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Abstract
We obtain a new protocol for binary counting in the ϵ-DPshuffle model with error O(1/ϵ) and expected
communication Õ

( log n
ϵ

)
messages per user. Previous protocols incur either an error of O(1/ϵ1.5)

with Oϵ(log n) messages per user (Ghazi et al., ITC 2020) or an error of O(1/ϵ) with Oϵ(n2) messages
per user (Cheu and Yan, TPDP 2022). Using the new protocol, we obtained improved ϵ-DPshuffle

protocols for real summation and histograms.
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1 Introduction

Differential privacy (DP) [11] is a widely accepted notion used for bounding and quantifying
an algorithm’s leakage of personal information. Its most basic form, known as pure-DP,
is governed by a single parameter ϵ > 0, which bounds the leakage of the algorithm.
Specifically, a randomized algorithm A(·) is said to be ϵ-DP if for any subset S of output
values, and for any two datasets D and D′ differing on a single user’s data, it holds that
Pr[A(D) ∈ S] ≤ eϵ ·Pr[A(D′) ∈ S]. In settings where pure-DP is not (known to be) possible,
a common relaxation is the so-called approximate-DP [10], which has an additional parameter
δ ∈ [0, 1]. In this case, the condition becomes: Pr[A(D) ∈ S] ≤ eϵ · Pr[A(D′) ∈ S] + δ.
Understanding the gap between pure- and approximate-DP algorithms is a natural and
fundamental question that has been studied for a variety of analytics tasks (e.g., [23, 6]).
Besides this, pure-DP protocols might be preferable in practice since an approximate-DP
protocol may allow a (very small) non-zero probability of a catastrophic event, e.g., that the
entire database is leaked1.

Depending on the trust assumptions, three models of DP are commonly studied. The
first is the central model, where a trusted curator is assumed to hold the raw data and is
required to release a private output; this goes back to the first work of Dwork et al. [11]
on DP. The second is the local model [13, 11, 22], where each user’s message is required to
be private. The third is the shuffle model [5, 8, 12], where the users’ messages are routed
through a trusted shuffler, which is assumed to be non-colluding with the curator, and which
is expected to randomly permute the messages incoming from the different users (DPshuffle).
Formally, a protocol P = (R, S, A) in the shuffle model consists of three procedures: (i)

1 Indeed, such a catastrophic event can happen in some approximate-DPshuffle protocols proposed in
previous works [18, 19].
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4:2 Pure-DP Aggregation in the Shuffle Model

a local randomizer R(·) that takes as input the data of a single user and outputs one or
more messages, (ii) a shuffler S(·) that randomly permutes the messages from all the local
randomizers, and (iii) an analyst A(·) that consumes the permuted output of the shuffler;
the output of the protocol P is the output of the analyst A(·). Privacy in the shuffle model
is defined as follows:

▶ Definition 1 ([8, 12]). A protocol P = (R, S, A) is said to be (ϵ, δ)-DPshuffle if for any input
dataset D = (x1, . . . , xn) where n is the number of users, it holds that S(R(x1), . . . , R(xn))
is (ϵ, δ)-DP. In the case where δ = 0, the protocol P is said to be ϵ-DPshuffle.

For several analytics tasks, low-error algorithms are known in the central model, whereas
such algorithms are known to be impossible in the local model. For these analytic tasks,
low-error algorithms are commonly sought in the shuffle model, since it is more preferable to
trust a shuffler than a central curator. We note that while in this paper we treat the shuffler
as a black box, multiple possible implementations have been considered in the literature
including via secure hardware, mixnets and lightweight cryptographic protocols; see, e.g.,
the discussion in [5].

Interestingly, almost all algorithms studied in the shuffle model are for the approximate-
DP setting. The only exceptions, to the best of our knowledge, are the pure-DP algorithms
of Ghazi et al. [15] and Cheu and Yan [9] for binary summation; we discuss these next.

