
Communication Complexity vs Randomness
Complexity in Interactive Proofs
Benny Applebaum #Ñ

Tel-Aviv University, Israel

Kaartik Bhushan # Ñ

IIT Bombay, India

Manoj Prabhakaran #Ñ

IIT Bombay, India

Abstract
In this work, we study the interplay between the communication from a verifier in a general
private-coin interactive protocol and the number of random bits it uses in the protocol. Under
worst-case derandomization assumptions, we show that it is possible to transform any I-round
interactive protocol that uses ρ random bits into another one for the same problem with the
additional property that the verifier’s communication is bounded by O(I · ρ). Importantly, this is
done with a minor, logarithmic, increase in the communication from the prover to the verifier and
while preserving the randomness complexity. Along the way, we introduce a new compression game
between computationally-bounded compressor and computationally-unbounded decompressor and a
new notion of conditioned efficient distributions that may be of independent interest. Our solutions
are based on a combination of perfect hashing and pseudorandom generators.

2012 ACM Subject Classification Theory of computation → Interactive proof systems

Keywords and phrases Interactive Proof Systems, Communication Complexity, Hash Functions,
Pseudo-Random Generators, Compression

Digital Object Identifier 10.4230/LIPIcs.ITC.2024.2

Funding The first and second authors are supported by ISF grant no. 2805/21 and by the European
Union (ERC, NFITSC, 101097959). Views and opinions expressed are however those of the authors
only and do not necessarily reflect those of the European Union or the European Research Council.
Neither the European Union nor the granting authority can be held responsible for them. The
second and third authors are also supported by IIT Bombay Trust Lab. The third author is also
supported by an Algorand Centre of Excellence grant by the Algorand Foundation.
Benny Applebaum: Supported by ISF grant no. 2805/21 and by the European Union (ERC-2022-
ADG) under grant agreement no.101097959 NFITSC.
Kaartik Bhushan: Supported in part by IITB Trust Lab. Part of the research was done while visiting
Tel Aviv Univerisity and was supported by ISF grant no. 2805/21 and by the European Union
(ERC-2022-ADG) under grant agreement no.101097959 NFITSC. Also supported by the Prime
Minister’s Research Fellowship (PMRF), Government of India.
Manoj Prabhakaran: Supported in part by IITB Trust Lab and by an Algorand Centre of Excellence
at IIT Bombay funded by the Algorand Foundation.

Acknowledgements We thank Gil Segev for valuable discussions about perfect hashing. Part of the
research was done while the second author visited Tel Aviv University.

1 Introduction

Interactive probabilistic proof systems [15, 4] are central objects in cryptography and
complexity theory. Roughly speaking, they allow a computationally unbounded prover
to convince a computationally-bounded randomized verifier that a certain statement holds.
The use of interaction and randomness extends the classical notion of NP problems (that

© Benny Applebaum, Kaartik Bhushan, and Manoj Prabhakaran;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal; Article No. 2; pp. 2:1–2:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bennyap@post.tau.ac.il
https://www.bennyapplebaum.sites.tau.ac.il/
mailto:kbhushan@cse.iitb.ac.in
https://homepages.iitb.ac.in/~kbhushan/
mailto:mp@cse.iitb.ac.in
https://www.cse.iitb.ac.in/~mp/
https://doi.org/10.4230/LIPIcs.ITC.2024.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Communication Complexity vs Randomness Complexity in Interactive Proofs

can be deterministically verified given a single message from a prover) all the way up to
polynomial-space computable languages [23, 33]. If the verifier does not use randomness,
clearly interaction is useless: the prover can compute all the verifier’s queries on her own
and just send the answers. That is, when the verifier uses 0 bits of randomness, it needs to
communicate 0 bits. In this paper, we try to extend this observation: if the verifier uses only
ρ random bits, how many bits does it need to communicate?

Intuitively, since the entropy of the verifier’s messages is at most ρ, there is no point in
communicating more than ρ bits. Indeed, if the proof system is a public-coin system (in
which the verifier simply sends random coins in each round) this intuition holds, and the
randomness complexity equals the communication complexity. However, in the general case
of private-coin proof system, the verifier’s messages may be much longer than their entropy.
We note that although it is possible to transform a given private-coin proof system into a
public-coin system [16, 13, 22], existing transformations increase the overall communication.
In particular, a transcript of the modified public-coin proof system contains at least one copy
of a transcript of the original private-coin proof system plus some additional overhead which
is polynomial in the original communication (to certify that the transcript is “typical” or
“heavy”). Furthermore, these transformations also increase the randomness complexity of
the verifier either polynomially [16, 13] or by a constant factor [22]. Overall, the following
question remains open:

Is it possible to transform a proof system with randomness ρ in which the prover
sends out ComP bits, into a new proof system for the same problem in which the total
communication depends on the verifier’s randomness complexity in the original proof
system rather than the verifier’s outgoing communication, i.e., the total communication
is poly(ρ, ComP) or even O(ρ + ComP)? Further, can we do this while preserving the
randomness complexity?

Closely related questions were studied in [2] and [22]. Specifically, [2] studied the “converse
question” of upper-bounding the randomness complexity in terms of the communication
complexity (aka “randomness sparsification”), and [22] studied the question of bounding the
round complexity in terms of the randomness complexity. The latter work shows [22, Thm
A.1] that a proof system that uses ρ(n) random bits for n-long instances can be converted
into a proof system with O(ρ(n)/ log n) rounds, while preserving the randomness complexity.1
Unfortunately, this transformation increases the total communication complexity (as the
prover guesses in every round many possible extensions to the current transcript). In partic-
ular, even for constant-round protocol this transformation may increase the communication
by a poly(n) factor.

1.1 Our Results
We partially resolve the above question by relying on a complexity theoretic assumption. In
particular, we prove the following main result. (See Section 2 for a formal presentation of
the hardness assumption).

▶ Theorem 1. Suppose that a promise problem Π has an interactive proof system ⟨P, V⟩ with
round complexity I(n), randomness complexity ρ(n), verifier communication ComV(n), prover
communication ComP(n), where n denotes the length of the instance. Then, assuming that

1 In fact, if one is willing to increase the randomness complexity by a constant factor, then it is possible
to derive an O(ρ(n)/ log n)-round public-coin system [22, Thm 1.1].

B. Applebaum, K. Bhushan, and M. Prabhakaran 2:3

E = DTime(2O(n)) is hard for exponential-size non-deterministic NP-circuits, there exists an
interactive proof system ⟨P′, V′⟩ for Π in which the verifier and prover communication are

ComV′(n) = O(I(n)ρ(n)), and
ComP′(n) = ComP(n) + O(I(n) log n).

The randomness complexity of the proof system remains unchanged, the round complexity
grows by (at most) 1, and the completeness error grows additively by 0.1.

