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Abstract
Bottleneck complexity is an efficiency measure of secure multiparty computation (MPC) protocols
introduced to achieve load-balancing in large-scale networks, which is defined as the maximum
communication complexity required by any one player within the protocol execution. Towards the
goal of achieving low bottleneck complexity, prior works proposed MPC protocols for computing
symmetric functions in the correlated randomness model, where players are given input-independent
correlated randomness in advance. However, the previous protocols with polylogarithmic bottleneck
complexity in the number n of players require a large amount of correlated randomness that is
linear in n, which limits the per-party efficiency as receiving and storing correlated randomness
are the bottleneck for efficiency. In this work, we present for the first time MPC protocols for
symmetric functions such that bottleneck complexity and the amount of correlated randomness are
both polylogarithmic in n, assuming semi-honest adversaries colluding with at most n − o(n) players.
Furthermore, one of our protocols is even computationally efficient in that each player performs
only polylog(n) arithmetic operations while the computational complexity of the previous protocols
is O(n). Technically, our efficiency improvements come from novel protocols based on ramp secret
sharing to realize basic functionalities with low bottleneck complexity, which we believe may be of
interest beyond their applications to secure computation of symmetric functions.
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1 Introduction

Secure multiparty computation (MPC) [48] is a fundamental cryptographic primitive which
enables n players to jointly compute a function f(x1, . . . , xn) without revealing information
on their private inputs xi to adversaries corrupting at most t players. Due to many important
applications, the asymptotic and concrete optimization of MPC protocols has been the
subject of a large body of research. In this work, we consider the dishonest-majority setting,
where the majority of players are corrupted, i.e., t > n/2.

MPC in the correlated randomness model. A popular approach to designing MPC protocols
in the dishonest-majority setting is to employ correlated randomness. In this model, players
receive correlated randomness from a trusted dealer before inputs are known (the offline phase)
and then consume the randomness to perform input-dependent computation (the online
phase). It was shown in [1] that the correlated randomness allows us to construct information-
theoretically secure protocols in the dishonest-majority setting, while such protocols do not
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10:2 MPC with Polylogarithmic Bottleneck Complexity and Correlated Randomness

exist in the plain model. Subsequently, many optimizations have been proposed and several
of them are even implemented [6, 19, 37, 18, 8, 9]. Two primary efficiency metrics for MPC
in this model are the online communication cost and the amount of correlated randomness
received from a trusted dealer [13, 9]. This is because as opposed to local computation,
communication and storage costs are usually dominant in MPC protocols and minimizing
both costs simultaneously leads to fast and scalable protocols.

Bottleneck complexity. Traditionally, the cost of online communication has been measured
by the total amount of communication across all n players. On the other hand, for practical
applications such as peer-to-peer computations between lightweight devices, the per-party
cost is a more effective measure than the total cost. For example, several existing protocols
(e.g., [17, 14, 29, 22]) require one player to communicate different messages with every other
player. Then, while the total communication cost is possibly scalable, the player must bear
communication proportional to n and his cost quickly becomes prohibitive in large-scale MPC
involving many players. In this work, we focus on a more fine-grained efficiency measure
capturing the load-balancing aspect of protocols, called bottleneck complexity [10], which
is defined as the maximum communication required by any one player during the protocol
execution.

To fit large-scale networks, we aim at designing MPC protocols whose bottleneck com-
plexity scales polylogarithmically with n. Unfortunately, there is a negative result that we
cannot achieve sublinear bottleneck complexity for all functions even without any security
considerations [10]. Due to this result, a line of works [43, 39, 21] have studied the problem
of constructing protocols with low bottleneck complexity for specific classes of functions.
Above all, the class of symmetric functions, whose values are the same no matter the order of
n inputs, is one of the most fundamental functions including majority, counting, and parity
functions. Recently, the authors of [39, 21] constructed information-theoretic protocols for
symmetric functions with O(logn) bottleneck complexity1. However, a main drawback of
the protocols is that every player needs to receive a large amount of correlated randomness
that is linear in n per party. This means that no matter how much bottleneck complexity in
the online phase is improved, the protocols do not work efficiently as receiving and storing
correlated randomness is the bottleneck for efficiency. Motivated by the above considerations,
in this work, we ask:

Can we construct MPC protocols for symmetric functions keeping both bottleneck complexity
and the amount of correlated randomness polylogarithmic in n?

1.1 Our Results
In this work, we answer the above question affirmatively by presenting two different construc-
tions of MPC protocols for symmetric functions, assuming semi-honest adversaries colluding
with at most n− o(n) players. There is a trade-off between bottleneck complexity and the
amount of correlated randomness.

▶ Theorem 1 (Informal). For a parameter ℓ, there exists an information-theoretic MPC pro-
tocol for computing a symmetric function f : {0, 1}n → {0, 1} that has bottleneck complexity
O(logn), per-party correlated randomness of size O(ℓ logn), and tolerates up to n−Θ(n/ℓ)
semi-honest corruptions.

1 The authors of [39] considered a related class of functions called abelian programs. Their protocol can
also compute symmetric functions by setting the underlying abelian group as the ring of integers modulo
n + 1. See Remark 6 for more details.
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Table 1 Information-theoretic MPC protocols for computing symmetric functions with sublinear
bottleneck complexity in the dishonest-majority setting.

Reference BC CR Corruption

[39, 21] O(log n) O(n) n − 1

[21] O(
√

n) O(
√

n) n − 1

Ours (Corollary 8) O(log n) O((log n)2) n − o(n)

Ours (Corollary 15) O((log n)2) O(log n) n − o(n)

Ours (Corollary 9) O(log n) O(log n) (1 − ϵ)n
“BC” stands for bottleneck complexity and “CR” stands for the amount of correlated randomness per party.

ϵ is any constant with 0 < ϵ < 1/2.

▶ Theorem 2 (Informal). For a parameter ℓ, there exists an information-theoretic MPC pro-
tocol for computing a symmetric function f : {0, 1}n → {0, 1} that has bottleneck complexity
O(ℓ logn), per-party correlated randomness of size O(logn), and tolerates up to n−Θ(n/ℓ)
semi-honest corruptions.

A typical choice of the parameter ℓ is ℓ = Θ(logn). Theorem 1 then gives a protocol that
has bottleneck complexity O(logn) and correlated randomness of size O((logn)2). Theorem 2
gives a protocol that has bottleneck complexity O((logn)2) and correlated randomness of size
O(logn). Compared to the previous works, our protocols achieve for the first time polylog(n)
bottleneck complexity and correlated randomness simultaneously (see Table 1). Furthermore,
if we set ℓ ≈ 1/ϵ for a constant 0 < ϵ < 1/2, then both Theorems 1 and 2 give protocols such
that both the bottleneck complexity and the amount of correlated randomness are O(logn)
for a constant fraction of corrupted players (e.g., 99 percent of the parties are corrupted).
Although the corruption threshold t is lower than the maximum n− 1, our protocols are still
secure in the dishonest majority setting t > n/2. A more detailed comparison is shown in
Table 1.

Our first protocol even achieves polylog(n) computational complexity since the local
computation of each player involves only O(logn) arithmetic operations in a field of size O(n).
As a comparison, the previous protocols in [39, 21] have O(n) computational complexity
since every player needs to process vectors or matrices of size O(n).

Technically, we achieve polylogarithmic bottleneck complexity and correlated randomness
with the help of ramp secret sharing [42, 7, 47, 23] (also known as packed secret sharing), a
technique to distribute and operate on multiple secrets simultaneously only paying the cost
of a single secret. This tool was used to realize certain functionalities in several previous
works [14, 22], but they required every player to distribute fresh shares of their local secret,
which leads to inefficient protocols in terms of bottleneck complexity. Our technical novelty
is carefully designing correlated randomness to avoid such resharing processes and keep
polylog(n) bottleneck complexity. See Section 2 for a detailed overview of our techniques.

1.2 Related Work
Boyle et al. [10] constructed a generic compiler from any possibly insecure protocol to
a computationally secure protocol (without correlated randomness) preserving bottleneck
complexity up to a polynomial factor in a security parameter. However, their compiler
is based on fully homomorphic encryption, which can only be instantiated from a narrow
class of cryptographic assumptions [25, 46, 26], and the concrete efficiency leaves much to
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10:4 MPC with Polylogarithmic Bottleneck Complexity and Correlated Randomness

be desired. Orlandi, Ravi, and Scholl [43] constructed a protocol for symmetric functions
in the correlated randomness model assuming garbled circuits. However, in addition to
not achieving information-theoretic security, players need to receive a garbled circuit with
O(logn) input bits as correlated randomness. Since the minimum size of circuits computing
a worst-case function with m input bits is Ω(2m/m) [38], the correlated randomness of [43]
is Ω(λn/ logn) in the worst case, which is not polylogarithmic in n. There are maliciously
secure protocols with sublinear bottleneck complexity for general tasks [20] and specific
tasks [41, 24]. However, these protocols assume the strong honest-majority setting (t < n/3)
and/or only achieve Ω(

√
n) bottleneck complexity.

