
5th Conference on
Information-Theoretic
Cryptography

ITC 2024, August 14–16, 2024, Stanford, CA, USA

Edited by

Divesh Aggarwal

LIPIcs – Vo l . 304 – ITC 2024 www.dagstuh l .de/ l i p i c s

Editors

Divesh Aggarwal
National University of Singapore, Singapore
divesh@comp.nus.edu.sg

ACM Classification 2012
Mathematics of computing → Information theory; Theory of computation → Computational complexity
and cryptography; Security and privacy → Cryptography

ISBN 978-3-95977-333-1

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-333-1.

Publication date
August, 2024

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ITC.2024.0

ISBN 978-3-95977-333-1 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-3841-0262
mailto:divesh@comp.nus.edu.sg
https://www.dagstuhl.de/dagpub/978-3-95977-333-1
https://www.dagstuhl.de/dagpub/978-3-95977-333-1
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.ITC.2024.0
https://www.dagstuhl.de/dagpub/978-3-95977-333-1
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université Paris Cité, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Chair, Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ITC 2024

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Divesh Aggarwal . 0:vii

Steering Committee
. 0:ix

Organization
. 0:xi

Papers

Information-Theoretic Topology-Hiding Broadcast: Wheels, Stars, Friendship,
and Beyond

D’or Banoun, Elette Boyle, and Ran Cohen . 1:1–1:13

Communication Complexity vs Randomness Complexity in Interactive Proofs
Benny Applebaum, Kaartik Bhushan, and Manoj Prabhakaran . 2:1–2:16

Are Your Keys Protected? Time Will Tell
Yoav Ben Dov, Liron David, Moni Naor, and Elad Tzalik . 3:1–3:28

Pure-DP Aggregation in the Shuffle Model: Error-Optimal and
Communication-Efficient

Badih Ghazi, Ravi Kumar, and Pasin Manurangsi . 4:1–4:13

On the Power of Adaptivity for Function Inversion
Karthik Gajulapalli, Alexander Golovnev, and Samuel King . 5:1–5:10

Information-Theoretic Single-Server PIR in the Shuffle Model
Yuval Ishai, Mahimna Kelkar, Daniel Lee, and Yiping Ma . 6:1–6:23

Improved Trade-Offs Between Amortization and Download Bandwidth for Linear
HSS

Keller Blackwell and Mary Wootters . 7:1–7:21

Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing
Dana Dachman-Soled, Julian Loss, and Adam O’Neill . 8:1–8:24

Time-Space Tradeoffs for Finding Multi-Collisions in Merkle-Damgård Hash
Functions

Akshima . 9:1–9:22

Secure Multiparty Computation of Symmetric Functions with Polylogarithmic
Bottleneck Complexity and Correlated Randomness

Reo Eriguchi . 10:1–10:22

Fast Secure Computations on Shared Polynomials and Applications to Private
Set Operations

Pascal Giorgi, Fabien Laguillaumie, Lucas Ottow, and Damien Vergnaud 11:1–11:24

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Preface

The fifth Conference on Information-Theoretic Cryptography (ITC 2024) took place from
August 14–16, 2024, at Stanford University, USA. The general chairs were Mary Wootters
and Dan Boneh, and the program chair was Divesh Aggarwal. As in previous editions,
the conference was held in cooperation with the International Association for Cryptologic
Research (IACR).

In its fifth year, ITC continued its mission of uniting the cryptography and information
theory communities, and advancing research in all aspects of information-theoretic techniques
for cryptography and security. This year, we introduced a new Highlights Track, aimed at
showcasing outstanding recent results from other venues.

We received a total of 21 submissions, maintaining a high standard of quality. Following
our tradition, we facilitated interactive and anonymous discussions with the authors to clarify
technical issues. With the assistance of external reviewers, the program committee selected
11 papers for presentation. The proceedings contain the revised versions of these papers.
The revisions were not reviewed, and the authors bear full responsibility for the content.

This year, we continued the tradition of featuring “spotlight talks” that highlight exciting
developments in the field. Additionally, the newly introduced Highlights Track featured invited
talks on notable recent papers from top conferences such as STOC 2024, Eurocrypt 2024,
FOCS 2023, Crypto 2023, Asiacrypt 2023, TCC 2023, and STOC 2023 presented by students
or postdocs. These tracks aimed to provide a comprehensive overview of the most significant
advancements in information-theoretic cryptography.

We are deeply grateful to everyone who contributed to the success of the 5th ITC
conference. Our sincere thanks go out to the authors who submitted their papers. We
extend our heartfelt thanks to the PC members and external reviewers for their dedicated
efforts in providing thorough reviews, insightful discussions, and expert opinions. We
are deeply indebted to the steering committee, particularly Benny Applebaum, for his
invaluable guidance. Special thanks are also due to the previous PC chairs, especially
Kai-Min Chung and Stefano Tessaro, for sharing their experience and providing answers to
numerous questions. Lastly, we extend our gratitude to all the invited speakers, presenting
authors, and participants who devoted their time and energy to ensuring the success of this
conference.

Divesh Aggarwal

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Steering Committee

Benny Applebaum (Chair, Tel-Aviv University)
Ivan Damgård (Aarhus University)
Yevgeniy Dodis (New York University)
Yuval Ishai (Technion)
Ueli Maurer (ETH Zurich)
Kobbi Nissim (Georgetown)
Krzysztof Pietrzak (IST Austria)
Manoj Prabhakaran (IIT Bombay)
Adam Smith (Boston University)
Yael Tauman Kalai (MIT and Microsoft Research New England)
Stefano Tessaro (University of Washington)
Vinod Vaikuntanathan (MIT)
Hoeteck Wee (ENS Paris)
Daniel Wichs (Northeastern University and NTT Research)
Mary Wootters (Stanford)
Chaoping Xing (Nanyang Technological University)
Moti Yung (Google)

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Organization

General chairs

Mary Wootters (Stanford University)
Dan Boneh (Stanford University)

Program chair

Divesh Aggarwal (National University of Singapore)

Program Committee

Akshayaram Srinivasan (University of Toronto)
Amos Beimel (Ben Gurion University)
Damiano Abram (Aarhus University)
Daniele Venturi (Sapienza University of Rome)
Giulio Malavolta (Bocconi University & MPI-SP)
Hemanta Maji (Purdue University)
Ilan Komargodski (The Hebrew University of Jerusalem and NTT Research)
Jesse Goodman (UT Austin)
Joao Ribeiro (Universidade Nova de Lisboa)
Maciej Obremski (National University of Singapore)
Manoj Prabhakaran (IIT Bombay)
Mark Simkin (Ethereum Foundation)
Mingyuan Wang (UC Berkeley)
Mor Weiss (Bar-Ilan University)
Mukul Kulkarni (TII Abu Dhabi)
Noah Stephens-Davidowitz (Cornell University)
Noam Mazor (Tel Aviv University)
Sruthi Sekar (UC Berkeley)
Srijita Kundu (University of Waterloo)
Tianren Liu (Peking University)
Xin Li (Johns Hopkins University)
Yiannis Tselekounis (Royal Holloway University of London)

External Reviewers

Albert Yu, Alexander Bienstock, Eldon Chung, Hamidreza Amini Khorasgani, Hannah Keller,
Naty Peter, Pedro Branco, Seunghoon Lee, Suparno Ghoshal, Varun Narayanan, Wei Cheng,
Xiuyu Ye, Zeyong Li.

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Information-Theoretic Topology-Hiding Broadcast:
Wheels, Stars, Friendship, and Beyond
D’or Banoun #

Reichman University, Herzliya, Israel

Elette Boyle #

Reichman University, Israel
NTT Research, Sunnyvale, CA, USA

Ran Cohen #

Reichman University, Herzliya, Israel

Abstract
Topology-hiding broadcast (THB) enables parties communicating over an incomplete network to
broadcast messages while hiding the network topology from within a given class of graphs. Al-
though broadcast is a privacy-free task, it is known that THB for certain graph classes necessitates
computational assumptions, even against “honest but curious” adversaries, and even given a single
corrupted party. Recent works have tried to understand when THB can be obtained with information-
theoretic (IT) security (without cryptography or setup assumptions) as a function of properties of
the corresponding graph class.

We revisit this question through a case study of the class of wheel graphs and their subgraphs.
The nth wheel graph is established by connecting n nodes who form a cycle with another “center”
node, thus providing a natural extension that captures and enriches previously studied graph classes
in the setting of IT-THB.

We present a series of new findings in this line. We fully characterize feasibility of IT-THB for
any class of subgraphs of the wheel, each possessing an embedded star (i.e., a well-defined center
connected to all other nodes). Our characterization provides evidence that IT-THB feasibility may
correlate with a more fine-grained degree structure – as opposed to pure connectivity – of the
corresponding graphs. We provide positive results achieving perfect IT-THB for new graph classes,
including ones where the number of nodes is unknown. Further, we provide the first feasibility of
IT-THB on non-degenerate graph-classes with t > 1 corruptions, for the class of friendship graphs
(Erdös, Rényi, Sós’66).

2012 ACM Subject Classification Security and privacy → Information-theoretic techniques; Theory
of computation → Cryptographic protocols

Keywords and phrases broadcast, topology-hiding protocols, information-theoretic security

Digital Object Identifier 10.4230/LIPIcs.ITC.2024.1

Funding D’or Banoun: Supported in part by AFOSR Award FA9550-21-1-0046.
Elette Boyle: Supported in part by AFOSR Award FA9550-21-1-0046 and ERC Project HSS (852952).
Ran Cohen: Supported in part by NSF grant no. 2055568, by ISF grant 1834/23, and by the Algorand
Centres of Excellence programme managed by Algorand Foundation. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of Algorand Foundation.

1 Introduction

Topology-hiding protocols over an incomplete communication network guarantee that col-
luding parties do not learn additional information about the topology of the network graph
(from within a given class of graphs), beyond their own neighbor-set [12]. Such protocols may
be of interest in settings where the communication structure itself is sensitive information,

© D’or Banoun, Elette Boyle, and Ran Cohen;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal; Article No. 1; pp. 1:1–1:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dor.banoun@post.runi.ac.il
mailto:eboyle@alum.mit.edu
https://orcid.org/0009-0002-0360-8129
mailto:cohenran@runi.ac.il
https://orcid.org/0000-0002-1293-552X
https://doi.org/10.4230/LIPIcs.ITC.2024.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Information-Theoretic Topology-Hiding Broadcast

such as in social networks, or peer-to-peer networks based on geographical position. Perhaps
the most fundamental goal is that of achieving topology-hiding broadcast (THB), where a
designated sender wishes to convey an input to all participating parties.

Although broadcast is a privacy-free task, THB turned out to be a challenging goal on its
own. It was recently shown that THB for certain graph classes necessitates computational
assumptions, even in the “honest but curious” semi-honest setting (when corrupted parties
follow the protocol honestly but try to learn more information from their joint view), and
even given a single corrupted party [6, 5]. This lies in stark contrast to the topology-revealing
case, in which broadcast is trivially achievable in the semi-honest setting.

Obtaining topology hiding based on computational assumptions has been the subject of
a fruitful collection of works, leading to various THB, and in turn, general topology-hiding
secure multiparty computation (THC) protocols [12, 8, 2, 1, 9, 6, 10, 11, 3]. It is known by
now how to construct THB protocols for the class of all graphs (of polynomial size) that
are secure against any subset of semi-honest corruptions under standard number-theoretic
cryptographic hardness assumptions such as DDH, QR, and LWE,1 or from unstructured
assumptions such as constant-round constant-rate oblivious transfer [3].

Motivated by an analogous question within secure multi-party computation, the work
of [5] asked whether existence of an honest majority can enable information-theoretically
secure THB protocols in certain settings, without relying on cryptographic assumptions and
withstanding computationally unbounded adversaries. We refer to this as IT-THB. The
work of [5] ruled out 1-secure IT-THB on a path with four nodes (which is 1-connected) but
devised a perfect 1-secure information-theoretic THC on cycles of known length (which are
2-connected); see Figure 1. Given these initial evidence, they conjectured that feasibility
of IT-THB may depend on the connectivity2 of the graphs within the class: namely, that
(t + 1)-connectivity is sufficient and/or necessary for t-secure IT-THB.

The special case of t = 1 was further investigated by [4], who proved that the conjecture
holds in this case for the stronger notion of THC. They showed that information-theoretic
THC with security against a single semi-honest corruption is possible if and only if the
connectivity of every graph in the class is at least 2. However, they additionally showed that
the conjecture does not hold for THB, by constructing a perfectly secure THB against a single
corruption for the butterfly graph class (Figure 1), where each graph is only 1-connected.

(a) 1 2 3 4

(b)

1

23

4

5 n

(c)

1

2

34

5

Figure 1 (a) Class G4-path, of all isomorphisms of 4 nodes on a path; 1-secure THB over G4-path

implies key agreement. (b) Class Gcycle(n) of all isomorphisms of n nodes on a cycle; admits 1-secure
IT-THB. (c) Class Gbutterfly of all isomorphisms of 5 nodes on a butterfly graph (two triangles with a
common node); contains 1-connected graphs yet admits 1-secure IT-THB.

The results of [5, 4] open a rich domain of questions. As [4] showed, high connectivity
is not the “right” criterion for feasibility of THB (in contrast to THC), and alternative
graph-properties may serve as candidate conjectures. Therefore, our first question is:

Given a graph-class, which graph properties characterize feasibility of 1-secure IT-THB?

1 DDH stands for the decisional Diffie-Hellman assumption, QR for the quadratic residuosity assumption,
and LWE for the learning with errors assumption.

2 We consider node-connectivity; that is, a graph is k-connected if and only if every pair of nodes is
connected by k vertex-disjoint paths.

D. Banoun, E. Boyle, and R. Cohen 1:3

Zooming into [4], their general positive result, of 1-IT-THB over 2-connected graphs, has
a nonzero (yet exponentially small) error probability. This means that THB with perfect
security is only known for cycles [5], for the butterfly graph [4], and for graphs with at most
four nodes [4]. Is it possible that for graphs with n > 5 nodes the source of perfect 1-THB is
the highly symmetric structure of cycles, and other graph classes inherently require a positive
error?

Are there additional graph-classes that support perfectly secure THB?

Finally, all feasibility results for IT-THB are secure against a single corruption. Indeed, 2-
secure THB on a 4-node rectangle, possibly with a missing edge, requires oblivious transfer [6],
and a 2-secure THB on a cycle with 7 nodes (or more) requires key agreement [5]. The
statistically secure THB protocols for 2-connected graphs from [4] completely break if there
are two corruptions, and in the butterfly class two corruptions trivialize the problem, as there
is no information to hide. One may wonder if IT-THB simply cannot withstand multiple
corruptions that provide several points of view about the graph topology, except for degenerate
cases where the topology is already revealed by the corrupted parties’ neighbor-sets. This
leads to our third question:

Are there graph-classes that support IT-THB with more than a single corruption?

1.1 Our Contributions
In this work, we conduct an investigation of these questions through a case study of the class
of wheel graphs and their subgraphs. The nth wheel graph Wn is established by connecting
a single node (the “center”) to n nodes who form a cycle, as depicted below. The wheel
graph-class Gwheel(n) consists of all isomorphisms of the wheel graph, i.e., all assignments of
the labels {1, . . . , n + 1} to the nodes of the wheel graph Wn.

n + 1 1

23

4

5 n

Wheel graphs and their subgraphs form a natural extension that captures and enriches
previously studied graph classes in the setting of IT-THB: for example, paths, cycles, triangles,
and butterfly graphs. Interestingly, although Gwheel(n) has increased connectivity over the
n-cycles, the corresponding state-of-the-art THB protocols for Gwheel(n) are slightly worse.
Note that the cycle protocol cannot simply be run directly, as parties on the perimeter of
the graph do not know – in fact, must not know – which neighbor is the center node.

Several challenges arise when hiding the topology of Gwheel(n). First, consider a node v

on the perimeter; such a node has three neighbors, one of which is the center. To hide the
identity of the center node, either the protocol does not utilize the power of the center, or
each of the non-center neighbors must emulate the behavior of the center toward v, and
further, v must emulate the center toward all its neighbors. Second, consider the center
node; this node is connected to all other parties but must not learn how the parties on the
perimeter are connected among themselves. Further, an adversary that corrupts two parties
on the perimeter without a common neighbor must not learn their relative distance on the
perimeter. Note that an adversary that corrupts n − 2 nodes in a wheel graph knows the
entire topology from the corrupted nodes’ neighbor-sets; however, for t ≤ n − 3 corruptions
not all is revealed (i.e., when there are 4 honest parties).3

3 When considering arbitrary admissible graphs with n + 1 nodes (as defined below), there is more
information to hide; therefore, an adversary that corrupts n nodes knows the entire topology but for

ITC 2024

1:4 Information-Theoretic Topology-Hiding Broadcast

Characterization of wheels and subgraphs with an embedded star. Our first result shows
that perfectly secure THB is possible against a single semi-honest corruption on the class
of wheel graphs Gwheel(n), as well as on certain classes of its subgraphs. Concretely, given
any family of subgraphs of the wheel with n + 1 nodes, with an embedded star in each
graph (i.e., where the center is fully connected and has degree n), we show that IT-THB with
one corruption is possible if either the minimal degree of non-center nodes in the family is
greater than 1, or if it is 1 but so is the maximal degree. Surprisingly, we show that this
characterization is tight for any such subclasses that are closed under isomorphism (i.e., for
each graph topology in the class, all relabelings of this graph are also contained in the class);
that is, if the maximal degree is greater than 1 but the minimal degree is 1, then THB on
this class implies key agreement.

This would suggest that feasibility of IT-THB may correlate with a more fine-grained
degree structure, as opposed to connectivity, of graphs.

More concretely, we begin by defining admissible subgraphs as subgraphs of the wheel
graph Wn in which the degree of the center is n and the degree of every other node is either
2 or 3. The butterfly graph is an example for an admissible subgraph for n = 4, as well as
the (2n + 1)-node friendship graph Fn,4 see Figure 2.

7 1

23

4

5 6

7 1

23

4

5 6

Figure 2 Examples of admissible subgraphs of Gwheel(6). On the left is a friendship graph in
which every non-center node has degree 2, and on the right is a subgraph where every non-center
node has degree 2 or 3.

When considering graphs with an embedded star, i.e., with a fully connected center,
non-admissible graphs are those who contain a non-center node of degree 1. The extreme
example is the star graph in which the center node is connected to n nodes, and no other
edges exist, see Figure 3.

7 1

23

4

5 6

7 1

23

4

5 6

Figure 3 Example of non-admissible subgraphs of Gwheel(6). On the left is the star graph with 7
nodes. On the right is a subgraph with a single node of degree 1.

Our characterization nearly shows that IT-THB is possible for a given graph-class with
a fully connected center if and only if it consists only of admissible subgraphs. The single
exception is the graph class Gstar(n) that only contain star graphs, which are not admissible;
this class is degenerate (trivially providing topology hiding) since any node can identify the
center and derive the whole topology.

t ≤ n − 2 not all is revealed (i.e., when there are 2 honest parties) .
4 The friendship graph Fn, introduced in [7], is a planar, undirected graph with 2n + 1 nodes and 3n

edges. Fn can be constructed by joining n triangles with a common node.

D. Banoun, E. Boyle, and R. Cohen 1:5

▶ Theorem 1 (IT-THB for admissible graphs with fixed size, informal). Let n ∈ N with n ≥ 4,
and let G ⊆ Gwheel(n) be a graph-class in which every graph has n + 1 nodes and the center
has degree n.

Then, if either G = Gstar(n) or if G consists of admissible graphs, there exists perfectly
secure IT-THB against a single semi-honest corruption over G. Otherwise, THB over G secure
against a single semi-honest corruption exists if and only if key agreement exists.

Theorem 1 demonstrates another interesting phenomena: a nontrivial example of a
graph-class in which G is the union of two sub-classes G1 and G2, such that each sub-class
admits an IT-THB, yet the there is no IT-THB for G. Specifically, while Gwheel(n) and Gstar(n)
each individually admits 1-IT-THB, any 1-THB protocol on Gwheel(n) ∪ Gstar(n) requires key
agreement.

Generalizing to variable-size subgraphs. We proceed to analyze subgraphs of Gwheel(n) that
are generated by removing some of the nodes. Note that when removing the center node, the
resulting subgraph is either a cycle with n nodes Gcycle(n), which supports 1-secure perfect
THB, or a path with up to n nodes that necessitates key agreement. Therefore, we focus
on keeping the center and removing nodes from the perimeter. An interesting observation
is that when removing k neighboring nodes from the perimeter, the result is an admissible
subgraph of the wheel with n + 1 − k nodes with one edge removed from the perimeter.
Similarly, removing arbitrary k nodes yields a subgraph of the wheel with n + 1 − k nodes
with m edges removed from the perimeter, where m is the number of sets of neighboring
nodes that are removed.

7 1

23

4

5 6

7 1

23

4

5 6

Figure 4 On the left is a wheel graph. On the right is the resulting graph when removing nodes
1 and 4 together with their corresponding edges. The result is an admissible graph F2.

A more interesting question is thus to characterize families of such subgraphs whose
number of nodes is not a priori known. We remark that topology hiding on graphs of
unknown size can be surprisingly complex: For example, THB with an additional sender-
anonymity guarantee for the simple class of 2-paths and 3-paths implies infinitely often
oblivious transfer [4, Thm 5.4].

We utilize a useful property of the protocol used for proving Theorem 1 (discussed further
in Section 2) that effectively hides the number of nodes from non-center parties. We show
that the protocol can be applied also to the current setting to obtain perfect IT-THB.

▶ Theorem 2 (IT-THB for admissible graphs with varying size, informal). Let n ∈ N and let G
be a graph-class such that every (V, E) ∈ G is a subgraph of the wheel graph, and it holds that
4 ≤ |V | ≤ n + 1 and there is a center node with degree |V | − 1. Then,

if the maximal degree of non-center nodes is 1, i.e., G consists only of stars (possibly of
different size), or
if the minimal degree of non-center nodes is 2 or 3, i.e., G consists only of admissible
graphs, or
if G consists both of stars and admissible graphs but they are of different sizes,

ITC 2024

1:6 Information-Theoretic Topology-Hiding Broadcast

there exists perfectly secure IT-THB against a single semi-honest corruptions over G. Other-
wise, THB over G secure against a single semi-honest corruption exists if and only if key
agreement exists.

We note that Theorem 2 subsumes Theorem 1; therefore, in the technical sections we
directly prove Theorem 2.

Tolerating many corruptions: the case of friendship graphs. The feasibility results thus
far were limited to a single corruption. The reason lies in the structure of the protocol, which
enables two colluding parties with two common neighbors to learn which of them is the
center; see Section 2 for an illustration. Therefore, it still remains open whether IT-THB
tolerating t > 1 corruption is possible, aside from degenerate cases in which the topology is
fully determined from neighbor-sets of any t nodes.

We proceed to analyze an interesting class of subgraphs of a wheel graph with varying
size, which consists of friendship graphs. Recall that for n ≥ 1, the friendship graph Fn is a
(2n + 1)-nodes graph constructed by joining n triangles with a common node. They were
named after the friendship theorem [7], which states that if in a finite set of people every
pair has one common friend, then there exists one person who is friend with everyone. We
consider a class consisting of friendship graphs of different sizes. Note that the connectivity of
each of those graphs is 1, and by their structure every two nodes can only have one common
neighbor, so the attack discussed above no longer applies. We prove that indeed perfect
IT-THB tolerating any number of corruptions can be achieved on this class. For an integer k,
consider the graph class Gfriendship(k) containing all isomorphisms of the friendship graph Fk.

▶ Theorem 3 (t-IT-THB over friendship graphs, informal). Let n ∈ N with n ≥ 2, let t < 2n+1,
and consider a graph-class G ⊆

⋃n
k=2 Gfriendship(k). There exists a perfectly secure THB protocol

against t semi-honest corruptions over G.

We remark that Theorem 3 presents the first feasibility of information-theoretic THB on
non-degenerate graph-classes with t > 1 corruptions.

Organization of the paper. Due to severe space restrictions, we defer most of the technical
content, including the construction of our protocols, the formal statements, and the security
proofs, to the full version of the paper. We proceed to provide an overview of the techniques
in Section 2.

2 Technical Overview

We move on to describing some of our techniques. We begin by explaining in Section 2.1
the high-level ideas of the protocols used for our positive result. Next, in Section 2.2, we
describe our usage of the phantom-jump technique from [4] for our negative result.

2.1 Feasibility Results: The “Oblivious Centralized Coordination”
Technique

Our protocols are inspired by the THB protocol for the butterfly graph from [4]. We extend
it in several aspects to support more involved graph classes that contain an embedded star,
i.e., a well-defined center connected to all other nodes. In the overview below, we begin by
describing the simpler case of friendship graphs, and then proceed to the wheel graph, and
to arbitrary admissible graphs.

D. Banoun, E. Boyle, and R. Cohen 1:7

Starting point: the butterfly graph. Recall that the butterfly graph (Figure 1) is in fact
the friendship graph F2: a 5-node graph consisting of two triangles connected by a common
center node. The high-level idea is to use the center node for coordinating the protocol.
The protocol runs multiple instances of reliable message transmission (RMT), one for every
potential receiver. In each RMT instance, the sender PS sends its message to all its neighbors
in the first step. Note that each party knows whether it is a neighbor of PS , so it knows
whether it should receive a message or not in the first round. At that point it is guaranteed
that the center node holds the message and so can deliver it to the receiver (in case the
receiver is not the center).

This, of course, will reveal to the receiver who is the center node. Therefore, the center
must do so in an oblivious way, without exposing itself. In the butterfly graph, if the receiver
PR is not the center it has one more neighbor other than the center. The approach taken
in [4] is to secret share the message m with the additional neighbor, and have each neighbor
deliver one share. However, the center does not know who that neighbor is. Therefore, the
center node prepares 2-out-of-2 shares of the message m for each potential neighbor, i.e.,
each non-receiver party.

To help the center hide its identity, each other party assists by acting as the center and
preparing 2-out-of-2 shares of zero (so called, blinding terms for addition) for each of its
non-receiver neighbors (a non-center party has either one or two non-receiver neighbors).
Next, the receiver receives four values from each of its neighbors (recall that in the butterfly
graph there are four nodes other than the receiver, see Figure 1), such that the center sends
the sum of the share m for each party with the share of zero it received from that party, and
the second neighbor sends the sum of the share received from its non-receiver neighbor with
the share of zero sent to this neighbor, along with three random values (one for each other
party). The receiver can then select the correct pair which corresponds to its true neighbors.
Thus, PR can reconstruct m without knowing which of its neighbors is the center.

This approach is secure as long as the receiver is not the center. However, if PR is the
center, it may learn the neighbor-set of other nodes (e.g., by inspecting which pairs of values
sum up to 0). This is solved by adding suitable offset values, which are multiplied by blinding
terms for multiplication, and only come into play if PR is the center. Specifically, if PR is
not the center, then PR will send the same offset to both its neighbors (this will ensure that
the offset will be canceled out). If PR is the center, then PR will send a different offset to
each neighbor (this requires working over a larger field, e.g., F4, to support a different value
per party); in this case, the pairs of values seen by PR will induce a linear system of two
equations with two variables, and the different offsets will guarantee that the system has
full rank and always has a solution. This, in turn, will prove that the center cannot identify
which pairs of parties are connected.

The friendship graph. As discussed above, we view the butterfly graph as two triangles
connected in a joint node; that is, as the friendship graph F2. In the full version, we prove that
the 1-THB protocol for the butterfly graph-class Gbutterfly (consisting of all isomorphisms of 5
nodes to F2) extends in natural way to 1-THB for the class of friendship graph Gfriendship(n),
for n ≥ 2, consisting of all isomorphisms of 2n + 1 nodes to Fn.5 Namely, the receiver now
receives a vector of 2n values from each of its neighbors, and those values are uniformly
distributed conditioned on the corresponding values of its neighbors that sum up to the
message. Further, recall that in case the receiver is the center, it must provide a different
offset to each of its neighbors; hence, the underlying field Fq must grow and satisfy q ≥ 2n.

5 Note that for n = 1 a friendship graph is just a triangle, and there is no well-defined center.

ITC 2024

1:8 Information-Theoretic Topology-Hiding Broadcast

Friendship of variable size. A second observation is that for non-center parties, the protocol
behaves in a “local” manner, in the sense that the neighbors of a non-center node are
neighbors on their own. When PR is not the center, this enables the receiver’s neighbors to
jointly construct the shares of the message in a coordinated (yet oblivious) way. Only the
center’s actions truly depend on the actual number of parties, while non-center parties only
need to know an upper bound on the number of parties.

In the full version, we prove that this locality property makes the protocol suitable for a
variable number of nodes (i.e., a variable number of triangles). Non-center nodes proceed as if
the graph has n triangles (where n is an upper bound), and the center node emulates missing
nodes in its head. Formally, we consider the graph Fk,n as an augmented friendship graph
of 2n + 1 nodes, where 2k + 1 nodes form a connected component which is the friendship
graph Fk, and all other 2n + 1 − (2k + 1) = 2(n − k) nodes are singletons (isolated parties).
Each isolated party simply outputs 0 in this protocol (unless it is the sender, in which case
it outputs its input), and the agreement and validity properties are only required for the
connected component of the sender.

Friendship with many corruptions. Another interesting observation, is that locality enables
tolerating an arbitrary number of t < 2n + 1 corruptions, without any adjustments to the
protocol. We prove this in the full version. Intuitively, to see why, we distinguish between an
honest center and a corrupt center.

In case the center is honest, then once there is more than a single corruption, the adversary
can immediately identify who the center is. This is not considered a violation of privacy,
since this can be deduced just by observing the common neighbor of the corrupted parties,
and without observing any protocol messages. When focusing on each triangle now, if both
non-center nodes are corrupted there is nothing to hide within the triangle, whereas if none
of the non-center nodes is corrupted the adversary learns nothing new from the protocol.
The case where there is a single corrupted non-center in the triangle reduces to the single
corruption case from before.

In case the center is corrupted, and there is another non-center corrupted party, then all
the information in its triangle is already known, regardless of whether the second non-center
party is honest or not. Further, consider the set of honest parties that have an honest
neighbor, then the center together with all other corrupt parties do not learn the connectivity
of this set.

We note that despite the technical simplicity of this result, it bares a more significant
conceptual contribution, as it provides the first feasibility of IT-THB with more than one
corruption beyond trivial graph classes.

Beyond friendship: the wheel graph. We proceed to extend the oblivious centralized
coordination technique to more involved graph classes that admit an embedded star. As
before, we begin by considering a single corruption. One can view the (2n + 1)-nodes
friendship graph Fn as a subgraph of the wheel W2n in which every non-center node has
degree 2. The wheel graph presents the other extreme in some sense, as every non-center
node has degree 3.

A first attempt to extend the protocol to this new regime, is to use 3-out-of-3 secret
sharing instead of 2-out-of-2. Stated differently, before, in Fn, if PR is not the center it
receives a vector of 2n values from each of its two neighbors such that the matching pair
of values sum up to the message and all other values are independently and uniformly
distributed. When considering the (n + 1)-nodes wheel graph Wn, if PR is not the center

D. Banoun, E. Boyle, and R. Cohen 1:9

then it has 3 neighbors, and it receives a matrix of n × n values from each of its neighbors
such that the corresponding entries in these matrices6 sum up to the message and all other
values are independently and uniformly distributed.

However, as opposed to the friendship regime, once a non-center node has degree 3 the
protocol loses its locality property, as now not all neighbors of the receiver are neighbors
on their own, and so the matrices are not “synchronized” like the vectors in the previous
case. Indeed, if done without care, this approach leads to an attack. The reason is that the
preparation of entry (v, w) for the matrix of party Pu is done as follows: if v and w are not
neighbors of u sample a random value; if only one is a neighbor use the value that this party
sent before (to ensure it will cancel out); and if both parties are neighbors of u then take
the sum of their values. Therefore, the receiver can identify repeating entries in a matrix to
deduce pairs of neighboring parties, as illustrated in Figure 5.

v1

R

v2

u

v3

v4

v5

v1

R

v2

u

v3

v4

v5

Figure 5 Illustration of an attack on a naïve protocol for Gwheel(n). The receiver PR has three
neighbors: v1, v2, and the center u. Say that v1 has another neighbor v3, which has a third neighbor
v4, which has a third neighbor v5. Then, PR receives a matrix from v1; however, since v3 sends a
single value to v1, the entry (v3, v4) will be the same as the entry (v3, v5). This means that both v4

and v5 are not neighbors of v1.

Our solution to this issue is to have each pair of neighbors (none of which is PR) generate
a vector of n correlated values, as opposed to a single value. This is done by having each
party sample a vector of random values and send it to each of its non-receiver neighbors. In
fact, those correlated values make the blinding terms and the suitable-offset terms redundant,
so these values are no longer used in this protocol. In the full version, we prove that the
resulting protocol is secure for the class of wheel graphs.

Admissible graphs. Having established 1-THB for the case when non-center nodes have
degree 2 (friendship graphs) and the case where they have degree 3 (wheel graphs), we
proceed to combine the ideas together and support any admissible graph. Intuitively, since
the protocols share a similar structure, one can hope to execute both options concurrently.
That is, the parties run two independent executions: one for the case where PR has two
neighbors, and one for the case where PR has three neighbors. This, however, is vulnerable to
an attack, since when a receiver has three neighbors it can find correlations in the messages it
receives for the degree-2 execution and identify who the center is, as illustrated in Figure 6.

6 That is, for neighbors u, v, w take entry (u, v) from the matrix of w, entry (v, w) from the matrix of u,
and entry (w, u) from the matrix of v. In the protocol, we ensure the matrices are symmetric, i.e.,
M[u, v] = M[v, u].

ITC 2024

1:10 Information-Theoretic Topology-Hiding Broadcast

v1

R

v3

v2

v1

R

v3

v2

v1

R

v3

v2

Figure 6 Illustration of an attack on a non-careful protocol for admissible graphs. Consider a
non-center receiver PR with neighbors v1, v2, and v3; assume that v2 is the center. Further consider
running the friendship protocol over this graph. The left diagram, illustrates the view PR obtains
for the triangle with v1 and v2: here PR will obtain the message m. The middle diagram, illustrates
the view PR obtains for the triangle with v2 and v3: again, PR will obtain the message m. The right
diagram, illustrates the view PR obtains for the triangle with v1 and v3: here, there is no direct
edge between v1 and v3; hence, PR will not obtain the message m. Therefore, PR can identify that
v2 is the center.

The main idea in overcoming this attack, is that although we need to run two executions
in order to hide the degree of the receiver (when it is not the center), we only need one
execution to deliver the message to the receiver, and the second does not need to convey any
information. Further, the receiver already knows its degree, so it knows which execution is
the “right” one, and can sabotage the “redundant” one. Specifically:

In case the receiver’s degree is 3, in the degree-2 execution it will send a different offset
for each neighbor (and the degree-3 execution will be executed correctly).
In case the receiver’s degree is 2, in the degree-2 execution it will correctly send the same
offset to its neighbors (and the degree-3 execution will not leak any information because
the receiver does not have three neighbors).

In the full version, we prove that the resulting protocol is secure against one corruption for
graph-classes consisting of admissible graphs.

Many corruptions. The protocol described above establishes feasibility of 1-IT-THB for
any graph-class consisting of admissible graphs (even of variable size). This feasibility is
tight for a single corruption, as stated in Theorem 2. It is tempting though to extend the
resiliency of the protocol, similarly to the class of friendship graphs that support any number
of corruptions. It turns out that the non-local nature of non-friendship, admissible graphs
enables an attack on the protocol when the adversary controls two nodes.

We illustrate the attack in Figure 7. Consider a pair of corrupted parties 2 and 4 , and
assume that none of them is the center. Further, assume that each has degree 3, and that
they have two common neighbors, denoted 3 and 6 . Clearly, by the structure of the graph,
2 and 4 together can deduce that either 3 is the center, or 6 is the center.

However, when running in this setting the 1-secure protocol described above, the colluding
parties may learn correlations that will expose which of their common neighbors is the center.
Specifically, recall that when 3 is the receiver, it sends to its neighbors 2 and 4 the
suitable-offset values. In case 3 is the center, the offset value for 2 is the same as the one
for 4 , whereas in case 3 is not the center these are different values.

2

3

4

6
51

2

3

4

6
51

Figure 7 Attack on non-friendship admissible graphs with two corruptions.

D. Banoun, E. Boyle, and R. Cohen 1:11

We emphasize that in friendship graphs every non-center node has degree two; hence, the
scenario from Figure 7 cannot occur. We leave it as an open question to find a protocol that
is resilient to t > 1 corruptions for non-friendship admissible graphs.

2.2 Impossibility Results: The “Phantom Jump” Technique

The phantom-jump technique, introduced in [4], was used to show that key agreement is
necessary for 1-secure THB over the class Gtriangle consisting of a triangle, with possibly one
of its edges missing (see Figure 8). In this class, if a party has two neighbors it does not
know whether its neighbors are directly connected or not, but a party with one neighbor
knows the entire topology.