1.1 Our Contributions
In the binary summation (aka counting) problem, each user i receives an input xi ∈ {0, 1} and
the goal is to estimate

∑
i∈[n] xi. For this well-studied task, the discrete Laplace mechanism

is known to achieve the optimal (expected absolute) error of O(1/ϵ) for ϵ-DP summation
in the central model [21, 14]. Note that this error is independent of the number n of users,
and is an absolute constant for the common parameter regime where ϵ is a constant. In
contrast, the error of any aggregation protocol in the local model is known to be at least on
the order of

√
n [4, 7]. There have been many works that studied aggregation in the DPshuffle

setting including [2, 3, 20, 15, 18, 19, 17, 1]. For pure-DP aggregation, it is known that any
single-message protocol (where each user sends a single message to the shuffler) should incur
error Ωϵ(

√
n) [1]. For multi-message protocols, where each user can send multiple messages

to the shuffler, the best known protocols incur either an error of O(1/ϵ1.5) with O(log n)
messages per user [15] or an error of O(1/ϵ) with O(n2) messages per user [9]. No protocol
simultaneously achieved error O(1/ϵ) and communication O(log n).

In this paper, we obtain an ϵ-DPshuffle algorithm for binary summation, where each user,
in expectation, sends O

(
log n

ϵ

)
one-bit messages; this answers the main open question for

this basic aggregation task.

▶ Theorem 2. For every positive real number ϵ ≤ O(1), there is a (non-interactive) ϵ-
DPshuffle protocol for binary summation with root mean square error O(1/ϵ), where each user
sends O

(
log n

ϵ

)
messages in expectation and each message consists of a single bit.

In fact, similar to the protocol of Cheu and Yan [9], our protocol can get an error that is
arbitrarily close to that of the discrete Laplace mechanism, which is known to be optimal in
the central model for any ϵ > 0; see [21, 14]. We defer the formal statement to Theorem 6.

Before we continue, we note that while the expected number of messages in Theorem 2 is
small (and with an exponential tail), the worst case number of messages is unbounded. This
should be contrasted with an Ωϵ(

√
log n) lower bound in [15] that only applies to the worst

case number of bits sent by a user. We discuss this further in Section 6.
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Protocols for Real Summation and Histogram

Using known techniques (e.g., [8, 15]), we immediately get the following consequences for
real summation and histogram.

In the real summation problem, each xi is a real value in [0, 1]; the goal is again to
estimate the sum

∑
i∈[n] xi. The protocol in [15] achieves an expected root mean square error

(RMSE) of Õ(1/ϵ1.5); here, each user sends Oϵ(log3 n) messages each of length O(log log n)
bits. By running their protocol bit-by-bit with an appropriate privacy budget split, we get
an algorithm with an improved, and asymptotically optimal, error of O(1/ϵ) while with
expected communication similar to theirs.

▶ Corollary 3. For every positive real number ϵ ≤ O(1), there is a (non-interactive) ϵ-
DPshuffle protocol for real summation with RMSE O(1/ϵ), where each user sends O( log3 n

ϵ )
messages in expectation and each message consists of O(log log n) bits.

A widely used primitive related, though not identical, to aggregation is histogram
computation. In the histogram problem, each xi is a number in [B]; the goal is to estimate
the histogram of the dataset, where the histogram h ∈ ZB

≥0 is defined by hb = |{i ∈ [n] |
xi = b}|. The error of an estimated histogram h̃ is usually measured in the ℓ∞-sense, i.e.,
∥h̃− h∥∞ = maxb∈[B] |hb − h̃b|.

For this task, which has been studied in several papers including [16, 1], the best known
pure-DPshuffle protocol achieved ℓ∞-error O

(
log B log n

ϵ1.5

)
and communication O

(
B log n log B

ϵ

)
bits. By running our (ϵ/2)-DPshuffle protocol separately for each bucket [15, Appendix A],
we immediately arrive at the following:

▶ Corollary 4. For every positive real number ϵ ≤ O(1), there is a (non-interactive) ϵ-
DPshuffle protocol that computes histograms on domains of size B with an expected ℓ∞-error
of at most O

(
log B log n

ϵ

)
, where each user sends O

(
B log n

ϵ

)
messages in expectation and

each message consists of O(log B) bits.

