
On the Power of Adaptivity for Function Inversion
Karthik Gajulapalli #Ñ

Georgetown University, Washington, DC, USA

Alexander Golovnev # Ñ

Georgetown University, Washington, DC, USA

Samuel King #Ñ

Georgetown University, Washington, DC, USA

Abstract
We study the problem of function inversion with preprocessing where, given a function f : [N] → [N]
and a point y in its image, the goal is to find an x such that f(x) = y using at most T oracle queries
to f and S bits of preprocessed advice that depend on f .

The seminal work of Corrigan-Gibbs and Kogan [TCC 2019] initiated a line of research that
shows many exciting connections between the non-adaptive setting of this problem and other areas of
theoretical computer science. Specifically, they introduced a very weak class of algorithms (strongly
non-adaptive) where the points queried by the oracle depend only on the inversion point y, and
are independent of the answers to the previous queries and the S bits of advice. They showed that
proving even mild lower bounds on strongly non-adaptive algorithms for function inversion would
imply a breakthrough result in circuit complexity.

We prove that every strongly non-adaptive algorithm for function inversion (and even for its
special case of permutation inversion) must have ST = Ω(N log(N) log(T)). This gives the first
improvement to the long-standing lower bound of ST = Ω(N log N) due to Yao [STOC 90]. As a
corollary, we conclude the first separation between strongly non-adaptive and adaptive algorithms
for permutation inversion, where the adaptive algorithm by Hellman [TOIT 80] achieves the trade-off
ST = O(N log N).

Additionally, we show equivalence between lower bounds for strongly non-adaptive data structures
and the one-way communication complexity of certain partial functions. As an example, we recover
our lower bound on function inversion in the communication complexity framework.

2012 ACM Subject Classification Theory of computation → Cryptographic primitives

Keywords and phrases Function Inversion, Non-Adaptive lower bounds, Communication Complexity

Digital Object Identifier 10.4230/LIPIcs.ITC.2024.5

Related Version ECCC Version: https://eccc.weizmann.ac.il/report/2024/054/

Funding This research is supported by the National Science Foundation CAREER award (grant
CCF-2338730).

Acknowledgements We would like to thank Spencer Peters for fruitful discussions on this topic. We
are also grateful to the anonymous reviewers for their helpful comments.

1 Introduction

We study the fundamental problem of function inversion where, given oracle access to a
function f : [N] → [N] and a point y in the image of f , the goal is to find some x such that
f(x) = y.

Clearly, to work for all functions, this would require any algorithm to make at least N − 1
oracle calls. However, to make the problem more interesting, we consider a pair of algorithms
(P, A) that work in two phases. In the first phase, using unlimited computational power,
the pre-processing algorithm P is allowed to analyze the function f and write down S bits
of advice σ ∈ {0, 1}S . Then in the second phase, called the online phase, the algorithm

© Karthik Gajulapalli, Alexander Golovnev, and Samuel King;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal; Article No. 5; pp. 5:1–5:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kg816@georgetown.edu
https://kgajulapalli.org/research.html
mailto:alex.golovnev@gmail.com
https://golovnev.org
mailto:sik29@georgetown.edu
https://samuel-king.org/
https://doi.org/10.4230/LIPIcs.ITC.2024.5
https://eccc.weizmann.ac.il/report/2024/054/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 On the Power of Adaptivity for Function Inversion

A1, given inputs y and σ and at most T oracle queries to f , is required to output x such
that f(x) = y. We informally refer to S and T as space and time, and the goal is to find
algorithms (P, A) for function inversion that minimize S and T . Note that the problem is
trivial when S = N log N or T = N . We are interested in the trade-offs between time and
space when in between these two cases.

This model has received a lot of attention, especially for its applications to cryptanalysis [2,
3, 27, 25], cryptography [18, 14, 15, 31, 28, 11, 12, 8, 9, 17], circuit and data structure lower
bounds [32, 10, 13], algorithms [22, 16], information theory [13], and most recently even
meta-complexity [23, 20].

