subtyping is a notion that is somehow independent
of the calculus, because in one case it is added by selecting a choice of witnesses (and adding
one new judgement for each), while on the other it is literally orthogonal to the rest of the
structure.

While we will deal with the matter of uniqueness of coercions in Section 2.3, a difference
that is unbridgeable is that of dealing with typing judgements: in coercive subtyping, a term
can indeed have more than one type, so that a typing judgments is in some sense ambiguous,
while in subtyping with vertical maps one can always unambiguously know by which means a
term is of a certain type, but for this it pays the price of having a whole new set of annotated
judgements.

Finally, validity with respect to rules appearing in the table above is common to both
systems – by “congruence”, in particular, we mean congruence of the subtyping relation with
respect to definitional equality, see Remark 9. It should be remarked that rules appearing on
the “coercive subtyping” side are not all rules required, for example, in [22], but they are in
a sense the structural ones, as the others aim to discipline either how coercions (as terms of
function type) interact with the system, while in our case that is granted due to the fact that
they come a categorical setting, which automatically ensures a certain degree of “coherence”
(e.g. ≤ is automatically reflexive, transitive, and functorial).

2.3 On uniqueness of coercions
As we suggested in presenting this new perspective on subtyping, uniqueness of coercions
is not really an issue. In particular, we have a whole theory of fibrations whose fibers are
preorders, we actually call them faithful fibrations (cf. Section 1.1).

Not only that, but we can show that, given a gcwf, if its type fibration is faithful, then so
is its term fibration.

▶ Proposition 11. Let (u, u̇,Σ ⊣ ∆) be a gwcf. Then Σ is a faithful functor.

▶ Corollary 12. Let (u, u̇,Σ ⊣ ∆) be a gwcf. If u is faithful, then so is u̇.

In this sense, faithfulness, hence uniqueness of coercions, can indeed be modeled by
simply looking at faithful fibrations, and such a burden is in fact not laid on the choice of
the fibration collecting terms.
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Table 2 Judgements of the theory – faithful case.

Γ ⊢ A Type Γ ⊢ a : A Γ ⊢ A′ ≤ A Γ ⊢ a :≤ A

From the point of view of the syntax, then, judgements in Table 1 only have one witness
and become as in Table 2, with a :≤ A denoting that Σa ≤ A, and rules in Proposition 10
become the (possibly) more familiar following.

Γ ⊢ a :≤ A′ Γ ⊢ A′ ≤ A
(Sbsm) Γ ⊢ a :≤ A

Γ ⊢ A′ ≤ A Γ ⊢ A′′ ≤ A′
(Trans)

Γ ⊢ A′′ ≤ A

Γ.A ⊢ B′ ≤ B Γ ⊢ a :≤ A
(Sbst)

Γ ⊢ B′[a] ≤ B[a]
Γ ⊢ A′ ≤ A Γ ⊢ B Type

(Wkn)
Γ.B ⊢ A′ ≤ A

▶ Remark 13 (A case against uniqueness). Though it is a key feature of coercive subtyping,
avoiding uniqueness might have its merits. Consider for example the case of sum types: it
seems like one should have two different witnesses for the judgement Γ ⊢ A ≤ A+A, one per
coproduct injection.

2.4 Comparison with related variants of type theory
Directed type theory

Extending the paradigm connecting types, ω-groupoids, and homotopy theory (cf. [31]),
to the directed case – meaning involving ω-categories and directed homotopy theory, one
encounters the notion of directed type theory. The underlying intuition wishes to add, for
each pair of terms of the same type (and substitutions), a new asymmetric “identity” type of
transformations from one to the other, possibly stopping at some given height/iteration [19].
Though vertical in some sense, this notion of directed-ness is considered only for terms, while
in our case the main focus is for types (though one could regard types as terms of a given
universe, in DTT transformations are introduced for all pairs of terms). Being based on
(ω-)categories, they share some properties of morphisms, such as composition and identity,
but our vertical maps are a lot simpler, and in no way higher-dimensional – though the
monad in Theorem 25 suggests possible extensions in this direction.

Observational type theory

Observational type theory was introduced in [1] to combine the nice computational features
of intensional type theory, such as termination of reductions, and propositional equality of
extensional type theory, so that two functions are equal if they are equal point-wise, or “if
all observations about them agree” [1, §1]. The fact that conversion rules allow to pass
implicitly between definitionally equal types is extended to a mechanism that allows to pass
implicitly between provably equal types. This process is explicit and its agents are called
coercions. Coercions for a OTT work in a way that is much similar to our vertical maps, but
their being originated by proofs of equality of types ensures that for a given coercion, one
can always find one associated to it and going in the opposite direction.

Practical subtyping

Another relevant syntactic approach is that of “practical subtyping” as introduced in [18].
There, the new subtyping judgements are ternary relations as t ∈ A ⊂ B, which are encoded
as sorts of implications: “if t is a term of type A, then it is a term of type B”. In particular,
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this notion of subtyping most notably (and “practically”) describes subtyping from the
perspective of terms, and not types, as in our case. In particular, subtyping between types,
meaning intrinsic judgements such as A ⊆ B, are encoded by means of choice operators, such
as Hilbert’s ϵ [18, p. 26].

We can compare our categorical subtyping with the practical one as follows: again,
consider the case where all fibrations involved are faithful (cf. Section 2.3), so that there
is at most one subtyping judgement for each pair of types (or for a type and a term). In
particular, judgements in [18, p. 22] seem to match our structural ones, when one replaces
“t : A” with our “t :≤ A”. The treatment of type constructors, too, seems quite keen in spirit
to ours, but we postpone an in-depth analysis of said comparison to future work.

3 Examples and applications

3.1 Gcwfs from Lindenbaum-Tarski

Consider the Lindenbaum-Tarski algebra of a given first-order theory T in a language L. We
take ctx to be the category where

objects are lists of distinct variables x = (x1, . . . , xn),
arrows are lists of substitution for variables, meaning [t1/y1, . . . , tm/ym] = [t/y] : x→ y,
with tj ’s being L-terms that are built on variables x1, . . . , xn,

and composition is defined by simultaneous substitution. The product of two lists x and y

is a list w with length the sum of the lengths of x and y, and projections on x and y are
substitutions with, respectively, the first n and the last m variables in w. Categorically and
in the sense of [16], this is the free Lawvere theory on the language L.

One can define the functor LTT : ctxop → InfSL so that to each list x, the category
LTT (x) has for objects equivalence classes of well-formed formulae in L with free variables at
most those that are in x, and with respect to the equivalence relation induced by reciprocal
deducibility in T , ϕ ⊣⊢T ϕ′. Notice that this makes our treatment proof-irrelevant. Maps in
LTT (x) are provable consequences in T . Composition is given by the cut rule of the calculus,
and identities are tautologies. Since substitution preserves provability, LTT can be suitably
extended to a functor, and its correspondent under the Grothendieck construction Theorem 4
is a faithful fibration p :

∫
LTT → ctx.

Such a construction was first introduced with the name of (hyper)doctrine in [17] and is
thoroughly explained in [14] and [23]. We here show that it underlies the structure of a gcwf
where terms are entailments.

▶ Example 14. Call E the category of p-vertical maps and commutative squares, which is
again fibered over ctx – call e this fibration, Cod : E →

∫
LTT the codomain functor, Diag

the functor mapping each formula to its identity. The triple (p, e,Cod ⊣ Diag) is a gcwf.

This gcwf is in fact not a cwf. Here, types are formulae and terms are (unique) witnesses to
entailment, meaning triples x;ϕ ⊢ ψ where ϕ and ψ are both formulae in the fiber over x.
The underlying notion of subtyping actually coincides with terms.

▶ Remark 15. This is an example of a more general instance, which will thoroughly be
discussed in Section 4.
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3.2 Gcwfs from topos theory
Let E be an elementary topos and ⊤ : 1→ Ω its subobject classifier, then consider

E/1 E/Ω

E
dom∼

Σ⊤

∆⊤

with Σ⊤ = ⊤ ◦ - and ∆⊤(ϕ : X → Ω) = (canonical p.b. of ϕ along ⊤) .

▶ Example 16. The triple (∼, dom,Σ⊤ ⊣ ∆⊤) is a gcwf.

Compatibly with the Mitchell-Bénabou interpretation, types are (proof irrelevant) propos-
itions, ∆⊤ computes the comprehension {x |ϕ(x)}, and so on – we refer to [13, Part D],
[15, Chap. II] for an extensive treatment of the topic, and to [20] for a quick overview. In
this case, the fibrations involved are discrete, hence this is really is a cwf, and there is no
subtyping.

A topos is quite a general structure, so let us break down a couple of examples for it.
The prototypical example of an elementary topos is Set, the categories of sets and functions,
with subobject classifier ⊤ : 1 → 2, ∗ 7→ 1, which classifies subsets via their characteristic
function.

Aϕ 1

A 2

⊤

ϕ

iϕ

⌟

In this case terms are sets, types are functions ϕ : A→ 2, which are equivalently subsets of
A – and the reason why we usually call them propositions. The context for each proposition
ϕ is its domain set A. Let us now break down rules as in (3),

(Σ⊤) A ⊢ A
A ⊢ iidA

Type
(∆⊤)A ⊢ ϕ Type

Aϕ ⊢ Aϕ
(4)

where we use the fact that ∆⊤(ϕ) = domiϕ = {a |ϕ(a)} ⊆ A by definition. Notice how,
again, ∆ does not make the triangle commute, as, in principle, A ̸= Aϕ.

Let us now look at a more complicated case, namely that of Eff , the effective topos
[10, 28], whose objects are sets A with an N-valued equality predicate =A∈ P(N)A×A, and
whose morphisms are P(N)-valued functional relations: we think of each subset of N as the
realizers (in the sense of Kleene) for a given proposition. One can show that Eff is a topos
with subobject classifier ⊤ : ({∗},N)→ (P(N),↔), where A↔ B := (A→ B) ∧ (B → A) is
a pair of recursive functions mimicking bi-implication [10, §1], and ⊤(∗, A) = [A↔ N]. In
this case, terms are sets with an N-valued equality predicate, and types are subobjects of
them, which can be shown to be sort of subsets with a compatible equality predicates and
an additional “membership” unary predicate compatible with it.

3.3 Gcwfs from pullbacks
For C with pullbacks we can define C→ the category of arrows in C and Sec(C) of sections
of arrows in C, meaning of pairs (s, f) with f, s ∈ C→ and f ◦ s = id. Therefore a type in
context A is a map f : B → A and a term of type f is one of its sections, s. For a given type
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f (map) context extension can be performed using what is usually called its “kernel pair”
construction, meaning computing the following pullback,

B

Kf B

B A
f

ff+
⌟id

id
! d(f)

which we can interpret as the universal f -induced congruence on B. One can always compute
the section B → Kf , which can be extended to a functor K : C→ → Sec(C).

▶ Example 17. Call U : Sec(C)→ C→ the functor mapping each pair (s, f), with s section
of f , to f . The triple (cod, codU,U ⊣ K) is a gcwf.

Actually, by Theorem 8, the same can be said for any D subcategory of C→ closed for
pullbacks, for example we can consider monomorphisms, and their sections. Notice that this
is not a cwf, as vertical maps are commutative triangles.

Let us give a couple of examples of this case, as well. We look at Set again, for a function
f : B → A, we find that Kf is the set of pairs of elements of B with the same image through
f , and B → Kf is the diagonal. We again try to break down rules as in (3), and get the
following.

(U) A ⊢ f : B ⇆ A : s
A ⊢ f : B → A Type

(K) A ⊢ f : B → A Type
B ⊢ f+ : Kf ⇆ B : d(f) (5)

Again, it is important that the right adjoint K, the one performing context extension, does
not make the triangle commute, as B is not (necessarily) equal to A. Let us now look at
subtyping judgements: morphisms in C→ are commutative squares, vertical ones are squares
such that the codomain is the identity, hence commutative triangles. The whole set of
structural judgements available in this model (cf. Section 2.1) is then the following.

A ⊢ f Type A ⊢ s : f A ⊢ f ′ ≤h f A ⊢ s :k f

domf

A

f

domf

A

fs

domf ′ domf

A
f ′ f

h domf ′ domf

A

f ′

f

k

s

Of course one could consider a great multitude of other categories, such as Pos, Top, VectK ,
Grp, all topoi, and many others.

3.4 On type constructors

We begin by considering function types of the form Fun(A,B), where A and B are in the
same context (in particular, B does not depend on A). In this case, given a subtype A′ of A
and a subtype B of B′ (note the different order), one would like to conclude that Fun(A,B)
is a subtype of Fun(A′, B′). In our proposed framework, this can be expressed by requiring
an action of Fun on vertical arrows, which is contravariant in the first component.
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In the case of a discrete gcwf (that is, in the fibrational formulation of a natural model/cwf)
the existence of function types can be expressed by requiring the existence of functors Fun
and abs making the right-hand square below a pullback [2]

U u̇∆×u̇ U̇ W∗(U u̇∆×u̇ U̇) U̇

U u̇∆×u U Uu×u U U

id×Σ

abs

Σ

W Fun

where the left-hand square is a pullback. The lower functor Fun simply takes two types A and
B in the same context Γ to the type Fun(A,B). The functor W is weakening of the second
type with the first one: it takes a pair (A,B) of two types A and B in the same context Γ to
the pair (A, (uϵA)∗B) where (uϵA)∗B is the type B weakened to the context Γ.A. As the
left-hand square is a pullback, the domain of the functor abs consists of pairs (A, b) of a type
A in context Γ and a term b of the weakened type (uϵA)∗B in context Γ.A. The functor abs
maps such a pair to the term abs(A, b). Commutativity of the square ensures that the type
of abs(A, b) is Fun(A,B). As it is not relevant for our discussion, we refer to [2] for details
on how the pullback property of the right-hand square validates both the elimination rule
and the η-rule.

To extend this setting to include subtyping in the form of vertical arrows, we need to
take into account that the action of Fun (and abs) should be contravariant only on the
vertical arrows of the first component. Contravariant actions of functors on some category
B are rendered by considering functors on the opposite category Bop, but here we want to
take the opposite only of vertical arrows, otherwise substitution, i.e. the action of Fun on
cartesian arrows, would go in the wrong direction. We need to consider what is known as
the fiberwise opposite uo : Uo → B of u, see [30, Section 5]. The construction of uo uses the
orthogonal factorisation system on U given by vertical and cartesian arrows to construct
a bicategory on the same objects of U whose 1-cells B → B′ are spans B ← B̄′ ↣ B′ of
a vertical arrow B ← B̄′ and a cartesian one B̄′ ↣ B′. 2-cells are morphisms of spans,
that is, arrows between the vertices making the two triangles commute. It turns out that
2-cells are unique (given two spans) and always invertible. The category Uo induced by
identifying two isomorphic 1-cells is again fibered over B, where an arrow [g, σ̄] is cartesian
(over σ = u̇σ̄) if g is invertible (equivalently, if there is a representative of the form (id, σ̄′)).
It is easy to see that, for every Γ, there is an isomorphism (Uo)Γ ∼= (UΓ)op natural in Γ. In
fact, it is well-known (see e.g. [26, Theorem 3.7]) that the fibered category uo is equivalent
(over B) to the fibered category F((−)op ◦ P(u)), where P: Fib(B) → Psd[Bop,Cat] and
F: Psd[Bop,Cat]→ Fib(B) are the two 2-functors realizing the 2-equivalence in Theorem 4.

▶ Remark 18. If we start with a fibration equipped with a (split) cleavage, then it is easy to see
that uo can also be equipped with a (split) cleavage. Indeed, we can pick (A, σ) 7→ [id, s(A, σ)]
as cleavage for uo, where s is a cleavage for u. If s is split, then the above choice is
clearly normal, and (id, s(A, σ ◦ ρ)) is a representative for [id, s(s0(A, σ), ρ)] ◦ [id, s(A, σ)].
Furthermore, a cleavage s for u provides us with a choice of a span (g, s(A, σ)) in each
equivalence class. These choices compose (i.e. form a category) as soon as the cleavage is
split. Therefore, in the case of a split fibration u, an arrow A→ B in Uo over some σ in B is
actually just a vertical arrow s0(B, σ)→ A.

▶ Proposition 19. Let (u, u̇,Σ,∆) be a gcwf over B equipped with two morphisms of fibrations
Fun and abs making the right hand square below a pullback over B.
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Uo
u̇o∆o×u̇ U̇ W∗(Uo

u̇o∆o×u̇ U̇) U̇

Uo
u̇o∆o×u U Uo

uo×u U U

id×Σ

abs

Σ

W Fun

Then, in addition to the usual formation, introduction, elimination and computation rules
for function types, the following rules are satisfied.

Γ ⊢ A′ ≤f A Γ ⊢ B ≤g B
′

Γ ⊢ Fun(A,B) ≤Fun(f,g) Fun(A′, B′)
Γ.A ⊢ b :f B

Γ ⊢ abs(A, b) :Fun(idA,f) Fun(A,B)

In order to extend Proposition 19 to the case of dependent function types, i.e. Π-types,
we need to take into account two changes in variance. One is due, as in the non-dependent
case, to the fact that Π acts contravariantly on the first argument. The second change in
variance happens because the second argument depends on the first one, but the subtyping
relation on second arguments goes in the opposite direction of the subtyping between on
first arguments. These two changes in variance can be described as follows. Consider first a
pullback of Σ as in the left-hand diagram below. Then take its fiberwise opposite, resulting
in the morphism of fibrations in the middle below. Finally, compose that triangle with
the fibration u : U → B and take again the fiberwise opposite of the result, obtaining the
morphism of fibrations ΣΠ on the right-hand below, from u̇Π := (u ◦ u̇o

1)o to uΠ := (u ◦ uo
1)o.

U̇ U̇1

U U1

B U

u̇

Σ

u̇1

Σ1

u u1

u̇∆

U̇o
1

Uo
1

U

u̇o
1

Σo
1

uo
1

U̇Π

UΠ

B

u̇Π

ΣΠ

uΠ

(6)

Unfolding the constructions involved, we see that an arrow (f, [g, f̄ ]) : (A,B)→ (A′, B′)
in UΠ vertical over Γ consists of an arrow f : A′ → A vertical over Γ together with a 1-cell
[g, f̄ ] : B′ → B in Uo

1 with g : B̄ → B′ vertical over Γ.A′ = u̇∆A′ and f̄ : B̄ → B cartesian
over u̇∆f : Γ.A′ → Γ.A. Similarly, an arrow (A, b)→ (A′, b′) in U̇Π vertical over Γ consists of
an arrow f : A′ → A as before, together with a 1-cell [ġ, f̄ ] in U̇o

1 with ġ : b̄→ b′ vertical over
Γ.A′ and f̄ : b̄→ b cartesian over u̇∆f . The following result follows.

▶ Proposition 20. Let (u, u̇,Σ,∆) be a gcwf equipped with two morphisms of fibrations Π
and abs making the square below a pullback over B.

U̇Π U̇

UΠ U

ΣΠ

abs

Σ

Π

Then, in addition to the usual formation, introduction, elimination and computation rules
for dependent function types, as well as the η-rule, the following rules are satisfied.

Γ ⊢ A′ ≤f A Γ.A′ ⊢ B[u̇∆f ] ≤g B
′

Γ ⊢ Π(A,B) ≤Π(f,g) Π(A′, B′)
Γ.A ⊢ b :g B

Γ ⊢ abs(A, b) :Π(idA,g) Π(A,B)

A type constructor like the dependent sum (i.e. Σ-types), on the other hand, requires no
change in variance. Therefore its formulation for a gcwf is a straightforward generalization
of the discrete case. The fibration classifying the premises is what is called u1 in diagram (6)
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above: the objects, as expected, are the same of uΠ, but the vertical arrows (A,B)→ (A′, B′)
now are just pairs of a vertical arrow f : A→ A′ and g : B → B′ over u̇∆f . The construction
of the fibration u̇Σ classifying the premises of the introduction rule is slightly more involved,
and we refer to [5, Example 3.7.4] for a complete description.

▶ Proposition 21. Let (u, u̇,Σ,∆) be a gcwf equipped with two morphisms of fibrations Σ
and pair making the square below a pullback over B.

U̇Σ U̇

U1 U

ΣΣ

pair

Σ

Σ

Then, in addition to the usual formation, introduction, elimination and computation rules
for dependent sum types, as well as the η-rule, the following rules are satisfied.

Γ ⊢ A ≤f A
′ Γ.A ⊢ B ≤g B

′[u̇∆f ]
Γ ⊢ Σ(A,B) ≤Σ(f,g) Σ(A′, B′)

Γ ⊢ a :f A Γ.A ⊢ b :g B[a]
Γ ⊢ pair(a, b) :Σ(f,g) Σ(A,B)

In writing the rules above in Propositions 20 and 21, we have written the action of
reindexing as if the fibrations involved were split. This allows us to simplify notation in
the rules, which would otherwise look quite cumbersome. In the case of non-split fibrations,
a judgement like Γ.A ⊢ B ≤g B

′[u̇∆f ] in a premise should be read as “for all pairs of a
cartesian f̄ : B̄′ → B′ over u̇∆f and a vertical g : B → B̄′”, and similarly for the other
judgements. In particular, in the non-split case, the cartesian arrow f̄ should appear in the
conclusion as well, as one of the arguments of Σ(f, g).

4 The “subtyping” monad

We now deepen our intuition for both the properties and the features of this new construction.
In particular, the process of taking into consideration vertical maps turns out to amount
to the result of the action of a particular monad. Grothendieck fibrations are known to be
strongly linked to certain (co)monads, to the point of them being classified as pseudo-algebras
of a given one (cf. [8] for a recent review and extension). We here present a simple monad
that has the nice feature of collecting vertical maps, and show that it actually produces gcwfs
out of gcwfs.

This section is perhaps best intended not as a development, but more of an additional
perspective of our theory of subtyping: though it does not provide new results, it puts its
emerging in context, and can hopefully be used in future works to combine different notions
with this one – for example, what would a distributive law combining the monad here and
that producing split fibrations [30, §3] mean, and what would it entail?

We start from the endofunctor (Id−/Id−) : Fib(B)→ Fib(B) computing for each fibration
p : E → B the comma object (Idp/Idp), meaning the following (very boring) 2-limit below.

(Idp/Idp) p

p pIdp

Idp

To make the reding a bit smoother, we denote (Idp/Idp) by (p/p). Unpacking this categorical
construction, one finds that the new fibration (p/p) : E ↓v E → B has in the domain triples
(f,A′, A) such that f : A′ → A is a p-vertical map, while morphisms in E ↓v E are simply
commutative squares.
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▶ Lemma 22. There is a monad on Fib(B) with endofunctor (Id−/Id−).

Its associated unit has components η : p→ Tp sending each object to its identity, while the
multiplication µp : TTp→ Tp is fiber-wise composition – as objects in the total category of
TTp are squares of vertical maps, and vertical maps compose.

This simple construction we can actually extend to a gcwf, meaning we can use it to
build out of a gcwf with type fibration u, a new gcwf with type fibration Tu.

▶ Proposition 23. Let (u, u̇,Σ ⊣ ∆) a gcwf. Then there are adjoint functors Σ ⊣ ∆ such
that (u/u,Σ/u,Σ ⊣ ∆) is a gcwf.

If we look at the basic judgments this second gcwf is describing, we will find precisely the
two introduced in Section 2.1, so that we can reformulate our old perspective:

Γ ⊢ A Type Γ ⊢ a : A Γ ⊢ A′ ≤f A Γ ⊢ a :g A

u(A) = Γ u̇(a) = Γ, Σ(a) = A f : A′ → A, u(f) = idΓ g : Σa → A, u(g) = idΓ

into the newer following notation.

Γ ⊢ A Type Γ ⊢ a : A Γ ⊢ A′ ≤f A Γ ⊢ a :g A

u(A) = Γ u̇(a) = Γ, Σ(a) = A (u/u)(f, A′, A) = Γ (Σ/u)(g, a, A)=Γ, p2◦Σ(g, a, A)=A

Notice now the symmetry of the first and the second two judgments: the two new ones can
be regarded as “classifiers” for new types and terms themselves, in a way such that it is
always possible to recover the original theory – one simply has to look at those vertical maps
that, in particular, are identities.

▶ Definition 24 (The category of gcwfs). A gcwf morphism (u, u̇,Σ ⊣ ∆)→ (v, v̇,Σ′ ⊣ ∆′)
is the data of a pair (H, Ḣ), with H : u → v, Ḣ : u̇ → v̇ fibration morphisms such that
HΣ = Σ′Ḣ. We denote GCwF the category of gcwfs and gcwf morphisms, and GCwF(B)
its subcategory with fixed context category B.

Again, it should be noted that gcwfs can be equipped with more interesting (and higher
dimensional) structure [4, §3.2], but for the purposes of the present paper we are not interested
in that.

▶ Theorem 25. The monad in Lemma 22 can be lifted to a monad over GCwF(B).

If a monad is an object for abstract computation, this one in particular computes “subtyping
judgements”. An interesting question is now to check what objects does iterating this
computation produce: the first iteration collects vertical maps, and morphisms are squares; in
particular, vertical morphisms are those squares having vertical (with respect to the original
type fibration) components, therefore the second iteration produced the fibration of said
“all vertical” squares; here morphisms are cubes, and the vertical ones are those where all
“connecting” maps are vertical (again, with respect to the original type fibration), and so on.