1

2

3 1

2

3 1

2

3

Figure 8 The class Gtriangle from [4], consisting of a triangle, with possibly one of its edges missing.

In the full version we prove the lower bound of Theorem 1 (namely that 1-THB on the
union of an admissible graph-class of size n + 1 with Gstar(n) necessitates key agreement) by
a direct reduction to the impossibility in [4]. Below we explain in a more explicit manner
how the phantom-jump technique from [4] is used in this argument. We illustrate this for
G = Gwheel(4) ∪ Gstar(4) where both graphs consist of 5 nodes.

The high-level idea, going back to [5], is to construct a key-agreement protocol from a
1-secure THB protocol π for G. Recall the desired key-agreement protocol is run between
two parties, Alice and Bob, and concludes with the parties outputting a bit b ∈ {0, 1}, such
that a channel eavesdropper listening to communications cannot predict the value of b with
non-negligible advantage. To construct a key-agreement protocol from π, Alice begins by
choosing two long random strings m1 and m2 and sending them to Bob in the clear. Next,
Alice and Bob continue in phases as follows:

In each phase Alice and Bob locally toss coins A and B, respectively.
They proceed to run two executions of π in which Alice always emulates 1 and Bob
always emulates 2 . In addition, if A = 0 then Alice emulates 3 , 4 , and 5 as neighbors
of 1 , who acts as the center of the star, and 3 broadcasting m1 in the first run; otherwise
she emulates 3 , 4 , and 5 as neighbors of 1 , who acts as the center of the star, and
3 broadcasting m2 in the second run. Similarly, if B = 1 then Bob emulates 3 , 4 ,
and 5 as neighbors of 2 , who acts as the center of the star, and 3 broadcasting m1
in the first run; otherwise he emulates 3 , 4 , and 5 as neighbors of 2 , who acts as
the center of the star, and 3 broadcasting m2 in the second run. See Figure 9 for an
illustration.
If parties 1 and 2 output m1 in the first run and m2 in the second, Alice and Bob
output their bits A and B, respectively; otherwise, they execute another phase.

21

5

4

3

Alice Bob

Ind.
1 2

5

4

3

Alice Bob

Figure 9 Using wheels and stars to construct a key-agreement protocol.

ITC 2024

1:12 Information-Theoretic Topology-Hiding Broadcast

Clearly, if A = B in some iteration then Alice and Bob will output the same coin, and by
the assumed security of π, the eavesdropper Eve will not be able to learn who emulated 3 ,
4 , and 5 in the first run and who in the second. If A ̸= B, then in at least one of the runs
nobody emulates the broadcaster 3 , so with overwhelming probability Alice and Bob will
detect this case and execute another iteration.

In more detail, when A = B the view of Eve consists of the communication between 1
and 2 , as depicted in Figure 9. By THB security, when 2 acts as the center it cannot
distinguish between the star and the wheel; in particular, the distribution of the messages on
the channel between 1 and 2 is indistinguishable in both cases. Again, by THB security,
when 1 is not the center of the wheel it cannot know which of its neighbors is the center, so
it cannot distinguish between the center being 2 or 3 ; in particular, the distribution of
the messages on the channel between 1 and 2 is indistinguishable in both cases. Similarly,
when 2 is not the center of the wheel, it cannot distinguish between the center being 1
or 3 ; in particular, the distribution of the messages on the channel between 1 and 2 is
indistinguishable in both cases. Finally, when 1 acts as the center it cannot distinguish
between the star and the wheel; in particular, the distribution of the messages on the channel
between 1 and 2 is indistinguishable in both cases. By a simple hybrid argument it follows
that the messages between 1 and 2 are indistinguishable when communicating in a star
topology when 1 is the center and when 2 is the center, and it follows that the distinguishing
advantage of Eve is negligible. See Figure 10 for an illustration of the hybrid argument.

21

3

4

5

ind. 2
21

3

4

5

ind. 1
31

2

4

5

ind. 2

21

3

5

4

ind. 1
21

3

4

5

Figure 10 Hybrid steps in the phantom jump over wheels and stars.

References
1 Adi Akavia, Rio LaVigne, and Tal Moran. Topology-hiding computation on all graphs. In

37th Annual International Cryptology Conference (CRYPTO), part I, pages 447–467, 2017.
2 Adi Akavia and Tal Moran. Topology-hiding computation beyond logarithmic diameter.

In 36th Annual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), part III, pages 609–637, 2017.

3 Marshall Ball, Alexander Bienstock, Lisa Kohl, and Pierre Meyer. Towards topology-hiding
computation from oblivious transfer. In Proceedings of the 21st Theory of Cryptography
Conference (TCC), part I, pages 349–379, 2023.

4 Marshall Ball, Elette Boyle, Ran Cohen, Lisa Kohl, Tal Malkin, Pierre Meyer, and Tal Moran.
Topology-hiding communication from minimal assumptions. In Proceedings of the 18th Theory
of Cryptography Conference (TCC), part II, pages 473–501, 2020.

5 Marshall Ball, Elette Boyle, Ran Cohen, Tal Malkin, and Tal Moran. Is information-theoretic
topology-hiding computation possible? In Proceedings of the 17th Theory of Cryptography
Conference (TCC), part I, pages 502–530, 2019.

D. Banoun, E. Boyle, and R. Cohen 1:13

6 Marshall Ball, Elette Boyle, Tal Malkin, and Tal Moran. Exploring the boundaries of topology-
hiding computation. In 37th Annual International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT), part III, pages 294–325, 2018.

7 Paul Erdös, Alfréd Rényi, and Vera T. Sós. On a problem of graph theory. Studia Sci. Math.
Hungar., 1:215–235, 1966.

8 Martin Hirt, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Network-hiding communication
and applications to multi-party protocols. In 36th Annual International Cryptology Conference
(CRYPTO), part II, pages 335–365, 2016.

9 Rio LaVigne, Chen-Da Liu Zhang, Ueli Maurer, Tal Moran, Marta Mularczyk, and Daniel
Tschudi. Topology-hiding computation beyond semi-honest adversaries. In Proceedings of the
16th Theory of Cryptography Conference (TCC), part II, pages 3–35, 2018.

10 Rio LaVigne, Chen-Da Liu Zhang, Ueli Maurer, Tal Moran, Marta Mularczyk, and Daniel
Tschudi. Topology-hiding computation for networks with unknown delays. In Proceedings of
the 23rd International Conference on the Theory and Practice of Public-Key Cryptography
(PKC), part II, pages 215–245, 2020.

11 Shuaishuai Li. Towards practical topology-hiding computation. In Shweta Agrawal and Dongdai
Lin, editors, 28th International Conference on the Theory and Application of Cryptology and
Information Security (ASIACRYPT), part I, pages 588–617, 2022.

12 Tal Moran, Ilan Orlov, and Silas Richelson. Topology-hiding computation. In Proceedings of
the 12th Theory of Cryptography Conference (TCC), part I, pages 159–181, 2015.

ITC 2024

Communication Complexity vs Randomness
Complexity in Interactive Proofs
Benny Applebaum # Ñ

Tel-Aviv University, Israel

Kaartik Bhushan # Ñ

IIT Bombay, India

Manoj Prabhakaran # Ñ

IIT Bombay, India

Abstract
In this work, we study the interplay between the communication from a verifier in a general
private-coin interactive protocol and the number of random bits it uses in the protocol. Under
worst-case derandomization assumptions, we show that it is possible to transform any I-round
interactive protocol that uses ρ random bits into another one for the same problem with the
additional property that the verifier’s communication is bounded by O(I · ρ). Importantly, this is
done with a minor, logarithmic, increase in the communication from the prover to the verifier and
while preserving the randomness complexity. Along the way, we introduce a new compression game
between computationally-bounded compressor and computationally-unbounded decompressor and a
new notion of conditioned efficient distributions that may be of independent interest. Our solutions
are based on a combination of perfect hashing and pseudorandom generators.

2012 ACM Subject Classification Theory of computation → Interactive proof systems

Keywords and phrases Interactive Proof Systems, Communication Complexity, Hash Functions,
Pseudo-Random Generators, Compression

Digital Object Identifier 10.4230/LIPIcs.ITC.2024.2

Funding The first and second authors are supported by ISF grant no. 2805/21 and by the European
Union (ERC, NFITSC, 101097959). Views and opinions expressed are however those of the authors
only and do not necessarily reflect those of the European Union or the European Research Council.
Neither the European Union nor the granting authority can be held responsible for them. The
second and third authors are also supported by IIT Bombay Trust Lab. The third author is also
supported by an Algorand Centre of Excellence grant by the Algorand Foundation.
Benny Applebaum: Supported by ISF grant no. 2805/21 and by the European Union (ERC-2022-
ADG) under grant agreement no.101097959 NFITSC.
Kaartik Bhushan: Supported in part by IITB Trust Lab. Part of the research was done while visiting
Tel Aviv Univerisity and was supported by ISF grant no. 2805/21 and by the European Union
(ERC-2022-ADG) under grant agreement no.101097959 NFITSC. Also supported by the Prime
Minister’s Research Fellowship (PMRF), Government of India.
Manoj Prabhakaran: Supported in part by IITB Trust Lab and by an Algorand Centre of Excellence
at IIT Bombay funded by the Algorand Foundation.

Acknowledgements We thank Gil Segev for valuable discussions about perfect hashing. Part of the
research was done while the second author visited Tel Aviv University.

1 Introduction

Interactive probabilistic proof systems [15, 4] are central objects in cryptography and
complexity theory. Roughly speaking, they allow a computationally unbounded prover
to convince a computationally-bounded randomized verifier that a certain statement holds.
The use of interaction and randomness extends the classical notion of NP problems (that

© Benny Applebaum, Kaartik Bhushan, and Manoj Prabhakaran;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal; Article No. 2; pp. 2:1–2:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bennyap@post.tau.ac.il
https://www.bennyapplebaum.sites.tau.ac.il/
mailto:kbhushan@cse.iitb.ac.in
https://homepages.iitb.ac.in/~kbhushan/
mailto:mp@cse.iitb.ac.in
https://www.cse.iitb.ac.in/~mp/
https://doi.org/10.4230/LIPIcs.ITC.2024.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Communication Complexity vs Randomness Complexity in Interactive Proofs

can be deterministically verified given a single message from a prover) all the way up to
polynomial-space computable languages [23, 33]. If the verifier does not use randomness,
clearly interaction is useless: the prover can compute all the verifier’s queries on her own
and just send the answers. That is, when the verifier uses 0 bits of randomness, it needs to
communicate 0 bits. In this paper, we try to extend this observation: if the verifier uses only
ρ random bits, how many bits does it need to communicate?

Intuitively, since the entropy of the verifier’s messages is at most ρ, there is no point in
communicating more than ρ bits. Indeed, if the proof system is a public-coin system (in
which the verifier simply sends random coins in each round) this intuition holds, and the
randomness complexity equals the communication complexity. However, in the general case
of private-coin proof system, the verifier’s messages may be much longer than their entropy.
We note that although it is possible to transform a given private-coin proof system into a
public-coin system [16, 13, 22], existing transformations increase the overall communication.
In particular, a transcript of the modified public-coin proof system contains at least one copy
of a transcript of the original private-coin proof system plus some additional overhead which
is polynomial in the original communication (to certify that the transcript is “typical” or
“heavy”). Furthermore, these transformations also increase the randomness complexity of
the verifier either polynomially [16, 13] or by a constant factor [22]. Overall, the following
question remains open:

Is it possible to transform a proof system with randomness ρ in which the prover
sends out ComP bits, into a new proof system for the same problem in which the total
communication depends on the verifier’s randomness complexity in the original proof
system rather than the verifier’s outgoing communication, i.e., the total communication
is poly(ρ, ComP) or even O(ρ + ComP)? Further, can we do this while preserving the
randomness complexity?

Closely related questions were studied in [2] and [22]. Specifically, [2] studied the “converse
question” of upper-bounding the randomness complexity in terms of the communication
complexity (aka “randomness sparsification”), and [22] studied the question of bounding the
round complexity in terms of the randomness complexity. The latter work shows [22, Thm
A.1] that a proof system that uses ρ(n) random bits for n-long instances can be converted
into a proof system with O(ρ(n)/ log n) rounds, while preserving the randomness complexity.1
Unfortunately, this transformation increases the total communication complexity (as the
prover guesses in every round many possible extensions to the current transcript). In partic-
ular, even for constant-round protocol this transformation may increase the communication
by a poly(n) factor.

1.1 Our Results
We partially resolve the above question by relying on a complexity theoretic assumption. In
particular, we prove the following main result. (See Section 2 for a formal presentation of
the hardness assumption).

▶ Theorem 1. Suppose that a promise problem Π has an interactive proof system ⟨P, V⟩ with
round complexity I(n), randomness complexity ρ(n), verifier communication ComV(n), prover
communication ComP(n), where n denotes the length of the instance. Then, assuming that

1 In fact, if one is willing to increase the randomness complexity by a constant factor, then it is possible
to derive an O(ρ(n)/ log n)-round public-coin system [22, Thm 1.1].

B. Applebaum, K. Bhushan, and M. Prabhakaran 2:3

E = DTime(2O(n)) is hard for exponential-size non-deterministic NP-circuits, there exists an
interactive proof system ⟨P′, V′⟩ for Π in which the verifier and prover communication are

ComV′(n) = O(I(n)ρ(n)), and
ComP′(n) = ComP(n) + O(I(n) log n).

The randomness complexity of the proof system remains unchanged, the round complexity
grows by (at most) 1, and the completeness error grows additively by 0.1.

For the special case of constant-round protocols, the verifier communicates O(ρ(n)) bits
and the prover’s additive overhead is at most O(log n); if the original prover communicates
in each round a logarithmic number of bits (resp., super-logarithmic number of bits), the
additive overhead is linear (resp., sub-linear) in ComP(n). In the general case, when the
prover may communicate as little as one bit per round, we still have I(n) ≤ ComP(n); then
the overhead for the prover communication is a multiplicative factor of O(log n), and the total
communication is O(ComP(n) ·(ρ(n)+log n)). Note that in all cases, the total communication
is independent of ComV(n), the verifier’s original communication. The question of achieving
a total communication of O(ρ(n) + ComP(n)) for protocols with polynomially-many rounds
remains an interesting open question.

Theorem 1 is based on a worst-case assumption. This assumption asserts that one cannot
significantly speed-up (uniform) Exponential-Time problems by adding non-uniformity and
two levels of non-determinism (non-deterministic NP-circuits are the non-uniform analogue
of NPNP; see Section 2 for details). This assumption is somewhat strong but widely believed
as it reflects our current understanding of the relations between time, nonuniformity and
nondeterminism. Similar assumptions have been extensively used in cryptography and
complexity theory (see, e.g.,[9, 20, 24, 37, 30, 14, 17, 31, 6, 32, 8, 1, 2, 5, 29]).

1.2 Technical Overview
Consider the simple case of a single-round protocol where the verifier’s message is of length
m bits that is much larger than the randomness complexity ρ. In this case the verifier is
sending a long message that is sampled from a low-entropy distribution D, and our goal is to
reduce the communication. The crucial observation is that the prover has full knowledge
of the distribution D, and, being computationally unbounded, he can help the verifier to
compress the message. Indeed, we can abstract this scenario as a special variant of the
well-known data compression problem.

1.2.1 Single-Round Compression Game
In this data compression game there are two parties: a computationally bounded compressor
CMP and a computationally-unbounded decompressor DCMP. At the beginning of the game,
the compressor is given a string x ∈ {0, 1}m that is efficiently sampled from a probability
distribution D whose full description is given to the decompressor DCMP. The goal of the
compressor is to deliver the string x to the decompressor with probability at least 1− ϵ taken
over the choice of x. The parties are allowed to communicate in both directions, and the
goal is to minimize the communication ideally up to the entropy of the distribution.

It is instructive to compare our game to a few other compression games. Shannon’s
original game [34] refers to compression of multiple independent samples from D, and
his celebrated source-coding theorem shows that the expected amortized communication

ITC 2024

2:4 Communication Complexity vs Randomness Complexity in Interactive Proofs

approaches the entropy. In contrast, our game involves a single-shot challenge and worst-
case communication and, accordingly, allows some error (i.e., the scheme may be lossy).
In computer science literature, Ta-Shama et al. [38] studied the problem of compressing
“computationally-weak” sources by a computationally efficient compressor and decompressor
and provided compression schemes whose communication complexity is close to the entropy
for several classes of such distributions. In contrast, in our setting the decompressor is allowed
to be computationally-unbounded, and as a result we can bypass some of the lower-bounds
of [38] (e.g., we can hope to compress pseudorandom distributions). Finally, Orlitsky [26]
considered a one-shot compression game in which the parties are computationally-unbounded
but have some information gap captured by some auxiliary information y about x that is
given to the decompressor and is unknown to the compressor. Notably, Orlitsky’s schemes
use interaction (like in our setting) whereas the schemes of [34, 38] are non-interactive (the
compressor sends a single message to the decompressor).

Getting back to our compression game, let us further simplify the problem and assume
that we care only about the communication from the compressor to the decompressor. In
this case, there is a simple solution that is described in Lemma 14. Take k = H(D)/ϵ

where H(·) denotes Shannon’s entropy, and let DCMP send a description of hash function
f : {0, 1}m → {0, 1}k that is 1-1 over the set of 2k heaviest strings in D. The compressor
CMP responds with the “digest” y = f(x), and DCMP outputs the “heaviest” string x′ in D
that is consistent with y. It is not hard to show that the error is at most ϵ (see Lemma 12)
which is essentially the best that one can hope for.2 Indeed, this approach can be viewed
as one-shot analog of Shannon’s celebrated Source coding theorem [34]. Unfortunately, the
decompressor has to communicate the description of a hash function f which is taken from a
family F of 2k-perfect hash function. That is, the family F contains, for each 2k-subset of
strings X ⊂ {0, 1}m, a function f that is injective on X and so it cannot be too small. In
fact, it is known that the description size must be at least Ω(2k) bits [25]. The cost can be
significantly reduced by allowing some slackness, i.e., by expanding the output length of f

to k′ > k (e.g., k′ = 3k). In this case, the description length can be reduced to Ω(m + k′)
bits by using existing families of perfect hash functions (e.g., [10]). However, this is still too
expensive for our purposes.3

1.2.2 Focusing on efficiently samplable distribution

We note that when the distribution D is taken from a family of efficiently samplable
distributions (i.e., there is an efficient algorithm that given a random tape outputs a sample
from D) it is possible to compress the description length of the hash function. Indeed, in this
case our family should be injective only over “nice” sets that correspond to heavy strings in
distributions that can be described by a polynomial-size circuit. Specifically, we begin with
a standard, off-the-shelf, family F = {fz}z∈{0,1}m+k′ (e.g., based on pair-wise independent
hash functions [7]) in which each function is identified by a long string z ∈ {0, 1}m+k′ . Next,
we reduce the description length of the functions via the use of an appropriate pseudorandom

2 Indeed, for every ϵ > 0, there exists a distribution D such that any event of probability 1 − ϵ must
be supported over at least 2k strings for k = Ω(H(D)/ϵ). For example, consider the distribution D
obtained by sampling, with probability 2ϵ, a uniform x from a set A of size 2ℓ/2ϵ, and, with probability
1 − 2ϵ, a uniform x from a disjoint set B of size 2ℓ. The entropy of D is Θ(ℓ) and in order to
capture 1 − ϵ of the mass, one must collect at least ϵ fraction of the strings in A, i.e., 2k strings for
k ≥ ℓ/2ϵ − log(1/ϵ) = Ω(H(D)/ϵ).

3 To the best of our knowledge, the description length of all existing constructions of 2k-perfect hash
functions is either linear in 2k or in the input-length m, see e.g., [27].

B. Applebaum, K. Bhushan, and M. Prabhakaran 2:5

generator (PRG) G : {0, 1}ℓ → {0, 1}m+k′ . That is, each function f ′s in the new family F ′

is indexed by a seed s of the PRG and is defined to be f ′s = fG(s). We show that if the
PRG fools AM/poly adversaries the family F ′ can be used to compress D. By using standard
derandomization assumptions (slightly weaker than the one stated in Theorem 1), we get
such a PRG with exponential stretch which allows us to reduce the communication from
the decompressor to logarithmic. It should be mentioned that the idea of using a PRG to
(partially) derandomize a probabilistic construction is not new. This paradigm was abstracted
by [20], and was also used in many relevant works. Interestingly, the same paradigm was
used in [1] for the contrary purpose of constructing so-called incompressible functions.

1.2.3 Back to interactive proofs
Let us move back to the case of multi-round interactive proofs. A natural strategy is to apply
the above approach for each round. Roughly, in each round, we let w denote the partial
transcript and let Dw denote the distribution of the next message of the verifier. Instead of
letting the verifier send his message x, the parties will run a compression protocol in which
the prover selects a hash function f that is injective on the 2k heaviest strings, where k

is about H(Dw)/ϵ for some error parameter ϵ. The problem is that Dw is not efficiently
samplable, rather it is obtained by feeding the verifier with the prover messages and random
coins that are conditioned on generating the partial transcript w. We abstract this property
via the notion of conditioned efficient distributions. This notion generalizes the notion of
efficiently samplable distributions by allowing the sampler A to output a special failure
symbol ⊥, and by letting D denote the outcome of A applied to random coins conditioned
on not outputting ⊥. By using slightly stronger PRGs, we extend our compression schemes
to the case of conditioned efficient distributions, and employ them to reduce the interaction
of interactive proofs as stated in Theorem 1.
▶ Remark 2 (More on conditioned efficient distributions). An equivalent way to define a
conditioned efficient distribution is by considering a pair of algorithms, Sampler S and
Conditioner E, such that sampling from D boils down to sampling a random tape r conditioned
on E(r) = 1 and outputting S(r). Thus this new notion can be viewed as a combination of
two well-studied classes of distributions: distributions over circuit’s outputs (i.e., efficiently
samplable distributions) and distributions over circuit’s inputs that lead to a given result
(aka efficiently recognizable distributions [28]). This new notion is natural and may prove to
be useful elsewhere.

1.2.4 Organization
Following some preliminaries in Section 2, we construct compression schemes in Section 3
and use them to prove our main theorem in Section 4.

2 Preliminaries

2.1 Probability distributions
For a discrete probability distribution D, let PrD(x) denote the probability of the string x

being sampled according to the distribution. Throughout the paper, we will only work with
probability distributions that are supported on a finite set. The Shannon entropy (or simply
entropy) H(D) of a discrete probability distribution D supported on a finite set D is defined
as the quantity

H(D) =
∑
x∈D

Pr
D

(x) log
(

1
PrD(x)

)
.

ITC 2024

2:6 Communication Complexity vs Randomness Complexity in Interactive Proofs

▶ Definition 3 (Efficient and conditioned efficient probability distributions). A family of
probability distributions {Dw} is efficiently samplable (or simply, efficient) if there exist
parameters ρw, mw denoted as the randomness complexity and the domain bit-length, and
a PPT sampling algorithm A that given an index w ∈ {0, 1}∗ and a random tape with
r ∈ {0, 1}ρw samples a random string x ∈ {0, 1}mw according to the distribution Dw. The
complexity of {Dw} is at most T if A(w; r) runs in time T (|w|) for every w and r.

A family of distributions {Dw} is said to be conditioned efficiently samplable (or simply,
conditioned efficient) if, with parameters ρw, mw as above, there exists a PPT algorithm A

which, on input w ∈ {0, 1}∗ and a uniformly random string r ∈ {0, 1}ρw on its random tape,
outputs an element x ∈ {0, 1}mw ∪ {⊥} such that, conditioned on not being ⊥ the output is
distributed as Dw. We will refer to such an algorithm A as a conditional sampler for Dw.

2.2 Promise problems
A promise problem Π consists of a pair of disjoint sets of strings Πyes, Πno ⊂ {0, 1}∗. Strings
in Πyes are referred to as yes instances and strings in Πno are referred to as no instances. The
standard definition of a language corresponds to the case where every string is either a yes
instance or a no instance, i.e., Πyes ∪Πno = {0, 1}∗. (See [11] for a discussion and references.)
For two parties A and B engaging in a protocol on common input x, let ⟨A, B⟩(x) denote the
final output of the protocol.

▶ Definition 4 (Interactive Proofs). An interactive proof system for a promise problem
Π = (Πyes, Πno) is defined by a computationally bounded probabilistic verifier V, with a
polynomial TV such that the running time of V on common input x is upper-bounded by
TV(|x|), and an unbounded prover P satisfying the following properties:

if x ∈ Πyes, then Pr[⟨P, V⟩(x) = 0] ≤ γ, and
if x ∈ Πno, then ∀P∗, Pr[⟨P∗, V⟩(x) = 1] ≤ δ,

where γ and δ are constants in [0, 1) denoting the errors in completeness and soundness
respectively. By default, we assume that γ = δ = 0.1.

2.3 Arthur-Merlin Proofs, and NP/Non-Deterministic Circuits
An AM protocol is a constant-round public-coin proof system and AM/poly is the non-uniform
analog in which the verifier is implemented by a family of polynomial-sized probabilistic
circuits. The complexity class AM/poly consists of all promise problems that admit AM/poly
protocols. (See standard textbooks like [3, 12] for formal definition.) A nondeterministic
circuit C has additional “nondeterministic input wires”. We say that the circuit C evaluates
to 1 on x iff there exist an assignment to the nondeterministic input wires that makes C

output 1 on x. An NP-circuit C (resp., nondeterministic NP-circuit) is a standard circuit
(resp., nondeterministic circuit) which in addition to the standard gates uses SAT gates,
where a SAT gate gets a formula φ as an input and returns 1 iff the formula is satisifiable. The
size of the circuit is the total number of wires and gates. Polynomial-size nondeterministic
circuits, NP-circuits, non-deterministic NP-circuits are the non-uniform analogues of NP,
PNP and NPNP = ΣP

2 , respectively.
The literature on complexity theory and derandomization contains various hardness

assumptions against AM/poly/nondeterministic/nondeterministic NP circuits and their gen-
eralizations to higher levels of the polynomial hierarchy. (See, e.g., [1] and references therein).
Specifically, we will make use of the following result.

B. Applebaum, K. Bhushan, and M. Prabhakaran 2:7

▶ Theorem 5 (PRGs from hardness assumptions [18, 21, 30, 31]). Suppose that E =
DTime(2O(n)) is hard for exponential-size non-deterministic circuits (resp., exponential-
size non-deterministic NP-circuits), i.e., there exists a language L in E and a constant β > 0,
such that for every sufficiently large n, circuits of size 2βn fail to compute the characteristic
function of L on inputs of length n.

Then for every polynomial T (·) and inverse polynomial ϵ(·), for all sufficiently large m,
there exists a pseudorandom generator G that stretches seeds of length ρ = O(log m) into a
string of length m in time poly(m) such that G ϵ-fools every promise problem Π = (Πyes, Πno)
that can be decided by an AM/poly proof system with a T -size verifier (resp., by a non-
deterministic NP-circuit of size T) in the following sense. For every sufficiently large m and
b ∈ {yes, no}

| Pr
z

R←Um

[z ∈ Πb]− Pr
z

R←G(Uρ)
[z ∈ Πb]| ≤ ϵ(m).

As noted in [1], the above assumptions can be seen as the nonuniform and scaled-up versions
of assumptions of the form Exponential-Time is not equal to NP or to ΣP

2 (which are widely
believed in complexity theory). As such, these assumptions are very strong, and yet plausible
- the failure of one of these assumptions will force us to change our current view of the
interplay between time, nonuniformity and nondeterminism. As a secondary advantage (also
noted in previous works), one can base the PRG on any concrete E-complete problem, and
an explicit PRG whose security reduces to the underlying assumption. (We do not have to
consider and evaluate various different candidate functions for the hardness assumption.)

2.4 Set-lower bound
We will make use of the set lower-bound protocol of [16].

▶ Theorem 6 (Set lower-bound protocol[16]). Let S ⊂ {0, 1}∗ be an NP set (i.e., membership
in S can be efficiently verified). Then there exists an AM protocol ⟨P, V⟩ such that given
(1n, k) as common inputs the following holds,

if |S ∩ {0, 1}n| ≥ k, then Pr[⟨P, V⟩(1n, k) = 1] ≥ 0.9,

if |S ∩ {0, 1}n| ≤ k/2 then for every prover P∗ it holds that Pr[⟨P∗, V⟩(1n, k) = 1] < 0.1.

2.5 Approximate counting
We say that a number p is an ϵ-relative approximation to q if (1− ϵ) · p ≤ q ≤ (1 + ϵ) · p. It
is useful to note that if p′ is an ϵ-approximation to p and q′ is an ϵ-approximation to q, then
a p′/q′ is a 2ϵ-approximation to p/q. We use the following classical result on approximate
counting of satisfying assignments.

▶ Theorem 7 (approximate counting,[19, 36, 35]). For every sufficiently large s and every
ϵ > 0, there is an NP-circuit of size poly(s/ϵ) that given a (standard) circuit C of size s

outputs an ϵ-approximation of |{x : C(x) = 1}|.

2.6 Hashing
We say that a function family Fm,d is (δ, s)-injective if for every set S ⊂ {0, 1}m of size at
most 2s, a random member f

R← Fm,d is injective over S with probability at least 1− δ. It
is well known that pair-wise independent hash functions [7] have this property. Formally,
the following statement follows from [10] where the pair-wise independent hash family is
instantiated with hash functions that are based on, say, Toeplitz matrices.

ITC 2024

2:8 Communication Complexity vs Randomness Complexity in Interactive Proofs

▶ Lemma 8 (Good hashing from 2-wise independence). There exists a family of hash functions
F such that for every δ, s and d = 2s +

⌈
log

(1
δ

)⌉
, the restriction Fm,d of F to functions from

m-bits to d-bits is (δ, s)-injective. Moreover, (1) Functions in Fm,d are indexed by strings
z ∈ {0, 1}L where L = m + 2d; (2) There exists an efficient universal evaluation algorithm F

that given (1m, 1d), an index z ∈ {0, 1}L, and an input x ∈ {0, 1}m outputs fz(x); and (3)
for z

R← {0, 1}m+2d, the function F (1m, 1d, z, ·) is uniform over Fm,d.

3 Hashing-Based Solution for the Compression Problem

In this section we construct compression schemes. We begin with a formal definition.

▶ Definition 9 (Interactive Compression). An interactive compression scheme for a family of
distributions {Dw} with error ϵ(·) is defined by a computationally bounded compressor CMP
and a computationally-unbounded decompressor DCMP satisfying the following property:
For every w ∈ {0, 1}∗ given to DCMP, and x

R← Dw given to CMP the probability that
DCMP outputs x is at least 1 − ϵ(w), where the probability is taken over the choice of x

and the randomness of the parties (if the parties are randomized). The communication
complexity of the decompressor and compressor, ComDCMP(w) and ComCMP(w), are defined
to be the maximal number of bits communicated by the decompressor and compressor when
the decompressor’s input is w.

It is natural to solve the compression problem by letting the compressor hash the string
x to a shorter string. If the hash function is injective over a “heavy set” of strings then the
decompressor will be able to recover x from the hash of x, with a low error probability. This
idea resembles Shannon’s celebrated source coding theorem [34] except that we use a single
instance of the source and accordingly rely on a weaker concentration of measure results
(Markov’s inequality as opposed to Chernoff). We formalize this approach starting with the
notion of “heavy strings,” which will form our heavy set.

▶ Definition 10 (set of heavy strings). For a distribution D over m-bit strings and an error
parameter ϵ, we define the set of ϵ-heavy strings, X (D, ϵ), to be the set of all strings whose
weight under D is at least 2−h/ϵ where h = H(D) is the Shannon’s entropy of D, i.e.,

X (D, ϵ) := {x ∈ {0, 1}m | Pr
D

(x) ≥ 2−H(D)/ϵ}.

We also define ℓ(D, ϵ) := ⌈log |X (D, ϵ)|⌉.

It is not hard to see that the set of heavy strings cannot be too large and also that it is a
heavy set – i.e., it contains at least 1− ϵ mass of the distribution. Specifically, we record the
following observations.

▶ Lemma 11 (Set of heavy strings is small). For every D and ϵ > 0, it holds that ℓ(D, ϵ) ≤
⌈H(D)/ϵ⌉.

Proof. Let h = H(D). For every string x ∈ X (D, ϵ) it holds that PrD(x) ≥ 2−h/ϵ, and
therefore

2−h/ϵ|X (D, ϵ)| ≤
∑

x∈X (D,ϵ)

Pr
D

(x) ≤ 1.

It follows that |X (D, ϵ)| ≤ 2h/ϵ which further implies that ℓ(D, ϵ) = ⌈log |X (D, ϵ)|⌉ ≤
⌈h/ϵ⌉. ◀

B. Applebaum, K. Bhushan, and M. Prabhakaran 2:9

▶ Lemma 12 (Set of heavy strings is heavy). For every D and ϵ > 0, it holds that∑
x∈X (D,ϵ) PrD(x) ≥ 1− ϵ.

Proof. For a string x, let px := PrD(x) denote the weight of x under D. Sample x
R← D

and consider the random variable kx = log(1/px). By definition, the expected value of kx is
simply the entropy of D, i.e., Ex[kx] = h, and so, by Markov’s inequality, Pr

x
R←D

[kx ≥ h/ϵ] ≤
Ex[kx]

h/ϵ = ϵ. That is, at least 1−ϵ of the mass belongs to elements x for which log(1/px) ≤ h/ϵ,
or equivalently, to elements whose weight is at least 2−h/ϵ, which is nothing but our desired
set X (D, ϵ). ◀

▶ Definition 13 (good hash functions). Let D = {Dw} be a family of distributions where Dw

is supported over mw-long strings and has entropy of hw. We say that a function family F is
(δ, ϵ)-good for D if there exists a length function d(hw, ϵ, δ) such that for every distribution
Dw in the family:

Pr
f

R←Fm,d

[f is injective over X (Dw, ϵ)] ≥ 1− δ,

where Fm,d denotes the restriction of F to functions from {0, 1}m to {0, 1}d, m = mw and
d = d(hw, ϵ, δ). We refer to d as the compression of h. We say that F has a representation
size of L(m, d) if each function from m bits to d bits can be represented by L(m, d) bits. We
also assume that the family is efficiently computable, i.e., given an index z and an input x

one can evaluate fz(x) in polynomial time.

Recalling that X (Dw, ϵ) is of size at most 2s for s = hw/ϵ + 1, we can use Lemma 8 to
derive a (δ, ϵ)-good family with compression d = 2s +

⌈
log

(1
δ

)⌉
= 2hw/ϵ + log(1/δ) + O(1)

and description L = m + 2d.

3.1 Hashing-based compression
Let D = {Dw} be a collection of distributions and assume that F is (δ, ϵ)-good for D with
compression d. Define the single-round compression protocol PF as follows: Given the index
w of the distribution, the de-compressor specifies a hash function fz ∈ Fm,d where m = mw

and d = d(hw, ϵ, δ) that is injective over the set X (Dw, ϵ′) and sends the description z of fz

to the compressor, who sends back the value of y = fz(x). The computationally unbounded
de-compressor then checks if y has a pre-image x′ in X (D, ϵ′), and if so it outputs the
(unique) preimage x′. Otherwise, the de-compressor outputs a failure symbol ⊥.

Assuming that δ < 1, the de-compressor always finds a function fz which is injective over
the set X (D, ϵ′), and so the protocol errs only if x falls out of X (D, ϵ′). By Lemma 12,
this happens with a probability of at most ϵ. Summarizing the above discussion, we get the
following lemma.

▶ Lemma 14 (compression from hashing). Assuming that F is a (δ, ϵ)-good hash family for
D = {Dw} for some δ < 1, the protocol PF is a compression protocol for D with an error ϵ.
For a distribution specified by w, the compressor communicates d = d(hw, ϵ, δ) bits and the de-
compressor communicates L = L(mw, d) bits, and the compressor’s computational complexity
is poly(mw, d), where d is the compression parameter of F and L is the description length.
For the special case of pair-wise independent hashing and δ = 0.1, we get d = 2hw/ϵ + O(1)
and L = O(mw + 2hw/ϵ).

ITC 2024

2:10 Communication Complexity vs Randomness Complexity in Interactive Proofs

The factor of 2 overhead in the compressor’s communication can be improved to 1 + o(1)
by using better hash functions (e.g., two-level hashing [10]). We omit the details since it
hardly changes the final results of the paper.

The above lemma yields a protocol that obtains the desired compression for the commu-
nication from the compressor, but suffers from a high overhead on the communication from
the decompressor’s end. We will improve this in the next section.