Function inversion and permutation inversion, a special case of function inversion where f

is a permutation, were initially studied by Hellman [18]. Hellman constructed an elegant
algorithm that inverts any permutation when ST = Ω(N log N). Later Yao [32] showed
that this algorithm was optimal by proving a tight lower bound of ST = Ω(N log N) for
permutation inversion (assuming S = Ω(log N)). For function inversion, Hellman gave an
algorithm that inverts a random function when S2T = Ω̃(N2).2 Fiat and Naor [14] extended
Hellman’s construction, giving an algorithm that inverts any function when S3T = Ω̃(N3).

One key facet of all the upper bounds mentioned above is that the queries made to f are
highly adaptive; i.e., deciding which point A is going to query next depends on the inversion
point y, the advice string σ, and the values of the points queried before. A long-standing
open question has been to see if any of the upper bounds could be made non-adaptive.
This question was extensively studied in [10], and they introduced the notion of strongly
non-adaptive algorithms where the points queried by A are a fixed set depending only on the
inversion point y. This makes the model much weaker compared to even the standard non-
adaptive (weakly non-adaptive) setting where the fixed set of points queried by A is allowed
to depend on the inversion point y and the advice string σ. Upper bounds for non-adaptive
algorithms would be really useful, as they would lead to efficient parallelisation. Perhaps
even more interestingly, lower bounds even in this very weak model would already imply
circuit and communication lower bounds [10] and data structure lower bounds [10, 16, 13].

Indeed, as shown in [10], a lower bound of S = ω(N log N/ log log N) when T = Nε would
imply a circuit lower bound against Boolean circuits of linear size and logarithmic depth, and
thus resolve a long-standing open question due to Valiant [29]. A similar argument shows
that even a lower bound of S = ω(N log N/(log log(T/ log N))) for any T = Ω(log N) would
imply a super-linear circuit lower bound for series-parallel circuits [29, 4, 30].

The only known strongly non-adaptive algorithm is the trivial one where the pre-processing
algorithm stores the value of f at S/ log N points as advice, and the online algorithm queries
the remaining N − S/ log N points, giving S/ log N + T = N . On the other hand, the best
known lower bound for the non-adaptive setting is still ST ≥ Ω(N log N) obtained by Yao’s
compression argument [32] that works even for adaptive algorithms. Hence, it might still be
conceivable that the algorithm by Hellman can be made non-adaptive, which leads us to the
natural question:

Are non-adaptive algorithms for permutation inversion as efficient as adaptive al-
gorithms?

1 We will refer to A as the “online” algorithm, referring to its phase, even though it does not process its
input in a serial fashion as is typical for what are called “online” algorithms.

2 The notation Ω̃(·) and Õ(·) suppresses factors polynomial in log N .

K. Gajulapalli, A. Golovnev, and S. King 5:3

1.1 Our Results
We answer this question in the negative by showing a lower bound of ST = Ω(N log(N) log(T))
for any strongly non-adaptive algorithm for permutation inversion (and, thus, for the more
general problem of function inversion).

▶ Theorem 1. Every strongly non-adaptive algorithm that solves permutation inversion
with S bits of preprocessing and T ≤ N/5 queries must have

S = Ω
(

N log(N) log(T)
T

)
.

Since permutation inversion can be solved adaptively when ST = O(N log N) [18],
Theorem 1 gives us the first separation between adaptive and strongly non-adaptive algorithms
for permutation inversion for every super-constant T . (No separation is possible for constant T

as in this case the problem is maximally hard, S = Ω(N log N), even in the adaptive setting.)
We remark that the result of Theorem 1 begins to bridge the gap between Yao’s bound

and a bound sufficient for a super-linear lower bound for series-parallel circuits. For example,
in the case of T = Θ (log(N) log log(N)), Theorem 1 gives us S = Ω(N), whereas Yao’s
bound gives S = Ω(N/ log log(N)). A bound of S = ω(N log(N)/ log log log log(N)) would
already imply a breakthrough in circuit complexity [10, 29, 4].