There is a rich line of works studying total communication complexity of MPC, e.g.,
[27, 4, 11, 44, 15, 35, 34, 17, 2, 16, 19, 5, 36, 12, 30, 31, 40, 29]. However, protocols in all of
the above works require full interaction among players, that is, each player may send different
messages to all the other players in each round of interaction. This feature necessarily results
in high bottleneck complexity Ω(n).

The authors of [33, 32] initiated the study of the communication complexity of MPC with
restricted interaction patterns. Halevi et al. [32] studied a chain-based interaction, in which
players interact over a simple directed path traversing all players. Protocols on a chain-based
interaction possibly achieve low bottleneck complexity since each player communicates with
at most two players. However, since the last player on the chain is allowed to evaluate
the function on every possible input of his choice, the constructions in [32] cannot achieve
the standard security of MPC, which requires that corrupted players learn nothing but the
output.

2 Technical Overview

In this section, we provide an overview of our techniques. More detailed descriptions and
security proofs will be given in the following sections.

2.1 Our First Protocol for Symmetric Functions
To begin with, we recall the protocol computing symmetric functions with O(logn) bottleneck
complexity in [39, 21]. Let h : {0, 1}n → {0, 1} be a symmetric function. Since the value
of h(x1, . . . , xn) depends only on the number of 1’s, which is equal to the sum

∑
i∈[n] xi,

there is the unique function f : {0, 1, . . . , n} → {0, 1} such that h(x1, . . . , xn) = f(
∑

i∈[n] xi).
Roughly speaking, the protocol in [39, 21] proceeds as follows: In the setup, players receive
an additive sharing of the truth-table Tr ∈ {0, 1}n+1 of f permuted with a random shift
r ∈ {0, 1, . . . , n}. Simultaneously, they also receive an additive sharing (ri)i∈[n] of the shift
r. In the online phase, players compute xi + ri, open y =

∑
i∈[n] xi + r, and then open the

y-th component of the permuted truth-table Tr, which is f(y − r) = h(x1, . . . , xn). In this
protocol, however, players need to receive additive shares of the (n+ 1)-dimensional vector
Tr, which results in correlated randomness of size O(n) per party.

Our starting point to reduce this large correlated randomness is using a ramp secret
sharing scheme to share the permuted truth-table Tr of f . Ramp secret sharing [42, 7, 47] is
a variant of secret sharing which can share a secret vector of dimension k keeping the share
size logarithmic in k and n. One may expect that a ramp secret sharing scheme can compress
the (n+1)-dimensional vector Tr into shares each of size logarithmic in n. However, this falls
short of achieving our goal since the efficiency of ramp secret sharing schemes comes at the
cost of decreasing a privacy threshold t to n−k. In our setting, this means that when sharing
the (n+ 1)-dimensional vector Tr, we need to set a privacy threshold t = n− (n+ 1) < 0,
which guarantees no privacy.
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To overcome this, we decompose the permuted truth-table Tr into ℓ vectors Tr =
(U(0),U(1), . . . ,U(ℓ−1)) each of dimension k = (n+ 1)/ℓ. We independently generate shares
of each vector U(j) using a ramp secret sharing scheme. Now, a privacy threshold is
t = n − (n + 1)/ℓ = n − o(n) instead of t = n − (n + 1). In the online phase, players
write y = x + r as y = σk + τ for some σ ∈ {0, 1, . . . , ℓ − 1} and τ ∈ {0, 1, . . . , k − 1},
which implies that the y-th component of Tr corresponds to the τ -th component of U(σ).
Then all players can together reconstruct the output f(y − r) = h(x1, . . . , xn) by opening
the τ -th component of U(σ). A typical choice of the parameter ℓ is ℓ = Θ(logn). Then a
privacy threshold is t = n−Θ(n/ logn) and correlated randomness for each player consists
of O(ℓ) = O(logn) shares. Since a ramp secret sharing scheme requires the underlying field
to contain n+ k = O(n) elements, the size of correlated randomness is O((logn)2) in bits.
Note that the bottleneck complexity is still O(logn) since players open only one share in the
online phase. On the other hand, if we set ℓ ≈ 1/ϵ for a constant 0 < ϵ < 1/2, then both
the bottleneck complexity and the amount of correlated randomness are O(logn) while the
number of corrupted players should be at most (1− ϵ)n.

2.2 Our Second Protocol for Symmetric Functions

Next, we show a protocol which reduces the amount of correlated randomness to O(logn)
bits at the cost of increasing bottleneck complexity to O((logn)2). Our starting point
is a balancing approach in [21] of expressing the truth-table of f : {0, 1, . . . , n} → {0, 1}
(induced by a symmetric function h) as a matrix Mf instead of an (n + 1)-dimensional
vector. More specifically, assume that there are two distinct primes ℓ and k such that
ℓk = n + 1, and fix the one-to-one correspondence ϕ between Zn+1 = {0, 1, . . . , n} and
Zℓ × Zk = {(σ, τ) ∈ Z2 : 0 ≤ σ < ℓ, 0 ≤ τ < k} induced by the Chinese remainder theorem.
Then there exists a matrix Mf ∈ {0, 1}ℓ×k such that the computation of f(

∑
i∈[n] xi) can

be expressed as the following inner product

f(
∑
i∈[n]

xi) = ⟨eσ,Mf · eτ ⟩, (1)

where (σ, τ) = ϕ(
∑

i∈[n] xi) and ej denotes the vector with a 1 in the j-th coordinate and
0’s elsewhere. The task is now reduced to secure computation of matrix-vector products of
size at most max{ℓ, k}, which balances bottleneck complexity and the amount of correlated
randomness. However, if we naively implement secure computation of the inner product (1)
by sharing secret vectors eσ and eτ in an element-wise way, then the best possible bottleneck
complexity is Ω(

√
n) since the primes ℓ, k should satisfy ℓk = Ω(n).

To achieve polylogarithmic bottleneck complexity, we use a ramp secret sharing scheme
and encode secret vectors eσ and eτ into small shares. This reduces the secure computation
of (1) to constructing protocols for the following functionalities:
Linear transformation. Players obtain ramp shares of an ℓ-dimensional vector M ·w from

shares of a k-dimensional secret vector w, where M is a public ℓ-by-k matrix.
Inner product. Players obtain ⟨v,w⟩ from ramp shares of two ℓ-dimensional vectors v and

w.
We note that a protocol for the first functionality was previously considered in [14] but it
requires every player to reshare their local shares, which results in Ω(n) bottleneck complexity.
Our technical novelty is carefully designing correlated randomness to avoid such resharing
processes and keep bottleneck complexity polylogarithmic in n.
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Linear transformation. Ramp secret sharing schemes considered in this paper have linear
reconstruction, that is, a secret vector can be expressed as a linear combination of all shares
over a field. This implies that given shares of w, every player can locally compute an
ℓ-dimensional vector si such that s1 + · · ·+ sn = M ·w. If players were allowed to reshare
all the si’s, they could securely obtain shares of M ·w. However, the resharing of all the
si’s results in high bottleneck complexity Ω(n). Instead, we distribute shares of a randomly
chosen ℓ-dimensional vector r in the offline phase. This enables players to locally compute
xi such that x1 + · · · + xn = M ·w + r and jointly reconstruct M ·w + r, which can be
done by communicating O(ℓ) field elements. Note that since r is unknown to any player,
M ·w + r is just a random vector. It can be done locally to obtain shares of M ·w + r from
it. Players then convert these shares into the ones of M ·w by subtracting the shares of r. In
our protocol, players communicate only O(ℓ) field elements in the online phase and receive a
constant number of field elements in the offline phase.

Inner product. Distributing Beaver triples [1] in the offline phase is a common technique
to compute the product vw from shares of two secrets v and w. Although this technique
successfully works when computing the product of scalars, a naive generalization does not
work if we compute the inner product of vectors shared by a ramp scheme. More specifically,
a common template using Beaver triples is distributing fresh shares of three secrets a, b and
c in the offline phase, where a and b are randomly chosen and c = ab. In the online phase,
players reconstruct v − a and w − b, and then compute shares of vw based on the equation

vw = (v − a)(w − b) + a(w − b) + b(v − a) + c.

