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Abstract
A Homomorphic Secret Sharing (HSS) scheme is a secret-sharing scheme that shares a secret x

among s servers, and additionally allows an output client to reconstruct some function f(x) using
information that can be locally computed by each server. A key parameter in HSS schemes is
download rate, which quantifies how much information the output client needs to download from the
servers. Often, download rate is improved by amortizing over ℓ instances of the problem, making ℓ

also a key parameter of interest.
Recent work [23] established a limit on the download rate of linear HSS schemes for computing

low-degree polynomials and constructed schemes that achieve this optimal download rate; their
schemes required amortization over ℓ = Ω(s log(s)) instances of the problem. Subsequent work
[6] completely characterized linear HSS schemes that achieve optimal download rate in terms of a
coding-theoretic notion termed optimal labelweight codes. A consequence of this characterization
was that ℓ = Ω(s log(s)) is in fact necessary to achieve optimal download rate.

In this paper, we characterize all linear HSS schemes, showing that schemes of any download
rate are equivalent to a generalization of optimal labelweight codes. This equivalence is constructive
and provides a way to obtain an explicit linear HSS scheme from any linear code. Using this
characterization, we present explicit linear HSS schemes with slightly sub-optimal rate but with
much improved amortization ℓ = O(s). Our constructions are based on algebraic geometry codes
(specifically Hermitian codes and Goppa codes).
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1 Introduction

A Homomorphic Secret Sharing (HSS) scheme is a secret sharing scheme that supports
computation on top of the shares [4, 12, 13]. Homomorphic Secret Sharing has been a useful
primitive in cryptography, with applications ranging from private information retrieval to
secure multiparty computation (see, e.g., [9, 13]).
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7:2 Trade-Offs Between Linear HSS Amortization, Bandwidth

In this work, we focus on information-theoretically secure HSS schemes for the class of
degree d, m-variate polynomials. Suppose m secrets, x1, . . . , xm, are shared independently
with a t-private secret sharing scheme Share1and that server j receives the m shares yk,j for
k ∈ [m]. Denote by POLYd,m(F) ⊆ F[X1, . . . , Xm] an arbitrary set of degree d, m-variate
polynomials. Given a polynomial f ∈ POLYd,m(F), each server j does some local computation
on its shares yk,j for k ∈ [m] to obtain an output share zj = Eval(f, j, (y1,j , . . . , ym,j)). An
output client receives the output shares z1, . . . , zs and runs a recovery algorithm Rec to
obtain f(x1, . . . , xm) = Rec(z1, . . . , zs). The HSS scheme π is given by the tuple of functions
(Share, Eval, Rec); see Definition 7 for a formal definition.

Parameters of interest

A key parameter of interest in an HSS scheme is the download rate (Definition 12), which is
the ratio of the number of bits in f(x) to the number of bits in all of the output shares zj .
Ideally this rate would be as close to 1 as possible, because that would mean that the output
client does not have to download too much more information than it wishes to compute.

Another parameter of interest is the amortization that the scheme uses. As in previous
work [23, 6], we consider HSS schemes for low-degree polynomials that amortize over ℓ

instances of the problem. This means that we have ℓ batches of m secrets, x
(i)
k for i ∈ [ℓ]

and k ∈ [m], and ℓ polynomials f1, . . . , fℓ. Each of these mℓ secrets is shared independently,
as before, but the output shares zj are allowed to depend on all ℓ batches. Then the output
client is responsible for computing fi(x(i)

1 , . . . , x
(i)
m ) for all i ∈ [ℓ].

Trade-offs between download rate and amortization

[23, 6] previously studied the optimal download rate possible for linear HSS schemes2, and
also studied what amount of amortization is necessary to obtain this optimal rate. In this
work, we show that by backing off from the optimal rate by a small amount, one can get
asymptotic improvements in the amortization parameter.

In more detail, [23] showed that for t-private, s-server linear HSS schemes for m-variate
degree-d polynomials, the best download rate possible is 1 − dt/s. They achieved this
download rate with schemes that had amortization ℓ = Ω(s log(s)). In follow-up work,
[6] showed that in fact amortization ℓ = Ω(s log(s)) was necessary to achieve the optimal
download rate of 1− dt/s. Their result followed from a characterization optimal-rate linear
HSS schemes in terms of a coding theoretic notion they introduce, termed optimal labelweight
codes.

In our work, informally, we show that by backing off from the optimal rate by a small
amount, we are able to get asymptotic improvements in the amortization required; in some
cases we need only ℓ = O(s). We obtain this by generalizing the characterization from [6] to
all HSS schemes, not just optimal ones. We discuss our main results below in more detail.

1 A t-private secret sharing scheme shares a secret x among s servers by computing s shares, Share(x) =
(y1, . . . , ys). The t-privacy guarantee means that no t of the servers should be able to learn anything
about x given their shares.

2 A linear HSS scheme is a scheme where both Share and Rec are linear over some field F. Note that Eval
need not be linear.
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1.1 Main Results
For all of our results, we consider CNF sharing [27] (see Definition 16). It is known that CNF
sharing is universal for linear secret sharing schemes, in that t-CNF shares can be locally
converted to shares of any linear t-private secret sharing scheme [18].

Main Contributions

1. A complete characterization of the Rec functions for all linear HSS schemes for
POLYd,m(F). As mentioned above, [6] gives a characterization of optimal-download-rate
linear HSS schemes in terms of codes with good labelweight. In our work, we extend that
characterization to all linear HSS schemes.
Our characterization is constructive, and in particular it gives an efficient algorithm to
convert any code with good labelweight into a linear HSS scheme, and vice-versa.

2. Improved amortization without much loss in rate. The work [6] showed that to
achieve optimal rate, it was necessary to have amortization ℓ = Ω(s log s). Leveraging
our characterization from Item 1, we give efficient constructions of linear HSS schemes
that achieve near-optimal download rate while requiring amortization parameter only
ℓ = O(s). We compute the parameters of our constructions in practical parameter regimes
and show that our schemes achieve a near order-of-magnitude savings in amortization
parameter, even for reasonable values of s, d, m.

We describe our results in greater detail below.

(1) Characterization of arbitrary-rate linear HSS schemes

Theorem 2 below is a characterization of all linear HSS schemes for POLYd,m(F). In
particular, our characterization extends that of [6], which only characterized optimal-rate
linear HSS schemes. We show that the Rec algorithms for such schemes (with CNF sharing)
are equivalent to a class of linear codes with sufficiently good labelweight, a generalization of
Hamming distance that was introduced by [6].