The proof of Theorem 1 goes in two steps. First, we show that a compression argument
can be used to get a lower bound on the amount of space required when, for a large enough
set of inversion points, the union of all points queried by the online algorithm is small. In
the following, we abuse notation when X is a set and define φ(X) =

⋃
x∈X

φ(x).

▶ Theorem 2. For every T ∈ N, φ : [N] →
([N]

T

)
, and Y ⊆ [N] such that |Y | < N − |φ(Y)|,

every strongly non-adaptive algorithm that solves permutation inversion with S bits of
preprocessing and the query function φ must have

S ≥ |Y | log(N − |φ(Y)| − |Y |) .

We can now already recover Yao’s lower bound for strongly non-adaptive algorithms by
Theorem 2. To see this, just consider the set X = {1, 2,N/(2T)}. Then |φ(X)| ≤ N/2,
and we get S = Ω((N log N)/T).

This result also achieves optimal lower bounds for a specific subclass of query functions
of interest: query functions which admit some X ⊆ [N] of size |X| = Θ(N) with |X| <

N−|φ(X)|. For example, take the query function φ which queries φ(x) = (x, x+1, . . . , x+T −1
mod N) for each x ∈ [N]. When T ≤ N/4, X = {1, 2, . . . , N/4} witnesses a lower bound of
S = Ω(N log N). We note, however, that such query functions make up a small fraction of
all possible query functions; random φ do not have this property.

To get an improvement over Yao’s bound, our second step involves picking a large enough
set X of size Θ((N log T)/T) with a small enough φ(X). We show the existence of such a
set via the probabilistic method. We start by viewing φ as a left T -regular bipartite graph,
and prove the following graph lemma, where N(X) denotes the neighborhood of the set of
vertices X.

▶ Lemma 3. Let G = (L ⊔ R, E) be an undirected bipartite graph with |L| = |R| = N and
|E| ≤ NT , where T ≤ N/5. Then for large enough n, there exists a subset of vertices X ⊆ L,
such that

|X| ≥ (N log T)/(30T) and

|N (X)| ≤ N − N/T 4/5 .

It is not hard to see that Lemma 3 is tight for a random left T -regular bipartite graph.

ITC 2024

5:4 On the Power of Adaptivity for Function Inversion

1.2 Related Work
In the case of adaptive algorithms, the tight upper bound of ST = O(N log N) for permutation
inversion is due to Hellman [18]. Hellman [18], and Fiat and Naor [14] gave upper bounds of
S2T = Õ(N2) and S3T = Õ(N3) for inverting random and worst-case functions, respectively.
It was recently observed [17] that the algorithm of Fiat and Naor for the worst-case function
inversion can be extended to an upper bound of TS2 max {T, S} = Õ(N3). De, Trevisan and
Tulsiani [11] extended [14] and gave better trade-offs when inverting on only ε-fraction of
the inputs.

The best known strongly non-adaptive algorithm is just the trivial one which achieves
the trade-off S/ log N + T = N . For the case of weakly non-adaptive algorithms, where the
online algorithm gets to see the advice first, there is an algorithm that slightly outperforms
the trivial when S > N [17]. The preprocessing algorithm stores log(N/T) first bits of a
preimage for each y ∈ [N], and the online algorithm queries all of the remaining T options,
which results in S = N log(N/T).

The best lower bound is due to Yao [32], and it works for adaptive permutation inversion
and thus also for function inversion. Moreover, since it works in the adaptive setting, it also
trivially carries over to both the weakly and strongly non-adaptive settings. An alternate
proof was given by Impagliazzo [21], and [15, 31, 11, 12] extend the lower bound to the
setting of randomized algorithms inverting on ε-fraction of inputs.

