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—— Abstract

Side channel attacks, and in particular timing attacks, are a fundamental obstacle to obtaining
secure implementation of algorithms and cryptographic protocols, and have been widely researched
for decades. While cryptographic definitions for the security of cryptographic systems have been
well established for decades, none of these accepted definitions take into account the running
time information leaked from executing the system. In this work, we give the foundation of new
cryptographic definitions for cryptographic systems that take into account information about their
leaked running time, focusing mainly on keyed functions such as signature and encryption schemes.
Specifically,

(1) We define several cryptographic properties to express the claim that the timing information does
not help an adversary to extract sensitive information, e.g. the key or the queries made. We
highlight the definition of key-obliviousness, which means that an adversary cannot tell whether
it received the timing of the queries with the actual key or the timing of the same queries with
a random key.

(2) We present a construction of key-oblivious pseudorandom permutations on a small or medium-
sized domain. This construction is not “fixed-time,” and at the same time is secure against any
number of queries even in case the adversary knows the running time exactly. Our construction,
which we call Janus Sometimes Recurse, is a variant of the “Sometimes Recurse” shuffle by
Morris and Rogaway.

(3) We suggest a new security notion for keyed functions, called noticeable security, and prove that
cryptographic schemes that have noticeable security remain secure even when the exact timings
are leaked, provided the implementation is key-oblivious. We show that our notion applies to
cryptographic signatures, private key encryption and PRPs.
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1 Introduction

In any implementation of a cryptographic scheme there is a disparity between the mathe-
matical specification of its functionality and the actual implementation in a physical device
and environment. By nature, a physical implementation leaks more information than was
intended and this leakage is known as a side-channel. In this work we concentrate on the
running time, the side channel that is perhaps the hardest to block (and the easiest to
exploit), since the time it took to perform a certain service is often known.

Consider the security of encryption and signature schemes (which we refer to as keyed
cryptographic functions). After much work, definitions of the security of such schemes have
been well-established for decades, and may be considered one of the crown achievements of
the foundations of cryptography. But none of these accepted definitions take into account
the running time information leaked from executing the system.

In this work, we give a foundation for defining the security of cryptographic systems that
take into account that their running time is leaked, focusing mainly on keyed functions such
as signature and encryption schemes. More specifically, we suggest several cryptographic
definitions for scenarios where the leaked information does not help an adversary to expose
sensitive information, e.g. the key or the queries made. The most interesting definition we
propose is key-oblivious. For this notion we prove that for cryptographic schemes such as
digital signatures, private key encryption and pseudorandom permutations (PRPs), if their
implementation satisfies key-obliviousness, then they preserve their security even when the
ezact timing is leaked. Finally, we construct a PRP called “Janus Sometimes Recurse (JSR)”
that is not fixed-time, yet provably secure against timing attacks (key-oblivious and other
properties).

For a motivating example of the JSR construction, consider the following question,
taken more or less verbatim from Stack Overflow!: “I am looking to enumerate a random
permutation of the numbers 1... N in fized space. I cannot store all numbers in a list, N
can be very large, more than available memory. I still want to be able to walk through such a
permutation of numbers one at a time, visiting each number exactly once.”

As we shall see, there are good cryptographically based solutions to the question, but
they are susceptible when the creator of the permutation leaks how long it took to choose
the next value. In light of the work on JSR in Section 4.1 we have a good solution that is
immune even when the timing information is leaked.

1.1 A Brief History of Timing Attacks

There is a significant body of research about side-channel attacks and more specifically timing
attacks, and how to exploit them in order to break cryptographic protocols. An early work
by Lipton and Naughton [24] showed a way to exploit timing information to compromise the
performance of dictionaries that employ universal hash functions.

Kocher [23] showed how the running time of certain implementations of RSA and Diffie
Hellman schemes leaks information that can be used to recover the prime factors or find the
discrete log, hence breaking the systems. In more detail, Kocher showed that the running
time of some implementations depends on the exponent chosen in the protocol, and by
carefully timing the running time on multiple outputs one can extract information about

! https://stackoverflow.com/questions/10054732/create-a-random-permutation-of-1-n-in-
constant-space.
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the exponent, which can then be used to break the security of the protocol. Kocher’s work
brought widespread attention to the crucial importance of implementations of cryptographic
protocols, such as public-key encryption and signatures, and led to a considerable body of
research on vulnerabilities to side-channel attacks and spurring studies and advancements
aimed at strengthening their security against such attacks.

Brumley and Boneh [11] showed that timing attacks are practical on large systems and
over the web. In large systems, the response time suffers significantly from noise coming from
latency, multi-threading, communication bottlenecks and more. Brumley and Boneh showed
that even under these conditions it is possible to retrieve the private key with timing attacks
on OpenSSL servers. More specifically, they showed how to reconstruct the prime factors
used in an RSA protocol by making about one million queries and carefully inspecting the
response times.

One of the most efficient lattice-based digital signature schemes is BLISS, suggested by
Ducas, Durmus, Lepoint and Lyubashevsky [14]. This scheme uses a bimodal Gaussian
sampler and was shown to be vulnerable to timing attacks, and, in particular, the sampling
component that is not independent of the secret-key [15, 10], as well as other attacks.

All of these examples are but a drop in the ocean of the vast and rich research area of
side-channel attacks. New and more sophisticated and subtle attacks and vulnerabilities
are found every once in a while, a solution is suggested and implemented, and then another
attack is found, in what feels like a never-ending game of cat and mouse. For a more thorough
(but still far from full) overview of the history and background of side-channel attacks and
timing attacks in particular see Crosby, Wallach and Riedi [13] and Biswas, Ghosal and
Nagaraja [8].

1.2 Prevention Techniques

The main approach to prevent timing attacks is to use fized-time algorithms, often called in
the literature “constant time algorithms,” meaning algorithms that run the same amount of
time on all inputs.

There are two main drawbacks to this solution. First, in order for the algorithm to run
in fixed-time on all the inputs, we need to know the worst-case running time, a task that is
often challenging on its own. The second one is that even if we do know the running time,
in many cases there is a very large gap between best case and worst case running time, or
even average case and worst case running time, and by making the algorithm run in the
worst case time on all inputs, we create huge overheads. It is also worth mentioning that the
second caveat can make many protocols and algorithms impractical and not usable when
efficiency is critical.

In addition, the survey in Section 1.1 demonstrates that the task of making an algorithm
run in fixed-time is more subtle and challenging than meets the eye. Timing information
might leak from the response times of the server, from I/O calls, from reading RAM memory
or cache memory, and many more possibilities. For the implemented algorithm to be truly
and fully fixed-time one must make sure to make everything fixed-time, which is often very
challenging and goes against hardware and software optimizations.

A common technique to thwart timing attacks in the public-key context is “blinding,’
first suggested by Chaum [12] in the context of signatures, where a value v is mapped into a
random-looking one u prior to the encryption or signature, in a manner that allows retrieving
the desired signature or encryption from the encryption or signature on u. Kocher [23]
suggested using blinding to make RSA implementations secure against timing attacks. The
blinding works by multiplying the input = by a fresh random element r of the group Zy ™, i.e.

U
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a random element which is co-prime to N. To decode, multiplication by the group inverse
r~1 is done at the end of the computation. Note that simply using the same 7 for many
inputs will not work, as the attack suggested by Kocher can recover r over time, and even
recover the exponent without knowing r. Hence, fresh r needs to be chosen in each round.
This example goes to show that using blinding as a technique to protect against timing
attacks is often a subtle task, and that if implemented naively or incorrectly can lead to a
false sense of security.

A general approach to preventing leakage is to employ techniques from secure multi-party
computation, and split the input into various parts where leaking almost all of the parts
does not reveal the actual values. It was first suggested in Ishai, Sahai and Waters [20] for
thwarting probing attacks (see Kalai and Reyzin [21] for a survey). This can be thought of
as the “moral equivalent” of blinding for a general function. However, in the case of timing,
at the very least the sum of their running times is leaked (since they are all executed on the
same machine, what is leaked in the total time of all the emulated processors) and this is a
function of all parties. Hence this does not solve the problem, unless an argument is made
that the sum of all the execution times is not meaningful.

Another set of techniques is known as the bounded retrieval model (see [2] for a survey).
In this model, the adversary learns some arbitrary function of the secret key that is shorter
than the key. An alternative is the noisy leakage model, where the leakage is not of bounded
length but it is guaranteed that the secret key is still unpredictable given the leaked value [30].
But this is not the case in our setting, with a repeatedly used keyed function: the adversary
learns the timing of the keyed function on many inputs. Altogether this leaked information
may be much greater than the key size. There is also the continual-leakage model, which
is more appropriate for this case. The work of Goldwasser and Rothblum [18] considered
leakage with an unbounded number of executions, in the presence of an adversary who
observes partial information on the internal state of the computation during the executions.
They showed that it is possible to obtain secure computation in the sense that the adversary
learns only input-output behavior if the leakage in any round is bounded (following the
“only computation leaks information” maxim of Micali and Reyzin [27]). However, this is
not a silver bullet for timing attacks, as in this work the first step is to turn the program
to be computed into a circuit, i.e. into a fixed-time computation - and this carries over the
various downsides of this approach, for instance, that typical case becomes the worst case.
Nevertheless, such an approach may be useful for various critical sections when one wants to
get fixed time. Our goal in this work is to relax fived time and allow information related to
the key to leak, but specify what it means to say that it is not harmful.