This can be done locally since vw is a linear combination of secrets a, b and c with public
coefficients v−a and w− b. To generalize this template, we distribute shares of secret vectors
a, b and c, where a and b are random and c = a ∗ b, where ∗ denotes the element-wise
product. As above, players reconstruct v− a and w− b. Naturally, we extends the above
equation to vectors:

v ∗w = (v− a) ∗ (w− b) + a ∗ (w− b) + b ∗ (v− a) + c.

It is easy to compute shares of the first term since v− a and w− b are public. A technical
difficulty lies in computing shares of the second and third terms. When we only deal with
scalars, players can locally compute shares of a(w− b) from shares of a and a public constant
w − b just by multiplying the shares by the constant. However, when a secret vector a is
shared by a ramp scheme, multiplying shares of a by a constant d results in shares of a
vector d · a, whose entries are all multiplied by d. To obtain shares of a ∗ (w− b), we need
to multiply different entries of a secret vector a by different constants. For that, we rewrite
a ∗ (w− b) = diag(w− b) · a and apply the above protocol for linear transformation with
M = diag(w− b), where diag(w− b) denotes a diagonal matrix whose (i, i)-th entry is the
i-th entry of w− b. Finally, players obtain shares of v ∗w, jointly reconstruct it, and output
⟨1,v ∗w⟩ = ⟨v,w⟩, where 1 is the all-one vector. Since naively reconstructing v ∗w leaks
additional information, we let players add shares of a random secret s such that ⟨1, s⟩ = 0,
which does not affect correctness since ⟨1,v ∗ w + s⟩ = ⟨v,w⟩. In this protocol, players
communicate only O(ℓ) field elements in the online phase and receive a constant number of
field elements in the offline phase.

Putting it altogether. Similarly to our first protocol, in the offline phase, we distribute
additive shares of a random mask r ∈ {0, 1, . . . , n} and ramp shares of vectors eσr

and
eτr , where ϕ(r) = (σr, τr) ∈ Zℓ × Zk. In the online phase, players open a masked sum y =
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∑
i∈[n] xi−r and compute ϕ(y) = (σy, τy). Note that (σy +σr, τy +τr) = ϕ(

∑
i∈[n] xi) = (σ, τ).

Then, players obtain ramp shares of eσ by applying the protocol for linear transformation with
w = eσr

and M being the linear operation of shifting a vector by σy. Similarly, players run
the linear transformation protocol on ramp shares of eτr to obtain shares of eτ . Subsequently,
they apply the linear transformation protocol setting w = eτ and M = Mf to obtain ramp
shares of Mf · eτ . Finally, they run the inner product protocol on input eσ and Mf · eτ , and
obtain ⟨eσ,Mf ·eτ ⟩ = f(

∑
i∈[n] xi) = h(x1, . . . , xn). A typical choice of the primes ℓ and k is

ℓ = Θ(logn) and k = Θ(n/ logn). Since a ramp secret sharing scheme requires a field of size
O(n), a field element can be described in O(logn) bits. Therefore, the bottleneck complexity
of our final protocol is O(ℓ logn) = O((logn)2) and the per-party correlated randomness is
O(logn) bits. On the other hand, a privacy threshold is t = n−max{ℓ, k} = n−Θ(n/ logn)
since ℓ-dimensional and k-dimensional secret vectors are shared by a ramp scheme.

3 Preliminaries

3.1 Notations
For m ∈ N, define [m] = {1, . . . ,m}. Define Zm as the ring of integers modulo m. We
identify Zm (as a set) with {z ∈ Z : 0 ≤ z ≤ m− 1}. For a subset X of a set Y , we define
Y \X = {y ∈ Y : y /∈ X}. We write u←$Y if u is chosen uniformly at random from a set Y .
For a vector s = (si)i∈Zm ∈ Xm and r ∈ Zm, we define Shiftr(s) as the vector obtained by
shifting elements by r. Formally, u = (ui)i∈Zm

= Shiftr(s) is defined by ui = s(i−r) mod m for
all i ∈ Zm. If X is a field F, Shiftr can be expressed by a linear operation. Formally, define a
permutation matrix Pr ∈ Fm×m as the one whose (i, j)-th entry is 1 if j = (i−r) mod m and
0 otherwise, where we identify the sets indexing the rows and columns of the matrix as Zm.
Then it holds that Shiftr(s) = Pr · s. It also holds that P−1

r · s = P⊤
r · s = P−r · s = Shift−r(s)

Let 0m be the zero vector of dimension m and 1m be the all-ones vector of dimension m.
We simply write 0 or 1 if the dimension is clear from the context. Let ei denote the i-th
unit vector whose entry is 1 at position i, and 0 otherwise. For a vector v of dimension m,
we define diag(v) as a diagonal matrix whose (i, j)-th entry is the i-th entry of v if j = i

and 0 otherwise. For two vectors u,v over a ring, we denote the standard inner product of u
and v by ⟨u,v⟩. Throughout the paper, we fix the following notations:

n is the total number of players.
t is the maximum number of corrupted players (see Section 3.2).
K is the minimum finite field such that |K| ≥ 2n. Fix 2n pairwise distinct elements
β0, β1, . . . , βn−1, α1, . . . , αn ∈ K.

3.2 Secure Multiparty Computation
We denote the set of n players by {P1, . . . ,Pn}, where Pi is called the i-th player. Assume that
each player Pi has a private input xi from a finite set D. Let F(x1, . . . , xn) = (y1, . . . , yn) be
an n-input/n-output randomized functionality. We assume the correlated randomness model,
in which there is a trusted dealer who samples (r1, . . . , rn) according to a joint distribution D
over the Cartesian product R1×· · ·×Rn of n sets, and gives ri ∈ Ri to each player Pi before
he decides his input. We assume computationally unbounded adversaries who passively
corrupt up to t players. (We do not consider active adversaries whose corrupted players
deviate from protocols arbitrarily.) Let Π be a protocol between n players in the correlated
randomness model. For a subset T ⊆ [n] of size at most t and any input x = (xi)i∈[n],
consider the following two processes:

ITC 2024



10:8 MPC with Polylogarithmic Bottleneck Complexity and Correlated Randomness

Ideal process. This process is defined with respect to a simulator Sim. Let (y1, . . . , yn)←
F(x). The output of this process is IdealF,Sim(T,x) := (Sim(T, (xi, yi)i∈T ), (yi)i∈[n]).

Real process. Suppose that all players each holding an input xi execute Π honestly. Let
ViewΠ,i(x) denote the view of Pi at the end of the protocol execution (which consists
of his private input xi, correlated randomness ri, and messages that he received or sent
during the execution of Π), and let OutputΠ,i(x) be the output of Pi. The output of this
process is RealΠ(T,x) := ((ViewΠ,i(x))i∈T , (OutputΠ,i(x))i∈[n]).

We say that Π is a t-secure MPC protocol for F if for any subset T ⊆ [n] of size at most t
and any input x = (xi)i∈[n], the distributions IdealF,Sim(T,x) and RealΠ(T,x) are perfectly
identical to each other.

Let g be a deterministic function on Dn. We say that Π is a t-secure protocol computing
g if it is a t-secure protocol for the functionality that takes x as input and gives g(x) to every
player. Then we have that Π is a t-secure MPC protocol computing g if and only if
Correctness. For any input x and any i ∈ [n], it holds with probability 1 that OutputΠ,i(x) =

g(x).
Privacy. For any set T ⊆ [n] of size at most t and any pair of inputs x = (xi)i∈[n], w =

(wi)i∈[n] such that (xi)i∈T = (wi)i∈T and g(x) = g(w), the distributions (ViewΠ,i(x))i∈T

and (ViewΠ,i(w))i∈T are perfectly identical to each other.

We denote by Commi(Π) the total number of bits sent or received by the i-th player
Pi during the execution of a protocol Π with worst-case inputs. We define the bottleneck
complexity of Π as BC(Π) = maxi∈[n]{Commi(Π)}. We denote by Randi(Π) the size of
correlated randomness for Pi, i.e., the total number of bits received by Pi in the setup of Π,
and define CR(Π) = maxi∈[n]{Randi(Π)}. We denote by Round(Π) the round complexity of
Π, i.e., the number of sequential rounds of interaction.

Let G be a functionality. We say that a protocol Π is in the G-hybrid model if players
invoke G during the execution of Π, that is, a trusted third party receives messages from
players and gives them the correct output of G. The composition theorem [28] implies that if
a protocol Π securely realizes a functionality F in the G-hybrid model and a protocol ΠG
securely realizes G, then the composition of Π and ΠG , i.e., the protocol obtained by replacing
all invocations of G in Π with ΠG , also securely realizes F . While the above theorem assumes
sequential composition, a set of protocols in the paper can be composed concurrently.