3.2 Improving De-Compressor Communication
In order to improve the communication of the prover, we construct a succinct hash family
that is good for efficiently samplable distributions. To sample a hash function we choose
a random seed for a PRG, expand it to a long string and use this string to specify a hash
function from a family of pair-wise independent hash functions. We show that a PRG against
AM/poly allows us to exponentially compress the description length of a hash function
f : {0, 1}m → {0, 1}d from Ω(m + d) to O(log(m + d)). We also extend this result to the
case of conditioned efficient distributions at the expense of using a slightly stronger hardness
assumption. This extension will be useful for the proof of Theorem 1.

▶ Theorem 15 (succinct hashing for efficient and conditioned efficient distributions). Suppose
that E = DTime(2O(n)) is hard for exponential-size non-deterministic circuits. Let D = {Dw}
be an efficient family of distributions over mw-bit long strings having entropy hw, and let
ϵ(w) be inverse polynomial error parameter. Then, for any constant δ < 1, there exists
an efficient family of hash functions that is (δ, ϵ)-good for D with compression parameter
d = 2hw/ϵ + O(1) and description size of L(m, d) = O(log(m + d)) bits.

Moreover, the theorem extends to the case where D = {Dw} is a family of conditioned
efficient distributions, assuming that E is hard for exponential-size non-deterministic NP-
circuits.

The high-level idea is to show that when D is efficiently samplable, there is an AM/poly
protocol for checking whether a given hash function is injective over the set X (D, ϵ).
Therefore, if we use a PRG that fools AM/poly to sample a hash function f from a collection
F , the probability that f will be injective over X (D, ϵ) is almost the same as the probability
that a random member of F will be injective. The theorem then follows by taking F to be a
family of pair-wise independent hash functions (for which we know that a random member is
injective whp). Unfortunately, we do not know how to construct an AM/poly protocol that
certifies injectivity, however, we can use an approximate version of this property that suffices
for our purposes. We continue with formal proof.

Proof of Theorem 15. Let T1(|w|) be the complexity of D and let T2(|w|) denote the com-
plexity of evaluating the pair-wise independent hash functions Fm,d = {fz}z∈{0,1}L promised
in Lemma 8 where m = mw and d = 2hw/ϵ +

⌈
log

(2
δ

)⌉
+ 2 and L = m + 2d. Note that for

these parameters Fm,d is (δ/2, 1 + h/ϵ)-injective (Lemma 8). Let T be some fixed polynomial
in T1(|w|) + T2(|w|) whose value will be determined later, and let G : {0, 1}k → {0, 1}L be a
PRG that δ

2 -fools T -size AM/poly with seed length k = O(log L) whose existence is promised
by Theorem 5. Consider the family of functions F ′m,d whose members f ′s are identified by an
index s ∈ {0, 1}k, and are defined by f ′s = fG(s) where fz is the function from Fm,d whose
index is z. Note that F ′m,d is computable in time poly(|w|). We claim that F ′m,d is (δ, ϵ)-good
for Dw for every w.

Fix some w. We begin by introducing a promise problem Πw over L-bit strings. (Recall
that L = mw + 2d(w).)

B. Applebaum, K. Bhushan, and M. Prabhakaran 2:11

Yes instance: A string z ∈ {0, 1}L is a yes instance if the function fz : {0, 1}m → {0, 1}d

is not injective over the set X (Dw, ϵ).
No instance: A string z ∈ {0, 1}L is a No instance if the function fz : {0, 1}m → {0, 1}d

is injective over the set X ′(Dw, ϵ) = {x ∈ {0, 1}m | PrDw (x) ≥ 0.5 · 2−(hw/ϵ)}.
We show that the above promise problem admits an AM/poly proof system. Let ρw denote
the randomness complexity of the distribution Dw. Let A(w; ·) be the PPT algorithm for
sampling from Dw. Consider the following protocol with prover P and verifier V and common
input z:
1. P sends two strings (x0, x1) ∈ {0, 1}m × {0, 1}m to V.
2. V checks if x0 ≠ x1 and fz(x0) = fz(x1). If the checks fail, then it aborts with output 0.

Otherwise, the parties proceed further.
3. For b ∈ {0, 1}, the parties run the following set membership protocol for the string xb:

a. Consider the set Rxb
= {r ∈ {0, 1}ρw | A(w; r) = xb}.

b. Run a set lower-bound protocol for set Rxb
with size parameter α = 2ρw · 2−h/ϵ. For

membership queries to the set Rxb
for a string r, just check whether A(w; r) = xb.

4. V outputs 1 if both the checks succeed. Otherwise, it outputs 0.

▷ Claim 16. The above protocol is an AM/poly protocol for Πw.

Proof. Suppose that z is a Yes instance. That is, fz is not injective over the set X (Dw, ϵ).
Then, an honest P will be able to find two strings (x0, x1) ∈X (Dw, ϵ)×X (Dw, ϵ) such that
x0 ̸= x1 and fz(x0) = fz(x1). In our protocol, the checks x0 ̸= x1 and fz(x0) = fz(x1) will
always succeed in this case. Since both x0 and x1 belong to the set X (Dw, ϵ), this implies
that both the sets Rx0 and Rx1 have size at least α according to the definition of X (Dw, ϵ).
Hence, both the set lower-bound protocols correspond to YES instances and either of these
will fail with probability at most 0.1. It follows that the total failure probability is at most
0.2.

We move on to the case where z is a No instance, i.e., the function fz is injective over
the set X ′(Dw, ϵ) for all w ∈ {0, 1}∗. Fix the pair (x0, x1) ∈ {0, 1}m × {0, 1}m that the
prover sends in the first step and assume that the verifier did not reject in the second step,
i.e., x0 ̸= x1 and fz(x0) = fz(x1). Then, at least one of x0 or x1 must lie outside the set
X ′(Dw, ϵ) since fz is injective over this set. Therefore, either the size of Rx0 or that of Rx1

must be smaller than α/2 = 2ρw · 0.5 · 2−(h/ϵ). It follows that, except with probability 0.1,
the verifier rejects in at least one of the set lower-bound protocols. ◁

By hard-wiring w and hw, we implement the verifier by a non-uniform circuit of size
polynomial in T1(|w|)+T2(|w|). We can therefore take T (|w|) to be complexity of the verifier,
and conclude that

Pr
s

[fG(s) is injective over X (Dw, ϵ)] > Pr
s

[fG(s) is injective over X ′(Dw, ϵ)]

> Pr
z

[fz is injective over X ′(Dw, ϵ)] − δ

2 > 1 − δ

2 − δ

2 = 1 − δ.

The last inequality follows by recalling that Fm,d is (δ/2, 1 + hw/ϵ)-injective and since that
set X ′(Dw, ϵ) is of size at most 21+hw/ϵ. We conclude that F ′m,d is (δ, ϵ)-good for Dw, as
required. The first part of the theorem follows.

The “Moreover” part

The proof of the second part is similar with the following modification. We take G to be
a PRG that 0.1-fools T -size non-deterministic NP-circuits (whose existence follows from
the underlying assumption via Theorem 5), and show that Πw can be decided by such

ITC 2024

2:12 Communication Complexity vs Randomness Complexity in Interactive Proofs

circuits. Given a string z, the circuit Cw non-deterministically guesses a pair of m-bit strings
(x0, x1) and verifies that x0 ̸= x1 and fz(x0) = fz(x1). (If any of these conditions fail, the
circuit rejects.) Next, Cw derives for b ∈ {0, 1}, an α-approximation qb for the quantity
pb = Pr[Dw = xb] for α = 0.2, and accepts if and only if q0 and q1 are both larger than
0.7 · 2−(hw/ϵ). (Here hw is hard-wired to Cw.) The approximation qb is obtained by using
the Approximate Counting algorithm (Theorem 7) as follows. Recall that D is defined by a
PPT conditional sampler A(w; ·) with randomness complexity ρw such that

pb = Pr[Dw = xb] = |{r ∈ {0, 1}ρw : A(w; r) = xb}|
|{r ∈ {0, 1}ρw : A(w; r) ̸= ⊥}| .

Hence, to derive an α-approximation of pb it suffices to get a α/2-approximation of both the
denominator and numerator. This can be done by a polynomial-size NP-circuit since these
sets are recognizable by polynomial-size circuits (whose size is the sum of the complexity of
A). It remains to prove the following claim.

▷ Claim 17. The circuit Cw accepts Yes instances and rejects No instances of Πw.

Proof. Suppose that z is a Yes instance. That is, fz is not injective over the set X (Dw, ϵ).
Then there exists an fz-collision x0 ̸= x1 ∈ X (Dw, ϵ) ×X (Dw, ϵ). Since both x0 and x1
belong to the set X (Dw, ϵ), this implies that p0 and p1 are at least 2−hw/ϵ and so q0 and q1
are larger than 0.8 · 2−hw/ϵ and Cw accepts.

We move on to the case where z is a No instance, i.e., the function fz is injective
over the set X ′(Dw, ϵ) for all w ∈ {0, 1}∗. Then, for any fz-collision x0 ̸= x1 either
p0 < 0.5 · 2−hw/ϵ or p1 < 0.5 · 2−hw/ϵ. This means that either q0 or q1 must be smaller than
1.2 · 0.5 · 2−hw/ϵ ≤ 0.6 · 2−hw/ϵ, and Cw rejects. ◁

The rest of the argument is identical to the proof of the first part of the theorem. ◀

Together with Lemma 14, we derive the following theorem.

▶ Theorem 18. Suppose that E = DTime(2O(n)) is hard for exponential-size non-
deterministic circuits. Let D = {Dw} be an efficient family of distributions over mw-bit
long strings having entropy hw, and let ϵ(w) be inverse polynomial error parameter. Then,
there exists a single-round compression protocol for D with an error ϵ and communication of
d = 2hw/ϵ + O(1) for the compressor and L = O(log(mw + hw/ϵ)) for the de-compressor.
Furthermore, the compressor is efficient.

Moreover, the theorem extends to the case where D = {Dw} is a family of conditioned
efficient distributions, assuming that E is hard for exponential-size non-deterministic NP-
circuits.

4 Reducing the Communication in Interactive Proofs

In this section, we prove the main theorem (Theorem 1). Roughly speaking, we compress
each message that the verifier sends by using a properly chosen hash function. We begin
with some notations and definitions.

Let ⟨P, V⟩ be an interactive proof for a promise problem Π. For an input x, let T (|x|) and
ρ(|x|) denote the running-time and randomness complexity of the verifier.We assume that
the parties speak in alternating turns and that the prover sends the first and last message.
(The latter assumption always holds and the former can be guaranteed at the expense of
adding an additional empty round). Letting I ′(|x|) denote the number of rounds in which

B. Applebaum, K. Bhushan, and M. Prabhakaran 2:13

the verifier speaks, we get that the the total number of rounds is I(|x|) = 2I ′(|x|) + 1. We
let ai and bi denote the ith message of the prover and verifier, respectively, and let bI(|x|)+1
denote the final verdict of the verifier (accept/reject).

We can think of the V as a machine that takes an input x a random tape r and a sequence
of prover’s messages a = (ai)1≤i≤k, k ≤ I ′ + 1 and outputs the message bk. For a partial
transcript w = (x, a = (ai)i∈[k], b = (bi)i∈[k−1]), consider the probability distribution Dw of
the verifier’s next message bk conditioned on seeing the partial transcript w. We can describe
Dw as the output of the following randomized process: Sample a random tape r

R← {0, 1}ρ(|x|)

conditioned on the event∧
1≤j≤k−1

V(x, a1, . . . , aj ; r) = bj (1)

and output the string bk = V(x, a1, . . . , ak−1; r). Note that D = {Dw} is conditioned
efficient: consider a PPT conditional sampler A, which on input w as above and random
tape r ∈ {0, 1}ρ(|x|), outputs ⊥ if (1) does not hold, and outputs bk otherwise. Let hw and
mw denote the entropy and domain bit-length of Dw, and let ϵ(w) = 0.01/I(|x|) where x is
the first entry of w. Let F denote a family of hash functions (promised by the second part of
Theorem 15) which is (0.2, ϵ)-good for D and for Dw achieves compression of 2hw/ϵ + O(1)
and description size of O(log(mw + hw/ϵ)) < O(log(mw/ϵ)) < O(log mw) + O(log I(|x|))
where the first inequality follows by noting that hw ≤ mw.

The new proof system

We define the new proof system ⟨P′, V′⟩ as follows. Given x as a common input and
randomness ρ for the verifier, the parties initialize an “emulated” transcript w = x and
proceed for i = 1, . . . , I ′ − 1 rounds as follows.
1. P′: Compute ai by calling P(w) and locally update w = (w, ai). Choose hash function fi

from F that is injective over X (Dw, ϵ), and send (ai, fi). (Recall that X (Dw, ϵ) is the
set of strings whose weight under Dw is at least 2−h/ϵ where h is the Shannon’s entropy
of Dw; See Definition 10.)

2. V′: Compute bi by calling V(x, a1, . . . , ai; ρ) where ai is the ith message sent by the
prover, and send b′i = fi(bi).

3. Before proceeding to the next iteration the prover locally computes bi by choosing the
unique string in X (Dw, ϵ) that maps to b′i. If this string is not unique the prover sends a
special abort symbol and the verifier terminates with rejection. Otherwise, the prover
updates its view to w := (w, bi).

At the last round, the prover sends aI′ by calling P(w) and the verifier outputs its verdict
bI′+1 by calling V(x, a1, . . . , at; ρ).

Completeness and Soundness

Let γ be the completeness error of the original proof system. For a yes instance x, it holds
that

Pr[⟨P′, V′⟩(x) = 1] ≥ Pr
r

[⟨P, V⟩(x) = 1]−Pr
r

[decoding failure] ≥ 1−γ−ϵ·(I ′−1) ≥ 1−γ−0.01,

where the second inequality follows from a union-bounds over all the rounds. For soundness,
fix a No instance x, and observe that any cheating strategy for the prover P′ in the new
proof system translates to a cheating strategy in the original proof system. Indeed, if
for each i ∈ [I ′], P′ maliciously chooses ai and fi based on b′i−1 and its internal state

ITC 2024

2:14 Communication Complexity vs Randomness Complexity in Interactive Proofs

S = (x, a = (aj)j<i, f = (fj)j<i, b′ = (b′j)j<i−1), we can define a cheating prover for the
original system that maintains the same state S and given bi−1 executes P′ on the state S

and on b′i−1 = fi−1(bi−1). The probability that the verifier V accepts is exactly the same
probability that V′ does. Therefore the soundness error of the new system is the same as the
soundness error of the original system.

Communication complexity

We begin by analyzing the expected communication complexity under the assumption that P
is honest. Fix x, and let I = I(|x|),I ′ = I ′(|x|). Let w = (x, (ai, bi)i∈[I′]) denote the random
variable that describes a random transcript and let w[k] = (x, (ai, bi)i∈[k]) denote the kth
prefix of the transcript. We can assume that the honest prover is deterministic (i.e., ai is a
deterministic function of x, (bj)j<i) and so all the randomness is due to the b part. Recall
that in each round i, the verifier sends a string b′i of length 2hw[i]/ϵ + O(1) where hw[i] is
the entropy of Dw[i]. Note that hw[i] is a random variable (since w[i] is a random variable).
Thus, the communication complexity of the verifier is given by the following random variable∑

i∈[I′]

2hw[i]/ϵ + O(1) = O(I ′) + 2/ϵ
∑

i∈[I′]

hw[i] = O(I) + O(I)
∑

i∈[I′]

hw[i].

By the chain rule, the expected value of
∑

i∈[I′] hw[i] is the entropy of w which is at most
the randomness complexity of the verifier. Overall, the expected communication complexity
of the verifier is O(I · ρ). The communication of the prover in the ith iteration consists of
the original communication (the ai part) and the description of the hash functions which is
of length O(log mw[i]) + O(log I(|x|)). Overall the prover communication grows by at most
O(I(log I + log m)) where m is the maximal length of the verifier’s message in the original
scheme. Since m and I are polynomially bounded in n, this can be written as O(I(log n)).

Deriving Theorem 1

The communication analysis is only on expectation and it assumes that the prover is honest.
To get a worst case bound, we slightly modify the proof system by letting the verifier halt
the interaction (with rejection) if she communicates more than, say 100 times the expected
communication complexity. By Markov’s inequality, this increases the completeness error by
at most 0.01. Theorem 1 follows.

5 Conclusion

Compressing interactive protocols is a problem of fundamental nature in information theory.
When computational constraints are also involved, it leads to a question that combines
complexity theory and information theory into a natural, yet difficult problem. In this paper,
we partially answered the problem posed at the beginning: whether the communication from
a verifier in an interactive proof system can always be reduced to the level of randomness
used by the verifier, without increasing the verifier’s randomness, the round complexity
or the prover’s communication significantly. We leave it as an open question if such a
result is possible without relying on complexity assumptions (or using weaker ones), and if
quantitative improvements can be achieved over our result.

En-route to our main result, we encounter several interesting problems. While our focus
is on proof systems, the compression results here extend to any 2-party protocol where one
party is computationally unbounded, and the other party is randomized but has no private

B. Applebaum, K. Bhushan, and M. Prabhakaran 2:15

inputs. Further, the special case of the single-round compression problem is of significance in
its own right. The notion of efficiently conditional distributions that we introduced, being
natural, could be of independent interest.

References
1 Benny Applebaum, Sergei Artemenko, Ronen Shaltiel, and Guang Yang. Incompressible

functions, relative-error extractors, and the power of nondeterministic reductions. Comput.
Complex., 25(2):349–418, 2016. doi:10.1007/S00037-016-0128-9.

2 Benny Applebaum and Eyal Golombek. On the Randomness Complexity of Interactive
Proofs and Statistical Zero-Knowledge Proofs. In Stefano Tessaro, editor, 2nd Conference
on Information-Theoretic Cryptography (ITC 2021), volume 199 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 4:1–4:23, Dagstuhl, Germany, 2021. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITC.2021.4.

3 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2006. URL: https://theory.cs.princeton.edu/complexity/book.pdf.

4 László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system, and
a hierarchy of complexity class. J. Comput. Syst. Sci., 36(2):254–276, April 1988. doi:
10.1016/0022-0000(88)90028-1.

5 Marshall Ball, Ronen Shaltiel, and Jad Silbak. Non-malleable codes with optimal rate for
poly-size circuits. Electron. Colloquium Comput. Complex., TR23-167, 2023. arXiv:TR23-167.

6 Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography. SIAM J.
Comput., 37(2):380–400, 2007.

7 J.Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, 1979. doi:10.1016/0022-0000(79)90044-8.

8 Andrew Drucker. Nondeterministic direct product reductions and the success probability of
SAT solvers. In FOCS, pages 736–745. IEEE Computer Society, 2013.

9 Uriel Feige and Carsten Lund. On the hardness of computing the permanent of random
matrices. Computational Complexity, 6(2):101–132, 1997.

10 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1)
worst case access time. J. ACM, 31(3):538–544, June 1984. doi:10.1145/828.1884.

11 Oded Goldreich. On promise problems: A survey. In Oded Goldreich, Arnold L. Rosenberg,
and Alan L. Selman, editors, Theoretical Computer Science, Essays in Memory of Shimon
Even, volume 3895 of Lecture Notes in Computer Science, pages 254–290. Springer, 2006.
doi:10.1007/11685654_12.

12 Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge University
Press, 2008. doi:10.1017/CBO9780511804106.

13 Oded Goldreich and Maya Leshkowitz. On Emulating Interactive Proofs with Public
Coins, pages 178–198. Springer International Publishing, Cham, 2020. doi:10.1007/
978-3-030-43662-9_12.

14 Oded Goldreich and Avi Wigderson. Derandomization that is rarely wrong from short advice
that is typically good. In RANDOM, volume 2483 of Lecture Notes in Computer Science,
pages 209–223. Springer, 2002.

15 S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive proof-
systems. In Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing,
STOC ’85, pages 291–304, New York, NY, USA, 1985. Association for Computing Machinery.
doi:10.1145/22145.22178.

16 S Goldwasser and M Sipser. Private coins versus public coins in interactive proof systems.
In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC
’86, pages 59–68, New York, NY, USA, 1986. Association for Computing Machinery. doi:
10.1145/12130.12137.

17 Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. Uniform hardness versus randomness
tradeoffs for arthur-merlin games. Computational Complexity, 12(3-4):85–130, 2003.

ITC 2024

https://doi.org/10.1007/S00037-016-0128-9
https://doi.org/10.4230/LIPIcs.ITC.2021.4
https://theory.cs.princeton.edu/complexity/book.pdf
https://doi.org/10.1016/0022-0000(88)90028-1
https://doi.org/10.1016/0022-0000(88)90028-1
https://arxiv.org/abs/TR23-167
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1145/828.1884
https://doi.org/10.1007/11685654_12
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1007/978-3-030-43662-9_12
https://doi.org/10.1007/978-3-030-43662-9_12
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/12130.12137
https://doi.org/10.1145/12130.12137

2:16 Communication Complexity vs Randomness Complexity in Interactive Proofs

18 Russell Impagliazzo and Avi Wigderson. P = bpp if e requires exponential circuits: Deran-
domizing the xor lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, STOC ’97, pages 220–229, New York, NY, USA, 1997. Association for
Computing Machinery. doi:10.1145/258533.258590.

19 Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci., 43:169–188, 1986.

20 Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–1526,
2002.

21 Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential
size proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Computing,
31(5):1501–1526, 2002. doi:10.1137/S0097539700389652.

22 Maya Leshkowitz. Round complexity versus randomness complexity in interactive proofs. The-
ory Comput., 18:1–65, 2022. URL: https://theoryofcomputing.org/articles/v018a013/.

23 Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39(4):859–868, October 1992. doi:10.1145/146585.
146605.

24 Peter Bro Miltersen and N. V. Vinodchandran. Derandomizing arthur-merlin games using
hitting sets. Computational Complexity, 14(3):256–279, 2005.

25 Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal
derandomization. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee,
Wisconsin, USA, 23-25 October 1995, pages 182–191. IEEE Computer Society, 1995. doi:
10.1109/SFCS.1995.492475.

26 A. Orlitsky. Worst-case interactive communication. i. two messages are almost optimal. IEEE
Transactions on Information Theory, 36(5):1111–1126, 1990. doi:10.1109/18.57210.

27 Rasmus Pagh. Hash and displace: Efficient evaluation of minimal perfect hash functions. In
Frank K. H. A. Dehne, Arvind Gupta, Jörg-Rüdiger Sack, and Roberto Tamassia, editors,
Algorithms and Data Structures, 6th International Workshop, WADS ’99, Vancouver, British
Columbia, Canada, August 11-14, 1999, Proceedings, volume 1663 of Lecture Notes in Computer
Science, pages 49–54. Springer, 1999. doi:10.1007/3-540-48447-7_5.

28 Ronen Shaltiel. Weak derandomization of weak algorithms: Explicit versions of yao’s lemma.
Comput. Complex., 20(1):87–143, 2011. doi:10.1007/S00037-011-0006-4.

29 Ronen Shaltiel and Jad Silbak. Explicit codes for poly-size circuits and functions that are hard
to sample on low entropy distributions. Electron. Colloquium Comput. Complex., TR23-149,
2023. arXiv:TR23-149.

30 Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a new
pseudorandom generator. J. ACM, 52(2):172–216, 2005.

31 Ronen Shaltiel and Christopher Umans. Pseudorandomness for approximate counting and
sampling. Computational Complexity, 15(4):298–341, 2006.

32 Ronen Shaltiel and Christopher Umans. Low-end uniform hardness versus randomness tradeoffs
for AM. SIAM J. Comput., 39(3):1006–1037, 2009.

33 Adi Shamir. Ip = pspace. J. ACM, 39(4):869–877, October 1992. doi:10.1145/146585.146609.
34 Claude E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27(3):379–

423, 1948. doi:10.1002/J.1538-7305.1948.TB01338.X.
35 Michael Sipser. A complexity theoretic approach to randomness. In STOC, pages 330–335.

ACM, 1983.
36 Larry J. Stockmeyer. The complexity of approximate counting (preliminary version). In STOC,

pages 118–126. ACM, 1983.
37 Luca Trevisan and Salil P. Vadhan. Extracting randomness from samplable distributions. In

FOCS, pages 32–42. IEEE Computer Society, 2000.
38 Luca Trevisan, Salil P. Vadhan, and David Zuckerman. Compression of samplable sources.

Comput. Complex., 14(3):186–227, 2005. doi:10.1007/S00037-005-0198-6.

https://doi.org/10.1145/258533.258590
https://doi.org/10.1137/S0097539700389652
https://theoryofcomputing.org/articles/v018a013/
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1109/18.57210
https://doi.org/10.1007/3-540-48447-7_5
https://doi.org/10.1007/S00037-011-0006-4
https://arxiv.org/abs/TR23-149
https://doi.org/10.1145/146585.146609
https://doi.org/10.1002/J.1538-7305.1948.TB01338.X
https://doi.org/10.1007/S00037-005-0198-6

Are Your Keys Protected? Time Will Tell
Yoav Ben Dov
Weizmann Institute of Science, Rehovot, Israel

Liron David #

Weizmann Institute of Science, Rehovot, Israel

Moni Naor #

Weizmann Institute of Science, Rehovot, Israel

Elad Tzalik #

Weizmann Institute of Science, Rehovot, Israel

Abstract
Side channel attacks, and in particular timing attacks, are a fundamental obstacle to obtaining
secure implementation of algorithms and cryptographic protocols, and have been widely researched
for decades. While cryptographic definitions for the security of cryptographic systems have been
well established for decades, none of these accepted definitions take into account the running
time information leaked from executing the system. In this work, we give the foundation of new
cryptographic definitions for cryptographic systems that take into account information about their
leaked running time, focusing mainly on keyed functions such as signature and encryption schemes.
Specifically,

(1) We define several cryptographic properties to express the claim that the timing information does
not help an adversary to extract sensitive information, e.g. the key or the queries made. We
highlight the definition of key-obliviousness, which means that an adversary cannot tell whether
it received the timing of the queries with the actual key or the timing of the same queries with
a random key.

(2) We present a construction of key-oblivious pseudorandom permutations on a small or medium-
sized domain. This construction is not “fixed-time,” and at the same time is secure against any
number of queries even in case the adversary knows the running time exactly. Our construction,
which we call Janus Sometimes Recurse, is a variant of the “Sometimes Recurse” shuffle by
Morris and Rogaway.

(3) We suggest a new security notion for keyed functions, called noticeable security, and prove that
cryptographic schemes that have noticeable security remain secure even when the exact timings
are leaked, provided the implementation is key-oblivious. We show that our notion applies to
cryptographic signatures, private key encryption and PRPs.

2012 ACM Subject Classification Theory of computation → Cryptographic primitives; Security and
privacy → Key management; Security and privacy → Mathematical foundations of cryptography;
Security and privacy → Side-channel analysis and countermeasures

Keywords and phrases Side channel attacks, Timing attacks, Keyed functions, Key oblivious,
Noticeable security

Digital Object Identifier 10.4230/LIPIcs.ITC.2024.3

Related Version Full Version: https://ia.cr/2024/906

Funding Research supported in part by grants from the Israel Science Foundation (no.2686/20),
by the Simons Foundation Collaboration on the Theory of Algorithmic Fairness and by the Israeli
Council for Higher Education (CHE) via the Weizmann Data Science Research Center.

© Yoav Ben Dov, Liron David, Moni Naor, and Elad Tzalik;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal; Article No. 3; pp. 3:1–3:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lirondavid@gmail.com
https://orcid.org/0000-0002-1502-5257
mailto:moni.naor@weizmann.ac.il
https://orcid.org/0000-0003-3381-0221
mailto:tzalikemail@gmail.com
https://doi.org/10.4230/LIPIcs.ITC.2024.3
https://ia.cr/2024/906
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Are Your Keys Protected? Time Will Tell

1 Introduction

In any implementation of a cryptographic scheme there is a disparity between the mathe-
matical specification of its functionality and the actual implementation in a physical device
and environment. By nature, a physical implementation leaks more information than was
intended and this leakage is known as a side-channel. In this work we concentrate on the
running time, the side channel that is perhaps the hardest to block (and the easiest to
exploit), since the time it took to perform a certain service is often known.

Consider the security of encryption and signature schemes (which we refer to as keyed
cryptographic functions). After much work, definitions of the security of such schemes have
been well-established for decades, and may be considered one of the crown achievements of
the foundations of cryptography. But none of these accepted definitions take into account
the running time information leaked from executing the system.

In this work, we give a foundation for defining the security of cryptographic systems that
take into account that their running time is leaked, focusing mainly on keyed functions such
as signature and encryption schemes. More specifically, we suggest several cryptographic
definitions for scenarios where the leaked information does not help an adversary to expose
sensitive information, e.g. the key or the queries made. The most interesting definition we
propose is key-oblivious. For this notion we prove that for cryptographic schemes such as
digital signatures, private key encryption and pseudorandom permutations (PRPs), if their
implementation satisfies key-obliviousness, then they preserve their security even when the
exact timing is leaked. Finally, we construct a PRP called “Janus Sometimes Recurse (JSR)”
that is not fixed-time, yet provably secure against timing attacks (key-oblivious and other
properties).

For a motivating example of the JSR construction, consider the following question,
taken more or less verbatim from Stack Overflow1: “I am looking to enumerate a random
permutation of the numbers 1 . . . N in fixed space. I cannot store all numbers in a list, N

can be very large, more than available memory. I still want to be able to walk through such a
permutation of numbers one at a time, visiting each number exactly once.”

As we shall see, there are good cryptographically based solutions to the question, but
they are susceptible when the creator of the permutation leaks how long it took to choose
the next value. In light of the work on JSR in Section 4.1 we have a good solution that is
immune even when the timing information is leaked.

1.1 A Brief History of Timing Attacks
There is a significant body of research about side-channel attacks and more specifically timing
attacks, and how to exploit them in order to break cryptographic protocols. An early work
by Lipton and Naughton [24] showed a way to exploit timing information to compromise the
performance of dictionaries that employ universal hash functions.

Kocher [23] showed how the running time of certain implementations of RSA and Diffie
Hellman schemes leaks information that can be used to recover the prime factors or find the
discrete log, hence breaking the systems. In more detail, Kocher showed that the running
time of some implementations depends on the exponent chosen in the protocol, and by
carefully timing the running time on multiple outputs one can extract information about

1 https://stackoverflow.com/questions/10054732/create-a-random-permutation-of-1-n-in-
constant-space.

https://stackoverflow.com/questions/10054732/create-a-random-permutation-of-1-n-in-constant-space
https://stackoverflow.com/questions/10054732/create-a-random-permutation-of-1-n-in-constant-space

Y. Ben Dov, L. David, M. Naor, and E. Tzalik 3:3

the exponent, which can then be used to break the security of the protocol. Kocher’s work
brought widespread attention to the crucial importance of implementations of cryptographic
protocols, such as public-key encryption and signatures, and led to a considerable body of
research on vulnerabilities to side-channel attacks and spurring studies and advancements
aimed at strengthening their security against such attacks.

Brumley and Boneh [11] showed that timing attacks are practical on large systems and
over the web. In large systems, the response time suffers significantly from noise coming from
latency, multi-threading, communication bottlenecks and more. Brumley and Boneh showed
that even under these conditions it is possible to retrieve the private key with timing attacks
on OpenSSL servers. More specifically, they showed how to reconstruct the prime factors
used in an RSA protocol by making about one million queries and carefully inspecting the
response times.

One of the most efficient lattice-based digital signature schemes is BLISS, suggested by
Ducas, Durmus, Lepoint and Lyubashevsky [14]. This scheme uses a bimodal Gaussian
sampler and was shown to be vulnerable to timing attacks, and, in particular, the sampling
component that is not independent of the secret-key [15, 10], as well as other attacks.

All of these examples are but a drop in the ocean of the vast and rich research area of
side-channel attacks. New and more sophisticated and subtle attacks and vulnerabilities
are found every once in a while, a solution is suggested and implemented, and then another
attack is found, in what feels like a never-ending game of cat and mouse. For a more thorough
(but still far from full) overview of the history and background of side-channel attacks and
timing attacks in particular see Crosby, Wallach and Riedi [13] and Biswas, Ghosal and
Nagaraja [8].

1.2 Prevention Techniques
The main approach to prevent timing attacks is to use fixed-time algorithms, often called in
the literature “constant time algorithms,” meaning algorithms that run the same amount of
time on all inputs.

There are two main drawbacks to this solution. First, in order for the algorithm to run
in fixed-time on all the inputs, we need to know the worst-case running time, a task that is
often challenging on its own. The second one is that even if we do know the running time,
in many cases there is a very large gap between best case and worst case running time, or
even average case and worst case running time, and by making the algorithm run in the
worst case time on all inputs, we create huge overheads. It is also worth mentioning that the
second caveat can make many protocols and algorithms impractical and not usable when
efficiency is critical.

In addition, the survey in Section 1.1 demonstrates that the task of making an algorithm
run in fixed-time is more subtle and challenging than meets the eye. Timing information
might leak from the response times of the server, from I/O calls, from reading RAM memory
or cache memory, and many more possibilities. For the implemented algorithm to be truly
and fully fixed-time one must make sure to make everything fixed-time, which is often very
challenging and goes against hardware and software optimizations.

A common technique to thwart timing attacks in the public-key context is “blinding,”
first suggested by Chaum [12] in the context of signatures, where a value v is mapped into a
random-looking one u prior to the encryption or signature, in a manner that allows retrieving
the desired signature or encryption from the encryption or signature on u. Kocher [23]
suggested using blinding to make RSA implementations secure against timing attacks. The
blinding works by multiplying the input x by a fresh random element r of the group ZN

∗, i.e.

ITC 2024

3:4 Are Your Keys Protected? Time Will Tell

a random element which is co-prime to N . To decode, multiplication by the group inverse
r−1 is done at the end of the computation. Note that simply using the same r for many
inputs will not work, as the attack suggested by Kocher can recover r over time, and even
recover the exponent without knowing r. Hence, fresh r needs to be chosen in each round.
This example goes to show that using blinding as a technique to protect against timing
attacks is often a subtle task, and that if implemented naively or incorrectly can lead to a
false sense of security.

A general approach to preventing leakage is to employ techniques from secure multi-party
computation, and split the input into various parts where leaking almost all of the parts
does not reveal the actual values. It was first suggested in Ishai, Sahai and Waters [20] for
thwarting probing attacks (see Kalai and Reyzin [21] for a survey). This can be thought of
as the “moral equivalent” of blinding for a general function. However, in the case of timing,
at the very least the sum of their running times is leaked (since they are all executed on the
same machine, what is leaked in the total time of all the emulated processors) and this is a
function of all parties. Hence this does not solve the problem, unless an argument is made
that the sum of all the execution times is not meaningful.

Another set of techniques is known as the bounded retrieval model (see [2] for a survey).
In this model, the adversary learns some arbitrary function of the secret key that is shorter
than the key. An alternative is the noisy leakage model, where the leakage is not of bounded
length but it is guaranteed that the secret key is still unpredictable given the leaked value [30].
But this is not the case in our setting, with a repeatedly used keyed function: the adversary
learns the timing of the keyed function on many inputs. Altogether this leaked information
may be much greater than the key size. There is also the continual-leakage model, which
is more appropriate for this case. The work of Goldwasser and Rothblum [18] considered
leakage with an unbounded number of executions, in the presence of an adversary who
observes partial information on the internal state of the computation during the executions.
They showed that it is possible to obtain secure computation in the sense that the adversary
learns only input-output behavior if the leakage in any round is bounded (following the
“only computation leaks information” maxim of Micali and Reyzin [27]). However, this is
not a silver bullet for timing attacks, as in this work the first step is to turn the program
to be computed into a circuit, i.e. into a fixed-time computation - and this carries over the
various downsides of this approach, for instance, that typical case becomes the worst case.
Nevertheless, such an approach may be useful for various critical sections when one wants to
get fixed time. Our goal in this work is to relax fixed time and allow information related to
the key to leak, but specify what it means to say that it is not harmful.

Extending the Notion of Constant Time

There have been a number of proposals to extend the notion of constant time implementations
in order to argue that no meaningful information is leaked from the timing. For instance,
Benegas et al. [4] talk about the distribution of the running time being the same for any key
and any input. Similarly, Almeida et al. [1] define a program to be secure if all equivalent
programs in terms of inputs and outputs are indistinguishable given the leaked information,
i.e. it “means that any two executions whose input and output values differ only with respect
to secret information must leak exactly the same observation.” These extensions are not
flexible enough to talk about protecting keyed cryptographic functions, since the protection
there is computational, and the inputs and outputs are not going to be identical. For instance
consider the case of signature schemes.

Note that we use the term “fixed-time” since in the literature constant time sometimes
does not refer to operations that take the same amount of time no matter what the input is.