Extending the Notion of Constant Time

There have been a number of proposals to extend the notion of constant time implementations
in order to argue that no meaningful information is leaked from the timing. For instance,
Benegas et al. [4] talk about the distribution of the running time being the same for any key
and any input. Similarly, Almeida et al. [1] define a program to be secure if all equivalent
programs in terms of inputs and outputs are indistinguishable given the leaked information,
i.e. it “means that any two executions whose input and output values differ only with respect
to secret information must leak exactly the same observation.” These extensions are not
flexible enough to talk about protecting keyed cryptographic functions, since the protection
there is computational, and the inputs and outputs are not going to be identical. For instance
consider the case of signature schemes.

Note that we use the term “fixed-time” since in the literature constant time sometimes
does not refer to operations that take the same amount of time no matter what the input is.



Y. Ben Dov, L. David, M. Naor, and E. Tzalik

1.3 Comparing Our Work With the Existing Ones

At this point, the reader may be wondering whether enough theoretical work was already
done in the area of leakage and there is not much to add. The novel aspect of our work
is proposing criteria for arguing that the leakage is benign, that is, the presence of this
benign leakage, although not being fixed, does not compromise the original guaranteed
security in many cases. Maintaining this criteria is, therefore, sufficient to argue security
even with the presence of the leakage in many cases. An illustrative example is the famous
GGM construction of pseudorandom functions (PRF) F' from length-doubling pseudorandom
generators (PRG) G. What properties should we require of the PRG G in order to arque that
F is secure? Recall that the construction is defined by imagining a full binary tree of depth
n where each node gets an n bit label. The root is labeled with the key k£ and each parent
induces a labeling of its two children by applying G to its label; the left half of the result
becomes the label of the left child and the right half the label of the right child. Clearly,
requiring that G be fixed time and making the rest of operations (deciding whether to branch
left or right based on the bit) fixed-time is sufficient. But can we get a weaker requirement
from G and how to express it? What happens when the construction is not applied a fixed
number of times, but one that can vary with the input? Could such a construction be secure?

In this work we define a formal condition that is sufficient to argue security in the presence
of leakage in many cases. We call this condition “key-oblivious.” Namely, in order to prove
that a construction is secure in the presence of leakage, one only needs to prove that the
construction is key-oblivious. The key-obliviousness then implies security in the presence of
leakage. We argue that this notion is easier to reason about than directly proving that the
leakage does not hurt security.

A possible comparison is to the definition of security of encryption. The “moral equivalent”
of this condition is the notion of indistinguishability of encryptions, which is, generally
speaking, easier to prove than semantic security. But we know that the two notions are
equivalent in that context.

Note that the notion of key-oblivious is relevant to any type of leakage, not necessarily
timing, but in case of time we have various properties that make it particularly useful, e.g,
the leakage of applying a function f and then g is, under reasonable assumptions, the sum
of the two leakages.

1.4 OQur Contributions and Technical Overview

Our goal in this work is to investigate the landscape of algorithms and systems that can be
implemented in a manner resistant to timing attacks, but we wish to expand the “Procrustean
bed” of fixed-time algorithms. We provide foundational treatment to the subject as well as
many algorithms and separation results.

We propose several criteria for expressing the property that the timing information of
an implementation of an algorithm does not expose sensitive information in the context of
keyed functions. The most interesting one is key-oblivious (Definition. 1), which means that a
polynomially bounded adversary cannot tell whether it received the timing of the actual key
or of a random unrelated key. Namely, suppose that Fj, is a keyed function with a key k and
T (Fr(q)) is the time takes to execute Fy on the query ¢, then the key oblivious definition
means that a PPT adversary cannot distinguish the following two cases: whether the time
it gets is the real running time on the actual key k, or whether the running time is on an
unrelated key k':
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Definition 1. We say a keyed function F is key-oblivious secure against timing attacks if
any probabilistic polynomial-time (PPT) adversary Adv has a winning probability at most
% + negl(n) in the following game:
1. Two keys are sampled ko, k1.
2. A random bit b € {0, 1} is sampled.
3. The adversary Adv makes ¢ = poly(n) adaptive queries qi,...,q; to Fi,, and gets
fko (Q1)7 e kao (1114), as Well as T(-Fkb ((h)), ceey T(-Fkb (Qg)).
4. The adversary outputs o', the guess of b, and wins if o' = b.

How useful is this criterion? What does it imply? The notion of key obliviousness is most
useful in cases where the period where the adversary has access to the timing information
is separated from when it actually attacks; for instance, in the case of signatures schemes,
where the adversary may know how long it takes to produce a signature on a message, but
where the adversary does not have access to the timing information of the signing of the
actual message it wants to forge. We then prove that if we have signature scheme JFj, that is
existentially unforgeable secure against an adaptive chosen message attack and the signature
function Fj is key-oblivious, then even if the adversary in the forgery game has access to
the running time it takes to generate the signatures, then this adversary will not manage to
forge a valid-looking signature on any message it was not given a signature explicitly.

As mentioned above, the key-oblivious criteria is most relevant when the attack occurs
after timing information is not available anymore, e.g. as in the case of signature schemes. But
there are scenarios where this is not the case and the adversary does get timing information
during a “challenge phase.” Consider, for instance, the case of encryption, where the final
goal of the adversary is to distinguish between the encryption of two messages. The game has
a “challenge phase” in which the adversary sends two messages and receives an encryption of
one of them and its goal is to guess which one it is. The encryption may not be time-secure,
even though the encryption implementation is key-oblivious.

To see this, consider the following example: suppose that the running time depends only
on the least significant bit (Isb) of the message and does not depend on the key or other
bits of the message. Then given two messages with different lsbs, the adversary who gets
the running time of the actual message that was chosen, can easily distinguish whether the
encryption was of one message or the other.

A case where this may be significant is in voting machines where votes are encrypted
and then shuffled. If the timing of an encryption of a particular vote is known, then if the
encryption is not query-oblivious in the above sense then this yields information about the
actual vote.

To guarantee time-security also in cryptographic games that have a “challenge phase” (as
in the indistinguishability game) we propose another security criteria called query-oblivious
(Definition 3) whose aim is to capture the property that the time to evaluate a query does not
leak information about the query itself. We then prove specifically for indistinguishability of
encryptions (Theorem 26) that if the implementation is query-oblivious, then it is time-secure.

A fundamental issue concerning any new security definition is what happens when a
primitive satisfying it is part of a larger structure and whether the new criterion is preserved
under different constructions. To this end, we investigate different constructions and explore
whether they preserve key-obliviousness and whether being query-oblivious as well is necessary
for them to preserve key-obliviousness. We focus on the following constructions:

The famed Goldreich-Goldwasser-Micali (GGM) construction: we show that if G is a

PRG implemented in a key-oblivious manner, then applying GGM with G yields a PRF

that is key oblivious.
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The cycle walking technique for format-preserving encryption: we show that if the
permutation 7 is key oblivious, then the result 7’ is key oblivious.

Domain extensions of PRFs: we show that even if the underlying PRFs are key-oblivious,
then the classical results do not necessarily imply that the result is key-oblivious. But we
show that the cascading construction of PRF extension preserves key obliviousness.

Main Application

In Section 4 we turn our attention to pseudorandom permutations (PRP) on small domains
(related to format-preserving encryption). The most efficient construction for small domain
PRP is the “Sometimes Recurse” (SR) shuffle by Morris and Rogaway [28], which runs in
expected time of O(log N) and is secure even when the adversary queries the whole domain
(a more detailed exposition appears in Section 4). The downside of SR is that its running
time is fully determined by the number of leading 1’s in the output. This makes the SR
construction not secure against timing attacks, namely, SR is neither key-oblivious (Claim 12)
nor query-oblivious (Claim 14).

We suggest a new construction of a PRP on small domains which we call the Janus
Sometimes Recurse (JSR) that is not constant time, yet provably secure against timing attacks.
Our construction is faster than all previously known constructions that are secure against
timing attacks. Specifically we prove that: (1) JSR is key-oblivious (Claim 16), i.e., a PPT
adversary cannot distinguish between the key that was used and a random key even when
the adversary gets the exact running time of the PRP; and (2) JSR is also query-oblivious
(Claim 18), i.e., a PPT adversary cannot infer from the computation time of the PRP on a
query ¢ what q is.

k

o

Figure 1 JSR construction on two PRPs.