5 Open problems

Of course the applications to constructors can be taken much further than what is done in
Section 3.4, and considering more complex ones can lead to a new extension of the present
theory. Our intention was to introduce the “vertical maps” perspective, so that whoever
gets interested in categorical models for type theory is motivated to consider the benefit of
including non-discrete fibrations – usually at very little additional cost.
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We conclude this exposition with a take that was suggested to the first author by F.
Dagnino, and which we believe might be of some interest: as a fibration can be regarded as
an internal category in the category of discrete fibrations, it seems like the process of going
from a theory without a notion of subtyping to a theory with subtyping is close to that of
considering a category internal to another one. In this sense, our work is perhaps not best
interpreted as a generalization of some known models, but as a structure internal to them.
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A Proofs

Proof of Proposition 10. The first two rules, Subsumption (Sbsm) and Transitivity (Trans),
simply follow from composition of vertical arrows. Substitution (Sbst) and Weakening (Wkn)
are a bit trickier and make use of, precisely, the substitutional part of the structure, namely
it being a fibration. We begin with Weakening, as it is a bit easier: consider that the premise
of the rule is given by maps and objects as below.

A′

A U

Γ.B Γ BuϵB

u

f

Since B is a type in context Γ, we can compute the counit ϵ : Σ∆B → B, which we know
by (3) that acts as weakening, in particular producing the context extension uϵB : Γ.B → Γ.
In the fiber over Γ, not only do we have B, but we also have a vertical map f : A′ → A.
Applying the reindexing (uϵB)∗ to the three of them yields a new vertical map over Γ.B,
hence the judgement Γ.B ⊢ (uϵB)∗A′ ≤(uϵB)∗f (uϵB)∗A. In Proposition 10 we have actually
written A for (uϵB)∗A, at it is customary for weakening rules – and as, in fact, it appears
in (3). All in all, the Weakening rule only tells us that subtyping is preserved through
weakening.
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Now let us get to Substitution. In order to prove it, we first need to recall how B[a] is
computed in a traditional natural model (cf. [2, §2.1]): for given Γ ⊢ a : A and Γ.A ⊢ B, B[a]
is the result of the reindexing B along the (image of the) unit ηa. (This is not precisely how
the original paper presents it, though it is equivalent to that: see [4, §2.3.4] for a detailed
discussion on the matter.) In our setting, the premises of (Sbst) start from the following.

Σa Σ∆Σa Σa

A Σ∆A A U

Γ Γ.Σa Γ.A Γ Bu̇∆g

u

u̇ηa uϵΣa

g

Notice that, since g is vertical, and the top horizontal compositions in the top diagram is an
identity due to triangle identities of Σ ⊣ ∆, by cartesianness of the counit ϵA : Σ∆A → A

there is a unique map making the top diagram commute. Now, each “external” side in the
top diagram is mapped to the identity through u, meaning we can repeat Awodey’s argument,
and the required vertical arrow is the result of reindexing along the (image of the) unit –
post-composed with u̇∆g. Notice that a is only “allowed” to interact with B,B′ through g,
which in turn does nothing to contexts, so that we are in our right to write, as customary,
B[a] for (u̇(∆g ◦ ηa))∗B. ◀

▶ Remark 26. It might not seem like it, but this last proof makes heavy use of the universal
property of the comma object (u/u), and it could be in fact entirely proved using that
profusely. We point the interested reader to [4, §3.5] for the corresponding alternative proof.

Proof of Proposition 11. Each component of the unit in a gcwf is a monic arrow. Indeed,
let f, g : a→ b in U̇ be such that ηbf = ηbg. It follows that

u̇f = (uϵΣb)(u̇ηb)(u̇f) = (uϵΣb)(u̇ηb)(u̇g) = u̇g

and, in turn, that f = g since ηb is cartesian. The left adjoint Σ is then faithful. ◀

Proofs of Propositions 19–21. This is straightforward, by reading the action of the morph-
isms involved (Fun, Π, abs, Σ, pair) on vertical arrows and unfolding the definitions of the
sub-typing judgements as in Table 1. ◀

Proof of Proposition 23. We begin by describing what the fibration of terms (Σ/u) does:
it simply collects pairs (g, a,A) such that g : Σa→ A is a u-vertical map, and sends them to
their underlying context. Its vertical maps are pairs of vertical maps (respectively u̇- and
u-vertical) fitting in appropriate squares, and its cartesian maps are pairs of cartesian maps
(again, respectively, with reference to u̇ and u).

The required typing functor, then, is simply Σ sending each triple (g, a,A) to (g,Σa,A),
which is cartesian because Σ is. Describing its right adjoint requires a little more effort:
for a triple (f,A′, A) in (u/u) one considers its image through ∆, then its vertical-cartesian
factorization system (cf. Proposition 3), then the image of the vertical portion of it through
Σ to get back to U .

A′ ∆A′ Σ∆A′ A′

A af ∆A Σaf Σ∆A A

f (∆f)v

(∆f)c

∆f

ϵA′

ϵA

f
Σ∆f

∆f=Σ(∆f)v

Σ(∆f)c



G. Coraglia and J. Emmenegger 3:19

Cartesianness of (∆f)c can be used to provide functoriality. Let us now show how the two
functors form an adjoint pair by means of the universal property of its counit, which is
actually depicted on the right square above. For any triple (g, b, B) in (Σ/u) and morphism
(h, k) : Σ(g, b, B) → (f,A′, A) we must show that there is a unique pair (m,n) such that
Σ(m,n) : Σ(g, b, B) → Σ∆(f,A′, A) makes the obvious triangle commute. The universal
property of the counit ϵ′A yields a unique m : b→ ∆A′ so that h = ϵA′ ◦m,

Σb

B Σ∆A′ A′

Σaf Σ∆A A

Θ

Γ.A′ Γ.A Γ

ϵA′

ϵA

f

Σ(∆f)c

g h

k

Σ(!)

Σ∆f
∆f=Σ(∆f)v

uΣ(!)

hence a map filling the bottom diagram to a commuting triangle. By cartesianness of
ϵA ◦ Σ(∆f)c there is a unique map n : B → Σaf making the “other” triangle commute as
well. ◀

Proof of Theorem 25. Let us denote (T, η, µ) the desired monad. On objects it of course acts
as T (u, u̇,Σ ⊢ ∆) = ((u/u), (Σ/u),Σ ⊣ ∆) as in Proposition 23. The image of a morphism
(H, Ḣ) is actually simply the action of H, and it provides a commutative square because
HΣ = Σ′Ḣ. Unit is again induced by identity, and multiplication by composition. ◀
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A Sound and Complete Substitution Algorithm for
Multimode Type Theory
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1 Introduction

Substitution is the operation that replaces variables in a term with other terms. It is a key
part in defining the semantics of many programming languages. In a dependent type system,
it is even necessary in order to formulate the typing rules, such as the one for dependent
function application. However, defining substitution is not as simple as it intuitively may
seem.
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1.1 Renaming and Substitution in the Simply Typed Lambda Calculus
For example, consider the well-known simply typed lambda calculus. We call Tmstlc(Γ ⊢ T )
the set of terms of type T with free variables in context Γ and Substlc(Γ → ∆) the set of
well-formed (simultaneous) substitutions from Γ to ∆. These substitutions are lists of terms:
they contain a term of type T in context Γ for every variable of type T in context ∆. In other
words, STLC substitutions are constructed in two ways: !Γ ∈ Substlc(Γ→ ·) representing
the empty list and σ.t ∈ Substlc(Γ→ (∆, x : T )) which substitutes variables in ∆ according
to σ ∈ Substlc(Γ→ ∆) and substitutes t ∈ Tmstlc(Γ ⊢ T ) for the variable x : T .

Applying a substitution σ ∈ Substlc(Γ→ ∆) to a term t ∈ Tmstlc(∆ ⊢ T ) should produce
a term t [ σ ] ∈ Tmstlc(Γ ⊢ T ). This can be defined via recursion on the term t. Some cases
are very simple: for variables x the corresponding term is found in σ and for applications
(fs)[ σ ] we recurse on the subterms (f [ σ ])(s [ σ ]). However, difficulty arises when binders are
involved. For lambda terms λx.s ∈ Tmstlc(∆ ⊢ T → S) with s ∈ Tmstlc(∆, x : T ⊢ S), the
substitution (λx.s)[ σ ] is defined as λx.(s [ σ+ ]) where σ+ ∈ Substlc((Γ, x : T )→ (∆, x : T ))
is a version of σ that is lifted to the contexts extended with x. We can construct σ+ as
weaken(σ).x, where weaken(σ) contains the same terms as σ, but weakened to live in the
extended context Γ, x : T . A naive definition might implement this weakening of terms
t ∈ Tmstlc(Γ ⊢ A) to Tmstlc(Γ, x : B ⊢ A) by applying a substitution from Γ, x : B to Γ,
but this makes the story cyclic.

An elegant solution to avoid this cycle, standard in the literature, is to separately consider
renamings and substitutions. Whereas a substitution maps variables to terms, a renaming
from Γ to ∆ maps every variable in ∆ to a variable in Γ of the same type. Weakening, in
particular, is a renaming.1 Thus, the terms listed in a substitution can be weakened by
applying a weakening renaming, and the variables listed in a renaming – represented as De
Bruijn indices – can be weakened by incrementation. So we can break the cycle by defining
first how to rename and then how to substitute in a term, each time by induction on the
term. Going further, code duplication between the two term traversals can be avoided with
a shared generic implementation [23, 4].

1.2 Multimode Type Theory
This paper is concerned with substitution in modal type theory, more specifically in the
system MTT (Multimode Type Theory2) by Gratzer et al. [20]. MTT is a type theory that
can be instantiated with a mode theory that specifies, among others, a collection of modes
and modalities. Modes m index typing judgements and qualify their meaning: judgements in
one mode may represent, for example, regular values, while judgements in other modes may
represent time-indexed values or pairs of values satisfying a certain relation [12]. Modalities
µ : m1 → m2 represent ways to transport terms and types from mode m1 to mode m2. We
postpone a more extensive introduction to MTT to Section 2, but we will already explain
why (algorithmic) substitution in modal type theory is significantly more complicated.

First, modes and modalities complicate the context structure in MTT. For every modality
µ, MTT has a new primitive context operation _ .µµ which also extends to substitutions:
if σ ∈ Submtt(Γ → ∆), then we get a new substitution σ .µµ ∈ Submtt(Γ .µµ → ∆ .µµ).3
Furthermore, all variables in a context are annotated with a modality. This also impacts

1 Note that our notion of renaming has little to do with α-conversion. Rather, a renaming will map free
variables to possibly different free variables. It is also a useful concept in an unnamed setting.

2 The names Multimode and Multimodal Type Theory are used interchangeably for the same system
MTT which supports both multiple modes and multiple modalities.

3 The operation _ .µµ can be seen as some sort of left adjoint to µ. See Section 2.1 for more details.
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how substitutions are defined: to produce a substitution from Γ to ∆ . (µ p x : T ) (i.e. ∆
extended with a variable x of type T annotated with modality µ), we need to provide a
σ ∈ Submtt(Γ → ∆) and a term t ∈ Tmmtt(Γ .µµ ⊢ T ) in a locked context. Complicating
things further, mode theories can define 2-cells α ∈ µ ⇒ ρ between modalities µ and ρ.
For every 2-cell α ∈ µ ⇒ ρ from µ to ρ and every context Γ we get a new primitive key
substitution ¤

α
Γ from Γ .µρ to Γ .µµ and we have to specify how these act on variables

and terms. We conclude that MTT substitutions are not mere lists of terms and applying
substitutions to variables is not just a lookup operation.

In the original presentation of MTT [20, 19], these difficulties are circumvented by using
explicit substitutions [1]: the syntax for terms has a constructor for applying a substitution
to a term. A system of judgemental equality axioms then allows us to rewrite the explicitly
substituted terms. However, this axiom system does not provide an algorithm to compute
substitutions away. A priori, it is not even clear if every MTT term is judgementally equal
to a term in which no explicit substitutions occur.

In this paper we give a positive answer to the last question by constructing a substitution
algorithm for MTT. Moreover, we want this algorithm to be structurally recursive so that
it can be implemented in a proof assistant. This requirement makes the construction even
more complicated: in a non-modal setting such as STLC, composition of substitutions can
be a defined operation. However, in MTT the additional primitive substitutions make this
impossible (we refer to Theorem 2 for more details). For that reason, MTT includes a primitive
constructor τ ◦ σ for substitution composition. However, in an algorithm for computing t [ σ ]
we first traverse t until we reach a variable. During this phase, the substitution σ can grow,
for instance the lifting operation + is applied when going under a binder. To then compute
x [ σ ] for a variable x, we perform a case split and recursion on σ. In the case where σ is a
composite of the form τ ◦ ψ, we would like to define x [ τ ◦ ψ ] as (x [ τ ])[ψ ]. However, x [ τ ]
is again an arbitrary term so that (x [ τ ])[ψ ] may trigger another arbitrary term traversal.
Thus, this naïve definition of the substitution algorithm is not structurally recursive, and
restructuring the algorithm to restore structural recursion is one of the main contributions
of the current paper (Section 3).

1.3 Contributions and Overview
In this paper, we define substitution for MTT, resolving the above problems by identifying
the equivalent of renamings and substitutions in MTT and building a structurally recursive
substitution algorithm in terms of them. Specifically, we contribute the following.

We define WSMTT: an intrinsically and modally scoped untyped syntax for MTT. One
can see MTT as an extrinsic typing discipline over WSMTT and as such, our substitution
results for WSMTT carry over to MTT. Moreover, we define σ-equivalence for WSMTT:
the congruence relation generated by substitution-related equality rules, but not β- and
η-rules.
We define SFMTT: a variant of WSMTT without explicit substitutions in terms or types.
Moreover, we define a notion of SFMTT renamings and substitutions and implement a
structurally recursive algorithm to apply those to types and terms.
We provide a translation J_K from WSMTT to SFMTT, which translates every WSMTT
term and type to an expression without substitutions. In the other direction, there is an
almost trivial embedding function embed(_) from SFMTT to WSMTT.
We prove the soundness and completeness of our algorithm. Soundness means that the
substitution-free WSMTT term obtained as embed(JtK) is σ-equivalent to the original
term t. Completeness states that J_K maps σ-equivalent WSMTT terms to equal SFMTT
terms. Both results combined show that SFMTT terms are the σ-normal forms of
WSMTT terms.
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Section 2 will provide the necessary background and details about the multimode type
theory MTT and introduce WSMTT. We continue in Section 3 to describe the SFMTT
syntax and the algorithm for renaming and substitution in that setting. The translation J_K
from WSMTT to SFMTT is also discussed there. Section 4 then covers the soundness and
completeness results. We conclude in Section 5 with related and future work. A technical
report accompanying this paper contains all details of the soundness and completeness proofs,
as well as full descriptions of the systems WSMTT and SFMTT [13].

2 Multimode Type Theory (MTT)

In this section we introduce the type system MTT as developed by Gratzer et al. [20]. We
start in Section 2.1 with the necessary background and continue in Section 2.2 with our own
presentation of MTT that we call WSMTT, including a discussion of the differences with
the original formulation. In this section we also discuss (WS)MTT’s substitution calculus.
Section 2.3 concludes with a discussion on an equivalence relation on terms and substitutions
called σ-equivalence.

2.1 Background on the MTT Type System

MTT can be seen as a framework for modal type theory: it is parametrised by a mode theory
which specifies the modalities and how they interact. More concretely, a mode theory in
MTT is a strict 2-category of which the 0-cells (objects) are called modes and the 1-cells
(morphisms) are called modalities. This already makes it clear that we have a unit modality
1m for every mode m (sometimes just written 1 when the mode is clear) and that compatible
modalities can be composed. Moreover, we also have a notion of 2-cells between modalities,
which will be denoted as α ∈ µ⇒ ν for a 2-cell α from µ to ν. Such 2-cells can be composed
vertically (which we write as β ◦ α) and horizontally (written as β ⋆ α). For every modality
µ : m→ n there is a unit 2-cell 1µ ∈ µ⇒ µ.

In MTT, every judgement (so every context, type and term) lives at a particular mode of
the mode theory. This is made clear by adding @m to a judgement at mode m. We can
think of every mode as containing a copy of Martin-Löf Type Theory (MLTT [22]) with
natural numbers, products, etc. As they are confined to a single mode and do not really
interact with modalities, we will not discuss these rules in the paper (as an illustration we
do include a type of Booleans in the technical report though [13]). The connection between
the different modes is made via the modalities, as explained in the following paragraphs.

A selection of the rules for constructing contexts, types and terms in MTT can be found
in Figure 1. Contexts consist of variables (ctx-extend), each annotated with a modality, and
locks (ctx-lock), which play an important role in determining when a variable can be used
to construct a term. Note that a lock goes in the opposite direction of its modality: the lock
operation for a modality µ : m→ n takes a context from mode n to mode m.

A variable can be used as a term whenever there is a 2-cell from its annotation to the
composition of all locks to the right of that variable (tm-var). Note that the 2-cell α used to
access a variable is an integral part of the term and consequently the terms xα and xβ are
not considered equal when the 2-cells α and β are distinct. Furthermore, an operation _α is
applied to the type T of the variable in order to bridge the gap between the context in the
conclusion of tm-var and Γ .µµ (in which T is well-formed). We refer to [20] for more details
about this operation.
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ctx-empty

· ctx @ m

ctx-lock
Γ ctx @ n µ : m → n

Γ .µµ ctx @ m

ctx-extend

Γ ctx @ n µ : m → n Γ .µµ ⊢ T ty @ m

Γ . (µ p x : T ) ctx @ n

locks (·) = 1 locks (Γ .µµ) = locks (Γ) ◦ µ locks (Γ . (µ p x : T )) = locks (Γ)
ty-arrow

µ : m → n

Γ .µµ ⊢ T ty @ m

Γ . (µ p x : T ) ⊢ S ty @ n

Γ ⊢ (µ p T )→ S ty @ n

tm-var

µ : m → n

α ∈ µ ⇒ locks (∆)
Γ . (µ p x : T ) . ∆ ⊢ xα : T α @ m

tm-mod

µ : m → n

Γ .µµ ⊢ t : T @ m

Γ ⊢ modµ (t) : ⟨µ | T ⟩ @ n

tm-lam

µ : m → n

Γ . (µ p x : T ) ⊢ s : S @ n

Γ ⊢ λ(µ p x).s : (µ p T )→ S @ n

tm-app

µ : m → n

Γ ⊢ f : (µ p T )→ S @ n

Γ .µµ ⊢ t : T @ m

Γ ⊢ appµ (f ; t) : S [ id.t ] @ n

ty-mod

µ : m → n

Γ .µµ ⊢ T ty @ m

Γ ⊢ ⟨µ | T ⟩ ty @ n

Figure 1 Selection of rules that define MTT contexts, types, and terms.

m n

ρ

µ

η ∈ 1n ⇒ ρ ◦ µ
ε ∈ µ ◦ ρ⇒ 1m

Figure 2 The mode theory for Examples 1 and 8 is the strict 2-category freely generated by the
depicted modalities and 2-cells (triangle identities for η and ε have been omitted).

Every modality µ gives rise to a modal type former ⟨µ | _⟩ which can be seen as a
(weak) dependent right adjoint [10] to _ .µµ (ty-mod). One direction of transposition for
this dependent adjunction is given by tm-mod: to construct a term of type ⟨µ | T ⟩, we must
construct a term of type T after locking the context with µ. We do not discuss the MTT
elimination principle for modal types here.

Finally, we can also consider modal function types (ty-arrow). Their values can be
constructed via lambda abstraction (tm-lam), which adds an annotated variable to the context.
Eliminating functions is done via application (tm-app) where the argument should type check
in a locked context. Note that we are using a substitution in this rule to accommodate for
dependent types, but we postpone the discussion about substitution in MTT to Section 2.2.1.

▶ Example 1. To illustrate MTT, we look at an example program in a concrete mode
theory as depicted in Figure 2. This mode theory consists of an adjunction of modalities
µ ⊣ ρ, as witnessed by the unit 2-cell η and the counit 2-cell ε. For such a mode theory,
Gratzer et al. [19, 20] already showed that the type formers ⟨µ | _⟩ and ⟨ρ | _⟩ can also be
seen as adjoint. For example, the unit function f of type (1 p A)→ ⟨ρ | ⟨µ | Aη⟩⟩ can be
constructed as follows: f = λ(1 p x).modρ (modµ (xη)). The variable x gets bound under the
unit modality 1 by lambda abstraction and subsequently the modal constructors modρ and
modµ add µρ and µµ to the context. In such a context, the variable x can be used, since the
2-cell η has the proper domain and codomain to access it according to the rule tm-var.

2.2 Alternative Presentation: Extrinsically Typed, Intrinsically Scoped
The way the MTT syntax is presented in the previous section, which is also how it is originally
presented in [20], can be called intrinsically typed. This means that we see the typing rules
from Figure 1 as the way types and terms are introduced. In other words, we cannot even
talk about ill-typed terms or ill-formed types.
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sctx-empty

· sctx @ m

sctx-lock

Γ̂ sctx @ n µ : m → n

Γ̂ .µµ sctx @ m

sctx-extend

Γ̂ sctx @ n µ : m → n

Γ̂ . µ sctx @ n

locktele-empty

· : LockTele(m → m)

locktele-lock
Λ : LockTele(o → n) µ : m → n

Λ .µµ : LockTele(o → m)

locks (·) = 1 locks (Λ .µµ) = locks (Λ) ◦ µ

Figure 3 Definition of scoping contexts and lock telescopes.

For the purposes of this paper, it will be more useful to work with extrinsically typed
(one could say raw) syntax. In that way, our substitution algorithm can work on pure syntax
without having to take typing derivations into account. Moreover, substitution is necessary
to formulate some typing rules (such as tm-app). In MTT, this does not lead to circularity
thanks to the use of explicit substitutions (see further) but it would make a substitution
algorithm problematically cyclic if it works with intrinsically typed syntax.

However, in order to conveniently develop our substitution algorithm, we will use in-
trinsically scoped syntax, defined in this section. In order to distinguish between our system
and the original presentation of MTT, we call the intrinsically scoped syntax WSMTT (for
well-scoped MTT). Apart from the change from an intrinsically-typed to an extrinsically-
typed presentation, this reformulation does not modify the MTT type theory. Specifically, it
does not modify MTT’s treatment of substitution; that will only happen in Section 3, in a
different system called SFMTT.

For defining the intrinsically scoped syntax, we introduce scoping contexts in Figure 3.
They are essentially MTT contexts from Figure 1 where all type information has been
removed. We note that in the rule sctx-extend only the modality annotation of a variable is
added to a scoping context. Indeed, in the rest of the paper we will not use named variables
but a form of De Bruijn indices. This allows us to ignore α-equivalence and variable capture
when implementing substitution.

The WSMTT syntax is now introduced via a judgement Γ̂ ⊢ws t expr @m, meaning that
t is a WSMTT expression in scoping context Γ̂ at mode m. Intrinsic scoping means that
the inference rules for such a judgement do not define a relation between scoping contexts
and some predefined notion of raw syntax; they rather construct a WSMTT expression,
which can not be seen outside of its scoping context. Put differently, in a proof assistant
one would formalise WSMTT expressions as a dependent type indexed by scoping contexts.
Note that since we are not specifying typing rules, the distinction between types and terms
has disappeared and we talk about WSMTT expressions.

Some examples of rules that introduce WSMTT syntax (in other words, WSMTT
constructors) can be found in the first two rows of Figure 4. In order to construct a modal
function type in scoping context Γ̂, we need a domain type in the locked scoping context
Γ̂ .µµ and a codomain type where we extend the scoping context with a variable annotated
with µ (wsmtt-expr-arrow). The rule for introducing lambda abstraction is similar (wsmtt-
expr-lam). Note that we can obtain all these constructors by removing the typing information
from the typing rules in Figure 1. The WSMTT variable rule wsmtt-expr-var has changed
somewhat with respect to Figure 1: it only allows us to access the last variable added to a
scoping context and only if it is locked behind the same modality as its annotation. It is
standard, in formulations of type theory with explicit substitutions [1], to only allow access
to the last variable which has De Bruijn index zero, since the De Bruijn index can then be
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wsmtt-expr-arrow

µ : m → n
Γ̂ .µµ ⊢ws T expr @ m

Γ̂ . µ ⊢ws S expr @ n

Γ̂ ⊢ws (µ p T )→ S expr @ n

wsmtt-expr-lam

µ : m → n Γ̂ . µ ⊢ws t expr @ n

Γ̂ ⊢ws λµ (t) expr @ n

wsmtt-expr-var

Γ̂ sctx @ n µ : m → n

Γ̂ . µ .µµ ⊢ws v0 expr @ m

wsmtt-expr-sub

∆̂ ⊢ws t expr @ m ⊢ws σ sub(Γ̂ → ∆̂) @ m

Γ̂ ⊢ws t [ σ ]ws expr @ m

wsmtt-sub-empty

⊢ws ! sub(Γ̂ → ·) @ m

wsmtt-sub-id

Γ̂ sctx @ m

⊢ws id sub(Γ̂ → Γ̂) @ m

wsmtt-sub-weaken

µ : m → n Γ̂ sctx @ n

⊢ws π sub(Γ̂ . µ → Γ̂) @ n

wsmtt-sub-compose

⊢ws σ sub(∆̂ → Ξ̂) @ m ⊢ws τ sub(Γ̂ → ∆̂) @ m

⊢ws σ ◦ τ sub(Γ̂ → Ξ̂) @ m

wsmtt-sub-lock

⊢ws σ sub(Γ̂ → ∆̂) @ n µ : m → n

⊢ws σ .µµ sub(Γ̂ .µµ → ∆̂ .µµ) @ m

wsmtt-sub-key

Θ, Ψ : LockTele(n → m)
α ∈ locks(Θ) ⇒ locks(Ψ)

⊢ws ¤
α∈Θ⇒Ψ
Γ̂ sub(Γ̂ . Ψ → Γ̂ . Θ) @ m

wsmtt-sub-extend

µ : m → n
⊢ws σ sub(Γ̂ → ∆̂) @ n

Γ̂ .µµ ⊢ws t expr @ m

⊢ws σ.t sub(Γ̂ → ∆̂ . µ) @ n

Figure 4 Constructors for intrinsically well-scoped WSMTT expressions (defined using the
judgement Γ̂ ⊢ws t expr @ m) and substitutions (defined using the judgement ⊢ws σ sub(Γ̂ → ∆̂) @ m).

incremented using a weakening substitution π (wsmtt-sub-weaken). This is similar to the
representation of variables in a CwF. In the technical report on MTT [19], this standard
practice is adapted to MTT with a variable rule that is a typed version of wsmtt-expr-var.
The general variable rule tm-var (or its intrinsically scoped counterpart) remains derivable
by explicitly substituting v0 with substitutions constructed via π, ¤α (wsmtt-sub-key) and
_ .µµ (wsmtt-sub-lock).