Y. Ben Dov, L. David, M. Naor, and E. Tzalik 3:5

1.3 Comparing Our Work With the Existing Ones

At this point, the reader may be wondering whether enough theoretical work was already
done in the area of leakage and there is not much to add. The novel aspect of our work
is proposing criteria for arguing that the leakage is benign, that is, the presence of this
benign leakage, although not being fixed, does not compromise the original guaranteed
security in many cases. Maintaining this criteria is, therefore, sufficient to argue security
even with the presence of the leakage in many cases. An illustrative example is the famous
GGM construction of pseudorandom functions (PRF) F from length-doubling pseudorandom
generators (PRG) G. What properties should we require of the PRG G in order to argue that
F is secure? Recall that the construction is defined by imagining a full binary tree of depth
n where each node gets an n bit label. The root is labeled with the key k and each parent
induces a labeling of its two children by applying G to its label; the left half of the result
becomes the label of the left child and the right half the label of the right child. Clearly,
requiring that G be fixed time and making the rest of operations (deciding whether to branch
left or right based on the bit) fixed-time is sufficient. But can we get a weaker requirement
from G and how to express it? What happens when the construction is not applied a fixed
number of times, but one that can vary with the input? Could such a construction be secure?

In this work we define a formal condition that is sufficient to argue security in the presence
of leakage in many cases. We call this condition “key-oblivious.” Namely, in order to prove
that a construction is secure in the presence of leakage, one only needs to prove that the
construction is key-oblivious. The key-obliviousness then implies security in the presence of
leakage. We argue that this notion is easier to reason about than directly proving that the
leakage does not hurt security.

A possible comparison is to the definition of security of encryption. The “moral equivalent”
of this condition is the notion of indistinguishability of encryptions, which is, generally
speaking, easier to prove than semantic security. But we know that the two notions are
equivalent in that context.

Note that the notion of key-oblivious is relevant to any type of leakage, not necessarily
timing, but in case of time we have various properties that make it particularly useful, e.g,
the leakage of applying a function f and then g is, under reasonable assumptions, the sum
of the two leakages.

1.4 Our Contributions and Technical Overview

Our goal in this work is to investigate the landscape of algorithms and systems that can be
implemented in a manner resistant to timing attacks, but we wish to expand the “Procrustean
bed” of fixed-time algorithms. We provide foundational treatment to the subject as well as
many algorithms and separation results.

We propose several criteria for expressing the property that the timing information of
an implementation of an algorithm does not expose sensitive information in the context of
keyed functions. The most interesting one is key-oblivious (Definition. 1), which means that a
polynomially bounded adversary cannot tell whether it received the timing of the actual key
or of a random unrelated key. Namely, suppose that Fk is a keyed function with a key k and
T (Fk(q)) is the time takes to execute Fk on the query q, then the key oblivious definition
means that a PPT adversary cannot distinguish the following two cases: whether the time
it gets is the real running time on the actual key k, or whether the running time is on an
unrelated key k′:

ITC 2024

3:6 Are Your Keys Protected? Time Will Tell

Definition 1. We say a keyed function F is key-oblivious secure against timing attacks if
any probabilistic polynomial-time (PPT) adversary Adv has a winning probability at most
1
2 + negl(n) in the following game:
1. Two keys are sampled k0, k1.
2. A random bit b ∈ {0, 1} is sampled.
3. The adversary Adv makes ℓ = poly(n) adaptive queries q1, . . . , qℓ to Fk0 , and gets

Fk0(q1), . . . , Fk0(qℓ), as well as T (Fkb
(q1)), . . . , T (Fkb

(qℓ)).
4. The adversary outputs b′, the guess of b, and wins if b′ = b.

How useful is this criterion? What does it imply? The notion of key obliviousness is most
useful in cases where the period where the adversary has access to the timing information
is separated from when it actually attacks; for instance, in the case of signatures schemes,
where the adversary may know how long it takes to produce a signature on a message, but
where the adversary does not have access to the timing information of the signing of the
actual message it wants to forge. We then prove that if we have signature scheme Fk that is
existentially unforgeable secure against an adaptive chosen message attack and the signature
function Fk is key-oblivious, then even if the adversary in the forgery game has access to
the running time it takes to generate the signatures, then this adversary will not manage to
forge a valid-looking signature on any message it was not given a signature explicitly.

As mentioned above, the key-oblivious criteria is most relevant when the attack occurs
after timing information is not available anymore, e.g. as in the case of signature schemes. But
there are scenarios where this is not the case and the adversary does get timing information
during a “challenge phase.” Consider, for instance, the case of encryption, where the final
goal of the adversary is to distinguish between the encryption of two messages. The game has
a “challenge phase” in which the adversary sends two messages and receives an encryption of
one of them and its goal is to guess which one it is. The encryption may not be time-secure,
even though the encryption implementation is key-oblivious.

To see this, consider the following example: suppose that the running time depends only
on the least significant bit (lsb) of the message and does not depend on the key or other
bits of the message. Then given two messages with different lsbs, the adversary who gets
the running time of the actual message that was chosen, can easily distinguish whether the
encryption was of one message or the other.

A case where this may be significant is in voting machines where votes are encrypted
and then shuffled. If the timing of an encryption of a particular vote is known, then if the
encryption is not query-oblivious in the above sense then this yields information about the
actual vote.

To guarantee time-security also in cryptographic games that have a “challenge phase” (as
in the indistinguishability game) we propose another security criteria called query-oblivious
(Definition 3) whose aim is to capture the property that the time to evaluate a query does not
leak information about the query itself. We then prove specifically for indistinguishability of
encryptions (Theorem 26) that if the implementation is query-oblivious, then it is time-secure.

A fundamental issue concerning any new security definition is what happens when a
primitive satisfying it is part of a larger structure and whether the new criterion is preserved
under different constructions. To this end, we investigate different constructions and explore
whether they preserve key-obliviousness and whether being query-oblivious as well is necessary
for them to preserve key-obliviousness. We focus on the following constructions:

The famed Goldreich-Goldwasser-Micali (GGM) construction: we show that if G is a
PRG implemented in a key-oblivious manner, then applying GGM with G yields a PRF
that is key oblivious.

Y. Ben Dov, L. David, M. Naor, and E. Tzalik 3:7

The cycle walking technique for format-preserving encryption: we show that if the
permutation π is key oblivious, then the result π′ is key oblivious.
Domain extensions of PRFs: we show that even if the underlying PRFs are key-oblivious,
then the classical results do not necessarily imply that the result is key-oblivious. But we
show that the cascading construction of PRF extension preserves key obliviousness.

Main Application

In Section 4 we turn our attention to pseudorandom permutations (PRP) on small domains
(related to format-preserving encryption). The most efficient construction for small domain
PRP is the “Sometimes Recurse” (SR) shuffle by Morris and Rogaway [28], which runs in
expected time of O(log N) and is secure even when the adversary queries the whole domain
(a more detailed exposition appears in Section 4). The downside of SR is that its running
time is fully determined by the number of leading 1’s in the output. This makes the SR
construction not secure against timing attacks, namely, SR is neither key-oblivious (Claim 12)
nor query-oblivious (Claim 14).

We suggest a new construction of a PRP on small domains which we call the Janus
Sometimes Recurse (JSR) that is not constant time, yet provably secure against timing attacks.
Our construction is faster than all previously known constructions that are secure against
timing attacks. Specifically we prove that: (1) JSR is key-oblivious (Claim 16), i.e., a PPT
adversary cannot distinguish between the key that was used and a random key even when
the adversary gets the exact running time of the PRP; and (2) JSR is also query-oblivious
(Claim 18), i.e., a PPT adversary cannot infer from the computation time of the PRP on a
query q what q is.

Figure 1 JSR construction on two PRPs.

Generally speaking, JSR takes two independent (i.e. with two independent keys) copies
of SR on the same domain [N], where the permutations are denoted by π and σ and the
keys by kπ and kσ, and composes π with σ−1, see Figure 1. This is similar to the approach
that Maurer and Pietrzak [26] used to move from non-adaptive to adaptive PRPs. The term
“Janus” in the name of our construction “Janus Sometimes Recurse” (JSR) comes from the
Roman god who was depicted as having two faces, since both the directions (encryption and
decryption) are forward-looking.

The intuition for this construction is that while the running time of the forward direction
leaks information about the output, the running time of the inverse is determined by the
input, and so by composing the two we get that the running time of the algorithm both in
the forward direction and in the inverse, is determined by the inner value which is almost
independent of the input and output since π, σ are PRPs.

Main Security Claim

To formally define the criteria in general, we consider a cryptographic game (Definition 20) for
a keyed function, which captures the security of many primitives including indistinguishability
of encryptions, digital signatures, and pseudo-random permutations (we denote for function

ITC 2024

3:8 Are Your Keys Protected? Time Will Tell

F the security game with GF). A game GF has noticeable security (Definition 20), if it is
defined between an adversary and a principal, and determining who wins the game can be
done without direct access to the key, but simply based on the queries and the state of the
principal. We show that digital signatures, pseudo-random permutations, and encryption
(but for indistinguishability of encryption see caveat below and Section 5.2) have games with
noticeable security.

The main result (Theorem 1) shows that: For a keyed function Fk that is secure w.r.t. a
game GF that has “noticeable security,” if the implementation of Fk is key-oblivious then
Fk is time-secure, that is, Fk is secure w.r.t. GF even when the exact running timing of
executing the oracle on the queries is leaked to the adversary.

2 Keyed Functions Secure Against Timing Attacks

We now aim to formalize security against timing attacks for keyed cryptographic functions.
Since the security of keyed cryptographic functions is usually measured by the success of a
PPT adversary in some game, we would like the security notion to provide the keyed function
security against such adversaries.

Let F be a keyed function, with key space {Kn}n, where keys are sampled from Kn have
length poly(n). Denote by Fk the keyed function with a chosen key k. To ease the notation
we will use k ∼ K to denote sampling k from Kn when n is understood from context.

We denote by q a query to the function. We do not state what type of query it is, since
different types of functions will have different queries. For example, if F is an encryption
scheme, then it makes sense to allow encryption queries as well as decryption queries. Denote
by Fk(q) the answer to the query and by T (Fk(q)) the running time it took for the answer
to return.

Assumption on Running Time Running time is implementation dependent, hence we stress
that T (Fk(q)) depends on F , q, k as well as the implementation of F in the computational
model. In many cases, once a key is fixed, the running time on a query will be deterministic,
but there are cases in which the running time might be a distribution even with the same
key and query. We therefore think of T as a distribution (which may be a distribution
supported on one element).
The crucial assumption which is running time specific that we assume is linearity of
composition, meaning that T (F ◦ G(x)) = T (F(G(x))) + T (G(x)) where by F ◦ G means
running G on x, and sequentially F on G(x). This assumption is not used in this section,
as well as Section 5, since in these sections we study a single function. On the other hand
linearity of composition is a key for designing complex cryptographic primitives from
basic ones, e.g. in the JSR construction appearing in Section 4.
We, therefore, require that for some of the statements in the paper at certain points of the
computation, the model is inherently sequential and that many optimizations incorporated
by modern computers to speed running time (e.g. pipeline, multi-processing, branch
prediction, etc.) are not allowed at those points (hence the linearity assumption). As is
well known, such optimizations can be exploited, with Spectre being one of the notable
examples.

We use the notation negl for any function negl : N → R+ satisfying that for every positive
polynomial p(·) there is an N such that for all integers n > N it holds that negl(n) < 1

p(n) .
Such functions are called negligible. We will also call a random variable with distribution
Bernoulli(1

2) a random bit.

Y. Ben Dov, L. David, M. Naor, and E. Tzalik 3:9

We state three definitions of security of keyed cryptographic function. The first two
definitions concern securing the key from a timing attack, while the third is designed to
secure the result of queries.

▶ Definition 1. We say a keyed function F is key-oblivious secure against timing attacks
if any probabilistic polynomial-time (PPT) adversary Adv has a winning probability at most
1
2 + negl(n) in the following game:
1. Two keys are sampled k0, k1 ∼ K.
2. A random bit b ∈ {0, 1} is sampled.
3. The adversary Adv makes ℓ = poly(n) adaptive queries q1, . . . , qℓ to Fk0 , and gets

Fk0(q1), . . . , Fk0(qℓ), as well as T (Fkb
(q1)), . . . , T (Fkb

(qℓ)).
4. The adversary outputs b′, the guess of b, and wins if b′ = b.

Definition 1 means that the joint distribution of running times on a polynomial number
of queries for two keys T (Fkb

(q1)), . . . , T (Fkb
(qℓ)) are indistinguishable by a PPT adversary

even when it sees the results of the query on a specific key. We now strengthen Definition 1:

▶ Definition 2. We say a keyed function F is key-switch secure against timing attacks if
any PPT adversary Adv has a winning probability at most 1

2 + negl(n) in the following game:
1. Two keys are sampled k0, k1 ∼ K.
2. The adversary Adv makes ℓ = poly(n) many queries q1, . . . , qℓ and gets Fk0(q1), . . . , Fk0(qℓ)

as well as T (Fk0(q1)), . . . , T (Fk0(qℓ)).
3. A random bit b ∈ {0, 1} is sampled.
4. The adversary Adv makes another ℓ′ = poly(n) many queries p1, . . . , pℓ′ and gets

Fk0(p1), . . . , Fk0(pℓ′), as well as T (Fkb
(p1)), . . . , T (Fkb

(pℓ′)).
5. The adversary outputs b′, the guess of b, and wins if b′ = b.

Notice that if we skip step 2 we get back to Definition 1. The difference here is that
the adversary gets the running time of the function with the same key as the answers, until
a bit is chosen, and only then the adversary does not know if the timing comes from the
same key or a different key. This essentially means that the distribution of the running times
T (Fkb

(p1)), . . . , T (Fkb
(pℓ′)) conditioning on the answers to the queries and the running time

on the original key are indistinguishable by a PPT adversary.
This definition could be useful to prevent denial-of-service attacks: if the adversary can

find expensive (time-wise) queries, then it can bunch expensive queries together and ask
them so as to overload the system. If, in addition, the system has the property that a priory
it is not clear how long a query would take, then it is not possible to find expensive queries
(since then it would be possible to figure out whether a key-switch occurred or not).

The third definition is of query-obliviousness and involves only a single key and aims to
express that the actual queries made are secure from a timing attack. This is desirable, for
instance, in voting systems. Consider a voting system that uses a keyed function (e.g. a
PRP) as a subroutine to the actual vote cast. The sensitive information that needs to be
protected is the votes themselves and not necessarily the key.

▶ Definition 3. We say a keyed function F is query-oblivious secure against timing attacks
if any PPT adversary Adv has a winning probability at most 1

2 + negl(n) in the following
game:
1. A single key k ∼ K is sampled.
2. The adversary Adv makes ℓ = poly(n) adaptive queries q1, . . . , qℓ and gets

Fk(q1), . . . , Fk(qℓ) and T (Fk(q1)), . . . , T (Fk(qℓ)) of all the queries.
3. The adversary Adv chooses two new distinct queries q′

0 ̸= q′
1 such that q′

0, q′
1 ̸∈ {q1, . . . , qℓ}.

ITC 2024

3:10 Are Your Keys Protected? Time Will Tell

4. A bit b ∈ {0, 1} is chosen at random.
5. The adversary Adv gets T (Fk(q′

b)).
6. The adversary outputs b′, the guess of b, and wins if b′ = b.

In the game above, the adversary makes queries and gets their running time. Then
the adversary chooses two different queries and gets the running time of one of them. The
challenge is to decide what is the query whose running time was returned. There are two
(non-mutually exclusive) variations on this:
Weakly vs. Strongly: If the function is also secure for general queries q′

0, q′
1 that are not

necessarily new, then we say that function is strongly query-oblivious, while the definition
above is weakly query-oblivious.

With vs. Without Results We define a variant of query-oblivious, we call query-with-
results-oblivious which is the same as the above query-oblivious game but with one
change: in step (5) the adversary Adv gets both Fk(q′

b) and T (Fk(q′
b)) rather than only

T (Fk(q′
b)). As we shall see, this query-with-result-oblivious will be useful, for example,

for time-security of indistinguishability of encryption, while the original query-oblivious
definition will be useful, for example, for domain extension.

▶ Remark 4. The definitions above are not equivalent to one another. The argument appears
in the extended version of this paper.

3 Constructions Preserving Key-Obliviousness

A natural question about the notion of key-oblivious is whether the key-oblivious is preserved
when applying it to several functions. In this section we investigate several well known
constructions and check whether the key-obliviousness is preserved under these constructions,
given that the underlying building blocks are key-oblivious. We start with the basic construc-
tions of composition and concatenation. We then consider the fundamental cryptographic
constructions:
1. The GGM construction of pseudorandom functions, where we show that if the basic

building block, the PRG G, is key oblivious, then the result is key oblivious (Claim 5).
However it is not necessarily query-oblivious (Claim 6).

2. We consider the Cycle walking technique for constructing format-preserving encryption,
which is not fixed time by nature, yet we show that if the underlying permutation π is
key oblivious, then the result is key oblivious.

3. Finally we consider various domain extension techniques and show that while some of
them do not preserve key-obliviousness (e.g. using the Levin trick) it is possible to get
key-obliviousness using either an additional primitive such as UOWHF or using the
cascading consturction.

Composition and concatenation

A basic issue when considering security definition is how they interact as part of a larger
system. The good news is that wrt concatenation key-obliviousness is preserved: Suppose
that we have two keyed functions f and g and suppose that their keys are independent. Then
the natural implementation of producing f(x) ◦ g(x), first compute f(x) and then g(x) is also
key oblivious. Also suppose that at each step either f or g are called, then the whole process
is still key-oblivious. Furthermore, let h be any function that is implemented in constant
time (e.g. addition or Xor). Then the natural implementation of h(f(x), g(x)) where f and
g are key-oblivious and are computed in a sequential manner and where h is fixed time is
itself key oblivious.

Y. Ben Dov, L. David, M. Naor, and E. Tzalik 3:11

On the other hand, as we shall see, for composition the case is different: even if f and g

are key-oblivious it is not necessarily true that f(g(x)) is key oblivious! This is shown in
Claim 8.

3.1 The GGM Construction of PRFs
Consider the Goldreich-Goldwasser-Micali (GGM) construction of pseudorandom functions
(PRF) from pseudorandom generators [16]. The construction starts with a pseudorandom
generator G : {0, 1}n 7→ {0, 1}2n and the PRF Fk : {0, 1}n 7→ {0, 1}n with key k ∈ {0, 1}n

is defined by imagining a full binary tree of depth n where each node gets an n bit label.
The root is labeled with the key k and each parent induces a labeling of its two children by
applying G to its label; the left half of the result becomes the label of the left child and the
right half the label of the right child. The value of Fk(x) for x ∈ {0, 1}n is the label of the
leaf at the end of the path defined by x.

Suppose that G is implemented in a key oblivious manner, meaning in this case, simply
that given G(k) for a uniform k ∈ {0, 1}n and T (G(k)) or T (G(k′)) for a uniform k′ ∈ {0, 1}n,
it is hard for a poly-time adversary to distinguish between the two cases. Now consider
the straightforward implementation of the GGM PRF Fk(x) from G, which consists of n

applications of G given k and x (developing the required labels). Assume that taking the left
or right half of the output of G once it is computed is fixed-time and that each application
of G starts from scratch. Is the result key oblivious? Is it query-oblivious?

▷ Claim 5. The key-obliviousness of G together with the requirement that it is a PRG
imply that the GGM construction is key-oblivious.

Proof. One possible way to prove the claim is to follow the same lines as the classical proof
of pseudo-randomness of the GGM construction. This proof is based on a hybrid argument.
If it is possible to distinguish between the construction and a truly random function using m

queries, then there is a sequence of m′ ≤ m ·n distributions, the first being the pseudorandom
one, as described above and the last one being the truly random one2. An alternative
approach is to use induction on the depth on the tree. For the base case n = 1, the property
that G is assumed to have is sufficient to guarantee key obliviousness. To increase the number
of levels, we will think of the two branches from the root as two independent functions. In
this case, the whole process should still be key oblivious, as the discussion at the beginning
of Section 3 shows. If the actual implementation is no key-oblivious, then again, we have an
attack of the key obliviousness of G. ◁

▷ Claim 6. The GGM construction is not query-oblivious, at least not if G is not fixed-time
computable. This is true even if we consider weakly query-without-result-oblivious.

Proof. Note that the time to compute Fk(x) is the sum of n applications of G on random-
looking inputs. Furthermore, the timings of Fk(x) and Fk(x′) for x and x′ that differ only
in the last bit are closely correlated (since the sums are over the same summands, except
the last one), compared to the timing of x and x′′ where x′′ is, say, a random input. In the
latter, there will be little correlation. So Definition 3 is not satisfied. ◁

2 In our case, for the ith distribution, the first i − 1 timings are the application of G on one key (the real
one, for which the output values are also given) and the last m − i + 1 ones are the timings of another
key, unrelated to the real one. If it is possible to distinguish between the first and last distributions,
then it is possible to distinguish between some two neighboring distributions.

ITC 2024

3:12 Are Your Keys Protected? Time Will Tell

3.2 Format Preserving Encryption - the Cycle Walking Technique

A good example of a construction that is inherently non fixed-time, yet key oblivious and
under some conditions query-oblivious, is the cycle walking technique of Format Preserving
Encryption (See Bellare et al. [6]). Imagine that we have a construction of a pseudo-random
permutation (PRP) on some domain, say of size 2ℓ, and we want to build from it a PRP
on a smaller domain S ⊂ [2ℓ]. A simple example is when S is the set of numbers 0 through
Q − 1 (where Q is not a power of 2), but the question is relevant for any format of S.

What Black and Rogaway [9] analyzed is a simple cycle walking technique for constructing
permutations on smaller domains. Given a PRP π on the larger domain of size 2ℓ, to get
a PRP on S define π′ by starting with x ∈ S and repeatedly apply π to it until hitting a
value in S. This is defined to be π′(x). The expected number of applications of π is 2ℓ/|S|.
It is clear that this construction is not fixed-time (if |S| < 2ℓ), even if the original PRP is
fixed-time. So which of the definitions of our framework does this technique satisfy? We
note that Bellare et al. wrote that it “Doesn’t Give Rise to Timing Attacks,”3 but we want
to check in what sense this is true and how it fits our definitions.

We claim that the exact properties of π′ depend on whether the original PRP is fixed-time
or “merely” key oblivious. For the former we get both key and query-obliviousness and for
the latter just key obliviousness. We assume that the implementation is such that the timing
of the various calls to π are independent of each other, in the sense the time it takes to
run π(x) does not depend on any sequence of operations done before and in particular on
whether we have just executed π(x1), π(x2), . . . , π(xm).

▷ Claim 7. (i) If the permutation π is fixed-time, then the result π′ is both key oblivious and
query-oblivious in the weakly with results sense. (ii) If the permutation π is key oblivious,
then the result π′ is key oblivious.

In order to see that (ii) is correct, think of simulating π′ through access to π. Now if there is
an attack on π′ that distinguishes between true timing and timing of some random unrelated
key, then we can apply it to π itself and get the same distinguishing probability, thus violating
the assumption that π is key oblivious.

In order to see that (i) is true, think of composing the permutation π with a random
permutation σ. By the definition of a PRP, this is indistinguishable from the plain π (since
this is the case for a truly random permutation). Now instead of a query x, the query is
effectively σ(x), which makes it into a random unknown value. Given that the implementation
is of π is fixed-time, the only information gained from the timing is the number of applications
of π needed to evaluate π′(x). But given the randomness of σ this is useless information to
distinguish between two queries q′

0 and q′
1 that have not appeared so far and therefore the

construction is query-oblivious.
Note that the construction does not satisfy the key switch requirement of Definition 2,

since once π is fixed, then each element x has a very distinctive number of evaluations of π

needed to compute π′(x). Therefore it is possible to see if the time to compute π′(x) changes
at the potential key switch time.

3 What they proved is that leaking the number of applications of π does not hurt the pseudorandomness
of π′

Y. Ben Dov, L. David, M. Naor, and E. Tzalik 3:13

3.3 Key-oblivious Domain Extension
Pseudo-random functions are a major cryptographic primitive that can be used to efficiently
obtain many other primitives and is very useful in many protocols. One question that comes
up is: given a function family F where each function Fk ∈ F is, say, length preserving,
i.e. Fk : {0, 1}n 7→ {0, 1}n, how does one come up with constructions which are on larger
domains, e.g. {0, 1}2n 7→ {0, 1}n.

The Levin Trick

A common and simple way of obtaining domain extension is to apply a universal hash
function from the larger domain to the smaller one and then apply the PRF. Namely, let Γ
be family of pair-wise independent hash functions s.t. g : {0, 1}2n 7→ {0, 1}n for g ∈ Γ and
Fk be a PRF. Then the extended function is defined as F ′

k,g(x1, x2) = Fk(g(x1, x2)).

▷ Claim 8. Even if Fk is key-oblivious and even if g is fixed time, the resulting construction
may not be key-oblivious.

Proof. Consider the case that Fk is very much not query oblivious. That is, the time to
compute Fk(x) is x. Now suppose that h is defined by two values a1, a2 ∈ GF [2n] (chosen
uniformly at random) and the function is g(x1, x2) = a1x1 + a2x2 where the computation is
over GF [2n]. Given a few examples of pairs (xi

1, xi
2) and the corresponding values F ′

k,g(xi
1, xi

2)
it is possible to reconstruct a1 and a2. Once this is done it is possible to find collisions with
g, i.e. two pairs (x1, x2) and (x′

1, x′
2) s.t. g(x1, x2) = g(x′

1, x′
2). For this pair we will have

that F ′
k,g(x1, x2) = F ′

k,g(x′
1, x′

2). Now if the timing of a random key is given, then this will
not cause a collision in F ′

k,g and therefore there is a way to distinguish correct and incorrect
timings. ◁

Note that this claim shows that key-obliviousness is not necessarily preserved under
composition. In this example both Fk and g are key-oblivious, yet the composition is not.

▶ Corollary 9. There are keyed functions f and g such that given key-oblivious implementa-
tions of f and g the resulting composition f(g(x)) is not key oblvious.

Using CRH and UOWHF

A way to remedy this problem is to use a Collision Resistant Hash (CRH) function, instead
of a combinatorial one used in the original proposal by Levin. Recall that a function h is
a CRH if it is hard to find two different values x and x′ that collide under h, that is, any
collision is considered a violation of the hardness assumption. But this approach (i) Requires
another cryptographic assumption or primitive. Recall that in terms of assumptions, PRFs
can be built from one-way functions in a black-box (BB) manner, whereas CRHs are BB
separated from one-way functions. (ii) May not work with all range of the parameters we are
interested in, since a CRH requires a minimum range size. For instance, the range of the
CRH cannot be 80 bits.

The perhaps surprising observation is that we show that the CRH in the above construction
can be replaced with a Universal One-way Hash Function (UOWHF) [31]. UOWHF (or
second pre-image resistant hash function), are ones where the target x is chosen before the
function is known and the collision should be with the target x. UOWHF can be based on
one-way functions [33, 22]. The idea is to replace each xi with its PRF value. Let h ∈ H

where H is a UOWHF family. Consider the construction

F ′
k,k′,h(x1, x2) = Fk(h(Fk′(x1), Fk′(x2))).

ITC 2024

3:14 Are Your Keys Protected? Time Will Tell

▷ Claim 10. If the implementation of F is key-oblivious, then for any implementation of
the hash function h chosen from a family of UOWHFs, the implementation of F ′ as defined
above is key-oblivious.

The only case we need to worry is if the adversary finds collisions under h. The hardness
properties of h do not guarantee hardness of finding any arbitrary collision, but rather with
one target specified in advance. The idea is that an adversary may ask various queries,
and since we do not assume that Fk is query oblivious and we make no timing assumption
regarding h, then the values of Fk′(x1) are known to the adversary (i.e. they may leak
through the computation of h).

Furthermore, the adversary can mix and match an xi
1 and xj

2 from different queries.
Nevertheless, the values Fk′(xi

b) look random to the adversary. Suppose an adversary makes
m queries to the function Fk′ . At the end of the attack it finds a collision with some pair
(xi

1, xj
2) as one of the inputs with a collision in h (if the colliding pair was never queried

this is even better). Then we can use this adversary as a second pre-image finder: We
select a random value (y1, y2) ∈ {0, 1}2n as the target and then guess i and j and when
xi

1 is given, we plug in y1 as the value of Fk′(xi
1) and similarly for xj

1 we give y2 as the
value of Fk′(xi

2). From the adversary’s point of view this looks like a “normal” instance.
Therefore the probability of selecting i and j correctly is Ω(1/m2) times the probability that
the adversary finds a collision.

Cascading

We show that the cascading domain extension, as analyzed by Bellare, Canetti and
Krawczyk [5] actually preserves key-obliviousness. The length-doubling construction is

F ′
k(x1, x2) = FFk(x1)(x2).

The straightforward implementation of F ′ is to first compute Fk(x1) then take the resulting
value as the key k2 to Fk2(x2) where the time of the second is independent of the time is
took compute the first one.

▷ Claim 11. If the implementation of F is key-oblivious, then the “straightforward”
implementation of F ′ is key-oblivious.

Proof (Sketch). The main issue is that in this construction it is always clear what the query
is. The keys, that keep changing, on the other hand, are not known. Therefore the Bellare et
al. proof can be translated to this setting. Consider the experiment where instead of using
the value Fk(xj

1) and random value is vj is used for the next step (while making sure to use it
consistently) but the timing produced is that of T (Fk(xj

1)) and T (Fvj
(xj

2)) . If it is possible
to distinguish between these two cases, then there is an attack on the key obliviousness of
F . If not, then note that we can view the new construction as a concatenation of many
functions, as argued at the beginning of this section. ◁

▶ Question. A major issue we did not resolve is how not to lose the birthday bound, as was
done in Berman et al. [7] for domain extension without timing. Is it possible to get a similar
result when timing is leaked?

4 Key-Oblivious PRPs on Small Domains

The question of how to generate Pseudo Random Permutations (PRP) has been extensively
investigated for a few decades. Luby and Rackoff [25] (who defined the notion of PRP)
showed how to get a PRP from a PRF. Their construction uses a Feistel network and there

Y. Ben Dov, L. David, M. Naor, and E. Tzalik 3:15

are many variants of it. In their work the security of the construction works provided the
adversary makes at most O(N 1

4) queries, where N is the size of the domain. When the
domain is not very big, such a security guarantee might not be enough, as N

1
4 can be a

feasible amount of queries made. This is also true to refinements of the method, such as
Naor and Reingold [29], who get to N

1
2 . In such cases we might want the security to hold

even if the adversary queries a constant fraction of the domain or even all of the domain but
a constant number of elements.

When the domain is very small, it is possible to generate a fully random permutation,
rather than a PRP. Yet this is undesirable in many cases, since the memory required to
represent a random permutation is Ω(N log N) bits. This memory requirement may be
feasible for small enough N but is infeasible for medium-sized N (e.g. all credit card numbers
or SSNs). We are left with the intermediate case of small, but not too small, domains, so that
explicitly saving a permutation is infeasible, yet the security guarantees of Feistel network
constructions might not suffice. As a concrete example think of the domain of credit card
numbers (16 decimal digits). We refer to PRPs of this intermediate case as small-domain
PRPs.

Small-domain PRPs are useful in a variety of application scenarios, e.g. cryptographic
constructions, as Oblivious RAMs [17, 35], for randomly reordering (permuting) a list of items.
They can also be used to generate pseudorandom unique tokens (e.g., product serial numbers)
in a specific format and to encrypt data in a small domain, such as encrypting a 9-digit
social security number into another 9-digit number. Because of this, a small-domain PRP is
also commonly referred to as a small-domain cipher or format-preserving encryption (FPE).4
FPE has been a useful tool in encrypting financial and personal identification information,
and transparently encrypting information in legacy databases.

In this section we focus on the small domain and show an interesting construction of
PRPs on which is not fixed-time, yet is also secure under some of our definitions. A line
of three works addressed this issue and showed efficient constructions for PRPs on small
domains N with strong security guarantees, based on PRP or PRFs on large domains. The
key observation in these works is one made by Moni Naor (see [34]), that if a card shuffling
algorithm is oblivious, meaning that one can trace the trajectory of a card without attending
to a lot of other cards in the deck, then it gives rise to a computationally feasible PRP.
Therefore we can think of [N] as a deck of cards of size N . All three works we describe start
from this viewpoint on PRPs. The dominant computational resource in these works is the
calls to a PRF on a large domain.

The first work, called “Swap-or-Not Shuffle” (SN) by Hoang, Morris and Rogaway [19]
consists of a sequence of rounds that gradually shuffle the deck. In each round they consider
a random matching of the cards in the deck that matches card X with card X ⊕ K (the
randomness is over the choice of K). Additionally, for each matched pair X, X ⊕ K there is
a random and independent bit b that decides whether to swap the matched pair of cards or
not (these bits are also derived from the key). Hoang et al. [19] proved that applying the
swap-or-not procedure O(log N) times and picking the matching index K for each round at
random and independently suffices as long as at most (1 − ε)N queries were made for any
fixed ε > 0 (notice that this ε affects multiplicatively the number of rounds of swap-or-not
needed to achieve a PRP).

4 Note that the cycle walking technique mentioned in Section 3 does not solve the problem of constructing
a small or medium size PRPs, since it needs a PRP of not much larger size to begin with.

ITC 2024

3:16 Are Your Keys Protected? Time Will Tell

To implement this as a PRP the swap bits along the shuffle b, as well as the K of the
matching should be produced by a PRF (which can be derived from a PRP on large domain
such as AES). This gives a PRP that runs in a fixed time and remains secure as long as
at most (1 − ε)N queries were made for any fixed ε > 0 (notice that this ε affects by a
multiplicative the number of rounds of swap-or-not needed to achieve a PRP). This procedure
is fixed-time provided that the PRFs and XOR operations are implemented in running time
independent on the inputs and keys.

The second work, called “Mix and Cut” by Ristenpart and Yilek [32], aimed to improve
on the number of queries that can be made while keeping the PRP secure. Ristenpart and
Yilek introduced a construction of PRP which runs in a fixed-time of O(log2 N) and achieves
full security, meaning it remains secure even if the entire domain is queried. The Mix and
Cut shuffle works by mixing the deck, cutting it to two equal parts, and mixing each of
them recursively using the Mix and Cut shuffle. In the paper, they also proved that if the
shuffle before each cut mixes the cards well enough (which means the top half and bottom
half is approximately a random partition of the cards), then this procedure achieves full
security. They explicitly showed that the Swap-or-Not shuffle can be used with the ε from
last paragraph being 1

2 to give a fully secure PRP with the Mix and Cut construction.
The third work, called “Sometimes Recurse” (SR) shuffle by Morris and Rogaway [28],

constructed a PRP which runs in expected time of O(log N) and achieves full security. Morris
and Rogaway observed that when the Mix and Cut procedure is called, there is no need
to mix both the top half and the bottom half of the deck. Since the top half looks almost
uniform, it is enough to mix only the bottom half, therefore they suggested to only recurse
on the bottom half of the deck, hence the name sometimes recurse. This construction allows
an improvement on the O(log2 N) of the Mix and Cut shuffle to an expected number of
rounds which is O(log N).

The downside of SR is that it is no longer fixed-time, and in fact the running time is fully
determined by the number of leading 1s in the output. Morris and Rogaway address this
issue by stating that in a very common use of SR an adversary sees the outputs anyway, and
so the running time doesn’t give more information. However it is also the case that keyed
functions, and in particular PRPs, are employed as a subroutine of a larger system (see for
example [3]). In such cases the adversary no longer sees the output, and so the running time
might leak valuable information that can harm the security of the system.

Consider for example if the PRP is used for storing or transmitting some piece of
sensitive information like a vote or a credit card number in a way that should not reveal the
correspondence between the customer or voter and the ciphertext. In this case the adversary
can only get the runtime of the transaction (purchase, vote) which corresponds to the runtime
of the PRP but does not have direct access to the results of the queries. Suppose now that
the adversary does get to see after some time a batch of such ciphertexts and perhaps some
other information about them (say their opening in case of votes, or whether the transaction
was declined for credit cards). If the adversary knows how long each transaction took, then
it can connect the ciphertext and the voter or customer and learn something it should not
have learned. Moreover, the SR scheme is vulnerable to a denial-of-service attack where the
attacker can easily assemble without any query many different ciphertexts that take a long
time to decrypt (by picking those that have long prefixes of ’1’s).

Before analyzing the security of SR we need to specify what we mean by runtime of
SR. We assume that SR construction uses the Swap-or-Not (SN) PRF for each shuffle and
that the Swap-or-Not is implemented in a fixed-time manner. I.e. for any x ∈ {0, 1}log N we
have that the running time of SNk(x) is independent of x and k but is dependent on the

Y. Ben Dov, L. David, M. Naor, and E. Tzalik 3:17

input length log N . We denote this fixed running time of the the Swap-or-Not on log N bit
inputs by Tlog N (SN) := T (SNk(x)) for any x, k. Consequently, by linearity of composition,
the running time of SR on the input x is T (SRk(x)) =

∑j
i=0 T(log N)−i(SN) where j is the

number of leading 1’s in the output, i.e. we assume commands are executed one after the
other on a single unit without branch predictions. We show that the SR construction is not
secure with respect to our definitions in Section 2.