Even in the case of strongly non-adaptive algorithms, the best known lower bound is still
Yao’s. While no unconditional improvement to Yao’s bound is known prior to this work,
for some restricted models there are better bounds. Barkan, Biham, and Shamir [1] give
a lower bound of S2T = Ω(N2/ log N) for Hellman-type algorithms. Chawin, Haitner and
Mazor [5] prove an adaptive lower bound of S + T log N = Ω(N) when the preprocessing
algorithm P computes a linear function. In the case of weakly non-adaptive algorithms they
show that if the online algorithm A is an affine function over the query points and advice
then S = Ω(N). Moreover they generalize these bounds to prove lower bounds in the case
when A is an affine decision tree. [17] gives tight bounds for guess-and-check algorithms for
weakly non-adaptive function inversion. These bounds are however incomparable to strongly
non-adaptive function inversion (strongly non-adaptive algorithms can’t look at the advice,
but can output a point they haven’t queried). Finally, Dvořák, Koucký, Král and Slívová [13]
prove a conditional lower bound of T = Ω(log N/ log log N), when S = εN log N under the
network coding conjecture.

In the quantum setting, [26, 19, 7, 6] give tight bounds even with quantum advice showing
that Grover’s search is optimal in the setting when S = Õ(

√
N). Any improvement on these

bounds would imply circuit lower bounds as shown in [10].

1.3 Structure of the Paper
In Section 2, we provide the necessary definitions. In Section 3, we prove the main results of
this paper: Theorem 1, Theorem 2 and Lemma 3. We conclude this paper with a discussion
on the equivalence between function inversion and the communication complexity of certain
partial functions in Section 4.

2 Preliminaries

All logarithms are base 2. For a non-negative integer N , by [N] we denote the set {1, . . . , N},
and by ΠN we denote the set of all permutations of [N]. For an undirected graph G = (V, E)
and a subset of its vertices S ⊆ V , N(S) denotes its neighborhood; i.e.,

N(S) := {v ∈ V : ∃u ∈ S s.t. {u, v} ∈ E} .

K. Gajulapalli, A. Golovnev, and S. King 5:5

We will use the following Chernoff bound (see e.g., [24]):

▶ Lemma 4. Let X1, . . . , Xn be independent random variables taking values in {0, 1} and X

denote their sum with µ = E[X]. Then for 0 ≤ ε ≤ 1,

Pr[X ≤ (1 − ε)µ] ≤ exp
(

−ε2µ

2

)
.

2.1 The Permutation Inversion Problem
In the following definitions, let (P, A) be a pair of deterministic algorithms.

▶ Definition 5. We say that
1. (P, A) uses S bits of pre-processing if for all inputs, the output of P has bit-length at

most S.
2. (P, A) makes T queries if for all inputs, Af makes at most T queries to f .

In this paper, we provide lower bounds on permutation inversion, a subproblem of function
inversion. Hence, our lower bounds extend to function inversion as well.

▶ Definition 6. We say that (P, A) solves the permutation inversion problem if for all
π ∈ ΠN and y ∈ [N],

Aπ(P(π), y) = π−1(y) .

We call P the preprocessing algorithm and A the online algorithm.
We say that (P, A) is strongly non-adaptive if the T queries to π made by Aπ depend

only on y and not on the output of P(π) nor the results of previous queries. In such a case,
we can define the query function of Aπ to be φ : [N] →

([N]
T

)
.

For any set X ⊆ [N], we let φ(X) =
⋃

x∈X

φ(x).

3 Non-Adaptive Function Inversion

In this section, we prove our improved lower bound on non-adaptive permutation inversion
and hence function inversion. We start by showing a generic space bound (Theorem 2) that
follows via a compression argument. This already allows us to recover Yao’s lower bound in
the strongly non-adaptive setting. We next introduce a special graph lemma (Lemma 3) on
sparse bipartite graphs that guarantees the existence of a large enough subset of vertices
with a small neighborhood. Finally, combining these two together, we get our improved lower
bound (Theorem 1).