▶ Definition 1 (Labelweight). Let C ⊆ Fn be a linear code of dimension ℓ. Let L : [n]→ [s]
be any surjective function, which we refer to as a labeling function. The labelweight of c ∈ C
is the number of distinct labels that the support of c touches:

∆L(c) = |{L(i) : i ∈ [n], ci ̸= 0}|.

The labelweight of C is the minimum labelweight of any nonzero codeword:

∆L(C) = min
c∈C\{0}

∆L(c).

In particular, if s = n and L(j) = j for all j ∈ [n], then ∆L(C) is just the minimum Hamming
distance of C. Thus, the labelweight of a code generalizes the standard notion of distance.

Our main characterization theorem is the following.

▶ Theorem 2 (Linear HSS schemes are equivalent to labelweight codes. (Informal, see Theorem
18)). Let π = (Share, Eval, Rec) be a t-private, s-server linear HSS for POLYd,m(F) with
download rate R and amortization parameter ℓ. Let G ∈ Fℓ×(ℓ/R) be the matrix that represents
Rec (see Observation 10). Then there is some labeling function L so that G is the generator
matrix for a code C of dimension ℓ, with rate R and with ∆L(C) ≥ dt + 1.

ITC 2024



7:4 Trade-Offs Between Linear HSS Amortization, Bandwidth

Conversely, suppose that there is a labeling function L : [n]→ [s] and a linear code C ⊆ Fn

of dimension ℓ with rate R and ∆L(C) ≥ dt + 1. Then any generator matrix G of C describes
a linear reconstruction algorithm Rec for an s-server t-private linear HSS for POLYd,m(F)
that has download rate R and amortization parameter ℓ.

We remark that the converse direction is constructive: given the description of such a
code C, the proof (see Theorem 20) gives an efficient construction of the Eval function as
well as the Rec function.

(2) Achieving practical trade-off between download rate and amortization parameter

Using the complete characterization of all linear HSS schemes, we construct linear HSS
schemes that achieve near-optimal download rate at amortization parameters that are strictly
linear in in the number of servers s. Through the lens of Theorem 2, this is equivalent to
constructing high-labelweight, high-rate linear codes.

While the construction of [6] use Reed-Solomon codes as a starting point to constructing
optimal rate linear HSS schemes, we use two well-studied families of algebraic geometry
(AG) codes – Hermitian codes and Goppa codes. For any code C, observe that the minimum
labelweight ∆L(C) is sharply upper-bounded by the code’s minimum distance. Therefore, so
as to maximize labelweight, we use the trivial labeling scheme where n = s and L : [n]→
[s], x 7→ x is the identity function. Such labelweight codes, though straightforward, yield
linear HSS schemes with attractive parameters for realistic server counts. Furthermore, their
intuitive construction underscores the fundamental relationship between classical codes and
linear HSS. We loosely summarize these results in Table 1; see Theorems 22, 27 for additional
details and formal statements.

Table 1 Comparing our AG-based constructions to [23], [6].

[23],[6] Hermitian-based HSS Goppa-based HSS
Download Rate 1 − dt/s 1 − dt/s − O(s−1/3) 1 − (dt/s) · O(log(dt))
Amortization (s − dt) log(s) s − dt − O(s2/3) s − dt · O(log(dt))

Furthermore, for completeness we show in Appendix A that, perhaps surprisingly, a
random coding approach does not lead to amortization savings over [23], [6], even backing
off from the optimal rate. More precisely, linear HSS schemes instantiated from random
labelweight codes result in HSS schemes with amortization parameter at least Ω(s log(s)).
This motivates additional study of linear codes with algebraic structure as a basis for linear
HSS with attractive parameters.

1.2 Technical Overview
In this section, we give a high-level overview of the techniques underpinning Theorem 2,
which states that any t-private, s-server linear HSS scheme for POLYd,m(F) is equivalent to
a labelweight code with minimum labelweight ≥ dt + 1.

To give some intuition for the connection, we recount the simplest non-trivial case of
the forward direction, which was proven by [6]. We consider HSS for concatenation [23]:
ℓ secrets x =

(
x(1), . . . , x(ℓ)) ∈ Fℓ are shared independently among s servers who in turn

communicate them to an output client. The objective is for the output client to download
as little information as possible - in particular, significantly less than the naive solution of
simply downloading t + 1 shares of each secret.
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Let z ∈ Fn be the n-tuple of F-symbols downloaded by the output client; since the output
client instantiates a linear reconstruction algorithm Rec, there exists G ∈ Fℓ×n such that
Gz = x. Define a labeling function L : [n]→ [s] satisfying the property that for all i ∈ [n],
L(i) = r ∈ [s] if and only if zi was downloaded from server r.

▷ Claim 3. The rows of G generate a linear code C satisfying ∆L(C) ≥ t + 1.

Proof. Suppose towards a contradiction that for some non-zero m ∈ Fℓ, ∆L(mG) ≤ t. Then
mGx = cx (for some non-zero c ∈ Fn) is a linear combination of secrets recoverable by a set
of t servers, contradicting the t-privacy they were originally secret shared with. ◁

In this example, the function evaluated on the secret shares is identity; the generalization
of this example requires consideration of more general functions, but the fundamental principle
is similar.

The converse requires showing that any labelweight code C implies a linear HSS scheme.
In the setting of optimal download rate, [6] leveraged the specific properties of optimal
labelweight codes in order to prove this; their work relied on the fact that optimal labelweight
codes are highly structured. In particular, [6] showed that, in the optimal download rate
setting:

(i) the output client must download an equal number of symbols from each server; and
(ii) up to elementary row operations, the matrix parameterizing the output client’s linear

Rec algorithm is a rectangular array of invertible matrices, with the property that any
square sub-array is itself invertible.

These strong symmetry properties are key to the equivalence result of [6]. However, in
our setting, where we do not assume that the optimal download rate is attained, neither of
the aforementioned properties hold. Our result thus requires proving additional properties of
labelweight codes.

1.3 Related Work
Though linear HSS schemes are implicit in classical protocols for secure multi-party com-
putation and private information retrieval [4, 3, 15, 19, 1, 2, 16], the systematic study of
HSS was introduced by [13]. Most HSS schemes reply on cryptographic hardness assump-
tions [10, 21, 11, 12, 22, 13, 14, 8, 17, 28, 29, 20].

In contrast, the HSS schemes presented in this work are information-theoretically secure.
The information-theoretic setting was explored in [13] and was further studied in [23] and
[6]; these latter two works are the closest to our work, and we discuss them more below.

The work of [23] focused on the download rate of information-theoretically secure HSS
schemes (both linear and non-linear) and proved a tight impossibility result regarding the
highest download rate achievable by linear HSS schemes. They paired this with an explicit
construction that showed a large amortization parameter is a sufficient condition for a linear
HSS scheme to achieve optimal download rate.