For the special case of constant-round protocols, the verifier communicates O(ρ(n)) bits
and the prover’s additive overhead is at most O(log n); if the original prover communicates
in each round a logarithmic number of bits (resp., super-logarithmic number of bits), the
additive overhead is linear (resp., sub-linear) in ComP(n). In the general case, when the
prover may communicate as little as one bit per round, we still have I(n) ≤ ComP(n); then
the overhead for the prover communication is a multiplicative factor of O(log n), and the total
communication is O(ComP(n) ·(ρ(n)+log n)). Note that in all cases, the total communication
is independent of ComV(n), the verifier’s original communication. The question of achieving
a total communication of O(ρ(n) + ComP(n)) for protocols with polynomially-many rounds
remains an interesting open question.

Theorem 1 is based on a worst-case assumption. This assumption asserts that one cannot
significantly speed-up (uniform) Exponential-Time problems by adding non-uniformity and
two levels of non-determinism (non-deterministic NP-circuits are the non-uniform analogue
of NPNP; see Section 2 for details). This assumption is somewhat strong but widely believed
as it reflects our current understanding of the relations between time, nonuniformity and
nondeterminism. Similar assumptions have been extensively used in cryptography and
complexity theory (see, e.g.,[9, 20, 24, 37, 30, 14, 17, 31, 6, 32, 8, 1, 2, 5, 29]).

1.2 Technical Overview
Consider the simple case of a single-round protocol where the verifier’s message is of length
m bits that is much larger than the randomness complexity ρ. In this case the verifier is
sending a long message that is sampled from a low-entropy distribution D, and our goal is to
reduce the communication. The crucial observation is that the prover has full knowledge
of the distribution D, and, being computationally unbounded, he can help the verifier to
compress the message. Indeed, we can abstract this scenario as a special variant of the
well-known data compression problem.

1.2.1 Single-Round Compression Game
In this data compression game there are two parties: a computationally bounded compressor
CMP and a computationally-unbounded decompressor DCMP. At the beginning of the game,
the compressor is given a string x ∈ {0, 1}m that is efficiently sampled from a probability
distribution D whose full description is given to the decompressor DCMP. The goal of the
compressor is to deliver the string x to the decompressor with probability at least 1− ϵ taken
over the choice of x. The parties are allowed to communicate in both directions, and the
goal is to minimize the communication ideally up to the entropy of the distribution.

It is instructive to compare our game to a few other compression games. Shannon’s
original game [34] refers to compression of multiple independent samples from D, and
his celebrated source-coding theorem shows that the expected amortized communication

ITC 2024

2:4 Communication Complexity vs Randomness Complexity in Interactive Proofs

approaches the entropy. In contrast, our game involves a single-shot challenge and worst-
case communication and, accordingly, allows some error (i.e., the scheme may be lossy).
In computer science literature, Ta-Shama et al. [38] studied the problem of compressing
“computationally-weak” sources by a computationally efficient compressor and decompressor
and provided compression schemes whose communication complexity is close to the entropy
for several classes of such distributions. In contrast, in our setting the decompressor is allowed
to be computationally-unbounded, and as a result we can bypass some of the lower-bounds
of [38] (e.g., we can hope to compress pseudorandom distributions). Finally, Orlitsky [26]
considered a one-shot compression game in which the parties are computationally-unbounded
but have some information gap captured by some auxiliary information y about x that is
given to the decompressor and is unknown to the compressor. Notably, Orlitsky’s schemes
use interaction (like in our setting) whereas the schemes of [34, 38] are non-interactive (the
compressor sends a single message to the decompressor).

Getting back to our compression game, let us further simplify the problem and assume
that we care only about the communication from the compressor to the decompressor. In
this case, there is a simple solution that is described in Lemma 14. Take k = H(D)/ϵ

where H(·) denotes Shannon’s entropy, and let DCMP send a description of hash function
f : {0, 1}m → {0, 1}k that is 1-1 over the set of 2k heaviest strings in D. The compressor
CMP responds with the “digest” y = f(x), and DCMP outputs the “heaviest” string x′ in D
that is consistent with y. It is not hard to show that the error is at most ϵ (see Lemma 12)
which is essentially the best that one can hope for.2 Indeed, this approach can be viewed
as one-shot analog of Shannon’s celebrated Source coding theorem [34]. Unfortunately, the
decompressor has to communicate the description of a hash function f which is taken from a
family F of 2k-perfect hash function. That is, the family F contains, for each 2k-subset of
strings X ⊂ {0, 1}m, a function f that is injective on X and so it cannot be too small. In
fact, it is known that the description size must be at least Ω(2k) bits [25]. The cost can be
significantly reduced by allowing some slackness, i.e., by expanding the output length of f

to k′ > k (e.g., k′ = 3k). In this case, the description length can be reduced to Ω(m + k′)
bits by using existing families of perfect hash functions (e.g., [10]). However, this is still too
expensive for our purposes.3

1.2.2 Focusing on efficiently samplable distribution

We note that when the distribution D is taken from a family of efficiently samplable
distributions (i.e., there is an efficient algorithm that given a random tape outputs a sample
from D) it is possible to compress the description length of the hash function. Indeed, in this
case our family should be injective only over “nice” sets that correspond to heavy strings in
distributions that can be described by a polynomial-size circuit. Specifically, we begin with
a standard, off-the-shelf, family F = {fz}z∈{0,1}m+k′ (e.g., based on pair-wise independent
hash functions [7]) in which each function is identified by a long string z ∈ {0, 1}m+k′ . Next,
we reduce the description length of the functions via the use of an appropriate pseudorandom

2 Indeed, for every ϵ > 0, there exists a distribution D such that any event of probability 1 − ϵ must
be supported over at least 2k strings for k = Ω(H(D)/ϵ). For example, consider the distribution D
obtained by sampling, with probability 2ϵ, a uniform x from a set A of size 2ℓ/2ϵ, and, with probability
1 − 2ϵ, a uniform x from a disjoint set B of size 2ℓ. The entropy of D is Θ(ℓ) and in order to
capture 1 − ϵ of the mass, one must collect at least ϵ fraction of the strings in A, i.e., 2k strings for
k ≥ ℓ/2ϵ − log(1/ϵ) = Ω(H(D)/ϵ).

3 To the best of our knowledge, the description length of all existing constructions of 2k-perfect hash
functions is either linear in 2k or in the input-length m, see e.g., [27].

B. Applebaum, K. Bhushan, and M. Prabhakaran 2:5

generator (PRG) G : {0, 1}ℓ → {0, 1}m+k′ . That is, each function f ′s in the new family F ′

is indexed by a seed s of the PRG and is defined to be f ′s = fG(s). We show that if the
PRG fools AM/poly adversaries the family F ′ can be used to compress D. By using standard
derandomization assumptions (slightly weaker than the one stated in Theorem 1), we get
such a PRG with exponential stretch which allows us to reduce the communication from
the decompressor to logarithmic. It should be mentioned that the idea of using a PRG to
(partially) derandomize a probabilistic construction is not new. This paradigm was abstracted
by [20], and was also used in many relevant works. Interestingly, the same paradigm was
used in [1] for the contrary purpose of constructing so-called incompressible functions.