▶ Theorem 2. For every T ∈ N, φ : [N] →
([N]

T

)
, and Y ⊆ [N] such that |Y | < N − |φ(Y)|,

every strongly non-adaptive algorithm that solves permutation inversion with S bits of
preprocessing and the query function φ must have

S ≥ |Y | log(N − |φ(Y)| − |Y |) .

Proof. Let (P, A) be a strongly non-adaptive algorithm for permutation inversion with query
function φ that uses S bits of preprocessing. Let X ⊆ [N] be such that |X| < N − |φ(X)|.
For ease of notation, we define φ(X) := [N] \ φ(X). Because |X| < N − |φ(X)| = |φ(X)|,
there exist injective functions from φ(X) to [N] \ X. Fix τ to be any such function, and let

ITC 2024

5:6 On the Power of Adaptivity for Function Inversion

P = {π ∈ ΠN : π|φ(X) = τ}; in particular, for any two π1, π2 ∈ P , π1|φ(X) = π2|φ(X). Then
by construction, we have that for each π ∈ P , π−1(X) ⊆ φ(X). We now pick a maximal
subset Q ⊆ P such that for every distinct π1, π2 ∈ Q, π−1

1 |X ̸= π−1
2 |X . Thus,

|Q| =
(

|φ(X)|
|X|

)
· |X|! = |φ(X)|!

(|φ(X)| − |X|)!
≥ (|φ(X)| − |X|)|X| .

Assume for the sake of contradiction that 2S < |Q|. Then by the pigeon hole principle,
there exist two distinct π1, π2 ∈ Q such that P(π1) = P(π2). This implies that for all
i ∈ X, Aπ1(P(π1), i) = Aπ2(P(π2), i), since by construction π1|φ(X) = π2|φ(X). This is
a contradiction, as we know there exists some i ∈ X for which π−1

1 (i) ̸= π−1
2 (i). Hence,

2S ≥ |Q| ≥ (|φ(X)| − |X|)|X|, and S ≥ |X| log(|φ(X)| − |X|). ◀

From this, we can get a lower bound on the size of the preprocessed advice for any query
function φ which has a large X with small φ(X). In the following lemma, we show that all
query functions (viewed as bipartite graphs) admit such a subset X.

▶ Lemma 3. Let G = (L ⊔ R, E) be an undirected bipartite graph with |L| = |R| = N and
|E| ≤ NT , where T ≤ N/5. Then for large enough n, there exists a subset of vertices X ⊆ L,
such that

|X| ≥ (N log T)/(30T) and

|N (X)| ≤ N − N/T 4/5 .

Proof. When d ≤ 32, we can take X ⊆ L simply to be the subset of (n log d)/(30d) vertices on
the left with the smallest degrees. Then we have |N(X)| ≤ d · |X| = (n log d)/30 < n−n/d4/5.
Thus, in the following, assume d ≥ 33.

To prove the existence of such a subset X, we will first pick a random subset X of vertices
from L. We will then bound the probability of X being small or having a large neighborhood
away from 1. This will imply the existence of a set of X that satisfies both conditions of our
lemma.

Let p = (log d)/(3d) ∈ (0, 1), and let each vertex a ∈ L be in X independently with
probability p. We now compute the probability of our two bad events. First, to bound the
probability of picking a small X, we can apply a Chernoff Bound (Lemma 4) to get that
Pr

[
|X| ≤ pn

10
]

≤ e−0.405pn < e−pn/3.
Now, to get a bound on the probability that the size of the neighborhood N(X) is close

to n, let us first compute the expected size of N(X):

E [|N(X)|] =
∑
b∈R

Pr[b ∈ N(X)]

= n −
∑
b∈R

Pr[b ̸∈ N(X)] . (1)

The probability that b ̸∈ N(X) is the probability that none of the vertices a ∈ N(b) were
picked in X; i.e., Pr[b ̸∈ N(X)] = (1 − p)|N(b)|. Substituting into Equation (1) we get

E [|N(X)|] = n −
∑
b∈R

(1 − p)|N(b)|

≤ n − n (1 − p)
1
n

∑
b

|N(b)| (2)

≤ n − n (1 − p)d
, (3)

K. Gajulapalli, A. Golovnev, and S. King 5:7

where Equation (2) follows from the AM-GM inequality and Equation (3) follows from
the fact that G has at most dn edges. Note that for d > 1 and p = (log d)/(3d), we have
0 < p < 1/4. From this, we get for all d ≥ 33

(1 − p)d ≥ e−d(p+p2)

≥ e−d(p+ p
4)

= e− 5pd
4

= d− 5 log e
12

>
2

d4/5 .

