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Abstract
We revisit the problem of private information retrieval (PIR) in the shuffle model, where queries can
be made anonymously by multiple clients. We present the first single-server PIR protocol in this
model that has sublinear per-client communication and information-theoretic security. Moreover,
following one-time preprocessing on the server side, our protocol only requires sublinear per-client
computation. Concretely, for every γ > 0, the protocol has O(nγ) communication and computation
costs per (stateless) client, with 1/poly(n) statistical security, assuming that a size-n database is
simultaneously accessed by poly(n) clients. This should be contrasted with the recent breakthrough
result of Lin, Mook, and Wichs (STOC 2023) on doubly efficient PIR in the standard model, which
is (inherently) limited to computational security.
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1 Introduction

A private information retrieval (PIR) protocol [15,36] allows a client to fetch an entry from
a database server without revealing which entry was fetched. Specifically, the server holds a
database x = (x1, . . . , xn) consisting of n bits (or generically, n symbols over an alphabet Σ)
while the client holds an index i ∈ {1, . . . , n}; the client wishes to obtain xi while hiding i

from the server.
PIR protocols have been broadly studied in two flavors: information-theoretic and

computational. Information-theoretic protocols provide security against computationally
unbounded adversaries and do not require “cryptographic” computations. Unfortunately,
non-trivial information-theoretic PIR (with less than n bits of communication) is impossible
given only one server [15]. Consequently, PIR protocols in this setting need database
replication across two or more non-colluding servers. This poses challenges for deployment
since the cost of managing multiple storage spots is high when databases are large (e.g.,
synchronization, monetary cost), and enforcing non-collusion on the database servers is
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6:2 Information-Theoretic Single-Server PIR in the Shuffle Model

hard in practice, especially when the data is owned by a single entity (e.g., a company). In
contrast, computational PIR can work when only one server holds the database but only
provides security against polynomial-time adversaries due to its reliance on cryptographic
hardness assumptions (e.g., quadratic residuosity, learning with errors). Furthermore, the
associated cost is typically high due to expensive cryptographic operations at the server
– indeed, existing single-server protocols [3, 5, 6, 17, 29, 38] are significantly less efficient in
practice than the multi-server information-theoretic ones [26,27].

The shuffle model: PIR with many clients. Achieving the best of both worlds, as afore-
mentioned, is not possible in the standard model without using n bits of communication.
To circumvent this barrier, Ishai, Kushilevitz, Ostrovsky and Sahai [32] proposed a relaxed
model, where many clients (with arbitrarily correlated indices) simultaneously query a single
server, but the clients are granted the ability to make anonymous queries to the server.
Abstractly, we can think of the queries as being shuffled before reaching the server.

Specifically, consider a client using a multi-server PIR query algorithm to generate
sub-queries for a query index. If these sub-queries were naively sent to a single server, the
server would immediately learn the query index of this client. However, this work and [32]
show the power of shuffling: if there are many clients and their sub-queries are randomly
permuted by a shuffler before being sent to the server, then it is hard for the server – even
one that is computationally unbounded as we show in this work – to figure out any of the
client-query indices. Therefore, this single server in the shuffle model can simply perform
“cheap” operations of the multi-server PIR scheme to answer sub-queries.

Understanding the shuffle model in the context of PIR is well-motivated by real-world
applications: databases with high-volume queries, such as stock quotes and search engines,
naturally enjoy the feature that thousands of users access the databases at the same time, and
therefore considering PIR with many simultaneously querying clients is sensible, particularly
if it allows for cheaper server cost. Note that this is a substantially different goal from batch
PIR [28,31] which amortizes the cost of multiple queries from a single client.

The shuffle model has been considered also in problems orthogonal to PIR, including
secure aggregation [8,23,32] and differential privacy [4,10,13,14,22]. Analogously to these
works, we view shuffling as an atomic operation; existing literature on differential privacy [8]
and anonymity [1,18,30,37,41] discusses how to implement shuffling efficiently (see details in
Section 1.2).

The shuffle PIR model opens a promising direction toward constructing efficient single-
server PIR protocols. In this work, we establish the theoretical feasibility of non-trivial
single-server PIR with information-theoretic security in the shuffle model.

1.1 Our Results
This paper aims to develop a formal understanding of PIR in the shuffle model from a
theoretical perspective. We briefly detail our results below.

Information-theoretic single-server PIR in the shuffle model (Sections 5 and 6). We
present the first construction for single-server PIR in the shuffle model that has sublinear
communication and information-theoretic security (with inverse-polynomial statistical error).
Moreover, our construction is also doubly efficient: following one-time preprocessing on the
server side, and without any state information on the client side, the server’s per-query
computation is sublinear in the database size.
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▶ Theorem 1 (Informal). For every constant 0 < γ < 1 , there exists a single-server PIR
protocol in the shuffle model such that, on database of size n, and following one-time prepro-
cessing on the server side, the protocol has O(nγ) per-query computation and communication,
and O(n1+γ/2) server storage. This is achieved with the following information-theoretic
security guarantee: for any inverse polynomial ϵ = 1/p1(n), there exists a polynomial
p2(n) = O(n1+4/γ · (p1(n))8) such that the protocol has ϵ-statistical security as long as the
total number of queries made by (uncorrupted) clients is at least p2(n).

As a key technique, we describe a generic inner-outer paradigm that composes together two
standard (multi-server) PIR protocols: an outer and an inner layer, to build a PIR protocol
in the shuffle model. Besides, our results are robust against imperfect shuffling/anonymity
(details in the full version).

While the above protocol only achieves inverse-polynomial (rather than negligible) se-
curity error, this is in fact the standard notion of security in several important settings,
including differential privacy [19,21], secure computation with partial fairness [16,24,39], and
secure computation over one-way noisy communication [2]. Our protocol demonstrates that
information-theoretic security is indeed feasible without database replication. Moreover, while
concrete efficiency is not the focus of this work, we believe that our approach has potential
for reducing the cost of standard-model PIR when properly combined with single-server
schemes and settling for a constant-factor cost reduction that might be significant in practice
(see Section 6.4 for details).

Lower bound on security (Section 6.5). In the inner-outer paradigm, we show a security
lower bound when any generic PIR protocol is used as the outer layer, and a constant-server
PIR from a broad class is used as the inner layer; in particular, 1/poly(n) statistical security
is tight in the sense that negligible security error cannot be achieved with polynomially many
clients. We also discuss open problems (Section 7) on whether negligible security is possible
(with polynomially many clients) by using other protocols in the inner layer.

1.2 Discussion on the Shuffle Model
Two-way shuffling. In the problems such as secure aggregation and differential privacy
with shuffle model, the shuffled messages are delivered to a server for analytics. Our PIR
setting is a bit different, since responses need to be communicated back from the server
to the client, we require the shuffling to be two-way. Specifically, we require not only that
clients can send messages anonymously to the server but also that the server can respond to
clients while still keeping the client identities hidden. It is important to note that shuffling
or anonymity does not trivialize the problem; it hides who sends the messages but not the
content of the messages. In practice, this two-way shuffling can be realized in a number of
ways [7, 8, 12,18,35], even without computational assumptions.

A hybrid model. PIR in the shuffle model can also be equivalently viewed as a hybrid
model between the standard single-server and multi-server PIR models: as an abstraction,
the shuffler models a second “server” which is assumed to not collude with the main database
server but does not hold a copy of the database and can only perform database-irrelevant
computations. This alone makes the shuffle model interesting for practical deployments:
non-collusion between two (or more) servers holding the same database can be difficult to
enforce (since it is likely for them to be operated by the same company for data ownership
reasons) making it a strong assumption in practice; in contrast, if only one server holds
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6:4 Information-Theoretic Single-Server PIR in the Shuffle Model

the database, then the “two” servers can be reasonably run by independent (and possibly
geographically distributed) entities. We also note that it could be interesting to let this
second database-irrelevant server perform more generic computations instead of just acting
as a shuffler; we leave this exploration to future work.

2 Technical Overview

In this section, we present a toy protocol, which is insecure but conveys our core ideas; we
then outline the techniques for building our eventual protocol from the toy protocol.