▶ Theorem 4 ([23]). Let s, d, t ∈ Z+ such that s > dt. Let π be a t-private, s-server linear
HSS scheme for POLYd,m(F). Then DownloadRate(π) ≤ 1− dt/s.

Furthermore, for all integers j ≥ log|F|(s), there exists a t-private, s-server linear HSS π

satisfying DownloadRate(π) = 1− dt/s with amortization parameter ℓ = j(s− dt).

The work [6] focused on linear schemes with optimal download rate, meeting the bound
showed in [23]. They proved that in fact a large amortization parameter is necessary for a
linear HSS scheme to achieve optimal download rate.

ITC 2024



7:6 Trade-Offs Between Linear HSS Amortization, Bandwidth

▶ Theorem 5 ([6]). There exists a t-private, s-server linear HSS scheme for POLYd,m(F)
with download rate (s− dt)/s and amortization parameter ℓ only if ℓ = j(s− dt) for some
j ∈ Z+ satisfying

j ≥ ⌈max
{

logq(s− dt + 1), logq(dt + 1)
}
⌉.

The key technique in their proof was showing that optimal-rate linear HSS is in fact
equivalent to optimal labelweight linear codes; more precisely, they showed the following
theorem.

▶ Theorem 6 ([6]). There exists a t-private, s-server linear HSS scheme for POLYd,m(F)
with download rate (s−dt)/s and amortization parameter ℓ if and only if there exists a linear
code C ⊆ Fn with information rate (s− dt)/s and dimension ℓ; and surjection L : [n]→ [s]
such that ∆L(C) ≥ dt + 1.

Our work extends the characterization of [6] to all linear HSS schemes with arbitrary
download rate; in particular, we show that arbitrary-rate linear HSS schemes are equivalent
to a broader class of labelweight codes than those considered by [6]. Though our proof
syntactically resembles that of Theorem 6 from [6], as discussed in Section 1.2, we need to
overcome additional technical difficulties introduced by the lack of strong symmetries in
the more general arbitrary-rate setting. Furthermore, we present explicit constructions that
approach the optimal download rate from Theorem 15, while asymptotically improving the
amortization parameter ℓ.

1.4 Organization
In Section 2, we set notation and record a few formal definitions that we will need. In
Section 3, we show that linear HSS schemes (with arbitrary download rate) are equivalent to
codes with sufficient labelweight: Lemma 19 establishes that HSS schemes imply codes with
sufficient labelweight, and Theorem 20 constructively establishes the converse.

In Section 4, we derive labelweight codes from Hermitian codes and construct the
corresponding linear HSS scheme by Theorem 20. We formally state its parameters in
Theorem 22 and compare its performance against constructions from [23] and [6]. In Section
5, we do the same but use Goppa codes as the basis for a family of labelweight codes.

2 Preliminaries

We begin by setting notation and the basic definitions that we will need throughout the
paper. (We note that these definitions and notation closely follow that of [23] and [6]).

Notation. For n ∈ Z+, we denote by [n] the set {1, 2, . . . , n}. We use bold symbols (e.g.,
x) to denote vectors. For an object w in some domain W , we use ∥w∥ = log2(|W|) to denote
the number of bits used to represent w.

2.1 Homomorphic Secret Sharing
We consider homomorphic secret sharing (HSS) schemes with m inputs and s servers; each
input is shared independently. We denote by F = {f : Xm → O} the class of functions we
wish to compute, where X and O are input and output domains, respectively.
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▶ Definition 7 (HSS). Given a collection of s servers and a function class F = {f : Xm → O},
consider a tuple π = (Share, Eval, Rec), where Share : X ×R → Ys, Eval : F × [s]× Y → Z∗,
and Rec : Z∗ → O are as follows3:

Share(xi, ri): For i ∈ [m], Share takes as input a secret xi ∈ X and randomness ri ∈ R;
it outputs s shares (yi,j : j ∈ [s]) ∈ Ys. We refer to the yi,j as input shares; server j

holds shares (yi,j : i ∈ [m]).
Eval (f, j, (y1,j , y2,j , . . . , ym,j)): Given f ∈ F , server index j ∈ [s], and server j’s input
shares (y1,j , y2,j , . . . , ym,j), Eval outputs zj ∈ Znj , for some nj ∈ Z. We refer to the zj

as output shares.
Rec(z1, . . . , zs): Given output shares z1, . . . , zs, Rec computes f(x1, . . . , xm) ∈ O.

We say that π = (Share, Eval, Rec) is a s-server HSS scheme for F if the following requirements
hold:

Correctness: For any m inputs x1, . . . , xm ∈ X and f ∈ F ,

Pr
r∈Rm

[
Rec(z1, . . . , zs) = f(x1, . . . , xm) :

∀i ∈ [m], (yi,1, . . . , yi,s)← Share(xi, ri)
∀j ∈ [s], zj ← Eval (f, j, (y1,j , . . . , ym,j))

]
= 1

Note that the random seeds r1, . . . , rm are independent.
Security: Fix i ∈ [m]; we say that π is t-private if for every T ⊆ [s] with |T | ≤ t and
xi, x′

i ∈ X , Share(xi)|T has the same distribution as Share(x′
i)|T , over the randomness

r ∈ Rm used in Share.

▶ Remark 8. We remark that in the definition of HSS, the reconstruction algorithm Rec does
not need to know the identity of the function f being computed, while the Eval function
does. In some contexts it makes sense to consider an HSS scheme for F = {f}, in which
case f is fixed and known to all. Our results in this work apply for general collections F of
low-degree, multivariate polynomials, and in particular cover both situations.

We focus on linear HSS schemes, where both Share and Rec are F-linear over some finite
field F; note that Eval need not be linear.

▶ Definition 9 (Linear HSS). Let F be a finite field.
We say that an s-server HSS π = (Share, Eval, Rec) has linear reconstruction if:
Z = F, so each output share zi ∈ Fni is a vector over F;
O = Fo is a vector space over F; and
Rec : F

∑
i

ni → Fo is F-linear.
We say that π has linear sharing if X , R, and Y are all F-vector spaces, and Share is
F-linear.
We say that π is linear if it has both linear reconstruction and linear sharing. Note there
is no requirement for Eval to be F-linear.

The assumption of linearity implies that the function Rec can be represented by a matrix,
as per the following observation that was also used by [6].

▶ Observation 10 ([6]). Let ℓ, t, s, d, m, n be integers. Let π = (Share, Eval, Rec) be a t-
private, s-server HSS for some function class F ⊆ POLYd,m(F)ℓ with linear reconstruction
Rec : Fn → Fℓ.

