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Abstract
Topology-hiding broadcast (THB) enables parties communicating over an incomplete network to
broadcast messages while hiding the network topology from within a given class of graphs. Al-
though broadcast is a privacy-free task, it is known that THB for certain graph classes necessitates
computational assumptions, even against “honest but curious” adversaries, and even given a single
corrupted party. Recent works have tried to understand when THB can be obtained with information-
theoretic (IT) security (without cryptography or setup assumptions) as a function of properties of
the corresponding graph class.

We revisit this question through a case study of the class of wheel graphs and their subgraphs.
The nth wheel graph is established by connecting n nodes who form a cycle with another “center”
node, thus providing a natural extension that captures and enriches previously studied graph classes
in the setting of IT-THB.

We present a series of new findings in this line. We fully characterize feasibility of IT-THB for
any class of subgraphs of the wheel, each possessing an embedded star (i.e., a well-defined center
connected to all other nodes). Our characterization provides evidence that IT-THB feasibility may
correlate with a more fine-grained degree structure – as opposed to pure connectivity – of the
corresponding graphs. We provide positive results achieving perfect IT-THB for new graph classes,
including ones where the number of nodes is unknown. Further, we provide the first feasibility of
IT-THB on non-degenerate graph-classes with t > 1 corruptions, for the class of friendship graphs
(Erdös, Rényi, Sós’66).
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1 Introduction

Topology-hiding protocols over an incomplete communication network guarantee that col-
luding parties do not learn additional information about the topology of the network graph
(from within a given class of graphs), beyond their own neighbor-set [12]. Such protocols may
be of interest in settings where the communication structure itself is sensitive information,
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such as in social networks, or peer-to-peer networks based on geographical position. Perhaps
the most fundamental goal is that of achieving topology-hiding broadcast (THB), where a
designated sender wishes to convey an input to all participating parties.

Although broadcast is a privacy-free task, THB turned out to be a challenging goal on its
own. It was recently shown that THB for certain graph classes necessitates computational
assumptions, even in the “honest but curious” semi-honest setting (when corrupted parties
follow the protocol honestly but try to learn more information from their joint view), and
even given a single corrupted party [6, 5]. This lies in stark contrast to the topology-revealing
case, in which broadcast is trivially achievable in the semi-honest setting.

Obtaining topology hiding based on computational assumptions has been the subject of
a fruitful collection of works, leading to various THB, and in turn, general topology-hiding
secure multiparty computation (THC) protocols [12, 8, 2, 1, 9, 6, 10, 11, 3]. It is known by
now how to construct THB protocols for the class of all graphs (of polynomial size) that
are secure against any subset of semi-honest corruptions under standard number-theoretic
cryptographic hardness assumptions such as DDH, QR, and LWE,1 or from unstructured
assumptions such as constant-round constant-rate oblivious transfer [3].

Motivated by an analogous question within secure multi-party computation, the work
of [5] asked whether existence of an honest majority can enable information-theoretically
secure THB protocols in certain settings, without relying on cryptographic assumptions and
withstanding computationally unbounded adversaries. We refer to this as IT-THB. The
work of [5] ruled out 1-secure IT-THB on a path with four nodes (which is 1-connected) but
devised a perfect 1-secure information-theoretic THC on cycles of known length (which are
2-connected); see Figure 1. Given these initial evidence, they conjectured that feasibility
of IT-THB may depend on the connectivity2 of the graphs within the class: namely, that
(t + 1)-connectivity is sufficient and/or necessary for t-secure IT-THB.

The special case of t = 1 was further investigated by [4], who proved that the conjecture
holds in this case for the stronger notion of THC. They showed that information-theoretic
THC with security against a single semi-honest corruption is possible if and only if the
connectivity of every graph in the class is at least 2. However, they additionally showed that
the conjecture does not hold for THB, by constructing a perfectly secure THB against a single
corruption for the butterfly graph class (Figure 1), where each graph is only 1-connected.
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Figure 1 (a) Class G4-path, of all isomorphisms of 4 nodes on a path; 1-secure THB over G4-path

implies key agreement. (b) Class Gcycle(n) of all isomorphisms of n nodes on a cycle; admits 1-secure
IT-THB. (c) Class Gbutterfly of all isomorphisms of 5 nodes on a butterfly graph (two triangles with a
common node); contains 1-connected graphs yet admits 1-secure IT-THB.