3.3 Basic Algorithms and Protocols

Let G be an abelian group (e.g., a finite field or a ring of integers modulo m). Define
AdditiveG(s) as an algorithm to generate additive shares over G for a secret s ∈ G. Formally,
on input s ∈ G, AdditiveG(s) chooses (s1, . . . , sn) ∈ Gn uniformly at random conditioned on
s =

∑
i∈[n] si, and outputs it.

Broadcast. Let FBroadcast,i be the functionality which receives an input y from the i-th
player and gives y to all players. Since all players are supposed to be semi-honest, a
protocol ΠBroadcast,i realizing FBroadcast,i with low bottleneck complexity is straightforward
(see [21] for a formal description). Roughly speaking, assume that the set of n players is
represented by a binary tree whose height is O(logn) and root is Pi. Each player sends his
two children the element that he received from his parent node. The complexity of ΠBroadcast,i
is CR(ΠBroadcast,i) = 0, BC(ΠBroadcast,i) = O(ℓy), and Round(ΠBroadcast,i) = O(logn), where
ℓy is the bit-length of y.



R. Eriguchi 10:9

Functionality FSum((xi)i∈[n])� �
Upon receiving a group element xi ∈ G from each player Pi, FSum gives every player
s :=

∑
i∈[n] xi.� �

Protocol ΠSum� �
Input. Each player Pi has a group element xi ∈ G.
Output. Every player obtains s =

∑
i∈[n] xi.

Protocol.
1. Each player Pi chooses ri←$ G and sets yi = xi + ri.
2. P1 sends y1 to P2.
3. For each i = 2, 3, . . . , n − 1, Pi lets zi−1 be the message from Pi−1, computes

zi = zi−1 + yi, and sends zi to Pi+1.
4. Pn sends zn = zn−1 + yn to P1.
5. P1 sends w1 = zn − r1 to P2.
6. For each i = 2, 3, . . . , n − 1, Pi lets wi−1 be the message from Pi−1, computes

wi = wi−1 − ri, and sends wi to Pi+1.
7. Pn computes s = wn−1 − rn and invokes FBroadcast,n with input s.
8. Each player Pi outputs s.� �

Figure 1 The functionality FSum and a protocol ΠSum implementing it.

Sum. In Fig. 1, we describe the functionality FSum which receives group elements
x1, . . . , xn ∈ G, each from Pi, and gives s :=

∑
i∈[n] xi to all players. We show a pro-

tocol ΠSum for FSum without any correlated randomness while the protocol in [43, 21] requires
correlated randomness of size O(log |G|) per party. In our protocol, each player Pi masks his
input xi with a random element ri, players compute s′ :=

∑
i∈[n](xi + ri) in a round-table

structure, and then unmask s′ in the same round-table structure. The formal description of
ΠSum is shown in Fig. 1. The complexities are CR(ΠSum) = 0, BC(ΠSum) = O(log |G|) and
Round(ΠSum) = O(n).

3.4 Ramp Secret Sharing
Recall that K is the minimum finite field such that |K| ≥ 2n and we fix 2n pairwise distinct
elements β0, β1, . . . , βn−1, α1, . . . , αn ∈ K. Let ℓ be a positive integer such that ℓ ≤ n. Define
RSSℓ(s) as an algorithm to generate shares of the (t, ℓ, n)-ramp secret sharing scheme for a
secret vector s ∈ Kℓ. Formally, for s ∈ Kℓ, we define a set Rs of polynomials as

Rs := {φ ∈ K[X] : degφ ≤ t+ ℓ, (φ(β0), . . . , φ(βℓ−1)) = s}

On input s ∈ Kℓ, RSSℓ(s) chooses a polynomial φ uniformly at random from Rs, and then
outputs (φ(α1), . . . , φ(αn)).

Regarding RSSℓ, we recall basic mathematical facts that we will use to construct our
protocols in the following lemmas. We defer the proofs to the full version.

▶ Lemma 3. Let T ⊆ [n] be any set of size at most t and s ∈ Kℓ. Then, there is a polynomial
∆s ∈ Rs such that ∆s(αi) = 0 for all i ∈ T .
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10:10 MPC with Polylogarithmic Bottleneck Complexity and Correlated Randomness

▶ Lemma 4. Let s,u ∈ Kℓ and φs ∈ Rs. If φu is uniformly distributed over Ru, then
φs + φu is uniformly distributed over Rs+u.

▶ Lemma 5. Let s = (s0, . . . , sℓ−1) ∈ Kℓ. Then, there is an algorithm Reconstℓ such that∑
i∈[n] Reconstℓ(j, i; vi) = sj for any j and any possible shares (v1, . . . , vn) ← RSSℓ(s).

Furthermore, Reconstℓ is linear in the sense that Reconstℓ(j, i; v) + Reconstℓ(j, i; v′) =
Reconstℓ(j, i; v + v′) for any v, v′ ∈ K.

We introduce a deterministic algorithm FixedShareℓ that outputs predetermined shares
consistent with a given secret vector. Formally, we fix a deterministic algorithm FixedSampleℓ

which on input s ∈ Kℓ, computes a polynomial ψs ∈ Rs. It can be implemented efficiently,
e.g., with Gaussian elimination. Define FixedShareℓ as follows: On input i ∈ [n] and
s ∈ Kℓ, FixedShareℓ(i, s) computes ψs = FixedSampleℓ(s) and outputs ψs(αi). Note that
(FixedShareℓ(i, s))i∈[n] is a tuple of possible shares of a secret vector s.

4 Our First Protocol for Symmetric Functions

We call a function h : {0, 1}n → {0, 1} symmetric if h(xσ(1), . . . , xσ(n)) = h(x1, . . . , xn) for
any input (x1, . . . , xn) ∈ {0, 1}n and any permutation σ : [n]→ [n]. By definition, the value
of a symmetric function h is determined only by the Hamming weight w of the input, i.e.,
w := |{i ∈ [n] : xi = 1}| =

∑
i∈[n] xi. Thus, there is the unique function f : {0, 1, . . . , n} →

{0, 1} such that f(x1 + · · ·+ xn) = h(x1, . . . , xn) for all (x1, . . . , xn) ∈ {0, 1}n.
▶ Remark 6. The authors of [43, 39] considered a related class of functions called abelian
programs. Specifically, a function h̃ : Gn → {0, 1} is called an abelian program over an abelian
group G if there exists a function f : G→ {0, 1} such that h̃(x̃1, . . . , x̃n) = f(x̃1 + · · ·+ x̃n)
for all (x̃1, . . . , x̃n) ∈ Gn, where addition is taken over G. As pointed out in [3], abelian
programs can compute a symmetric function h : {0, 1}n → {0, 1} by setting G = Zn+1 and
viewing each input xi ∈ {0, 1} as an element x̃i ∈ Zn+1 (i.e., embed {0, 1} into Zn+1). The
authors of [39] presented an information-theoretic MPC protocol Π for an abelian program
h̃ : Gn → {0, 1} such that CR(Π) = O(|G|) and BC(Π) = O(log |G|). Based on the above
correspondence, the protocol has CR(Π) = O(n) and BC(Π) = O(logn) when computing a
symmetric function h : {0, 1}n → {0, 1}.

First, for a parameter ℓ, we show an (n − Θ(n/ℓ))-secure protocol for any symmetric
function h such that the bottleneck complexity is O(logn) and the amount of correlated
randomness is O(ℓ logn). If we set ℓ = Θ(logn), then we obtain an (n−o(n))-secure protocol
such that the bottleneck complexity is O(logn) and the amount of correlated randomness is
O((logn)2).

▶ Theorem 7. Let h : {0, 1}n → {0, 1} be a symmetric function. Let ℓ be any integer such
that ℓ ≤ n+ 1, and suppose that t ≤ n− ⌈(n+ 1)/ℓ⌉. The protocol ΠSym described in Fig. 2
is a t-secure MPC protocol computing h in the FSum-hybrid model. Implementing FSum, the
protocol ΠSym achieves CR(ΠSym) = O(ℓ logn) and BC(ΠSym) = O(logn).