1.2.3 Back to interactive proofs
Let us move back to the case of multi-round interactive proofs. A natural strategy is to apply
the above approach for each round. Roughly, in each round, we let w denote the partial
transcript and let Dw denote the distribution of the next message of the verifier. Instead of
letting the verifier send his message x, the parties will run a compression protocol in which
the prover selects a hash function f that is injective on the 2k heaviest strings, where k

is about H(Dw)/ϵ for some error parameter ϵ. The problem is that Dw is not efficiently
samplable, rather it is obtained by feeding the verifier with the prover messages and random
coins that are conditioned on generating the partial transcript w. We abstract this property
via the notion of conditioned efficient distributions. This notion generalizes the notion of
efficiently samplable distributions by allowing the sampler A to output a special failure
symbol ⊥, and by letting D denote the outcome of A applied to random coins conditioned
on not outputting ⊥. By using slightly stronger PRGs, we extend our compression schemes
to the case of conditioned efficient distributions, and employ them to reduce the interaction
of interactive proofs as stated in Theorem 1.
▶ Remark 2 (More on conditioned efficient distributions). An equivalent way to define a
conditioned efficient distribution is by considering a pair of algorithms, Sampler S and
Conditioner E, such that sampling fromD boils down to sampling a random tape r conditioned
on E(r) = 1 and outputting S(r). Thus this new notion can be viewed as a combination of
two well-studied classes of distributions: distributions over circuit’s outputs (i.e., efficiently
samplable distributions) and distributions over circuit’s inputs that lead to a given result
(aka efficiently recognizable distributions [28]). This new notion is natural and may prove to
be useful elsewhere.

1.2.4 Organization
Following some preliminaries in Section 2, we construct compression schemes in Section 3
and use them to prove our main theorem in Section 4.

2 Preliminaries

2.1 Probability distributions
For a discrete probability distribution D, let PrD(x) denote the probability of the string x

being sampled according to the distribution. Throughout the paper, we will only work with
probability distributions that are supported on a finite set. The Shannon entropy (or simply
entropy) H(D) of a discrete probability distribution D supported on a finite set D is defined
as the quantity

H(D) =
∑
x∈D

Pr
D

(x) log
(

1
PrD(x)

)
.

ITC 2024

2:6 Communication Complexity vs Randomness Complexity in Interactive Proofs

▶ Definition 3 (Efficient and conditioned efficient probability distributions). A family of
probability distributions {Dw} is efficiently samplable (or simply, efficient) if there exist
parameters ρw, mw denoted as the randomness complexity and the domain bit-length, and
a PPT sampling algorithm A that given an index w ∈ {0, 1}∗ and a random tape with
r ∈ {0, 1}ρw samples a random string x ∈ {0, 1}mw according to the distribution Dw. The
complexity of {Dw} is at most T if A(w; r) runs in time T (|w|) for every w and r.

A family of distributions {Dw} is said to be conditioned efficiently samplable (or simply,
conditioned efficient) if, with parameters ρw, mw as above, there exists a PPT algorithm A

which, on input w ∈ {0, 1}∗ and a uniformly random string r ∈ {0, 1}ρw on its random tape,
outputs an element x ∈ {0, 1}mw ∪ {⊥} such that, conditioned on not being ⊥ the output is
distributed as Dw. We will refer to such an algorithm A as a conditional sampler for Dw.

2.2 Promise problems
A promise problem Π consists of a pair of disjoint sets of strings Πyes, Πno ⊂ {0, 1}∗. Strings
in Πyes are referred to as yes instances and strings in Πno are referred to as no instances. The
standard definition of a language corresponds to the case where every string is either a yes
instance or a no instance, i.e., Πyes ∪Πno = {0, 1}∗. (See [11] for a discussion and references.)
For two parties A and B engaging in a protocol on common input x, let ⟨A, B⟩(x) denote the
final output of the protocol.

▶ Definition 4 (Interactive Proofs). An interactive proof system for a promise problem
Π = (Πyes, Πno) is defined by a computationally bounded probabilistic verifier V, with a
polynomial TV such that the running time of V on common input x is upper-bounded by
TV(|x|), and an unbounded prover P satisfying the following properties:

if x ∈ Πyes, then Pr[⟨P, V⟩(x) = 0] ≤ γ, and
if x ∈ Πno, then ∀P∗, Pr[⟨P∗, V⟩(x) = 1] ≤ δ,

where γ and δ are constants in [0, 1) denoting the errors in completeness and soundness
respectively. By default, we assume that γ = δ = 0.1.

2.3 Arthur-Merlin Proofs, and NP/Non-Deterministic Circuits
An AM protocol is a constant-round public-coin proof system and AM/poly is the non-uniform
analog in which the verifier is implemented by a family of polynomial-sized probabilistic
circuits. The complexity class AM/poly consists of all promise problems that admit AM/poly
protocols. (See standard textbooks like [3, 12] for formal definition.) A nondeterministic
circuit C has additional “nondeterministic input wires”. We say that the circuit C evaluates
to 1 on x iff there exist an assignment to the nondeterministic input wires that makes C

output 1 on x. An NP-circuit C (resp., nondeterministic NP-circuit) is a standard circuit
(resp., nondeterministic circuit) which in addition to the standard gates uses SAT gates,
where a SAT gate gets a formula φ as an input and returns 1 iff the formula is satisifiable. The
size of the circuit is the total number of wires and gates. Polynomial-size nondeterministic
circuits, NP-circuits, non-deterministic NP-circuits are the non-uniform analogues of NP,
PNP and NPNP = ΣP

2 , respectively.
The literature on complexity theory and derandomization contains various hardness

assumptions against AM/poly/nondeterministic/nondeterministic NP circuits and their gen-
eralizations to higher levels of the polynomial hierarchy. (See, e.g., [1] and references therein).
Specifically, we will make use of the following result.

B. Applebaum, K. Bhushan, and M. Prabhakaran 2:7

▶ Theorem 5 (PRGs from hardness assumptions [18, 21, 30, 31]). Suppose that E =
DTime(2O(n)) is hard for exponential-size non-deterministic circuits (resp., exponential-
size non-deterministic NP-circuits), i.e., there exists a language L in E and a constant β > 0,
such that for every sufficiently large n, circuits of size 2βn fail to compute the characteristic
function of L on inputs of length n.

Then for every polynomial T (·) and inverse polynomial ϵ(·), for all sufficiently large m,
there exists a pseudorandom generator G that stretches seeds of length ρ = O(log m) into a
string of length m in time poly(m) such that G ϵ-fools every promise problem Π = (Πyes, Πno)
that can be decided by an AM/poly proof system with a T -size verifier (resp., by a non-
deterministic NP-circuit of size T) in the following sense. For every sufficiently large m and
b ∈ {yes, no}

| Pr
z

R←Um

[z ∈ Πb]− Pr
z

R←G(Uρ)
[z ∈ Πb]| ≤ ϵ(m).

As noted in [1], the above assumptions can be seen as the nonuniform and scaled-up versions
of assumptions of the form Exponential-Time is not equal to NP or to ΣP

2 (which are widely
believed in complexity theory). As such, these assumptions are very strong, and yet plausible
- the failure of one of these assumptions will force us to change our current view of the
interplay between time, nonuniformity and nondeterminism. As a secondary advantage (also
noted in previous works), one can base the PRG on any concrete E-complete problem, and
an explicit PRG whose security reduces to the underlying assumption. (We do not have to
consider and evaluate various different candidate functions for the hardness assumption.)