An insecure toy protocol. The starting point is the classic two-server information-theoretic
PIR scheme by Beimel et al. [9]. In this scheme, a client first deterministically encodes its
queried index i ∈ [n] to a bit string z of length m = O(log n) (we call z the encoding of
queried index, or simply query), and splits z to two additive shares in Fm

2 , z1 and z2 (we call
them sub-queries), and then sends them to the two servers respectively.

We construct PIR in the shuffle model based on this protocol. Abstractly, each client
generates two sub-queries (or shares) z1 and z2 as if it was querying using the above two-server
scheme but in fact sends both sub-queries to a single server through an anonymous channel
(which shuffles the sub-queries together with that from many other clients). Observe that
this is exactly an instance of secure aggregation in the split-and-mix approach [8, 23, 32],
where each input is split into two shares; the hope is that the server would learn nothing
given the shuffled encoding shares from many clients.

There are two issues with this toy protocol. The first issue is obvious – the server learns
the sum of all the encoding strings, and therefore can easily distinguish two sets of query
indices by comparing the sum of their shares and the sum of their encodings. Note that
leaking the sum to the server is exactly the goal of secure aggregation, but the sum should
not be leaked in the PIR context. This leakage can be easily eliminated by letting one of the
clients add a dummy share (a random string) to hide the sum. The second issue is more
involved. In fact, splitting each input into only two shares is not enough to guarantee security;
this can be demonstrated through a simple counter-example: suppose that the server wishes
to distinguish between the 2-additive shares of zeros and that of ones (sharing over F2) . In
the latter case, there is always an equal number of ones and zeros in the shares, while this is
not true for the former case. This approach can be generalized to a “counting” based strategy
(for sharing over any Abelian groups) and allows for generic efficient distinguishing attacks
(details in the full version). While splitting into more additive shares, e.g., 4, is sufficient [8],
this means we need a 4-server PIR (that has additive sub-queries) and thus leads to worse
communication – O(n3/4) in the 4-server scheme compared to O(n1/2) in the two-server
scheme (Section 4.1). On the road map to our general protocol with O(nγ) communication
(for any γ > 0), the first checkpoint is to bypass the above attack and achieve a protocol
with O(n1/2) communication; it turns out that the key ideas used for this also play a pivotal
role in our final protocol design.

Randomizing inputs via the inner-outer paradigm. The core reason why the simple split-
and-mix approach does not work with two additive shares is the presence of arbitrary
correlation among the queries; indeed, if all queries were independent and uniformly random,
then using two shares works perfectly. Our key insight to navigate around this is to randomize
the queries using another PIR, resulting in uniform random but pairwise independent queries
which is later shown to be sufficient for security.
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Our construction employs a novel approach – the inner-outer paradigm, which composes
a k-server PIR protocol as an outer layer with the previous 2-server PIR protocol (with
2-additive shares) as the inner layer. At a high level, the outer layer PIR randomizes the
client queries before they get processed through the inner layer PIR. Below we call the outer
layer protocol as OPIR and the inner layer protocol as IPIR.

Formally, the composition works as follows: for any database x ∈ {0, 1}n, on input an
arbitrary query index i ∈ [n], the client first runs the OPIR query algorithm to generate
k queries q1, . . . , qk; note that they naturally satisfy pairwise independence and each is
uniformly random in the OPIR query space Q, simply because of the security property of any
PIR. Instead of sending them directly to the server, these queries are interpreted as indices
to a new database x′ of size |Q|, where x′ consists of the answers to all the possible OPIR
queries (i.e., elements in Q). Now the client runs IPIR query algorithm on the each of the
k “indices” in {1, 2, . . . , |Q|}, and sends the IPIR sub-queries to the server. Specifically, the
client maps an index to its encoding in the two-server protocol, and splits the encoding into
2 additive shares (sub-queries) in Fm

2 where m = O(log |Q|). Finally, to have the compilation
work, the server needs to build the database x′ for IPIR in advance, which is feasible as long
as |Q| is polynomial in n.

The upshot of this compilation is that the server now sees a set of shuffled shares generated
from uniformly random and pairwise independent query indices to the database x′. As we
shall show next, this randomization achieves that, for any two multi-sets of queried indices
I, I ′ with distance at most δ, the resulting multi-sets after processing through OPIR will
be J, J ′ will have distance in expectation

√
δ, even though J, J ′ are larger than I, I ′. The

distance further decreases to 4
√

δ after processing through IPIR (additive sharing). We
will show that having each client add only one random noise sub-query (on top of its real
sub-queries) is sufficient to hide the 4

√
δ distance from the server.

Analyzing split and mix with pairwise independence. We now analyze the split and
mix approach for pairwise independence queries which we get from the OPIR; we use a
balls-and-bins formulation for this analysis. Specifically, the OPIR queries of all clients can be
viewed as throwing B = k · C balls randomly into |Q| bins where C is the number of clients
and Q is the OPIR query space. Since the balls are pairwise independent, we can bound the
expected difference in the balls-and-bins configuration from any two such distributions by
Θ|Q|(

√
B). This implies that the differences between any two sets of B OPIR sub-queries

(and consequently, the query indices in IPIR) is proportional to
√

B.
As a second step, we show once again using a balls-and-bins formulation that for any

sets of IPIR indices with difference δ, when the indices are split into two shares, the expected
difference is proportional to

√
δ. This implies that any two sets of original client indices, once

put through both OPIR and IPIR, will differ on expectation by 4
√

B. Our final step shows
that adding just 1 noise query per client results in being able to “hide” this 4

√
B difference in

order to get 1/poly(n) security. This analysis goes through as long as the total number of
clients C is at least Ω(n5+c) for some constant c > 0. More details are provided in Section 6.1.
We also show a concrete instantiation using a Reed-Solomon code based OPIR.

Improving communication using CNF-shares. Following this, in Section 6.2, we show how
a CNF-sharing based construction can be used as the IPIR to reduce the communication
complexity; in particular, using an s-CNF sharing allows us to reduce the communication cost
to O(n1/s) given Ω(n2s+1/ϵ8) clients for statistical security ϵ. This cleanly generalizes our
earlier construction. The security proof follows a similar outline as before but is somewhat
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6:6 Information-Theoretic Single-Server PIR in the Shuffle Model

more involved. We find a nice group theoretic formulation of the problem of understanding
the symmetries within the CNF-sharing, which allows us to greatly simplify the analysis by
leveraging simple results from that domain.

Lower bound on security. We show a lower bound on security for protocols within our
inner-outer paradigm, by showing that negligible statistical distance cannot be achieved in
this realm. To prove this, we borrow an idea from Ghazi et.al [23, Theorem 6], and extend
their results on secret sharing to the PIR context. We observe that the query algorithms
of multi-server PIR protocols can be viewed as secret sharing; this allows us to show that
if the total number of possible ways to secret share a query index is K = p1(n) and there
are C = p2(n) clients, then there must exist two sets of input indices with some 1/p3(n)
statistical distance, where p1, p2, p3 are all polynomials in n.

3 Related Work

We note that the shuffle PIR model substantially differ from standard PIR models in
the literature; the only other relevant work in this model is by Ishai et al. [32]. In this
section, we discuss models and techniques specifically related to shuffling, and defer a longer
comprehensive literature review on PIR to our full version.

Differential privacy (DP) for PIR. A line of work [4, 40] considers the DP notion for
PIR assuming client anonymity. Here, clients send their query indices via onion routing
to the server, and privacy is guaranteed by the shuffling of client indices along with some
noise queries. Here DP guarantees that the server cannot distinguish neighboring sets of
queries (i.e., differing in exactly one client). Unfortunately, DP is substantially weaker than
standard PIR security and therefore insufficient in any application where client queries can
be arbitrarily correlated, as evidenced by several works which show how sensitive information
can be extracted through frequency analysis-based attacks [25,34,42].

The “Split and mix” technique. A core idea in our construction follows from an ingenious
split-and-mix approach for secure summation by Ishai et al. [32]. Specifically, they give a
one-round single-server secure aggregation protocol as follows: Each client splits its input
into k additive shares; then, as part of the shuffle model, these shares from all the C clients
are mixed together before being sent to the aggregation server who simply outputs the sum of
all the shares. The security goal here is that server cannot infer anything about a particular
client’s input. More precisely, the shuffled shares of any two tuples of client inputs (with
equal sum) should look indistinguishable. Ishai et al. [32] show that statistical security of
2−σ can be achieved by using per-input k = Θ(log C + log p + σ) additive shares over a group
of size p. Recent works [8, 23] improve this bound to k = ⌈2 + 2σ+log2(p)

log2(C) ⌉ and show that at
least 4 shares are necessary.