Generally speaking, JSR takes two independent (i.e. with two independent keys) copies
of SR on the same domain [N], where the permutations are denoted by 7 and ¢ and the
keys by k™ and k°, and composes 7 with 0~ !, see Figure 1. This is similar to the approach
that Maurer and Pietrzak [26] used to move from non-adaptive to adaptive PRPs. The term
“Janus” in the name of our construction “Janus Sometimes Recurse” (JSR) comes from the
Roman god who was depicted as having two faces, since both the directions (encryption and
decryption) are forward-looking.

The intuition for this construction is that while the running time of the forward direction
leaks information about the output, the running time of the inverse is determined by the
input, and so by composing the two we get that the running time of the algorithm both in
the forward direction and in the inverse, is determined by the inner value which is almost
independent of the input and output since 7, o are PRPs.

Main Security Claim

To formally define the criteria in general, we consider a cryptographic game (Definition 20) for
a keyed function, which captures the security of many primitives including indistinguishability
of encryptions, digital signatures, and pseudo-random permutations (we denote for function
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F the security game with Gx). A game G has noticeable security (Definition 20), if it is
defined between an adversary and a principal, and determining who wins the game can be
done without direct access to the key, but simply based on the queries and the state of the
principal. We show that digital signatures, pseudo-random permutations, and encryption
(but for indistinguishability of encryption see caveat below and Section 5.2) have games with
noticeable security.

The main result (Theorem 1) shows that: For a keyed function Fy, that is secure w.r.t. a
game Gx that has “noticeable security,” if the implementation of Fy. is key-oblivious then
Fi 1s time-secure, that is, Fy is secure w.r.t. Gr even when the exact running timing of
executing the oracle on the queries is leaked to the adversary.

2 Keyed Functions Secure Against Timing Attacks

We now aim to formalize security against timing attacks for keyed cryptographic functions.
Since the security of keyed cryptographic functions is usually measured by the success of a
PPT adversary in some game, we would like the security notion to provide the keyed function
security against such adversaries.

Let F be a keyed function, with key space {C,, },,, where keys are sampled from /C,, have
length poly(n). Denote by Fi the keyed function with a chosen key k. To ease the notation
we will use k ~ K to denote sampling k from K,, when n is understood from context.

We denote by g a query to the function. We do not state what type of query it is, since
different types of functions will have different queries. For example, if F is an encryption
scheme, then it makes sense to allow encryption queries as well as decryption queries. Denote
by Fi(g) the answer to the query and by T (Fk(q)) the running time it took for the answer
to return.

Assumption on Running Time Running time is implementation dependent, hence we stress
that T (Fr(q)) depends on F, g, k as well as the implementation of F in the computational
model. In many cases, once a key is fixed, the running time on a query will be deterministic,
but there are cases in which the running time might be a distribution even with the same
key and query. We therefore think of 7 as a distribution (which may be a distribution
supported on one element).

The crucial assumption which is running time specific that we assume is linearity of
composition, meaning that 7 (F o G(z)) = T(F(G(x))) + T(G(x)) where by F o G means
running G on z, and sequentially F on G(z). This assumption is not used in this section,
as well as Section 5, since in these sections we study a single function. On the other hand
linearity of composition is a key for designing complex cryptographic primitives from
basic ones, e.g. in the JSR construction appearing in Section 4.

We, therefore, require that for some of the statements in the paper at certain points of the
computation, the model is inherently sequential and that many optimizations incorporated
by modern computers to speed running time (e.g. pipeline, multi-processing, branch
prediction, etc.) are not allowed at those points (hence the linearity assumption). As is
well known, such optimizations can be exploited, with Spectre being one of the notable
examples.

We use the notation negl for any function negl: N — R¥ satisfying that for every positive
polynomial p(-) there is an N such that for all integers n > N it holds that negl(n) < ﬁ.
Such functions are called negligible. We will also call a random variable with distribution
Bernoulli() a random bit.
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We state three definitions of security of keyed cryptographic function. The first two
definitions concern securing the key from a timing attack, while the third is designed to
secure the result of queries.

» Definition 1. We say a keyed function F is key-oblivious secure against timing attacks

if any probabilistic polynomial-time (PPT) adversary Adv has a winning probability at most

% + negl(n) in the following game:

1. Two keys are sampled ko, k1 ~ K.

2. A random bit b € {0,1} is sampled.

3. The adversary Adv makes £ = poly(n) adaptive queries q1,...,q¢ to Fr,, and gets
Fro(@1), - s Fro(qe), as well as T (Fr,(q1)),-- - T (Fr, (qe))-

4. The adversary outputs b, the guess of b, and wins if b/ = b.

Definition 1 means that the joint distribution of running times on a polynomial number
of queries for two keys T (F, (¢1)), - .-, T (Fk,(ge)) are indistinguishable by a PPT adversary
even when it sees the results of the query on a specific key. We now strengthen Definition 1:

» Definition 2. We say a keyed function F is key-switch secure against timing attacks if

any PPT adversary Adv has a winning probability at most % + negl(n) in the following game:

1. Two keys are sampled ko, k1 ~ K.

2. The adversary Adv makes £ = poly(n) many queries q1, ..., q¢ and gets Fiy(q1), - -, Fro(qe)
as well as T (Fry(q1))y -+ T (Fro(qe))-

3. A random bit b € {0,1} is sampled.

4. The adversary Adv makes another ¢/ = poly(n) many queries p1,...,pp and gets
Froo(P1)s -+, Fro (Per), as well as T (Fr, (p1)), -, T (F, (per))-

5. The adversary outputs V', the guess of b, and wins if b’ = b.

Notice that if we skip step 2 we get back to Definition 1. The difference here is that
the adversary gets the running time of the function with the same key as the answers, until
a bit is chosen, and only then the adversary does not know if the timing comes from the
same key or a different key. This essentially means that the distribution of the running times
T(Fr,(p1))s -+, T(Fk, (pe)) conditioning on the answers to the queries and the running time
on the original key are indistinguishable by a PPT adversary.

This definition could be useful to prevent denial-of-service attacks: if the adversary can
find expensive (time-wise) queries, then it can bunch expensive queries together and ask
them so as to overload the system. If, in addition, the system has the property that a priory
it is not clear how long a query would take, then it is not possible to find expensive queries
(since then it would be possible to figure out whether a key-switch occurred or not).

The third definition is of query-obliviousness and involves only a single key and aims to
express that the actual queries made are secure from a timing attack. This is desirable, for
instance, in voting systems. Consider a voting system that uses a keyed function (e.g. a
PRP) as a subroutine to the actual vote cast. The sensitive information that needs to be
protected is the votes themselves and not necessarily the key.

» Definition 3. We say a keyed function F is query-oblivious secure against timing attacks
if any PPT adversary Adv has a winning probability at most % + negl(n) in the following
game:
1. A single key k ~ K is sampled.
2. The adversary Adv makes £ = poly(n) adaptive queries q1,...,q; and gets

Frlqr), -, Frlqe) and T (Fx(q)), .-, T(Fr(qe)) of all the queries.
3. The adversary Adv chooses two new distinct queries q, # ¢} such that gy, ¢} € {q1,---,qe}-
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4. A bit b e {0,1} is chosen at random.
5. The adversary Adv gets T (Fi(qy,))-
6. The adversary outputs V', the guess of b, and wins if b’ = b.

In the game above, the adversary makes queries and gets their running time. Then
the adversary chooses two different queries and gets the running time of one of them. The
challenge is to decide what is the query whose running time was returned. There are two
(non-mutually exclusive) variations on this:

Weakly vs. Strongly: If the function is also secure for general queries g, ¢ that are not
necessarily new, then we say that function is strongly query-oblivious, while the definition
above is weakly query-oblivious.

With vs. Without Results We define a variant of query-oblivious, we call query-with-
results-oblivious which is the same as the above query-oblivious game but with one
change: in step (5) the adversary Adv gets both Fj(q;) and T (Fi(g;)) rather than only
T (Fr(gy)). As we shall see, this query-with-result-oblivious will be useful, for example,
for time-security of indistinguishability of encryption, while the original query-oblivious
definition will be useful, for example, for domain extension.

» Remark 4. The definitions above are not equivalent to one another. The argument appears
in the extended version of this paper.

3 Constructions Preserving Key-Obliviousness

A natural question about the notion of key-oblivious is whether the key-oblivious is preserved
when applying it to several functions. In this section we investigate several well known
constructions and check whether the key-obliviousness is preserved under these constructions,
given that the underlying building blocks are key-oblivious. We start with the basic construc-
tions of composition and concatenation. We then consider the fundamental cryptographic
constructions:

1. The GGM construction of pseudorandom functions, where we show that if the basic
building block, the PRG G, is key oblivious, then the result is key oblivious (Claim 5).
However it is not necessarily query-oblivious (Claim 6).

2. We consider the Cycle walking technique for constructing format-preserving encryption,
which is not fixed time by nature, yet we show that if the underlying permutation m is
key oblivious, then the result is key oblivious.