Now we can conclude E [|N(X)|] < n − 2n/d4/5. With an upper bound on the expected size
of N(X), we apply Markov’s inequality to get

Pr
[
|N(X)| > n − n

d4/5

]
<

n − 2n/d4/5

n − n/d4/5

= 1 − 1
d4/5(1 − 1/d4/5)

≤ 1 − d−4/5 .

A union-bound over the probability of the two bad events happening gives

Pr
[
|X| <

pn

10 or |N(X)| > n − n

d4/5

]
< 1 − d−4/5 + e−pn/3 . (4)

Now, because d ≤ n/5, d ≤ (5 log e)n/36 and hence 4/5 ≤ (n log e)/(9d). This gives us
d4/5 ≤ d(n log e)/(9d) = epn/3. From this, we can conclude that the probability in Equation (4)
is strictly less than 1. This implies that there exists some X ⊆ L with |X| ≥ pn/10 and
|N(X)| ≤ n − n/d4/5. ◀

Now by combining Theorem 2 and Lemma 3, we get our main result.

▶ Theorem 1. Every strongly non-adaptive algorithm that solves permutation inversion
with S bits of preprocessing and T ≤ N/5 queries must have

S = Ω
(

N log(N) log(T)
T

)
.

Proof. If T < 3, then take T = 3 by making more queries, and the following lower bound
still holds. So, without loss of generality assume that 3 ≤ T ≤ N/5.

Consider the bipartite graph of left-degree T defined by φ on (L ⊔ R, E), where L =
{ℓ1, . . . , ℓN }, R = {r1, . . . , rN }, and for every i ∈ [N] and j ∈ φ(i) we have {ℓi, rj} ∈ E.
Now let X ⊆ [N] be the set guaranteed to exist by Lemma 3, so |X| = ⌈N log(T)/(30T)⌉ and
|φ(X)| ≤ N − N/T 4/5. Note that for all T > 0, log T < 15T 1/5, so N log T/(15T) < N/T 4/5.
Thus, |X| < |φ(X)|. Therefore, by Theorem 2, S ≥ |X| log(|φ(X)| − |X|). Note that

|φ(X)| − |X| ≥ N

T 4/5 − N log(T)
30T

= N

T 4/5

(
1 − log(T)

30T 1/5

)
≥ N

2T 4/5

for T > 0. Thus, we have

S ≥ N log(T)
30T

log
(

N

2T 4/5

)
≥ N log(T)

30T
log

(
N1/5

2

)
= Ω

(
N log(N) log(T)

T

)
. ◀

ITC 2024

5:8 On the Power of Adaptivity for Function Inversion

4 Connections to Communication Complexity

In this section, we discuss an alternate approach to proving lower bounds for strongly non-
adaptive function inversion via communication complexity. This approach generalizes to
other strongly non-adaptive data structure problems.

Let (P, A) be a strongly non-adaptive algorithm for permutation inversion. We say
that two permutations π, τ conflict under a query function φ if there exists an i such that
π−1(i) ̸= τ−1(i) and for every j ∈ φ(i), π(j) = τ(j). Hence, to distinguish two conflicting
permutations, we must have P(π) ̸= P(τ). Now consider the following promise equality
problem (PromEQφ).

▶ Definition 7. For a given query function φ : [N] →
([N]

T

)
, PromEQφ is the following

promise decision problem. Given two permutations π, τ ∈ ΠN such that either π = τ or π

and τ conflict under ϕ, decide which one of the two conditions holds.