3 By Z∗, we mean a vector of some number of symbols from Z.

ITC 2024



7:8 Trade-Offs Between Linear HSS Amortization, Bandwidth

Then there exists a matrix Gπ ∈ Fℓ×n so that, for all f ∈ F and for all secrets x ∈ (Fm)ℓ,
there exists some z ∈ Fn such that

Rec(z) = Gπz = f(x) =
[
f1(x(1)), f2(x(2)), . . . , fℓ(x(ℓ))

]T
.

For a linear HSS π, we call Gπ as in the observation above the reconstruction matrix
corresponding to Rec. It was shown in [6] that any such reconstruction matrix must be full
rank.

▶ Lemma 11 ([6]). Let t, s, d, m, ℓ be positive integers so that m ≥ d and n ≥ ℓ, and let π be
a t-private s-server linear HSS for some F ⊆ POLYd,m(F), so that F contains an element
(f1, . . . , fℓ) where for each i ∈ [ℓ], fi is non-constant. Then Gπ ∈ Fℓ×n has rank ℓ.

Finally, we formally define the download rate of an HSS scheme.

▶ Definition 12 (Download cost, dowload rate). Let s, t be integers and let F be a class of
functions with input space Xm and output space O. Let π be an s-server t-private HSS for
F . Let zi ∈ Zni for i ∈ [s] denote the output shares.

The download cost of π is given by

DownloadCost(π) :=
∑
i∈[s]

∥zi∥,

where we recall that ∥zi∥ = ni log2 |Z| denotes the number of bits used to represent zi.
The download rate of π is given by

DownloadRate(π) := log2 |O|
DownloadCost(π) .

Thus, the download rate is a number between 0 and 1, and we would like it to be as close
to 1 as possible.

2.2 Polynomial Function Classes
Throughout, we will be interested in classes of functions F comprised of low-degree polyno-
mials.

▶ Definition 13. Let m > 0 be an integer and F be a finite field. We define

POLYd,m(F) := {f ∈ F[X1, . . . , Xm] : deg(f) ≤ d}

to be the class of all m-variate polynomials of degree at most d, with coefficients in F.

We are primarily interested in amortizing HSS computation over ℓ instances of POLYd,m(F),
as discussed in the Introduction. We can capture this as part of Definition 7 by taking
the function class F to be (a subset of) POLYd,m(F)ℓ for some ℓ ∈ Z+. Note that this
corresponds to the amortized setting discussed in the Introduction.

▶ Definition 14. Let F ⊆ POLYd,m(F)ℓ. We say that F is non-trivial if there exists some
f = (f1, . . . , fℓ) ∈ F so that for all i ∈ [ℓ], fi contains a monomial with at least d distinct
variables.

The work [23] showed that any linear HSS scheme for POLYd,m(F)ℓ (for any ℓ) can have
download rate at most (s− dt)/s: We recall the following theorem from [23].

▶ Theorem 15 ([23]). Let t, s, d, m, ℓ be positive integers so that m ≥ d. Let F be any finite
field and π be a t-private s-server linear HSS scheme for POLYd,m(F)ℓ. Then dt < s, and
DownloadRate(π) ≤ (s− dt)/s.
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2.3 CNF Sharing
The main Share function that we consider in this work is CNF sharing [27].

▶ Definition 16 (t-private CNF sharing). Let F be a finite field. The t-private, s-server CNF
secret-sharing scheme over F is a function Share : F × F(s

t)−1 →
(
F(s−1

t )
)s

that shares a

secret x ∈ F as s shares yj ∈ F(s−1
t ), using

(
s
t

)
− 1 random field elements, as follows.

Let x ∈ F, and let r ∈ F(s
t)−1 be a uniformly random vector. Using r, choose yT ∈ F for

each set T ⊆ [s] of size t, as follows: The yT are uniformly random subject to the equation

x =
∑

T ⊆[s]:|T |=t

yT .

Then for all j ∈ [s], define Share(x, r)j = (yT : j ̸∈ T ) ∈ F(s−1
t ).

We observe that CNF-sharing is indeed t-private. Any t + 1 servers between them hold all
of the shares yT , and thus can reconstruct x =

∑
T yT . In contrast, any t of the servers (say

given by some set S ⊆ [s]) are missing the share yS , and thus cannot learn anything about x.
The main reason we focus on CNF sharing is that it is universal for linear secret sharing

schemes:

▶ Theorem 17 ([18]). Suppose that x ∈ F is t-CNF-shared among s servers, so that server
j holds yj ∈ F(s−1

t ), and let Share′ be any other linear secret-sharing scheme for s servers
that is (at least) t-private. Then the shares yj are locally convertible into shares of Share′.
That, is there are functions ϕ1, . . . , ϕs so that (ϕ1(y1), . . . , ϕs(ys)) has the same distribution
as Share′(x, r) for a uniformly random vector r.

2.4 Linear Codes
Throughout, we will be working with linear codes C ⊂ Fn, which are just subspaces of Fn.
For a linear code C ⊆ Fn of dimension ℓ, a matrix G ∈ Fℓ×n is a generator matrix for C if
C = rowSpan(G). Note that generator matrices are not unique. The rate of a linear code
C ⊂ Fn of dimension ℓ is defined as Rate(C) := ℓ

n .

3 Equivalence of Linear HSS and Labelweight Codes

In this section we show that linear HSS schemes for low-degree multivariate polynomials
are equivalent to linear codes with sufficient labelweight. Concretely, we have the following
theorem, which formalizes the statement of Theorem 2.

▶ Theorem 18. Let ℓ, t, s, d, m, n be integers, with m ≥ d, ℓ ≤ n. There exists a t-private,
s-server F-linear HSS π = (Share, Eval, Rec) for any non-trivial F ⊆ POLYd,m(F)ℓ, with
download rate DownloadRate(π) = ℓ/n, if and only if there exists a linear code C ⊆ Fn with
rate DownloadRate(π) and a labeling L : [n]→ [s] so that ∆L(C) ≥ dt + 1.

The work of [6] proved this equivalence for only the optimal-rate setting and left the
equivalence in an arbitrary-rate setting as an open question. Theorem 18 settles this question
and shows that linear HSS and linear codes of sufficient labelweight are indeed equivalent in
all parameter regimes. The proof of Theorem 18 follows from Lemma 19 (for the forward
direction) and Theorem 20 (for the converse) below.

We begin with the forward direction.
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7:10 Trade-Offs Between Linear HSS Amortization, Bandwidth

▶ Lemma 19 (Follows from the analysis of [6]). Let ℓ, t, s, d, m, n be integers, with m ≥ d, ℓ ≤ n.
Suppose there exists a t-private, s-server F-linear HSS π = (Share, Eval, Rec) for any non-
trivial (see Definition 14) F ⊆ POLYd,m(F)ℓ, with download rate DownloadRate(π) = ℓ/n.
Then there exists a linear code C ⊆ Fn with rate DownloadRate(π) and a labeling L : [n]→ [s]
so that ∆L(C) ≥ dt + 1.