3. Finally we consider various domain extension techniques and show that while some of
them do not preserve key-obliviousness (e.g. using the Levin trick) it is possible to get
key-obliviousness using either an additional primitive such as UOWHF or using the
cascading consturction.

Composition and concatenation

A basic issue when considering security definition is how they interact as part of a larger
system. The good news is that wrt concatenation key-obliviousness is preserved: Suppose
that we have two keyed functions f and g and suppose that their keys are independent. Then
the natural implementation of producing f(x) o g(x), first compute f(z) and then g(z) is also
key oblivious. Also suppose that at each step either f or g are called, then the whole process
is still key-oblivious. Furthermore, let & be any function that is implemented in constant
time (e.g. addition or Xor). Then the natural implementation of h(f(z), g(x)) where f and
g are key-oblivious and are computed in a sequential manner and where h is fixed time is
itself key oblivious.
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On the other hand, as we shall see, for composition the case is different: even if f and g
are key-oblivious it is not necessarily true that f(g(z)) is key oblivious! This is shown in
Claim 8.

3.1 The GGM Construction of PRFs

Consider the Goldreich-Goldwasser-Micali (GGM) construction of pseudorandom functions
(PRF) from pseudorandom generators [16]. The construction starts with a pseudorandom
generator G': {0,1}" — {0,1}?" and the PRF F: {0,1}" — {0,1}" with key k € {0,1}"
is defined by imagining a full binary tree of depth n where each node gets an n bit label.
The root is labeled with the key k and each parent induces a labeling of its two children by
applying G to its label; the left half of the result becomes the label of the left child and the
right half the label of the right child. The value of Fj(z) for = € {0,1}™ is the label of the
leaf at the end of the path defined by z.

Suppose that G is implemented in a key oblivious manner, meaning in this case, simply
that given G(k) for a uniform k € {0,1}" and T (G(k)) or T (G(k’)) for a uniform k' € {0,1}",
it is hard for a poly-time adversary to distinguish between the two cases. Now consider
the straightforward implementation of the GGM PRF F(x) from G, which consists of n
applications of G given k and = (developing the required labels). Assume that taking the left
or right half of the output of G once it is computed is fixed-time and that each application
of G starts from scratch. Is the result key oblivious? Is it query-oblivious?

> Claim 5. The key-obliviousness of G together with the requirement that it is a PRG
imply that the GGM construction is key-oblivious.

Proof. One possible way to prove the claim is to follow the same lines as the classical proof
of pseudo-randomness of the GGM construction. This proof is based on a hybrid argument.
If it is possible to distinguish between the construction and a truly random function using m
queries, then there is a sequence of m’ < m-n distributions, the first being the pseudorandom
one, as described above and the last one being the truly random one?. An alternative
approach is to use induction on the depth on the tree. For the base case n = 1, the property
that G is assumed to have is sufficient to guarantee key obliviousness. To increase the number
of levels, we will think of the two branches from the root as two independent functions. In
this case, the whole process should still be key oblivious, as the discussion at the beginning
of Section 3 shows. If the actual implementation is no key-oblivious, then again, we have an
attack of the key obliviousness of G. <

> Claim 6. The GGM construction is not query-oblivious, at least not if G is not fixed-time
computable. This is true even if we consider weakly query-without-result-oblivious.

Proof. Note that the time to compute Fy(z) is the sum of n applications of G on random-
looking inputs. Furthermore, the timings of Fi(z) and Fj(z’) for z and z’ that differ only
in the last bit are closely correlated (since the sums are over the same summands, except
the last one), compared to the timing of z and ="/ where 2 is, say, a random input. In the
latter, there will be little correlation. So Definition 3 is not satisfied. <

2 In our case, for the ith distribution, the first 4 — 1 timings are the application of @ on one key (the real
one, for which the output values are also given) and the last m — ¢ 4+ 1 ones are the timings of another
key, unrelated to the real one. If it is possible to distinguish between the first and last distributions,
then it is possible to distinguish between some two neighboring distributions.
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3.2 Format Preserving Encryption - the Cycle Walking Technique

A good example of a construction that is inherently non fixed-time, yet key oblivious and
under some conditions query-oblivious, is the cycle walking technique of Format Preserving
Encryption (See Bellare et al. [6]). Imagine that we have a construction of a pseudo-random
permutation (PRP) on some domain, say of size 2¢, and we want to build from it a PRP
on a smaller domain S C [2°]. A simple example is when S is the set of numbers 0 through
Q@ — 1 (where @ is not a power of 2), but the question is relevant for any format of S.

What Black and Rogaway [9] analyzed is a simple cycle walking technique for constructing
permutations on smaller domains. Given a PRP 7 on the larger domain of size 2¢, to get
a PRP on S define 7’ by starting with x € S and repeatedly apply 7 to it until hitting a
value in S. This is defined to be 7/(x). The expected number of applications of 7 is 2¢/|S].
It is clear that this construction is not fixed-time (if |S| < 2¢), even if the original PRP is
fixed-time. So which of the definitions of our framework does this technique satisfy? We
note that Bellare et al. wrote that it “Doesn’t Give Rise to Timing Attacks,” but we want
to check in what sense this is true and how it fits our definitions.

We claim that the exact properties of 7’ depend on whether the original PRP is fixed-time
or “merely” key oblivious. For the former we get both key and query-obliviousness and for
the latter just key obliviousness. We assume that the implementation is such that the timing
of the various calls to 7w are independent of each other, in the sense the time it takes to
run 7(x) does not depend on any sequence of operations done before and in particular on
whether we have just executed 7(x1), m(x2), ..., 7(Tm).

> Claim 7. (i) If the permutation 7 is fixed-time, then the result 7’ is both key oblivious and
query-oblivious in the weakly with results sense. (ii) If the permutation 7 is key oblivious,
then the result 7’ is key oblivious.

In order to see that (ii) is correct, think of simulating 7’ through access to w. Now if there is
an attack on 7’ that distinguishes between true timing and timing of some random unrelated
key, then we can apply it to 7 itself and get the same distinguishing probability, thus violating
the assumption that 7 is key oblivious.

In order to see that (i) is true, think of composing the permutation = with a random
permutation o. By the definition of a PRP, this is indistinguishable from the plain 7 (since
this is the case for a truly random permutation). Now instead of a query z, the query is
effectively o (), which makes it into a random unknown value. Given that the implementation
is of 7 is fixed-time, the only information gained from the timing is the number of applications
of 7 needed to evaluate 7’(z). But given the randomness of ¢ this is useless information to
distinguish between two queries ¢} and ¢} that have not appeared so far and therefore the
construction is query-oblivious.

Note that the construction does not satisfy the key switch requirement of Definition 2,
since once 7 is fixed, then each element z has a very distinctive number of evaluations of 7
needed to compute 7/(z). Therefore it is possible to see if the time to compute 7/(z) changes
at the potential key switch time.

3 What they proved is that leaking the number of applications of = does not hurt the pseudorandomness
of 7/
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3.3 Key-oblivious Domain Extension

Pseudo-random functions are a major cryptographic primitive that can be used to efficiently
obtain many other primitives and is very useful in many protocols. One question that comes
up is: given a function family F' where each function Fj € F is, say, length preserving,
ie. Fi: {0,1}" — {0,1}", how does one come up with constructions which are on larger
domains, e.g. {0,1}?" — {0,1}".

The Levin Trick

A common and simple way of obtaining domain extension is to apply a universal hash
function from the larger domain to the smaller one and then apply the PRF. Namely, let T’
be family of pair-wise independent hash functions s.t. g: {0,1}?" + {0,1}" for g € " and
Fi be a PRF. Then the extended function is defined as ]-'Ag(acl, x9) = Fr(g(x1,x2)).

> Claim 8. Even if Fj is key-oblivious and even if g is fixed time, the resulting construction
may not be key-oblivious.

Proof. Consider the case that Fj is very much not query oblivious. That is, the time to
compute Fi(z) is z. Now suppose that h is defined by two values a1, as € GF[2"] (chosen
uniformly at random) and the function is g(z1,x2) = a121 + asxe where the computation is
over GF[2"]. Given a few examples of pairs (2}, 25) and the corresponding values Fy, (7, z5)
it is possible to reconstruct a; and as. Once this is done it is possible to find collisions with
g, i.e. two pairs (21, z9) and (z},24) s.t. g(x1,22) = g(a], z5). For this pair we will have
that F;  (z1,22) = F; (@, 23). Now if the timing of a random key is given, then this will
not cause a collision in F, ,’C , and therefore there is a way to distinguish correct and incorrect
timings. <

Note that this claim shows that key-obliviousness is not necessarily preserved under
composition. In this example both Fi and g are key-oblivious, yet the composition is not.

» Corollary 9. There are keyed functions f and g such that given key-oblivious implementa-
tions of f and g the resulting composition f(g(x)) is not key oblvious.