1.2 Technical Overview
We will now briefly discuss the proof of Theorem 2. Surprisingly, we show that a simple
modification of the algorithm from [18] satisfies pure-DP! To understand the modification
and its necessity, it is first important to understand their algorithm. In their protocol, the
messages are either +1 or −1, and the analyzer’s output is simply the sum of all messages.
There are three type of messages each user sends:

Input-Dependent Messages: If the input xi is 1, the user sends a +1 message. Otherwise,
the user does not send anything.
Flooding Messages: These are messages that do not affect the final estimation error. In
particular, a random variable z±1

i is drawn from an appropriate distribution and the user
sends z±1

i additional copies of −1 and z±1
i additional copies of +1. These messages get

canceled when the analyzer computes it output.
Noise Messages: These are the messages that affect the error in the end. Specifically,
z+1

i , z−1
i are drawn independently from an appropriate distribution, and z−1

i additional
copies of −1 and z+1

i additional copies of +1 are then sent.

We note here that the view of the analyzer is simply the number of +1 messages and the
number of −1 messages, which we will denote by V+1 and V−1 respectively.

While [18] show that this protocol is (ϵ, δ)-DP, it is easy to show that this is not ϵ-DP for
any finite ϵ. Indeed, consider two neighboring datasets where X consists of all zeros and X ′

ITC 2024
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consists of a single one and n− 1 zeros. There is a non-zero probability that V+1(X) = 0,
while V+1(X ′) is always non-zero (because of the input-dependent message from the user
holding the single one).

To fix this, we randomize this “input-dependent” part. With probability q, the user sends
nothing. With the remaining probability 1− q, (instead of sending a single +1 for xi = 1
as in [18],) the user sends s + 1 copies of +1 and s copies of −1; similarly, for xi = 0, the
user sends s copies of +1 and s copies of −1. By setting q to be sufficiently small (e.g.,
q = O(1/ϵn)), it can be shown that the error remains roughly the same as before. Furthermore,
when s is sufficiently large (i.e., Oϵ(log n)), we manage to show that this algorithm satisfies
ϵ-DPshuffle. While the exact reason for this pure-DP guarantee is rather technical, the general
idea is similar to [15]: by making the “border” part of the support equal in probabilities in
the two cases, we avoid the issues presented above. Furthermore, by making s sufficiently
large, the input-dependent probability is “sufficiently inside” of the support that it usually
does not completely dominate the contribution from the outer part.

Finally, note that V+1, V−1 involves summation of many i.i.d. random variables
∑

i∈[n] z±1
i ,∑

i∈[n] z+1
i , and

∑
i∈[n] z−1

i . As observed in [18], it is convenient to use infinitely divisible
distributions so that these sums have distributions that are independent of n, allowing for
simpler calculations. We inherit this feature from their analysis.

2 Preliminaries

For a discrete distribution D, let fD denote its probability mass function (PMF). The max-
divergence between distributions D1,D2 is defined as d∞(D1∥D2) := maxx∈supp(D1) ln fD1 (x)

fD2 (x) .
For two distributions D1,D2 over Zd, we write D1 ∗ D2 to denote its convolution, i.e., the

distribution of z1 + z2 where z1 ∼ D1, z2 ∼ D2 are independent. Moreover, let (D)∗n denote
the n-fold convolution of D, i.e., the distribution of z1 + · · ·+ zn where z1, . . . , zn ∼ D are
independent. We write D ⊗D′ to denote the product distribution of D1,D2. Furthermore,
we may write a value to denote the distribution all of whose probability mass is at that value
(e.g., 0 stands for the probability distribution that is always equal to zero).

A distribution D is infinitely divisible iff, for every positive integer n, there exists a
distribution D/n such that D = (D/n)∗n. Two distributions we will use here (both supported
on Z≥0) are:

Poisson Distribution Poi(λ): This is the distribution whose PMF is fPoi(λ)(k) = λke−λ/k!.
It satisfies Poi(λ)/n = Poi(λ/n).
Negative Binomial Distribution NB(r, p): Its PMF is fNB(r,p)(k) =

(
k+r−1

k

)
pr(1− p)k. It

satisfies NB(r, p)/n = NB(r/n, p).
Geometric Distribution Geo(p): A special case of the NB distribution is the geometric
distribution Geo(p) = NB(1, p), i.e., one with fGeo(p)(k) = p(1− p)k.