▷ Claim 12. The SR construction is not key-oblivious, i.e. does not satisfy Definition 1 and
hence also is not key-switch oblivious, i.e. does not satisfy Definition 2.

Proof. Recall that by definition of SR, an adversary can determine the number of leading 1s
in the output, from the running time and vice versa. This property of SR gives the following
simple strategy:
1. Choose a single element x and query it to get: SRk0(x) and T (SRkb

(x)).
2. Check the number of leading 1s in SRk0(x), which is T (SRk0(x)) and compare it to the

running time T (SRkb
(x)) (number of calls to SN by SR on x).

3. If T (SRk0(x)) is equal to T (SRkb
(x)), return 0, else return 1.

Observe that the distribution of the number of leading 1s is a Geo(1
2) distribution truncated

at n. Also since the SR shuffle is a PRP, then with constant probability T (SRk0(x)) ̸=
T (SRk1(x)). This gives the adversary a constant advantage in the key-oblivious game
(Definition 1), and therefore the SR PRP is not key-oblivious. Note that by choosing a
polynomial number of inputs x1, . . . , xℓ, the adversary can get a winning advantage that is
exponentially close to 1. ◁

▶ Corollary 13. The SR construction is not (GPRP, 1
2)-time-secure.

Proof. This follows from Remark 25. ◀

▷ Claim 14. The SR construction is not secure with respect to query-obliviousness (Defini-
tion 3) even in the weakly without results sense.

Proof. Observe that in the definition there is no restriction on making queries in one direction,
we assume both forward and inverse queries. By the construction of SR, in the inverse
direction the running time is determined by the number of leading 1′s in the input. This
gives an adversary a very simple attack. First, make an inverse query on the string x which
we define to be half 1′s in the beginning and then half 0′s. Now for the challenge pick x0 to
be the all 0′s string, and x1 the all 1′s string and make inverse queries. If the running time
is faster than that on x, return b = 0; else return b = 1. This gives the adversary a winning
probability of 1 in the game defined in Definition 3. ◁

4.1 JSR: Constructing key-oblivious and query-oblivious PRPs
So far we have seen fixed-time constructions and a non fixed-time construction which is
not secure under our definitions. It begs the question: are there (interesting) constructions
that are not fixed-time, yet are also secure under some of our definitions? We now show
a construction of “SR with a twist”, which: (1) achieves the same expected run time of
O(log N) up to a multiplicative factor of 2, (2) is not fixed-time, and (3) is secure with
respect to Definition 1 and with respect to Definition 3 (assuming we have a fixed-time
implementation of a PRF).

ITC 2024

3:18 Are Your Keys Protected? Time Will Tell

The Proposed Construction: Janus Sometimes Recurse

The construction takes two independent (i.e. with two independent keys) copies of SR on the
same domain [N], where the permutations are denoted by π and σ and the keys by kπ and
kσ, and composes π with σ−1, see Figure 2. This is similar to the approach that Maurer and
Pietrzak [26] used to move from non-adaptive to adaptive PRPs. We call this construction
“Janus Sometimes Recurse” (JSR):

Algorithm 1 JSR(x) with keys kπ and kσ.

1: return σ−1(
π(x)

)
The term “Janus” comes from the Roman god who was depicted as having two faces,

since both the directions (encryption and decryption) are forward looking.

Figure 2 Janus construction on two PRPs.

The intuition for this construction is that while the running time of the forward direction
leaks information about the output, the running time of the inverse is determined by the
input, and so by composing the two we get that the running time of the algorithm both in
the forward direction and in the inverse, is determined by the inner value which is almost
independent of the input and output since π, σ are PRPs.

We now turn to show that (1) JSR is secure with respect to Definition 1 as well as
Definition 3 when the two elements chosen are fresh (were not queried before), i.e., in the
weakly sense, and (2) that it is not secure under Definition 2 even in the relaxed version
when queries cannot repeat after the switch.

We start with a lemma that will help us prove the security of the construction.

▶ Lemma 15. Let π and σ be two PRPs on the same domain D, secure under q queries,
and let (kπ

0 , kπ
1) and (kσ

0 , kσ
1) be two pairs of keys for π and σ respectively, then any PPT

adversary Adv has a negligible advantage over 1/2 in the following game:
1. A random bit b ∈R {0, 1} is chosen.
2. The adversary can make at most j ≤ q queries x1, . . . , xj to the composition of π with σ−1,

either in the forward direction σ−1
kσ

0
◦ πkπ

0
(xi) or in the inverse direction: π−1

kπ
0

◦ σkσ
0
(xi).

3. The adversary gets in addition to the result of each query, the inner result with respect to
b. Namely in the forward direction Adv gets πkπ

b
(xi) and in the inverse direction σkσ

b
(xi).

4. The adversary should output b′ such that b′ = b.

Proof. Consider the distribution where a truly random value that hasn’t appeared in previous
queries is given instead of the inner value either in the case b = 0 or b = 1. We claim that
the truly random distribution is indistinguishable from the distribution of inner values in
both cases of b. Observe that the distribution of a truly random value that hasn’t appeared
in previous queries is the same distribution of the inner value of a composition of two truly
random permutations that agree on the values already seen. Since π and σ are both PRPs,

Y. Ben Dov, L. David, M. Naor, and E. Tzalik 3:19

it follows that this distribution is indistinguishable from the inner value distribution both in
b = 0 and b = 1. By a hybrid argument we get that the inner value distribution with b = 0 is
indistinguishable from the inner value distribution with b = 1 which completes the proof. ◀

▷ Claim 16. Assuming we have a fixed-time implementation of PRFs and the implementation
of the JSR uses it, then the JSR construction is key-oblivious, i.e. secure with respect
to Definition 1.

Proof. The proof follows from Lemma 15 by observing that twice the number of leading 1’s
in πk(x) is exactly the running time for computing σ−1

k ◦ πk(x). Therefore the adversary can
determine the running time of Fk(x) from πk(x). This implies that the advantage of the
adversary in the key-oblivious game is at most the advantage of an adversary in the game
defined in Lemma 15. Since we know that the advantage of an adversary in Lemma 15 is
negligible, we get that the construction is secure with respect to Definition 1. ◁

▷ Claim 17. The JSR construction is not key-switch secure. That is, it does not satisfy Def-
inition 2 even in the relaxed version.

Proof. Since we are interested in PRPs on small domains, this means that the adversary
can query a large fraction or even entire domain apart from a few elements. The main
observation is that the

∑
x∈D T (SRk0(x)) is a constant independent of k0, where the sum is

over the running time of the JSR algorithm.
The strategy for the adversary is to query the entire domain up to a single element l

(last element). By the observation above, this gives the adversary full information about the
timing distribution of the last element. Now the switch happens and the adversary makes
one last query on the remaining element. If the running time the adversary receives is the
running time it expected with respect to k0, then it returns b = 0; otherwise, it returns
b = 1. Since the running time of T (SRk1(l)) is not constant (with non-negligible probability),
then with non-negligible probability T (SRk0(l)) ̸= T (SRk1(l)) and so this strategy gives the
adversary a non-negligible probability of winning. ◁

Finally, we have:

▷ Claim 18. The JSR construction is query-oblivious secure, in the weakly and with results
sense.

Proof. The proof is similar to the proof of Claim 16. By a similar argument as the one in
the proof of Lemma 15, we know that given the inner result of either q′

0 or q′
1, the adversary

cannot tell which query it came from. Since given the inner result, the adversary can get
the running time of the query, we conclude that given the running time T (SRk(q′

b)), the
adversary cannot guess b. ◁

We note that all claims above regarding the JSR construction hold to more general
constructions. The crucial property of SR, from which the claims follow, is that the running
time of the algorithm was fully determined by the output. We summarize:

▶ Theorem 19. Let πk be a PRP for which the running time to compute πk on x is fully
determined by x’s image, i.e. T (πk(x)) = f(πk(x)) for some function f . If the permutation
π is secure under q queries, then the Janus PRP π−1

k0
◦ πk1(x) is a key-oblivious and query-

oblivious PRP secure under q queries.

ITC 2024

3:20 Are Your Keys Protected? Time Will Tell

5 Main Security Theorem, Noticeable Security and Games Definitions

5.1 Defining Noticeable Security and Cryptographic Games
Our goal is to prove that if the implementation of a keyed function is key-oblivious then the
keyed function is time-secure, that is, the keyed function is secure w.r.t. the cryptographic
game in which the adversary has access not only to the relevant oracles but also to the time
it takes the oracle to execute. We show this for cryptographic keyed functions that have
what we call Noticeable Security. Many well-known and useful keyed functions primitives
have noticeable security, such as: (i) digital signatures, (ii) pseudo-random permutations
(PRP), and (iii) indistinguishability of encryptions (either symmetric or not).

We start with defining a cryptographic game. We formulate a cryptographic game as an
interactive game between a principal and an adversary. The principal maintains a state. In
each round of an attack the adversary sends a pair (ai, qi) where qi represents a query to the
keyed function and ai some additional information (for instance, ai could be a bit indicating
whether the adversary wishes to receive the upper half or the lower half of Fk(qi)). The
principal responds with some function of its current state and the query. At the end, the
adversary issues a guess and a tester decides whether to accept or not based on the state of
the principal and the queries made (this determines who won the game).

▶ Definition 20. A cryptographic game GF for a keyed function Fk(x) between a principal
and an adversary is a game defined by three PPT algorithms

(StateTransition, Answer, Tester),

where the first two define the actions of the principal and Tester produces outputs in {0, 1}
and determines who won the game. Specifically, at round i:

Function StateTransition gets as input a state Si−1 and the current query pair issued by
the adversary (ai, qi) and the value of Fk of qi. The new state is Si. In other words Si is
defined by:

Si := StateTransition(ai, qi, Si−1, Fk(qi)).

Answer takes as input the current state (Si) and returns a response CAi to the adversary
(e.g. this may simply be Fk(qi) or some function of it). That is

CAi := Answer(Si).

Tester gets as input all the queries pairs (qi, ai)ℓ
i=1 and states (Si)ℓ

i=1 as well the adver-
sary’s response guess and outputs either 0 or 1. If the output is 1 the adversary wins the
game, otherwise it loses the game.

For an adversary Adv, the game GF is the following:

1. A key k ∼ K is chosen randomly.
2. Learning Phase: for ℓ = poly(n) rounds where at round i:

a. Adv chooses a query qi that depends on q1, . . . , qi−1 as well as CA1, . . . , CAi−1.
b. The principal generates Si := StateTransition(ai, qi, Si−1, Fk(qi)).
c. The principal sends Adv an answer CAi which is a function of Si and i.

3. Guessing Phase: The adversary generates guess.
4. Testing Phase: If Tester((a1, q1), . . . , (aℓ, qℓ), S0, S1, . . . , Sℓ, guess) = 1, then Adv wins the

game and otherwise it loses the game.

Y. Ben Dov, L. David, M. Naor, and E. Tzalik 3:21

Note that Tester does not know the key k, nor does it have query access to Fk, hence the
term noticeable security. Let τ < 1 be a “benign” success probability. If the adversary
cannot win the cryptographic game of a keyed function with probability much better than τ ,
then we say that the keyed function is noticeable secure. Specifically:

▶ Definition 21. Let τ < 1, the “benign” success probability. A keyed function Fk(x) is
(GF , τ)-noticeable-secure if any PPT adversary Adv has probability at most τ + negl(n)
to win the game GF .

As we shall see, classical notions of security can be expressed within the framework of cryp-
tographic games presented above. In Appendix A we demonstrate that indistinguishability
of encryptions, digital signatures, and pseudorandom permutations can each be formulated
in terms of a cryptographic game.

Adding Timing to the Game

Next, we define (GF , τ)-time-secure which intuitively says that the winning probability in
the game GF remains τ + negl(n) even when the adversary gets, not only the answers for the
oracles queries, but also the time it takes for the oracle to execute them. More formally:

▶ Definition 22. Let τ < 1, the “benign” success probability. The implementation of a keyed
function Fk(x) is (GF , τ)-time-secure if any PPT adversary Adv has probability at most
τ + negl(n) to win the game GF with the following modification: in step 2.c of the game GF
as in Definition 20, the principal sends both CAi and the time it takes for the principal to
execute Fk, that is T (Fk(qi)).

Main Theorem: Key Oblivious Implies Time-Security

While key obliviousness suggests that the running time doesn’t disclose significant information
about the key, the security of a keyed function Fk is assessed through GF . Therefore, it’s
imperative that the running times of F don’t significantly aid an attacker in winning GF .
The following theorem establishes that key-obliviousness of a keyed function implies it’s
resistance against timing attacks (w.r.t GF), whenever GF has noticeable security.

▶ Theorem 23. Let Fk be a keyed function that is (GF , τ)-noticeable-secure for τ < 1. If the
implementation of Fk is key-oblivious, then the implementation of Fk is (GF , τ)-time-secure.

We can use the theorem above, in addition to Propositions 28, 30 and 32, in order to
obtain the following corollary:

▶ Corollary 24. The cryptographic schemes: digital signature, pseudo-random permutation
and encryption are (GF , τ)-time-secure with the corresponding τ for each game, provided the
implementation of each scheme is key-oblivious.

▶ Remark 25. In some cases the converse of Theorem 23 holds, meaning that if F is not
(GF , τ)-time-secure, and GF is noticeable, then the implementation of Fk is not key-oblivious.
In particular, in the extended version we prove this fact for PRPs and PRFs.

5.2 Caveat on Key-Oblivious and an Application of Query-Oblivious
It is essential not to abuse Theorem 23 and Corollary 24 and apply them correctly. The point
is that the setting considered assumes that the timing information gained by the adversary
follows the pattern of the timing game (Definition 20). But this may not necessarily be the

ITC 2024

3:22 Are Your Keys Protected? Time Will Tell

case and it could be that the adversary does not know which query q is evaluated by the
implementation of Fk at a given point and the time T (Fk(q)) it takes to compute Fk(q) may
reveal information about q itself and compromise the security of the system.

A case in point is that of indistinguishably of encryption, where following a learning
session an adversary selects a pair of messages (m0, m1) and receives either Fk(m0) or Fk(m1)
and has to make a guess about the value of b where the ciphertext is of mb. We saw in
Proposition 32 that it falls into the framework of noticeable security. But this assumed that
the principal computes both Fk(m0) and Fk(m1) before selecting which one to send. But a
natural version of it is to first select whether to encrypt m0 or m1 and evaluate F only on the
selected point. Thus the time to compute Fk(mb) may reveal which one was selected. Note
that here we have two games that are equivalent in the non-timed version (Definition 20), i.e.
the adversary has exactly the same probability of winning in these two games, but when
considering the timed version (Definition 22) these two games are not equivalent any more,
since there function Fk is called after each query.

So given an implementation of a system, to argue that it is secure in terms of timing,
one must argue that the setting of Definition 20 is the relevant one to the given system.
Requiring the implementation of the encryption to be query-with-result-obliviousness solves
the above situation in the indistinguishability of encryption game. If the implementation is
query-with-result-oblivious, then the two games are equivalent also in the timed version:

▶ Theorem 26. Suppose Fk is a keyed function which is (GIND, τ)-noticeable-secure. If the
implementation of Fk is query-with-results-oblivious, then Fk is also (GIND, τ)-time-secure.

Proof. This is straightforward since the query-with-results-oblivious game is the exact same
game as indistinguishability of encryptions with timing. ◀

To conclude, arguing that the properties of key and query obliviousness are relevant to
a given system is a delicate matter. Key obliviousness is most relevant to systems where
the timing information is exposed for a certain period of time, but then when the attack is
made, there is no leakage. Think of the definition of semantic security of encryption. If the
attacker chooses a distribution on which it is to be tested, the encryption of the challenge
message should be done after the leakage is over (note that it does not fall into the game
framework, since there at any point it is clear what call is made to the keyed function).

On the other hand query obliviousness is relevant when the timing information is leaked
about the message or challenge that is protected.

References
1 José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael

Emmi. Verifying constant-time implementations. In Thorsten Holz and Stefan Savage, editors,
25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12,
2016, pages 53–70. USENIX Association, 2016. URL: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/almeida.

2 Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Survey: Leakage resilience and the bounded
retrieval model. In Kaoru Kurosawa, editor, Information Theoretic Security, 4th International
Conference, ICITS 2009, Shizuoka, Japan, December 3-6, 2009. Revised Selected Papers,
volume 5973 of Lecture Notes in Computer Science, pages 1–18. Springer, 2009. doi:10.1007/
978-3-642-14496-7_1.

3 Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard cuckoo hashing: Constant worst-case
operations with a succinct representation. In 51th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 787–796.
IEEE Computer Society, 2010. doi:10.1109/FOCS.2010.80.

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://doi.org/10.1007/978-3-642-14496-7_1
https://doi.org/10.1007/978-3-642-14496-7_1
https://doi.org/10.1109/FOCS.2010.80

Y. Ben Dov, L. David, M. Naor, and E. Tzalik 3:23

4 Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange, Michael
Meyer, Benjamin Smith, and Jana Sotáková. CTIDH: faster constant-time CSIDH. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):351–387, 2021. doi:10.46586/TCHES.V2021.
I4.351-387.

5 Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revisited: The
cascade construction and its concrete security. In 37th Annual Symposium on Foundations of
Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October, 1996, pages 514–523.
IEEE Computer Society, 1996. doi:10.1109/SFCS.1996.548510.

6 Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers. Format-preserving
encryption. In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors,
Selected Areas in Cryptography, 16th Annual International Workshop, SAC 2009, Calgary,
Alberta, Canada, August 13-14, 2009, Revised Selected Papers, volume 5867 of Lecture Notes
in Computer Science, pages 295–312. Springer, 2009. doi:10.1007/978-3-642-05445-7_19.

7 Itay Berman, Iftach Haitner, Ilan Komargodski, and Moni Naor. Hardness-preserving reductions
via cuckoo hashing. J. Cryptol., 32(2):361–392, 2019. doi:10.1007/s00145-018-9293-0.

8 Arnab Kumar Biswas, Dipak Ghosal, and Shishir Nagaraja. A survey of timing channels and
countermeasures. ACM Comput. Surv., 50(1):6:1–6:39, 2017. doi:10.1145/3023872.

9 John Black and Phillip Rogaway. Ciphers with arbitrary finite domains. In Bart Preneel, editor,
Topics in Cryptology - CT-RSA 2002, The Cryptographer’s Track at the RSA Conference,
2002, San Jose, CA, USA, February 18-22, 2002, Proceedings, volume 2271 of Lecture Notes
in Computer Science, pages 114–130. Springer, 2002. doi:10.1007/3-540-45760-7_9.

10 Jonathan Bootle, Claire Delaplace, Thomas Espitau, Pierre-Alain Fouque, and Mehdi Tibouchi.
LWE without modular reduction and improved side-channel attacks against BLISS. In Advances
in Cryptology - ASIACRYPT 2018, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings,
Part I, volume 11272 of Lecture Notes in Computer Science, pages 494–524. Springer, 2018.
doi:10.1007/978-3-030-03326-2_17.

11 David Brumley and Dan Boneh. Remote timing attacks are practical. In Proceedings of the 12th
USENIX Security Symposium, Washington, D.C., USA, August 4-8, 2003. USENIX Association,
2003. URL: https://www.usenix.org/conference/12th-usenix-security-symposium/
remote-timing-attacks-are-practical.

12 David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest,
and Alan T. Sherman, editors, Advances in Cryptology: Proceedings of CRYPTO ’82, Santa
Barbara, California, USA, August 23-25, 1982, pages 199–203. Plenum Press, New York, 1982.
doi:10.1007/978-1-4757-0602-4_18.

13 Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi. Opportunities and limits of remote
timing attacks. ACM Trans. Inf. Syst. Secur., 12(3):17:1–17:29, 2009. doi:10.1145/1455526.
1455530.

14 Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures
and bimodal gaussians. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology -
CRYPTO 2013. Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science, pages
40–56. Springer, 2013. doi:10.1007/978-3-642-40041-4_3.

15 Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi. Side-channel
attacks on BLISS lattice-based signatures: Exploiting branch tracing against strongswan and
electromagnetic emanations in microcontrollers. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pages 1857–1874. ACM, 2017. doi:10.1145/3133956.3134028.

16 Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM (JACM), 33(4):792–807, 1986.

17 Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams.
Journal of the ACM (JACM), 43(3):431–473, 1996.

18 Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of leakage. SIAM
J. Comput., 44(5):1480–1549, 2015. doi:10.1137/130931461.

ITC 2024

https://doi.org/10.46586/TCHES.V2021.I4.351-387
https://doi.org/10.46586/TCHES.V2021.I4.351-387
https://doi.org/10.1109/SFCS.1996.548510
https://doi.org/10.1007/978-3-642-05445-7_19
https://doi.org/10.1007/s00145-018-9293-0
https://doi.org/10.1145/3023872
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/978-3-030-03326-2_17
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1145/1455526.1455530
https://doi.org/10.1145/1455526.1455530
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1145/3133956.3134028
https://doi.org/10.1137/130931461

3:24 Are Your Keys Protected? Time Will Tell

19 Viet Tung Hoang, Ben Morris, and Phillip Rogaway. An enciphering scheme based on a card
shuffle. In Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in
Computer Science, pages 1–13. Springer, 2012. doi:10.1007/978-3-642-32009-5_1.

20 Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing hardware against
probing attacks. In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003 Proceedings,
volume 2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003. doi:
10.1007/978-3-540-45146-4_27.

21 Yael Tauman Kalai and Leonid Reyzin. A survey of leakage-resilient cryptography. In Oded
Goldreich, editor, Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, pages 727–794. ACM, 2019. doi:10.1145/3335741.3335768.

22 Jonathan Katz and Chiu-Yuen Koo. On constructing universal one-way hash functions
from arbitrary one-way functions. IACR Cryptol. ePrint Arch., page 328, 2005. URL:
http://eprint.iacr.org/2005/328.

23 Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In Advances in Cryptology - CRYPTO ’96, Santa Barbara, California, USA, August
18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer Science, pages 104–113.
Springer, 1996. doi:10.1007/3-540-68697-5_9.

24 Richard J. Lipton and Jeffrey F. Naughton. Clocked adversaries for hashing. Algorithmica,
9(3):239–252, 1993. doi:10.1007/BF01190898.

25 Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM J. Comput., 17(2):373–386, 1988. doi:10.1137/0217022.

26 Ueli M. Maurer and Krzysztof Pietrzak. Composition of random systems: When two weak
make one strong. In Moni Naor, editor, Theory of Cryptography, First Theory of Cryptography
Conference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings, volume
2951 of Lecture Notes in Computer Science, pages 410–427. Springer, 2004. doi:10.1007/
978-3-540-24638-1_23.

27 Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). In
Moni Naor, editor, Theory of Cryptography, First Theory of Cryptography Conference, TCC
2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings, volume 2951 of Lecture Notes
in Computer Science, pages 278–296. Springer, 2004. doi:10.1007/978-3-540-24638-1_16.

28 Ben Morris and Phillip Rogaway. Sometimes-recurse shuffle - almost-random permutations in
logarithmic expected time. In Advances in Cryptology - EUROCRYPT 2014, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science,
pages 311–326. Springer, 2014. doi:10.1007/978-3-642-55220-5_18.

29 Moni Naor and Omer Reingold. On the construction of pseudorandom permutations: Luby-
rackoff revisited. J. Cryptol., 12(1):29–66, 1999. doi:10.1007/PL00003817.

30 Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. SIAM J. Comput.,
41(4):772–814, 2012. doi:10.1137/100813464.

31 Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In David S. Johnson, editor, Proceedings of the 21st Annual ACM Symposium on
Theory of Computing, May 14-17, 1989, Seattle, Washington, USA, pages 33–43. ACM, 1989.
doi:10.1145/73007.73011.

32 Thomas Ristenpart and Scott Yilek. The mix-and-cut shuffle: Small-domain encryption secure
against N queries. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, volume
8042 of Lecture Notes in Computer Science, pages 392–409. Springer, 2013. doi:10.1007/
978-3-642-40041-4_22.

33 John Rompel. One-way functions are necessary and sufficient for secure signatures. In Harriet
Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May
13-17, 1990, Baltimore, Maryland, USA, pages 387–394. ACM, 1990. doi:10.1145/100216.
100269.

https://doi.org/10.1007/978-3-642-32009-5_1
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1145/3335741.3335768
http://eprint.iacr.org/2005/328
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/BF01190898
https://doi.org/10.1137/0217022
https://doi.org/10.1007/978-3-540-24638-1_23
https://doi.org/10.1007/978-3-540-24638-1_23
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-642-55220-5_18
https://doi.org/10.1007/PL00003817
https://doi.org/10.1137/100813464
https://doi.org/10.1145/73007.73011
https://doi.org/10.1007/978-3-642-40041-4_22
https://doi.org/10.1007/978-3-642-40041-4_22
https://doi.org/10.1145/100216.100269
https://doi.org/10.1145/100216.100269

Y. Ben Dov, L. David, M. Naor, and E. Tzalik 3:25

34 Steven Rudich. Limits on the provable consequences of one-way functions. PhD Thesis,
University of California, 1988.

35 Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious ram. arXiv preprint
arXiv:1106.3652, 2011.

A Classical Security Definitions are Noticeable Secure

We now give a few examples of classical security definitions of keyed functions and show how
they fit Definition 20, namely we show they are noticeable secure. Specifically, we show for
digital signatures, pseudo-random permutations, and indistinguishability of encryptions.

▶ Definition 27. (Digital signatures) Let Adv be an adversary in the following game:
1. The principal generates public and secret keys (pk, sk) and shares pk with adversary Adv.
2. Adversary Adv chooses adaptively ℓ = poly(n) messages m1, . . . , mℓ and gives them to the

principal, receiving their signatures

σ1 = Signsk(m1), . . . , σℓ = Signsk(mℓ).

3. Adversary Adv chooses a new message m′ /∈ {m1, . . . , mℓ}. Adversary Adv succeeds if
and only if it can generate σ′ = Signsk(m′) s.t. Vrfypk(m′, σ′) = 1.

A signature scheme Π = (Sign, Vrfy) is existentially unforgeable under an adaptive chosen-
message attack, or just secure, if for all probabilistic polynomial-time adversaries Adv, there
is a negligible function negl such that:

Pr[Adv success] ≤ negl(n).

It is relatively straightforward to phrase the security of digital signatures in the game
framework of Section 5.1. Let GDS be the following cryptographic game:

1. The principal generates public and secret keys (pk, sk) and shares pk with adversary Adv.

S0 = pk

2. Learning phase: For i ∈ [1, ℓ],
a. Adv chooses adaptively a message mi and gives it to the principal.
b. The principal is essentially stateless, i.e. its current state is simply the signature

Signsk(mi) on mi.
c. The answer function is simply to send the full state to the adversary, i.e.

CAi = Si = Signsk(mi).

3. Guessing phase: Adversary Adv chooses a new message m′ /∈ {m1, . . . , mℓ} and calculates

guess = (m′, Signsk(m′)).

4. Testing phase: Tester returns 1 iff m′ is not in {m1, m2, . . . , mℓ} and Vrfypk(guess) = 1.

▶ Proposition 28. A digital signature scheme is secure according to Definition 27 iff it is
(GDS, 0)-noticeable-secure.

Notice that when discussing key-obliviousness for digital signatures the adversary also
knows the corresponding public-key to k0 (but not the one corresponding to k1).

ITC 2024

3:26 Are Your Keys Protected? Time Will Tell

▶ Definition 29. (Strong Pseudo-random Permutations) Let Adv be a probabilistic polynomial-
time adversary in the following game:
1. A key k ∼ K is sampled.
2. A random bit b is sampled.
3. Adv chooses adaptively ℓ = poly(n) queries (x1, s1), . . . , (xℓ, sℓ) where xi is a message

and si ∈ {−1, 1} is the oracle direction. If b = 0 then it receives the values of Ek on each
query

y1 = Es1
k (x1), . . . , yℓ = Esℓ

k (xℓ).

If b = 1 then it receives the values of a random permutation f on each query

y1 = fs1(x1), . . . , yℓ = fsℓ(xℓ).

4. Adversary Adv guesses b′ and wins if b′ = b.
The function Ek is a pseudo-random permutation if for all PPT adversaries Adv as above
there is a negligible function negl such that, for all n,

Pr[b = b′] ≤ 1/2 + negl(n).

Note that a random permutation f can be simulated perfectly by always picking a
random value that has not appeared so far (while being consistent with the values that have
appeared).

As before, it is relatively straightforward to phrase the security of a PRP in terms of a
game of Definition 20. Let the GPRP be:
1. A random key k ∼ K is chosen and the principal chooses a random bit b

S0 = b.

The bit b remains in the state of the principal throughout the game.
2. Learning Phase: For i ∈ [1, ℓ]:

a. Adversary Adv chooses adaptively a query (xi, si) where xi is a message and si ∈ {−1, 1}
is the direction of the permutation (forward or background).

b. The principal state includes the bit b and all the queries
(x1, s1, y1), . . . , (xi−1, si−1, yi−1) values it sent and received. The state transi-
tion gets in addition to the current state the value of Esi

k (xi). If b = 0 then
yi = Esi

k (xi) and if b = 1 then, if xi is equal to any of previous values xj or yj (with
the appropriate sj), then set yi as was the previous response. Else choose yi to be a
random value that has not appeared so far.

c. The answer

CAi = yi.

3. Guessing Phase: Adversary Adv guesses guess := b′.
4. Testing phase: returns 1 and wins if guess = b.

▶ Proposition 30. A strong pseudo-random permutation is secure iff it is (GPRP, 1
2)-noticeable-

secure.

Our final example is indistinguishability of a private-key encryption scheme against chosen
plaintext attacks (the same also works in public-key setting):

Y. Ben Dov, L. David, M. Naor, and E. Tzalik 3:27

▶ Definition 31. (Indistinguishability of encryptions) Let Adv be a PPT adversary in the
following game:
1. A random key k ∼ K is chosen.
2. Adversary Adv chooses adaptively ℓ = poly(n) messages m1, . . . , mℓ and gives them to the

principal, receiving their encryption in the form of ciphertext

C1 = Ek(m1), C2 = Ek(m2), . . . , Cℓ = Ek(mℓ).

3. Adversary Adv then chooses two more messages m′
0 ̸= m′

1 such that |m′
0| = |m′

1| (not
necessarily distinct from the previous messages) and sends them to the principal.

4. The principal chooses randomly b ∈R {0, 1} and sends Ek(m′
b) back to adversary Adv.

5. Adv chooses adaptively another collection of ℓ = poly(n) messages mℓ+1, . . . , mℓ+ℓ and
receives their encryption in the form of ciphertexts

Cℓ+1 = Ek(mℓ+1), . . . , Cℓ+ℓ = Ek(mℓ+ℓ).

6. Adversary Adv guesses b′ and wins if b′ = b.
A private-key encryption scheme is said to have the property of indistinguishablity of en-
cryptions under a chosen-plaintext attack, if for all PPT adversaries Adv as above there is a
negligible function negl such that for all n

Pr[b = b′] ≤ 1/2 + negl(n).

It is relatively straightforward to phrase the security of indistinguishability of encryptions
in the game framework of Section 5.1. Let GIND be the following cryptographic game:
1. A random key k ∼ K is chosen and the principal chooses a random bit b.

S0 = b.

2. Learning Phase:
For each i ∈ [1, ℓ − 1], adversary Adv chooses adaptively a message mi and gives it to
the principal, receiving its encryption in the form of ciphertext

CAi = Si = Ek(mi).

Adversary Adv chooses two more messages mℓ−1 ≠ mℓ such that |mℓ−1| = |mℓ| and
sends them to the principal. The principal calculates

Sℓ−1 = Ek(mℓ−1) and Sℓ = (Ek(mℓ−1), Ek(mℓ), b).

CAℓ−1 = NULL and CAℓ = (Ek(mℓ−1+b),

For each i ∈ [ℓ + 1, 2ℓ], adversary Adv chooses adaptively a message mi and gives it to
the principal, receiving its encryption in the form of ciphertext

CAi = Si = Ek(mi).

3. Guessing phase: Adversary Adv guesses guess = b′

4. Testing phase: returns 1 if guess = b.

▶ Proposition 32. The indistinguishability of encryptions game GIND is secure iff it is
(GIND, 0.5)-noticeable-secure.

ITC 2024

3:28 Are Your Keys Protected? Time Will Tell

B Proof of Theorem 23

Proof. Recall that GF is the cryptographic game of Fk. We prove the theorem in two steps.
We first consider a random-time game of GF , which we denote by GR

F . The random-time
game GR

F is similar to GF , with the following changes: (1) at the beginning of the game a
random key k′ is generated (unrelated to the original key k), and (2) besides receiving CAi

from the principal, the adversary receives the timing information T (Fk′(qi)), which is the
running time it takes for Fk′ (namely, using the random key k′) to be executed on qi. It is
easy to see that the winning probability of GR

F is the same as the winning probability of GF .
To see that, assume adversary AdvGR attacks GR

F . We build adversary AdvG attacking GF .
Adversary AdvG works as follows: it first chooses a random key k′, then for every query qi

from adversary AdvGR, it calculates T (Fk′(qi)) and sends CAi together with T (Fk′(qi)) to
adversary AdvGR. Finally, adversary AdvG returns the guess of adversary AdvGR. From the
description it holds that

Pr[AdvG wins GF] = Pr[AdvGR wins GR
F] ≤ τ + negl.

Now, let GT
F be the game defining the time-security of Fk, namely it is similar to GF but

in addition to CAi, the adversary also receives T (Fk(qi)) from the principal. Let AdvGT be
adversary attacking the game GT

F . We show that if the implementation of Fk is key-oblivious
then

Pr[AdvGT wins GT
F] − Pr[AdvGR wins GR

F] ≤ negl (B.1)

and this will imply

Pr[AdvGT wins GT
F] ≤ τ + negl.

To prove Equation B.1, we assume there exists adversary AdvGT attacking the game GT
F and

we build adversary AdvKO attacking the key-obliviousness of Fk. Adversary AdvKO works as
follows:

Adversary AdvKO receives polynomially many queries qi from adversary AdvGT and sends
them to the principal.
Adversary AdvKO receives from the principal Fk0(qi) and T (Fkb

(qi)) for a random bit b.
Adversary AdvKO sends these Fk0(qi) and T (Fkb

(qi)) to adversary AdvGT.
Adversary AdvGT returns its guess. Adversary AdvKO tests if the guess is correct using
Tester and receives w = Tester(guess). If w = 1, then AdvKO returns b′ = 0 since the
queries were executed on Fk0 . If w = 0, it returns b′ = 1.

Pr[AdvKO wins key-oblivious game] = Pr[b′ = 0|b = 0] · Pr[b = 0] + Pr[b′ = 1|b = 1] · Pr[b = 1]
= Pr[b′ = 0|b = 0] · Pr[b = 0] + (1 − Pr[b′ = 0|b = 1]) · Pr[b = 1]

= Pr[AdvGT wins GT
F] · 0.5 + (1 − Pr[AdvGR wins GR

F) · 0.5

Since Pr[AdvKO wins key-oblivious game] ≤ 0.5 + negl, we get Equation B.1. ◀

Pure-DP Aggregation in the Shuffle Model:
Error-Optimal and Communication-Efficient
Badih Ghazi #

Google Research, Mountain View, CA, USA

Ravi Kumar #

Google Research, Mountain View, CA, USA

Pasin Manurangsi #

Google Research, Bangkok, Thailand

Abstract
We obtain a new protocol for binary counting in the ϵ-DPshuffle model with error O(1/ϵ) and expected
communication Õ

(log n
ϵ

)
messages per user. Previous protocols incur either an error of O(1/ϵ1.5)

with Oϵ(log n) messages per user (Ghazi et al., ITC 2020) or an error of O(1/ϵ) with Oϵ(n2) messages
per user (Cheu and Yan, TPDP 2022). Using the new protocol, we obtained improved ϵ-DPshuffle

protocols for real summation and histograms.

2012 ACM Subject Classification Security and privacy; Security and privacy → Information-theoretic
techniques

Keywords and phrases Differential Privacy, Shuffle Model, Aggregation, Pure Differential Privacy

Digital Object Identifier 10.4230/LIPIcs.ITC.2024.4

1 Introduction

Differential privacy (DP) [11] is a widely accepted notion used for bounding and quantifying
an algorithm’s leakage of personal information. Its most basic form, known as pure-DP,
is governed by a single parameter ϵ > 0, which bounds the leakage of the algorithm.
Specifically, a randomized algorithm A(·) is said to be ϵ-DP if for any subset S of output
values, and for any two datasets D and D′ differing on a single user’s data, it holds that
Pr[A(D) ∈ S] ≤ eϵ ·Pr[A(D′) ∈ S]. In settings where pure-DP is not (known to be) possible,
a common relaxation is the so-called approximate-DP [10], which has an additional parameter
δ ∈ [0, 1]. In this case, the condition becomes: Pr[A(D) ∈ S] ≤ eϵ · Pr[A(D′) ∈ S] + δ.
Understanding the gap between pure- and approximate-DP algorithms is a natural and
fundamental question that has been studied for a variety of analytics tasks (e.g., [23, 6]).
Besides this, pure-DP protocols might be preferable in practice since an approximate-DP
protocol may allow a (very small) non-zero probability of a catastrophic event, e.g., that the
entire database is leaked1.