Though the statement of Lemma 19 is more general than its optimal-rate counterpart
in [6], the proof is analogous; a careful reading of Lemma 12 in [6] shows that this forward
direction does not leverage any of the strong symmetries of optimal rate linear HSS. Thus,
we refer the reader to [6] for a proof.

Thus, in the rest of this section we focus on the converse, which does deviate from the
analysis of [6], as we cannot leverage the same strong symmetries that they did, as discussed
in Section 1.2. We first formally state the converse.

▶ Theorem 20. Let ℓ, t, s, d, m, n be integers, with m ≥ d. Suppose that there exists a linear
code C ⊆ Fn with dimension ℓ and rate ℓ/n. Suppose there exists a labeling L : [n]→ [s] so
that ∆L(C) ≥ dt + 1. Then there exists a t-private, s-server linear HSS π = (Share, Eval, Rec)
for POLYd,m(F)ℓ with download rate ℓ/n and amortization parameter ℓ.

The main ingredient in proving this direction without the strong symmetries of optimal
rate linear HSS is the following lemma, which neatly generalizes the results of Lemma 13
and Corollaries 14, 15 of [6].

▶ Lemma 21. Let C be a length n, dimension ℓ linear code over Fq with generator matrix
G ∈ Fℓ×n

q . Let L : [n]→ [s] be a surjective labeling such that ∆L(C) ≥ dt + 1.
For Λ ⊆ [s], let G(Λ) denote the restriction of G to the columns r ∈ [n] so that L(r) ∈ Λ.

Then for any |Λ| ≥ s− dt, G(Λ) has full row rank.

Proof. Let Λ = Λ′ ∪Λ′′ where Λ′ ∩Λ′′ = ∅ and |Λ′| = s−dt. If G(Λ′) achieves full row rank,
then so does G(Λ), since adding columns to a matrix does not induce linear independence
among its rows. Hence, it suffices to consider only |Λ| = s− dt.

Up to a permutation of columns, G can be written as G = [ G(Λ) | G([s] \ Λ)]. Let w

denote the number of columns in G(Λ).
Assume towards a contradiction that there exists some v ∈ Fℓ

q such that vG(Λ) = 0w.
Then

vG = [vG(Λ) | vG([s] \ Λ)] = [0w | vG([s] \ Λ)] .

Since |[s] \ Λ| = dt, it follows that

∆L(vG) = ∆L(vG([s] \ Λ)) ≤ dt

which contradicts ∆L(C) ≥ dt + 1. ◀

Let Gπ be a reconstruction matrix. At a high level, Lemma 21 says that any sufficiently
large submatrix of Gπ, obtained by only considering columns labeled with a sufficiently
large subset Λ ⊆ [s], must be full-rank. [6] proved that such a property held for Gπ in
the optimal-rate regime that relied heavily on the fact that, in optimal-rate linear HSS,
the output client downloads an equal number of output symbols from each server. This
is equivalent to requiring that the sets L−1(y) := {x ∈ [n] : L(x) = y} be the same size
for all y ∈ [s]. The proof of Lemma 21 shows that, perhaps surprisingly, sufficiently large
submatrices of Gπ still achieve full-rank even when the output client is allowed to download
arbitrary numbers of output symbols from each server.

The remainder of the proof of Theorem 20 proceeds in a familiar syntax to that of [6]; we
omit its presentation here and refer the interested reader to the full manuscript [7].



K. Blackwell and M. Wootters 7:11

4 Linear HSS from Hermitian Codes

Linear HSS schemes presented by [23], [6] both achieve optimal download rate 1 − dt/s

but require large amortization parameters to do so. [23] showed it was sufficient to take
amortization parameter ℓ = (s − dt) log(s) = O(s log(s)), and [6] proved that such an
amortization parameter is in fact necessary in many parameter regimes, and is off by at most
1 otherwise.

It is a natural to ask whether linear HSS schemes that achieve a better trade-off between
download rate and amortization parameter exist. Specifically, can we make minor concessions
to download rate and save substantially on the amortization needed?

Through the lens of Theorem 20, this is equivalent to asking whether there exists
a labelweight code with minimum labelweight ≥ dt + 1 that achieves good rate at low
dimension. A natural first attempt at an existential result would be via random coding;
specifically, building a linear HSS scheme by starting with a random linear code and following
the construction of Theorem 20. Unfortunately (and perhaps surprisingly!), we show in
Appendix A that this results in strictly worse parameters than [23], [6].

In the following sections we take a different approach. We derive our labelweight codes
straightforwardly from well-studied algebraic geometric codes: we set the number of servers
s equal to the block length n of the codes and label each coordinate by the identity function
L : [n]→ [s], x 7→ x. In this setting, labelweight is equivalent to Hamming weight. Note that
the trivial labeling maximizes labelweight; the reverse direction of Theorem 18 showed that
maximizing labelweight given a fixed download rate implies a linear HSS scheme where the
greatest values of d, t can be considered.

This section constructs a family of linear HSS schemes from Hermitian codes; notably,
such schemes achieve asymptotically optimal download rate while requiring an amortization
parameter that is only linear in s.

▶ Theorem 22. Let ℓ, t, s, d, m be positive integers and q a prime power satisfying m ≥ d, s−
dt > 0, and s = q3. Then there exists an explicit t-private, s-server HSS π = (Share, Eval, Rec)
for any non-trivial F ⊆ POLYd,m(Fq2) with

DownloadRate(π) = 1− dt

s
− s1/3 + 1

2s2/3

and amortization parameter

ℓ = s− dt− s2/3 − s1/3

2 .

We note that the above download rate is off of the optimal 1− dt/s by only a O(s−1/3)
term; it converges asymptotically to the optimal rate 1− dt/s. Furthermore, it achieves this
near-optimal download rate while requiring amortization only linear in s. We place these
parameters in the context of [23], [6] in Figure 2.

Table 2 Comparison of Theorem 22 to [23], [6]. When q = O(1) and s = ω(1), the download
rate in Theorem 22 approaches the optimal rate; while the amortization is asmyptotically better.

[23],[6] Theorem 22
Download Rate 1 − dt/s 1 − dt/s − O(s−1/3)
Amortization (s − dt) logq2 (s) s − dt − O(s2/3)
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7:12 Trade-Offs Between Linear HSS Amortization, Bandwidth

We can compare these download rates (and the amortization parameters required to
achieve them) for up to 1,000 servers s ∈ (dt, 1000] in Table 3; we visualize this data in
Figure 2.