Using CRH and UOWHF

A way to remedy this problem is to use a Collision Resistant Hash (CRH) function, instead
of a combinatorial one used in the original proposal by Levin. Recall that a function h is
a CRH if it is hard to find two different values x and z’ that collide under h, that is, any
collision is considered a violation of the hardness assumption. But this approach (i) Requires
another cryptographic assumption or primitive. Recall that in terms of assumptions, PRFs
can be built from one-way functions in a black-box (BB) manner, whereas CRHs are BB
separated from one-way functions. (ii) May not work with all range of the parameters we are
interested in, since a CRH requires a minimum range size. For instance, the range of the
CRH cannot be 80 bits.

The perhaps surprising observation is that we show that the CRH in the above construction
can be replaced with a Universal One-way Hash Function (UOWHF) [31]. UOWHF (or
second pre-image resistant hash function), are ones where the target x is chosen before the
function is known and the collision should be with the target x. UOWHF can be based on
one-way functions [33, 22]. The idea is to replace each x; with its PRF value. Let h € H
where H is a UOWHF family. Consider the construction

Frpr p(T1,22) = Fr(h(Frs (1), Fir (22)))-
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> Claim 10. If the implementation of F is key-oblivious, then for any implementation of
the hash function h chosen from a family of UOWHFs, the implementation of F’ as defined
above is key-oblivious.

The only case we need to worry is if the adversary finds collisions under h. The hardness
properties of h do not guarantee hardness of finding any arbitrary collision, but rather with
one target specified in advance. The idea is that an adversary may ask various queries,
and since we do not assume that Fj, is query oblivious and we make no timing assumption
regarding h, then the values of Fj/(z1) are known to the adversary (i.e. they may leak
through the computation of h).

Furthermore, the adversary can mix and match an z% and 27 from different queries.
Nevertheless, the values F/(z}) look random to the adversary. Suppose an adversary makes
m queries to the function Fi. At the end of the attack it finds a collision with some pair

(2%, 23) as one of the inputs with a collision in A (if the colliding pair was never queried

this is even better). Then we can use this adversary as a second pre-image finder: We
select a random value (y1,92) € {0,1}*" as the target and then guess i and j and when

x! is given, we plug in y; as the value of Fj/ (%) and similarly for x] we give y2 as the

“normal” instance.

value of Fy/(x}). From the adversary’s point of view this looks like a
Therefore the probability of selecting i and j correctly is Q(1/m?) times the probability that

the adversary finds a collision.

Cascading

We show that the cascading domain extension, as analyzed by Bellare, Canetti and
Krawczyk [5] actually preserves key-obliviousness. The length-doubling construction is

Flé(zlaxQ) = FFk(Zl)(xQ)'

The straightforward implementation of F” is to first compute Fj(x1) then take the resulting
value as the key ko to Fj,(x2) where the time of the second is independent of the time is
took compute the first one.

> Claim 11. If the implementation of F' is key-oblivious, then the “straightforward”
implementation of F”’ is key-oblivious.

Proof (Sketch). The main issue is that in this construction it is always clear what the query
is. The keys, that keep changing, on the other hand, are not known. Therefore the Bellare et
al. proof can be translated to this setting. Consider the experiment where instead of using
the value F; k(a:]l) and random value is v; is used for the next step (while making sure to use it
consistently) but the timing produced is that of T(Fj(x)) and T(Fy, (z3)) . Tf it is possible
to distinguish between these two cases, then there is an attack on the key obliviousness of
F. If not, then note that we can view the new construction as a concatenation of many
functions, as argued at the beginning of this section. <

» Question. A major issue we did not resolve is how not to lose the birthday bound, as was
done in Berman et al. [7] for domain extension without timing. Is it possible to get a similar
result when timing is leaked?

4 Key-Oblivious PRPs on Small Domains

The question of how to generate Pseudo Random Permutations (PRP) has been extensively
investigated for a few decades. Luby and Rackoff [25] (who defined the notion of PRP)
showed how to get a PRP from a PRF. Their construction uses a Feistel network and there
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are many variants of it. In their work the security of the construction works provided the
adversary makes at most O(N i) queries, where IV is the size of the domain. When the
domain is not very big, such a security guarantee might not be enough, as N T can be a
feasible amount of queries made. This is also true to refinements of the method, such as
Naor and Reingold [29], who get to N 3. In such cases we might want the security to hold
even if the adversary queries a constant fraction of the domain or even all of the domain but
a constant number of elements.

When the domain is very small, it is possible to generate a fully random permutation,
rather than a PRP. Yet this is undesirable in many cases, since the memory required to
represent a random permutation is Q(N log N) bits. This memory requirement may be
feasible for small enough N but is infeasible for medium-sized N (e.g. all credit card numbers
or SSNs). We are left with the intermediate case of small, but not too small, domains, so that
explicitly saving a permutation is infeasible, yet the security guarantees of Feistel network
constructions might not suffice. As a concrete example think of the domain of credit card
numbers (16 decimal digits). We refer to PRPs of this intermediate case as small-domain
PRPs.

Small-domain PRPs are useful in a variety of application scenarios, e.g. cryptographic

constructions, as Oblivious RAMs [17, 35], for randomly reordering (permuting) a list of items.

They can also be used to generate pseudorandom unique tokens (e.g., product serial numbers)
in a specific format and to encrypt data in a small domain, such as encrypting a 9-digit
social security number into another 9-digit number. Because of this, a small-domain PRP is
also commonly referred to as a small-domain cipher or format-preserving encryption (FPE).*
FPE has been a useful tool in encrypting financial and personal identification information,
and transparently encrypting information in legacy databases.

In this section we focus on the small domain and show an interesting construction of
PRPs on which is not fixed-time, yet is also secure under some of our definitions. A line
of three works addressed this issue and showed efficient constructions for PRPs on small
domains N with strong security guarantees, based on PRP or PRFs on large domains. The
key observation in these works is one made by Moni Naor (see [34]), that if a card shuffling
algorithm is oblivious, meaning that one can trace the trajectory of a card without attending

to a lot of other cards in the deck, then it gives rise to a computationally feasible PRP.

Therefore we can think of [N] as a deck of cards of size N. All three works we describe start
from this viewpoint on PRPs. The dominant computational resource in these works is the
calls to a PRF on a large domain.

The first work, called “Swap-or-Not Shuffle” (SN) by Hoang, Morris and Rogaway [19]
consists of a sequence of rounds that gradually shuffle the deck. In each round they consider
a random matching of the cards in the deck that matches card X with card X @ K (the
randomness is over the choice of K). Additionally, for each matched pair X, X & K there is
a random and independent bit b that decides whether to swap the matched pair of cards or
not (these bits are also derived from the key). Hoang et al. [19] proved that applying the
swap-or-not procedure O(log N) times and picking the matching index K for each round at
random and independently suffices as long as at most (1 — )N queries were made for any
fixed £ > 0 (notice that this ¢ affects multiplicatively the number of rounds of swap-or-not
needed to achieve a PRP).

4 Note that the cycle walking technique mentioned in Section 3 does not solve the problem of constructing
a small or medium size PRPs, since it needs a PRP of not much larger size to begin with.
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To implement this as a PRP the swap bits along the shuffle b, as well as the K of the
matching should be produced by a PRF (which can be derived from a PRP on large domain
such as AES). This gives a PRP that runs in a fixed time and remains secure as long as
at most (1 — e)N queries were made for any fixed € > 0 (notice that this ¢ affects by a
multiplicative the number of rounds of swap-or-not needed to achieve a PRP). This procedure
is fixed-time provided that the PRFs and XOR operations are implemented in running time
independent on the inputs and keys.

The second work, called “Mix and Cut” by Ristenpart and Yilek [32], aimed to improve
on the number of queries that can be made while keeping the PRP secure. Ristenpart and
Yilek introduced a construction of PRP which runs in a fixed-time of O(log? N) and achieves
full security, meaning it remains secure even if the entire domain is queried. The Mix and
Cut shuffle works by mixing the deck, cutting it to two equal parts, and mixing each of
them recursively using the Mix and Cut shuffle. In the paper, they also proved that if the
shuffle before each cut mixes the cards well enough (which means the top half and bottom
half is approximately a random partition of the cards), then this procedure achieves full
security. They explicitly showed that the Swap-or-Not shuffle can be used with the ¢ from
last paragraph being % to give a fully secure PRP with the Mix and Cut construction.

The third work, called “Sometimes Recurse” (SR) shuffle by Morris and Rogaway [28],
constructed a PRP which runs in ezpected time of O(log N') and achieves full security. Morris
and Rogaway observed that when the Mix and Cut procedure is called, there is no need
to mix both the top half and the bottom half of the deck. Since the top half looks almost
uniform, it is enough to mix only the bottom half, therefore they suggested to only recurse
on the bottom half of the deck, hence the name sometimes recurse. This construction allows
an improvement on the O(log? N) of the Mix and Cut shuffle to an expected number of
rounds which is O(log V).