2.4 Set-lower bound
We will make use of the set lower-bound protocol of [16].

▶ Theorem 6 (Set lower-bound protocol[16]). Let S ⊂ {0, 1}∗ be an NP set (i.e., membership
in S can be efficiently verified). Then there exists an AM protocol ⟨P, V⟩ such that given
(1n, k) as common inputs the following holds,

if |S ∩ {0, 1}n| ≥ k, then Pr[⟨P, V⟩(1n, k) = 1] ≥ 0.9,

if |S ∩ {0, 1}n| ≤ k/2 then for every prover P∗ it holds that Pr[⟨P∗, V⟩(1n, k) = 1] < 0.1.

2.5 Approximate counting
We say that a number p is an ϵ-relative approximation to q if (1− ϵ) · p ≤ q ≤ (1 + ϵ) · p. It
is useful to note that if p′ is an ϵ-approximation to p and q′ is an ϵ-approximation to q, then
a p′/q′ is a 2ϵ-approximation to p/q. We use the following classical result on approximate
counting of satisfying assignments.

▶ Theorem 7 (approximate counting,[19, 36, 35]). For every sufficiently large s and every
ϵ > 0, there is an NP-circuit of size poly(s/ϵ) that given a (standard) circuit C of size s

outputs an ϵ-approximation of |{x : C(x) = 1}|.

2.6 Hashing
We say that a function family Fm,d is (δ, s)-injective if for every set S ⊂ {0, 1}m of size at
most 2s, a random member f

R← Fm,d is injective over S with probability at least 1− δ. It
is well known that pair-wise independent hash functions [7] have this property. Formally,
the following statement follows from [10] where the pair-wise independent hash family is
instantiated with hash functions that are based on, say, Toeplitz matrices.

ITC 2024

2:8 Communication Complexity vs Randomness Complexity in Interactive Proofs

▶ Lemma 8 (Good hashing from 2-wise independence). There exists a family of hash functions
F such that for every δ, s and d = 2s +

⌈
log

(1
δ

)⌉
, the restriction Fm,d of F to functions from

m-bits to d-bits is (δ, s)-injective. Moreover, (1) Functions in Fm,d are indexed by strings
z ∈ {0, 1}L where L = m + 2d; (2) There exists an efficient universal evaluation algorithm F

that given (1m, 1d), an index z ∈ {0, 1}L, and an input x ∈ {0, 1}m outputs fz(x); and (3)
for z

R← {0, 1}m+2d, the function F (1m, 1d, z, ·) is uniform over Fm,d.

3 Hashing-Based Solution for the Compression Problem

In this section we construct compression schemes. We begin with a formal definition.

▶ Definition 9 (Interactive Compression). An interactive compression scheme for a family of
distributions {Dw} with error ϵ(·) is defined by a computationally bounded compressor CMP
and a computationally-unbounded decompressor DCMP satisfying the following property:
For every w ∈ {0, 1}∗ given to DCMP, and x

R← Dw given to CMP the probability that
DCMP outputs x is at least 1 − ϵ(w), where the probability is taken over the choice of x

and the randomness of the parties (if the parties are randomized). The communication
complexity of the decompressor and compressor, ComDCMP(w) and ComCMP(w), are defined
to be the maximal number of bits communicated by the decompressor and compressor when
the decompressor’s input is w.

It is natural to solve the compression problem by letting the compressor hash the string
x to a shorter string. If the hash function is injective over a “heavy set” of strings then the
decompressor will be able to recover x from the hash of x, with a low error probability. This
idea resembles Shannon’s celebrated source coding theorem [34] except that we use a single
instance of the source and accordingly rely on a weaker concentration of measure results
(Markov’s inequality as opposed to Chernoff). We formalize this approach starting with the
notion of “heavy strings,” which will form our heavy set.

▶ Definition 10 (set of heavy strings). For a distribution D over m-bit strings and an error
parameter ϵ, we define the set of ϵ-heavy strings, X (D, ϵ), to be the set of all strings whose
weight under D is at least 2−h/ϵ where h = H(D) is the Shannon’s entropy of D, i.e.,

X (D, ϵ) := {x ∈ {0, 1}m | Pr
D

(x) ≥ 2−H(D)/ϵ}.

We also define ℓ(D, ϵ) := ⌈log |X (D, ϵ)|⌉.

It is not hard to see that the set of heavy strings cannot be too large and also that it is a
heavy set – i.e., it contains at least 1− ϵ mass of the distribution. Specifically, we record the
following observations.

▶ Lemma 11 (Set of heavy strings is small). For every D and ϵ > 0, it holds that ℓ(D, ϵ) ≤
⌈H(D)/ϵ⌉.

Proof. Let h = H(D). For every string x ∈ X (D, ϵ) it holds that PrD(x) ≥ 2−h/ϵ, and
therefore

2−h/ϵ|X (D, ϵ)| ≤
∑

x∈X (D,ϵ)

Pr
D

(x) ≤ 1.

It follows that |X (D, ϵ)| ≤ 2h/ϵ which further implies that ℓ(D, ϵ) = ⌈log |X (D, ϵ)|⌉ ≤
⌈h/ϵ⌉. ◀

B. Applebaum, K. Bhushan, and M. Prabhakaran 2:9

▶ Lemma 12 (Set of heavy strings is heavy). For every D and ϵ > 0, it holds that∑
x∈X (D,ϵ) PrD(x) ≥ 1− ϵ.

Proof. For a string x, let px := PrD(x) denote the weight of x under D. Sample x
R← D

and consider the random variable kx = log(1/px). By definition, the expected value of kx is
simply the entropy of D, i.e., Ex[kx] = h, and so, by Markov’s inequality, Pr

x
R←D

[kx ≥ h/ϵ] ≤
Ex[kx]

h/ϵ = ϵ. That is, at least 1−ϵ of the mass belongs to elements x for which log(1/px) ≤ h/ϵ,
or equivalently, to elements whose weight is at least 2−h/ϵ, which is nothing but our desired
set X (D, ϵ). ◀

▶ Definition 13 (good hash functions). Let D = {Dw} be a family of distributions where Dw

is supported over mw-long strings and has entropy of hw. We say that a function family F is
(δ, ϵ)-good for D if there exists a length function d(hw, ϵ, δ) such that for every distribution
Dw in the family:

Pr
f

R←Fm,d

[f is injective over X (Dw, ϵ)] ≥ 1− δ,

where Fm,d denotes the restriction of F to functions from {0, 1}m to {0, 1}d, m = mw and
d = d(hw, ϵ, δ). We refer to d as the compression of h. We say that F has a representation
size of L(m, d) if each function from m bits to d bits can be represented by L(m, d) bits. We
also assume that the family is efficiently computable, i.e., given an index z and an input x

one can evaluate fz(x) in polynomial time.