The key takeaway from these numerical illustrations of Theorem 22 is that even in
non-asymptotic parameter regimes, small concessions in rate result in notable savings in
amortization.

Table 3 Comparison of download rates, amortization parameters from [23], [6] and Theorem 22
when d = t = 2.

# Servers [23], [6] Theorem 22 % Difference
DL Rate Amort. DL Rate Amort. DL Rate Amort.

50 0.92 69 0.75 42 -18% -39%
100 0.96 145 0.83 88 -13% -39%
200 0.98 294 0.88 182 -10% -38%
300 0.98 444 0.90 277 -8% -38%
400 0.99 594 0.91 373 -7% -37%
500 0.99 744 0.92 469 -7% -37%
1000 0.99 1494 0.94 951 -5% -36%

Figure 1 The left (right) plot compares the download rates (amortization parameters) of [23], [6]
with that achieved by Theorem 22 when d = t = 2. The x-axis denotes the number of servers and
ranges from 1 to 1,000,000 to illustrate the asymptotic convergence of Theorem 22 to the optimal
rate of [23], [6] at a constant factor less amortization.

4.1 Hermitian Code Definition, Parameters
The construction proceeds by building an optimal labelweight code from Hermitian codes
before applying the construction of Theorem 20 to derive the specification of a linear HSS
scheme. We begin by recalling the definition and key properties of Hermitian codes. We
defer a full treatment of this well-studied family of algebraic geometry codes to [30], [26].

▶ Definition 23 (Hermitian Curve [30]). The (affine) Hermitian Curve is given by the planar
curve

g(x, y) = yq + y − xq+1.
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▶ Definition 24 (Hermitian Code [26]). Let k ∈ Z+ and let M ⊆ Fq2 [x, y] denote the set of
all bi-variate polynomials f(x, y) with total degree deg(f) < k. Denote by

Z :=
(
(x, y) ∈ F2

q2 : g(x, y) = 0
)

the affine rational points of g, and fix any arbitrary ordering of its elements. Then the
k-dimensional Hermitian code H is given by the set of codewords

H := {evZ(f) : f ∈M}

where evZ(f) = (f(x, y) : (x, y) ∈ Z) denotes the standard evaluation map.

▶ Theorem 25 (Hermitian Code Parameters [26]). The k-dimensional Hermitian code H is a
linear code of length n = q3 and rate k/n with minimum distance

q3 − k − q(q − 1)
2 + 1. (1)

4.2 Proof of Theorem 22
We first show the following lemma.

▶ Lemma 26. Let s = q3, d, t ∈ Z+ for some prime power q such that s − dt > 0. There
exists a linear code C ⊆ Fn

q2 and labeling function L : [n]→ [s] satisfying ∆L(C) ≥ dt + 1 with
rate

R = 1− dt

s
− s1/3 + 1

2s2/3

and dimension

k = s− dt− s2/3 − s1/3

2 . (2)

Proof. Let H be the k-dimensional Hermitian code defined over alphabet Fq2 . By Theorem
25, such a code has length n = s = q3.

Allowing dimension k to be as specified in Equation 2, it follows from Equation 1 that
∆(H) is given by

s−
(

s− dt− s2/3 − s1/3

2

)
− s1/3(s1/3 − 1)

2 + 1 = dt + 1.

The rate of H is given by

RH = 1
s

(
s− dt− s2/3 − s1/3

2

)
= 1− dt

s
− s1/3 + 1

2s2/3 .

Set H = C and L : [s] → [s], x 7→ x; it immediately follows that RH = RC and ∆(H) =
∆L(C) = dt + 1, as desired. ◀

We are now prepared to prove Theorem 22 by applying Theorem 20.

Proof of Theorem 22. By Lemma 26, there exists a linear code C ⊆ Fs
q2 and a labeling

L : [s]→ [s], x 7→ x such that ∆L(C) ≥ dt + 1; furthermore C has dimension

ℓ = s− dt− s2/3 − s1/3

2
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and rate

R = 1− dt

s
− s1/3 + 1

2s2/3 .

By Theorem 20, the existence of such a labelweight code is equivalent to the existence
of a linear HSS scheme with corresponding parameters; in particular, there exists a t-
private, s-server, Fq2 -linear HSS scheme π = π(Share, Eval, Rec) that achieves download rate
DownloadRate(π) = R and amortization parameter ℓ. ◀

5 Linear HSS from Goppa Codes

In this section we construct a family of linear HSS schemes from Goppa codes; unlike
Theorem 22, these schemes do not achieve asymptotically optimal rate. However, this family
of schemes stands apart from those of Theorem 22 by allowing us to compute over the binary
field regardless of the number of servers employed. Furthermore, such schemes achieve a
super-constant factor of amortization savings at practical server counts. We first state the
result before considering its performance in realistic parameter regimes.

▶ Theorem 27. Let ℓ, t, s, d, m, u be positive integers satisfying m ≥ d, s − dt > 0, and
s = 2u, where

u > log2

(
2(dt)2 − 4dt + 2(dt + 1)

√
(dt)2 − 2dt + 2 + 3

)
.

Then there exists an explicit t-private, s-server HSS π = (Share, Eval, Rec) for some
non-trivial F ⊆ POLYd,m(F2) with

DownloadRate(π) = 1− u
dt

s

and amortization parameter ℓ = s− udt.

Noting that u ≥ 3 for all d, t ∈ Z+, we see that the download rate does not converge
asymptotically to 1 − dt/s as the construction of Theorem 22 does; however, we show in
Table 4 that for small parameter values, Theorem 27 vastly outperforms Theorem 22 in terms
of preserving rate and saving on amortization. In particular, compared to Theorem 27, the
construction of Theorem 27 concedes less rate while delivering an order-of-magnitude savings
in amortization in practical parameter regimes. We illustrate these results graphically in
Figure 2.

Table 4 Comparison of Download Rates and Amortization Values with Percentage Differences
between FIKW and Goppa.

# Servers [23],[6] Theorem 27 % Reduction
DL Rate Amortize DL Rate Amortize DL Rate Amortize

64 0.93 360 0.65 42 -31% -88%
128 0.96 868 0.82 106 -15% -88%
256 0.98 2016 0.91 234 -7% -88%
512 0.99 4572 0.96 490 -3% -89%
1024 0.99 10200 0.98 1002 -1.8% -90%
2048 0.99 22484 0.99 2026 -0.9% -91%
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Figure 2 The left (right) plot compares the download rates (amortization parameters) of [23], [6]
with that achieved by Theorem 27 when d = t = 2. The x-axis represents the number of servers and
ranges from 1 to 512. This emphasizes the super-constant amortization savings of Theorem 27 at
practical parameter regimes relative to [23], [6], with small concessions to rate.