The downside of SR is that it is no longer fixed-time, and in fact the running time is fully
determined by the number of leading 1s in the output. Morris and Rogaway address this
issue by stating that in a very common use of SR an adversary sees the outputs anyway, and
so the running time doesn’t give more information. However it is also the case that keyed
functions, and in particular PRPs, are employed as a subroutine of a larger system (see for
example [3]). In such cases the adversary no longer sees the output, and so the running time
might leak valuable information that can harm the security of the system.

Consider for example if the PRP is used for storing or transmitting some piece of
sensitive information like a vote or a credit card number in a way that should not reveal the
correspondence between the customer or voter and the ciphertext. In this case the adversary
can only get the runtime of the transaction (purchase, vote) which corresponds to the runtime
of the PRP but does not have direct access to the results of the queries. Suppose now that
the adversary does get to see after some time a batch of such ciphertexts and perhaps some
other information about them (say their opening in case of votes, or whether the transaction
was declined for credit cards). If the adversary knows how long each transaction took, then
it can connect the ciphertext and the voter or customer and learn something it should not
have learned. Moreover, the SR scheme is vulnerable to a denial-of-service attack where the
attacker can easily assemble without any query many different ciphertexts that take a long
time to decrypt (by picking those that have long prefixes of '1’s).

Before analyzing the security of SR we need to specify what we mean by runtime of
SR. We assume that SR construction uses the Swap-or-Not (SN) PRF for each shuffle and
that the Swap-or-Not is implemented in a fixed-time manner. Le. for any x € {0,1}!°5" we
have that the running time of SNy (x) is independent of x and k but is dependent on the
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input length log N. We denote this fixed running time of the the Swap-or-Not on log N bit
inputs by Tiog N (SN) := T (SN (z)) for any x, k. Consequently, by linearity of composition,
the running time of SR on the input x is T(SRy(x)) = Zgzo T(iog Ny—i(SN) where j is the
number of leading 1’s in the output, i.e. we assume commands are executed one after the
other on a single unit without branch predictions. We show that the SR construction is not
secure with respect to our definitions in Section 2.

> Claim 12. The SR construction is not key-oblivious, i.e. does not satisfy Definition 1 and
hence also is not key-switch oblivious, i.e. does not satisfy Definition 2.

Proof. Recall that by definition of SR, an adversary can determine the number of leading 1s

in the output, from the running time and vice versa. This property of SR gives the following

simple strategy:

1. Choose a single element = and query it to get: SRy, (x) and T (SRy, (z)).

2. Check the number of leading 1s in SRy, (), which is T(SRy,(x)) and compare it to the
running time 7 (SRg, (x)) (number of calls to SN by SR on ).

3. If T(SRy,(z)) is equal to T (SR, (x)), return 0, else return 1.

Observe that the distribution of the number of leading 1s is a Geo(3) distribution truncated
at n. Also since the SR shuffle is a PRP, then with constant probability 7 (SR, (z)) #
T(SRy,(z)). This gives the adversary a constant advantage in the key-oblivious game
(Definition 1), and therefore the SR PRP is not key-oblivious. Note that by choosing a
polynomial number of inputs z1, ...,z the adversary can get a winning advantage that is
exponentially close to 1. <

» Corollary 13. The SR construction is not (Gprp, %)-tz’me-secur@.

Proof. This follows from Remark 25. |

> Claim 14. The SR construction is not secure with respect to query-obliviousness (Defini-
tion 3) even in the weakly without results sense.

Proof. Observe that in the definition there is no restriction on making queries in one direction,
we assume both forward and inverse queries. By the construction of SR, in the inverse
direction the running time is determined by the number of leading 1’s in the input. This
gives an adversary a very simple attack. First, make an inverse query on the string = which
we define to be half 1’s in the beginning and then half 0’s. Now for the challenge pick xg to
be the all 0’s string, and z; the all 1's string and make inverse queries. If the running time
is faster than that on x, return b = 0; else return b = 1. This gives the adversary a winning
probability of 1 in the game defined in Definition 3. <

4.1 JSR: Constructing key-oblivious and query-oblivious PRPs

So far we have seen fixed-time constructions and a non fixed-time construction which is
not secure under our definitions. It begs the question: are there (interesting) constructions
that are not fixed-time, yet are also secure under some of our definitions? We now show
a construction of “SR with a twist”, which: (1) achieves the same expected run time of
O(log N) up to a multiplicative factor of 2, (2) is not fixed-time, and (3) is secure with
respect to Definition 1 and with respect to Definition 3 (assuming we have a fixed-time
implementation of a PRF).
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The Proposed Construction: Janus Sometimes Recurse

The construction takes two independent (i.e. with two independent keys) copies of SR on the
same domain [N], where the permutations are denoted by 7 and o and the keys by &™ and
k°, and composes m with o~ !, see Figure 2. This is similar to the approach that Maurer and
Pietrzak [26] used to move from non-adaptive to adaptive PRPs. We call this construction
“Janus Sometimes Recurse” (JSR):

Algorithm 1 JSR(x) with keys k™ and k°.

1: return o~ (7 (z))

The term “Janus” comes from the Roman god who was depicted as having two faces,
since both the directions (encryption and decryption) are forward looking.

!

k

T

Figure 2 Janus construction on two PRPs.

The intuition for this construction is that while the running time of the forward direction
leaks information about the output, the running time of the inverse is determined by the
input, and so by composing the two we get that the running time of the algorithm both in
the forward direction and in the inverse, is determined by the inner value which is almost
independent of the input and output since 7, o are PRPs.

We now turn to show that (1) JSR is secure with respect to Definition 1 as well as
Definition 3 when the two elements chosen are fresh (were not queried before), i.e., in the
weakly sense, and (2) that it is not secure under Definition 2 even in the relaxed version
when queries cannot repeat after the switch.

We start with a lemma that will help us prove the security of the construction.

» Lemma 15. Let m and o be two PRPs on the same domain D, secure under q queries,

and let (kF,kT) and (kG,k7) be two pairs of keys for m and o respectively, then any PPT

adversary Adv has a negligible advantage over 1/2 in the following game:

1. A random bit b €g {0, 1} is chosen.

2. The adversary can make at most j < q queries x1,...,x; to the composition of ™ with o™,
either in the forward direction a,;gl o myr (z;) or in the inverse direction: W];,)rl o oke ().

3. The adversary gets in addition to the result of each query, the inner result with respect to
b. Namely in the forward direction Adv gets Tyx(z;) and in the inverse direction ogg (;).

4. The adversary should output V' such that b/ = b.

Proof. Consider the distribution where a truly random value that hasn’t appeared in previous
queries is given instead of the inner value either in the case b =0 or b = 1. We claim that
the truly random distribution is indistinguishable from the distribution of inner values in
both cases of b. Observe that the distribution of a truly random value that hasn’t appeared
in previous queries is the same distribution of the inner value of a composition of two truly
random permutations that agree on the values already seen. Since m and o are both PRPs,
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it follows that this distribution is indistinguishable from the inner value distribution both in
b=0and b = 1. By a hybrid argument we get that the inner value distribution with b =0 is
indistinguishable from the inner value distribution with b = 1 which completes the proof. <«

> Claim 16. Assuming we have a fixed-time implementation of PRFs and the implementation
of the JSR uses it, then the JSR construction is key-oblivious, i.e. secure with respect
to Definition 1.

Proof. The proof follows from Lemma 15 by observing that twice the number of leading 1’s
in 7, () is exactly the running time for computing o}, ' o 7 (x). Therefore the adversary can
determine the running time of Fj(z) from m(z). This implies that the advantage of the
adversary in the key-oblivious game is at most the advantage of an adversary in the game
defined in Lemma 15. Since we know that the advantage of an adversary in Lemma 15 is
negligible, we get that the construction is secure with respect to Definition 1. <

> Claim 17. The JSR construction is not key-switch secure. That is, it does not satisfy Def-
inition 2 even in the relaxed version.

Proof. Since we are interested in PRPs on small domains, this means that the adversary
can query a large fraction or even entire domain apart from a few elements. The main
observation is that the ), 7 (SRg,(x)) is a constant independent of ko, where the sum is
over the running time of the JSR algorithm.

The strategy for the adversary is to query the entire domain up to a single element [
(last element). By the observation above, this gives the adversary full information about the
timing distribution of the last element. Now the switch happens and the adversary makes
one last query on the remaining element. If the running time the adversary receives is the
running time it expected with respect to ko, then it returns b = 0; otherwise, it returns
b = 1. Since the running time of 7 (SRy, (1)) is not constant (with non-negligible probability),
then with non-negligible probability T (SR, (1)) # T (SR, (1)) and so this strategy gives the
adversary a non-negligible probability of winning. <

Finally, we have:

> Claim 18. The JSR construction is query-oblivious secure, in the weakly and with results
sense.