Proof. First, we prove the correctness of ΠSym. Let x ∈ {0, 1}n be any input. Since
r =

∑
i∈[n] ri, it holds that y = r+

∑
i∈[n] xi. Since (v(j)

i )i∈[n] are shares of RSSk for a secret
vector U(j), it also holds that

z =
∑
i∈[n]

zi =
∑
i∈[n]

Reconstk(τ, i; v(σ)
i ) = (U(σ))τ = (S)σk+τ = (S)y = F(y−r) mod m

where (U(σ))τ is the τ -th element of U(σ) and (S)y is the y-th element of S. Therefore, we
have that z = f(

∑
i∈[n] xi) = h(x1, . . . , xn).
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Next, we prove the privacy of ΠSym. Let T ⊆ [n] be the set of corrupted players. Let
H = [n] \ T be the set of honest players and fix an honest player j ∈ H. Note that in the
FSum-hybrid model, corrupted players’ view can be simulated from the following elements
since the other elements are locally computed from them:
Correlated randomness. (ri, v

(0)
i , . . . , v

(ℓ−1)
i ) for all i ∈ T ;

Online messages. y =
∑

i∈[n] xi + r and z.
Let x = (xi)i∈[n], x̃ = (x̃i)i∈[n] ∈ {0, 1}n be any pair of inputs such that xi = x̃i (∀i ∈ T )
and h(x1, . . . , xn) = h(x̃1, . . . , x̃n). It is sufficient to prove that the distribution of the above
elements during the execution of ΠSym on input x is identical to that on input x̃. To show
the equivalence of the distributions, we show a bijection between the random strings used by
ΠSym on input x and the random strings used by ΠSym on input x̃ such that the correlated
randomness and the online messages received by T are the same under this bijection. The
set of all random strings is

R =
{(

(ri)i∈[n], ϕ
(0), . . . , ϕ(ℓ−1)

)
: ri ∈ Zm, ϕ

(j) ∈ RU(j)

}
,

where r =
∑

i∈[n] ri and (U(0), . . . ,U(ℓ−1)) = Shiftr(F). We denote the randomness
of ΠSym on input x by R = ((ri)i∈[n], ϕ

(0), . . . , ϕ(ℓ−1)) and that on input x̃ by R̃ =
((r̃i)i∈[n], ϕ̃

(0), . . . , ϕ̃(ℓ−1)). We consider a bijection that maps the randomness R ∈ R to
R̃ ∈ R in such a way that

r̃i =
{
ri, if i ∈ T,
ri + xi − x̃i, if i ∈ H,

and ϕ̃(j) = ϕ(j) + ∆Ũ(j)−U(j)

where

r :=
∑
i∈[n]

ri, (U(0), . . . , U(ℓ−1)) := Shiftr(F), r̃ :=
∑
i∈[n]

r̃i, (Ũ(0), . . . , Ũ(ℓ−1)) := Shift̃
r
(F),

and ∆Ũ(j)−U(j) ∈ RŨ(j)−U(j) is a polynomial such that ∆Ũ(j)−U(j)(αi) = 0 for all i ∈ T ,
whose existence is guaranteed by Lemma 3. The image is indeed a consistent random string,
i.e., ((r̃i)i∈[n], ϕ̃

(0), . . . , ϕ̃(ℓ−1)) ∈ R, since ϕ(j) ∈ RU(j) implies that ϕ̃(j) = ϕ(j)+∆Ũ(j)−U(j) ∈
RŨ(j) . The above map is indeed a bijection since it has the inverse

ri =
{
r̃i, if i ∈ T,
r̃i + x̃i − xi, if i ∈ H,

and ϕ(j) = ϕ̃(j) −∆Ũ(j)−U(j) .

This bijection does not change the correlated randomness (ri, v
(0)
i , . . . , v

(ℓ−1)
i )i∈T of T since

ṽ
(j)
i = ϕ̃(j)(αi) = ϕ(j)(αi) + ∆Ũ(j)−U(j)(αi) = ϕ(j)(αi) = v

(j)
i for all i ∈ T . It can be seen

that x̃i + r̃i = x̃i + (ri +xi− x̃i) = xi + ri for i ∈ H. In particular, the message y is the same
in both executions. Since h(x1, . . . , xn) = h(x̃1, . . . , x̃n), the message z is also the same in
both executions, which implies that the bijection does not change online messages seen by
corrupted players.

Finally, since players also need to receive correlated randomness for two executions of the
protocol ΠSum implementing FSum, we have CR(ΠSym) = O(logm + ℓ log |K|) + O(logm +
log |K|) = O(ℓ logn) and BC(ΠSym) = O(logm+ log |K|) = O(logn). ◀

Setting ℓ = Θ(logn), we obtain the following corollary.

▶ Corollary 8. If t = n−Θ(n/ logn), then there exists a t-secure MPC protocol Π computing
a symmetric function h : {0, 1}n → {0, 1} such that CR(Π) = O((logn)2) and BC(Π) =
O(logn).
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Protocol ΠSym� �
Notations.

Let h : {0, 1}n → {0, 1} be a symmetric function.
Let f : {0, 1, . . . , n} → {0, 1} be a function such that h(x1, . . . , xn) = f(

∑
i∈[n] xi)

for all (x1, . . . , xn) ∈ {0, 1}n.
Let ℓ ≤ n+ 1, k := ⌈(n+ 1)/ℓ⌉ and m := ℓk.
Define F = (Fi)i∈Zm

∈ Km by Fi = f(i) if 0 ≤ i ≤ n and Fi = 0 otherwise.
Input. Each player Pi has xi ∈ {0, 1}.
Output. Every player obtains z = h(x1, . . . , xn).
Setup.

1. Let r←$ Zm and (ri)i∈[n] ← AdditiveZm(r).
2. Define S ∈ Km by S = Shiftr(F) and decompose S into ℓ vectors U(0), . . . ,U(ℓ−1)

of dimension k, i.e., S = (U(0), . . . ,U(ℓ−1)).
3. For each j = 0, 1, . . . , ℓ− 1, let (v(j)

i )i∈[n] ← RSSk(U(j)).
4. Each player Pi receives (ri, v

(0)
i , . . . , v

(ℓ−1)
i ).

Protocol.
1. Each player Pi computes yi = xi + ri mod m.
2. Players obtain y = FSum((yi)i∈[n]).
3. Each player computes (σ, τ) ∈ Zℓ × Zk such that y = σk + τ .
4. Each player Pi computes zi = Reconstk(τ, i; v(σ)

i ).
5. Players obtain z = FSum((zi)i∈[n]).
6. Each player Pi outputs z.� �

Figure 2 Our first protocol ΠSym for computing a symmetric function.

Setting ℓ ≈ 1/ϵ for a constant 0 < ϵ < 1/2, we also obtain a (1− ϵ)n-secure protocol such
that both bottleneck complexity and the amount of correlated randomness are O(logn).

▶ Corollary 9. For any constant ϵ such that 0 < ϵ < 1/2, there exists a (1 − ϵ)n-secure
MPC protocol Π computing a symmetric function h : {0, 1}n → {0, 1} such that CR(Π) =
O(ϵ−1 logn) = O(logn) and BC(Π) = O(logn).

▶ Remark 10 (Round complexity). We have Round(ΠSym) = O(n) if FSum is instantiated with
ΠSum. The round complexity of ΠSum can be reduced to O(logn) without changing asymptotic
bottleneck complexity and amount of correlated randomness. Indeed, there is a more
round-efficient protocol Π′

Sum realizing FSum such that CR(Π′
Sum) = O(log |G|), BC(Π′

Sum) =
O(log |G|), and Round(Π′

Sum) = O(logn), where G is an abelian group from which inputs take
values [21]. If we implement FSumwith Π′

Sum, then ΠSym achieves Round(ΠSym) = O(logn).
This modification increases the amount of correlated randomness by O(logm) +O(log |K|) =
O(logn) but does not change overall complexities in an asymptotic sense. In summary, we have
a t-secure MPC protocol ΠSym for h such that CR(ΠSym) = O(ℓ logn), BC(ΠSym) = O(logn)
and Round(ΠSym) = O(logn).

▶ Remark 11 (Computational complexity). Each player receives O(ℓ) elements in K and
performs a constant number of operations in K. The computational complexity of ΠSym is
thus O(ℓ) field operations.
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5 Our Second Protocol for Symmetric Functions

In this section, we show a protocol for any symmetric function whose bottleneck complexity
is O((logn)2) and amount of correlated randomness is O(logn). First, we construct two
building-block protocols with low bottleneck complexity, and then we show our main protocol.

5.1 Additional Building Blocks
For parameters k, ℓ, we consider the following sub-functionalities:
Linear transformation FLT. Given ramp shares of a k-dimensional secret vector s, players

obtain ramp shares of an ℓ-dimensional vector u := M · s, where M is a public ℓ-by-k
matrix. The formal description is shown in Fig. 4.

Inner product FIP. Given ramp shares of two ℓ-dimensional vectors v and w, players obtain
the inner product ⟨v,w⟩. The formal description is shown in Fig. 5.

We show protocols for FLT and FIP. The formal descriptions and proofs are given in
Appendices A and B.

▶ Proposition 12. Let k, ℓ be positive integers with ℓ ≤ k ≤ n and M be an ℓ-by-k matrix
over K. Suppose that t ≤ n− ℓ. Then, the protocol ΠLT described in Fig. 4 is a t-secure MPC
protocol for FLT in the FSum-hybrid model. Implementing FSum, the protocol ΠLT achieves
CR(ΠLT) = O(logn) and BC(ΠLT) = O(ℓ logn).