In our shuffle PIR context, we find that 2 additive shares are sufficient due to our query
randomization technique and the usage of additional noise queries; this cannot be done in the
summation setting as the final output could change. Towards reducing the communication
of our PIR protocol, we also generalize the split-and-mix approach to CNF shares.
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4 Preliminaries

Basic notation. For n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. F denotes a finite
field. Sc denotes the symmetric group containing all permutations of c elements. We use
bold letters to denote vectors (e.g., z). We use SD(D1,D2) to denote the statistical distance
between the distributions D1 and D2.

Unless specified, logarithms are taken to the base 2. The notation poly(·) refers to a fixed
but unspecified polynomial in its parameter; we use polylog(·) to mean poly(log(·)). The
notation Õ hides arbitrary polylogarithmic factors.

We use $−→ to denote uniformly random sampling,→ for output by deterministic algorithms,
and $→ for output by randomized algorithms.

4.1 Multi-Server Information-Theoretic PIR
We begin with the standard notion of multi-server information-theoretic PIR below.

▶ Definition 2 (PIR). Let Σ be a finite alphabet. A k-server PIR protocol over Σ is a tuple
Φ = (Setup, Query, Answer, Recon) with the following syntax:

Setup(x)→ Px: a deterministic algorithm executed by all servers that takes in an n-entry
database x ∈ Σn and outputs its encoding Px.
Query(i; n) $→ ((q1, . . . , qk), st): a randomized algorithm (parameterized by n) executed by
the client that takes in an index i ∈ [n], and outputs sub-queries q1, . . . , qk and a state st.
The sub-query qℓ is sent to the ℓ-th server.
Answerℓ(Px, qℓ) → aℓ: a deterministic algorithm executed by the ℓ-th server that takes
in the encoding Px and a sub-query qℓ, and outputs an answer aℓ. Since the Answer
algorithm may be different for different servers, we use ℓ to denote the algorithm used by
server ℓ.
Recon((a1, . . . , ak), st)→ xi: a deterministic algorithm executed by the client that takes
in answers a1, . . . , ak (where aℓ is from the ℓ-th server) and the state st, and outputs
xi ∈ Σ.

Φ needs to satisfy the following correctness and security properties:
Correctness. For all n ∈ N, any database x = (x1, . . . , xn) ∈ Σn, and all i ∈ [n],

Pr

 Px ← Setup(x)
Recon((a1, . . . , ak), st) = xi : ((q1, . . . , qk), st) ←$ Query(i; n)

(a1, . . . , ak) ← (Answerℓ(Px, qℓ))k
ℓ=1

 = 1.

Intuitively, correctness says that the client always gets the correct value of xi.
Security. For all n ∈ N, i ∈ [n], and T ⊂ [k], define the distribution

Dn(i, T ) := {{qℓ}ℓ∈T : ((q1, . . . , qk), st)←$ Query(i; n)} .

We say that Φ has (t, ϵ)-privacy (where t < k, and ϵ = ϵ(n)), if for all n ∈ N, any two
indices i, i′ ∈ [n], and any set T ⊂ [k] such that |T | < t, we have

SD(Dn(i, T ),Dn(i′, T )) ≤ ϵ(n).

Intuitively, (t, ϵ)-privacy says that any set of less than t colluding servers has a distinguishing
advantage at most ϵ.
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6:8 Information-Theoretic Single-Server PIR in the Shuffle Model

We provide as background (Appendix A), common PIR schemes that will be important for
our construction for PIR in the shuffle model. The constructions employ the following general
outline: The servers encode the database x ∈ Σn as a polynomial Px. To query the database
at position i, the client first encodes i into a vector z(i) where the encoding is defined in a
way that results in Px(z(i)) = xi. The client now evaluates Px at z(i) while hiding z(i) from
the servers: it secret shares z(i) into k shares, and each share is sent to one of the k servers
(through e.g., additive or Shamir sharing). Each server can then evaluate Px on one share
and send the result to the client, who is able to reconstruct the entry xi.

Other notation. For a PIR protocol Φ, we use EΦ to denote the encoding space of all
indices. We use QΦ to denote the space of all possible sub-queries (note that QΦ may not
equal EΦ). For example, in the two-server construction above, EΦ contains all binary strings
with Hamming weight d, and the space QΦ is Fm

2 , i.e, in this case EΦ ⊂ QΦ.

4.2 Balls and Bins
We formulate the core analysis of our constructions using the widely-used balls-and-bins
problem, which we provide background and notation for here. Abstractly, the balls-and-bins
problem analyzes the distribution of B (identical) balls thrown into N bins according to some
distribution D (often independent and uniformly at random). To denote a final configuration
of balls, we use a N -length vector u = (u0, . . . , uN−1) where ui denotes the number of balls
in bin i. We say that u = (u0, . . . , uN−1) is (B, N)-valid if each ui ∈ Z≥0 and

∑
i ui = B.

Since our analysis often deals with sharing over a group G, we may also label the bins using
elements from G; when G is unspecified, it is taken to be ZN .

▶ Definition 3. Given (B, N)-valid configurations u = (u0, . . . , uN−1) and v =
(v0, . . . , vN−1), we define the following useful terms:

The edit distance, denoted by ED(u, v) is defined as ED(u, v) = 1
2

∑N−1
i=0 |ui − vi|.

Intuitively, this denotes the number of balls that need to be moved to convert u to v. Note
that the distance is symmetric since ED(u, v) = ED(v, u). The edit distance between two
distributions U and V, denoted by ED(U ,V); can now be defined as Eu∼U,v∼V [ED(u, v)].
The ball-intersection u ⊓ v is (c0, . . . , cN−1) where each ci = min(ui, vi).
The ball-difference u⊖ v is (u′

0, . . . , u′
N−1) where each u′

i = max(0, ui − vi).

5 Single-Server PIR in the Shuffle Model: Definitions and Preliminary
Results

We now formally define single-server PIR in the shuffle model, which considers many query-
making clients. Importantly, no coordination is assumed among clients.

▶ Definition 4 (PIR in the shuffle model). Let Σ be a finite alphabet. A (single-server) PIR
protocol (over Σ) in the shuffle model is a tuple ShPIR = (Setup, Query, Answer, Recon) with a
syntax similar to that of a k-server PIR (Definition 2) except for a few changes given below:

Setup(x)→ Px: a deterministic algorithm executed by the server that takes in an n-entry
database x ∈ Σn and outputs its encoding Px.
Query(i; n) $→ (q1, . . . , qk): a randomized algorithm (parameterized by n) executed by
the client that takes in an index i ∈ [n], and outputs sub-queries q1, . . . , qk. Unlike in
Definition 2, k may be a function of n; this is possible since the shuffle model does not
require k physical servers. Further, all sub-queries will be sent to the same server. For
simplicity, here we omit the state in Definition 2.
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Answer(Px, qℓ)→ aℓ: a deterministic algorithm executed by the server that takes in the
encoding Px and a sub-query qℓ, and outputs an answer aℓ. Unlike in Definition 2, there
is a single Answer algorithm.
Recon(a1, . . . , ak) → xi: a deterministic algorithm executed by the client that takes in
answers a1, . . . , ak, where for all ℓ ∈ [k], aℓ is the answer to the client’s sub-query qℓ; and
outputs xi ∈ Σ.

ShPIR needs to satisfy the following correctness property:

Correctness. For all n ∈ N, database x = (x1, . . . , xn) ∈ Σn, and i ∈ [n],

Pr

 Px ← Setup(x)
Recon(a1, . . . , ak) = xi : (q1, . . . , qk) ←$ Query(i; n)

(a1, . . . , ak) ← (Answer(Px, qℓ))k
ℓ=1

 = 1.

ShPIR also needs to satisfy the following security property in the model where client
queries are shuffled before being sent to the server.

Security. We will parameterize security by a shuffler Π and a minimum number of honest
client queries C. Formally, let Π = {Πc}c∈N be an ensemble such that Πc is a distribution
over the symmetric group Sc. When Π is unspecified, we assume that each Πc is a uniform
distribution over Sc; we refer to this as the uniform or perfect shuffler. We discuss imperfect
shufflers in the full version.