The results of [5, 4] open a rich domain of questions. As [4] showed, high connectivity
is not the “right” criterion for feasibility of THB (in contrast to THC), and alternative
graph-properties may serve as candidate conjectures. Therefore, our first question is:

Given a graph-class, which graph properties characterize feasibility of 1-secure IT-THB?

1 DDH stands for the decisional Diffie-Hellman assumption, QR for the quadratic residuosity assumption,
and LWE for the learning with errors assumption.

2 We consider node-connectivity; that is, a graph is k-connected if and only if every pair of nodes is
connected by k vertex-disjoint paths.
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Zooming into [4], their general positive result, of 1-IT-THB over 2-connected graphs, has
a nonzero (yet exponentially small) error probability. This means that THB with perfect
security is only known for cycles [5], for the butterfly graph [4], and for graphs with at most
four nodes [4]. Is it possible that for graphs with n > 5 nodes the source of perfect 1-THB is
the highly symmetric structure of cycles, and other graph classes inherently require a positive
error?

Are there additional graph-classes that support perfectly secure THB?

Finally, all feasibility results for IT-THB are secure against a single corruption. Indeed, 2-
secure THB on a 4-node rectangle, possibly with a missing edge, requires oblivious transfer [6],
and a 2-secure THB on a cycle with 7 nodes (or more) requires key agreement [5]. The
statistically secure THB protocols for 2-connected graphs from [4] completely break if there
are two corruptions, and in the butterfly class two corruptions trivialize the problem, as there
is no information to hide. One may wonder if IT-THB simply cannot withstand multiple
corruptions that provide several points of view about the graph topology, except for degenerate
cases where the topology is already revealed by the corrupted parties’ neighbor-sets. This
leads to our third question:

Are there graph-classes that support IT-THB with more than a single corruption?

1.1 Our Contributions
In this work, we conduct an investigation of these questions through a case study of the class
of wheel graphs and their subgraphs. The nth wheel graph Wn is established by connecting
a single node (the “center”) to n nodes who form a cycle, as depicted below. The wheel
graph-class Gwheel(n) consists of all isomorphisms of the wheel graph, i.e., all assignments of
the labels {1, . . . , n + 1} to the nodes of the wheel graph Wn.

n + 1 1

23

4

5 n

Wheel graphs and their subgraphs form a natural extension that captures and enriches
previously studied graph classes in the setting of IT-THB: for example, paths, cycles, triangles,
and butterfly graphs. Interestingly, although Gwheel(n) has increased connectivity over the
n-cycles, the corresponding state-of-the-art THB protocols for Gwheel(n) are slightly worse.
Note that the cycle protocol cannot simply be run directly, as parties on the perimeter of
the graph do not know – in fact, must not know – which neighbor is the center node.

Several challenges arise when hiding the topology of Gwheel(n). First, consider a node v

on the perimeter; such a node has three neighbors, one of which is the center. To hide the
identity of the center node, either the protocol does not utilize the power of the center, or
each of the non-center neighbors must emulate the behavior of the center toward v, and
further, v must emulate the center toward all its neighbors. Second, consider the center
node; this node is connected to all other parties but must not learn how the parties on the
perimeter are connected among themselves. Further, an adversary that corrupts two parties
on the perimeter without a common neighbor must not learn their relative distance on the
perimeter. Note that an adversary that corrupts n − 2 nodes in a wheel graph knows the
entire topology from the corrupted nodes’ neighbor-sets; however, for t ≤ n − 3 corruptions
not all is revealed (i.e., when there are 4 honest parties).3

3 When considering arbitrary admissible graphs with n + 1 nodes (as defined below), there is more
information to hide; therefore, an adversary that corrupts n nodes knows the entire topology but for