▶ Proposition 13. Let ℓ be a positive integer with ℓ ≤ n. Suppose that t ≤ n− ℓ. Then, the
protocol ΠIP described in Fig. 5 is a t-secure MPC protocol for FIP in the (FSum,FLT)-hybrid
model. Implementing FSum and FLT, the protocol ΠIP achieves CR(ΠIP) = O(logn) and
BC(ΠIP) = O(ℓ logn).

5.2 Main Protocol
Now, for two primes k, ℓ with ℓk > n, we show an (n− k)-secure protocol for any symmetric
function h such that the bottleneck complexity is O(ℓ logn) and the amount of correlated
randomness is O(logn).

▶ Theorem 14. Let h : {0, 1}n → {0, 1} be a symmetric function. Let ℓ, k be primes
such that ℓ < k and n + 1 ≤ ℓk ≤ O(n), and suppose that t ≤ n − k. The protocol Π′

Sym
described in Fig. 3 is a t-secure MPC protocol for Fh in the (FSum,FLT,FIP)-hybrid model.
Implementing FSum, FLT and FIP, the protocol Π′

Sym achieves CR(Π′
Sym) = O(logn) and

BC(Π′
Sym) = O(ℓ logn).

Proof. First, we prove the correctness of Π′
Sym. Let x ∈ {0, 1}n be any input. Since

r =
∑

i∈[n] ri, it holds that y = r −
∑

i∈[n] xi. Let (σ′, τ ′) := (σ + u, τ + v). Note that
we have ϕ(

∑
i∈[n] xi) = ϕ(y) + ϕ(r) = (σ′, τ ′). Since (di)i∈[n] are shares of RSSℓ for a

secret vector ev, the functionality of FLT implies that (d′
i)i∈[n] are shares of a secret vector

Ny · ev = P⊤
σ ·M · Pτ · ev = P⊤

σ ·M · eτ ′ . Furthermore, since (ci)i∈[n] are shares of
RSSk for a secret vector eu, the functionality of FIP implies that z = ⟨eu,P⊤

σ ·M · eτ ′⟩ =
⟨Pσ · eu,M · eτ ′⟩ = ⟨eσ′ ,M · eτ ′⟩ = M[σ′, τ ′] where M[σ′, τ ′] is the (σ′, τ ′)-th entry of M.
Therefore, we have that z = f(ϕ−1(σ′, τ ′)) = f(

∑
i∈[n] xi) = h(x1, . . . , xn).

Next, we prove the privacy of Π′
Sym. Let T ⊆ [n] be the set of corrupted players. Recall

that αi (resp. βj) is the point associated with the i-th share (resp. the j-th component of a
secret vector) of RSSℓ and RSSk. To simplify notations, we denote (φ(αi))i∈T by φ(αT ) for a
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polynomial φ. In the FSum-hybrid model, corrupted players’ view at Step 2 only contains their
inputs (yi)i∈T to FSum and the output y. Also, in the FLT-hybrid model, corrupted players’
view at Step 5 (including their correlated randomness for FLT) only contains their inputs
(di)i∈T to FLT and the outputs (d′

i)i∈T . It is sufficient to show that the joint distribution of
the following elements is simulated from (xi)i∈T and h(x1, . . . , xn) since the other elements
are locally computed from them:
Correlated randomness. (ri, ci, di) for all i ∈ T ;
Online messages. y =

∑
i∈[n] xi + r, (d′

i)i∈T , and z.
To analyze the distribution of the above element, we define View = ((ri, ci, di, d

′
i)i∈T , y, z).

Observe that the distribution of View is given by

View =

(ri)i∈T , ϕc(αT ), ϕd(αT ), ϕd′(αT ), y =
∑
i∈[n]

xi +
∑
i∈[n]

ri, z

 ,

where (r1, . . . , rn)←$ Zn
m, (u, v) = ϕ(

∑
i∈[n] ri), ϕc←$Reu , ϕd←$Rev , and ϕd′ ←$RNy·ev .

The correctness of Π′
Sym implies that

View =

(ri)i∈T , ϕc(αT ), ϕd(αT ), ϕd′(αT ), y =
∑
i∈[n]

xi +
∑
i∈[n]

ri, h(x1, . . . , xn)

 .

Lemma 3 ensures that for any v ∈ Kℓ, there is a polynomial ∆v ∈ Rv such that ∆v(αi) =
0 for all i ∈ T . If ϕ̃c are uniformly distributed over R0ℓ

, then ϕ̃c + ∆eu
is uniformly

distributed over Reu from Lemma 4 and (ϕ̃c + ∆eu)(αi) = 0 for all i ∈ T . Similarly, if
ϕ̃d, ϕ̃d′ ←$R0k

, then it holds that ϕ̃d + ∆ev
←$Rev

and ϕ̃d′ + ∆Ny·ev
←$RNy·ev

. It also
holds that (ϕ̃d + ∆ev )(αi) = ϕ̃d(αi) and (ϕ̃d′ + ∆Ny·ev )(αi) = ϕ̃d′(αi) for all i ∈ T . We thus
have that

View =

(ri)i∈T , ϕ̃c(αT ), ϕ̃d(αT ), ϕ̃d′(αT ), y =
∑
i∈[n]

xi +
∑
i∈[n]

ri, h(x1, . . . , xn)

 ,

where (r1, . . . , rn)←$ Zn
m, ϕ̃c←$R0ℓ

, ϕ̃d, ϕ̃d′ ←$R0k
. Since T ≠ [n] and (ri)i∈[n] are in-

dependent and uniformly random elements, the joint distribution of (ri)i∈T and y =∑
i∈[n] xi +

∑
i∈[n] ri is the uniform distribution over Z|T |+1

m . We thus have that

View =
(

(r̃i)i∈T , ϕ̃c(αT ), ϕ̃d(αT ), ϕ̃d′(αT ), ỹ, h(x1, . . . , xn)
)
,

where ((r̃i)i∈T , ỹ)←$ Z|T |+1
m , ϕ̃c←$R0ℓ

, ϕ̃d, ϕ̃d′ ←$R0k
. Therefore, we conclude that View is

simulated from h(x1, . . . , xn) only.
Finally, since players also need to receive correlated randomness for executions of protocols

implementing FSum, FLT and FIP, we have CR(Π′
Sym) = O(logm) + O(logn) + O(logn) =

O(logn) and BC(Π′
Sym) = O(logm) +O(ℓ logn) +O(ℓ logn) = O(ℓ logn). ◀

Thanks to Bertrand’s postulate [45, Theorem 5.8], we can choose primes k, ℓ such that
k = Θ(n/ logn) and ℓ = Θ(logn). Then we obtain an (n− o(n))-secure protocol such that
the bottleneck complexity is O((logn)2) and the amount of correlated randomness is O(logn).
More formally, the following corollary holds.

▶ Corollary 15. If t = n − Θ(n/ logn), then there exists a t-secure MPC protocol Π
computing a symmetric function h : {0, 1}n → {0, 1} such that CR(Π) = O(logn) and
BC(Π) = O((logn)2).
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Protocol Π′
Sym� �

Notations.
Let h : {0, 1}n → {0, 1} be a symmetric function.
Let f : {0, 1, . . . , n} → {0, 1} be a function such that h(x1, . . . , xn) = f(

∑
i∈[n] xi)

for all (x1, . . . , xn) ∈ {0, 1}n.
Let ℓ, k be primes such that ℓ < k and n+ 1 ≤ ℓk, and set m = ℓk.
Let ϕ : Zm → Zℓ ×Zk be the ring isomorphism induced by the Chinese remainder
theorem.
Define a matrix M ∈ Kℓ×k as follows: For (σ, τ) ∈ Zℓ × Zk, the (σ, τ)-th entry of
M is f(ϕ−1(σ, τ)) if ϕ−1(σ, τ) ∈ {0, 1, . . . , n}, and 0 otherwise, where we identify
the sets indexing the rows and columns of M as Zℓ and Zk, respectively.

Input. Each player Pi has xi ∈ {0, 1}.
Output. Every player obtains z = h(x1, . . . , xn).
Setup.

1. Let r←$ Zm, (ri)i∈[n] ← AdditiveZm
(r), and (u, v) = ϕ(r).

2. Let (ci)i∈[n] ← RSSℓ(eu) and (di)i∈[n] ← RSSk(ev), where eu ∈ Kℓ (resp. ev ∈ Kk)
is the unit vector whose entry is 1 at position u ∈ Zℓ (resp. v ∈ Zk), and 0
otherwise.