2.2.1 Substitution Calculus
In both [20, 19] and our presentation, MTT is a system with explicit substitution: applying
a substitution to an expression is viewed as a syntax constructor (wsmtt-expr-sub). This also
means that expressions are defined mutually inductively with substitutions. For the latter, we
introduce a judgement form ⊢ws σ sub(Γ̂→ ∆̂) @m expressing that σ is a substitution from
scoping context Γ̂ to ∆̂ at mode m (again, the inference rules for this judgement construct
WSMTT substitutions, rather than defining a well-scopedness relation over them).

Figure 4 shows all WSMTT substitution constructors. There is a unique substitution to
the empty context (wsmtt-sub-empty) and identity (wsmtt-sub-id) and weakening (wsmtt-sub-
weaken) substitutions. We can compose substitutions (wsmtt-sub-compose, note that this
is a constructor), lock them (wsmtt-sub-lock) and extend them with a term to extend the
codomain with a new variable (wsmtt-sub-extend). Note that this term has to live in a locked
scoping context. Finally, every 2-cell in the mode theory gives rise to a key substitution
(wsmtt-sub-key). This last rule introduces the concept of lock telescopes: sequences of zero
or more locks that have the right domain and codomain modes to be composed. A lock
telescope Θ : LockTele(n → m) can be applied to a scoping context at mode n to obtain
a scoping context at mode m; and similarly to a well-scoped substitution by iteratively
applying wsmtt-sub-lock. We can also compose all modalities in Θ to obtain a modality
locks (Θ) : m→ n. Precise definitions are given in Figure 3.
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sctx-lock-id

Γ̂ sctx @ m

Γ̂ .µ1 = Γ̂ sctx @ m

sctx-lock-comp

Γ̂ sctx @ o µ : m → n ν : n → o

Γ̂ .µν◦µ = Γ̂ .µν .µµ sctx @ m

Figure 5 Strict functoriality of the lock operation on scoping contexts (optional).

2.2.2 Lock Telescopes vs. Strict Functoriality of Locks
The original presentation of MTT [20, 19] makes no mention of lock telescopes. Instead,
it features strict functoriality rules for the lock operation on contexts, of which we give
counterparts for scoping contexts in Figure 5. A consequence of these rules is that any lock
telescope can be fused into a single lock.

It is however quite unusual to have a non-trivial equational theory on contexts and early
explorations of a lock calculus for MTT [25] suggest that it may be advantageous to drop the
functoriality rules; by wsmtt-sub-key for the identity 2-cell, they automatically hold up to
isomorphism. During the development of the current paper, we had a formulation of MTT
in mind without these functoriality rules. However, nowhere in our constructions and proofs
do we case distinguish on the number of locks in a given part of the context, or read off
the modality annotation of a specific lock, so our results remain valid when we extend raw
WSMTT with the rules in Figure 5.

▶ Theorem 2 (Non-definability of composition). Even with the rules in Figure 5, it is still
not true that any WSMTT substitution can be alternatively constructed without using wsmtt-
sub-compose directly (i.e. not through a generalised rule). This remains impossible even if we
use composition to generalise the rules wsmtt-sub-weaken and (jointly) wsmtt-sub-key and
wsmtt-sub-lock, so that we would get π(σ) := σ ◦ π and σ .¤

α∈Θ⇒Ψ := ¤
α∈Θ⇒Ψ
Γ̂ ◦ (σ .Ψ)

each by a single rule.

Proof. Consider a mode theory with three modes p, q, r, three modalities p
ν−→ q

µ−→
r

ρ←− p and a 2-cell α ∈ µ ◦ ν ⇒ ρ. Then we can consider the key substitution ⊢ws

¤
α∈µµ .µν ⇒µρ

Γ̂ sub(Γ̂ .µρ → Γ̂ .µµ .µν) @ p. Furthermore, given an expression t (e.g. true) in
Γ̂ .µµ .µ1 we can construct ⊢ws (id.t) .µν sub(Γ̂ .µµ .µν → Γ̂ .µµ .1 .µν) @ p. The composite
of these two is a substitution from Γ̂ .µρ to Γ̂ .µµ .1 .µν , which both splits ρ into µ ◦ ν and
extends the codomain with a variable. Assume we have an alternative substitution τ of the
same domain and codomain, constructed without using wsmtt-sub-compose directly. Since all
remaining substitution constructors cause domain and codomain to be extended with locks
and variables, travelling the derivation tree of τ upwards (constructed using the possibly
generalised rules in Figure 4), we somehow need to peel off µν from the codomain, using the
operation σ .¤

α∈Θ⇒Ψ. This is impossible since ρ : p→ r has no decomposition p→ q → r.
An alternative proof can be given in the mode theory with α reversed, where the composite

substitution combines α with a weakening in between the locks. ◀

2.3 σ-equivalence
Since substitution in WSMTT expressions is an explicit constructor, it does not compute
(as will be the case in SFMTT in Section 3). This means that there are a lot of distinct
WSMTT expressions that we would actually like to consider equivalent. For example, from
the perspective of the rules in Figure 4 the expressions t [ σ ]ws [ τ ]ws and t [ σ ◦ τ ]ws have
nothing to do with each other. For this reason, we add an axiomatic system to the intrinsically
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Ξ̂ ⊢ws t expr @ m
⊢ws σ sub(∆̂ → Ξ̂) @ m

⊢ws τ sub(Γ̂ → ∆̂) @ m

Γ̂ ⊢ws t [ σ ◦ τ ]ws ≡σ t [ σ ]ws [ τ ]ws expr @ m

∆̂ ⊢ws t ≡σ s expr @ m

⊢ws τ ≡σ σ sub(Γ̂ → ∆̂) @ m

Γ̂ ⊢ws t [ τ ]ws ≡σ s [ σ ]ws expr @ m

µ : m → n ∆̂ . µ ⊢ws t expr @ n ⊢ws σ sub(Γ̂ → ∆̂) @ n
with σ+ = (σ ◦ π).v0

Γ̂ ⊢ws (λµ (t)) [ σ ]ws ≡σ λµ
(
t

[
σ+ ]

ws

)
expr @ n

⊢ws σ sub(∆̂ → Ξ̂) @ m ⊢ws τ sub(Γ̂ → ∆̂) @ m

⊢ws (σ ◦ τ) .µµ ≡σ (σ .µµ) ◦ (τ .µµ) sub(Γ̂ .µµ → Ξ̂ .µµ) @ n

Γ̂ sctx @ n Λ : LockTele(n → m)

⊢ws ¤
1locks(Λ)∈Λ⇒Λ
Γ̂

≡σ id sub(Γ̂ . Λ → Γ̂ . Λ) @ m

α ∈ locks (Λ) ⇒ locks (Θ) β ∈ locks (Θ) ⇒ locks (Ψ)

⊢ws ¤
β◦α∈Λ⇒Ψ
Γ̂ ≡σ ¤α∈Λ⇒Θ

Γ̂ ◦ ¤β∈Θ⇒Ψ
Γ̂ sub(Γ̂ . Ψ → Γ̂ . Λ) @ m

α ∈ locks (Λ) ⇒ locks (Θ) ⊢ws σ sub(Γ̂ → ∆̂) @ n

⊢ws ¤
α∈Λ⇒Θ
∆̂ ◦ (σ . Θ) ≡σ (σ . Λ) ◦ ¤α∈Λ⇒Θ

Γ̂ sub(Γ̂ . Θ → ∆̂ . Λ) @ m

Figure 6 Selected rules for σ-equivalence in WSMTT.

scoped WSMTT syntax that specifies when two expressions or substitutions are σ-equivalent
(note that we do not add β- or η-equivalence to this system yet, those should be covered in
the type system that would be defined on top of the syntax described in this paper).

Some of the rules for σ-equivalence can be found in Figure 6. We make use of a judgement
Γ̂ ⊢ws t ≡σ s expr @m for expressions and ⊢ws σ ≡σ τ sub(Γ̂ → ∆̂) @m for substitutions.
We find rules expressing the connection between applying a composed substitution and
consecutively applying both substitutions, expressing how to push a substitution through
expression constructors such as λµ (here σ+ is the lifting of σ defined as σ+ = (σ ◦ π).v0)
and expressing functoriality of locks on substitutions. There are also quite some rules that
express properties of key substitutions: their naturality and their behaviour with respect to
the unit 2-cell and composition of 2-cells. The full definition of σ-equivalence for WSMTT
can be found in the technical report [13].

3 Substitution Algorithm

In this section we describe our substitution algorithm for MTT. For this purpose we intro-
duce a new language called SFMTT (for substitution-free MTT), which has no expression
constructor for substitutions like wsmtt-expr-sub in Figure 4. We also introduce renamings
and substitutions for SFMTT. All of this is included in Section 3.1. We then proceed in
Section 3.2 to the core part of the substitution algorithm: applying SFMTT renamings
and substitutions to SFMTT expressions. Finally, using this functionality we can translate
WSMTT expressions to SFMTT expressions.

3.1 Substitution-free Multimode Type Theory (SFMTT)

3.1.1 SFMTT Expressions
Exactly like our presentation of WSMTT, the expressions in SFMTT will be extrinsically
typed but intrinsically scoped. We can reuse the same notion of scoping context and lock
telescope from Figure 3. However, as indicated in Section 2.2, the WSMTT representation
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sf-var-zero

Θ : LockTele(n → m)
Γ̂ sctx @ n

µ : m → n

α ∈ µ ⇒ locks(Θ)

Γ̂ . µ . Θ ⊢sf vα
0 var @ m

sf-var-suc

Θ : LockTele(n → m)
Γ̂ . Θ ⊢sf v var @ m

µ : o → n

Γ̂ . µ . Θ ⊢sf suc (v) var @ m

Figure 7 Constructors for well-scoped SFMTT variables.

of variables makes use of explicit substitutions, which we do not have in SFMTT. For this
reason, SFMTT has a dedicated variable judgement Γ̂ ⊢sf v var @m introducing the syntactic
category of accessible variables v in scoping context Γ̂ at mode m. The inference rules for
this judgement can be found in Figure 7. Either we access the last variable in the scoping
context, in which case we have to provide an appropriate 2-cell (sf-var-zero), or we skip the
last variable in the scoping context, which may be located under a lock telescope (sf-var-suc).
As a conclusion, an SFMTT variable is of the form sucn (vα

0 ), so it is just a De Bruijn index
with a 2-cell annotation.

Similar to WSMTT, SFMTT expressions can now be introduced via a judgement Γ̂ ⊢sf
t expr @m. The constructors are the same as those for WSMTT in Figure 4, except for
wsmtt-expr-var and wsmtt-expr-sub, which are not included. Instead, there is a constructor
promoting any variable Γ̂ ⊢sf v var @m to an SFMTT expression in Γ̂. We emphasize that
SFMTT expressions cannot contain substitutions.

3.1.2 SFMTT Renamings and Substitutions

We can also define substitutions for the SFMTT syntax, which will be required in the next
section. As in our intrinsically scoped presentation of WSMTT, every SFMTT renaming
and substitution has a domain and a codomain scoping context. This ensures that applying
a renaming or substitution to an SFMTT expression is a total (always defined) operation.

Similar to McBride [23] and Allais et al. [4], we define an action of renaming on expressions
before we discuss the action of substitutions. Such a renaming does not only allow us to lift
a substitution when pushing it under a binder, but also to perform some modal operations.
Of course, we have to take into account that we want a structurally recursive substitution
algorithm, which is impossible when substitution composition is added as a constructor.
We solve this problem by first defining atomic renamings and substitutions, which are not
closed under composition but which can be applied to SFMTT expressions in a structurally
recursive way. Regular renamings and substitutions (from now on also referred to as rensubs)
will be defined in terms of these atomic rensubs.

Just like substitutions in WSMTT, atomic renamings and substitutions are defined
using a judgement ⊢sf σ aren/asub(Γ̂→ ∆̂) @m (much of the structure between renamings
and substitutions is shared). There is a similar judgement ⊢sf σ ren/sub(Γ̂ → ∆̂) @m for
regular rensubs. The constructors for atomic rensubs can be found in Figure 8. Many of
them are similar to the ones for WSMTT substitutions, such as the empty atomic rensub
(sf-arensub-empty), locking (sf-arensub-lock) and keys (sf-arensub-key). As explained, we
purposely omit a constructor for composition of atomic rensubs. As a consequence, we need
a constructor for weakening rensubs (sf-arensub-weaken) which in WSMTT would have
been accomplished by precomposing with π. Also note that we have an atomic identity
rensub ida (sf-arensub-id). We could have alternatively implemented ida in terms of the other
constructors but taking it as a constructor will make the rest of the paper easier because we
can define its action on expressions to be trivial, whereas otherwise that would require a
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sf-arensub-empty

⊢sf ! aren/asub(Γ̂ → ·) @ m

sf-arensub-id

Γ̂ sctx @ m

⊢sf ida aren/asub(Γ̂ → Γ̂) @ m

sf-arensub-weaken

⊢sf σ aren/asub(Γ̂ → ∆̂) @ m

⊢sf weaken(σ) aren/asub(Γ̂ . µ → ∆̂) @ m

sf-arensub-lock

⊢sf σ aren/asub(Γ̂ → ∆̂) @ n µ : m → n

⊢sf σ .µµ aren/asub(Γ̂ .µµ → ∆̂ .µµ) @ m

sf-arensub-key
Θ, Ψ : LockTele(n → m) α ∈ locks(Θ) ⇒ locks(Ψ)

⊢sf ¤
α∈Θ⇒Ψ
Γ̂ aren/asub(Γ̂ . Ψ → Γ̂ . Θ) @ m

sf-aren-extend

µ : m → n
⊢sf σ aren(Γ̂ → ∆̂) @ n

Γ̂ .µµ ⊢sf v var @ m

⊢sf σ.v aren(Γ̂ → ∆̂ . µ) @ n

sf-asub-extend

µ : m → n
⊢sf σ asub(Γ̂ → ∆̂) @ n

Γ̂ .µµ ⊢sf t expr @ m

⊢sf σ.t asub(Γ̂ → ∆̂ . µ) @ n

Figure 8 Constructors for atomic SFMTT renamings and substitutions.

sf-rensub-id

Γ̂ sctx @ m

⊢sf id ren/sub(Γ̂ → Γ̂) @ m

sf-rensub-snoc

⊢sf σ ren/sub(∆̂ → Ξ̂) @ m ⊢sf τ aren/asub(Γ̂ → ∆̂) @ m

⊢sf σ a⃝ τ ren/sub(Γ̂ → Ξ̂) @ m

Figure 9 Constructors for regular SFMTT renamings and substitutions.

non-trivial proof. The only difference between atomic renamings and substitutions is the
way they can be extended: a renaming is extended with a variable (sf-aren-extend) whereas
a substitution can be extended with an arbitrary SFMTT expression (sf-asub-extend).

Figure 9 shows the full definition of regular rensubs. In essence, a rensub is well-scoped
snoc-lists of atomic substitutions. It can be empty, so it is actually the identity (sf-rensub-id),
or it consists of an atomic rensub postcomposed with a regular rensub (sf-rensub-snoc).

One operation that we will need in the next section, is the lifting of atomic rensubs.
Given an atomic rensub σ from Γ̂ to ∆̂, we can construct a new, lifted atomic rensub
σ+ := weaken(σ).v1µ

0 from Γ̂ . µ to ∆̂ . µ (here v1µ

0 is interpreted as a variable in the case of
renamings and as an expression in the case of substitutions).4 Moreover, for any scoping
context Γ̂ and modality µ, we have a weakening atomic rensub π := weaken(ida) from Γ̂ . µ to Γ̂.
The lift and lock operations can be extended to regular rensubs by applying those operations
to all constituent atomic rensubs. In other words, we have id+ = id, (σ a⃝ τ)+ = σ+ a⃝ τ+,
id .µµ = id and (σ a⃝ τ) .µµ = (σ .µµ) a⃝ (τ .µµ).

3.2 Renaming and Substitution Algorithm for SFMTT
We are now ready to describe one of the core parts of the paper: the algorithm for applying
an SFMTT substitution to an SFMTT expression. The definition is built up in 4 steps, each
defining the action of another class of syntactic objects on SFMTT expressions: 1. atomic
renamings, 2. regular renamings, 3. atomic substitutions, and 4. regular substitutions.

4 It might be surprising that this works for substitutions too, since we explained in the introduction for
STLC that defining weakening for substitutions requires recursively applying a subtitution (or renaming)
to terms in the context. However, substituting a variable with weaken(σ) will involve the application of
a renaming, as we will see in the next section.
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However, there is considerable overlap between some of these steps. For this reason, we will
treat steps 2 and 4 together as well as large parts of steps 1 and 3.5 All operations take an
(atomic) rensub from Γ̂ to ∆̂ and an SFMTT expression in scoping context ∆̂ to produce an
SFMTT expression in scoping context Γ̂.

3.2.1 Atomic rensubs acting on non-variable expressions
We first discuss the application of atomic rensubs on SFMTT expressions other than variables.
In general, if we have an atomic rensub ⊢sf σ aren/asub(Γ̂ → ∆̂) @m and an SFMTT
expression ∆̂ ⊢sf t expr @m (other than a variable), we describe how to construct an expression
Γ̂ ⊢sf t [ σ ]aren/asub expr @m. Note that in order for this construction to be well-defined on
intrinsically-scoped syntax, one must verify that it does indeed preserve well-scopedness.

⟨µ | A⟩ [ σ ]aren/asub = ⟨µ | A [ σ .µµ ]aren/asub⟩

modµ (t) [ σ ]aren/asub = modµ

(
t [ σ .µµ ]aren/asub

)
((µ p A)→ B) [ σ ]aren/asub =

(
µ p A [ σ .µµ ]aren/asub

)
→ B

[
σ+ ]

aren/asub

(λµ (t)) [ σ ]aren/asub = λµ
(
t

[
σ+ ]

aren/asub

)
appµ (f ; t) [ σ ]aren/asub = appµ

(
f [ σ ]aren/asub ; t [ σ .µµ ]aren/asub

)
3.2.2 Atomic renamings acting on variables
We now turn to the case for variables. This is where we distinguish between atomic renamings
and atomic substitutions. We first discuss the action of an atomic renaming on a variable,
producing another variable. The intuitive “type signature” of this operation is too weak to
make recursion work. In particular, it does not allow us to go under locks in renamings.
Therefore, we have a result that generalises over a lock telescope Λ, but we can recover the
desired result by taking the empty lock telescope for Λ. Note that for the remainder of
Section 3 we will state the signatures of the different parts of the substitution algorithm
in lemmas and theorems. The actual description of the algorithm can be found in the
corresponding proofs (which we will call constructions to make it clear that they contain
computationally interesting content).

▶ Lemma 3. If we have an SFMTT atomic renaming ⊢sf σ aren(Γ̂→ ∆̂) @n, a lock telescope
Λ : LockTele(n→ m) and an SFMTT variable ∆̂ .Λ ⊢sf v var @m, then we can construct a
variable Γ̂ .Λ ⊢sf v [ σ ]Λaren,var var @m

Lemma 3 is a core lemma for this paper. Our substitution algorithm crucially relies on
identifying a notion of renamings that can be recursively applied to MTT terms. It is this
lemma that establishes that our choices achieve this and we include the construction below
because it clarifies well why atomic renamings should be defined as they are.

In the construction for Lemma 3 we will make use of the following result.

▶ Lemma 4. Let Θ,Ψ : LockTele(n → m) be two lock telescopes and α ∈ locks (Θ) ⇒
locks (Ψ) a 2-cell. Then we can transform a variable Γ̂ .Θ ⊢sf v var @m to a variable
Γ̂ .Ψ ⊢sf v [α ]Θ⇒Ψ

2-cell var @m.

5 In fact, the action of regular renamings is not really used anywhere. Only atomic renamings will be
important. However, as already mentioned the treatment of regular renamings and regular substitutions
is entirely the same.
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Construction. We proceed by structural recursion on the variable v (i.e. the annotated De
Bruijn index).

case Γ̂ .Θ ⊢sf vβ
0 var @m with Γ̂ = ∆̂ . µ .Λ (sf-var-zero, Λ is a lock telescope so it only

contains locks)
We know that ∆̂ . µ .Λ .Θ ⊢sf vβ

0 var @m, so β ∈ µ⇒ locks (Λ .Θ) = locks (Λ) ◦ locks (Θ).
Using the horizontal composition ⋆, we can construct a 2-cell 1locks(Λ) ⋆ α ∈ locks (Λ) ◦
locks (Θ) ⇒ locks (Λ) ◦ locks (Ψ). Hence we use the rule sf-var-zero again to obtain
vβ

0 [α ]Θ⇒Ψ
2-cell = v(1locks(Λ)⋆α)◦β

0 .6

case Γ̂ .Θ ⊢sf suc (v) var @m with Γ̂ = ∆̂ . µ .Λ (sf-var-suc, Λ is a lock telescope)
In this case we have that ∆̂ .Λ .Θ ⊢sf v var @m. By recursion we then obtain a variable
∆̂ .Λ .Ψ ⊢sf v [α ]Θ⇒Ψ

2-cell var @m. Applying the rule sf-var-suc again to this result gives us
the desired variable, so suc (v) [α ]Θ⇒Ψ

2-cell = suc
(
v [α ]Θ⇒Ψ

2-cell

)
. ◀

Construction for Lemma 3. We proceed by structural recursion on σ.
case ⊢sf ! aren(Γ̂→ ·) @n

In this case, ∆̂ is the empty scoping context. We can see from Figure 7 that there can be
no variables in the empty scoping context (the scoping contexts in conclusions of both
inference rules both contain at least a variable annotation). Hence we do not have to
deal with this case further.7

case ⊢sf ida aren(Γ̂→ Γ̂) @n

Now Γ̂ .Λ ⊢sf v var @m, so we can just say v [ ida ]Λaren,var = v.
case ⊢sf weaken(σ) aren(Γ̂ . µ→ ∆̂) @n

We know that ∆̂ .Λ ⊢sf v var @m, so we can use recursion for σ and obtain a variable
Γ̂ .Λ ⊢sf v [ σ ]Λaren,var var @m. Since Λ is a lock telescope not containing variable annota-
tions, we can then apply the rule sf-var-suc from Figure 7 with Θ = Λ to obtain a variable
in Γ̂ . µ .Λ as required. In other words, v [ weaken(σ) ]Λaren,var = suc

(
v [ σ ]Λaren,var

)
.

case ⊢sf σ .µµ aren(Γ̂ .µµ → ∆̂ .µµ) @n

Adding the µµ to the left of the lock telescope Λ, we get v [ σ .µµ ]Λaren,var = v [ σ ]µµ . Λ
aren,var.

case ⊢sf ¤
β∈Θ⇒Ψ
Γ̂ aren(Γ̂ .Ψ→ Γ̂ .Θ) @n

We have that Γ̂ .Θ .Λ ⊢sf v var @m and that β ∈ locks (Θ)⇒ locks (Ψ). This means that
β ⋆ 1locks(Λ) ∈ locks (Θ .Λ) ⇒ locks (Ψ .Λ). Using Lemma 4, we can use this 2-cell to

obtain a variable in Γ̂ .Ψ .Λ, so v
[
¤

β∈Θ⇒Ψ
Γ̂

]Λ

aren,var
= v

[
β ⋆ 1locks(Λ)

]Θ . Λ⇒Ψ . Λ
2-cell .

case ⊢sf σ.w aren(Γ̂→ ∆̂ . µ) @n

We know that ∆̂ . µ .Λ ⊢sf v var @m (where Λ contains only locks) and perform a case
split on v.

case ∆̂ . µ .Λ ⊢sf vα
0 var @m

In this case we have a 2-cell α ∈ µ⇒ locks (Λ). Moreover, as one of the premises of
sf-aren-extend we know that Γ̂ .µµ ⊢sf w var @m. We can then use Lemma 4 with
lock telescopes Θ = µµ and Ψ = Λ to transform w to a variable in Γ̂ .Λ. In other
words, vα

0 [ σ.w ]Λaren,var = w [α ]µµ⇒Λ
2-cell .

6 This definition seems to imply a dependency of vβ
0 [ α ]Θ⇒Ψ

2-cell on Λ, but note that Λ is completely
determined by the scoping context and the variable.

7 This case illustrates why it is advantageous to use intrinsically scoped syntax. It makes sure that the
codomain of the renaming and the scoping context of the expression match, so we do not have to cover
insensible cases.

TYPES 2023



4:14 A Sound and Complete Substitution Algorithm for Multimode Type Theory

case ∆̂ . µ .Λ ⊢sf suc (v) var @m

Now we know that ∆̂ .Λ ⊢sf v var @m and that ⊢sf σ aren(Γ̂→ ∆̂) @n. Consequently,
we can recursively obtain a variable in Γ̂ .Λ, so suc (v) [ σ.w ]Λaren,var = v [ σ ]Λaren,var. ◀

Note that the algorithm presented in the construction for Lemma 3 is indeed structurally
recursive: in every recursive call the renaming gets structurally smaller (and moreover the
algorithm in the construction for Lemma 4 does not depend on that of Lemma 3).

Together with the equations from Section 3.2.1, we get the following result.

▶ Lemma 5 (Atomic renaming for SFMTT expressions). If ⊢sf σ aren(Γ̂ → ∆̂) @m and
∆̂ ⊢sf t expr @m, then we can construct Γ̂ ⊢sf t [ σ ]aren expr @m.