For a (promise) problem f , let CC1(f) denote the one-way deterministic communication
complexity of f . We then observe that CC1(PromEQφ) is the minimum amount of space
needed for preprocessing to solve permutation inversion using the query function φ. On one
hand, given a strongly non-adaptive algorithm (P, A), in the communication protocol Alice
can send Bob P(π). To verify, Bob just checks if P(π) = P(τ). When π = τ , equality is
preserved. Otherwise, when π and τ conflict we are guaranteed to have P(π) ̸= P(τ). On the
other hand, assume that we have a one-way communication protocol for PromEQφ, and let
σπ be the message Alice sends to Bob when she receives π as input. We can then construct
an algorithm (P, A) for permutation inversion, where P(π) = σπ. By the correctness of our
communication protocol, we are guaranteed that there are no two conflicting permutations
which share the same message σπ. Hence, A can identify the inverse of the given point from
σπ and the points it queries. In particular, the question of understanding the complexity of
strongly non-adaptive function inversion is equivalent to the following question.

▶ Open Problem 8. Find the minimum one-way deterministic communication complexity
of PromEQφ among all φ : [N] →

([N]
T

)
,

min
φ : [N]→([N]

T)
CC1(PromEQφ) .

Note that each PromEQφ problem is a “subproblem” of equality (the accept sets of
PromEQφ and equality are identical, and the reject set of PromEQφ is a subset of the reject
set of equality). Recall that while equality admits an efficient randomized communication pro-
tocol, it has maximum deterministic communication complexity. Thus, to prove a polynomial
lower bound for PromEQφ via a reduction from some known problem, the reduction must
be deterministic. Moreover, the problem we reduce from must admit an efficient randomized
communication protocol, while being sufficiently hard for any deterministic protocol.

4.1 Recovering our improved bound
To illustrate this approach, we now demonstrate how our main result (Theorem 1) can be
obtained in this communication complexity framework. Given the discussion above, Theorem 1
is equivalent to proving a lower bound of CC1(PromEQφ) = Ω(N log(N) log(T)/T) for all
φ : [N] →

([N]
T

)
. In order to do this, we first introduce an auxiliary promise problem

PermEQk,Σ which checks equality of k-permutations over an alphabet Σ.

K. Gajulapalli, A. Golovnev, and S. King 5:9

▶ Definition 9. For a given alphabet Σ and k ≤ |Σ|, PermEQk,Σ is the following promise
decision problem. Given two k-permutations of Σ (strings of length k with distinct characters),
decide if they are equal or not.

In order to get a lower bound on CC1(PromEQφ), we reduce PermEQk,Σ to PromEQφ;
then known lower bounds on CC1(PermEQk,Σ) extend to CC1(PromEQφ). The following
is a sketch of this reduction: Given some φ, we use Lemma 3 to get a large X ⊆ [N] with
small φ(X). Then we take Σ = φ(X) and k = |X|. Now given α, a k-permutation of
Σ, we construct πα, a permutation of [N], where πα maps α to X and φ(X) to [N] \ X.
In particular, πα|φ(X) does not depend on α. Then it is not hard to see that for distinct
k-permutations α and β of Σ, πα and πβ conflict. Thus, in the reduction from PermEQk,Σ
to PromEQφ, Alice and Bob first construct πα and πβ from their inputs α and β and then
run the protocol for PromEQφ. The lower bound then follows from the known lower bound
of CC1(PermEQk,Σ) ≥ Ω(k log |Σ|).

References
1 Elad Barkan, Eli Biham, and Adi Shamir. Rigorous bounds on cryptanalytic time/memory

tradeoffs. In CRYPTO, 2006.
2 Alex Biryukov and Adi Shamir. Cryptanalytic time/memory/data tradeoffs for stream ciphers.