ITC 2024
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Characterization of wheels and subgraphs with an embedded star. Our first result shows
that perfectly secure THB is possible against a single semi-honest corruption on the class
of wheel graphs Gwheel(n), as well as on certain classes of its subgraphs. Concretely, given
any family of subgraphs of the wheel with n + 1 nodes, with an embedded star in each
graph (i.e., where the center is fully connected and has degree n), we show that IT-THB with
one corruption is possible if either the minimal degree of non-center nodes in the family is
greater than 1, or if it is 1 but so is the maximal degree. Surprisingly, we show that this
characterization is tight for any such subclasses that are closed under isomorphism (i.e., for
each graph topology in the class, all relabelings of this graph are also contained in the class);
that is, if the maximal degree is greater than 1 but the minimal degree is 1, then THB on
this class implies key agreement.

This would suggest that feasibility of IT-THB may correlate with a more fine-grained
degree structure, as opposed to connectivity, of graphs.

More concretely, we begin by defining admissible subgraphs as subgraphs of the wheel
graph Wn in which the degree of the center is n and the degree of every other node is either
2 or 3. The butterfly graph is an example for an admissible subgraph for n = 4, as well as
the (2n + 1)-node friendship graph Fn,4 see Figure 2.
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Figure 2 Examples of admissible subgraphs of Gwheel(6). On the left is a friendship graph in
which every non-center node has degree 2, and on the right is a subgraph where every non-center
node has degree 2 or 3.

When considering graphs with an embedded star, i.e., with a fully connected center,
non-admissible graphs are those who contain a non-center node of degree 1. The extreme
example is the star graph in which the center node is connected to n nodes, and no other
edges exist, see Figure 3.
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Figure 3 Example of non-admissible subgraphs of Gwheel(6). On the left is the star graph with 7
nodes. On the right is a subgraph with a single node of degree 1.

Our characterization nearly shows that IT-THB is possible for a given graph-class with
a fully connected center if and only if it consists only of admissible subgraphs. The single
exception is the graph class Gstar(n) that only contain star graphs, which are not admissible;
this class is degenerate (trivially providing topology hiding) since any node can identify the
center and derive the whole topology.

t ≤ n − 2 not all is revealed (i.e., when there are 2 honest parties) .
4 The friendship graph Fn, introduced in [7], is a planar, undirected graph with 2n + 1 nodes and 3n

edges. Fn can be constructed by joining n triangles with a common node.



D. Banoun, E. Boyle, and R. Cohen 1:5

▶ Theorem 1 (IT-THB for admissible graphs with fixed size, informal). Let n ∈ N with n ≥ 4,
and let G ⊆ Gwheel(n) be a graph-class in which every graph has n + 1 nodes and the center
has degree n.

Then, if either G = Gstar(n) or if G consists of admissible graphs, there exists perfectly
secure IT-THB against a single semi-honest corruption over G. Otherwise, THB over G secure
against a single semi-honest corruption exists if and only if key agreement exists.

Theorem 1 demonstrates another interesting phenomena: a nontrivial example of a
graph-class in which G is the union of two sub-classes G1 and G2, such that each sub-class
admits an IT-THB, yet the there is no IT-THB for G. Specifically, while Gwheel(n) and Gstar(n)
each individually admits 1-IT-THB, any 1-THB protocol on Gwheel(n) ∪ Gstar(n) requires key
agreement.

Generalizing to variable-size subgraphs. We proceed to analyze subgraphs of Gwheel(n) that
are generated by removing some of the nodes. Note that when removing the center node, the
resulting subgraph is either a cycle with n nodes Gcycle(n), which supports 1-secure perfect
THB, or a path with up to n nodes that necessitates key agreement. Therefore, we focus
on keeping the center and removing nodes from the perimeter. An interesting observation
is that when removing k neighboring nodes from the perimeter, the result is an admissible
subgraph of the wheel with n + 1 − k nodes with one edge removed from the perimeter.
Similarly, removing arbitrary k nodes yields a subgraph of the wheel with n + 1 − k nodes
with m edges removed from the perimeter, where m is the number of sets of neighboring
nodes that are removed.
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Figure 4 On the left is a wheel graph. On the right is the resulting graph when removing nodes
1 and 4 together with their corresponding edges. The result is an admissible graph F2.