Finally, we recall that the discrete Laplace distribution DLap(a) is a distribution supported
on Z with PMF fDLap(a)(x) ∝ exp (−a|x|). It is well-known that DLap(a) is the distribution
of z1 − z2 where z1, z2 ∼ Geo(1− exp(−a)) are independent. Furthermore, the variance of
the discrete Laplace distribution is Var(DLap(a)) = 2e−a

(1−e−a)2 .
We will also use the following well-known lemma2:

▶ Lemma 5. For any distributions D1,D2,D3 over Zd, d∞(D1 ∗D3∥D2 ∗D3) ≤ d∞(D1∥D2).

2 This can be viewed as a special case of the post-processing property of DP where the post-processing
function is adding a random variable drawn from D3. Another way to see that this holds is to simply
observe that, for any y ∈ supp(D1 ∗ D2), we have fD1∗D3 (y) =

∑
z∈supp(D3) fD3 (z) · fD1 (y − z) ≤∑

z∈supp(D3) fD3 (z) ·
(
ed∞(D1∥D2) · fD2 (y − z)

)
= ed∞(D1∥D2)fD2∗D3 (y).
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3 Counting Protocol

In this section, we will describe a pure-DPshuffle algorithm for counting, which is our main
result.

▶ Theorem 6. For any positive real numbers ϵ ≤ O(1) and ρ ∈ (0, 1/2], there is a
(non-interactive) ϵ-DPshuffle protocol for binary summation that has MSE at most (1 +
ρ) · Var(DLap(ϵ)) where each user sends O

(
log(n/ρ)

ϵρ

)
messages in expectation and each

message consists of a single bit.

By setting ρ arbitrarily close to zero, we can get the mean-square error (MSE) to
be arbitrarily close to that of the discrete Laplace mechanism, which is known to be
(asymptotically) optimal in the central model [21, 14]. We can get this guarantee for other
type of errors, e.g., ℓ1-error (aka expected absolute error) as well, but for ease of presentation,
we only focus on the MSE.

Note that Theorem 6 implies Theorem 2 by simply setting ρ to be a positive constant
(say, 0.5).

3.1 Algorithm
In this section we present and analyze our main algorithm for counting (aka binary summa-
tion). To begin, we will set our parameters as follows.

▶ Condition 7. Let λ, ϵ′, ϵ, q ∈ R>0 and s ∈ Z>0. Suppose that the following conditions hold:
ϵ′ < ϵ,
s ≥ 2 ln

(
1

(eϵ−1)q

)
/(ϵ− ϵ′),

λ ≥ eϵ−ϵ′

e(ϵ−ϵ′)/2−1 · s.
We now define the following distributions:
Dnoise = Geo(1− e−ϵ′).
Dflood = Poi(λ).
For x ∈ {0, 1}, Dinput,x supported on Z2

≥0 is defined as

Dinput,x((s + x, s)) = 1− q,

Dinput,x((0, 0)) = q.

Algorithm 1 contains the formal description of the randomizer and Algorithm 2 contains
the description of the analyzer. As mentioned earlier, our algorithm is the same as that of
[18], except in the first step (Line 2). In their work, the protocol always sends a single +1 if
xi = 1 and nothing otherwise in this step. Instead, we randomize this step by always sending
nothing with a certain probability. With the remaining probability, instead of sending a
single +1 for xi = 1, we send s + 1 copies of +1 and s copies of −1 (similarly, we send s

copies of +1 and s copies of −1 in the case xi = 0).

4 Analysis of the Protocol

In this section we analyze the privacy, utility, and communication guarantees of our counting
protocol. Throughout the remainder of this section, we assume the distributions and
parameters are set as in Condition 7; for brevity, we will not state this assumption in our
privacy analysis.

ITC 2024



4:6 Pure-DP Aggregation in the Shuffle Model

Algorithm 1 Counting Randomizer.

1: procedure CorrNoiseRandomizern(xi)
2: Sample (y+1

i , y−1
i ) ∼ Dinput,xi

3: Sample z+1
i , z−1

i ∼ Dnoise
/n

4: Sample z±1
i ∼ Dflood

/n

5: Send y+1
i + z+1

i + z±1
i copies of +1, and y−1

i + z−1
i + z±1

i copies of −1

Algorithm 2 Counting Analyzer.

1: procedure CorrNoiseAnalyzerq

2: R← multiset of messages received
3: return 1

1−q

(∑
y∈R y

)

4.1 Privacy Analysis
▶ Lemma 8 (Main Privacy Guarantee). CorrNoiseRandomizer satisfies ϵ-DPshuffle.

To prove the above, we need the following technical lemmas regarding Dnoise,Dflood.