Proof. The proof is similar to the proof of Claim 16. By a similar argument as the one in
the proof of Lemma 15, we know that given the inner result of either ¢} or ¢f, the adversary
cannot tell which query it came from. Since given the inner result, the adversary can get
the running time of the query, we conclude that given the running time 7 (SRy(q;)), the
adversary cannot guess b. <

We note that all claims above regarding the JSR construction hold to more general
constructions. The crucial property of SR, from which the claims follow, is that the running
time of the algorithm was fully determined by the output. We summarize:

» Theorem 19. Let w1, be a PRP for which the running time to compute 7y, on x is fully
determined by x’s image, i.e. T (mi(x)) = f(mr(x)) for some function f. If the permutation
m is secure under q queries, then the Janus PRP 7rk_01 o, (x) is a key-oblivious and query-

oblivious PRP secure under q queries.
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5 Main Security Theorem, Noticeable Security and Games Definitions

5.1 Defining Noticeable Security and Cryptographic Games

Our goal is to prove that if the implementation of a keyed function is key-oblivious then the
keyed function is time-secure, that is, the keyed function is secure w.r.t. the cryptographic
game in which the adversary has access not only to the relevant oracles but also to the time
it takes the oracle to execute. We show this for cryptographic keyed functions that have
what we call Noticeable Security. Many well-known and useful keyed functions primitives
have noticeable security, such as: (i) digital signatures, (ii) pseudo-random permutations
(PRP), and (iii) indistinguishability of encryptions (either symmetric or not).

We start with defining a cryptographic game. We formulate a cryptographic game as an
interactive game between a principal and an adversary. The principal maintains a state. In
each round of an attack the adversary sends a pair (a;, ;) where g; represents a query to the
keyed function and a; some additional information (for instance, a; could be a bit indicating
whether the adversary wishes to receive the upper half or the lower half of Fi(g;)). The
principal responds with some function of its current state and the query. At the end, the
adversary issues a guess and a tester decides whether to accept or not based on the state of
the principal and the queries made (this determines who won the game).

» Definition 20. A cryptographic game Gx for a keyed function Fi(x) between a principal
and an adversary is a game defined by three PPT algorithms

(StateTransition, Answer, Tester),

where the first two define the actions of the principal and Tester produces outputs in {0,1}
and determines who won the game. Specifically, at round i:
Function StateTransition gets as input a state S;_1 and the current query pair issued by
the adversary (a;, q;) and the value of Fy, of q;. The new state is S;. In other words S; is
defined by:

S; := StateTransition(a;, ¢;, Si—1, Fr(qi))-

Answer takes as input the current state (S;) and returns a response CA; to the adversary
(e.g. this may simply be Fy(q;) or some function of it). That is

CA; := Answer(S;).

Tester gets as input all the queries pairs (q;,a;)¢_, and states (S;)¢_, as well the adver-

sary’s response guess and outputs either 0 or 1. If the oulput is 1 the adversary wins the
game, otherwise it loses the game.
For an adversary Adv, the game Gx is the following:

1. A key k ~ K is chosen randomly.
2. Learning Phase: for £ = poly(n) rounds where at round i:
a. Adv chooses a query q; that depends on q1,...,q;—1 as well as CAy,...,CA;_1.
b. The principal generates S; := StateTransition(a;, g;, Si—1, Fr(qi))-
c. The principal sends Adv an answer CA; which is a function of S; and i.
3. Guessing Phase: The adversary generates guess.
4. Testing Phase: If Tester((a1,q1),---,(ae,qe),So,51, - - -, Se, guess) = 1, then Adv wins the
game and otherwise it loses the game.
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Note that Tester does not know the key k, nor does it have query access to Fj, hence the
term noticeable security. Let 7 < 1 be a “benign” success probability. If the adversary
cannot win the cryptographic game of a keyed function with probability much better than 7,
then we say that the keyed function is noticeable secure. Specifically:

» Definition 21. Let 7 < 1, the “benign” success probability. A keyed function Fi(x) is
(Gx, T)-noticeable-secure if any PPT adversary Adv has probability at most T + negl(n)
to win the game Gx.

As we shall see, classical notions of security can be expressed within the framework of cryp-
tographic games presented above. In Appendix A we demonstrate that indistinguishability
of encryptions, digital signatures, and pseudorandom permutations can each be formulated
in terms of a cryptographic game.

Adding Timing to the Game

Next, we define (G z, 7)-time-secure which intuitively says that the winning probability in
the game Gz remains 7+ negl(n) even when the adversary gets, not only the answers for the
oracles queries, but also the time it takes for the oracle to execute them. More formally:

» Definition 22. Let 7 < 1, the “benign” success probability. The implementation of a keyed
function Fi(x) is (Gx,T)-time-secure if any PPT adversary Adv has probability at most
7 + negl(n) to win the game Gx with the following modification: in step 2.c of the game Gz
as in Definition 20, the principal sends both CA; and the time it takes for the principal to
execute Fy, that is T (Fr(q:)).

Main Theorem: Key Oblivious Implies Time-Security

While key obliviousness suggests that the running time doesn’t disclose significant information
about the key, the security of a keyed function Fj, is assessed through G . Therefore, it’s
imperative that the running times of F don’t significantly aid an attacker in winning G £.
The following theorem establishes that key-obliviousness of a keyed function implies it’s
resistance against timing attacks (w.r.t Gz), whenever Gz has noticeable security.

» Theorem 23. Let Fy, be a keyed function that is (G x, T)-noticeable-secure for < 1. If the
implementation of Fy, is key-oblivious, then the implementation of Fy, is (Gx,T)-time-secure.

We can use the theorem above, in addition to Propositions 28, 30 and 32, in order to
obtain the following corollary:

» Corollary 24. The cryptographic schemes: digital signature, pseudo-random permutation
and encryption are (Gx,T)-time-secure with the corresponding T for each game, provided the
implementation of each scheme is key-oblivious.

» Remark 25. In some cases the converse of Theorem 23 holds, meaning that if F is not
(G £, T)-time-secure, and G r is noticeable, then the implementation of F, is not key-oblivious.
In particular, in the extended version we prove this fact for PRPs and PRFs.

5.2 Caveat on Key-Oblivious and an Application of Query-Oblivious

It is essential not to abuse Theorem 23 and Corollary 24 and apply them correctly. The point
is that the setting considered assumes that the timing information gained by the adversary
follows the pattern of the timing game (Definition 20). But this may not necessarily be the
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case and it could be that the adversary does not know which query ¢ is evaluated by the
implementation of Fj at a given point and the time T (Fx(q)) it takes to compute F(¢q) may
reveal information about ¢ itself and compromise the security of the system.

A case in point is that of indistinguishably of encryption, where following a learning
session an adversary selects a pair of messages (mg, m1) and receives either Fy(mq) or Fy(m1)
and has to make a guess about the value of b where the ciphertext is of m;. We saw in
Proposition 32 that it falls into the framework of noticeable security. But this assumed that
the principal computes both Fj(mg) and Fy(mq) before selecting which one to send. But a
natural version of it is to first select whether to encrypt mg or m, and evaluate F only on the
selected point. Thus the time to compute F(my) may reveal which one was selected. Note
that here we have two games that are equivalent in the non-timed version (Definition 20), i.e.
the adversary has exactly the same probability of winning in these two games, but when
considering the timed version (Definition 22) these two games are not equivalent any more,
since there function Fj, is called after each query.

So given an implementation of a system, to argue that it is secure in terms of timing,
one must argue that the setting of Definition 20 is the relevant one to the given system.
Requiring the implementation of the encryption to be query-with-result-obliviousness solves
the above situation in the indistinguishability of encryption game. If the implementation is
query-with-result-oblivious, then the two games are equivalent also in the timed version:

» Theorem 26. Suppose Fy is a keyed function which is (Gnp, T )-noticeable-secure. If the
implementation of Fy, is query-with-results-oblivious, then Fy, is also (Ginp, T)-time-secure.

Proof. This is straightforward since the query-with-results-oblivious game is the exact same
game as indistinguishability of encryptions with timing. |

To conclude, arguing that the properties of key and query obliviousness are relevant to
a given system is a delicate matter. Key obliviousness is most relevant to systems where
the timing information is exposed for a certain period of time, but then when the attack is
made, there is no leakage. Think of the definition of semantic security of encryption. If the
attacker chooses a distribution on which it is to be tested, the encryption of the challenge
message should be done after the leakage is over (note that it does not fall into the game
framework, since there at any point it is clear what call is made to the keyed function).

On the other hand query obliviousness is relevant when the timing information is leaked
about the message or challenge that is protected.
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A Classical Security Definitions are Noticeable Secure

We now give a few examples of classical security definitions of keyed functions and show how
they fit Definition 20, namely we show they are noticeable secure. Specifically, we show for
digital signatures, pseudo-random permutations, and indistinguishability of encryptions.