A more interesting question is thus to characterize families of such subgraphs whose
number of nodes is not a priori known. We remark that topology hiding on graphs of
unknown size can be surprisingly complex: For example, THB with an additional sender-
anonymity guarantee for the simple class of 2-paths and 3-paths implies infinitely often
oblivious transfer [4, Thm 5.4].

We utilize a useful property of the protocol used for proving Theorem 1 (discussed further
in Section 2) that effectively hides the number of nodes from non-center parties. We show
that the protocol can be applied also to the current setting to obtain perfect IT-THB.

▶ Theorem 2 (IT-THB for admissible graphs with varying size, informal). Let n ∈ N and let G
be a graph-class such that every (V, E) ∈ G is a subgraph of the wheel graph, and it holds that
4 ≤ |V | ≤ n + 1 and there is a center node with degree |V | − 1. Then,

if the maximal degree of non-center nodes is 1, i.e., G consists only of stars (possibly of
different size), or
if the minimal degree of non-center nodes is 2 or 3, i.e., G consists only of admissible
graphs, or
if G consists both of stars and admissible graphs but they are of different sizes,

ITC 2024



1:6 Information-Theoretic Topology-Hiding Broadcast

there exists perfectly secure IT-THB against a single semi-honest corruptions over G. Other-
wise, THB over G secure against a single semi-honest corruption exists if and only if key
agreement exists.

We note that Theorem 2 subsumes Theorem 1; therefore, in the technical sections we
directly prove Theorem 2.

Tolerating many corruptions: the case of friendship graphs. The feasibility results thus
far were limited to a single corruption. The reason lies in the structure of the protocol, which
enables two colluding parties with two common neighbors to learn which of them is the
center; see Section 2 for an illustration. Therefore, it still remains open whether IT-THB
tolerating t > 1 corruption is possible, aside from degenerate cases in which the topology is
fully determined from neighbor-sets of any t nodes.

We proceed to analyze an interesting class of subgraphs of a wheel graph with varying
size, which consists of friendship graphs. Recall that for n ≥ 1, the friendship graph Fn is a
(2n + 1)-nodes graph constructed by joining n triangles with a common node. They were
named after the friendship theorem [7], which states that if in a finite set of people every
pair has one common friend, then there exists one person who is friend with everyone. We
consider a class consisting of friendship graphs of different sizes. Note that the connectivity of
each of those graphs is 1, and by their structure every two nodes can only have one common
neighbor, so the attack discussed above no longer applies. We prove that indeed perfect
IT-THB tolerating any number of corruptions can be achieved on this class. For an integer k,
consider the graph class Gfriendship(k) containing all isomorphisms of the friendship graph Fk.

▶ Theorem 3 (t-IT-THB over friendship graphs, informal). Let n ∈ N with n ≥ 2, let t < 2n+1,
and consider a graph-class G ⊆

⋃n
k=2 Gfriendship(k). There exists a perfectly secure THB protocol

against t semi-honest corruptions over G.

We remark that Theorem 3 presents the first feasibility of information-theoretic THB on
non-degenerate graph-classes with t > 1 corruptions.

Organization of the paper. Due to severe space restrictions, we defer most of the technical
content, including the construction of our protocols, the formal statements, and the security
proofs, to the full version of the paper. We proceed to provide an overview of the techniques
in Section 2.

2 Technical Overview

We move on to describing some of our techniques. We begin by explaining in Section 2.1
the high-level ideas of the protocols used for our positive result. Next, in Section 2.2, we
describe our usage of the phantom-jump technique from [4] for our negative result.