Depending on the trust assumptions, three models of DP are commonly studied. The
first is the central model, where a trusted curator is assumed to hold the raw data and is
required to release a private output; this goes back to the first work of Dwork et al. [11]
on DP. The second is the local model [13, 11, 22], where each user’s message is required to
be private. The third is the shuffle model [5, 8, 12], where the users’ messages are routed
through a trusted shuffler, which is assumed to be non-colluding with the curator, and which
is expected to randomly permute the messages incoming from the different users (DPshuffle).
Formally, a protocol P = (R, S, A) in the shuffle model consists of three procedures: (i)

1 Indeed, such a catastrophic event can happen in some approximate-DPshuffle protocols proposed in
previous works [18, 19].

© Badih Ghazi, Ravi Kumar, and Pasin Manurangsi;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal; Article No. 4; pp. 4:1–4:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:badihghazi@gmail.com
mailto:ravi.k53@gmail.com
mailto:pasin@google.com
https://doi.org/10.4230/LIPIcs.ITC.2024.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Pure-DP Aggregation in the Shuffle Model

a local randomizer R(·) that takes as input the data of a single user and outputs one or
more messages, (ii) a shuffler S(·) that randomly permutes the messages from all the local
randomizers, and (iii) an analyst A(·) that consumes the permuted output of the shuffler;
the output of the protocol P is the output of the analyst A(·). Privacy in the shuffle model
is defined as follows:

▶ Definition 1 ([8, 12]). A protocol P = (R, S, A) is said to be (ϵ, δ)-DPshuffle if for any input
dataset D = (x1, . . . , xn) where n is the number of users, it holds that S(R(x1), . . . , R(xn))
is (ϵ, δ)-DP. In the case where δ = 0, the protocol P is said to be ϵ-DPshuffle.

For several analytics tasks, low-error algorithms are known in the central model, whereas
such algorithms are known to be impossible in the local model. For these analytic tasks,
low-error algorithms are commonly sought in the shuffle model, since it is more preferable to
trust a shuffler than a central curator. We note that while in this paper we treat the shuffler
as a black box, multiple possible implementations have been considered in the literature
including via secure hardware, mixnets and lightweight cryptographic protocols; see, e.g.,
the discussion in [5].

Interestingly, almost all algorithms studied in the shuffle model are for the approximate-
DP setting. The only exceptions, to the best of our knowledge, are the pure-DP algorithms
of Ghazi et al. [15] and Cheu and Yan [9] for binary summation; we discuss these next.

1.1 Our Contributions
In the binary summation (aka counting) problem, each user i receives an input xi ∈ {0, 1} and
the goal is to estimate

∑
i∈[n] xi. For this well-studied task, the discrete Laplace mechanism

is known to achieve the optimal (expected absolute) error of O(1/ϵ) for ϵ-DP summation
in the central model [21, 14]. Note that this error is independent of the number n of users,
and is an absolute constant for the common parameter regime where ϵ is a constant. In
contrast, the error of any aggregation protocol in the local model is known to be at least on
the order of

√
n [4, 7]. There have been many works that studied aggregation in the DPshuffle

setting including [2, 3, 20, 15, 18, 19, 17, 1]. For pure-DP aggregation, it is known that any
single-message protocol (where each user sends a single message to the shuffler) should incur
error Ωϵ(

√
n) [1]. For multi-message protocols, where each user can send multiple messages

to the shuffler, the best known protocols incur either an error of O(1/ϵ1.5) with O(log n)
messages per user [15] or an error of O(1/ϵ) with O(n2) messages per user [9]. No protocol
simultaneously achieved error O(1/ϵ) and communication O(log n).

In this paper, we obtain an ϵ-DPshuffle algorithm for binary summation, where each user,
in expectation, sends O

(
log n

ϵ

)
one-bit messages; this answers the main open question for

this basic aggregation task.

▶ Theorem 2. For every positive real number ϵ ≤ O(1), there is a (non-interactive) ϵ-
DPshuffle protocol for binary summation with root mean square error O(1/ϵ), where each user
sends O

(
log n

ϵ

)
messages in expectation and each message consists of a single bit.

In fact, similar to the protocol of Cheu and Yan [9], our protocol can get an error that is
arbitrarily close to that of the discrete Laplace mechanism, which is known to be optimal in
the central model for any ϵ > 0; see [21, 14]. We defer the formal statement to Theorem 6.

Before we continue, we note that while the expected number of messages in Theorem 2 is
small (and with an exponential tail), the worst case number of messages is unbounded. This
should be contrasted with an Ωϵ(

√
log n) lower bound in [15] that only applies to the worst

case number of bits sent by a user. We discuss this further in Section 6.

B. Ghazi, R. Kumar, and P. Manurangsi 4:3

Protocols for Real Summation and Histogram

Using known techniques (e.g., [8, 15]), we immediately get the following consequences for
real summation and histogram.

In the real summation problem, each xi is a real value in [0, 1]; the goal is again to
estimate the sum

∑
i∈[n] xi. The protocol in [15] achieves an expected root mean square error

(RMSE) of Õ(1/ϵ1.5); here, each user sends Oϵ(log3 n) messages each of length O(log log n)
bits. By running their protocol bit-by-bit with an appropriate privacy budget split, we get
an algorithm with an improved, and asymptotically optimal, error of O(1/ϵ) while with
expected communication similar to theirs.

▶ Corollary 3. For every positive real number ϵ ≤ O(1), there is a (non-interactive) ϵ-
DPshuffle protocol for real summation with RMSE O(1/ϵ), where each user sends O(log3 n

ϵ)
messages in expectation and each message consists of O(log log n) bits.

A widely used primitive related, though not identical, to aggregation is histogram
computation. In the histogram problem, each xi is a number in [B]; the goal is to estimate
the histogram of the dataset, where the histogram h ∈ ZB

≥0 is defined by hb = |{i ∈ [n] |
xi = b}|. The error of an estimated histogram h̃ is usually measured in the ℓ∞-sense, i.e.,
∥h̃− h∥∞ = maxb∈[B] |hb − h̃b|.

For this task, which has been studied in several papers including [16, 1], the best known
pure-DPshuffle protocol achieved ℓ∞-error O

(
log B log n

ϵ1.5

)
and communication O

(
B log n log B

ϵ

)
bits. By running our (ϵ/2)-DPshuffle protocol separately for each bucket [15, Appendix A],
we immediately arrive at the following:

▶ Corollary 4. For every positive real number ϵ ≤ O(1), there is a (non-interactive) ϵ-
DPshuffle protocol that computes histograms on domains of size B with an expected ℓ∞-error
of at most O

(
log B log n

ϵ

)
, where each user sends O

(
B log n

ϵ

)
messages in expectation and

each message consists of O(log B) bits.

1.2 Technical Overview
We will now briefly discuss the proof of Theorem 2. Surprisingly, we show that a simple
modification of the algorithm from [18] satisfies pure-DP! To understand the modification
and its necessity, it is first important to understand their algorithm. In their protocol, the
messages are either +1 or −1, and the analyzer’s output is simply the sum of all messages.
There are three type of messages each user sends:

Input-Dependent Messages: If the input xi is 1, the user sends a +1 message. Otherwise,
the user does not send anything.
Flooding Messages: These are messages that do not affect the final estimation error. In
particular, a random variable z±1

i is drawn from an appropriate distribution and the user
sends z±1

i additional copies of −1 and z±1
i additional copies of +1. These messages get

canceled when the analyzer computes it output.
Noise Messages: These are the messages that affect the error in the end. Specifically,
z+1

i , z−1
i are drawn independently from an appropriate distribution, and z−1

i additional
copies of −1 and z+1

i additional copies of +1 are then sent.

We note here that the view of the analyzer is simply the number of +1 messages and the
number of −1 messages, which we will denote by V+1 and V−1 respectively.

While [18] show that this protocol is (ϵ, δ)-DP, it is easy to show that this is not ϵ-DP for
any finite ϵ. Indeed, consider two neighboring datasets where X consists of all zeros and X ′

ITC 2024

4:4 Pure-DP Aggregation in the Shuffle Model

consists of a single one and n− 1 zeros. There is a non-zero probability that V+1(X) = 0,
while V+1(X ′) is always non-zero (because of the input-dependent message from the user
holding the single one).

To fix this, we randomize this “input-dependent” part. With probability q, the user sends
nothing. With the remaining probability 1− q, (instead of sending a single +1 for xi = 1
as in [18],) the user sends s + 1 copies of +1 and s copies of −1; similarly, for xi = 0, the
user sends s copies of +1 and s copies of −1. By setting q to be sufficiently small (e.g.,
q = O(1/ϵn)), it can be shown that the error remains roughly the same as before. Furthermore,
when s is sufficiently large (i.e., Oϵ(log n)), we manage to show that this algorithm satisfies
ϵ-DPshuffle. While the exact reason for this pure-DP guarantee is rather technical, the general
idea is similar to [15]: by making the “border” part of the support equal in probabilities in
the two cases, we avoid the issues presented above. Furthermore, by making s sufficiently
large, the input-dependent probability is “sufficiently inside” of the support that it usually
does not completely dominate the contribution from the outer part.

Finally, note that V+1, V−1 involves summation of many i.i.d. random variables
∑

i∈[n] z±1
i ,∑

i∈[n] z+1
i , and

∑
i∈[n] z−1

i . As observed in [18], it is convenient to use infinitely divisible
distributions so that these sums have distributions that are independent of n, allowing for
simpler calculations. We inherit this feature from their analysis.

2 Preliminaries

For a discrete distribution D, let fD denote its probability mass function (PMF). The max-
divergence between distributions D1,D2 is defined as d∞(D1∥D2) := maxx∈supp(D1) ln fD1 (x)

fD2 (x) .
For two distributions D1,D2 over Zd, we write D1 ∗ D2 to denote its convolution, i.e., the

distribution of z1 + z2 where z1 ∼ D1, z2 ∼ D2 are independent. Moreover, let (D)∗n denote
the n-fold convolution of D, i.e., the distribution of z1 + · · ·+ zn where z1, . . . , zn ∼ D are
independent. We write D ⊗D′ to denote the product distribution of D1,D2. Furthermore,
we may write a value to denote the distribution all of whose probability mass is at that value
(e.g., 0 stands for the probability distribution that is always equal to zero).

A distribution D is infinitely divisible iff, for every positive integer n, there exists a
distribution D/n such that D = (D/n)∗n. Two distributions we will use here (both supported
on Z≥0) are:

Poisson Distribution Poi(λ): This is the distribution whose PMF is fPoi(λ)(k) = λke−λ/k!.
It satisfies Poi(λ)/n = Poi(λ/n).
Negative Binomial Distribution NB(r, p): Its PMF is fNB(r,p)(k) =

(
k+r−1

k

)
pr(1− p)k. It

satisfies NB(r, p)/n = NB(r/n, p).
Geometric Distribution Geo(p): A special case of the NB distribution is the geometric
distribution Geo(p) = NB(1, p), i.e., one with fGeo(p)(k) = p(1− p)k.

Finally, we recall that the discrete Laplace distribution DLap(a) is a distribution supported
on Z with PMF fDLap(a)(x) ∝ exp (−a|x|). It is well-known that DLap(a) is the distribution
of z1 − z2 where z1, z2 ∼ Geo(1− exp(−a)) are independent. Furthermore, the variance of
the discrete Laplace distribution is Var(DLap(a)) = 2e−a

(1−e−a)2 .
We will also use the following well-known lemma2:

▶ Lemma 5. For any distributions D1,D2,D3 over Zd, d∞(D1 ∗D3∥D2 ∗D3) ≤ d∞(D1∥D2).

2 This can be viewed as a special case of the post-processing property of DP where the post-processing
function is adding a random variable drawn from D3. Another way to see that this holds is to simply
observe that, for any y ∈ supp(D1 ∗ D2), we have fD1∗D3 (y) =

∑
z∈supp(D3) fD3 (z) · fD1 (y − z) ≤∑

z∈supp(D3) fD3 (z) ·
(
ed∞(D1∥D2) · fD2 (y − z)

)
= ed∞(D1∥D2)fD2∗D3 (y).

B. Ghazi, R. Kumar, and P. Manurangsi 4:5

3 Counting Protocol

In this section, we will describe a pure-DPshuffle algorithm for counting, which is our main
result.

▶ Theorem 6. For any positive real numbers ϵ ≤ O(1) and ρ ∈ (0, 1/2], there is a
(non-interactive) ϵ-DPshuffle protocol for binary summation that has MSE at most (1 +
ρ) · Var(DLap(ϵ)) where each user sends O

(
log(n/ρ)

ϵρ

)
messages in expectation and each

message consists of a single bit.

By setting ρ arbitrarily close to zero, we can get the mean-square error (MSE) to
be arbitrarily close to that of the discrete Laplace mechanism, which is known to be
(asymptotically) optimal in the central model [21, 14]. We can get this guarantee for other
type of errors, e.g., ℓ1-error (aka expected absolute error) as well, but for ease of presentation,
we only focus on the MSE.

Note that Theorem 6 implies Theorem 2 by simply setting ρ to be a positive constant
(say, 0.5).

3.1 Algorithm
In this section we present and analyze our main algorithm for counting (aka binary summa-
tion). To begin, we will set our parameters as follows.

▶ Condition 7. Let λ, ϵ′, ϵ, q ∈ R>0 and s ∈ Z>0. Suppose that the following conditions hold:
ϵ′ < ϵ,
s ≥ 2 ln

(
1

(eϵ−1)q

)
/(ϵ− ϵ′),

λ ≥ eϵ−ϵ′

e(ϵ−ϵ′)/2−1 · s.
We now define the following distributions:
Dnoise = Geo(1− e−ϵ′).
Dflood = Poi(λ).
For x ∈ {0, 1}, Dinput,x supported on Z2

≥0 is defined as

Dinput,x((s + x, s)) = 1− q,

Dinput,x((0, 0)) = q.

Algorithm 1 contains the formal description of the randomizer and Algorithm 2 contains
the description of the analyzer. As mentioned earlier, our algorithm is the same as that of
[18], except in the first step (Line 2). In their work, the protocol always sends a single +1 if
xi = 1 and nothing otherwise in this step. Instead, we randomize this step by always sending
nothing with a certain probability. With the remaining probability, instead of sending a
single +1 for xi = 1, we send s + 1 copies of +1 and s copies of −1 (similarly, we send s

copies of +1 and s copies of −1 in the case xi = 0).

4 Analysis of the Protocol

In this section we analyze the privacy, utility, and communication guarantees of our counting
protocol. Throughout the remainder of this section, we assume the distributions and
parameters are set as in Condition 7; for brevity, we will not state this assumption in our
privacy analysis.

ITC 2024

4:6 Pure-DP Aggregation in the Shuffle Model

Algorithm 1 Counting Randomizer.

1: procedure CorrNoiseRandomizern(xi)
2: Sample (y+1

i , y−1
i) ∼ Dinput,xi

3: Sample z+1
i , z−1

i ∼ Dnoise
/n

4: Sample z±1
i ∼ Dflood

/n

5: Send y+1
i + z+1

i + z±1
i copies of +1, and y−1

i + z−1
i + z±1

i copies of −1

Algorithm 2 Counting Analyzer.

1: procedure CorrNoiseAnalyzerq

2: R← multiset of messages received
3: return 1

1−q

(∑
y∈R y

)

4.1 Privacy Analysis
▶ Lemma 8 (Main Privacy Guarantee). CorrNoiseRandomizer satisfies ϵ-DPshuffle.

To prove the above, we need the following technical lemmas regarding Dnoise,Dflood.

▶ Lemma 9. For every i ∈ Z, fDnoise(i− 1) ≤ eϵ′
fDnoise(i)

Proof. This immediately follows from the PMF definition of Dnoise = Geo(1− eϵ′). ◀

▶ Lemma 10. For every i ∈ Z, (eϵ − 1)q · fDflood(i + s) + eϵ−ϵ′
fDflood(i− 1) ≥ fDflood(i).

Proof. If eϵ−ϵ′
fDflood(i− 1) ≥ fDflood(i), then the statement is clearly true. Otherwise, we

have fDflood(i) > 0 (i.e., i ≥ 0) and eϵ′−ϵ >
fDflood (i−1)

fDflood (i) = i
λ , which implies

0 ≤ i ≤ eϵ′−ϵλ. (1)

We can then bound fDflood (i+s)
fDflood (i) as

fDflood(i + s)
fDflood(i) = λs

(i + 1) · · · (i + s) ≥
λs

(i + s)s

(1)
≥

(
λ

eϵ′−ϵλ + s

)s

≥
(

λ

e(ϵ′−ϵ)/2λ

)s

≥ 1
(eϵ − 1)q ,

where the last two inequalities follow from our assumptions on λ and s respectively (Condi-
tion 7). Thus, in this case, we also have (eϵ−1)q ·fDflood(i+s)+eϵ−ϵ′

fDflood(i−1) ≥ fDflood(i)
as desired. ◀

We are now ready to prove the privacy guarantee (Lemma 8).

Proof of Lemma 8. For any input dataset X. Let V (X) = (V+1, V−1) denote the distribu-
tion of the view of shuffler, where V+1 and V−1 denotes the number of +1 messages and the
number of −1 messages respectively.

Consider two neighboring datasets X = (x1, . . . , xn) and X ′ = (x′
1, . . . , x′

n). Assume
w.l.o.g. that they differ in the first coordinate and x1 = 1, x′

1 = 0 and x′
2 = x2, . . . ,

x′
n = xn. To prove that CorrNoiseRandomizer satisfies ϵ-DPshuffle, we need to prove that

d∞(V (X)∥V (X ′)) ≤ ϵ and d∞(V (X ′)∥V (X)) ≤ ϵ.

B. Ghazi, R. Kumar, and P. Manurangsi 4:7

Let F denote the distribution on Z2 of (X, X) where X ∼ Dflood. Observe that

V (X) = Dinput,1 ∗ Dinput,x2 ∗ · · · ∗ Dinput,xn

∗ F ∗ (Dnoise ⊗ 0) ∗ (0⊗Dnoise),

and

V (X ′) = Dinput,0 ∗ Dinput,x2 ∗ · · · ∗ Dinput,xn

∗ F ∗ (Dnoise ⊗ 0) ∗ (0⊗Dnoise).

Bounding d∞(V (X)∥V (X′))

From Lemma 5, we have

d∞(V (X)∥V (X ′))
≤ d∞(Dinput,1 ∗ (Dnoise ⊗ 0)∥Dinput,0 ∗ (Dnoise ⊗ 0)).

For any i, j ∈ Z, we have

fDinput,1∗Dnoise⊗0(i, j)
= q · fDnoise(i)1[j = 0] + (1− q) · fDnoise(i− s− 1)1[j = s]

≤ q · fDnoise(i)1[j = 0] + (1− q) · eϵ′
fDnoise(i− s)1[j = s]

≤ eϵ (q · fDnoise(i)1[j = 0] + (1− q) · fDnoise(i− s)1[j = s])
= eϵ · fDinput,0∗Dnoise⊗0(i, j),

where the first inequality follows from Lemma 9 and the second inequality follows from Con-
dition 7. Combining the above inequalities, we have d∞(V (X)∥V (X ′)) ≤ ϵ as desired.

Bounding d∞(V (X′)∥V (X))

Again, from Lemma 5, we have

d∞(V (X ′)∥V (X))
≤ d∞

(
Dinput,0 ∗ F ∗ (0×Dnoise)
∥Dinput,1 ∗ F ∗ (0×Dnoise)

)
.

For any i, j ∈ Z, we have

fDinput,0∗F∗(0×Dnoise)(i, j)
= fDinput,0∗F (i, i) · fDnoise(j − i)
= (q · fDflood(i) + (1− q) · fDflood(i− s)) · fDnoise(j − i)

≤ eϵ
(

q · fDflood(i) + (1− q) · e−ϵ′
fDflood(i− s− 1)

)
· fDnoise(j − i)

≤ eϵ (q · fDflood(i) · fDnoise(j − i)
+(1− q) · fDflood(i− s− 1) · fDnoise(j − i + 1))

= eϵfDinput,1∗F∗(0×Dnoise)(i, j),

where the first inequality follows from Lemma 10 and the second inequality follows
from Lemma 9. Combining the above two inequalities, we have d∞(V (X ′)∥V (X)) ≤ ϵ,
concluding our proof. ◀

ITC 2024

4:8 Pure-DP Aggregation in the Shuffle Model

4.2 Utility Analysis
We next analyze the MSE of the output estimate.

▶ Lemma 11. The estimator from Algorithm 2 is unbiased and its MSE is at most(
1

1− q

)2
· (qn + Var(DLap(ϵ′))) .

Proof. Notice that the output estimate is equal to

1
1− q

 ∑
i∈[n]

(y+1
i − y−1

i + z+1
i − z−1

i)

 = 1
1− q

 ∑
i∈[n]

(y+1
i − y−1

i) + Z

 ,

where Z ∼ DLap(ϵ′). It is also simple to verify that E[y+1
i − y−1

i] = (1 − q)xi. Thus, the
estimator is unbiased as desired. Its MSE is equal to

Var

 1
1− q

 ∑
i∈[n]

(y+1
i − y−1

i) + Z

=

(
1

1− q

)2
 ∑

i∈[n]

Var(y+1
i − y−1

i) + Var(DLap(ϵ′))

 .

Next, notice that, if xi = 0, then y+1
i − y−1

i − xi = 0 always. Otherwise, if xi = 1, then
y+1

i − y−1
i − xi = 0 with probability 1 − q and y+1

i − y−1
i − xi = 1 with probability q. As

a result, we have Var(y+1
i − y−1

i) ≤ q. Plugging this into the above inequality yields the
claimed bound on the MSE. ◀

4.3 Communication Analysis
The expected number of bits send by the users can be easily computed as follows.

▶ Lemma 12. The expected number of messages sent by each user is at most 2s + 1 + λ
n +

O
(1

ϵ′n

)
.

Proof. The expected number of bits sent per user is

E[y+1
i + y−1

i] + E[z+1
i + z−1

i] + 2E[z±1
i]

≤ (2s + 1) + 2E[Dnoise]
n

+ E[Dflood]
n

= 2s + 1 + O

(
1

ϵ′n

)
+ λ

n
. ◀

4.4 Putting Things Together: Proof of Theorem 6
Finally, we are ready to prove Theorem 6 by plugging in appropriate parameters and invoke
the previous lemmas.

Proof of Theorem 6. We start by picking ϵ′ = ϵ− 0.01ρ ·min{ϵ, 1}. For this choice of ϵ′, we
have

Var(DLap(ϵ′))
Var(DLap(ϵ)) =

2e−ϵ′

(1−e−ϵ′)2

2e−ϵ

(1−e−ϵ)2

B. Ghazi, R. Kumar, and P. Manurangsi 4:9

≤ 1 + (eϵ−ϵ′ − 1)(1 + e−ϵ′)
1− e−ϵ′

≤ 1 + 3(ϵ− ϵ′) · 2
ϵ′ ≤ 1 + 0.1ρ.

Then, picking

q = 0.1ρ ·min
{

Var(DLap(ϵ))
n

, 1
}

= O
(ρ

ϵ2n

)
,

s ≥ 2 ln
(

1
(eϵ − 1)q

)
/(ϵ− ϵ′) = O

(
log(n/ρ)

ϵρ

)
,

λ ≥ eϵ−ϵ′

e(ϵ−ϵ′)/2 − 1
· s = O

(
log(n/ρ)

ϵ2ρ

)
,

and applying Lemma 8, Lemma 11, and Lemma 12 immediately yields Theorem 6. (Note
that we may assume that ϵ ≥ 1/n; otherwise we can just output zero. Under this assumption,
we have λ/n ≤ O

(
log(n/ρ)

ϵρ

)
as desired for the communication complexity claim.) ◀

5 Non-Asymptotic Comparisons with Previous Work

In this section, we provide concrete non-asymptotic comparisons between our binary summa-
tion protocol and those from previous work [15, 9] for various population sizes n and privacy
parameters ϵ. As we explain in more detail below, our results demonstrate that our protocol
is much more practical than those of previous works.

First, we find that the parameters in the protocol of [15] are impractical; in fact, for
n ≤ 800, 000, their protocol is undefined unless ϵ < 0.01.3 Furthermore, even in the regime
that it is well-defined, their expected communication complexity is provably at least 1000x
ours and their root-mean-square error (RMSE) is probably at least 100x ours. Hence, we
only focus on the comparison between our algorithm and that of [9].

Parameter Setting

For both our algorithm and that of [9], one can achieve RMSE arbitrarily close to that of the
ϵ-DP discrete Laplace mechanism in the central model. (See the parameter ρ in Theorem 6.)
To reduce the parameter space for comparison, we set the parameters so that the RMSE of
these protocols is within 10% of the discrete Laplace mechanism. Given this error target,
we simply use the formulae from Lemma 11 and Condition 7 to optimize for ϵ′, q, λ that
minimizes the expected communication (according to Lemma 12); we use scipy package for
this optimization. For [9]’s algorithm, we set the parameter in an optimistic manner so that
we underestimate the communication required in their protocol4.

3 This is due to the fact that they require their parameter p = 100e100ϵ log(1/(1−e0.1ϵ))
n(1−e0.1ϵ) to be less than one.

Of course, one can run their protocol at a smaller ϵ but this increases the communication and error
even further.

4 Namely, we only set p in their protocol to 0.5/n and do not account for the error from the p-probability
event that the input is randomized. (In their analysis, p should actually be set to q̂/n where q̂ ≤ O(1/n)
is yet another small parameter.)

ITC 2024

4:10 Pure-DP Aggregation in the Shuffle Model

Expected Communication Comparison

We provide a comparison of the expected number of messages sent when fixing ϵ = 1 and
varying n from 1 to 1000 in Figure 1(ii). To summarize, the number of messages of their
protocols grows very quickly and exceed 10 million even when n = 65! This agrees with
theory, which suggests that their communication complexity grows with Õ(n2). Meanwhile,
our protocol has expected number of messages sent less than 600 for the entire range of
10 < n ≤ 100, again agreeing with the theory that our communication grows only with
O

(
log n

ϵ

)
. Moreover, the expected number of messages of our protocol is less than that of

theirs except when n = 1. For clarity, we also provide our protocol’s expected number of
messages in Figure 2(i) for the small n case (1 ≤ n ≤ 103) and in Figure 2(ii) for the large n

case (103 ≤ n ≤ 106). These plots show that the expected number of messages is large for
very small n ≤ 5, in which regime the expected number of messages decrease as n increases.
This regime corresponds to the regime where the communication due to the Poisson noise
dominates. Once the expected number of messages bottoms out, it increases slowly, as
suggested by our theoretical analysis. Finally, we suspect that the curve is not completely
smooth since scipy.optimize.minimize_scalar does not always find the optimum5.

Figure 1 Comparison between the expected number of messages sent in our protocol and in
Cheu–Yan protocol when (i) ϵ = 1 and varying n, (ii) n = 100 and varying ϵ. (Note that the y-axis
is in log-scale.)

Next, we fix n = 100 and vary ϵ. The resulting expected communication is presented in
Figure 1(i). Again, there is a very large (> 10000x) gap between our expected communication
and theirs. Furthermore, these increase roughly as 1/ϵ, as predicted by theory.

Finally, we note that, while we perform comparisons for binary summation, the comparis-
ons would be similar for histogram as well. This is because all protocols are adapted to the
histogram problem by simply running the binary protocol separately for each bucket; thus,
the expected communication simply increases by a factor of B.

6 Conclusions and Open Questions

In this work, we have provided pure-DPshuffle algorithms that achieve nearly optimal errors
for bit summation, real summation, and histogram while significantly improving on the
communication complexity compared to the state-of-the-art. Despite this, there are still a
number of interesting open questions, some of which we highlight below.

5 In particular, the value of s is discrete in our optimization problem, making it harder to optimize for

B. Ghazi, R. Kumar, and P. Manurangsi 4:11

Figure 2 The expected number of messages sent in our protocol when ϵ = 1 for (i) 1 ≤ n ≤ 103,
(ii) 103 ≤ n ≤ 106.

Protocol with a bounded number of messages. As mentioned briefly in Section 1.1,
our protocol can result in an arbitrarily large number of messages per user, although
the expected number is quite small. (In fact, the distribution of the number of messages
enjoys a strong exponential tail bound.) Is it possible to design a pure-DPshuffle protocol
where the maximum number of messages is O

(
log n

ϵ

)
for binary summation?

For this question, we note that a rather natural approach is to modify our protocol
to make its number of messages bounded. Namely, we replace Dnoise

/n and Dflood
/n by a

truncated version of their respective distributions. It turns out that the latter is relatively
simple (e.g., even replacing it with a Bernoulli distribution also works) because we only
require a mild condition in Lemma 10 to hold. On the other hand, for the former, we are
using Lemma 9, which only holds for unbounded distributions. We would like to stress
that we do not know whether replacing Dnoise

/n with a truncated version of the negative
binomial distribution with a “symmetrized” the input dependent part6 violates pure-DP;
however, we do not know how to prove that it satisfies pure-DP either, as the probability
mass function of their convolutions become somewhat unwieldy.
Lower bounds on the expected number of messages. Recall that the communication
lower bound from [15] only applies to the maximum number of messages sent. Is it possible
to prove a communication lower bound on the expected number of messages (even if the
maximum number of messages is unbounded)? We note that the techniques from [15]
does not apply.
More practical protocols. In Section 5, we demonstrated that, while the parameters
from previous work [15, 9] are completely impractical, our result is moderately practical.
However, our pure-DP protocol still requires (expected) communication overhead of 500–
1000x compared to the non-private protocol. Meanwhile, the approximate-DP protocol
of [18] achieves communication overhead of only 1 + o(1) (assuming that δ is not too
small). Due to this, there is still a large gap between the practicality of pure-DP and
approximate-DP protocols. While the lower bound from [15] mentioned in the previous
bullet point strongly suggests that it might not be possible to reduce the communication
required for pure-DP all the way to that of approximate-DP, it remains an important

6 This means that w.p. q we output s copies of both +1 and −1 messages, for both xi = 0 and xi = 1
cases. Without this change, the supports of the two cases are not the same and thus it obviously violates
pure-DP.

ITC 2024

4:12 Pure-DP Aggregation in the Shuffle Model

question to make pure-DP protocol more practical. For example, can we reduce the
communication by a factor of 10 while achieving similar utility and privacy guarantees as
in this work?
Histogram protocol for large B. Our protocol has communication complexity that
grows linearly with B, which is impractical when B is large. Can we get protocol
for histogram whose communication is Oϵ

(
(log n)O(1)) for B = O(n) (while achieving

nearly optimal errors)? For approximate-DPshuffle, a histogram protocol with expected
communication of 1 + Oϵ

(
B(log(n/δ)O(1))

n

)
is known [18]. It would be interesting to

understand if such a protocol exists in the pure-DPshuffle setting.
Generic DPlocal ⇒ DPshuffle transformation for pure-DP? More generally, despite
the rich literature on the shuffle model, most work has focused attention on approximate-
DPshuffle. It would be interesting to expand the existing study to pure-DPshuffle as
well. In our opinion, a main barrier in doing so is that the so-called amplification-
by-shuffling phenomenon does not apply to pure-DP. Recall that the amplification-by-
shuffling theorem [12] roughly states that, if we take any ϵ-DPlocal algorithm and runs it
in the shuffle model, then it immediately becomes (ϵ′, δ′)-DPshuffle where ϵ′ ≪ ϵ for any
non-too-small δ > 0. This means that any DPlocal algorithm translates to approximate-
DPshuffle algorithm with improved privacy; this allows the design of approximate-DPshuffle
algorithms to tap into the vast literature of DPlocal. Unfortunately, it is known that the
amplification-by-shuffling theorem does not hold when we want pure-DPshuffle; see [15]
for an explanation. A natural question here is thus whether we can take any ϵ-DPlocal
algorithm, modify it slightly (while preserving utility) and make it ϵ′-DPshuffle algorithm
for ϵ′ ≪ ϵ. Such a transformation would enable a sort of “amplification-by-shuffling” in
the pure-DPshuffle regime as well.

References
1 Victor Balcer and Albert Cheu. Separating local & shuffled differential privacy via histograms.

In ITC, pages 1:1–1:14, 2020.
2 Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. The privacy blanket of the shuffle

model. In CRYPTO, pages 638–667, 2019.
3 Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. Private summation in the multi-

message shuffle model. In CCS, pages 657–676, 2020.
4 Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed private data analysis: Simultaneously

solving how and what. In CRYPTO, pages 451–468, 2008.
5 Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan, David

Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnés, and Bernhard Seefeld. Prochlo: Strong
privacy for analytics in the crowd. In SOSP, pages 441–459, 2017.

6 Mark Bun, Jelani Nelson, and Uri Stemmer. Heavy hitters and the structure of local privacy.
TALG, 15(4):1–40, 2019.

7 T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Optimal lower bound for differentially private
multi-party aggregation. In ESA, pages 277–288, 2012.

8 Albert Cheu, Adam D. Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev. Distrib-
uted differential privacy via shuffling. In EUROCRYPT, pages 375–403, 2019.

9 Albert Cheu and Chao Yan. Pure differential privacy from secure intermediaries. In TPDP,
2022.

10 Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our
data, ourselves: Privacy via distributed noise generation. In EUROCRYPT, pages 486–503,
2006.

B. Ghazi, R. Kumar, and P. Manurangsi 4:13

11 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In TCC, pages 265–284, 2006.

12 Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and
Abhradeep Thakurta. Amplification by shuffling: From local to central differential privacy via
anonymity. In SODA, pages 2468–2479, 2019.

13 Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting privacy
breaches in privacy preserving data mining. In PODS, pages 211–222, 2003.

14 Quan Geng and Pramod Viswanath. The optimal noise-adding mechanism in differential
privacy. IEEE Trans. Inf. Theory, 62(2):925–951, 2016.

15 Badih Ghazi, Noah Golowich, Ravi Kumar, Pasin Manurangsi, Rasmus Pagh, and Ameya
Velingker. Pure differentially private summation from anonymous messages. In ITC, pages
15:1–15:23, 2020.

16 Badih Ghazi, Noah Golowich, Ravi Kumar, Rasmus Pagh, and Ameya Velingker. On the
power of multiple anonymous messages: Frequency estimation and selection in the shuffle
model of differential privacy. In EUROCRYPT, pages 463–488, 2021.

17 Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. User-level differentially private learning
via correlated sampling. In NeurIPS, pages 20172–20184, 2021.

18 Badih Ghazi, Ravi Kumar, Pasin Manurangsi, and Rasmus Pagh. Private counting from
anonymous messages: Near-optimal accuracy with vanishing communication overhead. In
ICML, pages 3505–3514, 2020.

19 Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Rasmus Pagh, and Amer Sinha. Differentially
private aggregation in the shuffle model: Almost central accuracy in almost a single message.
In ICML, pages 3692–3701, 2021.

20 Badih Ghazi, Pasin Manurangsi, Rasmus Pagh, and Ameya Velingker. Private aggregation
from fewer anonymous messages. In EUROCRYPT, pages 798–827, 2020.

21 Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Universally utility-maximizing
privacy mechanisms. In STOC, pages 351–360, 2009.

22 Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Rashkodnikova, and Adam
Smith. What can we learn privately? In FOCS, pages 531–540, 2008.

23 Thomas Steinke and Jonathan Ullman. Between pure and approximate differential privacy.
Journal of Privacy and Confidentiality, 7(2):3–22, 2016.

ITC 2024

On the Power of Adaptivity for Function Inversion
Karthik Gajulapalli # Ñ

Georgetown University, Washington, DC, USA

Alexander Golovnev # Ñ

Georgetown University, Washington, DC, USA

Samuel King # Ñ

Georgetown University, Washington, DC, USA

Abstract
We study the problem of function inversion with preprocessing where, given a function f : [N] → [N]
and a point y in its image, the goal is to find an x such that f(x) = y using at most T oracle queries
to f and S bits of preprocessed advice that depend on f .

The seminal work of Corrigan-Gibbs and Kogan [TCC 2019] initiated a line of research that
shows many exciting connections between the non-adaptive setting of this problem and other areas of
theoretical computer science. Specifically, they introduced a very weak class of algorithms (strongly
non-adaptive) where the points queried by the oracle depend only on the inversion point y, and
are independent of the answers to the previous queries and the S bits of advice. They showed that
proving even mild lower bounds on strongly non-adaptive algorithms for function inversion would
imply a breakthrough result in circuit complexity.