Recalling that X (Dw, ϵ) is of size at most 2s for s = hw/ϵ + 1, we can use Lemma 8 to
derive a (δ, ϵ)-good family with compression d = 2s +

⌈
log

(1
δ

)⌉
= 2hw/ϵ + log(1/δ) + O(1)

and description L = m + 2d.

3.1 Hashing-based compression
Let D = {Dw} be a collection of distributions and assume that F is (δ, ϵ)-good for D with
compression d. Define the single-round compression protocol PF as follows: Given the index
w of the distribution, the de-compressor specifies a hash function fz ∈ Fm,d where m = mw

and d = d(hw, ϵ, δ) that is injective over the set X (Dw, ϵ′) and sends the description z of fz

to the compressor, who sends back the value of y = fz(x). The computationally unbounded
de-compressor then checks if y has a pre-image x′ in X (D, ϵ′), and if so it outputs the
(unique) preimage x′. Otherwise, the de-compressor outputs a failure symbol ⊥.

Assuming that δ < 1, the de-compressor always finds a function fz which is injective over
the set X (D, ϵ′), and so the protocol errs only if x falls out of X (D, ϵ′). By Lemma 12,
this happens with a probability of at most ϵ. Summarizing the above discussion, we get the
following lemma.

▶ Lemma 14 (compression from hashing). Assuming that F is a (δ, ϵ)-good hash family for
D = {Dw} for some δ < 1, the protocol PF is a compression protocol for D with an error ϵ.
For a distribution specified by w, the compressor communicates d = d(hw, ϵ, δ) bits and the de-
compressor communicates L = L(mw, d) bits, and the compressor’s computational complexity
is poly(mw, d), where d is the compression parameter of F and L is the description length.
For the special case of pair-wise independent hashing and δ = 0.1, we get d = 2hw/ϵ + O(1)
and L = O(mw + 2hw/ϵ).

ITC 2024

2:10 Communication Complexity vs Randomness Complexity in Interactive Proofs

The factor of 2 overhead in the compressor’s communication can be improved to 1 + o(1)
by using better hash functions (e.g., two-level hashing [10]). We omit the details since it
hardly changes the final results of the paper.

The above lemma yields a protocol that obtains the desired compression for the commu-
nication from the compressor, but suffers from a high overhead on the communication from
the decompressor’s end. We will improve this in the next section.

3.2 Improving De-Compressor Communication
In order to improve the communication of the prover, we construct a succinct hash family
that is good for efficiently samplable distributions. To sample a hash function we choose
a random seed for a PRG, expand it to a long string and use this string to specify a hash
function from a family of pair-wise independent hash functions. We show that a PRG against
AM/poly allows us to exponentially compress the description length of a hash function
f : {0, 1}m → {0, 1}d from Ω(m + d) to O(log(m + d)). We also extend this result to the
case of conditioned efficient distributions at the expense of using a slightly stronger hardness
assumption. This extension will be useful for the proof of Theorem 1.

▶ Theorem 15 (succinct hashing for efficient and conditioned efficient distributions). Suppose
that E = DTime(2O(n)) is hard for exponential-size non-deterministic circuits. Let D = {Dw}
be an efficient family of distributions over mw-bit long strings having entropy hw, and let
ϵ(w) be inverse polynomial error parameter. Then, for any constant δ < 1, there exists
an efficient family of hash functions that is (δ, ϵ)-good for D with compression parameter
d = 2hw/ϵ + O(1) and description size of L(m, d) = O(log(m + d)) bits.

Moreover, the theorem extends to the case where D = {Dw} is a family of conditioned
efficient distributions, assuming that E is hard for exponential-size non-deterministic NP-
circuits.

The high-level idea is to show that when D is efficiently samplable, there is an AM/poly
protocol for checking whether a given hash function is injective over the set X (D, ϵ).
Therefore, if we use a PRG that fools AM/poly to sample a hash function f from a collection
F , the probability that f will be injective over X (D, ϵ) is almost the same as the probability
that a random member of F will be injective. The theorem then follows by taking F to be a
family of pair-wise independent hash functions (for which we know that a random member is
injective whp). Unfortunately, we do not know how to construct an AM/poly protocol that
certifies injectivity, however, we can use an approximate version of this property that suffices
for our purposes. We continue with formal proof.

Proof of Theorem 15. Let T1(|w|) be the complexity of D and let T2(|w|) denote the com-
plexity of evaluating the pair-wise independent hash functions Fm,d = {fz}z∈{0,1}L promised
in Lemma 8 where m = mw and d = 2hw/ϵ +

⌈
log

(2
δ

)⌉
+ 2 and L = m + 2d. Note that for

these parameters Fm,d is (δ/2, 1 + h/ϵ)-injective (Lemma 8). Let T be some fixed polynomial
in T1(|w|) + T2(|w|) whose value will be determined later, and let G : {0, 1}k → {0, 1}L be a
PRG that δ

2 -fools T -size AM/poly with seed length k = O(log L) whose existence is promised
by Theorem 5. Consider the family of functions F ′m,d whose members f ′s are identified by an
index s ∈ {0, 1}k, and are defined by f ′s = fG(s) where fz is the function from Fm,d whose
index is z. Note that F ′m,d is computable in time poly(|w|). We claim that F ′m,d is (δ, ϵ)-good
for Dw for every w.

Fix some w. We begin by introducing a promise problem Πw over L-bit strings. (Recall
that L = mw + 2d(w).)

B. Applebaum, K. Bhushan, and M. Prabhakaran 2:11

Yes instance: A string z ∈ {0, 1}L is a yes instance if the function fz : {0, 1}m → {0, 1}d

is not injective over the set X (Dw, ϵ).
No instance: A string z ∈ {0, 1}L is a No instance if the function fz : {0, 1}m → {0, 1}d

is injective over the set X ′(Dw, ϵ) = {x ∈ {0, 1}m | PrDw (x) ≥ 0.5 · 2−(hw/ϵ)}.
We show that the above promise problem admits an AM/poly proof system. Let ρw denote
the randomness complexity of the distribution Dw. Let A(w; ·) be the PPT algorithm for
sampling from Dw. Consider the following protocol with prover P and verifier V and common
input z:
1. P sends two strings (x0, x1) ∈ {0, 1}m × {0, 1}m to V.
2. V checks if x0 ≠ x1 and fz(x0) = fz(x1). If the checks fail, then it aborts with output 0.

Otherwise, the parties proceed further.
3. For b ∈ {0, 1}, the parties run the following set membership protocol for the string xb:

a. Consider the set Rxb
= {r ∈ {0, 1}ρw | A(w; r) = xb}.

b. Run a set lower-bound protocol for set Rxb
with size parameter α = 2ρw · 2−h/ϵ. For

membership queries to the set Rxb
for a string r, just check whether A(w; r) = xb.

4. V outputs 1 if both the checks succeed. Otherwise, it outputs 0.

▷ Claim 16. The above protocol is an AM/poly protocol for Πw.