2.1 Feasibility Results: The “Oblivious Centralized Coordination”
Technique

Our protocols are inspired by the THB protocol for the butterfly graph from [4]. We extend
it in several aspects to support more involved graph classes that contain an embedded star,
i.e., a well-defined center connected to all other nodes. In the overview below, we begin by
describing the simpler case of friendship graphs, and then proceed to the wheel graph, and
to arbitrary admissible graphs.
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Starting point: the butterfly graph. Recall that the butterfly graph (Figure 1) is in fact
the friendship graph F2: a 5-node graph consisting of two triangles connected by a common
center node. The high-level idea is to use the center node for coordinating the protocol.
The protocol runs multiple instances of reliable message transmission (RMT), one for every
potential receiver. In each RMT instance, the sender PS sends its message to all its neighbors
in the first step. Note that each party knows whether it is a neighbor of PS , so it knows
whether it should receive a message or not in the first round. At that point it is guaranteed
that the center node holds the message and so can deliver it to the receiver (in case the
receiver is not the center).

This, of course, will reveal to the receiver who is the center node. Therefore, the center
must do so in an oblivious way, without exposing itself. In the butterfly graph, if the receiver
PR is not the center it has one more neighbor other than the center. The approach taken
in [4] is to secret share the message m with the additional neighbor, and have each neighbor
deliver one share. However, the center does not know who that neighbor is. Therefore, the
center node prepares 2-out-of-2 shares of the message m for each potential neighbor, i.e.,
each non-receiver party.

To help the center hide its identity, each other party assists by acting as the center and
preparing 2-out-of-2 shares of zero (so called, blinding terms for addition) for each of its
non-receiver neighbors (a non-center party has either one or two non-receiver neighbors).
Next, the receiver receives four values from each of its neighbors (recall that in the butterfly
graph there are four nodes other than the receiver, see Figure 1), such that the center sends
the sum of the share m for each party with the share of zero it received from that party, and
the second neighbor sends the sum of the share received from its non-receiver neighbor with
the share of zero sent to this neighbor, along with three random values (one for each other
party). The receiver can then select the correct pair which corresponds to its true neighbors.
Thus, PR can reconstruct m without knowing which of its neighbors is the center.

This approach is secure as long as the receiver is not the center. However, if PR is the
center, it may learn the neighbor-set of other nodes (e.g., by inspecting which pairs of values
sum up to 0). This is solved by adding suitable offset values, which are multiplied by blinding
terms for multiplication, and only come into play if PR is the center. Specifically, if PR is
not the center, then PR will send the same offset to both its neighbors (this will ensure that
the offset will be canceled out). If PR is the center, then PR will send a different offset to
each neighbor (this requires working over a larger field, e.g., F4, to support a different value
per party); in this case, the pairs of values seen by PR will induce a linear system of two
equations with two variables, and the different offsets will guarantee that the system has
full rank and always has a solution. This, in turn, will prove that the center cannot identify
which pairs of parties are connected.

The friendship graph. As discussed above, we view the butterfly graph as two triangles
connected in a joint node; that is, as the friendship graph F2. In the full version, we prove that
the 1-THB protocol for the butterfly graph-class Gbutterfly (consisting of all isomorphisms of 5
nodes to F2) extends in natural way to 1-THB for the class of friendship graph Gfriendship(n),
for n ≥ 2, consisting of all isomorphisms of 2n + 1 nodes to Fn.5 Namely, the receiver now
receives a vector of 2n values from each of its neighbors, and those values are uniformly
distributed conditioned on the corresponding values of its neighbors that sum up to the
message. Further, recall that in case the receiver is the center, it must provide a different
offset to each of its neighbors; hence, the underlying field Fq must grow and satisfy q ≥ 2n.

5 Note that for n = 1 a friendship graph is just a triangle, and there is no well-defined center.

ITC 2024
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Friendship of variable size. A second observation is that for non-center parties, the protocol
behaves in a “local” manner, in the sense that the neighbors of a non-center node are
neighbors on their own. When PR is not the center, this enables the receiver’s neighbors to
jointly construct the shares of the message in a coordinated (yet oblivious) way. Only the
center’s actions truly depend on the actual number of parties, while non-center parties only
need to know an upper bound on the number of parties.