We prove that every strongly non-adaptive algorithm for function inversion (and even for its
special case of permutation inversion) must have ST = Ω(N log(N) log(T)). This gives the first
improvement to the long-standing lower bound of ST = Ω(N log N) due to Yao [STOC 90]. As a
corollary, we conclude the first separation between strongly non-adaptive and adaptive algorithms
for permutation inversion, where the adaptive algorithm by Hellman [TOIT 80] achieves the trade-off
ST = O(N log N).

Additionally, we show equivalence between lower bounds for strongly non-adaptive data structures
and the one-way communication complexity of certain partial functions. As an example, we recover
our lower bound on function inversion in the communication complexity framework.

2012 ACM Subject Classification Theory of computation → Cryptographic primitives

Keywords and phrases Function Inversion, Non-Adaptive lower bounds, Communication Complexity

Digital Object Identifier 10.4230/LIPIcs.ITC.2024.5

Related Version ECCC Version: https://eccc.weizmann.ac.il/report/2024/054/

Funding This research is supported by the National Science Foundation CAREER award (grant
CCF-2338730).

Acknowledgements We would like to thank Spencer Peters for fruitful discussions on this topic. We
are also grateful to the anonymous reviewers for their helpful comments.

1 Introduction

We study the fundamental problem of function inversion where, given oracle access to a
function f : [N] → [N] and a point y in the image of f , the goal is to find some x such that
f(x) = y.

Clearly, to work for all functions, this would require any algorithm to make at least N − 1
oracle calls. However, to make the problem more interesting, we consider a pair of algorithms
(P, A) that work in two phases. In the first phase, using unlimited computational power,
the pre-processing algorithm P is allowed to analyze the function f and write down S bits
of advice σ ∈ {0, 1}S . Then in the second phase, called the online phase, the algorithm

© Karthik Gajulapalli, Alexander Golovnev, and Samuel King;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal; Article No. 5; pp. 5:1–5:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kg816@georgetown.edu
https://kgajulapalli.org/research.html
mailto:alex.golovnev@gmail.com
https://golovnev.org
mailto:sik29@georgetown.edu
https://samuel-king.org/
https://doi.org/10.4230/LIPIcs.ITC.2024.5
https://eccc.weizmann.ac.il/report/2024/054/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 On the Power of Adaptivity for Function Inversion

A1, given inputs y and σ and at most T oracle queries to f , is required to output x such
that f(x) = y. We informally refer to S and T as space and time, and the goal is to find
algorithms (P, A) for function inversion that minimize S and T . Note that the problem is
trivial when S = N log N or T = N . We are interested in the trade-offs between time and
space when in between these two cases.

This model has received a lot of attention, especially for its applications to cryptanalysis [2,
3, 27, 25], cryptography [18, 14, 15, 31, 28, 11, 12, 8, 9, 17], circuit and data structure lower
bounds [32, 10, 13], algorithms [22, 16], information theory [13], and most recently even
meta-complexity [23, 20].

Function inversion and permutation inversion, a special case of function inversion where f

is a permutation, were initially studied by Hellman [18]. Hellman constructed an elegant
algorithm that inverts any permutation when ST = Ω(N log N). Later Yao [32] showed
that this algorithm was optimal by proving a tight lower bound of ST = Ω(N log N) for
permutation inversion (assuming S = Ω(log N)). For function inversion, Hellman gave an
algorithm that inverts a random function when S2T = Ω̃(N2).2 Fiat and Naor [14] extended
Hellman’s construction, giving an algorithm that inverts any function when S3T = Ω̃(N3).

One key facet of all the upper bounds mentioned above is that the queries made to f are
highly adaptive; i.e., deciding which point A is going to query next depends on the inversion
point y, the advice string σ, and the values of the points queried before. A long-standing
open question has been to see if any of the upper bounds could be made non-adaptive.
This question was extensively studied in [10], and they introduced the notion of strongly
non-adaptive algorithms where the points queried by A are a fixed set depending only on the
inversion point y. This makes the model much weaker compared to even the standard non-
adaptive (weakly non-adaptive) setting where the fixed set of points queried by A is allowed
to depend on the inversion point y and the advice string σ. Upper bounds for non-adaptive
algorithms would be really useful, as they would lead to efficient parallelisation. Perhaps
even more interestingly, lower bounds even in this very weak model would already imply
circuit and communication lower bounds [10] and data structure lower bounds [10, 16, 13].

Indeed, as shown in [10], a lower bound of S = ω(N log N/ log log N) when T = Nε would
imply a circuit lower bound against Boolean circuits of linear size and logarithmic depth, and
thus resolve a long-standing open question due to Valiant [29]. A similar argument shows
that even a lower bound of S = ω(N log N/(log log(T/ log N))) for any T = Ω(log N) would
imply a super-linear circuit lower bound for series-parallel circuits [29, 4, 30].

The only known strongly non-adaptive algorithm is the trivial one where the pre-processing
algorithm stores the value of f at S/ log N points as advice, and the online algorithm queries
the remaining N − S/ log N points, giving S/ log N + T = N . On the other hand, the best
known lower bound for the non-adaptive setting is still ST ≥ Ω(N log N) obtained by Yao’s
compression argument [32] that works even for adaptive algorithms. Hence, it might still be
conceivable that the algorithm by Hellman can be made non-adaptive, which leads us to the
natural question:

Are non-adaptive algorithms for permutation inversion as efficient as adaptive al-
gorithms?

1 We will refer to A as the “online” algorithm, referring to its phase, even though it does not process its
input in a serial fashion as is typical for what are called “online” algorithms.

2 The notation Ω̃(·) and Õ(·) suppresses factors polynomial in log N .

K. Gajulapalli, A. Golovnev, and S. King 5:3

1.1 Our Results
We answer this question in the negative by showing a lower bound of ST = Ω(N log(N) log(T))
for any strongly non-adaptive algorithm for permutation inversion (and, thus, for the more
general problem of function inversion).

▶ Theorem 1. Every strongly non-adaptive algorithm that solves permutation inversion
with S bits of preprocessing and T ≤ N/5 queries must have

S = Ω
(

N log(N) log(T)
T

)
.

Since permutation inversion can be solved adaptively when ST = O(N log N) [18],
Theorem 1 gives us the first separation between adaptive and strongly non-adaptive algorithms
for permutation inversion for every super-constant T . (No separation is possible for constant T

as in this case the problem is maximally hard, S = Ω(N log N), even in the adaptive setting.)
We remark that the result of Theorem 1 begins to bridge the gap between Yao’s bound

and a bound sufficient for a super-linear lower bound for series-parallel circuits. For example,
in the case of T = Θ (log(N) log log(N)), Theorem 1 gives us S = Ω(N), whereas Yao’s
bound gives S = Ω(N/ log log(N)). A bound of S = ω(N log(N)/ log log log log(N)) would
already imply a breakthrough in circuit complexity [10, 29, 4].

The proof of Theorem 1 goes in two steps. First, we show that a compression argument
can be used to get a lower bound on the amount of space required when, for a large enough
set of inversion points, the union of all points queried by the online algorithm is small. In
the following, we abuse notation when X is a set and define φ(X) =

⋃
x∈X

φ(x).

▶ Theorem 2. For every T ∈ N, φ : [N] →
([N]

T

)
, and Y ⊆ [N] such that |Y | < N − |φ(Y)|,

every strongly non-adaptive algorithm that solves permutation inversion with S bits of
preprocessing and the query function φ must have

S ≥ |Y | log(N − |φ(Y)| − |Y |) .

We can now already recover Yao’s lower bound for strongly non-adaptive algorithms by
Theorem 2. To see this, just consider the set X = {1, 2,N/(2T)}. Then |φ(X)| ≤ N/2,
and we get S = Ω((N log N)/T).

This result also achieves optimal lower bounds for a specific subclass of query functions
of interest: query functions which admit some X ⊆ [N] of size |X| = Θ(N) with |X| <

N−|φ(X)|. For example, take the query function φ which queries φ(x) = (x, x+1, . . . , x+T −1
mod N) for each x ∈ [N]. When T ≤ N/4, X = {1, 2, . . . , N/4} witnesses a lower bound of
S = Ω(N log N). We note, however, that such query functions make up a small fraction of
all possible query functions; random φ do not have this property.

To get an improvement over Yao’s bound, our second step involves picking a large enough
set X of size Θ((N log T)/T) with a small enough φ(X). We show the existence of such a
set via the probabilistic method. We start by viewing φ as a left T -regular bipartite graph,
and prove the following graph lemma, where N(X) denotes the neighborhood of the set of
vertices X.

▶ Lemma 3. Let G = (L ⊔ R, E) be an undirected bipartite graph with |L| = |R| = N and
|E| ≤ NT , where T ≤ N/5. Then for large enough n, there exists a subset of vertices X ⊆ L,
such that

|X| ≥ (N log T)/(30T) and

|N (X)| ≤ N − N/T 4/5 .

It is not hard to see that Lemma 3 is tight for a random left T -regular bipartite graph.

ITC 2024

5:4 On the Power of Adaptivity for Function Inversion

1.2 Related Work
In the case of adaptive algorithms, the tight upper bound of ST = O(N log N) for permutation
inversion is due to Hellman [18]. Hellman [18], and Fiat and Naor [14] gave upper bounds of
S2T = Õ(N2) and S3T = Õ(N3) for inverting random and worst-case functions, respectively.
It was recently observed [17] that the algorithm of Fiat and Naor for the worst-case function
inversion can be extended to an upper bound of TS2 max {T, S} = Õ(N3). De, Trevisan and
Tulsiani [11] extended [14] and gave better trade-offs when inverting on only ε-fraction of
the inputs.

The best known strongly non-adaptive algorithm is just the trivial one which achieves
the trade-off S/ log N + T = N . For the case of weakly non-adaptive algorithms, where the
online algorithm gets to see the advice first, there is an algorithm that slightly outperforms
the trivial when S > N [17]. The preprocessing algorithm stores log(N/T) first bits of a
preimage for each y ∈ [N], and the online algorithm queries all of the remaining T options,
which results in S = N log(N/T).

The best lower bound is due to Yao [32], and it works for adaptive permutation inversion
and thus also for function inversion. Moreover, since it works in the adaptive setting, it also
trivially carries over to both the weakly and strongly non-adaptive settings. An alternate
proof was given by Impagliazzo [21], and [15, 31, 11, 12] extend the lower bound to the
setting of randomized algorithms inverting on ε-fraction of inputs.

Even in the case of strongly non-adaptive algorithms, the best known lower bound is still
Yao’s. While no unconditional improvement to Yao’s bound is known prior to this work,
for some restricted models there are better bounds. Barkan, Biham, and Shamir [1] give
a lower bound of S2T = Ω(N2/ log N) for Hellman-type algorithms. Chawin, Haitner and
Mazor [5] prove an adaptive lower bound of S + T log N = Ω(N) when the preprocessing
algorithm P computes a linear function. In the case of weakly non-adaptive algorithms they
show that if the online algorithm A is an affine function over the query points and advice
then S = Ω(N). Moreover they generalize these bounds to prove lower bounds in the case
when A is an affine decision tree. [17] gives tight bounds for guess-and-check algorithms for
weakly non-adaptive function inversion. These bounds are however incomparable to strongly
non-adaptive function inversion (strongly non-adaptive algorithms can’t look at the advice,
but can output a point they haven’t queried). Finally, Dvořák, Koucký, Král and Slívová [13]
prove a conditional lower bound of T = Ω(log N/ log log N), when S = εN log N under the
network coding conjecture.

In the quantum setting, [26, 19, 7, 6] give tight bounds even with quantum advice showing
that Grover’s search is optimal in the setting when S = Õ(

√
N). Any improvement on these

bounds would imply circuit lower bounds as shown in [10].

1.3 Structure of the Paper
In Section 2, we provide the necessary definitions. In Section 3, we prove the main results of
this paper: Theorem 1, Theorem 2 and Lemma 3. We conclude this paper with a discussion
on the equivalence between function inversion and the communication complexity of certain
partial functions in Section 4.

2 Preliminaries

All logarithms are base 2. For a non-negative integer N , by [N] we denote the set {1, . . . , N},
and by ΠN we denote the set of all permutations of [N]. For an undirected graph G = (V, E)
and a subset of its vertices S ⊆ V , N(S) denotes its neighborhood; i.e.,

N(S) := {v ∈ V : ∃u ∈ S s.t. {u, v} ∈ E} .

K. Gajulapalli, A. Golovnev, and S. King 5:5

We will use the following Chernoff bound (see e.g., [24]):

▶ Lemma 4. Let X1, . . . , Xn be independent random variables taking values in {0, 1} and X

denote their sum with µ = E[X]. Then for 0 ≤ ε ≤ 1,

Pr[X ≤ (1 − ε)µ] ≤ exp
(

−ε2µ

2

)
.

2.1 The Permutation Inversion Problem
In the following definitions, let (P, A) be a pair of deterministic algorithms.

▶ Definition 5. We say that
1. (P, A) uses S bits of pre-processing if for all inputs, the output of P has bit-length at

most S.
2. (P, A) makes T queries if for all inputs, Af makes at most T queries to f .

In this paper, we provide lower bounds on permutation inversion, a subproblem of function
inversion. Hence, our lower bounds extend to function inversion as well.

▶ Definition 6. We say that (P, A) solves the permutation inversion problem if for all
π ∈ ΠN and y ∈ [N],

Aπ(P(π), y) = π−1(y) .

We call P the preprocessing algorithm and A the online algorithm.
We say that (P, A) is strongly non-adaptive if the T queries to π made by Aπ depend

only on y and not on the output of P(π) nor the results of previous queries. In such a case,
we can define the query function of Aπ to be φ : [N] →

([N]
T

)
.

For any set X ⊆ [N], we let φ(X) =
⋃

x∈X

φ(x).

3 Non-Adaptive Function Inversion

In this section, we prove our improved lower bound on non-adaptive permutation inversion
and hence function inversion. We start by showing a generic space bound (Theorem 2) that
follows via a compression argument. This already allows us to recover Yao’s lower bound in
the strongly non-adaptive setting. We next introduce a special graph lemma (Lemma 3) on
sparse bipartite graphs that guarantees the existence of a large enough subset of vertices
with a small neighborhood. Finally, combining these two together, we get our improved lower
bound (Theorem 1).

▶ Theorem 2. For every T ∈ N, φ : [N] →
([N]

T

)
, and Y ⊆ [N] such that |Y | < N − |φ(Y)|,

every strongly non-adaptive algorithm that solves permutation inversion with S bits of
preprocessing and the query function φ must have

S ≥ |Y | log(N − |φ(Y)| − |Y |) .

Proof. Let (P, A) be a strongly non-adaptive algorithm for permutation inversion with query
function φ that uses S bits of preprocessing. Let X ⊆ [N] be such that |X| < N − |φ(X)|.
For ease of notation, we define φ(X) := [N] \ φ(X). Because |X| < N − |φ(X)| = |φ(X)|,
there exist injective functions from φ(X) to [N] \ X. Fix τ to be any such function, and let

ITC 2024

5:6 On the Power of Adaptivity for Function Inversion

P = {π ∈ ΠN : π|φ(X) = τ}; in particular, for any two π1, π2 ∈ P , π1|φ(X) = π2|φ(X). Then
by construction, we have that for each π ∈ P , π−1(X) ⊆ φ(X). We now pick a maximal
subset Q ⊆ P such that for every distinct π1, π2 ∈ Q, π−1

1 |X ̸= π−1
2 |X . Thus,

|Q| =
(

|φ(X)|
|X|

)
· |X|! = |φ(X)|!

(|φ(X)| − |X|)!
≥ (|φ(X)| − |X|)|X| .

Assume for the sake of contradiction that 2S < |Q|. Then by the pigeon hole principle,
there exist two distinct π1, π2 ∈ Q such that P(π1) = P(π2). This implies that for all
i ∈ X, Aπ1(P(π1), i) = Aπ2(P(π2), i), since by construction π1|φ(X) = π2|φ(X). This is
a contradiction, as we know there exists some i ∈ X for which π−1

1 (i) ̸= π−1
2 (i). Hence,

2S ≥ |Q| ≥ (|φ(X)| − |X|)|X|, and S ≥ |X| log(|φ(X)| − |X|). ◀

From this, we can get a lower bound on the size of the preprocessed advice for any query
function φ which has a large X with small φ(X). In the following lemma, we show that all
query functions (viewed as bipartite graphs) admit such a subset X.

▶ Lemma 3. Let G = (L ⊔ R, E) be an undirected bipartite graph with |L| = |R| = N and
|E| ≤ NT , where T ≤ N/5. Then for large enough n, there exists a subset of vertices X ⊆ L,
such that

|X| ≥ (N log T)/(30T) and

|N (X)| ≤ N − N/T 4/5 .

Proof. When d ≤ 32, we can take X ⊆ L simply to be the subset of (n log d)/(30d) vertices on
the left with the smallest degrees. Then we have |N(X)| ≤ d · |X| = (n log d)/30 < n−n/d4/5.
Thus, in the following, assume d ≥ 33.

To prove the existence of such a subset X, we will first pick a random subset X of vertices
from L. We will then bound the probability of X being small or having a large neighborhood
away from 1. This will imply the existence of a set of X that satisfies both conditions of our
lemma.

Let p = (log d)/(3d) ∈ (0, 1), and let each vertex a ∈ L be in X independently with
probability p. We now compute the probability of our two bad events. First, to bound the
probability of picking a small X, we can apply a Chernoff Bound (Lemma 4) to get that
Pr

[
|X| ≤ pn

10
]

≤ e−0.405pn < e−pn/3.
Now, to get a bound on the probability that the size of the neighborhood N(X) is close

to n, let us first compute the expected size of N(X):

E [|N(X)|] =
∑
b∈R

Pr[b ∈ N(X)]

= n −
∑
b∈R

Pr[b ̸∈ N(X)] . (1)

The probability that b ̸∈ N(X) is the probability that none of the vertices a ∈ N(b) were
picked in X; i.e., Pr[b ̸∈ N(X)] = (1 − p)|N(b)|. Substituting into Equation (1) we get

E [|N(X)|] = n −
∑
b∈R

(1 − p)|N(b)|

≤ n − n (1 − p)
1
n

∑
b

|N(b)| (2)

≤ n − n (1 − p)d
, (3)

K. Gajulapalli, A. Golovnev, and S. King 5:7

where Equation (2) follows from the AM-GM inequality and Equation (3) follows from
the fact that G has at most dn edges. Note that for d > 1 and p = (log d)/(3d), we have
0 < p < 1/4. From this, we get for all d ≥ 33

(1 − p)d ≥ e−d(p+p2)

≥ e−d(p+ p
4)

= e− 5pd
4

= d− 5 log e
12

>
2

d4/5 .

Now we can conclude E [|N(X)|] < n − 2n/d4/5. With an upper bound on the expected size
of N(X), we apply Markov’s inequality to get

Pr
[
|N(X)| > n − n

d4/5

]
<

n − 2n/d4/5

n − n/d4/5

= 1 − 1
d4/5(1 − 1/d4/5)

≤ 1 − d−4/5 .

A union-bound over the probability of the two bad events happening gives

Pr
[
|X| <

pn

10 or |N(X)| > n − n

d4/5

]
< 1 − d−4/5 + e−pn/3 . (4)

Now, because d ≤ n/5, d ≤ (5 log e)n/36 and hence 4/5 ≤ (n log e)/(9d). This gives us
d4/5 ≤ d(n log e)/(9d) = epn/3. From this, we can conclude that the probability in Equation (4)
is strictly less than 1. This implies that there exists some X ⊆ L with |X| ≥ pn/10 and
|N(X)| ≤ n − n/d4/5. ◀

Now by combining Theorem 2 and Lemma 3, we get our main result.

▶ Theorem 1. Every strongly non-adaptive algorithm that solves permutation inversion
with S bits of preprocessing and T ≤ N/5 queries must have

S = Ω
(

N log(N) log(T)
T

)
.

Proof. If T < 3, then take T = 3 by making more queries, and the following lower bound
still holds. So, without loss of generality assume that 3 ≤ T ≤ N/5.

Consider the bipartite graph of left-degree T defined by φ on (L ⊔ R, E), where L =
{ℓ1, . . . , ℓN }, R = {r1, . . . , rN }, and for every i ∈ [N] and j ∈ φ(i) we have {ℓi, rj} ∈ E.
Now let X ⊆ [N] be the set guaranteed to exist by Lemma 3, so |X| = ⌈N log(T)/(30T)⌉ and
|φ(X)| ≤ N − N/T 4/5. Note that for all T > 0, log T < 15T 1/5, so N log T/(15T) < N/T 4/5.
Thus, |X| < |φ(X)|. Therefore, by Theorem 2, S ≥ |X| log(|φ(X)| − |X|). Note that

|φ(X)| − |X| ≥ N

T 4/5 − N log(T)
30T

= N

T 4/5

(
1 − log(T)

30T 1/5

)
≥ N

2T 4/5

for T > 0. Thus, we have

S ≥ N log(T)
30T

log
(

N

2T 4/5

)
≥ N log(T)

30T
log

(
N1/5

2

)
= Ω

(
N log(N) log(T)

T

)
. ◀

ITC 2024

5:8 On the Power of Adaptivity for Function Inversion

4 Connections to Communication Complexity

In this section, we discuss an alternate approach to proving lower bounds for strongly non-
adaptive function inversion via communication complexity. This approach generalizes to
other strongly non-adaptive data structure problems.

Let (P, A) be a strongly non-adaptive algorithm for permutation inversion. We say
that two permutations π, τ conflict under a query function φ if there exists an i such that
π−1(i) ̸= τ−1(i) and for every j ∈ φ(i), π(j) = τ(j). Hence, to distinguish two conflicting
permutations, we must have P(π) ̸= P(τ). Now consider the following promise equality
problem (PromEQφ).

▶ Definition 7. For a given query function φ : [N] →
([N]

T

)
, PromEQφ is the following

promise decision problem. Given two permutations π, τ ∈ ΠN such that either π = τ or π

and τ conflict under ϕ, decide which one of the two conditions holds.

For a (promise) problem f , let CC1(f) denote the one-way deterministic communication
complexity of f . We then observe that CC1(PromEQφ) is the minimum amount of space
needed for preprocessing to solve permutation inversion using the query function φ. On one
hand, given a strongly non-adaptive algorithm (P, A), in the communication protocol Alice
can send Bob P(π). To verify, Bob just checks if P(π) = P(τ). When π = τ , equality is
preserved. Otherwise, when π and τ conflict we are guaranteed to have P(π) ̸= P(τ). On the
other hand, assume that we have a one-way communication protocol for PromEQφ, and let
σπ be the message Alice sends to Bob when she receives π as input. We can then construct
an algorithm (P, A) for permutation inversion, where P(π) = σπ. By the correctness of our
communication protocol, we are guaranteed that there are no two conflicting permutations
which share the same message σπ. Hence, A can identify the inverse of the given point from
σπ and the points it queries. In particular, the question of understanding the complexity of
strongly non-adaptive function inversion is equivalent to the following question.

▶ Open Problem 8. Find the minimum one-way deterministic communication complexity
of PromEQφ among all φ : [N] →

([N]
T

)
,

min
φ : [N]→([N]

T)
CC1(PromEQφ) .

Note that each PromEQφ problem is a “subproblem” of equality (the accept sets of
PromEQφ and equality are identical, and the reject set of PromEQφ is a subset of the reject
set of equality). Recall that while equality admits an efficient randomized communication pro-
tocol, it has maximum deterministic communication complexity. Thus, to prove a polynomial
lower bound for PromEQφ via a reduction from some known problem, the reduction must
be deterministic. Moreover, the problem we reduce from must admit an efficient randomized
communication protocol, while being sufficiently hard for any deterministic protocol.

4.1 Recovering our improved bound
To illustrate this approach, we now demonstrate how our main result (Theorem 1) can be
obtained in this communication complexity framework. Given the discussion above, Theorem 1
is equivalent to proving a lower bound of CC1(PromEQφ) = Ω(N log(N) log(T)/T) for all
φ : [N] →

([N]
T

)
. In order to do this, we first introduce an auxiliary promise problem

PermEQk,Σ which checks equality of k-permutations over an alphabet Σ.

K. Gajulapalli, A. Golovnev, and S. King 5:9

▶ Definition 9. For a given alphabet Σ and k ≤ |Σ|, PermEQk,Σ is the following promise
decision problem. Given two k-permutations of Σ (strings of length k with distinct characters),
decide if they are equal or not.

In order to get a lower bound on CC1(PromEQφ), we reduce PermEQk,Σ to PromEQφ;
then known lower bounds on CC1(PermEQk,Σ) extend to CC1(PromEQφ). The following
is a sketch of this reduction: Given some φ, we use Lemma 3 to get a large X ⊆ [N] with
small φ(X). Then we take Σ = φ(X) and k = |X|. Now given α, a k-permutation of
Σ, we construct πα, a permutation of [N], where πα maps α to X and φ(X) to [N] \ X.
In particular, πα|φ(X) does not depend on α. Then it is not hard to see that for distinct
k-permutations α and β of Σ, πα and πβ conflict. Thus, in the reduction from PermEQk,Σ
to PromEQφ, Alice and Bob first construct πα and πβ from their inputs α and β and then
run the protocol for PromEQφ. The lower bound then follows from the known lower bound
of CC1(PermEQk,Σ) ≥ Ω(k log |Σ|).

References
1 Elad Barkan, Eli Biham, and Adi Shamir. Rigorous bounds on cryptanalytic time/memory

tradeoffs. In CRYPTO, 2006.
2 Alex Biryukov and Adi Shamir. Cryptanalytic time/memory/data tradeoffs for stream ciphers.

In ASIACRYPT, 2000.
3 Alex Biryukov, Adi Shamir, and David Wagner. Real time cryptanalysis of A5/1 on a PC. In

FSE, 2001.
4 Chris Calabro. A lower bound on the size of series-parallel graphs dense in long paths. In

ECCC, 2008.
5 Dror Chawin, Iftach Haitner, and Noam Mazor. Lower bounds on the time/memory tradeoff

of function inversion. In TCC, 2020.
6 Kai-Min Chung, Siyao Guo, Qipeng Liu, and Luowen Qian. Tight quantum time-space

tradeoffs for function inversion. In FOCS, 2020.
7 Kai-Min Chung, Tai-Ning Liao, and Luowen Qian. Lower bounds for function inversion with

quantum advice. In ITC, 2020.
8 Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. Non-uniform bounds in the random-

permutation, ideal-cipher, and generic-group models. In CRYPTO, 2018.
9 Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John Steinberger. Random oracles and

non-uniformity. In Eurocrypt, 2018.
10 Henry Corrigan-Gibbs and Dmitry Kogan. The function-inversion problem: Barriers and

opportunities. In TCC, 2019.
11 Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks against

one-way functions and PRGs. In CRYPTO, 2010.
12 Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks in the concrete: Random

oracles with auxiliary input, revisited. In EUROCRYPT, 2017.
13 Pavel Dvořák, Michal Koucký, Karel Král, and Veronika Slívová. Data structures lower bounds

and popular conjectures. In ESA, 2021.
14 Amos Fiat and Moni Naor. Rigorous time/space tradeoffs for inverting functions. In STOC,

1991.
15 Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic cryptographic

constructions. In FOCS, 2000.
16 Alexander Golovnev, Siyao Guo, Thibaut Horel, Sunoo Park, and Vinod Vaikuntanathan.

Data structures meet cryptography: 3SUM with preprocessing. In STOC, 2020.
17 Alexander Golovnev, Siyao Guo, Spencer Peters, and Noah Stephens-Davidowitz. Revisiting

time-space tradeoffs for function inversion. In CRYPTO, 2023.

ITC 2024

5:10 On the Power of Adaptivity for Function Inversion

18 Martin Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory, 26(4):401–
406, 1980.

19 Minki Hhan, Keita Xagawa, and Takashi Yamakawa. Quantum random oracle model with
auxiliary input. In ASIACRYPT, 2019.

20 Shuichi Hirahara, Rahul Ilango, and Ryan Williams. Beating brute force for compression
problems. In STOC, 2024.

21 Russell Impagliazzo. Relativized separations of worst-case and average-case complexities for
NP. In CCC, 2011.

22 Tsvi Kopelowitz and Ely Porat. The strong 3SUM-INDEXING conjecture is false.
arXiv:1907.11206, 2019.

23 Noam Mazor and Rafael Pass. The non-uniform perebor conjecture for time-bounded
Kolmogorov complexity is false. In ITCS, 2024.

24 Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization and probabil-
istic techniques in algorithms and data analysis. Cambridge university press, 2017.

25 Arvind Narayanan and Vitaly Shmatikov. Fast dictionary attacks on passwords using time-
space tradeoff. In CCS, 2005.

26 Aran Nayebi, Scott Aaronson, Aleksandrs Belovs, and Luca Trevisan. Quantum lower bound
for inverting a permutation with advice. Quantum Inf. Comput., 15(11-12):901–913, 2015.

27 Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. In CRYPTO, 2003.
28 Dominique Unruh. Random oracles and auxiliary input. In CRYPTO, 2007.
29 Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In MFCS, 1977.
30 Emanuele Viola. On the power of small-depth computation. Found. Trends Theor. Comput.

Sci., 5(1):1–72, 2009.
31 Hoeteck Wee. On obfuscating point functions. In STOC, 2005.
32 Andrew Chi-Chih Yao. Coherent functions and program checkers. In STOC, 1990.

Information-Theoretic Single-Server PIR in the
Shuffle Model
Yuval Ishai #

Technion, Haifa, Israel

Mahimna Kelkar #

Cornell University, New York, NY, USA

Daniel Lee #

MIT, Cambridge, MA, USA

Yiping Ma #

University of Pennsylvania, Philadelphia, PA, USA

Abstract
We revisit the problem of private information retrieval (PIR) in the shuffle model, where queries can
be made anonymously by multiple clients. We present the first single-server PIR protocol in this
model that has sublinear per-client communication and information-theoretic security. Moreover,
following one-time preprocessing on the server side, our protocol only requires sublinear per-client
computation. Concretely, for every γ > 0, the protocol has O(nγ) communication and computation
costs per (stateless) client, with 1/poly(n) statistical security, assuming that a size-n database is
simultaneously accessed by poly(n) clients. This should be contrasted with the recent breakthrough
result of Lin, Mook, and Wichs (STOC 2023) on doubly efficient PIR in the standard model, which
is (inherently) limited to computational security.

2012 ACM Subject Classification Security and privacy → Information-theoretic techniques

Keywords and phrases Private information retrieval, Shuffle model

Digital Object Identifier 10.4230/LIPIcs.ITC.2024.6

Related Version Full Version: https://eprint.iacr.org/2024/930

Funding This research was supported by a Google faculty grant. Yuval Ishai was additionally
supported by ERC Project NTSC (742754), BSF grants 2018393 and 2022370, ISF grant 2774/20,
and ISF-NSFC grant 3127/23. Mahimna Kelkar and Yiping Ma were partially supported by
a Technion research scholarship. Yiping Ma was also supported by a Microsoft Research PhD
Fellowship.

1 Introduction

A private information retrieval (PIR) protocol [15,36] allows a client to fetch an entry from
a database server without revealing which entry was fetched. Specifically, the server holds a
database x = (x1, . . . , xn) consisting of n bits (or generically, n symbols over an alphabet Σ)
while the client holds an index i ∈ {1, . . . , n}; the client wishes to obtain xi while hiding i

from the server.
PIR protocols have been broadly studied in two flavors: information-theoretic and

computational. Information-theoretic protocols provide security against computationally
unbounded adversaries and do not require “cryptographic” computations. Unfortunately,
non-trivial information-theoretic PIR (with less than n bits of communication) is impossible
given only one server [15]. Consequently, PIR protocols in this setting need database
replication across two or more non-colluding servers. This poses challenges for deployment
since the cost of managing multiple storage spots is high when databases are large (e.g.,
synchronization, monetary cost), and enforcing non-collusion on the database servers is

© Yuval Ishai, Mahimna Kelkar, Daniel Lee, and Yiping Ma;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal; Article No. 6; pp. 6:1–6:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yuvali@cs.technion.ac.il
mailto:mahimna@cs.cornell.edu
mailto:lee_d@mit.edu
mailto:yipingma@seas.upenn.edu
https://doi.org/10.4230/LIPIcs.ITC.2024.6
https://eprint.iacr.org/2024/930
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Information-Theoretic Single-Server PIR in the Shuffle Model

hard in practice, especially when the data is owned by a single entity (e.g., a company). In
contrast, computational PIR can work when only one server holds the database but only
provides security against polynomial-time adversaries due to its reliance on cryptographic
hardness assumptions (e.g., quadratic residuosity, learning with errors). Furthermore, the
associated cost is typically high due to expensive cryptographic operations at the server
– indeed, existing single-server protocols [3, 5, 6, 17, 29, 38] are significantly less efficient in
practice than the multi-server information-theoretic ones [26,27].

The shuffle model: PIR with many clients. Achieving the best of both worlds, as afore-
mentioned, is not possible in the standard model without using n bits of communication.
To circumvent this barrier, Ishai, Kushilevitz, Ostrovsky and Sahai [32] proposed a relaxed
model, where many clients (with arbitrarily correlated indices) simultaneously query a single
server, but the clients are granted the ability to make anonymous queries to the server.
Abstractly, we can think of the queries as being shuffled before reaching the server.

Specifically, consider a client using a multi-server PIR query algorithm to generate
sub-queries for a query index. If these sub-queries were naively sent to a single server, the
server would immediately learn the query index of this client. However, this work and [32]
show the power of shuffling: if there are many clients and their sub-queries are randomly
permuted by a shuffler before being sent to the server, then it is hard for the server – even
one that is computationally unbounded as we show in this work – to figure out any of the
client-query indices. Therefore, this single server in the shuffle model can simply perform
“cheap” operations of the multi-server PIR scheme to answer sub-queries.

Understanding the shuffle model in the context of PIR is well-motivated by real-world
applications: databases with high-volume queries, such as stock quotes and search engines,
naturally enjoy the feature that thousands of users access the databases at the same time, and
therefore considering PIR with many simultaneously querying clients is sensible, particularly
if it allows for cheaper server cost. Note that this is a substantially different goal from batch
PIR [28,31] which amortizes the cost of multiple queries from a single client.

The shuffle model has been considered also in problems orthogonal to PIR, including
secure aggregation [8, 23,32] and differential privacy [4, 10,13,14,22]. Analogously to these
works, we view shuffling as an atomic operation; existing literature on differential privacy [8]
and anonymity [1,18,30,37,41] discusses how to implement shuffling efficiently (see details in
Section 1.2).

The shuffle PIR model opens a promising direction toward constructing efficient single-
server PIR protocols. In this work, we establish the theoretical feasibility of non-trivial
single-server PIR with information-theoretic security in the shuffle model.

1.1 Our Results
This paper aims to develop a formal understanding of PIR in the shuffle model from a
theoretical perspective. We briefly detail our results below.

Information-theoretic single-server PIR in the shuffle model (Sections 5 and 6). We
present the first construction for single-server PIR in the shuffle model that has sublinear
communication and information-theoretic security (with inverse-polynomial statistical error).
Moreover, our construction is also doubly efficient: following one-time preprocessing on the
server side, and without any state information on the client side, the server’s per-query
computation is sublinear in the database size.

Y. Ishai, M. Kelkar, D. Lee, and Y. Ma 6:3

▶ Theorem 1 (Informal). For every constant 0 < γ < 1 , there exists a single-server PIR
protocol in the shuffle model such that, on database of size n, and following one-time prepro-
cessing on the server side, the protocol has O(nγ) per-query computation and communication,
and O(n1+γ/2) server storage. This is achieved with the following information-theoretic
security guarantee: for any inverse polynomial ϵ = 1/p1(n), there exists a polynomial
p2(n) = O(n1+4/γ · (p1(n))8) such that the protocol has ϵ-statistical security as long as the
total number of queries made by (uncorrupted) clients is at least p2(n).

As a key technique, we describe a generic inner-outer paradigm that composes together two
standard (multi-server) PIR protocols: an outer and an inner layer, to build a PIR protocol
in the shuffle model. Besides, our results are robust against imperfect shuffling/anonymity
(details in the full version).

While the above protocol only achieves inverse-polynomial (rather than negligible) se-
curity error, this is in fact the standard notion of security in several important settings,
including differential privacy [19,21], secure computation with partial fairness [16,24,39], and
secure computation over one-way noisy communication [2]. Our protocol demonstrates that
information-theoretic security is indeed feasible without database replication. Moreover, while
concrete efficiency is not the focus of this work, we believe that our approach has potential
for reducing the cost of standard-model PIR when properly combined with single-server
schemes and settling for a constant-factor cost reduction that might be significant in practice
(see Section 6.4 for details).

Lower bound on security (Section 6.5). In the inner-outer paradigm, we show a security
lower bound when any generic PIR protocol is used as the outer layer, and a constant-server
PIR from a broad class is used as the inner layer; in particular, 1/poly(n) statistical security
is tight in the sense that negligible security error cannot be achieved with polynomially many
clients. We also discuss open problems (Section 7) on whether negligible security is possible
(with polynomially many clients) by using other protocols in the inner layer.