5.1 Goppa Code Definition, Parameters
The proof of Theorem 27 is constructive; it proceeds by building an optimal labelweight code
from Goppa codes before applying the construction of Theorem 20 to arrive at a linear HSS
scheme with the desired properties. We begin by recalling the definition and key properties
of binary Goppa codes, deferring a fuller treatment to [5], [24].

▶ Definition 28 (Goppa Polynomial [5]). For some n ∈ Z+, fix V = {α1, . . . , αn} ⊆ F2u , u ∈
Z+. A Goppa polynomial is a polynomial

g(x) = gV (x) = g0 + g1x + · · ·+ grxr ∈ F2u [x]

satisfying deg(g) = r and g(αi) ̸= 0 for all αi ∈ V .

Given the definition of the Goppa polynomial above, we can define a binary Goppa code.

▶ Definition 29 (Goppa Codes [5]). Let n, u, r ∈ Z+. Fix V = {α1, . . . , αn} ⊆ F2u , u ∈ Z+

and let gV ∈ F2u [x] be a Goppa polynomial of degree r. Then the Goppa code is the set of
codewords given by

Γn,u,r = Γn,u,r(g, V ) :=
{

c = (c1, . . . , cn) ∈ Fn
2 :

n∑
i=1

ci

x− αi
≡ 0 mod g(x)

}
.

The parameters of Goppa codes are given by the following theorem.

▶ Theorem 30 (Goppa Code Parameters [5]). For n, u, r ∈ Z+ let Γ = Γn,u,r be a binary
Goppa code as in Definition 29. Then Γ is a linear code of length n, dimension k ≥ n− ur,
and minimum distance d(Γ) ≥ r + 1.

The parameters given by Theorem 30 only allow us to determine rate and minimum
distance up to a lower bound, making it difficult to ascertain download rate and amortization
when used to construct linear HSS schemes. Fortunately, these lower bounds are known to
be sharp under additional assumptions. The following theorem gives one such instance.
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▶ Theorem 31 ([31]). Fix u, r ∈ Z+ satisfying

2r − 2 <
2u − 1
2u/2 (3)

and let g ∈ F2u [x] be a Goppa polynomial of degree r with no repeated roots. Set V = F2u

and let Γ = Γ2u,u,r(g, V ) be a Goppa code as in Definition 29. Then Γ is a binary linear code
with dimension precisely k = n− ur.

We observe that, performing the appropriate manipulations, Equation 3 is satisfied for all

u ≥ max
{ ⌈

log2

(
2r2 − 4r + 2(r + 1)

√
r2 − 2r + 2 + 3

)⌉
, (4)

log2

(
2r2 − 4r + 2(r + 1)

√
r2 − 2r + 2 + 3

)
+ 1

}
.

5.2 Proof of Theorem 27
In this section we prove Theorem 27. We first show the following lemma.

▶ Lemma 32. Let s, d, t, u ∈ Z+ satisfy s− dt > 0 and s = 2u, where

u = max
{ ⌈

log2

(
2(dt)2 − 4dt + 2(dt + 1)

√
(dt)2 − 2dt + 2 + 3

)⌉
, (5)

log2

(
2(dt)2 − 4dt + 2(dt + 1)

√
(dt)2 − 2dt + 2 + 3

)
+ 1

}
.

There exists a linear code C ⊆ Fn
2 and labeling function L : [n]→ [s] satisfying ∆L(C) ≥

dt + 1 with rate R = 1− udt/s and dimension ℓ = s− udt.

Proof. Fix V = F2u and let g ∈ F2u [x] be an irreducible polynomial of degree r = dt; set
n = 2u. Let Γ = Γn,u,r(g, V ) be the binary Goppa code given by Definition 29. It follows
from Equation 5 and the observation of Equation 4 that Γ has dimension k = n−ur = s−udt.
It follows from Theorem 30 that Γ has minimum distance d(Γ) ≥ r + 1 = dt + 1. Set C = Γ
and define L : [n]→ [s], x 7→ x to be the identity labeling. It immediately follows that C has
the desired rate and dimension. ◀

It is now straightforward to prove Theorem 27 by leveraging Theorem 20.

Proof of Theorem 27. By Lemma 32, there exists a linear code C ⊆ Fs
2 and a labeling

L : [s]→ [s] such that ∆L(C) ≥ dt + 1; furthermore C has dimension ℓ = s− udt and rate
R = 1− udt/s. By Theorem 20, the existence of such a labelweight code is equivalent to the
existence of a linear HSS scheme with corresponding parameters. ◀
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A Linear HSS from Random Codes

In this section we show that the natural random coding approach does not appear to yield
linear HSS schemes that meaningfully outperform the ℓ = O(s log(s)) amortization parameter
required by [23], [6]. Indeed, the standard argument established that random linear codes
correspond to linear HSS schemes that can attain good download rates, but – like [6, 23] –
only with large amortization parameters.

A.1 Notation
To justify the notion that “random labelweight codes don’t outperform Reed-Solomon codes
in linear HSS amortization”, we proceed by generalizing the well-known Gilbert-Varshamov
Bound to the labelweight setting. One standard proof of this result (see, e.g., [25]) analyzes
the distance of a random linear code, and we follow the same path here. We first introduce
some notation.

▶ Definition 33 (Labelweight Ball). Let L : [n]→ [s] be a surjective labeling. We define the
labelweight ball BL(r) of radius 0 ≤ r ≤ n to be the set

BL(r) :=
{

c ∈ Fn
q : ∆L(c) ≤ r

}
and define the volume of the labelweight ball to be VolL(r) = |BL(r)|.

For the purposes of our analysis, we consider only a fixed labeling function.

▶ Assumption 1. Let n, s, w ∈ Z+ such that n = sw. In this section we will only consider
the labeling

L : [n]→ [s], x 7→
⌈x

s

⌉
.

https://doi.org/10.1109/18.52487
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When paired with a code of length n, this balanced labeling simply labels the first w

coordinates with 1, the second w coordinates with 2, and continues analogously until the last
w coordinates are labeled with s. Intuitively, for fixed n, s ∈ Z+, such a balanced labeling
pattern maximizes labelweight in expectation over random linear codes.

Under this fixed, balanced labeling function of Assumption 1, we have the following
algebraic formulation of labelweight ball volume.

▶ Observation 34. Let n, s, w, r ∈ Z+ such that n = sw and 0 ≤ r ≤ n. Then

VolL(r) = |BL(r)| =
r∑

i=0

(
s

i

)
(qw − 1)i

.

Finally, we will need to define relative labelweight for labelweight codes, which is the
natural analogue of relative minimum distance for linear codes.