In ASIACRYPT, 2000.
3 Alex Biryukov, Adi Shamir, and David Wagner. Real time cryptanalysis of A5/1 on a PC. In

FSE, 2001.
4 Chris Calabro. A lower bound on the size of series-parallel graphs dense in long paths. In

ECCC, 2008.
5 Dror Chawin, Iftach Haitner, and Noam Mazor. Lower bounds on the time/memory tradeoff

of function inversion. In TCC, 2020.
6 Kai-Min Chung, Siyao Guo, Qipeng Liu, and Luowen Qian. Tight quantum time-space

tradeoffs for function inversion. In FOCS, 2020.
7 Kai-Min Chung, Tai-Ning Liao, and Luowen Qian. Lower bounds for function inversion with

quantum advice. In ITC, 2020.
8 Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. Non-uniform bounds in the random-

permutation, ideal-cipher, and generic-group models. In CRYPTO, 2018.
9 Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John Steinberger. Random oracles and

non-uniformity. In Eurocrypt, 2018.
10 Henry Corrigan-Gibbs and Dmitry Kogan. The function-inversion problem: Barriers and

opportunities. In TCC, 2019.
11 Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks against

one-way functions and PRGs. In CRYPTO, 2010.
12 Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks in the concrete: Random

oracles with auxiliary input, revisited. In EUROCRYPT, 2017.
13 Pavel Dvořák, Michal Koucký, Karel Král, and Veronika Slívová. Data structures lower bounds

and popular conjectures. In ESA, 2021.
14 Amos Fiat and Moni Naor. Rigorous time/space tradeoffs for inverting functions. In STOC,

1991.
15 Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic cryptographic

constructions. In FOCS, 2000.
16 Alexander Golovnev, Siyao Guo, Thibaut Horel, Sunoo Park, and Vinod Vaikuntanathan.

Data structures meet cryptography: 3SUM with preprocessing. In STOC, 2020.
17 Alexander Golovnev, Siyao Guo, Spencer Peters, and Noah Stephens-Davidowitz. Revisiting

time-space tradeoffs for function inversion. In CRYPTO, 2023.

ITC 2024

5:10 On the Power of Adaptivity for Function Inversion

18 Martin Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory, 26(4):401–
406, 1980.

19 Minki Hhan, Keita Xagawa, and Takashi Yamakawa. Quantum random oracle model with
auxiliary input. In ASIACRYPT, 2019.

20 Shuichi Hirahara, Rahul Ilango, and Ryan Williams. Beating brute force for compression
problems. In STOC, 2024.

21 Russell Impagliazzo. Relativized separations of worst-case and average-case complexities for
NP. In CCC, 2011.

22 Tsvi Kopelowitz and Ely Porat. The strong 3SUM-INDEXING conjecture is false.
arXiv:1907.11206, 2019.

23 Noam Mazor and Rafael Pass. The non-uniform perebor conjecture for time-bounded
Kolmogorov complexity is false. In ITCS, 2024.

24 Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization and probabil-
istic techniques in algorithms and data analysis. Cambridge university press, 2017.

25 Arvind Narayanan and Vitaly Shmatikov. Fast dictionary attacks on passwords using time-
space tradeoff. In CCS, 2005.

26 Aran Nayebi, Scott Aaronson, Aleksandrs Belovs, and Luca Trevisan. Quantum lower bound
for inverting a permutation with advice. Quantum Inf. Comput., 15(11-12):901–913, 2015.

27 Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. In CRYPTO, 2003.
28 Dominique Unruh. Random oracles and auxiliary input. In CRYPTO, 2007.
29 Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In MFCS, 1977.
30 Emanuele Viola. On the power of small-depth computation. Found. Trends Theor. Comput.

Sci., 5(1):1–72, 2009.
31 Hoeteck Wee. On obfuscating point functions. In STOC, 2005.
32 Andrew Chi-Chih Yao. Coherent functions and program checkers. In STOC, 1990.

	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Structure of the Paper

	2 Preliminaries
	2.1 The Permutation Inversion Problem

	3 Non-Adaptive Function Inversion
	4 Connections to Communication Complexity
	4.1 Recovering our improved bound