▶ Lemma 9. For every i ∈ Z, fDnoise(i− 1) ≤ eϵ′
fDnoise(i)

Proof. This immediately follows from the PMF definition of Dnoise = Geo(1− eϵ′). ◀

▶ Lemma 10. For every i ∈ Z, (eϵ − 1)q · fDflood(i + s) + eϵ−ϵ′
fDflood(i− 1) ≥ fDflood(i).

Proof. If eϵ−ϵ′
fDflood(i− 1) ≥ fDflood(i), then the statement is clearly true. Otherwise, we

have fDflood(i) > 0 (i.e., i ≥ 0) and eϵ′−ϵ >
fDflood (i−1)

fDflood (i) = i
λ , which implies

0 ≤ i ≤ eϵ′−ϵλ. (1)

We can then bound fDflood (i+s)
fDflood (i) as

fDflood(i + s)
fDflood(i) = λs

(i + 1) · · · (i + s) ≥
λs

(i + s)s

(1)
≥

(
λ

eϵ′−ϵλ + s

)s

≥
(

λ

e(ϵ′−ϵ)/2λ

)s

≥ 1
(eϵ − 1)q ,

where the last two inequalities follow from our assumptions on λ and s respectively (Condi-
tion 7). Thus, in this case, we also have (eϵ−1)q ·fDflood(i+s)+eϵ−ϵ′

fDflood(i−1) ≥ fDflood(i)
as desired. ◀

We are now ready to prove the privacy guarantee (Lemma 8).

Proof of Lemma 8. For any input dataset X. Let V (X) = (V+1, V−1) denote the distribu-
tion of the view of shuffler, where V+1 and V−1 denotes the number of +1 messages and the
number of −1 messages respectively.

Consider two neighboring datasets X = (x1, . . . , xn) and X ′ = (x′
1, . . . , x′

n). Assume
w.l.o.g. that they differ in the first coordinate and x1 = 1, x′

1 = 0 and x′
2 = x2, . . . ,

x′
n = xn. To prove that CorrNoiseRandomizer satisfies ϵ-DPshuffle, we need to prove that

d∞(V (X)∥V (X ′)) ≤ ϵ and d∞(V (X ′)∥V (X)) ≤ ϵ.
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Let F denote the distribution on Z2 of (X, X) where X ∼ Dflood. Observe that

V (X) = Dinput,1 ∗ Dinput,x2 ∗ · · · ∗ Dinput,xn

∗ F ∗ (Dnoise ⊗ 0) ∗ (0⊗Dnoise),

and

V (X ′) = Dinput,0 ∗ Dinput,x2 ∗ · · · ∗ Dinput,xn

∗ F ∗ (Dnoise ⊗ 0) ∗ (0⊗Dnoise).

Bounding d∞(V (X)∥V (X′))

From Lemma 5, we have

d∞(V (X)∥V (X ′))
≤ d∞(Dinput,1 ∗ (Dnoise ⊗ 0)∥Dinput,0 ∗ (Dnoise ⊗ 0)).

For any i, j ∈ Z, we have

fDinput,1∗Dnoise⊗0(i, j)
= q · fDnoise(i)1[j = 0] + (1− q) · fDnoise(i− s− 1)1[j = s]

≤ q · fDnoise(i)1[j = 0] + (1− q) · eϵ′
fDnoise(i− s)1[j = s]

≤ eϵ (q · fDnoise(i)1[j = 0] + (1− q) · fDnoise(i− s)1[j = s])
= eϵ · fDinput,0∗Dnoise⊗0(i, j),

where the first inequality follows from Lemma 9 and the second inequality follows from Con-
dition 7. Combining the above inequalities, we have d∞(V (X)∥V (X ′)) ≤ ϵ as desired.

Bounding d∞(V (X′)∥V (X))

Again, from Lemma 5, we have

d∞(V (X ′)∥V (X))
≤ d∞

(
Dinput,0 ∗ F ∗ (0×Dnoise)
∥Dinput,1 ∗ F ∗ (0×Dnoise)

)
.