3. Each player Pi receives (ri, ci, di).
Protocol.

1. Each player Pi computes yi = xi − ri mod m.
2. Players obtain y = FSum((yi)i∈[n]).
3. Each player computes (σ, τ) = ϕ(y) ∈ Zℓ × Zk and Ny = P⊤

σ ·M ·Pτ .
4. Players obtain (d′

i)i∈[n] ← FLT(Ny; (di)i∈[n]).
5. Players obtain z ← FIP((ci, d

′
i)i∈[n]).

6. Each player Pi outputs z.� �
Figure 3 Our second protocol Π′

Sym for computing a symmetric function.

Note that setting k and ℓ as primes close to ϵn and 1/ϵ (resp.) leads to a protocol with
asymptotically the same complexity as Corollary 9.
▶ Remark 16 (Round and computational complexity). The round complexity of Π′

Sym is
Round(Π′

Sym) = O(n). Since the computation of Ny = P⊤
σ ·M ·Pτ is just permuting rows

and columns of M, it can be done by O(ℓk) field operations. The computational complexities
of ΠLT implementing FLT and ΠIP implementing FIP are O(ℓk) and O(ℓ2) field operations,
respectively. Since ℓ < k, the computational complexity of Π′

Sym is O(ℓk) = O(n) field
operations.
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A Proof of Proposition 12

Functionality FLT(M; (vi)i∈[n])� �
1. Players have shares (vi)i∈[n] of RSSk for a secret s = (s0, . . . , sk−1).
2. FLT receives vi ∈ K from each player Pi.
3. FLT reconstructs sj =

∑
i∈[n] Reconstk(j, i; vi) for all j = 0, 1, . . . , k−1, and computes

u = M · s ∈ Kℓ.
4. FLT computes shares (wi)i∈[n] ← RSSℓ(u) and gives wi to each player Pi.� �
Protocol ΠLT� �

Input. Each player Pi has the i-th share vi ∈ K of RSSk for a secret s = (s0, . . . , sk−1).
Output. Each player Pi obtains wi, where (wi)i∈[n] ← FLT(M; (vi)i∈[n]).
Setup.

1. Let r←$ Kℓ.
2. Let (ai)i∈[n] ← RSSℓ(r) and (bi)i∈[n] ← RSSℓ(0ℓ).
3. Each player Pi receives (ai, bi).

Protocol.
1. Each player Pi computes

xi = M ·

 Reconstk(0, i; vi)
...

Reconstk(k − 1, i; vi)

−
 Reconstℓ(0, i; ai)

...
Reconstℓ(ℓ− 1, i; ai)


2. Players obtain y = FSum((xi)i∈[n]), where FSum is invoked in an element-wise way.
3. Each player Pi computes w′

i = FixedShareℓ(i,y).
4. Each player Pi outputs wi = w′

i + ai + bi.� �
Figure 4 The functionality FLT and a protocol ΠLT implementing it.
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Recall that αi (resp. βj) is the point associated with the i-th share (resp. the j-th
component of a secret vector) of RSSℓ and RSSk. To simplify notations, we denote (φ(αi))i∈T

by φ(αT ) for a set T ⊆ [n] and a polynomial φ.
Let T be a subset of size at most t and (vi)i∈[n] be an input to the protocol Π = ΠLT.

Let s be the secret of RSSk determined by (vi)i∈[n] and set u = M · s.
Consider the real process. Observe that the ai’s and bi’s can be written as ai = A(αi)

and bi = B(αi) for random polynomials A←$Rr and B←$R0ℓ
. Also, it holds that

y =
∑
i∈[n]

xi

= M ·
∑
i∈[n]

 Reconstk(0, i; vi)
...

Reconstk(k − 1, i; vi)

− ∑
i∈[n]

 Reconstℓ(0, i; ai)
...

Reconstℓ(ℓ− 1, i; ai)


= M · s− r
= u− r.

Furthermore, for all i ∈ [n],

wi = ψy(αi) +A(αi) +B(αi),

where ψy ∈ Ry is the polynomial computed by the deterministic algorithm FixedShareℓ.
Thus, the output of the real process in the FSum-hybrid model is

RealΠ(T, (vi)i∈[n]) = ((ViewΠ,i((vi)i∈[n]))i∈T ; (OutputΠ,i((vi)i∈[n]))i∈[n])
= ((vi)i∈T , A(αT ), B(αT ),y; (ψy +A+B)(α[n])),

where r←$ Kℓ, A←$Rr, y = u− r, and B←$R0ℓ
. Here, we omit xi and w′

i from the view
of corrupted players since they are locally computed by the other elements.

Since t ≤ n − ℓ, Lemma 3 ensures that there exists a polynomial ∆r ∈ Rr such that
∆r(αi) = 0 for all i ∈ T . If we set A′ = A−∆r, then A′ is uniformly distributed over R0ℓ

and A′(αi) = A(αi) for all i ∈ T from Lemma 4. Thus, we have that

RealΠ(T, (vi)i∈[n]) = ((vi)i∈T , A
′(αT ), B(αT ),y; (ψy +A′ + ∆r +B)(α[n])),

where r←$ Kℓ, y = u− r, and A′, B←$R0ℓ
. Since u− r is uniformly distributed over Kℓ,

we have that

RealΠ(T, (vi)i∈[n]) = ((vi)i∈T , A
′(αT ), B(αT ),y′; (ψy′ +A′ + ∆u−y′ +B)(α[n])),

where y′←$ Kℓ and A′, B←$R0ℓ
. Since ψy′ ∈ Ry′ , A′ ∈ R0k

and ∆u−y′ ∈ Ru−y′ , it holds
that ψy′ + A′ + ∆u−y′ ∈ Ru. If we set ϕ′ := ψy′ + A′ + ∆u−y′ + B, then ϕ′ is uniformly
distributed over Ru from Lemma 4. Since ∆u−y′(αi) = 0 for all i ∈ T , we have that

RealΠ(T, (vi)i∈[n]) = ((vi)i∈T , A
′(αT ), (ϕ′ − ψy′ −A′ −∆u−y′)(αT ),y′;ϕ′(α[n]))

= ((vi)i∈T , A
′(αT ), (ϕ′ − ψy′ −A′)(αT ),y′;ϕ′(α[n])),

where y′←$ Kℓ, A′←$R0ℓ
and ϕ′←$Ru.

On the other hand, we define a simulator Sim(T, (vi)i∈T , (wi)i∈T ) as follows: First, it
samples ỹ←$ Kℓ and Ã←$R0ℓ

, and sets ãi = Ã(αi) and b̃i = wi − ψỹ(αi)− Ã(αi) for i ∈ T .
Then, it outputs

Sim(T, (vi)i∈T , (wi)i∈T ) = ((vi)i∈T , (ãi)i∈T , (̃bi)i∈T , ỹ).

ITC 2024
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Note that the functionality F = FLT gives players fresh shares of RSSℓ for a secret u. Formally,
the i-th player Pi receives ϕ(αi), where ϕ←$Ru. Then, the output of the ideal process with
respect to the functionality F and the simulator Sim is

IdealF,Sim(T, (vi)i∈[n]) = (Sim(T, (vi)i∈T , ϕ̃(αT )); ϕ̃(α[n])),

where ϕ̃←$Ru. From the construction of Sim, we have that

IdealF,Sim(T, (vi)i∈[n]) = ((vi)i∈T , Ã(αT ), (ϕ̃− ψỹ − Ã)(αT ), ỹ; ϕ̃(α[n])),

where ỹ←$ Kℓ, Ã←$R0ℓ
, and ϕ̃←$Ru.

Therefore, we conclude that

IdealF,Sim(T, (vi)i∈[n]) = RealΠ(T, (vi)i∈[n]).

Since players receives two shares of RSSℓ, the size of correlated randomness is CR(ΠLT) =
O(log |K|) = O(logn). In the online phase, the protocol invokes FSum ℓ times and hence we
have BC(ΠLT) = O(ℓ log |K|) = O(ℓ logn).

B Proof of Proposition 13

Let x = (x0, . . . , xℓ−1) (resp. y = (y0, . . . , yℓ−1)) be the secret determined by shares (vi)i∈[n]
(resp. (wi)i∈[n]).

First, we see the correctness of ΠIP. The linearity of RSSℓ implies that at Step 1 of the
protocol, (v′

i)i∈[n] (resp. (w′
i)i∈[n]) are shares of a secret x− a (resp. y− b). We thus have

that x′ = x− a, y′ = y− b and z′ = (x− a) ∗ (y− b) at Steps 3 and 4. On the other hand,
the functionality of FLT ensures that (a′

i)i∈[n] are shares of a secret

a′ := diag(y′) · a = (y− b) ∗ a

and similarly, (b′
i)i∈[n] are shares of a secret b′ := (x− a) ∗ b. The linearity of RSSℓ implies

that di = z′
i + a′

i + b′
i + ci + ri is the i-th share of a secret

z′ + a′ + b′ + c + s = (x− a) ∗ (y− b) + (y− b) ∗ a + (x− a) ∗ b + a ∗ b + s
= x ∗ y + s.