For a given n, Π, and C, and given a tuple I = (i1, . . . , iC) ∈ [n]C of client query indices,
define the distribution

D̃n,Π,C(I) =


(q(1)

1 , . . . , q
(1)
k ) ←$ Query(i1; n)

· · ·
π(q) : (q(C)

1 , . . . , q
(C)
k ) ←$ Query(iC ; n)

q← (q(1)
1 , . . . , q

(1)
k , . . . , q

(C)
1 , . . . , q

(C)
k )

π
$←− ΠkC


.

Then, we say that ShPIR is (Π, C, ϵ)-secure if for every n ∈ N and all C∗ ≥ C(n), and
I, I ′ ∈ [n]C∗ , it holds that:

SD(D̃n,Π,C∗(I), D̃n,Π,C∗(I ′)) ≤ ϵ(n).

Efficiency metrics. We measure the efficiency of PIR constructions in the shuffle model
using a few metrics below. Since we consider many clients querying the server, we will
characterize the cost per query.

Per-query server computation: for answering each query, the number of bits that the
server reads from the database and the preprocessing bits.
Per-query communication: the sizes of the client query and the server response.
Server storage: the total number of bits, including the preprocessing bits, that are stored
by the server.
Message complexity: for each query, the number of anonymous messages required to
send. This is separately considered from the communication cost, since we need to take
into account the anonymity cost. In particular, this will help us delineate between, e.g.,
sending one anonymous message of size s and sending s anonymous messages each of size
1 (since the latter may have more network overhead).
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While our main focus is the server and the anonymity cost, we may also consider per-
query client computation, which is the computational complexity for issuing each query and
reconstructing the answer. One may also consider client storage which is omitted in this
work as the clients in our constructions are stateless.

Warm-up impossibility result. When considering PIR with multiple clients, it is useful to
study the minimum number of clients required for security. We show that for any linear
PIR (i.e., its encoding function is linear), which includes the constructions mentioned in
Section 4.1 and others [9, 15], the number of clients required is at least the database size.
We also show that no linear PIR protocol in the shuffle model has statistical security better
than n−C

n−1 for C < n. See details in the full version.

6 General Constructions for Single-Server Shuffle PIR

We now present generic ways to build asymptotically efficient PIR protocols in the shuffle
model from standard multi-server PIR constructions. The high-level idea is to compose
together a protocol OPIR at the outer layer with a protocol IPIR at the inner layer, for
randomizing the query indices. We call this the inner-outer paradigm for ShPIR.

Motivating the inner-outer paradigm. Recall that following the split-and-mix technique,
the analysis of [8, 23] directly implies a shuffle PIR protocol with 4 additive shares and
O(n3/4) communication. We find that using 2 additive shares (which would give O(n1/2)
communication) are not sufficient for two reasons: (1) client queries are not individually
random; and (2) client queries may be arbitrarily correlated with each other. For example,
it is easy to distinguish between sets of client indices that are far apart (e.g. all querying
for index i vs index i′; see the full version for details), even if extra noise queries are added
by the clients to reduce the statistical distance. Furthermore, if the queries are uniformly
random (even if not independent), three additive shares are enough [8] although two shares
are still not sufficient here. This motivates our two-layer approach below.

The insight of having OPIR. The key insight we use to navigate around this is to first
randomize the query indices by using a separate outer PIR, which we denote as OPIR. The
goal of this OPIR protocol is two fold: first, it reduces the distance between the two multi-sets
I and I ′; and second, it transforms the queries in a way that makes them pairwise-independent
which turns out to be sufficient for us to prove security. Concretely, the OPIR protocol takes
two multi-sets I and I ′, who may differ by as much as δ = C, and constructs two new (larger)
query multi-sets J and J ′, whose difference is now proportional to

√
δ, and whose elements

are now pairwise-independent. Then J and J ′ will be used as query indices of an inner PIR
with additive (or CNF) shares. In this way, the server sees the IPIR sub-queries as if they
were generated from random (and pairwise independent) query indices.

ShPIR compilation. To compile the overall ShPIR protocol, the server will need encode
the database x twice: once using OPIR and once using IPIR. More precisely, the server first
sets up a database consisting of the answers to every possible OPIR sub-queries based on
x: it defines a new database x′ = (x′

1, . . . , x′
n′) of size n′ = |QOPIR| where each entry x′

i is
set to be OPIR.Answer(Px, Li) where Li denotes the i-th element in the sorting of QOPIR. If
OPIR.Answer is different for different servers, then a size kn′ (where k is the number of OPIR
servers) database can be used, which concatenates all the n′-sized databases where the ℓ-th
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database is defined using OPIR.Answerℓ(Px, Li); see Construction B.1 for details. Now x′,
from the perspective of IPIR, is the database to be taken into the setup algorithm, i.e., the
server runs IPIR.Setup(x′), and the setup for ShPIR is done.

To query an index i ∈ [n], a client will first use OPIR to generate queries q1, . . . , qk which
are each uniformly random in the space QOPIR. Each of these qℓ can now be treated as an
index i′

ℓ of the database x′, following which the client will use IPIR.Query to fetch the i′
ℓ-th

entry in x′ that corresponds to qℓ. As a result, the final sub-queries to be sent to the server
(along with additional noise) are generated by the client running IPIR.Query on the indices i′

ℓ

for ℓ ∈ [k]. The full details of the composition are given as Construction B.1 (Appendix B).

6.1 Composition with an Additive Two-Server IPIR
We start with our generic composition which uses an IPIR with two additive shares. We
provide an overview of the core proof here; the full details are given in the full version.
▶ Theorem 5 (ShPIR Composition Theorem for additive IPIR). Let Φ be any k-server t-private
information-theoretic PIR scheme where k > t > 2; denote its sub-query space size by Q

and its answer size by A. Let Ψ be 2-additive PIR defined in Construction A.1. Then,
for any database size n ∈ N, given any ϵ > 0, there exists a constant c0 such that for
C ≥ (c0Q5)/(kϵ8), the construction ShPIR(Φ, Ψ) is a (Π, C, ϵ)-secure PIR in the shuffle
model where Π is uniform. Here, Q, k, ϵ, C may all be functions of n. Furthermore, when
Q = Õ(n) and assuming one-time preprocessing, the construction has:

per-query server computation O(A · k 3
2 ·Q 1

2 ),
per-query client computation O(A · k 3

2 ·Q 1
2 ),

per-query communication O(A · k 3
2 ·Q 1

2 ),
server storage Õ(A · k 3

2 ·Q 3
2 ).

▶ Remark 6 (Reduced cost for homogeneous servers). If OPIR has different Answer algorithms
for the servers, the ShPIR server needs to store k sub-databases, where for ℓ-th sub-database
the server treats q ∈ QOPIR as the ℓ-th share and stores the corresponding answers. If
OPIR.Answer is the same for all k servers, then ShPIR server only needs to store one such
sub-database; as a result, both the per-query server computation and communication will
be O(A · k ·Q 1

2 ), and the server storage will be O(A ·Q 3
2 ). The client computation will be

O(A · k ·Q 1
2 ). See details in the full version.

6.1.1 Proof Outline of Theorem 5
Basic background. Consider a client query index i ∈ [n]. Recall that our k-server OPIR
will first encode i into the space EOPIR and then split it into k sub-queries in the space QOPIR.
When composing with the IPIR, these k sub-queries will now be interpreted as IPIR query
indices within the IPIR database of size |QOPIR|. Each of the k indices will now be encoded
within the IPIR encoding space EIPIR, and then split into 2 shares in the space QIPIR. Note
that the space QOPIR and EIPIR have the same size, which is the size of the IPIR database,
and that EIPIR ⊂ QIPIR. Going forward, for clarity, we keep using “sub-queries” for OPIR but
use “shares” to mean the sub-queries for IPIR.