▶ Definition 35 (Relative Labelweight). Let C ⊆ Fn
q be a linear code and L : [n] → [s] a

surjective labeling such that ∆L(C) = d. We define the relative labelweight of C to be δ = d/s.

A.2 Generalization of q-ary Entropy
In the standard proof of the Gilbert-Varshamov bound, the volume of a Hamming ball is
estimated by the q-ary entropy function. To generalize the proof to labelweight, we introduce
the following generalization of the q-ary entropy function, which captures the volume of
labelweight balls.

▶ Definition 36 (Generalized q-ary Entropy). Let q ≥ 2, w ≥ 1. For x ∈ (0, 1), we denote by
Hq,w(x) the generalized q-ary entropy function:

Hq,w(x) = x logq(qw − 1)− x logq(x)− (1− x) logq(1− x),

where Hq,w(0), Hq,w(1) are defined as the limit of Hq,w as x→ 0, 1, respectively.

Note that the case where w = 1 is the standard q-ary entropy function. We notice that,
when properly normalized, the generalized entropy function can be approximated linearly.

▶ Observation 37. For all x ∈ [0, 1− 1/qw], x ≤ w−1Hq,w(x) ≤ x + logq(21/w).

Proof. Observe that

g(x) := w−1Hq,w(x)− x = w−1 (
x logq(qw − 1)− x logq(x)− (1− x) logq(1− x)

)
− x

≤ w−1 (
−x logq(x)− (1− x) logq(1− x)

)
.

Since −x logq(x)− (1− x) logq(1− x) is a concave function which attains its maximal value
when x = 1/2, it follows that w−1Hq,w(x)− x ≤ w−1 logq(2) as desired. The lower bound
follows from observing that g is itself a concave function, since

g′′(x) = − 1
w · x · (1− x) · ln(q) ≤ 0 ∀x ∈ [0, 1− 1/qw]

and that its values at the endpoints of the domain [0, 1 − 1/qw] are non-negative; i.e.,
g(0), g(1− 1/qw) ≥ 0. ◀

Equipped with this definition, our goal becomes to express the volume of a given la-
belweight ball in terms of the generalized entropy function. To do so, we note two helpful
relations; we omit the proofs, which are elementary algebraic manipulations.
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▶ Observation 38. Let s, p ∈ R such that s, p ≥ 0. Then

q−sHq,w(p) = (1− p)(1−p)s

(
p

qw − 1

)ps

▶ Observation 39. Let w ∈ Z+ and p ∈ [0, 1) satisfy 0 ≤ p ≤ 1− 1/qw. Then
p

(1− p)(qw − 1) ≤ 1.

We now give the volume of a labelweight ball in terms of the generalized entropy function.

▶ Lemma 40. Let s, w ∈ Z+ and p ∈ [0, 1) satisfy 0 ≤ p ≤ 1− 1/qw and ps ∈ Z+. Then

VolL(ps) ≤ qsHq,w(p).

Proof. Observe that

1 = (p + (1− p))s =
s∑

i=0

(
s

i

)
pi(1− p)s−i ≥

ps∑
i=0

(
s

i

)
pi(1− p)s−i.

Multiplying through by 1 = (qw − 1)i/(qw − 1)i and applying Observation 39 yields

1 ≥
ps∑

i=0

(
s

i

)
(qw − 1)i(1− p)s

(
p

(1− p)(qw − 1)

)ps

.

Finally, applying Observation 38 yields

1 ≥
ps∑

i=0

(
s

i

)
(qw − 1)iq−sHq,w(p)

= VolL(ps)q−sHq,w(p). ◀

A.3 Gilbert-Varshamov Bound for Random Labelweight Codes
We are finally equipped to prove a generalization of the Gilbert-Varshamov bound for
labelweight codes. This generalization will quantify the rate, and labelweight trade-off we
can guarantee through random linear codes; viewed through the lens of Theorem 20, this
tells us the download rate and amortization parameters that can be guaranteed by linear
HSS scheme constructed from random linear codes.

▶ Theorem 41. For q ≥ 2, let n, s, w ∈ Z+ satisfy n = sw. Let δ ∈ [0, 1 − 1/qw] satisfy
δs ∈ Z+. For ε ∈ [0, 1−Hq,w(δ)], let

k = n− sHq,w(δ)− nε (6)

and let G ∈ Fk×n
q be chosen uniformly at random.

Then with probability > 1− q−εn, G is the generator matrix of a length n, dimension k,
and relative labelweight ≥ δ linear code with rate

R = 1− sHq,w(δ)
n

− ε.

Note that when n = s and w = 1, Theorem 41 becomes the standard Gilbert-Varshamov
Bound. Before we show the proof of Theorem 41, we interpret its statement in terms of
linear HSS parameters.
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▶ Example 42. Let s, d, t ∈ Z+ satisfying s− dt > 0 parameterize a linear HSS scheme as in
Definition 7. Let s be as stated in Theorem 41 and set δ = (dt + 1)/s.

For the sake of illustration, suppose w = logq(s) and ε > 0 a negligible constant. Let
C denote the linear code with properties guaranteed by Theorem 41 and let π denote the
t-private, s-server linear HSS constructed from C as in Theorem 20. Applying Observation
37 to Theorem 20, π has download rate at most

DownloadRate(π) ≤ 1− dt + 1
s
− ε = 1− dt

s
−O(s−1)

with amortization parameter at least

ℓ ≥ (1− ε)s logq(s)− s logq(2)− (dt + 1) logq(s) = Ω(s log(s))

for sufficiently small ε. In particular, we note that such a construction has an amortization
parameter (at least) on the same Ω(s log(s)) order as that of [23], [6], while achieving a rate
comparable to that of our Hermitian code-based construction of Theorem 22. We summarize
this situation in Table 5.

Table 5 Comparison of Theorem 22 to Example 42.

Thm. 22 (Hermitian code-based) Ex. 42 (Random code-based)
Download Rate 1 − dt/s − O(s−1/3) ≤ 1 − dt/s − O(s−1)
Amortization s − dt − O(s2/3) Ω(s log(s))

We conclude this section by proving Theorem 41.

Proof of Theorem 41. Let C = {mG : m ∈ Fk
q} be the linear code generated by G. It

suffices to show that ∆L(mG) ≥ d for all non-zero m.
Accordingly, let m ∈ Fk

q be a uniformly random non-zero vector; then mG is uniformly
distributed over Fn

q . It follows from Lemma 40 that

Pr [δL(mG) < d] = VolL(d− 1)
qn

≤ qsHq,w(δ)

qn
= q−k q−nε.

Taking the Union Bound over all m ∈ Fk
q yields the observation that with probability 1−q−nε,

∆L(C) ≥ d as desired. ◀
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