In the full version, we prove that this locality property makes the protocol suitable for a
variable number of nodes (i.e., a variable number of triangles). Non-center nodes proceed as if
the graph has n triangles (where n is an upper bound), and the center node emulates missing
nodes in its head. Formally, we consider the graph Fk,n as an augmented friendship graph
of 2n + 1 nodes, where 2k + 1 nodes form a connected component which is the friendship
graph Fk, and all other 2n + 1 − (2k + 1) = 2(n − k) nodes are singletons (isolated parties).
Each isolated party simply outputs 0 in this protocol (unless it is the sender, in which case
it outputs its input), and the agreement and validity properties are only required for the
connected component of the sender.

Friendship with many corruptions. Another interesting observation, is that locality enables
tolerating an arbitrary number of t < 2n + 1 corruptions, without any adjustments to the
protocol. We prove this in the full version. Intuitively, to see why, we distinguish between an
honest center and a corrupt center.

In case the center is honest, then once there is more than a single corruption, the adversary
can immediately identify who the center is. This is not considered a violation of privacy,
since this can be deduced just by observing the common neighbor of the corrupted parties,
and without observing any protocol messages. When focusing on each triangle now, if both
non-center nodes are corrupted there is nothing to hide within the triangle, whereas if none
of the non-center nodes is corrupted the adversary learns nothing new from the protocol.
The case where there is a single corrupted non-center in the triangle reduces to the single
corruption case from before.

In case the center is corrupted, and there is another non-center corrupted party, then all
the information in its triangle is already known, regardless of whether the second non-center
party is honest or not. Further, consider the set of honest parties that have an honest
neighbor, then the center together with all other corrupt parties do not learn the connectivity
of this set.

We note that despite the technical simplicity of this result, it bares a more significant
conceptual contribution, as it provides the first feasibility of IT-THB with more than one
corruption beyond trivial graph classes.

Beyond friendship: the wheel graph. We proceed to extend the oblivious centralized
coordination technique to more involved graph classes that admit an embedded star. As
before, we begin by considering a single corruption. One can view the (2n + 1)-nodes
friendship graph Fn as a subgraph of the wheel W2n in which every non-center node has
degree 2. The wheel graph presents the other extreme in some sense, as every non-center
node has degree 3.

A first attempt to extend the protocol to this new regime, is to use 3-out-of-3 secret
sharing instead of 2-out-of-2. Stated differently, before, in Fn, if PR is not the center it
receives a vector of 2n values from each of its two neighbors such that the matching pair
of values sum up to the message and all other values are independently and uniformly
distributed. When considering the (n + 1)-nodes wheel graph Wn, if PR is not the center
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then it has 3 neighbors, and it receives a matrix of n × n values from each of its neighbors
such that the corresponding entries in these matrices6 sum up to the message and all other
values are independently and uniformly distributed.

However, as opposed to the friendship regime, once a non-center node has degree 3 the
protocol loses its locality property, as now not all neighbors of the receiver are neighbors
on their own, and so the matrices are not “synchronized” like the vectors in the previous
case. Indeed, if done without care, this approach leads to an attack. The reason is that the
preparation of entry (v, w) for the matrix of party Pu is done as follows: if v and w are not
neighbors of u sample a random value; if only one is a neighbor use the value that this party
sent before (to ensure it will cancel out); and if both parties are neighbors of u then take
the sum of their values. Therefore, the receiver can identify repeating entries in a matrix to
deduce pairs of neighboring parties, as illustrated in Figure 5.

v1

R

v2

u

v3

v4

v5

v1

R

v2

u

v3

v4

v5

Figure 5 Illustration of an attack on a naïve protocol for Gwheel(n). The receiver PR has three
neighbors: v1, v2, and the center u. Say that v1 has another neighbor v3, which has a third neighbor
v4, which has a third neighbor v5. Then, PR receives a matrix from v1; however, since v3 sends a
single value to v1, the entry (v3, v4) will be the same as the entry (v3, v5). This means that both v4

and v5 are not neighbors of v1.