Proof. Suppose that z is a Yes instance. That is, fz is not injective over the set X (Dw, ϵ).
Then, an honest P will be able to find two strings (x0, x1) ∈X (Dw, ϵ)×X (Dw, ϵ) such that
x0 ̸= x1 and fz(x0) = fz(x1). In our protocol, the checks x0 ̸= x1 and fz(x0) = fz(x1) will
always succeed in this case. Since both x0 and x1 belong to the set X (Dw, ϵ), this implies
that both the sets Rx0 and Rx1 have size at least α according to the definition of X (Dw, ϵ).
Hence, both the set lower-bound protocols correspond to YES instances and either of these
will fail with probability at most 0.1. It follows that the total failure probability is at most
0.2.

We move on to the case where z is a No instance, i.e., the function fz is injective over
the set X ′(Dw, ϵ) for all w ∈ {0, 1}∗. Fix the pair (x0, x1) ∈ {0, 1}m × {0, 1}m that the
prover sends in the first step and assume that the verifier did not reject in the second step,
i.e., x0 ̸= x1 and fz(x0) = fz(x1). Then, at least one of x0 or x1 must lie outside the set
X ′(Dw, ϵ) since fz is injective over this set. Therefore, either the size of Rx0 or that of Rx1

must be smaller than α/2 = 2ρw · 0.5 · 2−(h/ϵ). It follows that, except with probability 0.1,
the verifier rejects in at least one of the set lower-bound protocols. ◁

By hard-wiring w and hw, we implement the verifier by a non-uniform circuit of size
polynomial in T1(|w|)+T2(|w|). We can therefore take T (|w|) to be complexity of the verifier,
and conclude that

Pr
s

[fG(s) is injective over X (Dw, ϵ)] > Pr
s

[fG(s) is injective over X ′(Dw, ϵ)]

> Pr
z

[fz is injective over X ′(Dw, ϵ)] − δ

2 > 1 − δ

2 − δ

2 = 1 − δ.

The last inequality follows by recalling that Fm,d is (δ/2, 1 + hw/ϵ)-injective and since that
set X ′(Dw, ϵ) is of size at most 21+hw/ϵ. We conclude that F ′m,d is (δ, ϵ)-good for Dw, as
required. The first part of the theorem follows.

The “Moreover” part

The proof of the second part is similar with the following modification. We take G to be
a PRG that 0.1-fools T -size non-deterministic NP-circuits (whose existence follows from
the underlying assumption via Theorem 5), and show that Πw can be decided by such

ITC 2024

2:12 Communication Complexity vs Randomness Complexity in Interactive Proofs

circuits. Given a string z, the circuit Cw non-deterministically guesses a pair of m-bit strings
(x0, x1) and verifies that x0 ̸= x1 and fz(x0) = fz(x1). (If any of these conditions fail, the
circuit rejects.) Next, Cw derives for b ∈ {0, 1}, an α-approximation qb for the quantity
pb = Pr[Dw = xb] for α = 0.2, and accepts if and only if q0 and q1 are both larger than
0.7 · 2−(hw/ϵ). (Here hw is hard-wired to Cw.) The approximation qb is obtained by using
the Approximate Counting algorithm (Theorem 7) as follows. Recall that D is defined by a
PPT conditional sampler A(w; ·) with randomness complexity ρw such that

pb = Pr[Dw = xb] = |{r ∈ {0, 1}ρw : A(w; r) = xb}|
|{r ∈ {0, 1}ρw : A(w; r) ̸= ⊥}| .

Hence, to derive an α-approximation of pb it suffices to get a α/2-approximation of both the
denominator and numerator. This can be done by a polynomial-size NP-circuit since these
sets are recognizable by polynomial-size circuits (whose size is the sum of the complexity of
A). It remains to prove the following claim.

▷ Claim 17. The circuit Cw accepts Yes instances and rejects No instances of Πw.

Proof. Suppose that z is a Yes instance. That is, fz is not injective over the set X (Dw, ϵ).
Then there exists an fz-collision x0 ̸= x1 ∈ X (Dw, ϵ) ×X (Dw, ϵ). Since both x0 and x1
belong to the set X (Dw, ϵ), this implies that p0 and p1 are at least 2−hw/ϵ and so q0 and q1
are larger than 0.8 · 2−hw/ϵ and Cw accepts.

We move on to the case where z is a No instance, i.e., the function fz is injective
over the set X ′(Dw, ϵ) for all w ∈ {0, 1}∗. Then, for any fz-collision x0 ̸= x1 either
p0 < 0.5 · 2−hw/ϵ or p1 < 0.5 · 2−hw/ϵ. This means that either q0 or q1 must be smaller than
1.2 · 0.5 · 2−hw/ϵ ≤ 0.6 · 2−hw/ϵ, and Cw rejects. ◁

The rest of the argument is identical to the proof of the first part of the theorem. ◀

Together with Lemma 14, we derive the following theorem.

▶ Theorem 18. Suppose that E = DTime(2O(n)) is hard for exponential-size non-
deterministic circuits. Let D = {Dw} be an efficient family of distributions over mw-bit
long strings having entropy hw, and let ϵ(w) be inverse polynomial error parameter. Then,
there exists a single-round compression protocol for D with an error ϵ and communication of
d = 2hw/ϵ + O(1) for the compressor and L = O(log(mw + hw/ϵ)) for the de-compressor.
Furthermore, the compressor is efficient.

Moreover, the theorem extends to the case where D = {Dw} is a family of conditioned
efficient distributions, assuming that E is hard for exponential-size non-deterministic NP-
circuits.

4 Reducing the Communication in Interactive Proofs

In this section, we prove the main theorem (Theorem 1). Roughly speaking, we compress
each message that the verifier sends by using a properly chosen hash function. We begin
with some notations and definitions.

Let ⟨P, V⟩ be an interactive proof for a promise problem Π. For an input x, let T (|x|) and
ρ(|x|) denote the running-time and randomness complexity of the verifier.We assume that
the parties speak in alternating turns and that the prover sends the first and last message.
(The latter assumption always holds and the former can be guaranteed at the expense of
adding an additional empty round). Letting I ′(|x|) denote the number of rounds in which

B. Applebaum, K. Bhushan, and M. Prabhakaran 2:13

the verifier speaks, we get that the the total number of rounds is I(|x|) = 2I ′(|x|) + 1. We
let ai and bi denote the ith message of the prover and verifier, respectively, and let bI(|x|)+1
denote the final verdict of the verifier (accept/reject).

We can think of the V as a machine that takes an input x a random tape r and a sequence
of prover’s messages a = (ai)1≤i≤k, k ≤ I ′ + 1 and outputs the message bk. For a partial
transcript w = (x, a = (ai)i∈[k], b = (bi)i∈[k−1]), consider the probability distribution Dw of
the verifier’s next message bk conditioned on seeing the partial transcript w. We can describe
Dw as the output of the following randomized process: Sample a random tape r

R← {0, 1}ρ(|x|)

conditioned on the event∧
1≤j≤k−1

V(x, a1, . . . , aj ; r) = bj (1)

and output the string bk = V(x, a1, . . . , ak−1; r). Note that D = {Dw} is conditioned
efficient: consider a PPT conditional sampler A, which on input w as above and random
tape r ∈ {0, 1}ρ(|x|), outputs ⊥ if (1) does not hold, and outputs bk otherwise. Let hw and
mw denote the entropy and domain bit-length of Dw, and let ϵ(w) = 0.01/I(|x|) where x is
the first entry of w. Let F denote a family of hash functions (promised by the second part of
Theorem 15) which is (0.2, ϵ)-good for D and for Dw achieves compression of 2hw/ϵ + O(1)
and description size of O(log(mw + hw/ϵ)) < O(log(mw/ϵ)) < O(log mw) + O(log I(|x|))
where the first inequality follows by noting that hw ≤ mw.