3.2.3 Atomic substitutions acting on variables
We now describe the action of atomic substitutions on variables. This will produce an
SFMTT expression that is not necessarily a variable anymore (as was the case for atomic
renamings). We have a result very similar to Lemma 3.

▶ Lemma 6. If we have an SFMTT atomic substitution ⊢sf σ asub(Γ̂ → ∆̂) @n, a lock
telescope Λ : LockTele(n → m) and an SFMTT variable ∆̂ .Λ ⊢sf v var @m, then we can
construct an expression Γ̂ .Λ ⊢sf v [ σ ]Λasub,var expr @m.

Construction. Again we proceed by case distinction and recursion over σ. The cases for !,
ida, σ .µµ and ¤

β∈Θ⇒Ψ
Γ̂ are similar to the construction for Lemma 3 so we omit them.

case ⊢sf weaken(σ) asub(Γ̂ . µ→ ∆̂) @n

We have that ∆̂ .Λ ⊢sf v var @m and ⊢sf σ asub(Γ̂→ ∆̂) @n, so we can use recursion to
obtain an expression in Γ̂ .Λ. Then we can apply Lemma 5 with the atomic renaming π .Λ
(i.e. applying all the locks from Λ to π) to obtain an expression in Γ̂ . µ .Λ as required.
Consequently, we have v [ weaken(σ) ]Λasub,var =

(
v [ σ ]Λasub,var

)
[ π .Λ ]aren.

case ⊢sf σ.t asub(Γ̂→ ∆̂ . µ) @n

We know that ∆̂ . µ .Λ ⊢sf v var @m and perform a case split on v.
case ∆̂ . µ .Λ ⊢sf vα

0 var @m

In this case α ∈ µ ⇒ locks (Λ) and Γ̂ .µµ ⊢sf t expr @m. Therefore, we can apply
Lemma 5 with the renaming ¤

α∈µµ⇒Λ
Γ̂ and the expression t to obtain an expression

in Γ̂ .Λ. In other words vα
0 [ σ.t ]Λasub,var = t

[
¤

α∈µµ⇒Λ
Γ̂

]
aren

.

case ∆̂ . µ .Λ ⊢sf suc (v) var @m

Now ∆̂ .Λ ⊢sf v var @m, so we can apply recursion (with both the variable and the
substitution getting structurally smaller) to get suc (v) [ σ.t ]Λasub,var = v [ σ ]Λasub,var. ◀

Note that all of the cases in the previous construction are similar to the corresponding cases
in the construction for Lemma 3. The most important difference is that the result of applying
a substitution is an expression and not a variable. To transform the results from recursive
calls, we therefore make use of the fact that atomic renamings act on expressions as shown
in Lemma 5 (unlike the direct manipulation of variables as in the construction for Lemma 3).
This is reminiscent of how renaming gets used in the definition of substitution in [23, 4].

Combining the previous result with the equations in Section 3.2.1, we get the following.

▶ Lemma 7 (Atomic substitution for SFMTT expressions). If ⊢sf σ asub(Γ̂ → ∆̂) @m and
∆̂ ⊢sf t expr @m, then we can construct Γ̂ ⊢sf t [ σ ]asub expr @m.
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▶ Example 8. In order to illustrate the substitution algorithm described in this section, we
reconsider the MTT function f from Example 1. In the MTT context Γ . (1 p y : (ρ p B)→
A) . (ρ p z : B) .µ1 we can construct a term t = appρ

(
y11 ; z1ρ

)
of type A to which f can be

applied. Although neither SFMTT nor WSMTT have built-in β-equivalence, we can still
construct the term to which the this application of f should reduce. First of all, the SFMTT
version of the function f is λ1 (modρ (modµ (vη

0))) and t becomes appρ

(
suc

(
v11

0
)

; v1ρ

0

)
. If

we write π2 for weaken(π), then we can compute the desired term as follows

(modρ (modµ (vη
0)))

[
π2. appρ

(
suc

(
v11

0
)

; v1ρ

0

) ]
asub

= modρ

(
modµ

(
vη

0

[ (
π2. appρ

(
suc

(
v11

0
)

; v1ρ

0

))
.µρ .µµ

]
asub,var

))
= modρ

(
modµ

(
vη

0

[
π2. appρ

(
suc

(
v11

0
)

; v1ρ

0

) ]µρ .µµ

asub,var

))
= modρ

(
modµ

((
appρ

(
suc

(
v11

0
)

; v1ρ

0

)) [
¤

η∈µ1⇒µρ .µµ

Γ̂ .1 . ρ

]
aren

))
= modρ

(
modµ

(
appρ

(
suc

(
v11

0

[
¤

η∈µ1⇒µρ .µµ

Γ̂ .1 . ρ

]
aren,var

)
; v1ρ

0

[
¤

η∈µ1⇒µρ .µµ

Γ̂ .1 . ρ

]µρ

aren,var

)))
= modρ

(
modµ

(
appρ

(
suc (vη

0) ; vη⋆1ρ

0

)))
.

3.2.4 Regular renamings/substitutions
We now turn to regular renamings and substitutions. There is no need to distinguish between
these two as the procedure for renamings and substitutions will be exactly the same. Since a
regular rensub is a sequence of atomic rensubs, we can just sequentially apply the results
from the previous sections. We therefore get the following.

t [ id ]ren/sub = t t [ σ a⃝ τ ]ren/sub =
(
t [ σ ]ren/sub

)
[ τ ]aren/asub

As a conclusion, we have finished the algorithm for renaming and substitution in SFMTT.

▶ Theorem 9 (Renaming and substitution for SFMTT expressions). Given a renaming or
substitution ⊢sf σ ren/sub(Γ̂→ ∆̂) @m and an SFMTT expression ∆̂ ⊢sf t expr @m, we can
construct an expression Γ̂ ⊢sf t [ σ ]ren/sub expr @m.

Note that we do not actually need the action of full renamings on SFMTT expressions in
order to define the action of atomic substitutions, atomic renamings suffice for that purpose.

Although we are not really concerned with performance in this paper, we note that
optimisations are certainly possible. For example, as it is currently described, the algorithm
will, when applying a regular substitution consisting of n atomic ones to an expression
t, perform n traversals of t, one for every atomic substitution. This could be reduced by
traversing the expression just once and applying lifting (+) or locks to all atomic substitutions
simultaneously when required.

3.3 Interpretation of WSMTT Expressions in SFMTT
We now turn to the relation between WSMTT and SFMTT. Using the substitution algorithm
just defined, we will show that WSMTT expressions can be translated to SFMTT expressions,
essentially proving that explicit substitutions can be computed away. The reverse direction is
easier: apart from variables, every SFMTT expression constructor also appears in WSMTT
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so we can almost trivially embed the former system into the latter. We define the two
translations here and consider their meta-theoretical properties (particularly soundness and
completeness) in the next sections.

3.3.1 Translation from WSMTT to SFMTT
The translation from WSMTT to SFMTT is defined mutually recursively for both expressions
and substitutions. In other words, for any WSMTT expression Γ̂ ⊢ws t expr @m we get an
SFMTT expression Γ̂ ⊢sf JtK expr @m and for any WSMTT substitution ⊢ws σ sub(Γ̂ →
∆̂) @m we get an SFMTT (regular) substitution ⊢sf JσK sub(Γ̂ → ∆̂) @m. We only show
some of the cases for the different expression constructors. Again, in order for J_K to be
well-defined, we should check that the definition below preserves well-scopedness.

Jv0K = v1µ

0 JπK = id a⃝weaken(ida)
J(µ p A)→ BK = (µ p JAK)→ JBK Jσ ◦ τK = JσK ++ JτK

Jt [ σ ]wsK = JtK [ JσK ]sub Jσ .µµK = JσK .µµ

J!K = id a⃝ !
r
¤

α∈Θ⇒Ψ
Γ̂

z
= id a⃝¤

α∈Θ⇒Ψ
Γ̂

JidK = id Jσ.tK = JσK+ a⃝ (ida. JtK)

When translating an (explicitly) substituted WSMTT expression t [ σ ]ws, we translate both
the expression t and the substitution σ and then apply Theorem 9 (i.e. the algorithm from
the previous section). Translation of a composite substitution involves the concatenation of
the two translated substitutions, which are regular SFMTT substitutions so sequences of
atomic SFMTT substitutions. Recall that the operations _ .µµ and + for regular SFMTT
substitutions are defined at the end of Section 3.1. Finally, one could wonder why in the
translation of σ.t we first add JtK to the identity atomic substitution and then apply the lifted
version of JσK where it would seem easier to first apply (the non-lifted) JσK and then extend
ida with JtK. The answer is that in that case JtK would live in the wrong scoping context: if
JσK goes from Γ̂ to ∆̂, then JtK lives in Γ̂ .µµ but if we want the translation of σ.t to be of
the form (ida.?) a⃝ JσK, then we need some term in scoping context ∆̂ .µµ at the place of the
question mark.

3.3.2 Embedding of SFMTT into WSMTT
We only provide an embedding of SFMTT expressions to WSMTT expressions (so not for
substitutions). Apart from the constructor for variable expressions, all SFMTT expression
constructors also occur in WSMTT. We therefore only specify how to embed variables.

embed(vα
0 ) = v0

[
¤

α∈µµ⇒Θ
Γ̂

]
ws

embed(suc (v)) = embed(v) [ π .Θ ]ws

The lock telescopes Θ in both cases are inferred from the scoping context (recall that we
consider SFMTT expressions to be intrinsically scoped).

As a result, for every SFMTT expression Γ̂ ⊢sf t expr @m we get a corresponding WSMTT
expression Γ̂ ⊢ws embed(t) expr @m.

4 Soundness & Completeness

In the previous section, we introduced a translation from WSMTT to SFMTT that uses our
substitution algorithm to translate away WSMTT’s explicit substitution. In this section,
we establish the translation’s key properties: soundness and completeness with respect to
σ-equivalence in WSMTT.



J. Ceulemans, A. Nuyts, and D. Devriese 4:17

4.1 Soundness
In our setting, soundness is the property that starting from a WSMTT expression, applying
the translation where all explicit substitutions are computed away, and then embedding the
result back into WSMTT, we get a result that is σ-equivalent to the original expression. In
order to prove this, we will make use of an embedding of SFMTT substitutions into WSMTT,
which was not provided in Section 3.3.2. We therefore define the following for both atomic
and regular SFMTT substitutions.

embed(!) = ! embed
(
¤

α∈Λ⇒Θ
Γ̂

)
= ¤

α∈Λ⇒Θ
Γ̂

embed(ida) = id embed(σ.t) = embed(σ) .embed(t)
embed(weaken(σ)) = embed(σ) ◦ π embed(id) = id

embed(σ .µµ) = embed(σ) .µµ embed(σ a⃝ τ) = embed(σ) ◦ embed(τ)

The crucial case in the proof of the soundness theorem is when the WSMTT expression
is of the form t [ σ ]ws. In that case we use the following lemma.

▶ Lemma 10. Given an SFMTT expression ∆̂ ⊢sf t expr @m and substitution ⊢sf σ sub(Γ̂→
∆̂) @m, we have that Γ̂ ⊢ws embed(t [ σ ]sub) ≡σ embed(t) [ embed(σ) ]ws expr @m.

Lemma 10 tells us that computing away a substitution in SFMTT and embedding the result
in WSMTT gives an expression that is σ-equivalent to the result of explicitly applying the
embedded substitution in WSMTT. The proof of this lemma is technically quite involved
(it proceeds by induction on t and σ, the most difficult cases being weakening and key
substitutions) and can therefore be found in the technical report [13].

▶ Theorem 11 (Soundness). For every WSMTT expression Γ̂ ⊢ws t expr @m we have
Γ̂ ⊢ws embed(JtK) ≡σ t expr @m and for every WSMTT substitution ⊢ws σ sub(Γ̂→ ∆̂) @m

we have ⊢ws embed(JσK) ≡σ σ sub(Γ̂→ ∆̂) @m.

Idea of proof. This proof proceeds by induction on the expression t and the substitution σ.
We only show one case for t, the other cases can be found in the technical report [13].

case Γ̂ ⊢ws t [ σ ]ws expr @m

We have embed(Jt [ σ ]wsK) = embed(JtK [ JσK ]sub) ≡σ embed(JtK) [ embed(JσK) ]ws where
the last σ-equivalence holds because of Lemma 10. The induction hypothesis for t and σ
gives us that embed(JtK) ≡σ t and embed(JσK) ≡σ σ, which proves the desired result. ◀

4.2 Completeness
Completeness of our algorithm with respect to σ-equivalence means that whenever two
WSMTT expressions are σ-equivalent, the results when computing away all substitutions via
J_K are the same. Recall that σ-equivalence for WSMTT expressions is defined mutually
recursively with σ-equivalence for WSMTT substitutions (see Figure 6). Therefore, to
prove completeness we will simultaneously need to prove a similar result about σ-equivalent
WSMTT substitutions. However, in SFMTT, syntactic equality of substitutions is not a
good notion of equivalence. Instead, we will use the following.

▶ Definition 12 (Observational equivalence). We say that two SFMTT substitutions ⊢sf
σ, τ sub(Γ̂ → ∆̂) @m are observationally equivalent when t [ σ ]sub = t [ τ ]sub for every
expression ∆̂ ⊢sf t expr @m. We will write this as σ ≈obs τ .
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This notion of observational equivalence is actually quite strong because it quantifies over all
possible SFMTT expressions. That means that both substitutions might get pushed under a
lot of expression constructors, with locks or lifts added along the way. The technical report [13]
shows the following lemma, which makes it easier to prove observational equivalence.

▶ Lemma 13. Let ⊢sf σ, τ sub(Γ̂ → ∆̂) @n be two SFMTT substitutions and suppose that
v [ σ .Λ ]sub = v [ τ .Λ ]sub for every lock telescope Λ : LockTele(n → m) and every variable
∆̂ .Λ ⊢sf v var @m. Then σ ≈obs τ .

▶ Remark 14. Lemma 13 essentially says that a substitution is uniquely determined, up
to observational equivalence, by its action on De Bruijn indices. In plain dependent type
theory, substitutions are often defined as mappings from variables to terms, or at least it is
clear that they can be uniquely represented in this way. The technical report [13] provides
an example that this is impossible for SFMTT: not every such mapping arises from an
SFMTT substitution. In other words, the structure of substitutions in modal type theory is
fundamentally more complex than in plain dependent type theory.

▶ Theorem 15 (Completeness). If we have two σ-equivalent WSMTT expressions Γ̂ ⊢ws
t ≡σ s expr @m, then JtK = JsK. Furthermore, given two σ-equivalent WSMTT substitutions
⊢ws σ ≡σ τ sub(Γ̂→ ∆̂) @m, we have that JσK ≈obs JτK.

Idea of proof. We proceed by induction on a derivation of the σ-equivalence judgement,
going over all inference rules from Figure 6. Only one case is presented here, the others can
be found in the technical report [13].

case Γ̂ ⊢ws t [ τ ]ws ≡σ s [ σ ]ws expr @m

The premises of this inference rule are Γ̂ ⊢ws t ≡σ s expr @m and ⊢ws τ ≡σ σ sub(∆̂ →
Γ̂) @m, so by the induction hypothesis we have JtK = JsK and JτK ≈obs JσK. Using the
definition of ≈obs we then get that Jt [ τ ]wsK = JtK [ JτK ]sub = JsK [ JσK ]sub = Js [ σ ]wsK. ◀

A consequence of soundness and completeness is the following result.

▶ Theorem 16. Given two WSMTT expressions Γ̂ ⊢ws t, s expr @m, then Γ̂ ⊢ws t ≡σ

s expr @m if and only if JtK = JsK. From this it follows that SFMTT expressions are the
σ-normal forms of WSMTT expressions, and J−K is the normalisation function.

Proof. The direction from left to right is exactly Theorem 15. Conversely, suppose that
JtK = JsK. Then we know that t ≡σ embed(JtK) = embed(JsK) ≡σ s. To show that SFMTT
expressions are the σ-normal forms of WSMTT expressions, we only need to prove that
every SFMTT expression is in the image of the J−K function. This is indeed the case since
Jembed(t)K = t for all Γ̂ ⊢sf t expr @m (which is provable via a trivial induction on t). ◀

5 Related and Future Work

5.1 Normalisation by Evaluation for MTT

Normalisation of MTT with respect to σβη-equality had already been proven by Gratzer [17]
[18, ch. 8]. He uses a normalisation by evaluation (NbE) argument [5, 3], structured using the
more recent technique of Synthetic Tait Computability (STC) [31][18, ch. 4]. We compare
Gratzer’s work with ours both in terms of approach and of implications.
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Implications. An NbE algorithm will take as input a term Γ ⊢ t : T (considered up
to σβη-equality) and a value environment ρ : env(∆ → Γ) and return a σβη-normal
form ∆ ⊢ nbe(t, ρ) : T [ρ]. When we instantiate ρ with the identity environment, which
substitutes every variable with itself or its η-expansion, then we are really just normalising
t. When instead we are only interested in syntax up to σβη-equality, and thus not in
σβη-normalisation which is inobservable up to σβη-equality, then the algorithm really just
applies the substitution ρ to the term t. So in this sense an NbE algorithm already allows for
substitution and indeed this is sufficient for a proof-of-concept implementation of MTT [30].

However, for conceptual, didactical and practical reasons, we see a role for a substitution
and σ-normalisation algorithm unreliant on βη-equality as presented in the current paper.
Conceptually, there is the fact that substitution originates as a find-replace operation that
replaces every occurrence of a given variable with a term of the same type. While the
definition of such an operation becomes more difficult with the introduction of variable
binding, dependent types, . . . , it is still a reasonable expectation and indeed a sanity check
to ask that this operation be definable, without referring to computation or βη-equality. It
ensures that, even before considering computation, variables can be thought of as placeholders,
and that programs are not permanently tied to the context in which they are defined, but
merely use the context as an interface. Didactically, since computation relies on substitution,
it is desirable to be able to explain substitution first, and especially without having to
introduce NbE. Practically, when working in a dependently typed proof assistant, we want
to get type goals that are not in σβη-normal form. For example, an η-normal form of an
advanced algebraic structure will typically be a big nested record type listing all carriers
and implementing all available operations, which may not be quite as readable as the more
intensional way in which the algebra was constructed. A proof assistant that relies on
NbE for substitution, will not be able to type a function application f a of a dependently
typed function f without normalising the codomain of f . Our algorithm, on the other hand,
will cleanly push substitutions through all non-substitution-related syntax constructors and
merely find and replace variables.

Approach. A first stark difference between NbE and the current work is that NbE considers
a type system’s syntax up to σβη-equality, i.e. it considers the type system’s initial model
in which important type formers can be characterised by their universal properties. In
order to speak about σ-equality, we need to distinguish βη-equal terms and lose some of the
categorical tooling. In particular, the category of models of a type system is of little use and
most type formers do not satisfy their universal properties up to σ- or syntactic equality.

Similarly, because typing relies on βη-equality and we want to get the complications of
substitution out of the way before considering βη-equality (e.g. because of the conceptual
and didactical reasons above), we work with intrinsically scoped untyped syntax, whereas
NbE generally works with intrinsically typed syntax.

NbE arguments generally feature at least five “collections of program representations”:
variables, neutrals, normal forms, values, and σβη-equivalence classes8 of terms. An NbE
proof involves several operations on and between these collections, and each of them is stable
under renaming, which is necessary to deal with λ-abstraction and application. In the current
work, we do not ever need to construct or eliminate functions, so while we do need to apply
lock telescopes to renamings and substitutions, it turns out there is no need to prove that

8 When formalising type theory in type theory, one would not use set-theory-style quotients based on
equivalence classes, but instead use quotient-inductive-inductive types [6].
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every operation featured in the construction is stable under renaming. Furthermore, while
MTT and SFMTT can be regarded as the collections of terms and normal forms respectively,
and we also have a definition of SFMTT variables, we do not need to distinguish between
values and normal forms (which in NbE has mostly to do with η-equality) and we do not
need a separate collection of neutrals (as σ-reduction, unlike β-reduction, is never stuck on a
variable).

5.2 Second-order Algebraic Theories
Allais, Atkey, Chapman, McBride and McKinna [4] implement renaming and substitu-
tion (among many other things) at once for a large class of languages, which Fiore and
Szamozvancev [16] identify to be what is often called second-order multisorted algebraic
theories (SOMATs). Here, multisorted means simply-typed, and second-order means that
they accommodate variable-binding, but no other context features, i.e. it is assumed that
contexts, renamings and substitutions are lists of types, variables and terms respectively.
More recently and in a more categorical perspective, Uemura has defined the corresponding
class of dependently typed languages, which in the larger naming scheme would be called
second-order generalised algebraic theories (SOGATs). A similar general substitution result
should be possible for SOGATs, and in any case it is very well understood (but considered
tedious) how to define substitution for specific SOGATs, which is why there is nowadays
little attention for this problem in the metatheory of specific non-modal languages. The
necessity of the current work arises from the fact that, due to the presence of modal locks,
MTT is not a SOGAT (it is a generalised algebraic theory or GAT [11], as are WSMTT and
SFMTT). A generalisation of second-order algebraic theories that would subsume MTT or
at least Multimode Simple Type Theory (MSTT) [12] is work in progress [24] and will be
informed by our current findings.

5.3 Other Approaches to Modal Contexts and/or Substitution
Lock calculi. Bahr, Grathwohl and Møgelberg [7] introduce Clocked Type Theory (CloTT),
a system for guarded type theory which features a later modality ▷ for every clock listed in
the clock context. If we keep the clock context fixed, then to a large extent CloTT can be
regarded as an instance of MTT,9 but the “lock” operation for each later modality is named.
To clarify, we put the introduction rules for the later types for a clock κ in MTT and CloTT
side by side:

Γ .µ▷κ ⊢ t : T
Γ ⊢ mod▷κ (t) : ⟨▷κ | T ⟩

Γ, α : κ ⊢ t : T
Γ ⊢ λ(α : κ).t : ▷(α : κ).T

The variable α is called a tick of the clock κ, but we can more generally call it a lock
variable. The specific mode theory for CloTT is enforced by requiring that α be used
substructurally. This slightly complicates the type system but on the bright side, substitutions
in CloTT are simply variable and tick replacement operations and do not have the complex
categorical structure they have in MTT, facilitating implementation in Agda [33]. Dependent
quantification over an affine or cartesian interval variable in cubical homotopy or parametric
type theory [9, 15, 8] can also be regarded as an instance of this approach, with the interval

9 Alternatively, we could regard the clock context as the mode, in which case we have an instance of MTT
where clock substitution and quantification are also modalities. However, our discussion about lock
calculi does not apply if we take that perspective.
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variable being analogous to the tick. We could similarly try to assign a lock variable to every
lock in MTT and extend MTT with a substructural lock calculus [25]. This is challenging
however, as we need to deal with arbitrarily complex mode theories and the lock calculus
admits in general neither weakening, exchange nor contraction.

2-posetal MTT. If MTT is instantiated on a mode theory that is a 2-poset, meaning that
the 2-cell of a given domain and codomain is unique if it exists, and if moreover this existence
is decidable, then rather than listing 2-cell information on variables and in substitutions, the
unique existence of the necessary 2-cells can be checked. Then all the remaining information
in a substitution is a list of terms, and the substitution operation is again merely a find-replace
operation. In the implementation of the proof assistant Mitten [30], this fact is used to
optimise the NbE algorithm (Section 5.1) for implementation.

Left division. MTT is based on a line of work on type systems using a left division
operation [2, 28, 27, 26], which in turn can be regarded as a generalisation of a dual-context
approach [29]. Rather than having a context constructor µµ which is semantically left adjoint
to the modality, it is assumed that there exists a left division operation µ\_ left adjoint to µ◦_
on modalities, and this operation extends to contexts by applying it to the modal annotation
of every variable. In systems based on left division, contexts are lists of modality-annotated
types, and substitutions are lists of terms. The difficult question there is not whether
substitution is definable, but whether left division of contexts is functorial. This question
has to our knowledge never been properly studied for general mode theories. Moreover, left
division of contexts is itself a defined operation on syntax and, unlike substitution, typically
does not have clean denotational semantics.

Fitch-style calculi. Logics and type systems that feature typically a single modality □ and
a left adjoint context constructor µ, but no modal annotations on variables, are referred to as
Fitch-style calculi [14]. Given the presence of only a single modality, the proof of Theorem 2
only stands if there is a non-trivial and non-horizontally-decomposable 2-cell between powers
of □, e.g. the duplication δ ∈ □ ⇒ □□ of a comonad. Gratzer, Sterling and Birkedal [21]
implement type theory with an S4-style □-modality (i.e. an applicative comonad) and indeed
our counterexample applies. They do not define a substitution operation and instead use
NbE. Valliappan, Ruch and Cortiñas [32] prove NbE for four modal systems, where □ is an
applicative functor with optionally a co-unit ε ∈ □⇒ 1 and/or a duplication δ. Each time,
they define a modal accessibility relation ∆ ◁ Γ on contexts which entails the existence of a
substitution Γ → ∆ .µ involving only weakening and 2-cells. As such, unlike MTT, their
system has a composition-free substitution Γ .µ . A .µ → Γ .µ that forgets the variable of
type A and fuses the locks all at once. Still, they do not claim definability of composition of
substitution (only identity), nor do they define substitution, instead using NbE. For pointed
modalities and monads, on the other hand, we refer back to the lock calculi discussed above,
with the later modality and interval quantification as examples.
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Ultrafinitism postulates that we can only compute on relatively short objects, and numbers beyond
a certain value are not available. This approach would also forbid many forms of infinitary reasoning
and allow removing certain paradoxes stemming from enumeration theorems. For a computational
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Background

Ultrafinitism [42, 61, 79, 22, 47] postulates that we can only reason and compute relatively
short objects1

Tighter limit can be established using petahertz frequency [9] as a quantum limit for light-
based systems giving 1033 serial cycles during the lifetime of Earth.] [49, 28, 66, 48, 44, 46],
and numbers beyond certain value are not available [79, 66]. Some philosophers also question
the physical existence of real numbers beyond a certain level of accuracy [24]. This approach
would also forbid many forms of infinitary reasoning and allow removing many from paradoxes
stemming from a countable enumeration.