For any i, j ∈ Z, we have

fDinput,0∗F∗(0×Dnoise)(i, j)
= fDinput,0∗F (i, i) · fDnoise(j − i)
= (q · fDflood(i) + (1− q) · fDflood(i− s)) · fDnoise(j − i)

≤ eϵ
(

q · fDflood(i) + (1− q) · e−ϵ′
fDflood(i− s− 1)

)
· fDnoise(j − i)

≤ eϵ (q · fDflood(i) · fDnoise(j − i)
+(1− q) · fDflood(i− s− 1) · fDnoise(j − i + 1))

= eϵfDinput,1∗F∗(0×Dnoise)(i, j),

where the first inequality follows from Lemma 10 and the second inequality follows
from Lemma 9. Combining the above two inequalities, we have d∞(V (X ′)∥V (X)) ≤ ϵ,
concluding our proof. ◀

ITC 2024
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4.2 Utility Analysis
We next analyze the MSE of the output estimate.

▶ Lemma 11. The estimator from Algorithm 2 is unbiased and its MSE is at most(
1

1− q

)2
· (qn + Var(DLap(ϵ′))) .

Proof. Notice that the output estimate is equal to

1
1− q

 ∑
i∈[n]

(y+1
i − y−1

i + z+1
i − z−1

i )

 = 1
1− q

 ∑
i∈[n]

(y+1
i − y−1

i ) + Z

 ,

where Z ∼ DLap(ϵ′). It is also simple to verify that E[y+1
i − y−1

i ] = (1 − q)xi. Thus, the
estimator is unbiased as desired. Its MSE is equal to

Var

 1
1− q

 ∑
i∈[n]

(y+1
i − y−1

i ) + Z


=

(
1

1− q

)2
 ∑

i∈[n]

Var(y+1
i − y−1

i ) + Var(DLap(ϵ′))

 .

Next, notice that, if xi = 0, then y+1
i − y−1

i − xi = 0 always. Otherwise, if xi = 1, then
y+1

i − y−1
i − xi = 0 with probability 1 − q and y+1

i − y−1
i − xi = 1 with probability q. As

a result, we have Var(y+1
i − y−1

i ) ≤ q. Plugging this into the above inequality yields the
claimed bound on the MSE. ◀

4.3 Communication Analysis
The expected number of bits send by the users can be easily computed as follows.

▶ Lemma 12. The expected number of messages sent by each user is at most 2s + 1 + λ
n +

O
( 1

ϵ′n

)
.

Proof. The expected number of bits sent per user is

E[y+1
i + y−1

i ] + E[z+1
i + z−1

i ] + 2E[z±1
i ]

≤ (2s + 1) + 2E[Dnoise]
n

+ E[Dflood]
n

= 2s + 1 + O

(
1

ϵ′n

)
+ λ

n
. ◀

4.4 Putting Things Together: Proof of Theorem 6
Finally, we are ready to prove Theorem 6 by plugging in appropriate parameters and invoke
the previous lemmas.

Proof of Theorem 6. We start by picking ϵ′ = ϵ− 0.01ρ ·min{ϵ, 1}. For this choice of ϵ′, we
have

Var(DLap(ϵ′))
Var(DLap(ϵ)) =

2e−ϵ′

(1−e−ϵ′ )2

2e−ϵ

(1−e−ϵ)2
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≤ 1 + (eϵ−ϵ′ − 1)(1 + e−ϵ′)
1− e−ϵ′

≤ 1 + 3(ϵ− ϵ′) · 2
ϵ′ ≤ 1 + 0.1ρ.

Then, picking

q = 0.1ρ ·min
{

Var(DLap(ϵ))
n

, 1
}

= O
( ρ

ϵ2n

)
,

s ≥ 2 ln
(

1
(eϵ − 1)q

)
/(ϵ− ϵ′) = O

(
log(n/ρ)

ϵρ

)
,

λ ≥ eϵ−ϵ′

e(ϵ−ϵ′)/2 − 1
· s = O

(
log(n/ρ)

ϵ2ρ

)
,

and applying Lemma 8, Lemma 11, and Lemma 12 immediately yields Theorem 6. (Note
that we may assume that ϵ ≥ 1/n; otherwise we can just output zero. Under this assumption,
we have λ/n ≤ O

(
log(n/ρ)

ϵρ

)
as desired for the communication complexity claim.) ◀

5 Non-Asymptotic Comparisons with Previous Work

In this section, we provide concrete non-asymptotic comparisons between our binary summa-
tion protocol and those from previous work [15, 9] for various population sizes n and privacy
parameters ϵ. As we explain in more detail below, our results demonstrate that our protocol
is much more practical than those of previous works.