Our solution to this issue is to have each pair of neighbors (none of which is PR) generate
a vector of n correlated values, as opposed to a single value. This is done by having each
party sample a vector of random values and send it to each of its non-receiver neighbors. In
fact, those correlated values make the blinding terms and the suitable-offset terms redundant,
so these values are no longer used in this protocol. In the full version, we prove that the
resulting protocol is secure for the class of wheel graphs.

Admissible graphs. Having established 1-THB for the case when non-center nodes have
degree 2 (friendship graphs) and the case where they have degree 3 (wheel graphs), we
proceed to combine the ideas together and support any admissible graph. Intuitively, since
the protocols share a similar structure, one can hope to execute both options concurrently.
That is, the parties run two independent executions: one for the case where PR has two
neighbors, and one for the case where PR has three neighbors. This, however, is vulnerable to
an attack, since when a receiver has three neighbors it can find correlations in the messages it
receives for the degree-2 execution and identify who the center is, as illustrated in Figure 6.

6 That is, for neighbors u, v, w take entry (u, v) from the matrix of w, entry (v, w) from the matrix of u,
and entry (w, u) from the matrix of v. In the protocol, we ensure the matrices are symmetric, i.e.,
M[u, v] = M[v, u].
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v1

R

v3

v2
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v2
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Figure 6 Illustration of an attack on a non-careful protocol for admissible graphs. Consider a
non-center receiver PR with neighbors v1, v2, and v3; assume that v2 is the center. Further consider
running the friendship protocol over this graph. The left diagram, illustrates the view PR obtains
for the triangle with v1 and v2: here PR will obtain the message m. The middle diagram, illustrates
the view PR obtains for the triangle with v2 and v3: again, PR will obtain the message m. The right
diagram, illustrates the view PR obtains for the triangle with v1 and v3: here, there is no direct
edge between v1 and v3; hence, PR will not obtain the message m. Therefore, PR can identify that
v2 is the center.

The main idea in overcoming this attack, is that although we need to run two executions
in order to hide the degree of the receiver (when it is not the center), we only need one
execution to deliver the message to the receiver, and the second does not need to convey any
information. Further, the receiver already knows its degree, so it knows which execution is
the “right” one, and can sabotage the “redundant” one. Specifically:

In case the receiver’s degree is 3, in the degree-2 execution it will send a different offset
for each neighbor (and the degree-3 execution will be executed correctly).
In case the receiver’s degree is 2, in the degree-2 execution it will correctly send the same
offset to its neighbors (and the degree-3 execution will not leak any information because
the receiver does not have three neighbors).

In the full version, we prove that the resulting protocol is secure against one corruption for
graph-classes consisting of admissible graphs.

Many corruptions. The protocol described above establishes feasibility of 1-IT-THB for
any graph-class consisting of admissible graphs (even of variable size). This feasibility is
tight for a single corruption, as stated in Theorem 2. It is tempting though to extend the
resiliency of the protocol, similarly to the class of friendship graphs that support any number
of corruptions. It turns out that the non-local nature of non-friendship, admissible graphs
enables an attack on the protocol when the adversary controls two nodes.

We illustrate the attack in Figure 7. Consider a pair of corrupted parties 2 and 4 , and
assume that none of them is the center. Further, assume that each has degree 3, and that
they have two common neighbors, denoted 3 and 6 . Clearly, by the structure of the graph,
2 and 4 together can deduce that either 3 is the center, or 6 is the center.

However, when running in this setting the 1-secure protocol described above, the colluding
parties may learn correlations that will expose which of their common neighbors is the center.
Specifically, recall that when 3 is the receiver, it sends to its neighbors 2 and 4 the
suitable-offset values. In case 3 is the center, the offset value for 2 is the same as the one
for 4 , whereas in case 3 is not the center these are different values.
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Figure 7 Attack on non-friendship admissible graphs with two corruptions.
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We emphasize that in friendship graphs every non-center node has degree two; hence, the
scenario from Figure 7 cannot occur. We leave it as an open question to find a protocol that
is resilient to t > 1 corruptions for non-friendship admissible graphs.