Thus it holds that d = x ∗ y + s. The correctness follows from

z = ⟨1ℓ,d⟩ = ⟨1ℓ,x ∗ y⟩+ ⟨1ℓ, s⟩ = ⟨x,y⟩.

We show the privacy of ΠIP. Let T ⊆ [n] be the set of corrupted players. Recall that αi

(resp. βj) is the point associated with the i-th share (resp. the j-th component of a secret
vector) of RSSℓ. To simplify notations, we denote (φ(αi))i∈T by φ(αT ) for a polynomial
φ. In the FSum-hybrid model, corrupted players’ view at Steps 3 and 7 (including their
correlated randomness for FSum) only contains their inputs (x′

i,y′
i,di)i∈T to FSum and the

outputs x′,y′,d. Also, in the FLT-hybrid model, corrupted players’ view at Step 5 (including
their correlated randomness for FLT) only contains their inputs (ai, bi)i∈T to FLT and the
outputs (a′

i, b
′
i)i∈T . It is therefore sufficient to show that the joint distribution of the following

elements is simulated from (vi, wi)i∈T and z = FIP((vi, wi)i∈[n]) since the other elements are
locally computed from them:
Correlated randomness. (ai, bi, ci, ri)i∈T ;
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Functionality FIP((vi, wi)i∈[n])� �
1. Players have shares (vi)i∈[n] and (wi)i∈[n] of RSSℓ for secrets x = (x0, . . . , xℓ−1) and

y = (y0, . . . , yℓ−1), respectively.
2. FIP receives shares vi, wi ∈ K from each player Pi.
3. FIP reconstructs

xj =
∑
i∈[n]

Reconstℓ(j, i; vi), yj =
∑
i∈[n]

Reconstℓ(j, i;wi)

for all j = 0, 1, . . . , ℓ− 1, and computes z = ⟨x,y⟩.
4. FIP gives z to every player Pi.� �
Protocol ΠIP� �

Input. Each player Pi has the i-th shares vi, wi ∈ K of RSSℓ for secrets x = (x0, . . . , xℓ−1)
and y = (y0, . . . , yℓ−1), respectively.

Output. Each player Pi obtains z = FIP((vi, wi)i∈[n]).
Setup.

1. Let a,b←$ Kℓ and c = a ∗ b, where ∗ is the element-wise multiplication.
2. Let (ai)i∈[n] ← RSSℓ(a), (bi)i∈[n] ← RSSℓ(b) and (ci)i∈[n] ← RSSℓ(c).
3. Choose a random vector s ∈ Kℓ such that ⟨1ℓ, s⟩ = 0.
4. Let (ri)i∈[n] ← RSSℓ(s).
5. Each player Pi receives (ai, bi, ci, ri).

Protocol.
1. Each player Pi computes v′

i = vi − ai and w′
i = wi − bi.

2. Each player Pi computes

x′
i = (Reconstℓ(0, i; v′

i), . . . ,Reconstℓ(ℓ− 1, i; v′
i)),

y′
i = (Reconstℓ(0, i;w′

i), . . . ,Reconstℓ(ℓ− 1, i;w′
i)).

3. Players obtain x′ = FSum((x′
i)i∈[n]) and y′ = FSum((y′

i)i∈[n]), where FSum is
invoked in an element-wise way.

4. Each player Pi computes z′ = x′ ∗ y′ and z′
i = FixedShareℓ(i, z′).

5. Players obtain

(a′
i)i∈[n] ← FLT(N; (ai)i∈[n]), (b′

i)i∈[n] ← FLT(M; (bi)i∈[n]),

where M = diag(x′) and N = diag(y′).
6. Each player Pi computes di = z′

i + a′
i + b′

i + ci + ri and

di = (Reconstℓ(0, i; di), . . . ,Reconstℓ(ℓ− 1, i; di)).

7. Players obtain d = FSum((di)i∈[n]).
8. Every player outputs z = ⟨1ℓ,d⟩.� �

Figure 5 The functionality FIP and a protocol ΠIP implementing it.
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Online messages. x′ = x− a, y′ = y− b, (a′
i, b

′
i)i∈T and d = x ∗ y + s.

To analyze the distribution of the above elements, we define

View = ((ai, bi, ci, ri, a
′
i, b

′
i)i∈T ,x′,y′,d).

Observe that the distribution of View is given by

View = (ϕa(αT ), ϕb(αT ), ϕc(αT ), ϕs(αT ), ϕa′(αT ), ϕb′(αT ),x− a,y− b,x ∗ y + s),

where

a,b←$ Kℓ, s←$V0 := {s ∈ Kℓ : ⟨1ℓ, s⟩ = 0}, ϕa←$Ra, ϕb←$Rb,

ϕc←$Ra∗b, ϕs←$Rs, ϕa′ ←$R(y−b)∗a, ϕb′ ←$R(x−a)∗b.

Lemma 3 ensures that for any v ∈ Kℓ, there is a polynomial ∆v ∈ Rv such that ∆v(αi) = 0
for all i ∈ T . If ϕ̃a is uniformly distributed over R0ℓ

, then ϕ̃a + ∆a is uniformly distrib-
uted over Ra from Lemma 4 and (ϕ̃a + ∆a)(αi) = ϕ̃a(αi) for all i ∈ T . Similarly, let
ϕ̃b, ϕ̃c, ϕ̃s, ϕ̃a′ , ϕ̃b′ ←$R0ℓ

, and then it holds that

ϕ̃b + ∆b←$Rb, ϕ̃c + ∆a∗b←$Ra∗b, ϕ̃s + ∆s←$Rs,

ϕ̃a′ + ∆(y−b)∗a←$R(y−b)∗a, ϕ̃b′ + ∆(x−a)∗b←$R(x−a)∗b.

It also holds that(
ϕ̃b + ∆b

)
(αi) = ϕ̃b(αi),

(
ϕ̃c + ∆a∗b

)
(αi) = ϕ̃c(αi),

(
ϕ̃s + ∆s

)
(αi) = ϕ̃s(αi),(

ϕ̃a′ + ∆(y−b)∗a

)
(αi) = ϕ̃a′(αi),

(
ϕ̃b′ + ∆(x−a)∗b

)
(αi) = ϕ̃b′(αi)

for all i ∈ T . We thus have that

View = (ϕ̃a(αT ), ϕ̃b(αT ), ϕ̃c(αT ), ϕ̃s(αT ), ϕ̃a′(αT ), ϕ̃b′(αT ),x− a,y− b,x ∗ y + s),

where a,b←$ Kℓ, s←$V0, and ϕ̃b, ϕ̃c, ϕ̃s, ϕ̃a′ , ϕ̃b′ ←$R0ℓ
. Since ã := x− a and b̃ := y− b

are uniformly distributed over Kℓ, we have that

View = (ϕ̃a(αT ), ϕ̃b(αT ), ϕ̃c(αT ), ϕ̃s(αT ), ϕ̃a′(αT ), ϕ̃b′(αT ), ã, b̃,x ∗ y + s),

where ã, b̃←$ Kℓ, s←$V0, and ϕ̃b, ϕ̃c, ϕ̃s, ϕ̃a′ , ϕ̃b′ ←$R0ℓ
. Since z = FIP((vi, wi)i∈[n]) =

⟨x,y⟩, it holds that ⟨1ℓ,x ∗ y− z · e0⟩ = ⟨x,y⟩ − z = 0. and hence s0 := x ∗ y− z · e0 ∈ V0,
where e0 = (1, 0, . . . , 0) ∈ Kℓ. Furthermore, since V0 is a linear space, if s is uniformly
distributed over V0, then so is s + s0. In particular, if s, s̃←$V0, then x ∗ y + s and z · e0 + s̃
follow the same distribution. We then have that

View = (ϕ̃a(αT ), ϕ̃b(αT ), ϕ̃c(αT ), ϕ̃s(αT ), ϕ̃a′(αT ), ϕ̃b′(αT ), ã, b̃, z · e0 + s̃),

where ã, b̃←$ Kℓ, s̃←$V0, and ϕ̃a, ϕ̃b, ϕ̃c, ϕ̃a′ , ϕ̃b′ , ϕ̃s←$R0ℓ
. Therefore, we conclude that

View is simulated from z only.
Since players receive four shares of RSSℓ and correlated randomness for two invocations

of FLT, we have CR(ΠIP) = O(log |K|) = O(logn). In the online phase, the protocol invokes
FSum three times and FLT twice, and hence we have BC(ΠIP) = O(ℓ log |K|) = O(ℓ logn).
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