However, philosophers2 still disagree on whether such a ultrafinitist logic could be consist-
ent [17, 51], while constructivist mathematicians claim that “no satisfactory developments
exist” [74]. We present a proof system based on the Curry-Howard isomorphism [35] and
explicit bounds for computational complexity that answers the question.

This approach invalidates logical paradoxes that stem from a profligate use of transfinite
reasoning [6, 55, 67], and assures that we only state problems that are decidable by the limit
on input size, proof size, and the number of steps. This explicitly excludes phenomena of
undecidability by excluding them from our realm of valid statements [73]. Our approach
allows to express all Turing Machine programs that are bounded [34] by proof terms of the
logic3.

1 For example, a computation run by computer the size of Earth within the lifespan of Earth so far. Of
the order of 1093 as described by [28].

2 We cite physical and metaphysical arguments from previous work equally.
3 Up to fixed emulation overhead, see Emulation Complexity below in section 4.
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5:2 Ultrafinitist Logic

Explicitly bounding computational complexity also prevents a famous paradox of inference.
This paradox of classical theory of semantic information [4, 19] unjustly labels all mathematical
proofs as “trivial information”, because it can be inferred from the axioms.

1 Introduction

By finitism we understand the mathematical logic that tries to absolve us from transfinite
inductions [42]. Ultrafinitism4 goes even further by postulating a definite limit for the
complexity of objects that we can compute with [48, 44, 66, 49, 28, 20]. We assume these
without committing ourselves to adopt a fixed number as a limit.

In order to permit only ultrafinitist inferences, we postulate ultraconstructivism: we
permit only constructive proofs with a deadline. That is constructions that are not just
strictly computable, but for which there is a upper bound on the amount of computation
that is needed to resolve them. That means that we forbid proofs that go for an arbitrarily
long time and require totality for any proof or computation.

For the sake of generality, we will attach this deadline in the form of bounding function
that takes as arguments size variables (depths of input terms), and outputs the upper bound
on the number of steps that the proof is permitted to make (along with upper bound on the
size of the output). Depths of input terms are a convenient upper bound on the complexity
of normalized proof terms. (Normalized proof terms are those with opportunity for cut or
β-reduction.)

Our approach is inspired by the Curry-Howard isomorphism – the fact that the construct-
ive proofs always correspond to executable programs. It also follows inverse Curry-Howard
isomorphism: the philosophy that rejects logical inference which do not correspond to
programs computable in our universe5.

The philosophy of ultraconstructivism would similarly purport that while transfinitary
logics may be consistent, they are correspond to objects „out-of-this-world’ ’6, since our
observable universe is inherently finitary [49].

Contributions
To enumerate chief contributions of this paper:
1. First consistent ultrafinitist logic to the knowledge of the author. It allows bounding

by any and arbitrarily large computational limit (section 2.1), and consistent reasoning
resolving Wang’s Paradox[17]. Thus this logic is first formal theory to claim a purely
philosophical legacy of ultrafinitism [79, 66, 51, 10].

2. A decidable logic having meta-theory expressible in itself (see section 3.4).
3. Clear and comprehensive demonstration that assumptions of Gödel are too strong

[25, 26] when considering bounded logics. This is because decidability of bounded term
can be demonstrated by simple enumeration with a more generous bound. Most proofs are
elementary by enumeration. Proof of consistency is done by reduction to widely known
intuitionistic logic to make the paper accessible to second year students of computer
science or first year graduates in constructive mathematics (section 4).

4 Also called strict finitism by [51].
5 Given that all formal proofs in mathematically strict formal systems can be considered finite numbers

of connected steps in computation or hypercomputation.
6 Extra-universal.
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4. Candidate for a most expressive logic that allows explicitly bounded computable functions.
Ideal logic of computability must forbid all reasoning about uncomputable, and only
allow computable statements (with proofs corresponding to bounded Turing Machine
programs.) For all bounds that can be computed within the framework, we can also
compute the function bounded by these (section 4.3).

5. Placing ultrafinitism and ultraconstructivism as candidate for realization of comput-
able foundations for mathematics programme (discussion in section 6.3).

6. All statements with bounds having a proof without bounds have a proof with bounds
too7 (see section 4.6 theorem 9).

We will further abbreviate the “Consistent Ultra-Finitist Logic” proposed in here as “UFL”
when speaking about higher order variant (with dependent Π,Σ types for quantification).

2 Syntax and inference

Due to size bounds and clarity of this paper, we first introduce propositional ultrafinitist
logic, and then describe interpretation of universal quantifier in a separate section.

2.1 Bounds
We express bounds as polyvariate functions of the natural numbers, called sizes. These
explicitly bound our proofs, depending on the size of input terms. While subtraction within
natural domain is permitted, only positive results of computation are permitted. All bound
functions are increasing with respect to all arguments (monotonic).

The bounds8 will be standing on one of two roles: as an upper bound on the proof
complexity, and there we will use symbol α as a placeholder, or to state an upper bound
on the depth of the normal form of the proof indicated by the symbol β. That is because
the number of constructors may sometimes bound a recursive examination of the proof of a
proposition.

Here ρρ is an exponentation, and iter (λv.ρ1, ρ2, ρ3) is an iterated composition of function
described by expression ρ1 with respect to an argument variable v; that iteration happens ρ2
times, and the function is applied to initial argument ρ3. The ρ1Jρ2/vK describes substitution
of bound variable v by ρ2, inside expression ρ1.

Any total function f(...) over naturals has a bounds b(...) function ∀x ∈ Nat .x ≤ n =⇒
f(x) ≤ b(n): given a range limited 9 by n, we can compute b(n) that is max

x≤n
f(x).

Conjecture Bounds terminate Since all iterations in bounds quantification terminate, all
bounds terminate.

2.2 Terms
All terms are explicitly limited, but we avoid labelling terms for which bounds can be easily
inferred (see below).

7 Thanks to anonymous reviewer for pointing importance of this result.
8 Using a bound on cost and depth of the term for each inference, we independently developed a very

similar approach to that used for cost bounding in higher-order rewriting [41].
9 This is not true for traditional real numbers R: hyperbola y = 1

x is unbounded around 0 because
lim
x→0

1
x = −∞.
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5:4 Ultrafinitist Logic

Size variables: v ∈ V

Size values n = 1
∣∣ S(n)

Term variables: x ∈ X

Positive naturals: i ∈ N \ {0}
Upper bounds: ρ ::= v

∣∣ i
∣∣ S(ρ)

∣∣∣∣ iter (λv.ρ, ρ, ρ)
∣∣ ρJρ/vK

∣∣ max(ρ, ρ)

Iteration is defined as:

iter (λv.e, 1, a) = eJa/vK
iter (λv.e, S(n), a) = iter (λv.e, n, eJa/vK)

Later we will explain how bounds expressions can be encoded in the same language as the
proof terms. At the level of basic logic we do not need this, but it will become useful when
we consider meta-reasoning (and encode entirety of the logic within its own proof terms.)

Data size bounds: α ::= ρ

Computation bounds: β ::= ρ

Types: τ ::= v
∣∣ τ ∧ τ

∣∣ τ ∨ τ
∣∣ τv →α

β τ
∣∣ ⊥

∣∣ ◦
∣∣ Type

Terms: E ::= x
∣∣ λx.E

∣∣ inr (E)
∣∣ inl (E)

∣∣ (E, E)
∣∣ ·∣∣ case E of

{
inl (x) → E;
inr (x) → E;

Environments: Γ ::= v1 : τ1
β1 , ..., vn : τn

βn

Judgements: J ::= Γ ⊢α
β E : τ

There is a special expression Type which is syntactically in τ . It is later used when
introducing dependent types, since Type lives both as a type and as a term. Translation
between proofs and types is later described in table 6.

Notation Av →α(v)
β(v) B binds proof variable x with type of A and size variable v, and

then bound in bounds α(v) for complexity and β(v) for depth of the normalized term. We
use notation α(v) instead of α to emphasize that both α(v) and β(v) are functions of size
variable v.

We could attach a pair of bounds to each proposition and judgement A(α,β) that would
describe both complexity α of computing the proof and a maximum depth β of the resulting
(normalized) witness. However, in most cases, one of these would be 1 or could be inferred
from the remaining information.

The occurs (x, E) is a count of free occurrences of variable x in term E. Free variables of
E are computed by free(E).

2.3 Inference rules
With any term variable x we need to introduce an associated bound variable v.

Γ ⊢?
? A type x ∈ X v ∈ V

Γ, xv : A ⊢1
v x : A

var

Sometimes we might want to overestimate proof complexity for the sake of simplicity:

Γ ⊢α1
β1

e : A α1 ≤ α2 β1 ≤ β2

Γ ⊢α2
β2

subsume(e, α2, β2) : A
subsume
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Table 1 Encoding arithmetic operations, hyperoperation, and Ackermann function

The addition, multiplication, and exponentiation can be defined on bounds using S()
and iter (λx.ρ1, ρ2, ρ2):

hyper(a, b, 1) ≡ iter (λx.S(x), a, b)
hyper(a, b, S(1)) ≡ iter (λy.iter (λx.S(x), y, b), 1, 1)

Argument y is ignored in this special case.
hyper(a, b, S(S(n))) = iter (λx.hyper(x, a, n), b, n)

h = λg.λa.λb. case b of
{

1 → a;
S(c) → iter (λx.fxa, c, a);

hyper(a, b, n) = iter (λf.h(f), n, λg.g)
a + b = iter (λx.S(x), a, b)
a ∗ 1 = a

a ∗ S(b) = iter (λx.x + a, b, a)
a1 = a

aS(b) = iter (λx.x ∗ a, b, a)

a[S(n)]b = case b of
{

1 → a;
S(c) → iter (λx.x[n]b, c, a);

a + b ≡ hyper(a, b, 1)
a ∗ b ≡ hyper(a, b, S(1))
ab ≡ hyper(a, b, S(S(1)))
S(S(S(ack(m, S(S(S(n))))))) ≡ 2[m](S(S(S(n))))

Here = is for definition, and ≡ states equivalence of expressions. To avoid definition of
predecessor function, we use equivalence to express Ackermann function.
hyper(a, b, n), and a[n]c are alternative ways of introducing hyperoperations.
We use hyperoperations for clarity, showing that we can indeed express Ackermann
function as bounded iteration of function compositions.

Note that subsumption is necessary for case-expressions. Below we have typical rules for
construction and destruction of basic types:

Γ ⊢1
β · : ◦

unit

Γ ⊢α
β e : A

Γ ⊢α+1
β+1 inl (e) : A ∨ B

inl
Γ ⊢α

β e : B

Γ ⊢α+1
β+1 inr (e) : A ∨ B

inr

Γ ⊢α∨
β∨+1 a : L ∨ R Γ, xβ∨ : L ⊢αl

βl
l : B Γ, yβ∨ : R ⊢αr

βr
r : B

Γ ⊢α∨+max(αl,αr)+1
max(βl,βr) case a of

{
inl (x) → l;
inr (y) → r;

: B

case

Γ ⊢αa

βa
a : A Γ ⊢αb

βb
b : B

Γ ⊢αa+αb+1
max(βa,βb)+1 (a, b) : A ∧ B

pair

Γ ⊢α
β+1 e : A ∧ B i ∈ {l, r}

Γ ⊢α+1
β prjle : A

prl
Γ ⊢α

β+1 e : A ∧ B i ∈ {l, r}

Γ ⊢α+1
β prjre : B

prr
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Please note that notation Av →α
β B has a size variable v declared as a depth of normal

form proof term having type A, and then bounds α and β apply to the computation of the
result.

Γ, xv : A ⊢α
β e : B x, v ̸∈ Γ

Γ ⊢αJ1/vK+1
βJ1/vK+1 λx.e : Av→α

βB
abs

Note that abstraction increases term depth by one, and application decreases it by
one10. All introduction rules (abs, pair, inl, inr) increase β by at least one11. Likewise all
non-functional (data) elimination rules (case, prl, prr) decrease depth expected from the
resulting normal form β by one.

Γ ⊢α1
β1

e : Av→α2
β2

B Γ ⊢α3
β3

a : A

Γ ⊢α1+α2Jβ3/vK+α3
β2Jβ3/vK e a : B

app

Please note that these rules all maintain bounded depth with no unbounded recursion.
We add an explicit bounded recursive definition (like the definition of the closure) with this
rule:

Γ ⊢α1
β1

f : Av→α2
β2

A Γ ⊢α3
β3

k : B Γ ⊢α4
β4

a : A

Γ ⊢α1+iter(λv.α2,β3,β4) +α3+α4
β1Jiter(λv.β2,β3,β4)/vK rec(f, k, a) : B

rec

Here the depth of the term must decrease at each step of the recursion. With the exception
of subsume, and rec these are all reinterpretations of rules for intuitionistic logic [11, 75, 72],
enriched with bounds on the proof length α and normalized depth of term t namely |t|d
as depth expression β. The rule rec allows for explicitly bounded recursion, as opposed to
traditional approaches that rely on an unbounded fixpoint12.

Note that we may quantify on higher order values, but we cannot recurse indefinitely: there
is always a limit to a number of function compositions allowed. Power of bounded function
composition gives an explicit limit to Peano Arithmetic induction[38]: any computational
application of Peano induction is unbounded. At the same time, we can use multiple
recursions over bounded number of functions, terms, not just natural numbers. Wired-in
explicit bounding also allows us to prove termination of arbitrary “towers” of function
compositions, like hyperoperations [7, 33, 71, 62]13, including Goodstein functions that
cannot be proven within PA itself[27].

2.3.1 Implicit universal quantification
In the propositional logic above, provability allows us to confirm statements with ∀ for all
variables on top. Given that statement of existence of bounded proof term x for witness
bounded by result size v can be interpreted in the following way in unbound logic ∃v ∈
N+.∃x.|x|d ≤ v .

10 This allows us to correctly treat Church encoding.
11 For unit, the inner proof term would have null depth, since there is no term there. Thus depth is 0 + 1

instead of β + 1.
12 Fixpoint may not exist, thus leading not only to arbitrarily long computation, but also to undecidability

in cases where computation may never end.
13 See table 1 to see how hyperoperations and Ackermann function can be encoded using iter for bounded

iteration of function composition.
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So av →α
β b becomes the following statement in unbounded logics ∀v.∀a.(|a|d < v) →

a → b ∧ |b|d < β ∧ c(b) < α. That is: we can infer that fact for all a below an arbitrarily
large depth, and bound the depth and computational complexity of the resulting witness.

This concludes our treatment of Ultrafinitist Propositional Logic (UFPL).

2.3.2 Quantification with dependent types
It is customary in constructive mathematics and theorem proving to use dependent types
instead of usual universal and existential quantifiers [52].

Please note that just like one can define intuitionistic propositional logic with just
implication and then encode both sum and product types[36], so Π type can express both
universal quantification and plain implication, while Σ type can express both existential
quantification and product type. Since implication can already express sum and product
types in polymorphic calculus, we will only show how to modify rules for implication and
lambda to make the Π type that corresponds to universal quantification.

While it is usual to introduce universal quantification directly in calculi without proof
terms, we will introduce them with Π types, like is now customary in dependently typed
languages.

First we need a rule to introduce a type variable:
Γ ⊢α

β t type
Γ, v < β, xv : t ⊢1

v x : t
tyvar

This rule allows us to use variables at type level, and together with Π and Σ types allow
to express quantification.

For the inequalities, it suffices to ensure that they are not cyclic and thus unsatisfiable.
Note that inequality stems from the fact that value is always no longer than its encoding as
a type.

Γ ⊢α1
β1

A type Γ, xv : A ⊢α2(v)
β2(v) B type x, v ̸∈ Γ

Γ ⊢α1+α2J1/vK
max(β1,β2J1/vK)+1 Π(xv : A) →α2

β2
B type

forall-form

Please note that similarly to the treatment of lambda abstraction as proof of implication,
we estimate the computational cost of dependent product by substituting free variables
with 1, but now we still need to consider the same substitution in the resulting Π type.

Treatment of universal quantifier bears usual similarity[52] to abs and app rules:
Γ, xv : A ⊢α

β e : B

Γ ⊢αJ1/vK+1
βJ1/vK+1 λ(x : A).e : Π(xv : A) →α

β B
forall-intro

Elimination works the same way as for usual application, since computation works after
type erasure.

Γ ⊢α1
β1

e : Av→α2
β2

B Γ ⊢α3
β3

a : A

Γ ⊢α1+α2Jβ3/vK+α3
β2Jβ3/vK e a : BJA/xK

forall-app

This allows us to replace implication and by extension, all UFPL types. It also allows for
quantification of higher order values.

We leave introducing Σ-types to interested students of type theory, since they are not
essential to our argument that we may have a decidable higher order logic.

Since introduction creates the proof term in the same way, the proof terms can be
enumerated in the same way as shown in section 4.4 on page 13.
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Table 2 Simplication of bounds. May rewrite left to right.

(1) a ∗ xe + b ∗ xf ≤ (a + b) ∗ xf

(2) a ∗ xe ∗ yg ≤ a ∗ xf ∗ yh

(3) iter (λv.e, g, x) ≤ iter (λw.f, h, x)
(4) iter (λv.v ∗ a, e, x) = ae ∗ x

(5) iter (λv.v + a, e, x) = x + a ∗ e

(6) iter (λv.ve, g, x) = xeg

Assumptions:
x, y ≥ 1 are data size variables in the environment,
1 ≤ e ≤ f and 1 ≤ g ≤ h are arbitrary positive and increasing expressions,
a, b, c... ≥ 1 are constants.

3 Application of the logic

3.1 Using proofs
Each proof ultimately leads to a judgment Γ ⊢α

β e : A. We may resolve all upper bound
variables v1, v2, ..., vn in the α to get an upper bound on computational complexity of the
statement, and in β to get an upper bound on normalized term resulting from the proof.
This way all proofs are ultra-finitary statements: Only as long as α is less than our assumed
limit, we will consider the proof valid and proof computation to be available within the given
time.

3.2 Simplifying upper bounds
Our inference rules rely on computing upper bounds and their inequality. Here we note a
few inequalities that simplify reasoning about these bounds, albeit at the cost of making
them somewhat looser.

First, we note that all variables are positive naturals because they represent the data of
non-zero size: x ≥ 1.

That means that the following laws are true, assuming that x, y, ... ≥ 1 are data size
variables in the environment, 1 ≤ e ≤ f and 1 ≤ g ≤ h are arbitrary positive expressions,
and a, b, c... ≥ 1 are constants. For easier use, the rules are presented in left-to-right order,
just like conventional rewrite rules.

We may thus use these rules to loosen the bound in such a way as to reduce the size of
the bound expression and make it a sum of a single term in all variables and an additional
constant term. This reduction may be delayed until we have bound to verify.

We may use inference rules leaving “type holes”[57] instead of bounds, which could be
named “bound holes”, and let them be filled by the framework interpreter.

3.3 Reduction
Reduction relation is defined as small step semantics [60] in order to preserve number of
computational steps made over the course of evaluation. See table 3 on page 9.

When performing application, we expect substitution to take work proportional to the
number of occurrences of the variable, like changing links on directed acyclic graph of
the term.
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Table 3 Reduction rules.

e
w�

k
e′

case e of
{

inl (x) → b;
inr (y) → c;

w�
k

case e′ of
{

inl (x) → b;
inr (y) → c;

eval-case-arg

k = occurs (x, b)

case inl (a) of
{

inl (x) → b;
inr (y) → c;

w�
k
bJa/xK

eval-case-left

k = occurs (y, c)

case inr (a) of
{

inl (x) → b;
inr (y) → c;

w�
k
cJa/yK

eval-case-right

k = occurs (x, e)
(λx.e)f

w�
k
eJf/xK

eval-app

e
w�

n
e′ i ∈ {l, r}

ini(e)
w�

n
ini(e′)

eval-sum

prjl (a, b)
w�

1a
eval-prl

prjr (a, b)
w�

1b
eval-prr

al

w�
n
a′

l

(al, ar)
w�

n
(a′

l, ar)
eval-pairleft

ar

w�
n
a′

r

(al, ar)
w�

n
(al, a′

r)
eval-pairright

For discussion of efficient reduction of lambda terms please read [45, 5], since here we
focus on demonstration with a simplified cost model.

3.4 Self-encoding
3.4.1 Natural numbers
In this section we will encode bounds, propositions (types) and proof terms as proof terms
within UFPL. Thus J..K corresponds to LISP quote.

Below we use notation B (v) for de Brujin index of the variable [15].

TYPES 2023



5:10 Ultrafinitist Logic

Table 4 Encoding natural numbers.

Natβ =
(

rec(x, J◦ ∨xK, β)J◦K
)

zero = inl (·) :11 Nat1
succ = λxv →1

v+1 inr (x) :1v+1 Natv → Natv+1

Table 5 Encoding bounds.

Varβ = Natβ

Boundβ+1 = Var ∨ Natβ ∨ ◦ ∨ (Boundβ , Boundβ)
∨ (Boundβ , Boundβ)
∨ (Boundβ , Boundβ)
∨ (Boundβ , (Boundβ , Var))
∨ (Boundβ , (Var, Boundβ))

JvK = inl (inl (inl (B (v))))
JiK = inl (inl (inr (i)))
J·K = inl (inl (inr (·)))
Jρ1 + ρ2K = inl (inr (inr ((Jρ1K, Jρ2K))))
Jρ1 ∗ ρ2K = inr (inl (inl ((Jρ1K, Jρ2K))))
Jρρ2

1 K = inr (inl (inr ((Jρ1K, Jρ2K))))
Jiter (λv.ρ1, ρ2, ρ3)K = inr (inr (inl ((B (v), Jρ1K, (Jρ2K, Jρ3K)))))
Jρ1 Jρ/vKK = inr (inr (inr ((Jρ1K, (Jρ2K,B (v))))))

3.4.2 Encoding bounds
Now we may encode bounds (table 5), types (table 6), and proof terms (table 7).

This encoding allows us to make operations on types akin to generic programming in
Haskell [50].

Our inference rules rely on computing bounds and their inequalities. Given that all
variables are positive naturals because they represent the data of non-zero size: x ≥ 1, we
may simplify these bounds with a set of simple inequalities.

3.4.3 Encoding proof terms
Note that every type term in normal form is longer than its own type.

▶ Theorem 1 (Encoding). All bound, type, proof, or proposition of UFPL can be encoded as
a proof term of UFPL.

Details are visible in the tables 4-7.

Table 6 Encoding types.

JA ∨ BK = inl (inl ((JAK, JBK)))
JA ∧ BK = inl (inr ((JAK, JBK)))
JAv →α

β BK = inr (inl ((λx : A.JBK, (λv : Natv .JαK, λv : Natv .JβK))))
J◦K = inr (inr (·))
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Table 7 Encoding terms.

JxvK = inl (inl (inl (inl ((B (x), v)))))
Jsubsume(A, B)K = inl (inl (inl (inr ((JBKBound, JAK)))))
JunitK = inl (inl (inr (inl (·))))
Jinl (A)K = inl (inl (inr (inr (A))))
Jinr (A)K = inl (inr (inl (inl (A))))
JprjlAK = inl (inr (inl (inr (A))))
JprjrAK = inl (inr (inr (inl (A))))
J(A, B)K = inl (inr (inr (inr ((JAK, JBK)))))
JABK = inr (inl (inl (inl ((JAK, JBK)))))
Jλxv.AK = inr (inl (inl (inr (((B (x),B (v)) , JAK)))))
Jrec(v, A, B)CK = inr (inl (inr (inl (((B (v), JAK) , (JBK, JCK))))))

4 Properties of the logic

When implementing the computation seems straightforward, we will just establish the finite
limit for the computation that should be taken as a proof. That is what we describe as
problem is decidable by the limit of a given complexity. This approach explicitly describes
undecidable problems as those that require an infinite number of steps to solve.

4.1 Consistency
Here we will only use well-known proof of consistency of intuitionistic logic [11, 75, 72]14.
We do not use the self-encoding presented in section 3.4.

▶ Theorem 2 (Consistency of UFL). UFPL is consistent, if intuitionistic propositional logic
is consistent.

Proof. After elision of bounds15, we interpret the rule subsume as id = λx.x. Then we see
the standard proof rules for intuitionistic logic. The consistency follows from the consistency
of intuitionistic logic. ◀

4.2 Expressivity
▶ Theorem 3 (At least as expressive as PRA.). UFL can express all Primitive Recursive
programs.

Proof. It is easy to show that our logic can emulate bounded loop programs[53] which has
power equivalent to primitive recursive functions[64]. Every bounded loop can be encoded by
iter (λv.loop, x, n), then every flat logical statement can be encoded with a tuple containing
states of the variables. ◀

One could muse that this class does not cover all Bounded Turing Machine[34] programs.
In order to support these, we would need to define more general bounding functions.

14 The proof above is totally independent of previous conjectures.
15 Elision of bounds is only used once to prove consistency.
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One can replace upper bound expressions with arbitrary bounding functions expressed in
simply typed lambda calculus (see section 3.4). These are the operations used in inference
rules. However, such functions are more difficult to bound and compute themselves.

It has been proven that any function whose complexity is bounded by primitive recursive
function is also primitive recursive[16], which means that estimating our complexities could
become an impossibly long endeavour, but logically consistent one.

To give an example of simplified Ackermann function which is the best known example of
function beyond PRA [70, 3], evaluation takes A(5) = 222216

− 3[40]. That means that these
evaluations quickly get out of hand and indeed outside of any reasonable limits.