Given C clients, we will have kC total IPIR query indices encoded into EIPIR; denote this
by y = (y1, . . . , ykC) and let ỹ (of length 2kC) denote its shares in QIPIR. Our main goal is
to analyze the properties of ỹ since this will be the view of the server. In particular, given
two lists of original query indices I = (i1, . . . , iC) and I ′ = (i′

1, . . . , i′
C), and their resulting

shares ỹ and ỹ′, we want to understand whether an adversary can find e.g., which of I or I ′

corresponds to ỹ.
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Balls-and-bins-formulation. We now describe how to formulate our core analysis as a
balls-and-bins problem. A key starting observation here is that a uniformly random shuffler Π
will eliminate any ordering within ỹ (and similarly for y). In turn, this allows us to essentially
do our analysis using a balls-and-bins formulation, where each share in ỹ corresponds to a ball
in one of |QIPIR| bins. More precisely, the distribution of the shuffled shares in ỹ is exactly a
|QIPIR|-dimensional distribution where the each component represents the distribution of the
number of balls in that bin. Towards this, we also find it helpful to analyze y using a similar
balls-and-bins formulation.

The crux of our analysis now boils down to quantifying the statistical distance between
the distribution of balls over bins resultant from any two sets of original query indices I and
I ′. Specifically, define Y(I) to be the distribution of the balls-and-bins configuration of IPIR
query indices y resultant from the original query indices I; define Ỹ(I) to be the distribution
of its shares (i.e., corresponding to ỹ). Roughly, the goal now is to show that for any I and
I ′, we can bound SD(Ỹ(I), Ỹ(I ′)) with some inverse polynomial in the number of clients.

Looking ahead however, we will require some extra balls to be added uniformly at random,
essentially to “smooth out” the distribution of ỹ; this can also be thought of as uniformly
random noise. In the PIR context, this effectively corresponds to each client sending a
random sub-query in QIPIR. We denote the balls-and-bins distribution of the shares with
noise added as Ỹ∗(I).
▶ Remark 7 (Noise and communication complexity). We note that adding noise for each IPIR
query index does not increase the asymptotic communication complexity for IPIR, i.e., the
communication for an n-sized database is still O(

√
n). This is because the server will still

evaluate each noise share either as the first or second share without changing the database
encoding polynomial making the communication still O(

√
n). Note that adding noise is

substantially different from splitting to more shares, i.e., if each IPIR index was instead
split into more additive shares (corresponding to using an IPIR with more servers), then the
number of variables in the encoding polynomial itself will be larger, which would increase
the asymptotic communication.

Main proof steps. At a high level, we leverage balls-and-bins style analyses to bound the
statistical distance between Ỹ∗(I) and Ỹ∗(I ′). The rough idea will be to first compute the
edit distance between the balls-and-bins configurations corresponding to the IPIR shares and
then use that to bound the statistical distance after adding the random noise. Our proof
proceeds in three major steps which we outline below.

Proof Step 1: (Analyzing the edit distance of OPIR sub-queries). Consider two lists of client
indices I = (i1, . . . , iC) and I ′ = (i′

1, . . . , i′
C). Abstractly, the first part of our proof shows

that the edit distance between the OPIR sub-queries generated from I and I ′ is not too large.
Recall that the t-out-of-k OPIR sub-queries generated are individually uniformly random,

and are (t− 1)-wise independent (and therefore also pairwise independent). Therefore, we
can formulate our objective as the following balls-and-bins problem given in Lemma 8.

▶ Lemma 8. Suppose that B balls are thrown into N bins. Let B and B′ be any two
distributions of the final balls-and-bins configuration where each ball is thrown uniformly at
random, and any two balls are independently thrown. Then Eu∼B,v∼B′ [ED(u, v)] ≤

√
BN/2.

Casting this result to our construction, since each client index generates k OPIR sub-queries
and there are C clients in total, the expectation of edit distance (or differences) between any
two sets of OPIR sub-queries (and consequently, the IPIR indices) is at most

√
kC |QOPIR| /2.
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Proof Step 2: (Analyzing the edit distance of 2-additive sharing in the IPIR). Now that we
have a bound on the edit distance between OPIR sub-queries (and consequently IPIR indices),
our next step is to analyze the edit distance for QIPIR shares. Recall that each encoded EIPIR
index is split into two additive shares. We model this as another balls-and-bins problem:

Consider a (B, N)-valid configuration u and let Shareu denote the distribution of randomly
splitting each ball in u (in a group G), i.e., for each ball b, throw one ball into a random bin
u←$ G, and another into bin b − u. The goal now is to bound the edit distance between
Shareu and Sharev given the edit distance between u and v.

To begin, we show that in the context of the final statistical distance, it is sufficient to
only consider the parts of u and v that are different. Let Shareℓ

u denote the distribution of
the balls-and-bins configuration when further throwing ℓ balls independently and uniformly
at random following the sharing Shareu. In particular, we show that,

SD(Shareℓ
u, Shareℓ

v) ≤ SD(Shareℓ
u⊖v, Shareℓ

v⊖u)

where ⊖ denotes the ball-difference operation defined in Section 4.2. Essentially, this
will allow us to look at the splitting of only those balls that differ between u and v; in
particular, given (B, N)-valid u and v with edit distance δ, we will only need to concern
ourselves with the (δ, N)-valid u′ = u ⊖ v and v′ = v ⊖ u. We use this to show that
E [ED(Shareu′ , Sharev′)] ≤

√
2δN . Combining this with the first part, we get:

Eu∼B,v∼B′ [ED(Shareu⊖v, Sharev⊖u)] ≤
√

2N · Eu∼B,v∼B′

[√
ED(u, v)

]
≤
√

2N (BN/2)1/4 = (2)1/4B1/4(N)3/4

where the second step is by the concave Jensen’s inequality.

Proof Step 3: (Bounding the final statistical distance). We are now ready to bound the final
statistical distance between the final views of the server: Ỹ∗(I) and Ỹ∗(I ′). For this, we
leverage a recent analysis by Boyle et al [11]. A straightforward corollary of their result can
be abstractly stated as follows: Consider ℓ balls thrown independently and uniformly at
random into N bins and let Uj denote the final distribution after another ball is added into
bin j. Then for all bins j and j′, we have SD(Uj ,Uj′) ≤

√
N/ℓ. Informally, this can also be

thought of as a “toy in sand” problem of being able to hide the location (bin j or bin j′) of
an initial ball (i.e., the toy) after throwing in N random balls as noise (i.e., the sand). The
same analysis can be extended to show that if there are ∆ initial balls, after which ℓ random
balls are thrown, the statistical distance will be bounded by ∆ ·

√
N/ℓ. In the context of our

PIR analysis, intuitively, ∆ will represent the edit distance between Shareu⊖v and Sharev⊖u,
while the ℓ extra balls will represent the additional “noise” IPIR queries made. Note that
when using this balls-and-bins analysis, we need to account for the fact that the edit distance
is a distribution in our case, rather than a fixed number; it is straightforward to do so by
using standard first-moment techniques (since we have a bound on the expectation).

Casting these analyses back to our PIR context, first notice that Ỹ∗(I) is nothing but the
distribution Shareℓ

u∼B(I) where B(I) is the distribution of OPIR sub-queries resulting from
the indices I. Looking ahead, we will use ℓ = kC uniformly random IPIR queries (i.e., k per
client) as noise. A crucial point here is that the number of extra balls per client needs to
be constant in C so that the individual communication complexity of each client does not
depend on the how many clients are making queries. In fact, this also required our bound on
the ED of the 2-additive sharing to be o(δ).
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Combining the results from the previous parts, we show our main result:

SD(Ỹ∗(I), Ỹ∗(I ′)) <
3 ·N5/8

B1/8 = 3 |QIPIR|5/8

(kC)1/8 .

since N = |QIPIR| bins (query-space) and B = kC balls (total sub-queries).
A final task is bounding |QIPIR| by Q (i.e., the size of OPIR sub-query space). The

high-level idea here is that we let each IPIR database entry be A bits and consequently |QIPIR|
can be made Õ(Q). Now, assuming that there are C = Ω(n5+ν/k) client queries for some
constant ν > 0, the statistical distance can be bounded by some inverse polynomial 1/poly(n)
in n. More specifically, suppose that we wanted to bound the statistical distance by some
inverse polynomial ϵ(n). Then, assuming at least C(n) = Ω(n5/(k · ϵ8)) client queries, the
statistical distance is bounded by ϵ. Consequently, the construction satisfies (Π, C, ϵ)-security
in the shuffle model where Π is the uniform shuffler.