The new proof system

We define the new proof system ⟨P′, V′⟩ as follows. Given x as a common input and
randomness ρ for the verifier, the parties initialize an “emulated” transcript w = x and
proceed for i = 1, . . . , I ′ − 1 rounds as follows.
1. P′: Compute ai by calling P(w) and locally update w = (w, ai). Choose hash function fi

from F that is injective over X (Dw, ϵ), and send (ai, fi). (Recall that X (Dw, ϵ) is the
set of strings whose weight under Dw is at least 2−h/ϵ where h is the Shannon’s entropy
of Dw; See Definition 10.)

2. V′: Compute bi by calling V(x, a1, . . . , ai; ρ) where ai is the ith message sent by the
prover, and send b′i = fi(bi).

3. Before proceeding to the next iteration the prover locally computes bi by choosing the
unique string in X (Dw, ϵ) that maps to b′i. If this string is not unique the prover sends a
special abort symbol and the verifier terminates with rejection. Otherwise, the prover
updates its view to w := (w, bi).

At the last round, the prover sends aI′ by calling P(w) and the verifier outputs its verdict
bI′+1 by calling V(x, a1, . . . , at; ρ).

Completeness and Soundness

Let γ be the completeness error of the original proof system. For a yes instance x, it holds
that

Pr[⟨P′, V′⟩(x) = 1] ≥ Pr
r

[⟨P, V⟩(x) = 1]−Pr
r

[decoding failure] ≥ 1−γ−ϵ·(I ′−1) ≥ 1−γ−0.01,

where the second inequality follows from a union-bounds over all the rounds. For soundness,
fix a No instance x, and observe that any cheating strategy for the prover P′ in the new
proof system translates to a cheating strategy in the original proof system. Indeed, if
for each i ∈ [I ′], P′ maliciously chooses ai and fi based on b′i−1 and its internal state

ITC 2024

2:14 Communication Complexity vs Randomness Complexity in Interactive Proofs

S = (x, a = (aj)j<i, f = (fj)j<i, b′ = (b′j)j<i−1), we can define a cheating prover for the
original system that maintains the same state S and given bi−1 executes P′ on the state S

and on b′i−1 = fi−1(bi−1). The probability that the verifier V accepts is exactly the same
probability that V′ does. Therefore the soundness error of the new system is the same as the
soundness error of the original system.

Communication complexity

We begin by analyzing the expected communication complexity under the assumption that P
is honest. Fix x, and let I = I(|x|),I ′ = I ′(|x|). Let w = (x, (ai, bi)i∈[I′]) denote the random
variable that describes a random transcript and let w[k] = (x, (ai, bi)i∈[k]) denote the kth
prefix of the transcript. We can assume that the honest prover is deterministic (i.e., ai is a
deterministic function of x, (bj)j<i) and so all the randomness is due to the b part. Recall
that in each round i, the verifier sends a string b′i of length 2hw[i]/ϵ + O(1) where hw[i] is
the entropy of Dw[i]. Note that hw[i] is a random variable (since w[i] is a random variable).
Thus, the communication complexity of the verifier is given by the following random variable∑

i∈[I′]

2hw[i]/ϵ + O(1) = O(I ′) + 2/ϵ
∑

i∈[I′]

hw[i] = O(I) + O(I)
∑

i∈[I′]

hw[i].

By the chain rule, the expected value of
∑

i∈[I′] hw[i] is the entropy of w which is at most
the randomness complexity of the verifier. Overall, the expected communication complexity
of the verifier is O(I · ρ). The communication of the prover in the ith iteration consists of
the original communication (the ai part) and the description of the hash functions which is
of length O(log mw[i]) + O(log I(|x|)). Overall the prover communication grows by at most
O(I(log I + log m)) where m is the maximal length of the verifier’s message in the original
scheme. Since m and I are polynomially bounded in n, this can be written as O(I(log n)).

Deriving Theorem 1

The communication analysis is only on expectation and it assumes that the prover is honest.
To get a worst case bound, we slightly modify the proof system by letting the verifier halt
the interaction (with rejection) if she communicates more than, say 100 times the expected
communication complexity. By Markov’s inequality, this increases the completeness error by
at most 0.01. Theorem 1 follows.

5 Conclusion

Compressing interactive protocols is a problem of fundamental nature in information theory.
When computational constraints are also involved, it leads to a question that combines
complexity theory and information theory into a natural, yet difficult problem. In this paper,
we partially answered the problem posed at the beginning: whether the communication from
a verifier in an interactive proof system can always be reduced to the level of randomness
used by the verifier, without increasing the verifier’s randomness, the round complexity
or the prover’s communication significantly. We leave it as an open question if such a
result is possible without relying on complexity assumptions (or using weaker ones), and if
quantitative improvements can be achieved over our result.

En-route to our main result, we encounter several interesting problems. While our focus
is on proof systems, the compression results here extend to any 2-party protocol where one
party is computationally unbounded, and the other party is randomized but has no private

B. Applebaum, K. Bhushan, and M. Prabhakaran 2:15

inputs. Further, the special case of the single-round compression problem is of significance in
its own right. The notion of efficiently conditional distributions that we introduced, being
natural, could be of independent interest.

References
1 Benny Applebaum, Sergei Artemenko, Ronen Shaltiel, and Guang Yang. Incompressible

functions, relative-error extractors, and the power of nondeterministic reductions. Comput.
Complex., 25(2):349–418, 2016. doi:10.1007/S00037-016-0128-9.

2 Benny Applebaum and Eyal Golombek. On the Randomness Complexity of Interactive
Proofs and Statistical Zero-Knowledge Proofs. In Stefano Tessaro, editor, 2nd Conference
on Information-Theoretic Cryptography (ITC 2021), volume 199 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 4:1–4:23, Dagstuhl, Germany, 2021. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITC.2021.4.

3 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2006. URL: https://theory.cs.princeton.edu/complexity/book.pdf.

4 László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system, and
a hierarchy of complexity class. J. Comput. Syst. Sci., 36(2):254–276, April 1988. doi:
10.1016/0022-0000(88)90028-1.

5 Marshall Ball, Ronen Shaltiel, and Jad Silbak. Non-malleable codes with optimal rate for
poly-size circuits. Electron. Colloquium Comput. Complex., TR23-167, 2023. arXiv:TR23-167.

6 Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography. SIAM J.
Comput., 37(2):380–400, 2007.

7 J.Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, 1979. doi:10.1016/0022-0000(79)90044-8.

8 Andrew Drucker. Nondeterministic direct product reductions and the success probability of
SAT solvers. In FOCS, pages 736–745. IEEE Computer Society, 2013.