The encoding of Ackermann function is through hyperoperation in table 1.

4.3 Bounded Turing completeness
An evidence of stronger expressivity may be found by encoding bounded Turing Machine
programs in UFPL. This proof uses encoding similar to 3.4, but for a Turing Machine. For a
reference on encoding of Turing machines in lambda calculus see [2].

For any complexity bound f(x) expressible in the language of ultrafinitist logic, and an
algorithm that satisfies it and emulation function with complexity of e(f)(x) – that is an
encoding e(f) of f , applied to the argument x of f – which we can encode this emulation as
a bound.

▶ Theorem 4 (Emulation complexity). Assume a time complexity c(x) for program (or proof)
s that can be encoded as UFL bounds. If we can emulate (encode evaluation) of f(x) with an
overhead e for each step, then we can prove that complexity of evaluating s is e ∗ c(x) + cc(x).

Where cc(x) is complexity of evaluating complexity bounds for the encoding c(x).

Proof. Given each step of emulation encoded as s(x), where x is a current state, emulation
with a complexity function encoded as f(x) can be executed by iter (λv.s, f(x), x).

Assuming that e(f) is function emulation in UFPL, we can write proof expression
iter (λx.e(f)(x), e(c)(x), x). This expression evaluated encoded s and has exactly the assumed
complexity ◀

The most complex part of the proof may be logically inferring the right complexity c(x)
and totality of the function f within this number of steps.

▶ Theorem 5 (Bounded Turing Machine emulation). For programs of Bounded Turing Machine
f over alphabet size |a| and number of states |s| with complexity that can be encoded in UFL,
we can prove time complexity of lg2(|a|) + lg2(|s|) ∗ |c| + |cc| with UFPL. Note that |cc| is
cost to evaluate complexity function itself.

Proof. We use emulation argument for Bounded Turing machines that may be limited by
bounds described above, it is too with O

(
log2(a) ∗ f(x)

)
, where a is the bound on the size

of alphabet and number of states of the machine.
For the Bounded Turing machine we encode tape as pair of lists, with current position at

the top of both lists.
Then we encode the following steps:
examine the alphabet character: O (log(|a|))
examine finite state machine for a character: O (log(|s|))
move one step up or down the tape by moving the top from one line list to the other:
O (1);
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if we want to write at the current position, we take the top element from the right list,
and put the new one.

Together they make a single step of the Turing machine at the cost of O (log(|a|) + log(|s|)).
◀

We encode variable bindings as a dictionary with cost of O (lg2 | Var |), where Var is
number of variables used. All operations not involving substitution should remain at O (1)
complexity within emulation.

▶ Lemma 6 (Self-emulation). ULF self-emulation of function with integral bound |cc| is
feasible within O (|cc| ∗ lg2 | Var |).

Overall we can infer that for each algorithm of bounded complexity B that we may
encode in ULF, we may use ULF self-emulation to find a proof with complexity of at most
e∗B ∗ lg2 | Var |. All steps of ULF are O (1) with respect to inferred bounds on computational
complexity, with the exception of function application and variable substitution which are
O (lg2 | Var |))

▶ Theorem 7 (Emulation completeness). If the bounds that can be encoded within the bounds
function, the UFPL is complete for proving its own bounds up to the cost of self-emulation e.

Since we can encode any statement in UFPL in UFPL itself, this likely would mean the
proof of emulation completeness can be written in the UFPL itself.

There are complex ways of proving completeness that apply in the realm of non-idempotent
intersection type systems, but they use a more abstract notion of complexity[1].

4.4 Decidability of bounded statements
▶ Theorem 8 (Decidability). Every valid proposition with a fixed bound on input n can be
checked by enumerating inputs, and is thus decidable.

This comes at the cost of complexity that increases by α(n) ∗ an, where n is the depth
of input, since we need to enumerate all inputs of depth n. Proof follows directly from
enumeration, and bounds.

Proof. Let’s try to enumerate the terms that can be constructed for a given bounds, without
using subsume rule:

Bounds function will contain a given number n of successor functions, and iter expressions.
Each time we make a single inference rule, and construct a slightly more complex term, we
add a successor function or iter expression, the number of different proof tree shapes equals
to the number of ternary trees constructible with n nodes. This number is defined as OEIS
A001764 [39] and given by the algebraic term (3n

n )
2n+1 . Given that for each of n nodes we can

choose one of the 12 rules (12n different choices), we have at most O

 12n

(
3n

n

)
2n+1

 different

proofs with the complexity given by a term of n nodes.
With the inclusion of subsumption rule, we can only decrease the n, so at most:∑
i=1..n

O
(

12n

2n + 1

(
3n

n

))
= O

(
12n

(
3n

n

))
Since number of proofs is finite, we can decide the provability after they are exhausted. ◀
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Thus all judgements with bounds are decidable. This property is shared with some other
resource bounded logics [1].

Given that exponential lower bound has been established for implicational intuitionistic
logic [37], we expect that lower bound for ultrafinitist logic will also be exponential and thus
the proposed bound is asymptotically tight.

4.5 Paradox of undecidability
Expressing any statements about undecidability implicitly requires unbounded computational
effort. Since all our proofs and arguments are explicitly bounded, there is no room to
state undecidability. Thus we conclude that this paradox is removed from ultrafinitist logic:
statement of undecidability is invalid as a proposition. All valid propositions are decidable.

This is not as outrageous as it superficially seems, since we already know that compu-
tation models that would allow transfinite number of steps would also make all functions
computable [30].

4.6 Finitary completeness
Let’s assume we have upper bounds on all variables within an intuitionistic theorem.

Can we prove it with UFL?

▶ Theorem 9 (Preservation of bounded intuitionistic theorems). Any intuitionistic theorem
bounded by definite integers in UFL can be proven in UFL.

Proof. Let’s enumerate complexities of computing intuitionistic proof for a given set of
inputs bounded by given value. We may enumerate these proofs, and thus take maximum
length of the computation. This maximum length will be upper bound on all proofs. ◀

This proof uses 4.4, and 3.4. Naturally this means that all statements with bounds but
proof without bounds will also have proof with bounds.

5 Related work

The philosophical problem with transfinite arguments has been spotted long before [42,
61, 79, 22, 47]. Automatic theorem provers like Coq require a monotonically decreasing
bounding function in the ordinal domain for each inductive definition [56, 58, 8]. This makes
all recursive definitions well-founded[56], but since transfinite ordinals are permitted, it also
allows theories outside computable universe.

The computation of a bounding function may turn out to take unfeasible amount of time.
Cost calculi for functional languages attempt to assign cost to certain operations in order to
reason about time and space complexity [65]. But these approaches do not require all proofs
and propositions to carry the cost as we do.

Philosophers have postulated distinction between feasible computations and unfeasible
ones [79], however it was considered unclear whether it is possible to realize this distinction
on the basis of a logic [74], with some claiming that such a logic could not be consistent
[17, 51].

There exist logics that implicitly constrain computational complexity of the proofs, for
example Bounded Arithmetic [12, 43, 14] that is restricted to computations in polynomial
time. However, most of them are significantly weaker than class of primitive recursive
functions, which is widely considered to contain most useful programs. This would put
the logician in a position of trying to state a widely known facts about objects that are
inexpressible within the logic.
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6 Discussion

6.1 Explicit bounds versus implicit structural recursion

It is long known that unbounded logics may give rise to paradoxes [23, 13], and the use
of implicit techniques [14], including bounded recursion [43], structural recursion [59], well-
founded sets [56], or predicative bounding [21] were developed.

Using explicit bounds provides a more obvious solution, which is easier to prove correct,
and parallels development of an explicit mathematical limit [69, 29], starting from Eudoxus’
method of exhaustion [18], through implicit notion of terminus [76] to a modern concept of a
mathematical limit of a function [78]16.

6.2 Open problem of directly proving bounded Turing completeness

Note that the proof above mentions Turing completeness, if we can prove that all bounds
can be expressed by the bounds functions defined above. While the usual examples of fast
growing functions like Ackermann [70, 3, 40], or Goodstein [27, 38] are expressible by bounded
composition of functions, the clarity is still elusive. (Of course such fast growing functions
would quickly surpass any reasonable limit.)

We still search for a proof of bounded Turing completeness that would not use a recursive
argument, where we replace bound functions with arbitrary bounded lambda expressions.
That is because our induction principle would have to be more complex to include the latter.

Interested student may prove Turing completeness by encoding to Kleene normal form
with iteration on top [31]. In this logic, Kleene normal form may be made explicit.

6.3 Computability as foundation of mathematics

Finite descriptions of the proofs and their objects are most rational foundations of mathem-
atics. These objects are all definable by bounded Turing computability.

Attempts to define hypercomputation beyond bounded Turing machine immediately lead
to physical impossibilities [54]. At the same time computability or bounded Turing machine
and total computable functions have been translated between multiple mathematical models.
Hence we conjecture that the only mathematical proof principle that is immune to rational
doubt is the bounded Turing machine, and ultrafinitist logic.

A logic that allows expression of any bounded Turing function and nothing else could be
rightly called a logic of computable functions, and a best candidate for encoding foundations
of mathematics. Alternative attempts to narrow set theory by predicativism [21, 68] are
subject to critique[77] that motivates further search.

That is because we can encode axioms that are incomputable as function parameters
with assumed types, and use these to prove or disprove theorems of traditional axiomatic
theories without endangering consistency of the underlying logical framework.

16 Interestingly delta-epsilon definition is formalizable for computable functions, by assuming that as n
approaches the limit the smaller computable environment is taken. Of course both delta and epsilon
would have to be a finite expansions (approximations) instead of possibly transcendental value. This
would give a definition of “computable limit”.
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6.4 Automated theorem proving

Interesting avenue for future work would be to define a full type theory, dependently typed
language and an automatic prover for these inference rules. Improving on the bound of
O

((3n
n

))
for deciding subtheorems would be possible, since we only need to consider normal

forms. It would be exciting to prove metatheoretic results about the UFL in itself, and verify
it with an automatic theorem prover.

Since meta-reasoning always results in longer proofs than original theorems, the UFL
may also allow us to prove consistency of ultrafinitist arithmetic, enabling to second Hilbert
problem [32], and potentially allowing self-verifiable formalization of mathematics.

Theories for uncomputable are only indirectly formalisable within such framework as
functions taking uncomputable actions (like infinite recursor of Peano arithmetic) as argu-
ments. Previously created theories are prone to high complexity and errors due to difficulty
at maintaining expressivity and consistency together. Simplicity of proving the hierarchy
of universes as hierarchy of complexities, and expanding ultrafinitist logic with strongly
normalizable dependent types gives us hope that such automated theorem proving framework
would be simpler.

Since the logic includes upper bounds for all functions, we may use these and proof
irrelevance to automatically and safely optimize proofs as well. For example, we could
automatically replace computation of naturals defined by successor function with computation
defined on positional binary numbers.

6.5 Proving decidability in strictly finite domain

The explicit bounding of all objects, including proofs in this work is used to prevent undecid-
ability within finite domain [63].

7 Conclusion

We have shown a possible consistent logic for inference with a strictly bounded number of
steps. This allows us to limit our statements by the length of acceptable proof, and thus
define statements that are both true, and computable within Bremermann-Gorelik limit [28]
This inference system explicitly bounds both the length of the resulting proof, and the bounds
on the depth of the normalized result term. This allows avoiding inconsistencies suggested
by philosophical work, and at the same time steers away from relatively weak logics with
implicit complexity like Bounded Arithmetic [43], which capture polynomial time hierarchy.
It also shows how much we gain by making explicit bounds, since these may be tighter than
with implicit complexity approaches. While Emulation Complexity is the powerful approach
to proving expressivity of this logic, it would be nice to see a proof with tighter bounds on
what we may prove with it17.

We strive to prove that all bounded computable functions are expressible within this
framework, and thus we propose this logic as a “logic of practical computability”.

17 A promising avenue of work would be proving that amortized complexity by replacing single bound
variable by a vector of monotonic bound variables. Another approach would be attempt to obtain
tighter bounds directly by separately counting beta-reduction steps and substitutions, instead of all
reduction steps and substitutions together [1].
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A Reflection Principle for Potential Infinite Models
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Abstract
Denotational models of type theory, such as set-theoretic, domain-theoretic, or category-theoretic
models use (actual) infinite sets of objects in one way or another. The potential infinite, seen as an
extensible finite, requires a dynamic understanding of the infinite sets of objects. It follows that
the type nat cannot be interpreted as a set of all natural numbers, [[nat]] = N, but as an increasing
family of finite sets Ni = {0, . . . , i − 1}. Any reference to [[nat]], either by the formal syntax or by
meta-level concepts, must be a reference to a (sufficiently large) set Ni.

We present the basic concepts for interpreting a fragment of the simply typed λ-calculus within
such a dynamic model. A type ϱ is thereby interpreted as a process, which is formally a factor
system together with a limit of it. A factor system is very similar to a direct or an inverse system,
and its limit is also defined by a universal property. It is crucial to recognize that a limit is not
necessarily an unreachable end beyond the process. Rather, it can be regarded as an intermediate
state within the factor system, which can still be extended.

The logical type bool plays an important role, which we interpret classically as the set
{true, false}. We provide an interpretation of simply typed λ-terms in these factor systems
and limits. The main result is a reflection principle, which states that an element in the limit has a
“full representative” at a sufficiently large stage within the factor system. For propositions, that is,
terms of type bool, this implies that statements about the limit are true if and only if they are true
at that sufficiently large stage.
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1 Introduction

In set theory, infinite sets are given by the dictum of the axiom of infinity. There is no idea
of “construction” or “approximation” involved – it is a static concept where only existence
is required, without any way to get to these sets. In contrast, consider the constructions
of infinite sets as limits of direct and inverse systems. These sets are approximated and
so can be understood from the perspective of a potential infinite. Moreover, they possess
the structure of their approximating parts. Finally, and most importantly from a finitistic
perspective, there is no necessity to “jump over” to an absolute, actual infinite limit set if all
states of the system are finite. Instead, if one takes care of all the stages of one’s investigation,
then a sufficiently large state within the system is sufficient and is a full substitute for an
infinite limit set.

From a consequent potentialist’s point of view, it is actually a misuse of language to call
a set infinite. Since the potentialist’s view is a form of finitism, and since sets are given by
their extension, every set is finite in this regard. Therefore, what can be considered infinite
is the type, say nat, whereas the set N would be more accurately described as indefinitely
extensible. Thus, the usual terminology, saying that a set is infinite, means that its type is
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infinite and that the extension of the type, i.e., the set of elements of that type, is given by
some indefinitely large state (or sufficiently large state) in an indefinitely extensible system
of finite sets.

A system, introduced in Section 2.1, formalizes a changing totality of objects, an “open”
and potentially unending process in which both the collection and its elements expand
simultaneously. This process allows a (relative) completion or compactification by constructing
a limit, which temporarily ends or “closes” the process.

The concept of partiality becomes relevant in extensible systems. It is a consequence of
the fact that objects can be generated, or if you prefer a less constructive language, detected,
so that they do not exist from the beginning. Partiality first appears in direct systems, where
objects do not exist at the initial stages. In this situation, partiality is not difficult to deal
with, but it becomes demanding in the function space construction, especially in the presence
of higher types.

A few words about the notation. The term “iff” is an abbreviation for “if and only if”.
N refers to the set of natural numbers {0, 1, 2, . . . }, N+ := N \ {0} and Ni := {0, . . . , i− 1}.
We write [A→ B] for the function space of all functions with domain A and codomain B,
and P(M) for the power set of M.

1.1 Extensibility, Coinduction and Domain Theory
A fundamental concept in the context of the potential infinite is extensibility. The main
modes of extensibility are the creation of new objects and the creation of new knowledge
about existing objects. However, we understand the latter as a differentiation of an object
or an identification of several objects. In the case of differentiation, there may be multiple
versions of an object at a later stage. When considering limit constructions, this is different
from the understanding of the accumulation of information. To illustrate this point, let us
consider inductive and coinductive definitions. These are related to adding and differentiating
objects respectively, but they are not the only way.
1. The dynamic reading of an inductive definition leads to an infinite process of creating

objects, related to direct systems.
2. The dynamic reading of a coinductive definition leads to an infinite process of differenti-

ating objects, related to inverse systems.

To give an example, let Seq denote finite 0-1-sequences and Seq∞ stand for infinite 0-1-
sequences. Then the algebra with constructors nil : {∗} → Seq and append : Seq×N2 → Seq

inductively defines the structure of Seq, whereby N2 = {0, 1}. The coinductive definition of
Seq∞ has one destructor-pair (head, tail) : Seq∞ → N2 × Seq∞ and defines a coalgebra. To
give these structural definitions a dynamic reading requires an index set, which will be N+

and N.
In case of inductive definitions one starts with the element ∗. The states of Seq are thus

Seq0 = {∗}, Seq1 = {()}, Seq2 = {(), 0, 1}, Seq3 = {(), 0, 1, 00, 01, 10, 11} and so on. The
inductive definition of Seq gives rise to a direct system (Seqi)i∈N+ with subset inclusion as
embedding. A direct system is more general than this construction by an inductive definition,
as it allows for the possibility of non-injective embeddings. This corresponds to the addition
and identification of objects in a single process and is relevant for a construction of quotients.

For a dynamic understanding of coinductive definitions, start with a “generic” element,
say s, so Seq∞

0 = {s}. The destructor-pair (head, tail) gives Seq∞
1 = {0s, 1s}, Seq∞

2 =
{00s, 01s, 10s, 11s}, and so on. The coinductive definition of Seq∞ allows one to increase
the knowledge about the sequence, which we understand as a process of differentiation. The
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projections proji′

i : Seq∞
i′ → Seq∞

i then remove this information gained by differentiation,
e.g., proj2

1(01s) = 0s. We read 01s ∈ Seq∞
2 and 0s ∈ Seq∞

1 as states of the same (infinite)
object, differing only in the amount of information that we have about that object. The
inverse system (Seq∞, proj) corresponds to subsets A ⊆ N if we take A = {i ∈ N | si = 1}
for (si)i∈N ∈ Seq∞.

This idea of differentiating objects is also related to Brouwer’s concept of (lawlike and
lawless) choice sequences within a spread – the standard text on this subject is [13]. However,
our approach does not involve the constructive reasoning that is inherent in the definition of
a spread.

Differentiating infinite objects differs from domain theory [1], where the ideal, infinite
elements are ideals (being infinite sets) of their approximating parts, which are the compact
elements. In domain theory, each approximation is seen as a different object, not as states
of one object, and the ideal completion uses the idea that sets are actual infinite. In other
words, the idea of differentiating infinite objects, as formulated in coinductive definitions and
inverse systems, is not present in domain theory. Domain theory uses inductive definitions
and least fixed point constructions.

Another way to get these ideal elements in domains is to think of an infinite domain
as a bilimit of finite domains. A bilimit is a limit construction where direct and inverse
limits coincide. One could interpret this coincidence as a reduction of inverse systems to
direct systems. In the approach here, the limit construction is, roughly speaking, between
the direct and the inverse limit, since the predecessor relation p7→ (which will be introduced
soon) is, again roughly speaking, between the embedding emb and the projection proj.
In Section 2.1 we will introduce such an embedding-projection pair, associated with the
predecessor relation p7→. Direct and inverse systems can then be seen as extreme situations of
adding and differentiating objects, while the system based on the predecessor relation p7→ is
in general a combination of both.

1.2 Formalizing the Potential Infinite
A potential infinite set M is a dynamic, finite set. To formalize this consequently, any
reference to M can only be made by reference to some finite state Mi. A completed totality
of all elements or all states of this set does not exist. For example, there exist states Ni of
the set of natural numbers, but there is neither a complete set N nor the complete family of
all sets Ni. The latter has to do with the fact that, for a consequent reading, this finitistic
view applies to meta-level concepts as well, in particular to the index set from which the
indices i are taken; see Section 1.4 for more on this.

In a first step we introduce indices i, given by a directed index set I, i.e., a set I of stages
together with a binary, reflexive and transitive relation ≤ so that any finite set of indices has
an upper bound. A potential infinite set is thus a family MI of states Mi, i ∈ I, where all
sets are finite.

We want to express that two elements ai ∈Mi and ai′ ∈Mi′ at different stages i and i′

are equal. This equality is not given by an equivalence relation, but by a family of reflexive
relations p7→i′,i⊆Mi′ ×Mi for i′ ≥ i. We write ai′

p7→ ai for (ai′ , ai) ∈
p7→i′,i, saying that ai

is a predecessor of ai′ , and we use p7→ as an abbreviation for p7→i′,i. Reflexivity means that
ai

p7→ ai for all i ∈ I and ai ∈Mi. We do not require p7→ to be transitive.1 A system (MI ,
p7→)

1 The reason is this: The index set of the function space is I × J with pairs written as i → j (c.f. Section
2.2). Call an extension of the index from i → j to i → j′, j′ ≥ j, covariant and from i → j to i′ → j,
i′ ≥ i, contravariant. Then a combination of two different kind of extensions may fail to be a correct
extension. For an example, see [5].
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consists of a family MI together with reflexive relations p7→. Later we will introduce further
properties in order to allow a function space construction, leading to the notion of a factor
system [5].

Let types ϱ ∈ Typ be given. In this paper they consist of some base types ι, including
type bool for propositions, which are interpreted classically as the Boolean values true and
false, and a type constructor →. So types are ϱ ::= ι | ϱ→ ϱ. A (typing) context Γ is a list
of types (ϱ0, . . . , ϱn−1). More explicitly we can write (x0 : ϱ0, . . . , xn−1 : ϱn−1) for the context
Γ, since we use a fixed list of variables x0, x1, x2, . . . in Section 3. The empty context is ()
and Γ.ϱ denotes the context Γ, extended by ϱ. We assume that for each type ϱ there is an
index set (Iϱ,≤), so each type comes with its own set of stages. For instance, the index set
for type nat is (N+,≤) with Mi = Ni for i ∈ N+.2 Another example is type bool with the
singleton set ({bool}, =) of one index bool and Mbool := B := {true, false}. For a typing
context Γ = (ϱ0, . . . , ϱn−1) define IΓ := Iϱ0 × · · · × Iϱn−1 and endow IΓ with the product
order.

Since we want to consider sets, relations and functions as objects, i.e., as elements of
further potential infinite sets, we have to consider elements as dynamic entities as well. A
dynamic object a of type ϱ is given by its states ai, i ∈ Iϱ. As with sets, any reference to a

can only be a reference to one of its states ai.
A dynamic object needs not be defined on all stages i ∈ Iϱ, so the index set Ia, for which

a state ai of a exists, is a subset of Iϱ, i.e., Ia ⊆ Iϱ. One of the basic requirements is that
every object has “sufficiently many” indices Ia. For natural numbers, or more generally
for base type objects, the situation is simple: If a number n occurs at stage n + 1, i.e.,
n ∈ Nn+1, it will be there for all future stages m > n + 1, i.e., n ∈ Nm, so the index set
In = {n + 1, n + 2, . . . } is an up-set. By up-set we mean a non-empty, upward closed
subset, in this case a subset of N+. For higher-order functions, however, the situation is less
straightforward and is one of the main challenges of this approach.

The concept of a potential infinite has two aspects, a cardinal aspect D and an ordinal
aspect ≪. Let C = (i0, . . . , in−1) ∈ IΓ be a list of indices i0 ∈ Iϱ0 , . . . , in−1 ∈ Iϱn−1 , for
Γ = (ϱ0, . . . , ϱn−1), called state context. Write C.i for the extension of C by i.
1. The cardinal aspect is given by a set DΓ ⊆ P(IΓ) for each context Γ. H ∈ DΓ says that

there are indefinitely many, or sufficiently many contexts in H.
2. The ordinal aspect is given by relations ≪Γ.ϱ ∈ DΓ.ϱ. Let C ≪ i stand for C.i ∈≪Γ.ϱ,

meaning that a stage i is indefinitely large, or sufficiently large relative to the state context
C.

The sets DΓ satisfy the following properties: Each set H ∈ DΓ is cofinal – recall that
cofinality of H means ∀C ∈ IΓ ∃C ′ ≥ C with C ′ ∈ H. This minimal requirement simply
states that we will always find a context in H beyond any bound. DΓ is closed under
supersets, so “more than indefinitely many is indefinitely many”. Furthermore, an up-set on
IΓ always has indefinitely many indices. Finally, the main restriction is that DΓ is closed
under intersections. This is necessary in order to guarantee that a relation between two
objects can be established on indefinitely many indices. This amounts to saying:

DΓ is a proper filter on {H ⊆ DΓ | H is cofinal} and DΓ contains all up-sets. (Filter)

2 The use of N+ instead of N as index set is done for technical reasons: A factor system has projections
between different states Ni, and there is no projection from Ni, i > 0 into N0 = ∅.
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We will use the locution D-many indices, which refers to a set in DΓ, and cofinal many
indices, which refers to a cofinal index set. The interpretation in a potential infinite structure,
which we introduce in Section 3, will be relative to D (and later also relative to ≪, when we
introduce the universal quantifier in a subsequent paper).

A basic theme of the potential infinite is dependency. In particular, there are no fixed
sets D and ≪, but these are parameters that depend on factors of the concrete mathematical
investigation and the state of it. Another way of expressing this is to say that D and ≪ are
intensional notions whose extension depends on the context of investigation. In the same way
that D and ≪ depend on the investigation, some concepts, in turn, depend on D and ≪; the
notion of continuity depends on D and the interpretation of the universal quantifier depends
on ≪. It is possible to define continuity on limit sets without reference to the underlying
system. The basic relation is then a family of PERs and we will explore this structure in
more detail in a separate paper. Moreover, in this paper we deal only with the cardinal
aspect, i.e., ≪ is not considered here.