6.2 Reducing Communication using CNF Shares
In this section, we describe how to generalize the IPIR to use CNF shares instead of additive
shares. The upshot is that it allows us to reduce the communication complexity of the
resultant ShPIR protocol to O(nc) for any constant c > 0.

Construction outline. In a standard multi-server PIR, using s additive shares instead of 2
results in an increased communication cost of O(n(s−1)/s) but this can be reduced to O(n1/s)
at the cost of a stronger non-collusion assumption using a CNF sharing where each server is
given a different s− 1 sized subset of the additive shares. We show that the same strategy in
fact also works in our inner-outer paradigm by using an IPIR with CNF-shares (the composed
protocol is given in Figure A.2). This compilation is particularly interesting since it requires
no extra non-collusion assumptions to get the gain in efficiency (since the shuffle model
already consists only of a single server). Instead, the trade-off will arise in the minimum
number of clients required for security.

▶ Theorem 9 (ShPIR Composition Theorem for CNF IPIR). Let Φ be any k-server t-private
information-theoretic PIR scheme where k > t > 2; denote its sub-query space size by Q

and its answer size by A. Let Ψ be the s-CNF PIR defined in Construction A.2. Then,
for any database size n ∈ N, and given any ϵ > 0, there exists a constant c0 such that for
C ≥ (c0Q2s+1)/(kϵ8), the construction ShPIR(Φ, Ψ) is a (Π, C, ϵ)-secure PIR in the shuffle
model where Π is uniform. Here, Q, k, ϵ, C may all be functions of n. Furthermore, when
Q = Õ(n) and assuming one-time preprocessing, the construction has:

per-query server computation O(A · k1+1/s ·Q1/s),
per-query client computation O(A · k1+1/s ·Q1/s),
per-query communication O(A · k1+1/s ·Q1/s),
server storage Õ(A · k1+1/s ·Q1+1/s),

Similar to Remark 6, if OPIR.Answer is the same for all k servers, then both the per-query
server computation and communication will be O(A · k ·Q1/s), and the server storage will be
O(A ·Q1+1/s). The client computation will be O(A · k ·Q1/s).

Proof outline. The overall structure of the proof is very similar to the one for an additive
IPIR; the main difference being in the second proof part to analyze the balls-and-bins
distribution after the IPIR sharing which now involves CNF shares instead of additive shares.
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Let s-CNF-Shareu be the distribution of the balls-and-bins configuration upon sharing
each ball in u into s CNF shares in Gs−1. Now, given (δ, N)-valid configurations u and v,
we want to bound the edit distance between s-CNF-Shareu and s-CNF-Sharev; Through a
natural group theoretic formulation, this turns out essentially reduce to understanding the
(cyclic rotational) symmetries of the CNF-sharing. Concretely, this allows us to show that:

ED(s-CNF-Shareu, s-CNF-Sharev) ≤ sN (s−1)/2
√

δ.

Notice how this bound asymptotically generalizes the one from the 2-additive IPIR construc-
tion. Once we have this bound, the rest of the security proof of proceeds in exactly the same
way as the one for Add-ShPIR. The complete proof is given in the full version.

6.3 Concrete Constructions based on Reed-Muller Code
We can now concretely instantiate OPIR with the Reed-Muller PIR and IPIR with the CNF
PIR to achieve our main result below.

▶ Theorem 10. For every constant 0 < γ < 1, there exists a Reed-Muller PIR Φ and
a (⌈2/γ⌉)-CNF PIR Ψ, such that on any database size n ∈ N, given any ϵ > 0, for all
C ≥ c0n1+4/γ/ϵ8 where c0 is some constant, the construction ShPIR(Φ, Ψ) is a (Π, C, ϵ)-
secure PIR where Π is uniform. Furthermore, assuming one-time preprocessing, we get:

per-query server computation O(nγ),
per-query client computation O(nγ),
per-query communication O(nγ),
per-query message complexity O(nγ),
server storage is Õ(n1+γ/2).

We defer the full proof of Theorem 10 to the full version. One thing to note here is that
the reduced communication per client with CNF shares comes at a price – to achieve the
same level of security, we need a larger number of clients.

▶ Remark 11 (Sub-polynomial communication assuming super-polynomial number of clients). An
interesting consequence of the CNF-based IPIR is that it also enables more efficient protocols
in the shuffle model. Using a (log n)-server CNF-based protocol as our IPIR, we can achieve
communication of O(polylog(n)) with the assumption that there are at least some super-
polynomial nO(log n) number of clients. This results in better asymptotic complexity than
the best existing protocols [20] in the standard-model PIR which use a constant numbers
of servers. Note that the shuffle model compilation means that still only one server is
required for our protocol and therefore we do not require the non-collusion assumptions of
the standard-model CNF-based PIR.

▶ Remark 12 (Negligible security with slightly sublinear communication). Our main result only
achieves inverse-polynomial rather than negligible security error. We note that if one settles
for slightly sublinear communication, there is a simple solution that achieves negligible security
error and proceeds as follows. The server writes the n-bit database as an m×m matrix over
Z2 where m =

√
n. Each client writes the column it is interested in as a unit vector q ∈ Zm

2 .
Assuming C clients query at the same time, where C is super-linear in n, each client splits
the vector q into k = O((m + σ)/ log C) additive shares, for security parameter σ = log2 n.
For each query q′ ∈ Zm

2 , the server responds with X · q′ ∈ Zm
2 . By the tight security analysis

of the additive split-and-mix protocol [8, 23, 32], the security error is negligible in n, i.e.,
Θ(1/nlog n), and both the query and the answer are of size k ·m = O(n/ log n).
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6.4 Combining with Standard-Model PIR

Our shuffle PIR can be used as a blackbox to reduce server cost for standard single-server
PIR by any constant factor (even 10× is a concretely substantial improvement).

Take any standard single-server PIR scheme stdPIR and denote the shuffle PIR construc-
tion as ShPIR. The server organizes the size-n database as an ℓ× (n/ℓ) matrix where ℓ is a
constant. The key idea here is to use stdPIR to retrieve a column and ShPIR to retrieve a
row. The server treats each column as a database in ShPIR and runs ShPIR.Setup on it. The
server stores the preprocessed results as lookup tables (hence n/ℓ tables in total).

Suppose a client wants to retrieve the entry at r-th row and c-th column. The client runs
the query algorithm of ShPIR on index r ∈ [ℓ] and generates k sub-queries. Then the client
sends k messages anonymously, where the j-th message consists of the j-th sub-query of
ShPIR and a stdPIR query for index c ∈ [n/ℓ]. On receiving each message, the server first
processes the sub-query of ShPIR (essentially n/ℓ table lookup operations), which results in
n/ℓ elements; then the server processes the stdPIR query on these n/ℓ elements.

Compared to running stdPIR on a size-n database, this technique reduces server compu-
tation by a factor of ℓ. And the ShPIR database size is ℓ, which neither requires too many
clients nor incurs high anonymity cost. The tradeoff is that a client sends k messages in the
stdPIR-ShPIR combination instead of one message when using stdPIR only.

6.5 Lower Bound on Security

We show that for shuffle PIR protocols constructed in the inner-outer paradigm, 1/poly(n)
statistical security is tight in the sense that negligible security cannot be achieved with
polynomially many clients using the additive inner PIR. The proof is deferred to the full
version. This result does not rule out the information-theoretic constructions with negligible
error, in particular, an interesting open problem to consider is instantiating the inner PIR
with the Reed-Muller construction.

▶ Theorem 13 (Lower bound on security for ShPIR). Let Φ be any multi-server PIR scheme.
Denote the number of possible vectors of sub-queries as KΦ. Let Ψ be a constant-server
additive PIR (Construction A.1). On any database size n ∈ N, for all (Π, C, ϵ)-secure
ShPIR(Φ, Ψ) constructions where C, KΦ and KΨ are all bounded by polynomial p1(n), there
exists a polynomial p2 such that ϵ ≥ 1/p2(n).

7 Conclusion and Open Questions

We demonstrate that PIR in the shuffle model can circumvent several limitations of standard-
model PIR. This includes information-theoretic security with a single server, which opens a
direction of constructing concretely efficient single-server schemes in the future.