First, we find that the parameters in the protocol of [15] are impractical; in fact, for
n ≤ 800, 000, their protocol is undefined unless ϵ < 0.01.3 Furthermore, even in the regime
that it is well-defined, their expected communication complexity is provably at least 1000x
ours and their root-mean-square error (RMSE) is probably at least 100x ours. Hence, we
only focus on the comparison between our algorithm and that of [9].

Parameter Setting

For both our algorithm and that of [9], one can achieve RMSE arbitrarily close to that of the
ϵ-DP discrete Laplace mechanism in the central model. (See the parameter ρ in Theorem 6.)
To reduce the parameter space for comparison, we set the parameters so that the RMSE of
these protocols is within 10% of the discrete Laplace mechanism. Given this error target,
we simply use the formulae from Lemma 11 and Condition 7 to optimize for ϵ′, q, λ that
minimizes the expected communication (according to Lemma 12); we use scipy package for
this optimization. For [9]’s algorithm, we set the parameter in an optimistic manner so that
we underestimate the communication required in their protocol4.

3 This is due to the fact that they require their parameter p = 100e100ϵ log(1/(1−e0.1ϵ))
n(1−e0.1ϵ) to be less than one.

Of course, one can run their protocol at a smaller ϵ but this increases the communication and error
even further.

4 Namely, we only set p in their protocol to 0.5/n and do not account for the error from the p-probability
event that the input is randomized. (In their analysis, p should actually be set to q̂/n where q̂ ≤ O(1/n)
is yet another small parameter.)
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Expected Communication Comparison

We provide a comparison of the expected number of messages sent when fixing ϵ = 1 and
varying n from 1 to 1000 in Figure 1(ii). To summarize, the number of messages of their
protocols grows very quickly and exceed 10 million even when n = 65! This agrees with
theory, which suggests that their communication complexity grows with Õ(n2). Meanwhile,
our protocol has expected number of messages sent less than 600 for the entire range of
10 < n ≤ 100, again agreeing with the theory that our communication grows only with
O

(
log n

ϵ

)
. Moreover, the expected number of messages of our protocol is less than that of

theirs except when n = 1. For clarity, we also provide our protocol’s expected number of
messages in Figure 2(i) for the small n case (1 ≤ n ≤ 103) and in Figure 2(ii) for the large n

case (103 ≤ n ≤ 106). These plots show that the expected number of messages is large for
very small n ≤ 5, in which regime the expected number of messages decrease as n increases.
This regime corresponds to the regime where the communication due to the Poisson noise
dominates. Once the expected number of messages bottoms out, it increases slowly, as
suggested by our theoretical analysis. Finally, we suspect that the curve is not completely
smooth since scipy.optimize.minimize_scalar does not always find the optimum5.

Figure 1 Comparison between the expected number of messages sent in our protocol and in
Cheu–Yan protocol when (i) ϵ = 1 and varying n, (ii) n = 100 and varying ϵ. (Note that the y-axis
is in log-scale.)

Next, we fix n = 100 and vary ϵ. The resulting expected communication is presented in
Figure 1(i). Again, there is a very large (> 10000x) gap between our expected communication
and theirs. Furthermore, these increase roughly as 1/ϵ, as predicted by theory.

Finally, we note that, while we perform comparisons for binary summation, the comparis-
ons would be similar for histogram as well. This is because all protocols are adapted to the
histogram problem by simply running the binary protocol separately for each bucket; thus,
the expected communication simply increases by a factor of B.

6 Conclusions and Open Questions

In this work, we have provided pure-DPshuffle algorithms that achieve nearly optimal errors
for bit summation, real summation, and histogram while significantly improving on the
communication complexity compared to the state-of-the-art. Despite this, there are still a
number of interesting open questions, some of which we highlight below.