1.3 Relation to Constructive Approaches
We are only investigating the idea of a potential infinite, not that of constructivity, decidability,
complexity or knowledge about existence, which are important concepts in intuitionism [14]
and in theories about computability [8]. The common models of intuitionistic logic, such
as Kripke models, or more generally topos-theoretic models [9], use unbounded universal
quantification. For instance, in a Kripke model, the validity of a universal quantified formula
uses a reference to all “future” nodes – there could be infinitely many of them and at each
such node the carrier set could be an infinite set as well. In our approach, only finite sets are
used, and in a consequent finitistic view only finitely many of them.

We use classical logic. This is because it has a simpler model than constructive models
and is more widely used. Furthermore, the results presented here rely on the fact that
classical logic has a finite number of truth values. This is an important difference from
intuitionistic logic, which has, if truth values are used at all, infinitely many of them.

The novel aspect of this potential infinite model is the introduction of state judgements,
which are refinements of typing judgements. If Γ ⊢ r : ϱ is such a typing judgement, then a
state judgement has the form C | r : i, where C is a stage of the context Γ and i is a stage of
the type ϱ. The idea that we can only refer to infinite objects via a specific state is reflected
in the fact that the primary object of interpretations is a state judgement C | r : i. It is
interpreted in a family of factor systems, which have only “local” application functions given
as

Appi,j : [Mi → Nj ]×Mi → Nj , (fi→j , ai) 7→ fi→j(ai).

Additionally, the typing judgement Γ ⊢ r : ϱ has an interpretation in the limit set. However,
the notion of a limit of a factor system depends on the notion of “indefinitely many stages”,
which we formalize as sets Dϱ. This is in particular relevant for the function space and the
possibility to define a “global” application function App : [M→N ]×M→ N , (f, a) 7→ f(a)
on limit sets, leading to a common extensional type structure [2]. The question which higher-
order functions exist and whether all local applications together yield a global application
depends on the properties of Dϱ. A global application function is available for all first-order
functions, however, this may not be the case for higher-order functions. In contrast, in a type
structure, also referred to as (typed) applicative structure, a global application is available for
all types. This holds analogously for Kripke applicative structures [10].

TYPES 2023
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1.4 The Meta-Theory
The meta-theory in which the concepts are developed is classical higher-order logic, as
formalized in Church’s simple type theory [3]. This theory will also serve as the investigated
theory. At the object-level, we develop a potential infinite model in order to interpret typed
λ-terms. At the meta-level these two views of infinity are relevant:
1. One accepts actual infinity at the meta-level. In this case, a limit can be seen as the

usual actual infinite set beyond the system. This view allows a comparison of an actual
infinite model, given as limit structure, with the potential infinite part, i.e., the system.

2. One uses the view that infinity is an extensible finite. Then a limit is an intermediate
state of the system. This is the consistent realization of the finitistic approach.

The reflection principle, which is the main theorem of this paper, states in the first case
that all objects in the limit, including propositions, have a counterpart in the factor system.
So it says something like this: Whatever exists and holds under the assumption that actual
infinite sets exist, already exists and holds at a sufficiently large stage in the system. For
infinite objects, these can be seen as approximations. For type bool, which is interpreted
in classical logic as a finite set of truth values {true, false}, the values are the same in the
actual infinite limit set and at a finite stage of the system. This is because these values are
not approximated.

In the second case, the reflection principle is only a means to show the correctness of the
interpretation. However, a consistent realization requires that an infinite set on meta-level,
like the index set I, is only available at a stage j. A consequent realization in type theory
moreover uses a type in place of the index set, together with a term ≤, which is then shown
to be reflexive, transitive, and directed.

The use of a classical meta-theory instead of a constructive one is not essential here.
We could also take an intuitionistic type theory at meta-level and develop most of the
model theory in a pure constructive way. So we expect that the model construction can be
formalized in common proof assistants such as Coq, Lean or Agda. We need, however, a
bit of classical reasoning, at least when introducing the universal quantifier. To prove the
reflection principle with universal quantifier as an extension of Theorem 24, one has to do a
kind of Löwenheim-Skolem construction. This requires that a universal quantified formula is
either true (at all stages), or it is false at some stage and is false at all later stages, too. It is
of greater significance that, for a consequent realization, in which only potential infinities are
used at meta-level, the proof assistant must implement state judgments.

1.5 Structure of the Paper
We already started in Section 1.2 to formalize the potential infinite as a dynamic concept,
which replaces an actual infinite set with a factor system, which is, roughly, a generalization
of a direct and inverse system. The concept of factor systems was first introduced in [5]. In
Section 2 we reiterate the definition of a factor system and add further definitions that are
necessary for an interpretation. These are primarily the notions of a direct and inverse factor
system, which are required to interpret variables. We show the construction of the function
space between two factor systems and elucidate the notions of a target and a limit of a
factor system. As with direct and inverse systems, limits are targets that satisfy a universal
property and have a concrete construction. In Section 2.5 we demonstrate how to introduce
an application that makes limit sets a type structure.

Section 3 introduces a judgement for states, parallel to judgements for types. These are
defined on a fragment of the simply typed λ-calculus, which we call core fragment. Based
on these state judgements we give a first version of an interpretation of λ-terms in the core



M. Eberl 6:7

fragment, not including any constants. In particular, the present paper does not yet include
logic. We give an interpretation of types and terms with two parts, one is within the system,
the other is in its limit. Based on this interpretation we show a first version of a reflection
principle, which says that an element a of type ϱ in the limit set is reflected by an element
ai at some stage i ∈ Iϱ in the system. This element ai is an approximation of a, and at
the same time it fully represents a. If logic is included, then the representation includes all
propositions about these elements, so anything we can say about a is true if and only if it is
true for ai.

2 Factor Systems and their Limits

Factor systems and their limits have been introduced in [5]. In this paper, we summarize
their properties. The main concept is that of a factor system, those of a prefactor system
(with embeddings/projections) are afferent notions. In addition to that, we introduce the
notion of a stable system, which is a natural notion to prove stronger properties, although
these are not necessary here. We prove that stability is closed under both the function space
construction and the limit construction.

Relevant for the interpretation in Section 3 are the specific forms of a direct and inverse
factor system. A direct factor system is similar to a direct system, it is more specific in the
sense that the embedding is part of an embedding-projection pair. On the other hand it is
more general in the sense that equations hold only up to an equivalence relation. The same
holds for inverse factor systems and inverse systems. Moreover, we introduce the concept of
a homomorphism between two systems.

The subsequent Lemmata 9 and 10 are extended versions of corresponding lemmata
in [5], which use the property (Filter), not only cofinality. These versions are necessary to
prove Corollary 15, which states that the function space construction commutes with the
limit construction. This is a prerequisite for the definition of a model. Proposition 7 and
Corollary 12 describe how direct and inverse factor systems extend to the function space and
to the limit. Both are essential to prove the reflection principle for variables.

2.1 Factor Systems
I will always denote a non-empty directed index set with preorder ≤. A system is a pair
(MI ,

p7→) consisting of a family MI := (Mi)i∈I and reflexive (for i = i′) relations p7→ on
Mi′ ×Mi for i′ ≥ i. Two elements ai ∈Mi and bj ∈Mj are consistent, written as ai ≍ bj ,
iff there is an index i′ ≥ i, j and some ai′ ∈ Mi′ such that ai′

p7→ ai and ai′
p7→ bj . As

a convention, whenever we use a suffix i ∈ I for some element, this refers to the state,
e.g. ai ∈Mi. An important special case is that the relations p7→ are partial functions, which
is equivalent to:

ai ≍ bi ⇐⇒ ai
p7→ bi ⇐⇒ ai = bi (Fun)

for all ai, bi ∈Mi and all i ∈ I. A system that satisfies (Fun) is called standard. (MI ,
p7→)

is a prefactor system iff it is a system satisfying

ai′ ≍ ai ⇐⇒ ai′
p7→ ai (Factor)

for all ai ∈ Mi and ai′ ∈ Mi′ with i ≤ i′. The relation ≍ is then an equivalence relation
on a single set Mi with ai ≍ bi ⇐⇒ ai

p7→ bi ⇐⇒ bi
p7→ ai for ai, bi ∈Mi. In a prefactor

system bi′ ≍ ai′
p7→ ai implies bi′

p7→ ai, but sometimes we want to have the “dual” property
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as well, which we call stability. Although we can do without stability for most properties, it
is an obvious requirement, and all natural examples satisfy this property. Note that a system
that satisfies (Fun) is automatically stable.

▶ Definition 1. A system (MI ,
p7→), and in particular the relation p7→, is called stable iff for

all i′ ≥ i, all ai′ ∈Mi′ and ai, bi ∈Mi

ai′
p7→ ai ≍ bi ⇒ ai′

p7→ bi. (Stab)

A family emb = (embi′

i )i≤i′ of ≍-embeddings consists of ≍-preserving maps embi′

i :
Mi → Mi′ satisfying embi

i(ai) ≍ ai and embi′′

i′ (embi′

i (ai)) ≍ embi′′

i (ai). The requirement
≍-preserving means that embi′

i (ai) ≍ embi′

i (bi) holds for ai ≍ bi, for all ai, bi ∈Mi. Similar
to a family of ≍-embeddings, ≍-projections proj = (proji′

i )i≤i′ consist of ≍-preserving
maps proji′

i : Mi′ → Mi satisfying proji
i(ai) ≍ ai and proji′

i (proji′′

i′ (ai′′)) ≍ proji′′

i (ai′′).
Moreover, ≍-embeddings emb together with ≍-projections proj form an ≍-embedding-
projection pair iff proji′

i (embi′

i (ai)) ≍ ai holds for all ai ∈Mi and all i ≤ i′.
The ≍-embeddings emb and ≍-projections proj are coherent if they satisfy for all indices

i ≤ i′ ≤ i′′

ai′
p7→ ai ⇒ embi′′

i′ (ai′) p7→ ai and (Emb)

ai′′
p7→ ai ⇒ proji′′

i′ (ai′′) p7→ ai resp. (Proj)

A ≍-embedding-projection pair (emb, proj) is coherent if emb and proj are both coherent.
Property (Emb) implies that embi′

i (ai)
p7→ ai holds for all ai ∈Mi, and in case that Property

(Fun) holds, p7→ is a partial surjection.

▶ Definition 2. A prefactor system with embeddings is a prefactor system (MI ,
p7→) with

coherent ≍-embeddings emb. A prefactor system with projections is a prefactor system
(MI ,

p7→) with coherent ≍-projections proj. A factor system is a prefactor system (MI ,
p7→)

with a coherent ≍-embedding-projection pair (emb, proj). A prefactor system is direct iff it
has coherent ≍-embeddings which satisfy

ai′
p7→ ai ⇐⇒ ai′ ≍ embi′

i (ai). (Dir)

A prefactor system is inverse iff it has coherent ≍-projections which satisfy

ai′
p7→ ai ⇐⇒ proji′

i (ai′) ≍ ai. (Inv)

If p7→, emb and proj are known, we often call MI a factor system (and likewise with
prefactor systems with embeddings/projections).

▶ Example 3. The embeddings emb in a direct system (MI , emb), with ai′
p7→ ai :⇐⇒

embi′′

i (ai) = embi′′

i′ (ai′) for some i′′ ≥ i, i′, are automatically ≍-embeddings, since they
preserve ≍. If there are ≍-projections proj, such that emb and proj form a ≍-embedding-
projection pair, then (MI ,

p7→, emb, proj) is a direct factor system.
An inverse system (MI , proj) satisfies (Fun), so the projections proj are automatically

≍-projections. If there are ≍-embeddings emb, such that emb and proj form a ≍-embedding-
projection pair, then (MI ,

p7→, emb, proj), with ai′
p7→ ai :⇐⇒ proji′

i (ai′) = ai, is an inverse
factor system.

▶ Example 4. Consider (Ni)i∈N+ with the embedding-projection pair embi′

i : Ni → Ni′ ,
n 7→ n and proji′

i : Ni′ → Ni with n 7→ min(n, i− 1). In all three cases for p7→ they form an
≍-embedding-projection pair and ((Ni)i∈N+ ,

p7→, emb, proj) is a factor system:
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1. The standard model of the natural numbers has Ni′ ∋ n
p7→ n ∈ Ni for all n < i, which is

a direct factor system.
2. The definition n′ p7→ n :⇐⇒ proji′

i (n′) = n makes it an inverse factor system.
3. With n′ p7→ n for all n′ ∈ Ni′ and n ∈ Ni, the factor system (Ni)i∈N+ is direct and inverse.

The second example basically adds an infinite number to N, while the last example is
artificial, but shows the difference to direct an inverse limits when we pick up this factor
system again in Example 8. One can easily check that (Ni)i∈N+ is stable in all three cases,
and in the first two cases Property (Fun) is also satisfied.

▶ Lemma 5. Let MI be a prefactor system and given indices i′′ ≥ i′ ≥ i.
1. If MI is direct, then ai′′

p7→ ai implies ai′′
p7→ embi′

i (ai).
2. If MI is inverse, then ai′′

p7→ ai′ implies ai′′
p7→ proji′

i (ai′).

Proof. First, ai′′
p7→ ai implies embi′′

i′ (embi′

i (ai)) ≍ embi′′

i (ai) ≍ ai′′ by (Dir), hence
embi′′

i′ (embi′

i (ai))
p7→ ai′′ . From (Emb) we deduce embi′′

i′ (embi′

i (ai))
p7→ embi′

i (ai) and thus
ai′′

p7→ embi′

i (ai) by (Factor). For the second clause let ai′′
p7→ ai′ , then proji′′

i′ (ai′′) ≍ ai′ by
(Inv), hence proji′′

i (ai′′) ≍ proji′

i (proji′′

i′ (ai′′)) ≍ proji′

i (ai′). Consequently ai′′
p7→ proji′

i (ai′)
by (Inv) again, as claimed. ◀

Compare these properties with (Emb) and (Proj), which hold in any prefactor system
with embeddings/projections.

▶ Definition 6. A homomorphism Φ = (Φ0, (Φi)i∈I) between two systems (MI ,
p7→) and

(NJ ,
p7→) consists of maps Φ0 : I → J and Φi :Mi → NΦ0(i) such that Φ0 is monotone and

for all i ≤ i′

ai′
p7→ ai ⇒ Φi′

(ai′) p7→ Φi(ai). (1)

If (1) is an equivalence, then Φ is said to be strong. A homomorphism between two
prefactor systems with embeddings (MI ,

p7→, emb) additionally satisfies Φi′(embi′

i (ai)) =
embj′

j (Φi(ai)), j := Φ0(i), j′ := Φ0(i′), a homomorphism between two prefactor systems with
projections (MI ,

p7→, proj) satisfies Φi(proji′

i (ai′)) = projj′

j (Φi′(ai′)), and a homomorphism
between two factor systems satisfies both equations.

We call Φ injective (surjective) iff every map in Φ is injective (surjective resp.). An
isomorphism Φ between two systems (prefactor systems with embeddings/projections, factor
systems) is a homomorphism with a further homomorphism Ψ as its inverse, i.e., each part
of Ψ is inverse to that of Φ. So an isomorphism is automatically strong. We write MI ≃ NJ
if an isomorphism between MI and NJ exists.

In the following we will use homomorphisms Φ only for the special situation that I = J
and Φ0 is the identity map. In that case we do not mention Φ0.

2.2 The Function Space
The function space of two factor systems MI and NJ , denoted as [MI → NJ ], is a family
of (finite) sets [Mi → Nj ] indexed by pairs (i, j) ∈ I × J with product order, whereby
we write i → j for such an index in I × J . The set [Mi → Nj ] consists of all (total)
functions f :Mi → Nj which preserve ≍, i.e., which satisfy f(ai) ≍ f(bi) for ai ≍ bi. If the
relations p7→ are partial functions on MI and NJ , then ≍ is the identity on Mi and Nj and
[Mi → Nj ] simply consists of all functions from Mi to Nj .
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Let f ∈ [Mi → Nj ], f ′ ∈ [Mi′ → Nj′ ] and i→ j ≤ i′ → j′, i.e., i ≤ i′ and j ≤ j′. The
basic relation p7→ on the function space is a logical relation [12]. It is thus defined as

f ′ p7→ f :⇐⇒ ai′
p7→ ai implies f ′(ai′) p7→ f(ai)

for all ai′ ∈ Mi′ and ai ∈ Mi. The embedding-projection pair for the function space is
defined in the usual way:

embi′→j′

i→j : [Mi → Nj ]→ [Mi′ → Nj′ ] f 7→ embj′

j ◦ f ◦ proji′

i ,

proji′→j′

i→j : [Mi′ → Nj′ ]→ [Mi → Nj ] f ′ 7→ projj′

j ◦ f ′ ◦ embi′

i .

▶ Proposition 7. IfMI and NJ are both factor systems, so is their function space. Moreover,
1. If p7→ satisfies (Fun) or (Stab) on NJ , so does p7→ on [MI → NJ ].
2. If MI is inverse and NJ direct, then [MI → NJ ] is direct.
3. If MI is direct and NJ inverse, then [MI → NJ ] is inverse.

Proof. This has been proven in [5], except for the statements about (Stab) and about direct
and inverse factor systems. Assume f ′ p7→ f ≍ g for f ′ ∈ [Mi′ → Nj′ ] and f, g ∈ [Mi → Nj ],
i → j ≤ i′ → j′, so that we have to show f ′ p7→ g. Let ai′

p7→ ai, and to confirm that
f ′(ai′) p7→ g(ai), use the stability condition on NJ applied to f ′(ai′) p7→ f(ai) ≍ g(ai).

Next, letMI be inverse and NJ direct. Assume first that f ′ p7→ f with f ′ ∈ [Mi′ → Nj′ ],
f ∈ [Mi → Nj ] and i → j ≤ i′ → j′. We wish to show that f ′ ≍ embi′→j′

i→j (f), which
is the same as f ′ ≍ embj′

j ◦ f ◦ proji′

i . Let ai′
p7→ bi′ and define bi := proji′

i (bi′). Then
proji′

i (ai′) ≍ bi since projections preserve ≍. It follows that ai′
p7→ bi since MI is inverse,

and thus f ′(ai′) p7→ f(bi). Consequently, f ′(ai′) ≍ embj′

j (f(bi)) = embj′

j ◦ f ◦ proji′

i (bi′), since
NJ is direct.

For the other direction assume f ′ ≍ embj′

j ◦ f ◦ proji′

i and let ai′
p7→ ai. We shall

prove that f ′(ai′) p7→ f(ai). Then ai′
p7→ ai implies proji′

i (ai′) ≍ ai since MI is inverse.
Now f and the embeddings preserve ≍, so embj′

j (f(proji′

i (ai′))) ≍ embj′

j (f(ai)). Certainly
f ′(ai′) ≍ embj′

j (f(ai)). This shows f ′(ai′) p7→ f(ai), since NJ is direct, as claimed. The
proof of the last statement is verified in a similar way. ◀

2.3 Targets and Limits
The subsequent concepts require sets D(I) from Section 1.2 with Property (Filter), whereby
we write Dϱ for D(Iϱ) and DΓ for D(IΓ). A target (M,

p7−→) for a system MI extends the
system “at the top”, i.e., the extension leads to a system MĪ , called compactification ofMI ,
with index set Ī := I ∪ {top}, top as greatest index, and Mtop =M. Let a

p7−→ ai denote
a

p7→ ai provided that a ∈ M, and we also write Embi for embtop
i and Proji for projtop

i .
Relation p7→ on a target M, and consequently relation ≍ on M as well, is by definition the
identity. The extension of an element a ∈ M is Ext(a) := {ai ∈

⋃
i∈IMi | a

p7−→ ai}. A
target M for a system MI satisfies by definition

Ia := {i ∈ I | ∃ai ∈Mi a
p7−→ ai} ∈ D(I)

for all objects a ∈M. Moreover, if the system is a prefactor system, a prefactor system with
embeddings/projections or a factor system, then the compactification MĪ must have this
additional structure with its properties as well. Whereas the compactification of a system is
automatically a system, the compactification of a prefactor system requires for all a ∈M,
ai ∈Mi, ai′ ∈Mi′ and i ≤ i′

a
p7−→ ai′ , a

p7−→ ai ⇒ ai′
p7→ ai. (2)
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If M is a target for a prefactor system with embeddings MI , then this implies the
existence of ≍-embeddings Embi :Mi →M, satisfying Embi′(embi′

i (ai)) = Embi(ai) and

ai′
p7→ ai ⇒ Embi′(ai′) p7−→ ai for all i ≤ i′, (3)

ai ∈ Mi, ai′ ∈ Mi′ and a ∈ M. If M is a target for a prefactor system with projections
MI , then there are moreover ≍-projections Proji :M→Mi such that proji′

i (Proji′(a)) ≍
Proji(a) and

a
p7−→ ai ⇒ Proji′(a) p7→ ai for all i ≤ i′. (4)

If M is a target for a factor system, then Emb and Proj with these properties exist and
both form a ≍-embedding-projection pair. We write (M,

p7−→), (M,
p7−→, Emb), (M,

p7−→
, P roj) and (M,

p7−→, Emb, Proj), respectively, for these targets. If M is a target for a
prefactor system with projections MI , then the projections Proji can be defined by

Proji(a) := proji′

i (ai′) for some i′ ≥ i with a
p7−→ ai′ (5)

for a ∈ M. It follows from the properties of a prefactor system that Proji(a) is unique
modulo ≍. Since Embi′(ai′) p7−→ ai′ for ai′ ∈Mi′ by (3), we have for i ≤ i′

Proji(Embi′(ai′)) ≍ proji′

i (ai′). (6)

A target (M,
p7−→) for a system MI is a limit of MI iff for every further target (N ,

q7−→)
for MI there is a unique map Φ : N →M such that a

q7−→ ai implies Φ(a) p7−→ ai. If the
underlying system is a factor system or a prefactor system, then we call the limit factor
limit and prefactor limit, resp. It turns out, however, that a factor limit is the same as the
prefactor limit, and that this limit lim(MI) is unique modulo isomorphism. Therefore we
simply speak of a limit, or a limit set, if we want to distinguish it from a limit element in
this limit set.

▶ Example 8. Recall Example 3. If a direct system is also a direct factor system and
ai′

p7→ ai :⇐⇒ embi′′

i (ai) = embi′′

i′ (ai′) for some i′′ ≥ i, i′, then the factor limit is the direct
limit, i.e., lim(MI) = lim−→(MI). If an inverse system is additionally an inverse factor system
and ai′

p7→ ai :⇐⇒ proji′

i (ai′) = ai, then the factor limit lim(MI) is the inverse limit
lim←−(MI).

In the first case of Example 4 the limit is N (which is the direct limit as well as the factor
limit). In the second case the limit (inverse limit and factor limit) is N∞ := N ∪ {∞} with
∞ = (0, 1, 2, . . . ). In the third case the factor limit is a singleton set, which is neither the
direct nor the inverse limit.

2.4 Consistent Sets and Dynamic Elements
It is possible to define concrete targets and limits in the form of sets of states: A set
α ⊆

⋃
i∈IMi in a system MI is called a consistent set iff ai′

p7→ ai holds for all ai′ , ai ∈ α

with i′ ≥ i, and Iα := {i ∈ I | α ∩Mi ̸= ∅} ∈ D(I). If we already have a target M for a
prefactor system, then the set Ext(a) is such a consistent set for all a ∈M. The set of all
consistent sets in a (pre)factor systemMI is itself a target forMI with α

p7−→ ai :⇐⇒ ai ∈ α.
In other words, if M denotes the set of all consistent sets, then the target is (M,∋).

A dynamic element is a maximal (w.r.t. subset inclusion) consistent set, and for each
consistent set α in a prefactor system there is exactly one dynamic element αm such that
α ⊆ αm. Let EL(MI) denote the set of all of these dynamic elements, then

(EL(MI),∋) (7)
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6:12 Potential Infinite Models of Type Theory

is a prefactor limit of MI . For the next two lemmata, recall that it is assumed that D(I) is
a filter as defined in (Filter).

▶ Lemma 9. Let α be a consistent set in a prefactor system (MI ,
p7→) and bi ∈ Mi, then

the following are equivalent:
1. bi ∈ αm.
2. α ∪ {bi} is a consistent set.
3. There are cofinal many i′ ∈ I with ai′

p7→ bi for some ai′ ∈ α.
4. ai′

p7→ bi for all ai′ ∈ α with i′ ≥ i.
5. There are D-many i′ ∈ I with ai′

p7→ bi for some ai′ ∈ α.

Proof. This has been shown in [5], except the last clause. For its equivalence to the other
statements notice that it follows from Clause 4. since Iα ∩ ↑ i ∈ D(I), and it implies Clause
3. since each set in D(I) is cofinal. ◀

▶ Lemma 10. Let α and β be consistent sets in a prefactor system (MI ,
p7→), then the

following are equivalent:
1. αm = βm.
2. ai ≍ bi for all i ∈ I with ai ∈ α and bi ∈ β.
3. ai ≍ bj for all i, j ∈ I with ai ∈ α and bj ∈ β.

Proof. The equivalence of 1. and 3. has been shown in [5], so it suffices to prove that 2. implies
bi ∈ αm for each bi ∈ β. We wish to find cofinal many ai′ ∈ α with ai′

p7→ bi and apply
Lemma 9. There are D-many i′ ≥ i with i′ ∈ Iα ∩ Iβ . For all ai′ ∈ α, bi′ ∈ β we have
ai′ ≍ bi′ by assumption, hence ai′

p7→ bi, since bi′
p7→ bi. ◀

If one, and hence all, of the conditions in Lemma 10 are true, then we write α ∼ β. Call
an element a ∈M of a targetM for a prefactor system MI a limit (element) of a consistent
set α iff α ∼ Ext(a). Obviously, a is a limit of its extension Ext(a). If there is only one limit
element, we denote it as lim(α).