2.2 Impossibility Results: The “Phantom Jump” Technique

The phantom-jump technique, introduced in [4], was used to show that key agreement is
necessary for 1-secure THB over the class Gtriangle consisting of a triangle, with possibly one
of its edges missing (see Figure 8). In this class, if a party has two neighbors it does not
know whether its neighbors are directly connected or not, but a party with one neighbor
knows the entire topology.

1

2

3 1

2

3 1

2

3

Figure 8 The class Gtriangle from [4], consisting of a triangle, with possibly one of its edges missing.

In the full version we prove the lower bound of Theorem 1 (namely that 1-THB on the
union of an admissible graph-class of size n + 1 with Gstar(n) necessitates key agreement) by
a direct reduction to the impossibility in [4]. Below we explain in a more explicit manner
how the phantom-jump technique from [4] is used in this argument. We illustrate this for
G = Gwheel(4) ∪ Gstar(4) where both graphs consist of 5 nodes.

The high-level idea, going back to [5], is to construct a key-agreement protocol from a
1-secure THB protocol π for G. Recall the desired key-agreement protocol is run between
two parties, Alice and Bob, and concludes with the parties outputting a bit b ∈ {0, 1}, such
that a channel eavesdropper listening to communications cannot predict the value of b with
non-negligible advantage. To construct a key-agreement protocol from π, Alice begins by
choosing two long random strings m1 and m2 and sending them to Bob in the clear. Next,
Alice and Bob continue in phases as follows:

In each phase Alice and Bob locally toss coins A and B, respectively.
They proceed to run two executions of π in which Alice always emulates 1 and Bob
always emulates 2 . In addition, if A = 0 then Alice emulates 3 , 4 , and 5 as neighbors
of 1 , who acts as the center of the star, and 3 broadcasting m1 in the first run; otherwise
she emulates 3 , 4 , and 5 as neighbors of 1 , who acts as the center of the star, and
3 broadcasting m2 in the second run. Similarly, if B = 1 then Bob emulates 3 , 4 ,
and 5 as neighbors of 2 , who acts as the center of the star, and 3 broadcasting m1
in the first run; otherwise he emulates 3 , 4 , and 5 as neighbors of 2 , who acts as
the center of the star, and 3 broadcasting m2 in the second run. See Figure 9 for an
illustration.
If parties 1 and 2 output m1 in the first run and m2 in the second, Alice and Bob
output their bits A and B, respectively; otherwise, they execute another phase.
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3

Alice Bob
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1 2

5

4

3

Alice Bob

Figure 9 Using wheels and stars to construct a key-agreement protocol.
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Clearly, if A = B in some iteration then Alice and Bob will output the same coin, and by
the assumed security of π, the eavesdropper Eve will not be able to learn who emulated 3 ,
4 , and 5 in the first run and who in the second. If A ̸= B, then in at least one of the runs
nobody emulates the broadcaster 3 , so with overwhelming probability Alice and Bob will
detect this case and execute another iteration.

In more detail, when A = B the view of Eve consists of the communication between 1
and 2 , as depicted in Figure 9. By THB security, when 2 acts as the center it cannot
distinguish between the star and the wheel; in particular, the distribution of the messages on
the channel between 1 and 2 is indistinguishable in both cases. Again, by THB security,
when 1 is not the center of the wheel it cannot know which of its neighbors is the center, so
it cannot distinguish between the center being 2 or 3 ; in particular, the distribution of
the messages on the channel between 1 and 2 is indistinguishable in both cases. Similarly,
when 2 is not the center of the wheel, it cannot distinguish between the center being 1
or 3 ; in particular, the distribution of the messages on the channel between 1 and 2 is
indistinguishable in both cases. Finally, when 1 acts as the center it cannot distinguish
between the star and the wheel; in particular, the distribution of the messages on the channel
between 1 and 2 is indistinguishable in both cases. By a simple hybrid argument it follows
that the messages between 1 and 2 are indistinguishable when communicating in a star
topology when 1 is the center and when 2 is the center, and it follows that the distinguishing
advantage of Eve is negligible. See Figure 10 for an illustration of the hybrid argument.
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Figure 10 Hybrid steps in the phantom jump over wheels and stars.
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