5 In particular, the value of s is discrete in our optimization problem, making it harder to optimize for
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Figure 2 The expected number of messages sent in our protocol when ϵ = 1 for (i) 1 ≤ n ≤ 103,
(ii) 103 ≤ n ≤ 106.

Protocol with a bounded number of messages. As mentioned briefly in Section 1.1,
our protocol can result in an arbitrarily large number of messages per user, although
the expected number is quite small. (In fact, the distribution of the number of messages
enjoys a strong exponential tail bound.) Is it possible to design a pure-DPshuffle protocol
where the maximum number of messages is O

(
log n

ϵ

)
for binary summation?

For this question, we note that a rather natural approach is to modify our protocol
to make its number of messages bounded. Namely, we replace Dnoise

/n and Dflood
/n by a

truncated version of their respective distributions. It turns out that the latter is relatively
simple (e.g., even replacing it with a Bernoulli distribution also works) because we only
require a mild condition in Lemma 10 to hold. On the other hand, for the former, we are
using Lemma 9, which only holds for unbounded distributions. We would like to stress
that we do not know whether replacing Dnoise

/n with a truncated version of the negative
binomial distribution with a “symmetrized” the input dependent part6 violates pure-DP;
however, we do not know how to prove that it satisfies pure-DP either, as the probability
mass function of their convolutions become somewhat unwieldy.
Lower bounds on the expected number of messages. Recall that the communication
lower bound from [15] only applies to the maximum number of messages sent. Is it possible
to prove a communication lower bound on the expected number of messages (even if the
maximum number of messages is unbounded)? We note that the techniques from [15]
does not apply.
More practical protocols. In Section 5, we demonstrated that, while the parameters
from previous work [15, 9] are completely impractical, our result is moderately practical.
However, our pure-DP protocol still requires (expected) communication overhead of 500–
1000x compared to the non-private protocol. Meanwhile, the approximate-DP protocol
of [18] achieves communication overhead of only 1 + o(1) (assuming that δ is not too
small). Due to this, there is still a large gap between the practicality of pure-DP and
approximate-DP protocols. While the lower bound from [15] mentioned in the previous
bullet point strongly suggests that it might not be possible to reduce the communication
required for pure-DP all the way to that of approximate-DP, it remains an important

6 This means that w.p. q we output s copies of both +1 and −1 messages, for both xi = 0 and xi = 1
cases. Without this change, the supports of the two cases are not the same and thus it obviously violates
pure-DP.
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question to make pure-DP protocol more practical. For example, can we reduce the
communication by a factor of 10 while achieving similar utility and privacy guarantees as
in this work?
Histogram protocol for large B. Our protocol has communication complexity that
grows linearly with B, which is impractical when B is large. Can we get protocol
for histogram whose communication is Oϵ

(
(log n)O(1)) for B = O(n) (while achieving

nearly optimal errors)? For approximate-DPshuffle, a histogram protocol with expected
communication of 1 + Oϵ

(
B(log(n/δ)O(1))

n

)
is known [18]. It would be interesting to

understand if such a protocol exists in the pure-DPshuffle setting.
Generic DPlocal ⇒ DPshuffle transformation for pure-DP? More generally, despite
the rich literature on the shuffle model, most work has focused attention on approximate-
DPshuffle. It would be interesting to expand the existing study to pure-DPshuffle as
well. In our opinion, a main barrier in doing so is that the so-called amplification-
by-shuffling phenomenon does not apply to pure-DP. Recall that the amplification-by-
shuffling theorem [12] roughly states that, if we take any ϵ-DPlocal algorithm and runs it
in the shuffle model, then it immediately becomes (ϵ′, δ′)-DPshuffle where ϵ′ ≪ ϵ for any
non-too-small δ > 0. This means that any DPlocal algorithm translates to approximate-
DPshuffle algorithm with improved privacy; this allows the design of approximate-DPshuffle
algorithms to tap into the vast literature of DPlocal. Unfortunately, it is known that the
amplification-by-shuffling theorem does not hold when we want pure-DPshuffle; see [15]
for an explanation. A natural question here is thus whether we can take any ϵ-DPlocal
algorithm, modify it slightly (while preserving utility) and make it ϵ′-DPshuffle algorithm
for ϵ′ ≪ ϵ. Such a transformation would enable a sort of “amplification-by-shuffling” in
the pure-DPshuffle regime as well.
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