Given a factor system MI . Then EL(MI) is, up to isomorphism, the limit lim(MI),
whereby projections have been defined by (5) and embeddings are

Embi(ai) := {embi′

i (ai) ∈
⋃
j∈I
Mj | i′ ≥ i}m. (8)

LetM be a target for a systemMI , thenM is maximal (overMI) iff Ext(a) ∈ EL(MI)
for all a ∈M. M is extensional (overMI) iff Ext(a) ∼ Ext(b) implies a = b for all a, b ∈M.
M is complete (over MI) iff for all consistent sets α there is a limit element a, i.e., some
a ∈ M with Ext(a) ∼ α. One can characterize a limit lim(MI) also as a target that is
maximal, extensional and complete over MI .

▶ Proposition 11. Assume a prefactor system MI has been compactified with a target M,
yielding the extended prefactor system MĪ .
1. If MI is stable and M maximal over MI , then MĪ is stable, too.
2. If MI is direct and M extensional over MI , then MĪ is direct and Ia contains an

up-set for all a ∈M.
3. If MI is inverse and M maximal over MI , then MĪ is inverse and Ia = I for all

a ∈M.
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Proof.
1. In order to show stability ofMĪ it suffices to prove that a

p7−→ ai ≍ bi implies a
p7−→ bi for

all a ∈M. Indeed, there are cofinal many indices i′ ≥ i with a
p7−→ ai′ , and consequently

ai′
p7→ ai. Applying (Stab) yields ai′

p7→ bi for cofinal many indices i′ ∈ I. By Lemma 9
a

p7−→ bi follows, since Ext(a) is a maximal consistent set.
2. We claim that a

p7−→ ai ⇐⇒ a = Embi(ai) for a ∈ M. So assume a
p7−→ ai and we

first establish that a
p7−→ aj implies Embi(ai)

p7−→ aj for all j ∈ I. There are cofinal
many i′ ≥ i, j with a

p7−→ ai′ , ai′
p7→ ai and ai′

p7→ aj , hence ai′ ≍ embi′

i (ai), because
MI is direct. It follows that embi′

i (ai)
p7→ aj for cofinal many indices i′ ∈ I and thus

Embi(ai)
p7−→ aj . This proves Ext(a) ∼ Ext(Embi(ai)), so a and Embi(ai) are equal

sinceM is extensional overMI . The inverse implication a = Embi(ai)⇒ a
p7−→ ai holds

trivially. Moreover, a = Embi(ai) for a ∈M implies that Ia contains the up-set ↑ i.
3. We shall prove that a

p7−→ ai ⇐⇒ Proji(a) ≍ ai. For the forward implication assume
Proji(a) = proji′

i (ai′) for some ai′ with a
p7−→ ai′ . We establish that proji′

i (ai′) ≍ ai for
a

p7−→ ai by using the fact that MI is inverse and that a
p7−→ ai′ and a

p7−→ ai implies
ai′

p7→ ai.
For the backward implication assume Proji(a) = proji′

i (ai′) ≍ ai. To show a
p7−→ ai it

suffices to find cofinal many indices i′′ ≥ i′ with a
p7−→ ai′′ and ai′′

p7→ ai. To this aim,
we use maximality of M. Indeed, there are cofinal many indices i′′ ≥ i′ with a

p7−→ ai′′ ,
and to confirm that ai′′

p7→ ai it suffices to prove proji′′

i (ai′′) ≍ ai. Now ai′′
p7→ ai′ is a

consequence of a
p7−→ ai′′ and a

p7−→ ai′ , hence proji′′

i′ (ai′′) ≍ ai′ . Because ≍-projections
preserve ≍, we deduce proji′′

i (ai′′) ≍ proji′

i (proji′′

i′ (ai′′)) ≍ proji′

i (ai′) ≍ ai, as claimed.
For all i ∈ I there is some ai with a

p7−→ ai ≍ Proji(a), hence Iα = I. ◀

▶ Corollary 12. Assume a prefactor system MI has been compactified with a limit M,
yielding the extended prefactor system MĪ . If MI is stable (direct, inverse), then MĪ is
also stable (direct, inverse resp.).

2.5 Targets and Limits on the Function Space
Consider two factor systems MI and NJ with limits M and N resp. Then

[M→D N ] := {f :M→N | If ∈ D(I × J )}

is a target for [MI → NJ ], but not necessarily a limit. We now state a condition which
guarantees that [M →D N ] is indeed a limit. So let ζ be a consistent set on the factor
system [MI → NJ ], and α a consistent set on the factor system MI . Define

App(ζ, α) := ζ(α) := {fi→j(ai) | fi→j ∈ ζ and ai ∈ α}. (Appl)

It is easy to see that this set satisfies bj′
p7→ bj for all j ≤ j′ and bj , bj′ ∈ ζ(α). However,

ζ(α) is not necessarily a consistent set. For that, If [Ia] ∈ D(J ) must be the case, whereby
H[I ′] := {j ∈ J | ∃i ∈ I ′ i→ j ∈ H} for H ⊆ I × J and I ′ ⊆ I. This is ensured when the
following condition for D is met for all sets I and J :

H ∈ D(I × J ) and I ′ ∈ D(I) implies H[I ′] ∈ D(J ). (D)

We will require Condition (D) for the rest of this paper.

▶ Lemma 13. The application defined by (Appl) is extensional, i.e., for all ζ, ζ ′ ∈ EL([MI →
NJ ]) we have:

ζ(α) = ζ ′(α) for all α ∈ EL(MI) implies ζ = ζ ′.
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Proof. Assume ζ(α) = ζ ′(α) for all α ∈ EL(MI) and let fi→j ∈ ζ. We will show that
fi→j ∈ ζ ′, which proves the lemma. Choose indices i′ → j′ ∈ Iζ ∩ Iζ′ ∩ ↑(i→ j) ∈ D(I ×J )
and let f ′

i′→j′ ∈ ζ ′. We wish to show f ′
i′→j′

p7→ fi→j . Since this is the case for D-many indices
i′ → j′, we have shown fi→j ∈ ζ ′ by Lemma 9, which suffices.

Now assume ai′
p7→ ai for ai′ ∈Mi′ and ai ∈Mi, so that we have to prove f ′

i′→j′(ai′) p7→
fi→j(ai). For α := Embi′(ai′) ∈ EL(MI) we know that ai ∈ α, by maximality and (3).
Further, f ′

i′→j′(ai′) ∈ ζ ′(α) = ζ(α) and fi→j(ai) ∈ ζ(α) implies f ′
i′→j′(ai′) p7→ fi→j(ai),

because ζ(α) is a consistent set. ◀

▶ Proposition 14. Let M and N be a targets for the factor systems MI and NJ resp.
Assume Condition (D) holds. If N is maximal (extensional, complete) over NJ , so is
[M→D N ] over [MI → NJ ].

Proof. First we shall prove the claim about maximality, so let gi→j ∈Mi→j and we apply
Lemma 9. Assume there is a set H ∈ D(I × J ) with f

p7−→ fi′→j′
p7→ gi→j for i′ → j′ ∈ H,

then it suffices to show f
p7−→ gi→j . By the definition of p7−→ it must be checked that

f(a) p7−→ gi→j(ai) for a
p7−→ ai.

There are D-many indices i′ ≥ i with a
p7−→ ai′ , since Ia ∩ ↑ i ∈ D(I). They satisfy

ai′
p7→ ai, because a

p7−→ ai′ and a
p7−→ ai. Applying Condition (D) give us D-many indices

j′ ∈ H[Ia ∩ ↑ i], which all satisfy f(a) p7−→ fi′→j′(ai′) p7→ gi→j(ai). So maximality of N yields
f(a) p7−→ gi→j(ai), showing the maximality of [M→D N ].

For extensionality we prove that f = g, provided Ext(f) ∼ Ext(g). So let a ∈ M and
we claim that f(a) = g(a). For all i → j ∈ If ∩ Ig and fi→j ∈ Ext(f), gi→j ∈ Ext(g) we
have fi→j ≍ gi→j by definition. Condition (D) shows that

J ′ := (If ∩ Ig)[Ia] ∈ D(J ),

and for all these indices i ∈ Ia and j ∈ J ′ we have a
p7−→ ai for some ai ∈ Mi, f(a) p7−→

fi→j(ai), g(a) p7−→ gi→j(ai) and fi→j(ai) ≍ gi→j(ai). This yields Ext(f(a)) ∼ Ext(g(a)),
since the elements of Ext(f(a)) and Ext(g(a)) are consistent (i.e., in ≍-relation to each other)
for cofinal many indices j ∈ J . We now appeal to extensionality of N to get f(a) = f(b).

To show completeness of [M →D N ] over [MI → NJ ] let ζ be a consistent set in
[MI → NJ ]. We define a limit element f :M→N of ζ by

f(a) := limit element of β := {gi→j(ai) | gi→j ∈ ζ ∩ [Mi → Nj ] and a
p7−→ ai}

for all a ∈ M. This function is well-defined: If a
p7−→ ai, a

p7−→ bi and fi→j , gi→j ∈
ζ ∩ [Mi → Nj ], then ai ≍ bi follows and consequently fi→j(ai) ≍ gi→j(bi); note that
ai ≍ bi ⇐⇒ ai

p7→ bi and the same for fi→j(ai) ≍ gi→j(bi). This implies that any two
elements in β are consistent. Condition (D) guarantees that If = Iζ [Ia] ∈ D(J ). The set β

is thus a consistent set and completeness of N ensures that a limit element of β exists.
We claim that f is a limit of ζ. Let f

p7−→ fi→j and gi→j ∈ ζ with fi→j , gi→j ∈ Mi→j

and we have to show fi→j
p7→ gi→j . Given bi

p7→ ai, both in Mi, so it suffices to show that
fi→j(bi)

p7→ gi→j(ai). Take a := Embi(ai) = Embi(bi), then a
p7−→ ai and a

p7−→ bi, hence
f(a) p7−→ fi→j(bi) and gi→j(ai) ∈ β. Since f(a) is a limit element of β, it follows that
β ∼ Ext(f(a)), and thus fi→j(bi) ≍ gi→j(ai) by Lemma 10, so we are done. ◀

Recall that limits are targets which are maximal, extensional and complete. Recall
also that EL([MI → NJ ]) is a limit of [MI → NJ ] and that limits are unique modulo
isomorphism.
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▶ Corollary 15. Given two factor systems MI and NJ with limits M and N resp. Assume
Condition (D) holds, then [M→D N ] is a limit of [MI → NJ ]. Equivalently stated, there
is an isomorphism [EL(MI)→D EL(NJ )] ≃ EL([MI → NJ ]).

3 Towards Models and Interpretations

This section contains the first steps towards an interpretation of a typed λ-term in a factor
system and a limit of it. Let types ϱ ∈ Typ be given by ϱ ::= ι | ϱ→ ϱ for base types ι. We
assume that type bool is one of these base types. For each type ϱ let a non-empty, directed
set Iϱ of indices be given and let DΓ := D(IΓ) be a filter which satisfies (Filter). Maps
on indices, such as Embi, extend in an obvious way to state contexts C = (i0, . . . , in−1) as
products, e.g. EmbC = Embi0 × · · · × Embin−1 .

Given also a basic version of a simply typed λ-calculus (without constants) and for
convenience we use a fixed list of variables x0, x1, x2, . . . within the Church-style λ-terms
r ::= xk | rr | λxϱ

k r. We apply the usual conventions for λ-terms [11].

3.1 Judgements for Types and States
Typing judgements Γ ⊢ r : ϱ with Γ = (ϱ0, . . . , ϱn−1) are defined recursively as follows:

(Var)
k < n

Γ ⊢ xk : ϱk

(App)
Γ ⊢ r : ϱ→ σ Γ ⊢ s : ϱ

Γ ⊢ rs : σ
(Abs)

Γ.ϱ ⊢ r : σ

Γ ⊢ λxϱ
n r : ϱ→ σ

We can write more explicitly (x0 : ϱ0, . . . , xn−1 : ϱn−1, xn : ϱn) for the context Γ.ϱn, so
λ-abstractions binds the last variable of the context.3 When we speak of typed terms this
refers to this typing judgement. It is well known that each term r in the simply typed
λ-calculus has a unique type for a given context Γ.

▶ Definition 16. Let ι denote a base type. The positive and negative types are defined as

Typ+ ∋ ϱ+ ::= ι | ϱ− → ϱ+ and Typ− ∋ ϱ− ::= bool | ϱ+ → ϱ−.

For an index i ∈ Iϱ with ϱ ∈ Typ+ we write i ∈ Idx+, and similar for i ∈ Idx−.
Moreover, Typc ∋ ϱc ::= ι | ϱ+ → ϱc | ϱ− → ϱc.

For example, nat is a positive type, nat→ nat→ bool is a negative type, bool→ bool is
both and nat→ nat is neither. Obviously Typ+ ∪ Typ− ⊆ Typc and ϱ ∈ Typ+ ∩ Typ− ⇐⇒
ϱ ::= bool | ϱ→ ϱ. In order to formulate the rules for states, we use a fragment of the simply
typed λ-calculus, which we refer to as the core fragment. This fragment is constrained in
such a way that contexts Γ = (ϱ0, . . . , ϱn−1) contain only positive or negative types, that is,

ϱk ∈ Typ+ ∪ Typ− for all ϱk in Γ. (9)

A more general definition would permit the use of further base types in place of the
negative type bool. This requires that the base type in question has a finite set of objects and
an interpretation analogous to that of type bool in Definition 18. The primary motivation
for this definition is the existence of suitable rules for state judgements of variables and the
fact that positive types can be interpreted as direct factor systems and negative types as
inverse factor systems.

▶ Lemma 17. The typed term Γ ⊢ r : ϱ is in the core fragment iff Γ→ ϱ ∈ Typc.

3 This style is basically the de Bruijn level notation of λ-terms, see e.g. [6].
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This lemma follows easily by induction on Γ ⊢ r : ϱ. Therein Γ → σ is defined by
() → σ := σ and Γ.ϱ→ σ := Γ → (ϱ→ σ); the index C → i is defined in the same way as
Γ→ σ. We now introduce judgements for states of the form C | r : i. They require a typing
judgement Γ ⊢ r : ϱ such that C → i ∈ IΓ→ϱ. The rules are based on the typing rules4,
whereby C = (i0, . . . , in−1).

(Var+)
j ≥ ik ∈ Idx+

C | xk : j
(Var−)

j ≤ ik ∈ Idx−

C | xk : j

(App)
C | r : i→ j C | s : i

C | rs : j
(Abs)

C.i | r : j

C | λxϱ
n r : i→ j

The condition j ≥ ik in Rule (Var+) is a consequence of the fact that objects aik
of

positive type exist at all later stages j as embj
ik

(aik
). The condition j ≤ ik in Rule (Var−)

is related to the fact that we find unique restrictions of a relation, but not unique extensions.
Note that for an index ik ∈ Idx+ ∩ Idx− both of the rules for variables apply. In this case,
however, there is only one index, so both rules are the same.

A term usually has several state judgement, not only one. Indeed, we expect that there
are D-many of them and it seems necessary to prove this stronger property in order to
guarantee that at least one judgement exists. However, we have not shown that all terms of
the core fragment have a state judgement. It is possible to define sets DΓ, similar as in [4],
but with a reorder of the context Γ that takes the positive types first, and afterward the
negative ones. In a subsequent paper we will present such a definition of sets DΓ satisfying
Condition (D) and a proof that each term in the above mentioned fragment has indeed
D-many state judgements.

3.2 Interpretation of Types
An interpretation of a type ϱ has a static and a dynamic part. Although the limit is uniquely
defined from a structural perspective, the extension, i.e., the set of elements in the limit,
depends on the stage of the meta-level investigation, assuming a consequent finitistic view.
In this case, the limit is not the absolute end of the extensible system. As the investigation
progresses, both the system and the limit increase. The main part of the interpretation is
the factor system – the limit is necessary to prove that the definition in the factor system is
correct.

Let ([[ϱ]]i)i∈Iϱ be the factor system that interprets type ϱ, which consists of finite sets
[[ϱ]]i. The limit, up to isomorphism, is then [[ϱ]] := EL(([[ϱ]]i)i∈Iϱ

), see Section 2.4. These
limit sets give rise to an extensional type structure if we use (Appl) as application. Recall
Lemma 13 and our assumption of Condition (D).

▶ Definition 18. An interpretation [[ ]] of types assigns to a type ϱ a factor system ([[ϱ]]i)i∈Iϱ

and a limit [[ϱ]] of it. So the pair (([[ϱ]]i)i∈Iϱ
, [[ϱ]]) interprets the type ϱ. This interpretation

shall satisfy the following properties:
1. For a base type ι, ([[ι]]i)i∈Iι

is a direct factor system.
2. Type bool is interpreted by the factor system B{bool} with Bbool = B = {true, false} and

limit B.
3. The interpretation of ϱ→ σ is the factor system [([[ϱ]]i)i∈Iϱ

→ ([[σ]]j)j∈Iσ
] together with

the limit [[[ϱ]]→D [[σ]]].

4 One may also combine both rules into one. The rules are however more readable if one keeps them
separated.
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Since Condition (D) holds, it follows from Corollary 15 that the function space [[[ϱ]]→D

[[σ]]] is indeed the limit of the underlying factor system [([[ϱ]]i)i∈Iϱ
→ ([[σ]]j)j∈Iσ

]. Definition
18 extends to contexts Γ in the usual way by taking products.

▶ Example 19. The standard interpretation of the natural numbers [[nat]] = N is the limit
of the direct factor system ([[nat]]i)i∈N+ with [[nat]]i = Ni.5 Of course, there are other
non-standard models of nat with non-standard natural numbers as well. These non-standard
numbers do not appear at the limit step, but at some stage within the system.

The next lemma is required for the reflection principle stated in Theorem 24. Its proof
proceeds by induction on Definition 16 and uses Proposition 7 and Corollary 12.

▶ Lemma 20. Given an interpretation of types [[ ]] and let i ≤ i′ with i, i′ ∈ Iϱ for a type ϱ.
1. If ϱ ∈ Typ+, then the factor system ([[ϱ]]i)i∈Iϱ is direct and a

p7−→ ai implies a
p7−→

embi′

i (ai).
2. If ϱ ∈ Typ−, then the factor system is inverse and a

p7−→ ai′ implies a
p7−→ proji′

i (ai′).

3.3 Interpretation of Terms and a First Version of the Reflection
Principle

The interpretation of terms in the type structure of the limit sets is the common interpretation.
What is new is the interpretation in the factor system. This part of the interpretation requires
a state judgement, so it is defined only for the core fragment, defined in Section 3.1.

▶ Definition 21. A Γ-environment is a list of elements A ∈ [[Γ]] := [[ϱ0]]× · · · × [[ϱn−1]] for
Γ = (ϱ0, . . . , ϱn−1). The value [[r]]A ∈ [[ϱ]] of a typed term Γ ⊢ r : ϱ is defined recursively on
the derivation of the judgement Γ ⊢ r : ϱ relative to a Γ-environment A ∈ [[Γ]]:

[[xk]]A := Ak for Γ ⊢ xk : ϱk,

[[rs]]A := [[r]]A([[s]]A) for Γ ⊢ r : ϱ→ σ and Γ ⊢ s : ϱ,

[[λxϱ
n r]]A(B) := [[r]]A.B for Γ.ϱ ⊢ r : σ and B ∈ [[ϱ]].

▶ Definition 22. A C-environment is a list of elements a ∈ [[Γ]]C := [[ϱ0]]i0 ×· · ·× [[ϱn−1]]in−1

for C = (i0, . . . , in−1). The value [[r]]ia:C ∈ [[ϱ]]i of a term with C | r : i relative to a
C-environment a ∈ [[Γ]]C is defined recursively on the derivation of the state judgement
C | r : i:

[[xk]]ja:C := embj
ik

(ak) for C | xk : ik and ϱk ∈ Typ+,

[[xk]]ja:C := projik
j (ak) for C | xk : ik and ϱk ∈ Typ−,

[[rs]]ja:C := [[r]]i→j
a:C ([[s]]ia:C) for C | r : i→ j and C | s : i,

[[λxϱ
n r]]i→j

a:C (b) := [[r]]ja.b:C.i for C.i | r : j and b ∈ [[ϱ]]i.

By definition, the value [[r]]ia:C depends on the way the judgement C | r : i has been
derived. So different derivations could lead to different values, making this definition incorrect.
The value [[rs]]ja:C seemingly depend on the chosen index i used in [[s]]ia:C . A consequence
of the main Theorem 24 is that the value [[r]]ia:C is indeed independent (modulo ≍) of the
derivation of the state judgement C | r : i.

5 Here we assume that the interpretation of type nat is the set N of all natural numbers, which is an
actual infinite set if one accepts actual infinities at meta-level. If not, N is an arbitrary large finite set,
which corresponds to a set in the implicitly given factor system at meta-level, i.e., N is Nj for some
sufficiently large index j depending on the stages of the meta-level investigation.
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▶ Definition 23. Given a pair (A, a) with a Γ-environment A and a C-environment a such
that A

p7−→ a. The interpretation of a typed term Γ ⊢ r : ϱ with state judgement C | r : i

relative to (A, a) is the pair ([[r]]A, [[r]]ia:C) ∈ [[ϱ]]× [[ϱ]]i.

One would expect that A
p7−→ a implies [[r]]A

p7−→ [[r]]ia:C . Indeed, this is the content of
the next theorem, which is also the main theorem.

▶ Theorem 24. Given a typed term Γ ⊢ r : ϱ with C | r : i. If A ∈ [[Γ]], a ∈ [[Γ]]C are variable
assignments with A

p7−→ a, then

[[r]]A
p7−→ [[r]]ia:C .

Proof. The proof proceeds by induction on the derivation of C ⊢ r : i. For a variable xk of a
positive type we apply Lemma 20. This yields

[[xk]]A = Ak
p7−→ embj

ik
(ak) = [[xk]]ja:C ,

since Ak
p7−→ ak. A similar consideration holds for negative types. For application and

abstraction the claim follows from the fact that p7−→ is a logical relation. ◀

Consider the case of a closed term r : ϱ. Let us assume that ϱ is some data type, then the
theorem states that [[r]] p7−→ [[r]]i. Recall that the predecessor relation p7→ is seen as a directed
equality between two states of the same object. We can thus read p7−→, which is nothing
more than p7→ applied limits, as an equality between [[r]] and [[r]]i. As indicated in Section 1.1,
[[r]]i is a strong form of an approximation of [[r]].

Due to the use of logical relations on higher types, application and λ-abstraction respect
this equality. Since the type bool of propositions is part of the calculus, the equality holds also
for truth values. The relation [[r]] p7−→ [[r]]i for type bool, with the only values true and false

in classical logic, is the identity. Consequently, truth in the limit and truth in a sufficiently
large stage of the factor system coincide. Theorem 24 is the main result, and at the same
time this theorem is necessary to show that the basic definition of the interpretation of a
term, as introduced in Definition 22, is correct.

▶ Corollary 25. Let Γ ⊢ r : ϱ be a typed term with i ≤ i′, C | r : i and C | r : i′. Then
[[r]]i′

a:C
p7→ [[r]]ia:C holds for all C-environments a ∈ [[Γ]]C .

Proof. Define A := EmbC(a). Then A
p7−→ a follows from Condition (Emb), hence

[[r]]A
p7−→ [[r]]i′

a:C and [[r]]A
p7−→ [[r]]ia:C by Theorem 24, and therefore [[r]]i′

a:C
p7→ [[r]]ia:C by

Condition (Factor). ◀

The independence of the value [[r]]ia:C (modulo ≍) from the state judgement follows from
Corollary 25 if we take i = i′.

4 Conclusion and Further Work

We presented a model that can be used to interpret a fragment of the simply typed λ-calculus
(which we called core fragment) based on the assumption that infinite sets are potential
infinite. We gave a formalization of the potential infinite based on the filters D and sets ≪
within these filters. This allows one to avoid any notion of actual infinity. The function space
in this model is a family of finite function spaces and the model already has an interpretation
of the logical type bool with the usual two truth values.
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We introduced an interpretation of λ-terms from the core fragment which has a dynamic
part, the factor system, and a static part, the limit of the factor system. Nevertheless, both
parts are necessary, because from a dynamic point of view, the construction of a limit is not
the end of the process, but an intermediate state.

The next step is to extend the λ-calculus to constants, in particular to the logical constants
of implication and universal quantifier. The challenge here is that the universal quantifier
is not continuous and cannot be interpreted as a higher-order functional. The solution is
to introduce an additional rule with a side condition C ≪ i on the state judgments. The
correctness of the interpretation uses the fact that propositions have “stable truth values”
in the sense that for each proposition there is a stage in the model where the truth value
of the proposition does not change anymore during further extensions. A corresponding
interpretation for first-order logic has been given in [4].

The reflection principle from Theorem 24 then states that all objects and propositions
(propositions are specific terms of type bool) in the limit are reflected in a sufficiently large
state in the system. The interpretation is possible on the core fragment of simple type theory,
not for all terms. However, this fragment includes a version of a classical higher-order logic.
Unlike other models, such as domain theory [1], it does not require (actual) infinite sets at
all, and it includes logic.6

We do not expect that the theorem about the reflection principle can be extended from the
core fragment to all terms of simply typed λ-calculus without some kind of further restrictions.
This is because variables of function type correspond to arbitrary functions, which can also be
used to define higher-order functions by λ-abstraction. From the perspective of extensibility,
this necessitates the consideration of both covariant (with respect to the codomain) and
contravariant (with respect to the domain) extensions simultaneously. For instance, the
totality of higher-order functions requires that, for each argument, which could be a function
f of type nat→ nat, there must be a value. However, f is not given as a single entity. So
one must identify a property that guarantees totality and conditions that ensure invariance,
that is, existing properties must be preserved by future extensions of f . This is a significant
challenge for higher-order functions and it is related to properties of the filter D. It is also
the reason that for arbitrary functions, there are no simple state judgements as formulated
in the rules (Var+) and (Var−). A future task will be to identify conditions under which
the core fragment can be extended to include function variables.
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