The main technical question we leave open in this work is the possibility of obtaining similar
results with negligible security error (recall that we can achieve this with slightly sublinear
communication, see Remark 12). We conjecture that polylogarithmic communication per
client with negligible security can be achieved by instantiating both OPIR and IPIR with the
Reed-Muller PIR construction with a polylogarithmic security threshold and a polylogarithmic
communication complexity.

Finally, an interesting direction for future research is obtaining concretely efficient PIR
schemes in the shuffle model, possibly by settling for computational security.
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A Background on Multi-Server PIR Constructions

A.1 Two-Server PIR with Additive Shares
The first construction we describe is a PIR scheme from Beimel et al. [9] which uses two
non-colluding servers. Figure A.1 contains the full description.

Setup. Consider a field F within which Σ can be encoded. The Setup algorithm encodes a
database x ∈ Σn into an m-variate polynomial Px ∈ F[Z1, . . . , Zm] as follows. First, choose
m and d < m such that

(
m
d

)
≥ n, and let M = (M1, . . . Mn) denote a list of n monomials in

the variables Z1, . . . , Zm with total degree exactly d and the degree of each variable at most
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Let x be a database with size n and F be a field, where each entry xi is in Σ = F.

PIR.Setup(x)→ P :
1. Choose m, d such that

(
m
d

)
≥ n.

2. Let M = (M1, . . . , Mn) be a list of n monomials in F[Z1, . . . , Zm] with total degree d

and intermediate degree at most 1. Sort all monomials that have m variables with
degree d by a lexicographic order of the variables indices.

3. Compute Px =
∑n

i=1 xiMi ∈ F[Z1, . . . , Zm].
4. Compute a 2m-variate degree-d polynomial P from Px such that

P (Z1,1, Z1,2, . . . , Zm,1, Zm,2) = Px(Z1,1 + Z1,2, . . . , Zm,1 + Zm,2).
5. Output P .
PIR.Query(i; n)→ ((q1, q2), st), where i ∈ [n]:

1. Let z = (z1, . . . , zm) be the i-th binary vector such that zj = 1 if and only if the
monomial Mi contains the variable Zj .

2. Let z1
$←− Fm

2 , z2 ← z− z1; and let qℓ ← zℓ for ℓ = 1, 2. Set st = (z1, z2).
3. Output ((q1, q2), st).
PIR.Answerℓ(P, qℓ)→ aℓ (for ℓ = 1, 2):

1. Let {M ′
j}j∈[2mn] be all monomials where the number Z_,ℓ is at least half of the

variables.
2. Output aℓ ←

∑
j∈[2mn] M ′

j(qℓ).

PIR.Recon((a1, a2), st)→ xi:
1. Parse st as (z1, z2).
2. Compute xi ← a1(z2) + a2(z1) (note that a1 and a2 are polynomials).
3. Output xi.

Construction A.1 A two-server information-theoretic PIR [9].

1. For simplicity, we pick the first n such monomials in lexicographic order of the variable
indices. The encoding Px is now simply the linear combination Px =

∑n
i=1 xiMi.1

Query. The Query algorithm starts by encoding the query index i ∈ [n] into a binary vector
z(i) = (z(i)

1 , . . . , z
(i)
m ) ∈ {0, 1}m defined such that each z

(i)
j = 1 if and only if the monomial

Mi contains the variable Zj . Observe here that the Hamming weight of z(i) is d since
the monomials are also of degree d. Such encoding ensures that Px(zi) = xi. Then the
sub-queries are generated by splitting z(i) into two additive shares z(i)

1 = (z(i)
1,1, . . . , z

(i)
m,1) and

z(i)
2 = (z(i)

1,2, . . . , z
(i)
m,2), i.e., z(i) = z(i)

1 + z(i)
2 . Here, z(i)

ℓ is sent to the ℓ-th server for ℓ = 1, 2.

Answer . The Answerℓ algorithm run by the servers first views the database encoding Px as
a 2m-variate polynomial P ′

x defined as:

P ′
x(Z1,1, Z1,2, . . . , Zm,1, Zm,2) = Px(Z1,1 + Z1,2, . . . , Zm,1 + Zm,2).

Now, the ℓth server selects all the monomial terms in P ′
x such that the number of Z_,ℓ (i.e.,

the variables where the second subscript is ℓ) is at least half of the variables in that term (in
the exactly half case, the monomials are split between the two servers in a pre-determined
way). Note that the total number of monomials in P ′

x is 2d · n, so there should be 2d−1 · n
monomials for each server. The ℓ-th server then evaluates its selected monomials at the

1 One can choose a more complicated encoding in [9] (E1 encoding scheme) that allows better parameters,
namely

∑d

ℓ=0

(
m
ℓ

)
≥ n.
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point z(i)
ℓ and responds with the sum as the answer aℓ (which is now a polynomial in the

remaining m variables). Further, observe that each monomial in P ′
x is of degree d, and so

after the server evaluation, the answer polynomial aℓ will be of degree at most d/2.
Reconstruction. Finally, given answer polynomials a1, a2, the client evaluates a1 at z(i)

2 and
a2 at z(i)

1 , and sums up the evaluation results in F to get Px(z(i)) = xi.

Cost. The parameters m and d can be chosen to be both Θ(log n) such that
(

m
d

)
≥ n. In

this case, the query size is O(log n) (since m elements in F2 are sent to each server) and
the answer size is O(

√
n) (since specifying an m-variate polynomial of degree d/2 requires(

m
d/2

)
= O(

√
n) terms).

Let x be a database with size n, each entry xi is in Σ = F. There are s non-colluding servers.
PIR.Setup(x)→ P :

1. Choose m, d such that
(

m
d

)
≥ n.

2. Let M = (M1, . . . , Mn) be a list of n monomials in F[Z1, . . . , Zm] with total degree
exactly d and intermediate degree at most 1. Sort all monomials that have m variables
with degree d by a lexicographic order of the variables indices.

3. Compute Px =
∑n

i=1 xiMi ∈ F[Z1, . . . , Zm].
4. Compute a sm-variate degree-d polynomial P from Px such that

P (Z1,1, . . . , Z1,s, . . . , Zm,1 . . . Zm,s) = Px(Z1,1 + . . . + Z1,s, . . . , Zm,1 + . . . + Zm,s).
5. Output P .

PIR.Query(i; n)→ ((q1, . . . , qs), st), where i ∈ [n]:
1. Let z = (z1, . . . , zm) be the i-th binary vector such that zj = 1 if and only if the

monomial Mi contains the variable Zj .
2. Let z1, . . . , zs−1

$←− Fm
2 and zs ← z−

∑s−1
j=1 zj .

3. Let qℓ ← (zℓ+1, . . . , zs, z1, . . . , zℓ−1) for ℓ ∈ [s]. // cyclic shift
4. Set st = (z1, . . . , zs).
5. Output ((q1, . . . , qs), st).
PIR.Answerℓ(P, qℓ)→ a, for ℓ ∈ [s]:

1. Let {M ′
j}j∈[smn] be all monomials pre-determined

such that the number of Z_,ℓ is at most 1/s fraction.
2. Output a←

∑
j∈[sdn] M ′

j(qℓ).

PIR.Recon((a1, . . . , aℓ), st)→ xi:
1. Parse st as (z1, . . . , zs).
2. Compute xi ←

∑
ℓ∈[s] aℓ(z1, . . . , zℓ − 1, zℓ+1, zs).

3. Output xi.

Construction A.2 An s-server PIR with CNF shares [9]. Note that when s = 2, this is simply
the 2-server additive PIR.

k-server PIR with additive shares. The above protocol can also be generalized to k servers
where the encoding z is now split into k additive shares. In this case, the servers express the
m-variate degree-d polynomial Px as km-variate degree-d polynomial P ′

x. Let Zℓ be the set
of monomials such that for each monomial, there are more Z_,ℓ than Z_,ℓ′ for any ℓ′ ̸= ℓ.
The set Zℓ is assigned to the ℓ-th server. Moreover, the monomials in P ′

x but not in any of
Z_,ℓ’s will be divided to k servers in a pre-determined way. To issue a query for index i, the
client encodes it as before to a binary string z ∈ Fm

2 , and then splits it to k additive shares
over Fm

2 , denoted as z1, . . . , zk. The client sends to the ℓ-th server the share zℓ, and the
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server evaluates the assigned monomials using zℓ. The evaluation result is a polynomial of
degree (k − 1)d/k; this implies the answer size (which dominates the communication cost) is
O(n(k−1)/k).