9 Uriel Feige and Carsten Lund. On the hardness of computing the permanent of random
matrices. Computational Complexity, 6(2):101–132, 1997.

10 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1)
worst case access time. J. ACM, 31(3):538–544, June 1984. doi:10.1145/828.1884.

11 Oded Goldreich. On promise problems: A survey. In Oded Goldreich, Arnold L. Rosenberg,
and Alan L. Selman, editors, Theoretical Computer Science, Essays in Memory of Shimon
Even, volume 3895 of Lecture Notes in Computer Science, pages 254–290. Springer, 2006.
doi:10.1007/11685654_12.

12 Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge University
Press, 2008. doi:10.1017/CBO9780511804106.

13 Oded Goldreich and Maya Leshkowitz. On Emulating Interactive Proofs with Public
Coins, pages 178–198. Springer International Publishing, Cham, 2020. doi:10.1007/
978-3-030-43662-9_12.

14 Oded Goldreich and Avi Wigderson. Derandomization that is rarely wrong from short advice
that is typically good. In RANDOM, volume 2483 of Lecture Notes in Computer Science,
pages 209–223. Springer, 2002.

15 S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive proof-
systems. In Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing,
STOC ’85, pages 291–304, New York, NY, USA, 1985. Association for Computing Machinery.
doi:10.1145/22145.22178.

16 S Goldwasser and M Sipser. Private coins versus public coins in interactive proof systems.
In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC
’86, pages 59–68, New York, NY, USA, 1986. Association for Computing Machinery. doi:
10.1145/12130.12137.

17 Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. Uniform hardness versus randomness
tradeoffs for arthur-merlin games. Computational Complexity, 12(3-4):85–130, 2003.

ITC 2024

https://doi.org/10.1007/S00037-016-0128-9
https://doi.org/10.4230/LIPIcs.ITC.2021.4
https://theory.cs.princeton.edu/complexity/book.pdf
https://doi.org/10.1016/0022-0000(88)90028-1
https://doi.org/10.1016/0022-0000(88)90028-1
https://arxiv.org/abs/TR23-167
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1145/828.1884
https://doi.org/10.1007/11685654_12
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1007/978-3-030-43662-9_12
https://doi.org/10.1007/978-3-030-43662-9_12
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/12130.12137
https://doi.org/10.1145/12130.12137

2:16 Communication Complexity vs Randomness Complexity in Interactive Proofs

18 Russell Impagliazzo and Avi Wigderson. P = bpp if e requires exponential circuits: Deran-
domizing the xor lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, STOC ’97, pages 220–229, New York, NY, USA, 1997. Association for
Computing Machinery. doi:10.1145/258533.258590.

19 Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci., 43:169–188, 1986.

20 Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–1526,
2002.

21 Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential
size proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Computing,
31(5):1501–1526, 2002. doi:10.1137/S0097539700389652.

22 Maya Leshkowitz. Round complexity versus randomness complexity in interactive proofs. The-
ory Comput., 18:1–65, 2022. URL: https://theoryofcomputing.org/articles/v018a013/.

23 Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39(4):859–868, October 1992. doi:10.1145/146585.
146605.

24 Peter Bro Miltersen and N. V. Vinodchandran. Derandomizing arthur-merlin games using
hitting sets. Computational Complexity, 14(3):256–279, 2005.

25 Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal
derandomization. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee,
Wisconsin, USA, 23-25 October 1995, pages 182–191. IEEE Computer Society, 1995. doi:
10.1109/SFCS.1995.492475.

26 A. Orlitsky. Worst-case interactive communication. i. two messages are almost optimal. IEEE
Transactions on Information Theory, 36(5):1111–1126, 1990. doi:10.1109/18.57210.

27 Rasmus Pagh. Hash and displace: Efficient evaluation of minimal perfect hash functions. In
Frank K. H. A. Dehne, Arvind Gupta, Jörg-Rüdiger Sack, and Roberto Tamassia, editors,
Algorithms and Data Structures, 6th International Workshop, WADS ’99, Vancouver, British
Columbia, Canada, August 11-14, 1999, Proceedings, volume 1663 of Lecture Notes in Computer
Science, pages 49–54. Springer, 1999. doi:10.1007/3-540-48447-7_5.

28 Ronen Shaltiel. Weak derandomization of weak algorithms: Explicit versions of yao’s lemma.
Comput. Complex., 20(1):87–143, 2011. doi:10.1007/S00037-011-0006-4.

29 Ronen Shaltiel and Jad Silbak. Explicit codes for poly-size circuits and functions that are hard
to sample on low entropy distributions. Electron. Colloquium Comput. Complex., TR23-149,
2023. arXiv:TR23-149.

30 Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a new
pseudorandom generator. J. ACM, 52(2):172–216, 2005.

31 Ronen Shaltiel and Christopher Umans. Pseudorandomness for approximate counting and
sampling. Computational Complexity, 15(4):298–341, 2006.

32 Ronen Shaltiel and Christopher Umans. Low-end uniform hardness versus randomness tradeoffs
for AM. SIAM J. Comput., 39(3):1006–1037, 2009.

33 Adi Shamir. Ip = pspace. J. ACM, 39(4):869–877, October 1992. doi:10.1145/146585.146609.
34 Claude E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27(3):379–

423, 1948. doi:10.1002/J.1538-7305.1948.TB01338.X.
35 Michael Sipser. A complexity theoretic approach to randomness. In STOC, pages 330–335.

ACM, 1983.
36 Larry J. Stockmeyer. The complexity of approximate counting (preliminary version). In STOC,

pages 118–126. ACM, 1983.
37 Luca Trevisan and Salil P. Vadhan. Extracting randomness from samplable distributions. In

FOCS, pages 32–42. IEEE Computer Society, 2000.
38 Luca Trevisan, Salil P. Vadhan, and David Zuckerman. Compression of samplable sources.

Comput. Complex., 14(3):186–227, 2005. doi:10.1007/S00037-005-0198-6.

https://doi.org/10.1145/258533.258590
https://doi.org/10.1137/S0097539700389652
https://theoryofcomputing.org/articles/v018a013/
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1109/18.57210
https://doi.org/10.1007/3-540-48447-7_5
https://doi.org/10.1007/S00037-011-0006-4
https://arxiv.org/abs/TR23-149
https://doi.org/10.1145/146585.146609
https://doi.org/10.1002/J.1538-7305.1948.TB01338.X
https://doi.org/10.1007/S00037-005-0198-6

	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.2.1 Single-Round Compression Game
	1.2.2 Focusing on efficiently samplable distribution
	1.2.3 Back to interactive proofs
	1.2.4 Organization

	2 Preliminaries
	2.1 Probability distributions
	2.2 Promise problems
	2.3 Arthur-Merlin Proofs, and NP/Non-Deterministic Circuits
	2.4 Set-lower bound
	2.5 Approximate counting
	2.6 Hashing

	3 Hashing-Based Solution for the Compression Problem
	3.1 Hashing-based compression
	3.2 Improving De-Compressor Communication

	4 Reducing the Communication in Interactive Proofs
	5 Conclusion