» Definition 27. (Digital signatures) Let Adv be an adversary in the following game:

1. The principal generates public and secret keys (pk, sk) and shares pk with adversary Adv.

2. Adversary Adv chooses adaptively ¢ = poly(n) messages mq,...,my and gives them to the
principal, receiving their signatures

g1 = Signsk(ml), e, 09 = Signsk(mg).

3. Adversary Adv chooses a new message m’ & {mq,...,mg}. Adversary Adv succeeds if
and only if it can generate o’ = Signy,(m') s.t. Vrfy,, (m',0") = 1.

A signature scheme I1 = (Sign, Vrfy) is existentially unforgeable under an adaptive chosen-

message attack, or just secure, if for all probabilistic polynomial-time adversaries Adv, there

s a negligible function negl such that:

Pr[Adv success] < negl(n).

It is relatively straightforward to phrase the security of digital signatures in the game
framework of Section 5.1. Let Gps be the following cryptographic game:

1. The principal generates public and secret keys (pk, sk) and shares pk with adversary Adv.

S():pk

2. Learning phase: For i € [1, 4],
a. Adv chooses adaptively a message m; and gives it to the principal.
b. The principal is essentially stateless, i.e. its current state is simply the signature
Sign,(m;) on m;.
c. The answer function is simply to send the full state to the adversary, i.e.

CA; =S; = Sign . (my).
3. Guessing phase: Adversary Adv chooses a new message m’ ¢ {m1, ..., m;} and calculates
guess = (m/, Sign,, (m')).
4. Testing phase: Tester returns 1 iff m’ is not in {my,ma,...,me} and Vrfy,, (guess) = 1.

» Proposition 28. A digital signature scheme is secure according to Definition 27 iff it is
(Gps, 0)-noticeable-secure.

Notice that when discussing key-obliviousness for digital signatures the adversary also
knows the corresponding public-key to kg (but not the one corresponding to k).
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» Definition 29. (Strong Pseudo-random Permutations) Let Adv be a probabilistic polynomial-
time adversary in the following game:

1. A key k ~ K is sampled.

2. A random bit b is sampled.

3. Adv chooses adaptively £ = poly(n) queries (x1,81),...,(Z¢, S¢) where x; is a message
and s; € {—1,1} is the oracle direction. If b =0 then it receives the values of Ey on each
query

Y1 = EZI (1), .,y = EZ‘(xe)-
If b =1 then it receives the values of a random permutation f on each query
y1 = (@1)s - ye = 7 (20).

4. Adversary Adv guesses b’ and wins if b’ = b.
The function Ey is a pseudo-random permutation if for all PPT adversaries Adv as above
there is a negligible function negl such that, for all n,

Pr[b=10"] <1/2+ negl(n).

Note that a random permutation f can be simulated perfectly by always picking a
random value that has not appeared so far (while being consistent with the values that have
appeared).

As before, it is relatively straightforward to phrase the security of a PRP in terms of a
game of Definition 20. Let the Gpgp be:

1. A random key k ~ K is chosen and the principal chooses a random bit b

So =b.

The bit b remains in the state of the principal throughout the game.
2. Learning Phase: For i € [1,/):

a. Adversary Adv chooses adaptively a query (x;, s;) where x; is a message and s; € {—1,1}
is the direction of the permutation (forward or background).

b. The principal state includes the bit b and all the queries
(x1,81,91),- -5 (®i—1,8i-1,yi—1) values it sent and received. The state transi-
tion gets in addition to the current state the value of E;j*(z;). If b = 0 then
y; = E}'(x;) and if b = 1 then, if x; is equal to any of previous values z; or y; (with
the appropriate s;), then set y; as was the previous response. Else choose y; to be a
random value that has not appeared so far.

c. The answer

CA; =y,.

3. Guessing Phase: Adversary Adv guesses guess :=b'.
4. Testing phase: returns 1 and wins if guess = b.

» Proposition 30. A strong pseudo-random permutation is secure iff it is (Gprp, %)—noticeable—

Secure.

Our final example is indistinguishability of a private-key encryption scheme against chosen
plaintext attacks (the same also works in public-key setting):
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» Definition 31. (Indistinguishability of encryptions) Let Adv be a PPT adversary in the

following game:

1. A random key k ~ K is chosen.

2. Adversary Adv chooses adaptively € = poly(n) messages mq,...,mg and gives them to the
principal, receiving their encryption in the form of ciphertext

Cl = Ek(ml),C'2 = Ek(mg), .. .,Cg = Ek(mg).

3. Adversary Adv then chooses two more messages m{ # m/ such that |m{| = |m}| (not
necessarily distinct from the previous messages) and sends them to the principal.

4. The principal chooses randomly b €g {0,1} and sends Ey(m}) back to adversary Adv.

5. Adv chooses adaptively another collection of ¢ = poly(n) messages myi1, ..., Moty and
recetves their encryption in the form of ciphertexts

Cry1 = Ep(mes1), ..., Cope = Ep(myyr).

6. Adversary Adv guesses b and wins if b/ =b.

A private-key encryption scheme is said to have the property of indistinguishablity of en-
cryptions under a chosen-plaintext attack, if for all PPT adversaries Adv as above there is a
negligible function negl such that for alln

Pr[b =b'] <1/2+ negl(n).

It is relatively straightforward to phrase the security of indistinguishability of encryptions
in the game framework of Section 5.1. Let G\np be the following cryptographic game:
1. A random key k ~ K is chosen and the principal chooses a random bit b.

So =0b.

2. Learning Phase:
For each ¢ € [1,¢ — 1], adversary Adv chooses adaptively a message m; and gives it to
the principal, receiving its encryption in the form of ciphertext

Adversary Adv chooses two more messages my_; # my such that |my_1| = |my| and
sends them to the principal. The principal calculates

52_1 = Ek(mg_l) and Sg = (Ek(mg_l), Ek(mg), b)

CAr_1 = NULL and CA, = (Ej(me—14s),

For each i € [¢ 4 1,2¢], adversary Adv chooses adaptively a message m; and gives it to
the principal, receiving its encryption in the form of ciphertext

3. Guessing phase: Adversary Adv guesses guess = b’
4. Testing phase: returns 1 if guess = b.

» Proposition 32. The indistinguishability of encryptions game G\wp s secure iff it is
(Ginp, 0.5)-noticeable-secure.
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B Proof of Theorem 23

Proof. Recall that G £ is the cryptographic game of F;. We prove the theorem in two steps.
We first consider a random-time game of G, which we denote by G%. The random-time
game G is similar to G, with the following changes: (1) at the beginning of the game a
random key %’ is generated (unrelated to the original key k), and (2) besides receiving CA;
from the principal, the adversary receives the timing information 7 (F/(g;)), which is the
running time it takes for Fy/ (namely, using the random key k') to be executed on ¢;. It is
easy to see that the winning probability of G@ is the same as the winning probability of G £.
To see that, assume adversary Advgr attacks G%. We build adversary Advg attacking G £.
Adversary Advg works as follows: it first chooses a random key k', then for every query ¢;
from adversary Advgr, it calculates T (Fys(g;)) and sends CA; together with T (Fi/(¢;)) to
adversary Advggr. Finally, adversary Advg returns the guess of adversary Advggr. From the
description it holds that

Pr[Advg wins G z] = Pr[Advgr wins Gf;] < 7 + negl.

Now, let GL be the game defining the time-security of F, namely it is similar to G but
in addition to CA;, the adversary also receives T (Fi(g;)) from the principal. Let Advgt be
adversary attacking the game G%.. We show that if the implementation of Fj, is key-oblivious
then

Pr[Advgt wins G%] — Pr[Advgr wins G%] < negl (B.1)
and this will imply
Pr[Advet wins G£] < 7 + negl.

To prove Equation B.1, we assume there exists adversary AdvgT attacking the game GZ:_- and
we build adversary Advko attacking the key-obliviousness of Fj. Adversary Advko works as
follows:
Adversary Advko receives polynomially many queries g; from adversary AdvgT and sends
them to the principal.
Adversary Advio receives from the principal F,(¢;) and T (Fg,(g;)) for a random bit b.
Adversary Advko sends these Fy,(g;) and T (Fy, (¢;)) to adversary Adver.
Adversary AdvgT returns its guess. Adversary Advko tests if the guess is correct using
Tester and receives w = Tester(guess). If w = 1, then Advko returns ¥’ = 0 since the
queries were executed on Fy,. If w =0, it returns b’ = 1.

Pr[Advko wins key-oblivious game] = Pr[t’ = 0|b = 0] - Pr[b = 0] + Pr[’ = 1|b = 1] - Pr[b = 1]
=Pr[t) =0/b=0]-Pr[b=0]+ (1 — Pr[p' = 0Jb = 1]) - Pr[b = 1]
= Pr[Adver wins G;] 0.5+ (1 — Pr[Advgr wins G?) -0.5

Since Pr[Advko wins key-oblivious game] < 0.5 4 negl, we get Equation B.1. |
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