Observe that using more additive shares gives worse efficiency but better privacy (since
collusion between any k−1 servers can be tolerated). Efficiency can be significantly improved
to O(n1/k) using CNF shares [33] (instead of additive shares) where each server is now given
a different (k− 1)-sized subset of the additive shares. This is because the evaluation of Px at
k − 1 shares results in an answer polynomial of degree at most O(n1/k). The efficiency gain,
however, comes at the cost of much stronger non-collusion assumption for PIR, namely that
no two database servers can collude. Looking ahead, an interesting consequence of using
the shuffle model is that our CNF-sharing based construction (Section 6.2) can significantly
reduce communication without making any non-collusion assumptions on database servers
(since there is only one database).

For simplicity, going forward, we will refer to the k-server PIR with additive shares as
k-additive PIR and its CNF-variant as k-CNF PIR.

A.2 k-Server PIR with Shamir Shares
In this section, we describe the k-server t-private PIR that uses Shamir secret sharing from [9].
Full description is provided in Figure A.3. We also call this the Reed-Muller PIR as it is
closely related to Reed-Muller code.

Let x = (x1, . . . , xn) ∈ Fn be a database.

PIR.Setup(x)→ Px:
1. Choose parameters m, d, k, t such that(

m+d
d

)
≥ n and |F| > k > td.

2. Compute Px =
∑n

i=1 xiP
(i)(z1, . . . , zm), where P (i)(PIR.Enc(i)) = 1 and P (i)(PIR.Enc(j)) = 0

for all i, j ∈ [n] and i ̸= j.
3. Output Px.

PIR.Query(i; n)→ ((q1, . . . , qk), st), where i ∈ [n]:
1. Run PIR.Enc(i) and gets z ∈ Fm.
2. Choose a set of degree-t random polynomials R = (R1, . . . , Rm) such that R(0) = z.
3. For ℓ ∈ [k]:

Randomly choose rℓ from F.
Set qℓ ← Q(rℓ). Note that each qℓ ∈ Fm.

4. Set st = (r1, . . . , rk).
5. Output ((q1, . . . , qk), st).
PIR.Answer(Px, q)→ a:

1. Compute a← Px(a).
2. Output a.
PIR.Recon((a1, . . . , ak), st)→ xi:

1. Parse st = (r1, . . . , rk).
2. Interpolate a degree-td univariate polynomial R ◦ Px from {(rℓ, aℓ)}k

ℓ=1.
3. Output xi ← (R ◦ Px)(0).

Construction A.3 A k-server t-private PIR based on Reed-Muller code [9].
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Setup. Consider a field F within which Σ can be encoded. The Setup algorithm encodes a
database x ∈ Σn into a polynomial Px ∈ F[Z1, . . . , Zm] as follows: First, choose m and d

such that
(

m+d
d

)
≥ n and |F| > k > td (typically m, d, t are chosen first and then k and the

field size |F| are deteremined accordingly). Let α0, . . . , αd be distinct elements in F (note
that d < |F|). The index i is encoded to the i-th vector z(i) of the form (αλ1 , . . . , αλm

) ∈ Fm

where
∑m

j=1 λj ≤ d. There exists a set of polynomials P (i)(z1, . . . , zm) of degree at most d

such that P (i)(z(i)) = 1 and P (i)(z(j)) = 0 for all i, j ∈ [n] and i ≠ j. The full details of this
encoding and the construction of P (i)’s are provided in [9, Appendix B].
Query. To generate the sub-queries, after encoding the index i to z(i), the client first
chooses m univariate polynomials (R1, . . . , Rm) = R each of degree t such that R(0) =
(R1(0), . . . , Rm(0)) = z(i). It then randomly picks r1, . . . , rk ∈ F and computes the sub-query
to be sent to the ℓth server as qℓ = R(rℓ) ∈ Fm.
Answer. The Answerℓ algorithm evaluates Px at qℓ and sends back aℓ = Px(qℓ). Note that
the answer algorithm for this protocol is the same for all k servers.
Reconstruction. Finally, the Recon algorithm uses Lagrange interpolation on the points
(r1, a1), . . ., (rk, ak) to compute a degree td polynomial S = Px ◦R; the evaluation S(0) will
give the desired database entry xi. This interpolation is possible when k > td and |F| > k.

Other notation. For a PIR protocol Φ, we use EΦ to denote the encoding space of all
indices. We use QΦ to denote the space of all possible sub-queries (note that QΦ may not
equal EΦ). For example, in the two-server construction above, EΦ contains all binary strings
with Hamming weight d, and the space QΦ is Fm

2 , i.e, in this case EΦ ⊂ QΦ.

B Composed PIR Construction

The complete composed PIR construction in the inner-outer paradigm is given in Construc-
tion B.1.
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ShPIR Composition. A shuffle model PIR protocol ShPIR(OPIR, IPIR) built using the
inner-outer paradigm from a k-server OPIR, and a s-server IPIR is defined as follows:

ShPIR.Setup(x)→ P :
1. Let Px ← OPIR.Setup(x).
2. Define a database x′ of size n′ as follows:

Let n∗ = |QOPIR| and let L = (L1, . . . , Ln∗ ) denote the sorting of the sub-query
space QOPIR.
If the Answer algorithm is the same for all OPIR servers:

For all i ∈ [n∗], let x′
i ← OPIR.Answer(Px, Li).

As a result, x′ is of size n′ = n∗.
If the Answer algorithm is different for the k OPIR servers:

For i ∈ [n∗], ℓ ∈ [k]: let x′
i+n′·(ℓ−1) ← OPIR.Answerℓ(Px, Li).

As a result, x′ is of size n′ = kn∗.
3. Run IPIR.Setup(x′) and output its result as P .

ShPIR.Query(i; n)→ (q1, . . . , qh), where i ∈ [n] and h = k(s + 1):
1. Initialize (uℓ,j)ℓ∈[k],j∈[s].
2. Let (q′

1, . . . , q′
k)←$ OPIR.Query(i; n).

3. For ℓ ∈ [k],
If the Answer algorithm is the same for all k OPIR servers:

Map q′
ℓ to the corresponding index i′

ℓ ∈ [n′],
i.e., xi′

ℓ
= OPIR.Answer(Px, q′

ℓ).
If the Answer algorithm is different for the k OPIR servers:

Map q′
ℓ to the corresponding index i′

ℓ ∈ [kn′],
i.e., xi′

ℓ
= OPIR.Answerℓ(Px, q′

ℓ).
Let (q̃1, . . . , q̃s)←$ IPIR.Query(i′

ℓ; n′).
Set (uℓ,1, . . . , uℓ,s)← (q̃1, . . . , q̃s).

4. Let (r1, . . . , rk) $←− QOPIR. // dummies
5. Output (u1,1, . . . , uk,s, r1, . . . , rk).
ShPIR.Answer(P, q)→ a:

1. If IPIR has the same Answer algorithms for server, return a = IPIR.Answer(P, q);
otherwise return

a =
{

(IPIR.Answerℓ(P, q), label ℓ)
}

ℓ∈[s]
.

ShPIR.Recon(a1, . . . , ah)→ xi:
1. Initialize (vℓ,j)ℓ∈[k],j∈[s] and (a′

ℓ)ℓ∈[k].
2. For ℓ ∈ [k], j ∈ [s]:

Let a(ℓ−1)·k+j be the answer to sub-query q(ℓ−1)·k+j , namely uℓ,j .
If IPIR has different Answer algorithms for the servers, parse a(ℓ−1)·k+j as

{(ã1, label 1), . . . , (ãs, label s)} , let vℓ,j := ãj (whose associated label is j).

If IPIR has the same Answer algorithms for the servers, let vℓ,j = a(ℓ−1)·k+j .
3. For ℓ ∈ [k]:

a′
ℓ ← IPIR.Recon(vℓ,1, . . . , vℓ,s).

4. Output xi ← OPIR.Recon(a′
1, . . . , a′

k).

Construction B.1 Composed ShPIR built using the inner-outer paradigm.
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