1.2 Discussion on the Shuffle Model
Two-way shuffling. In the problems such as secure aggregation and differential privacy
with shuffle model, the shuffled messages are delivered to a server for analytics. Our PIR
setting is a bit different, since responses need to be communicated back from the server
to the client, we require the shuffling to be two-way. Specifically, we require not only that
clients can send messages anonymously to the server but also that the server can respond to
clients while still keeping the client identities hidden. It is important to note that shuffling
or anonymity does not trivialize the problem; it hides who sends the messages but not the
content of the messages. In practice, this two-way shuffling can be realized in a number of
ways [7, 8, 12,18,35], even without computational assumptions.

A hybrid model. PIR in the shuffle model can also be equivalently viewed as a hybrid
model between the standard single-server and multi-server PIR models: as an abstraction,
the shuffler models a second “server” which is assumed to not collude with the main database
server but does not hold a copy of the database and can only perform database-irrelevant
computations. This alone makes the shuffle model interesting for practical deployments:
non-collusion between two (or more) servers holding the same database can be difficult to
enforce (since it is likely for them to be operated by the same company for data ownership
reasons) making it a strong assumption in practice; in contrast, if only one server holds

ITC 2024

6:4 Information-Theoretic Single-Server PIR in the Shuffle Model

the database, then the “two” servers can be reasonably run by independent (and possibly
geographically distributed) entities. We also note that it could be interesting to let this
second database-irrelevant server perform more generic computations instead of just acting
as a shuffler; we leave this exploration to future work.

2 Technical Overview

In this section, we present a toy protocol, which is insecure but conveys our core ideas; we
then outline the techniques for building our eventual protocol from the toy protocol.

An insecure toy protocol. The starting point is the classic two-server information-theoretic
PIR scheme by Beimel et al. [9]. In this scheme, a client first deterministically encodes its
queried index i ∈ [n] to a bit string z of length m = O(log n) (we call z the encoding of
queried index, or simply query), and splits z to two additive shares in Fm

2 , z1 and z2 (we call
them sub-queries), and then sends them to the two servers respectively.

We construct PIR in the shuffle model based on this protocol. Abstractly, each client
generates two sub-queries (or shares) z1 and z2 as if it was querying using the above two-server
scheme but in fact sends both sub-queries to a single server through an anonymous channel
(which shuffles the sub-queries together with that from many other clients). Observe that
this is exactly an instance of secure aggregation in the split-and-mix approach [8, 23, 32],
where each input is split into two shares; the hope is that the server would learn nothing
given the shuffled encoding shares from many clients.

There are two issues with this toy protocol. The first issue is obvious – the server learns
the sum of all the encoding strings, and therefore can easily distinguish two sets of query
indices by comparing the sum of their shares and the sum of their encodings. Note that
leaking the sum to the server is exactly the goal of secure aggregation, but the sum should
not be leaked in the PIR context. This leakage can be easily eliminated by letting one of the
clients add a dummy share (a random string) to hide the sum. The second issue is more
involved. In fact, splitting each input into only two shares is not enough to guarantee security;
this can be demonstrated through a simple counter-example: suppose that the server wishes
to distinguish between the 2-additive shares of zeros and that of ones (sharing over F2) . In
the latter case, there is always an equal number of ones and zeros in the shares, while this is
not true for the former case. This approach can be generalized to a “counting” based strategy
(for sharing over any Abelian groups) and allows for generic efficient distinguishing attacks
(details in the full version). While splitting into more additive shares, e.g., 4, is sufficient [8],
this means we need a 4-server PIR (that has additive sub-queries) and thus leads to worse
communication – O(n3/4) in the 4-server scheme compared to O(n1/2) in the two-server
scheme (Section 4.1). On the road map to our general protocol with O(nγ) communication
(for any γ > 0), the first checkpoint is to bypass the above attack and achieve a protocol
with O(n1/2) communication; it turns out that the key ideas used for this also play a pivotal
role in our final protocol design.

Randomizing inputs via the inner-outer paradigm. The core reason why the simple split-
and-mix approach does not work with two additive shares is the presence of arbitrary
correlation among the queries; indeed, if all queries were independent and uniformly random,
then using two shares works perfectly. Our key insight to navigate around this is to randomize
the queries using another PIR, resulting in uniform random but pairwise independent queries
which is later shown to be sufficient for security.

Y. Ishai, M. Kelkar, D. Lee, and Y. Ma 6:5

Our construction employs a novel approach – the inner-outer paradigm, which composes
a k-server PIR protocol as an outer layer with the previous 2-server PIR protocol (with
2-additive shares) as the inner layer. At a high level, the outer layer PIR randomizes the
client queries before they get processed through the inner layer PIR. Below we call the outer
layer protocol as OPIR and the inner layer protocol as IPIR.

Formally, the composition works as follows: for any database x ∈ {0, 1}n, on input an
arbitrary query index i ∈ [n], the client first runs the OPIR query algorithm to generate
k queries q1, . . . , qk; note that they naturally satisfy pairwise independence and each is
uniformly random in the OPIR query space Q, simply because of the security property of any
PIR. Instead of sending them directly to the server, these queries are interpreted as indices
to a new database x′ of size |Q|, where x′ consists of the answers to all the possible OPIR
queries (i.e., elements in Q). Now the client runs IPIR query algorithm on the each of the
k “indices” in {1, 2, . . . , |Q|}, and sends the IPIR sub-queries to the server. Specifically, the
client maps an index to its encoding in the two-server protocol, and splits the encoding into
2 additive shares (sub-queries) in Fm

2 where m = O(log |Q|). Finally, to have the compilation
work, the server needs to build the database x′ for IPIR in advance, which is feasible as long
as |Q| is polynomial in n.

The upshot of this compilation is that the server now sees a set of shuffled shares generated
from uniformly random and pairwise independent query indices to the database x′. As we
shall show next, this randomization achieves that, for any two multi-sets of queried indices
I, I ′ with distance at most δ, the resulting multi-sets after processing through OPIR will
be J, J ′ will have distance in expectation

√
δ, even though J, J ′ are larger than I, I ′. The

distance further decreases to 4
√

δ after processing through IPIR (additive sharing). We
will show that having each client add only one random noise sub-query (on top of its real
sub-queries) is sufficient to hide the 4

√
δ distance from the server.

Analyzing split and mix with pairwise independence. We now analyze the split and
mix approach for pairwise independence queries which we get from the OPIR; we use a
balls-and-bins formulation for this analysis. Specifically, the OPIR queries of all clients can be
viewed as throwing B = k · C balls randomly into |Q| bins where C is the number of clients
and Q is the OPIR query space. Since the balls are pairwise independent, we can bound the
expected difference in the balls-and-bins configuration from any two such distributions by
Θ|Q|(

√
B). This implies that the differences between any two sets of B OPIR sub-queries

(and consequently, the query indices in IPIR) is proportional to
√

B.
As a second step, we show once again using a balls-and-bins formulation that for any

sets of IPIR indices with difference δ, when the indices are split into two shares, the expected
difference is proportional to

√
δ. This implies that any two sets of original client indices, once

put through both OPIR and IPIR, will differ on expectation by 4
√

B. Our final step shows
that adding just 1 noise query per client results in being able to “hide” this 4

√
B difference in

order to get 1/poly(n) security. This analysis goes through as long as the total number of
clients C is at least Ω(n5+c) for some constant c > 0. More details are provided in Section 6.1.
We also show a concrete instantiation using a Reed-Solomon code based OPIR.

Improving communication using CNF-shares. Following this, in Section 6.2, we show how
a CNF-sharing based construction can be used as the IPIR to reduce the communication
complexity; in particular, using an s-CNF sharing allows us to reduce the communication cost
to O(n1/s) given Ω(n2s+1/ϵ8) clients for statistical security ϵ. This cleanly generalizes our
earlier construction. The security proof follows a similar outline as before but is somewhat

ITC 2024

6:6 Information-Theoretic Single-Server PIR in the Shuffle Model

more involved. We find a nice group theoretic formulation of the problem of understanding
the symmetries within the CNF-sharing, which allows us to greatly simplify the analysis by
leveraging simple results from that domain.

Lower bound on security. We show a lower bound on security for protocols within our
inner-outer paradigm, by showing that negligible statistical distance cannot be achieved in
this realm. To prove this, we borrow an idea from Ghazi et.al [23, Theorem 6], and extend
their results on secret sharing to the PIR context. We observe that the query algorithms
of multi-server PIR protocols can be viewed as secret sharing; this allows us to show that
if the total number of possible ways to secret share a query index is K = p1(n) and there
are C = p2(n) clients, then there must exist two sets of input indices with some 1/p3(n)
statistical distance, where p1, p2, p3 are all polynomials in n.

3 Related Work

We note that the shuffle PIR model substantially differ from standard PIR models in
the literature; the only other relevant work in this model is by Ishai et al. [32]. In this
section, we discuss models and techniques specifically related to shuffling, and defer a longer
comprehensive literature review on PIR to our full version.

Differential privacy (DP) for PIR. A line of work [4, 40] considers the DP notion for
PIR assuming client anonymity. Here, clients send their query indices via onion routing
to the server, and privacy is guaranteed by the shuffling of client indices along with some
noise queries. Here DP guarantees that the server cannot distinguish neighboring sets of
queries (i.e., differing in exactly one client). Unfortunately, DP is substantially weaker than
standard PIR security and therefore insufficient in any application where client queries can
be arbitrarily correlated, as evidenced by several works which show how sensitive information
can be extracted through frequency analysis-based attacks [25,34,42].

The “Split and mix” technique. A core idea in our construction follows from an ingenious
split-and-mix approach for secure summation by Ishai et al. [32]. Specifically, they give a
one-round single-server secure aggregation protocol as follows: Each client splits its input
into k additive shares; then, as part of the shuffle model, these shares from all the C clients
are mixed together before being sent to the aggregation server who simply outputs the sum of
all the shares. The security goal here is that server cannot infer anything about a particular
client’s input. More precisely, the shuffled shares of any two tuples of client inputs (with
equal sum) should look indistinguishable. Ishai et al. [32] show that statistical security of
2−σ can be achieved by using per-input k = Θ(log C + log p + σ) additive shares over a group
of size p. Recent works [8, 23] improve this bound to k = ⌈2 + 2σ+log2(p)

log2(C) ⌉ and show that at
least 4 shares are necessary.

In our shuffle PIR context, we find that 2 additive shares are sufficient due to our query
randomization technique and the usage of additional noise queries; this cannot be done in the
summation setting as the final output could change. Towards reducing the communication
of our PIR protocol, we also generalize the split-and-mix approach to CNF shares.

Y. Ishai, M. Kelkar, D. Lee, and Y. Ma 6:7

4 Preliminaries

Basic notation. For n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. F denotes a finite
field. Sc denotes the symmetric group containing all permutations of c elements. We use
bold letters to denote vectors (e.g., z). We use SD(D1,D2) to denote the statistical distance
between the distributions D1 and D2.

Unless specified, logarithms are taken to the base 2. The notation poly(·) refers to a fixed
but unspecified polynomial in its parameter; we use polylog(·) to mean poly(log(·)). The
notation Õ hides arbitrary polylogarithmic factors.

We use $−→ to denote uniformly random sampling,→ for output by deterministic algorithms,
and $→ for output by randomized algorithms.

4.1 Multi-Server Information-Theoretic PIR
We begin with the standard notion of multi-server information-theoretic PIR below.

▶ Definition 2 (PIR). Let Σ be a finite alphabet. A k-server PIR protocol over Σ is a tuple
Φ = (Setup, Query, Answer, Recon) with the following syntax:

Setup(x)→ Px: a deterministic algorithm executed by all servers that takes in an n-entry
database x ∈ Σn and outputs its encoding Px.
Query(i; n) $→ ((q1, . . . , qk), st): a randomized algorithm (parameterized by n) executed by
the client that takes in an index i ∈ [n], and outputs sub-queries q1, . . . , qk and a state st.
The sub-query qℓ is sent to the ℓ-th server.
Answerℓ(Px, qℓ) → aℓ: a deterministic algorithm executed by the ℓ-th server that takes
in the encoding Px and a sub-query qℓ, and outputs an answer aℓ. Since the Answer
algorithm may be different for different servers, we use ℓ to denote the algorithm used by
server ℓ.
Recon((a1, . . . , ak), st)→ xi: a deterministic algorithm executed by the client that takes
in answers a1, . . . , ak (where aℓ is from the ℓ-th server) and the state st, and outputs
xi ∈ Σ.

Φ needs to satisfy the following correctness and security properties:
Correctness. For all n ∈ N, any database x = (x1, . . . , xn) ∈ Σn, and all i ∈ [n],

Pr

 Px ← Setup(x)
Recon((a1, . . . , ak), st) = xi : ((q1, . . . , qk), st) ←$ Query(i; n)

(a1, . . . , ak) ← (Answerℓ(Px, qℓ))k
ℓ=1

 = 1.

Intuitively, correctness says that the client always gets the correct value of xi.
Security. For all n ∈ N, i ∈ [n], and T ⊂ [k], define the distribution

Dn(i, T) := {{qℓ}ℓ∈T : ((q1, . . . , qk), st)←$ Query(i; n)} .

We say that Φ has (t, ϵ)-privacy (where t < k, and ϵ = ϵ(n)), if for all n ∈ N, any two
indices i, i′ ∈ [n], and any set T ⊂ [k] such that |T | < t, we have

SD(Dn(i, T),Dn(i′, T)) ≤ ϵ(n).

Intuitively, (t, ϵ)-privacy says that any set of less than t colluding servers has a distinguishing
advantage at most ϵ.

ITC 2024

6:8 Information-Theoretic Single-Server PIR in the Shuffle Model

We provide as background (Appendix A), common PIR schemes that will be important for
our construction for PIR in the shuffle model. The constructions employ the following general
outline: The servers encode the database x ∈ Σn as a polynomial Px. To query the database
at position i, the client first encodes i into a vector z(i) where the encoding is defined in a
way that results in Px(z(i)) = xi. The client now evaluates Px at z(i) while hiding z(i) from
the servers: it secret shares z(i) into k shares, and each share is sent to one of the k servers
(through e.g., additive or Shamir sharing). Each server can then evaluate Px on one share
and send the result to the client, who is able to reconstruct the entry xi.

Other notation. For a PIR protocol Φ, we use EΦ to denote the encoding space of all
indices. We use QΦ to denote the space of all possible sub-queries (note that QΦ may not
equal EΦ). For example, in the two-server construction above, EΦ contains all binary strings
with Hamming weight d, and the space QΦ is Fm

2 , i.e, in this case EΦ ⊂ QΦ.

4.2 Balls and Bins
We formulate the core analysis of our constructions using the widely-used balls-and-bins
problem, which we provide background and notation for here. Abstractly, the balls-and-bins
problem analyzes the distribution of B (identical) balls thrown into N bins according to some
distribution D (often independent and uniformly at random). To denote a final configuration
of balls, we use a N -length vector u = (u0, . . . , uN−1) where ui denotes the number of balls
in bin i. We say that u = (u0, . . . , uN−1) is (B, N)-valid if each ui ∈ Z≥0 and

∑
i ui = B.

Since our analysis often deals with sharing over a group G, we may also label the bins using
elements from G; when G is unspecified, it is taken to be ZN .

▶ Definition 3. Given (B, N)-valid configurations u = (u0, . . . , uN−1) and v =
(v0, . . . , vN−1), we define the following useful terms:

The edit distance, denoted by ED(u, v) is defined as ED(u, v) = 1
2

∑N−1
i=0 |ui − vi|.

Intuitively, this denotes the number of balls that need to be moved to convert u to v. Note
that the distance is symmetric since ED(u, v) = ED(v, u). The edit distance between two
distributions U and V, denoted by ED(U ,V); can now be defined as Eu∼U ,v∼V [ED(u, v)].
The ball-intersection u ⊓ v is (c0, . . . , cN−1) where each ci = min(ui, vi).
The ball-difference u⊖ v is (u′

0, . . . , u′
N−1) where each u′

i = max(0, ui − vi).

5 Single-Server PIR in the Shuffle Model: Definitions and Preliminary
Results

We now formally define single-server PIR in the shuffle model, which considers many query-
making clients. Importantly, no coordination is assumed among clients.

▶ Definition 4 (PIR in the shuffle model). Let Σ be a finite alphabet. A (single-server) PIR
protocol (over Σ) in the shuffle model is a tuple ShPIR = (Setup, Query, Answer, Recon) with a
syntax similar to that of a k-server PIR (Definition 2) except for a few changes given below:

Setup(x)→ Px: a deterministic algorithm executed by the server that takes in an n-entry
database x ∈ Σn and outputs its encoding Px.
Query(i; n) $→ (q1, . . . , qk): a randomized algorithm (parameterized by n) executed by
the client that takes in an index i ∈ [n], and outputs sub-queries q1, . . . , qk. Unlike in
Definition 2, k may be a function of n; this is possible since the shuffle model does not
require k physical servers. Further, all sub-queries will be sent to the same server. For
simplicity, here we omit the state in Definition 2.

Y. Ishai, M. Kelkar, D. Lee, and Y. Ma 6:9

Answer(Px, qℓ)→ aℓ: a deterministic algorithm executed by the server that takes in the
encoding Px and a sub-query qℓ, and outputs an answer aℓ. Unlike in Definition 2, there
is a single Answer algorithm.
Recon(a1, . . . , ak) → xi: a deterministic algorithm executed by the client that takes in
answers a1, . . . , ak, where for all ℓ ∈ [k], aℓ is the answer to the client’s sub-query qℓ; and
outputs xi ∈ Σ.

ShPIR needs to satisfy the following correctness property:

Correctness. For all n ∈ N, database x = (x1, . . . , xn) ∈ Σn, and i ∈ [n],

Pr

 Px ← Setup(x)
Recon(a1, . . . , ak) = xi : (q1, . . . , qk) ←$ Query(i; n)

(a1, . . . , ak) ← (Answer(Px, qℓ))k
ℓ=1

 = 1.

ShPIR also needs to satisfy the following security property in the model where client
queries are shuffled before being sent to the server.

Security. We will parameterize security by a shuffler Π and a minimum number of honest
client queries C. Formally, let Π = {Πc}c∈N be an ensemble such that Πc is a distribution
over the symmetric group Sc. When Π is unspecified, we assume that each Πc is a uniform
distribution over Sc; we refer to this as the uniform or perfect shuffler. We discuss imperfect
shufflers in the full version.

For a given n, Π, and C, and given a tuple I = (i1, . . . , iC) ∈ [n]C of client query indices,
define the distribution

D̃n,Π,C(I) =

(q(1)

1 , . . . , q
(1)
k) ←$ Query(i1; n)

· · ·
π(q) : (q(C)

1 , . . . , q
(C)
k) ←$ Query(iC ; n)

q← (q(1)
1 , . . . , q

(1)
k , . . . , q

(C)
1 , . . . , q

(C)
k)

π
$←− ΠkC

.

Then, we say that ShPIR is (Π, C, ϵ)-secure if for every n ∈ N and all C∗ ≥ C(n), and
I, I ′ ∈ [n]C∗ , it holds that:

SD(D̃n,Π,C∗(I), D̃n,Π,C∗(I ′)) ≤ ϵ(n).

Efficiency metrics. We measure the efficiency of PIR constructions in the shuffle model
using a few metrics below. Since we consider many clients querying the server, we will
characterize the cost per query.

Per-query server computation: for answering each query, the number of bits that the
server reads from the database and the preprocessing bits.
Per-query communication: the sizes of the client query and the server response.
Server storage: the total number of bits, including the preprocessing bits, that are stored
by the server.
Message complexity: for each query, the number of anonymous messages required to
send. This is separately considered from the communication cost, since we need to take
into account the anonymity cost. In particular, this will help us delineate between, e.g.,
sending one anonymous message of size s and sending s anonymous messages each of size
1 (since the latter may have more network overhead).

ITC 2024

6:10 Information-Theoretic Single-Server PIR in the Shuffle Model

While our main focus is the server and the anonymity cost, we may also consider per-
query client computation, which is the computational complexity for issuing each query and
reconstructing the answer. One may also consider client storage which is omitted in this
work as the clients in our constructions are stateless.

Warm-up impossibility result. When considering PIR with multiple clients, it is useful to
study the minimum number of clients required for security. We show that for any linear
PIR (i.e., its encoding function is linear), which includes the constructions mentioned in
Section 4.1 and others [9, 15], the number of clients required is at least the database size.
We also show that no linear PIR protocol in the shuffle model has statistical security better
than n−C

n−1 for C < n. See details in the full version.

6 General Constructions for Single-Server Shuffle PIR

We now present generic ways to build asymptotically efficient PIR protocols in the shuffle
model from standard multi-server PIR constructions. The high-level idea is to compose
together a protocol OPIR at the outer layer with a protocol IPIR at the inner layer, for
randomizing the query indices. We call this the inner-outer paradigm for ShPIR.

Motivating the inner-outer paradigm. Recall that following the split-and-mix technique,
the analysis of [8, 23] directly implies a shuffle PIR protocol with 4 additive shares and
O(n3/4) communication. We find that using 2 additive shares (which would give O(n1/2)
communication) are not sufficient for two reasons: (1) client queries are not individually
random; and (2) client queries may be arbitrarily correlated with each other. For example,
it is easy to distinguish between sets of client indices that are far apart (e.g. all querying
for index i vs index i′; see the full version for details), even if extra noise queries are added
by the clients to reduce the statistical distance. Furthermore, if the queries are uniformly
random (even if not independent), three additive shares are enough [8] although two shares
are still not sufficient here. This motivates our two-layer approach below.

The insight of having OPIR. The key insight we use to navigate around this is to first
randomize the query indices by using a separate outer PIR, which we denote as OPIR. The
goal of this OPIR protocol is two fold: first, it reduces the distance between the two multi-sets
I and I ′; and second, it transforms the queries in a way that makes them pairwise-independent
which turns out to be sufficient for us to prove security. Concretely, the OPIR protocol takes
two multi-sets I and I ′, who may differ by as much as δ = C, and constructs two new (larger)
query multi-sets J and J ′, whose difference is now proportional to

√
δ, and whose elements

are now pairwise-independent. Then J and J ′ will be used as query indices of an inner PIR
with additive (or CNF) shares. In this way, the server sees the IPIR sub-queries as if they
were generated from random (and pairwise independent) query indices.

ShPIR compilation. To compile the overall ShPIR protocol, the server will need encode
the database x twice: once using OPIR and once using IPIR. More precisely, the server first
sets up a database consisting of the answers to every possible OPIR sub-queries based on
x: it defines a new database x′ = (x′

1, . . . , x′
n′) of size n′ = |QOPIR| where each entry x′

i is
set to be OPIR.Answer(Px, Li) where Li denotes the i-th element in the sorting of QOPIR. If
OPIR.Answer is different for different servers, then a size kn′ (where k is the number of OPIR
servers) database can be used, which concatenates all the n′-sized databases where the ℓ-th

Y. Ishai, M. Kelkar, D. Lee, and Y. Ma 6:11

database is defined using OPIR.Answerℓ(Px, Li); see Construction B.1 for details. Now x′,
from the perspective of IPIR, is the database to be taken into the setup algorithm, i.e., the
server runs IPIR.Setup(x′), and the setup for ShPIR is done.

To query an index i ∈ [n], a client will first use OPIR to generate queries q1, . . . , qk which
are each uniformly random in the space QOPIR. Each of these qℓ can now be treated as an
index i′

ℓ of the database x′, following which the client will use IPIR.Query to fetch the i′
ℓ-th

entry in x′ that corresponds to qℓ. As a result, the final sub-queries to be sent to the server
(along with additional noise) are generated by the client running IPIR.Query on the indices i′

ℓ

for ℓ ∈ [k]. The full details of the composition are given as Construction B.1 (Appendix B).

6.1 Composition with an Additive Two-Server IPIR
We start with our generic composition which uses an IPIR with two additive shares. We
provide an overview of the core proof here; the full details are given in the full version.
▶ Theorem 5 (ShPIR Composition Theorem for additive IPIR). Let Φ be any k-server t-private
information-theoretic PIR scheme where k > t > 2; denote its sub-query space size by Q

and its answer size by A. Let Ψ be 2-additive PIR defined in Construction A.1. Then,
for any database size n ∈ N, given any ϵ > 0, there exists a constant c0 such that for
C ≥ (c0Q5)/(kϵ8), the construction ShPIR(Φ, Ψ) is a (Π, C, ϵ)-secure PIR in the shuffle
model where Π is uniform. Here, Q, k, ϵ, C may all be functions of n. Furthermore, when
Q = Õ(n) and assuming one-time preprocessing, the construction has:

per-query server computation O(A · k 3
2 ·Q 1

2),
per-query client computation O(A · k 3

2 ·Q 1
2),

per-query communication O(A · k 3
2 ·Q 1

2),
server storage Õ(A · k 3

2 ·Q 3
2).

▶ Remark 6 (Reduced cost for homogeneous servers). If OPIR has different Answer algorithms
for the servers, the ShPIR server needs to store k sub-databases, where for ℓ-th sub-database
the server treats q ∈ QOPIR as the ℓ-th share and stores the corresponding answers. If
OPIR.Answer is the same for all k servers, then ShPIR server only needs to store one such
sub-database; as a result, both the per-query server computation and communication will
be O(A · k ·Q 1

2), and the server storage will be O(A ·Q 3
2). The client computation will be

O(A · k ·Q 1
2). See details in the full version.

6.1.1 Proof Outline of Theorem 5
Basic background. Consider a client query index i ∈ [n]. Recall that our k-server OPIR
will first encode i into the space EOPIR and then split it into k sub-queries in the space QOPIR.
When composing with the IPIR, these k sub-queries will now be interpreted as IPIR query
indices within the IPIR database of size |QOPIR|. Each of the k indices will now be encoded
within the IPIR encoding space EIPIR, and then split into 2 shares in the space QIPIR. Note
that the space QOPIR and EIPIR have the same size, which is the size of the IPIR database,
and that EIPIR ⊂ QIPIR. Going forward, for clarity, we keep using “sub-queries” for OPIR but
use “shares” to mean the sub-queries for IPIR.

Given C clients, we will have kC total IPIR query indices encoded into EIPIR; denote this
by y = (y1, . . . , ykC) and let ỹ (of length 2kC) denote its shares in QIPIR. Our main goal is
to analyze the properties of ỹ since this will be the view of the server. In particular, given
two lists of original query indices I = (i1, . . . , iC) and I ′ = (i′

1, . . . , i′
C), and their resulting

shares ỹ and ỹ′, we want to understand whether an adversary can find e.g., which of I or I ′

corresponds to ỹ.

ITC 2024

6:12 Information-Theoretic Single-Server PIR in the Shuffle Model

Balls-and-bins-formulation. We now describe how to formulate our core analysis as a
balls-and-bins problem. A key starting observation here is that a uniformly random shuffler Π
will eliminate any ordering within ỹ (and similarly for y). In turn, this allows us to essentially
do our analysis using a balls-and-bins formulation, where each share in ỹ corresponds to a ball
in one of |QIPIR| bins. More precisely, the distribution of the shuffled shares in ỹ is exactly a
|QIPIR|-dimensional distribution where the each component represents the distribution of the
number of balls in that bin. Towards this, we also find it helpful to analyze y using a similar
balls-and-bins formulation.

The crux of our analysis now boils down to quantifying the statistical distance between
the distribution of balls over bins resultant from any two sets of original query indices I and
I ′. Specifically, define Y(I) to be the distribution of the balls-and-bins configuration of IPIR
query indices y resultant from the original query indices I; define Ỹ(I) to be the distribution
of its shares (i.e., corresponding to ỹ). Roughly, the goal now is to show that for any I and
I ′, we can bound SD(Ỹ(I), Ỹ(I ′)) with some inverse polynomial in the number of clients.

Looking ahead however, we will require some extra balls to be added uniformly at random,
essentially to “smooth out” the distribution of ỹ; this can also be thought of as uniformly
random noise. In the PIR context, this effectively corresponds to each client sending a
random sub-query in QIPIR. We denote the balls-and-bins distribution of the shares with
noise added as Ỹ∗(I).
▶ Remark 7 (Noise and communication complexity). We note that adding noise for each IPIR
query index does not increase the asymptotic communication complexity for IPIR, i.e., the
communication for an n-sized database is still O(

√
n). This is because the server will still

evaluate each noise share either as the first or second share without changing the database
encoding polynomial making the communication still O(

√
n). Note that adding noise is

substantially different from splitting to more shares, i.e., if each IPIR index was instead
split into more additive shares (corresponding to using an IPIR with more servers), then the
number of variables in the encoding polynomial itself will be larger, which would increase
the asymptotic communication.

Main proof steps. At a high level, we leverage balls-and-bins style analyses to bound the
statistical distance between Ỹ∗(I) and Ỹ∗(I ′). The rough idea will be to first compute the
edit distance between the balls-and-bins configurations corresponding to the IPIR shares and
then use that to bound the statistical distance after adding the random noise. Our proof
proceeds in three major steps which we outline below.

Proof Step 1: (Analyzing the edit distance of OPIR sub-queries). Consider two lists of client
indices I = (i1, . . . , iC) and I ′ = (i′

1, . . . , i′
C). Abstractly, the first part of our proof shows

that the edit distance between the OPIR sub-queries generated from I and I ′ is not too large.
Recall that the t-out-of-k OPIR sub-queries generated are individually uniformly random,

and are (t− 1)-wise independent (and therefore also pairwise independent). Therefore, we
can formulate our objective as the following balls-and-bins problem given in Lemma 8.

▶ Lemma 8. Suppose that B balls are thrown into N bins. Let B and B′ be any two
distributions of the final balls-and-bins configuration where each ball is thrown uniformly at
random, and any two balls are independently thrown. Then Eu∼B,v∼B′ [ED(u, v)] ≤

√
BN/2.

Casting this result to our construction, since each client index generates k OPIR sub-queries
and there are C clients in total, the expectation of edit distance (or differences) between any
two sets of OPIR sub-queries (and consequently, the IPIR indices) is at most

√
kC |QOPIR| /2.

Y. Ishai, M. Kelkar, D. Lee, and Y. Ma 6:13

Proof Step 2: (Analyzing the edit distance of 2-additive sharing in the IPIR). Now that we
have a bound on the edit distance between OPIR sub-queries (and consequently IPIR indices),
our next step is to analyze the edit distance for QIPIR shares. Recall that each encoded EIPIR
index is split into two additive shares. We model this as another balls-and-bins problem:

Consider a (B, N)-valid configuration u and let Shareu denote the distribution of randomly
splitting each ball in u (in a group G), i.e., for each ball b, throw one ball into a random bin
u←$ G, and another into bin b − u. The goal now is to bound the edit distance between
Shareu and Sharev given the edit distance between u and v.

To begin, we show that in the context of the final statistical distance, it is sufficient to
only consider the parts of u and v that are different. Let Shareℓ

u denote the distribution of
the balls-and-bins configuration when further throwing ℓ balls independently and uniformly
at random following the sharing Shareu. In particular, we show that,

SD(Shareℓ
u, Shareℓ

v) ≤ SD(Shareℓ
u⊖v, Shareℓ

v⊖u)

where ⊖ denotes the ball-difference operation defined in Section 4.2. Essentially, this
will allow us to look at the splitting of only those balls that differ between u and v; in
particular, given (B, N)-valid u and v with edit distance δ, we will only need to concern
ourselves with the (δ, N)-valid u′ = u ⊖ v and v′ = v ⊖ u. We use this to show that
E [ED(Shareu′ , Sharev′)] ≤

√
2δN . Combining this with the first part, we get:

Eu∼B,v∼B′ [ED(Shareu⊖v, Sharev⊖u)] ≤
√

2N · Eu∼B,v∼B′

[√
ED(u, v)

]
≤
√

2N (BN/2)1/4 = (2)1/4B1/4(N)3/4

where the second step is by the concave Jensen’s inequality.

Proof Step 3: (Bounding the final statistical distance). We are now ready to bound the final
statistical distance between the final views of the server: Ỹ∗(I) and Ỹ∗(I ′). For this, we
leverage a recent analysis by Boyle et al [11]. A straightforward corollary of their result can
be abstractly stated as follows: Consider ℓ balls thrown independently and uniformly at
random into N bins and let Uj denote the final distribution after another ball is added into
bin j. Then for all bins j and j′, we have SD(Uj ,Uj′) ≤

√
N/ℓ. Informally, this can also be

thought of as a “toy in sand” problem of being able to hide the location (bin j or bin j′) of
an initial ball (i.e., the toy) after throwing in N random balls as noise (i.e., the sand). The
same analysis can be extended to show that if there are ∆ initial balls, after which ℓ random
balls are thrown, the statistical distance will be bounded by ∆ ·

√
N/ℓ. In the context of our

PIR analysis, intuitively, ∆ will represent the edit distance between Shareu⊖v and Sharev⊖u,
while the ℓ extra balls will represent the additional “noise” IPIR queries made. Note that
when using this balls-and-bins analysis, we need to account for the fact that the edit distance
is a distribution in our case, rather than a fixed number; it is straightforward to do so by
using standard first-moment techniques (since we have a bound on the expectation).

Casting these analyses back to our PIR context, first notice that Ỹ∗(I) is nothing but the
distribution Shareℓ

u∼B(I) where B(I) is the distribution of OPIR sub-queries resulting from
the indices I. Looking ahead, we will use ℓ = kC uniformly random IPIR queries (i.e., k per
client) as noise. A crucial point here is that the number of extra balls per client needs to
be constant in C so that the individual communication complexity of each client does not
depend on the how many clients are making queries. In fact, this also required our bound on
the ED of the 2-additive sharing to be o(δ).

ITC 2024

6:14 Information-Theoretic Single-Server PIR in the Shuffle Model

Combining the results from the previous parts, we show our main result:

SD(Ỹ∗(I), Ỹ∗(I ′)) <
3 ·N5/8

B1/8 = 3 |QIPIR|5/8

(kC)1/8 .

since N = |QIPIR| bins (query-space) and B = kC balls (total sub-queries).
A final task is bounding |QIPIR| by Q (i.e., the size of OPIR sub-query space). The

high-level idea here is that we let each IPIR database entry be A bits and consequently |QIPIR|
can be made Õ(Q). Now, assuming that there are C = Ω(n5+ν/k) client queries for some
constant ν > 0, the statistical distance can be bounded by some inverse polynomial 1/poly(n)
in n. More specifically, suppose that we wanted to bound the statistical distance by some
inverse polynomial ϵ(n). Then, assuming at least C(n) = Ω(n5/(k · ϵ8)) client queries, the
statistical distance is bounded by ϵ. Consequently, the construction satisfies (Π, C, ϵ)-security
in the shuffle model where Π is the uniform shuffler.

6.2 Reducing Communication using CNF Shares
In this section, we describe how to generalize the IPIR to use CNF shares instead of additive
shares. The upshot is that it allows us to reduce the communication complexity of the
resultant ShPIR protocol to O(nc) for any constant c > 0.

Construction outline. In a standard multi-server PIR, using s additive shares instead of 2
results in an increased communication cost of O(n(s−1)/s) but this can be reduced to O(n1/s)
at the cost of a stronger non-collusion assumption using a CNF sharing where each server is
given a different s− 1 sized subset of the additive shares. We show that the same strategy in
fact also works in our inner-outer paradigm by using an IPIR with CNF-shares (the composed
protocol is given in Figure A.2). This compilation is particularly interesting since it requires
no extra non-collusion assumptions to get the gain in efficiency (since the shuffle model
already consists only of a single server). Instead, the trade-off will arise in the minimum
number of clients required for security.

▶ Theorem 9 (ShPIR Composition Theorem for CNF IPIR). Let Φ be any k-server t-private
information-theoretic PIR scheme where k > t > 2; denote its sub-query space size by Q

and its answer size by A. Let Ψ be the s-CNF PIR defined in Construction A.2. Then,
for any database size n ∈ N, and given any ϵ > 0, there exists a constant c0 such that for
C ≥ (c0Q2s+1)/(kϵ8), the construction ShPIR(Φ, Ψ) is a (Π, C, ϵ)-secure PIR in the shuffle
model where Π is uniform. Here, Q, k, ϵ, C may all be functions of n. Furthermore, when
Q = Õ(n) and assuming one-time preprocessing, the construction has:

per-query server computation O(A · k1+1/s ·Q1/s),
per-query client computation O(A · k1+1/s ·Q1/s),
per-query communication O(A · k1+1/s ·Q1/s),
server storage Õ(A · k1+1/s ·Q1+1/s),

Similar to Remark 6, if OPIR.Answer is the same for all k servers, then both the per-query
server computation and communication will be O(A · k ·Q1/s), and the server storage will be
O(A ·Q1+1/s). The client computation will be O(A · k ·Q1/s).

Proof outline. The overall structure of the proof is very similar to the one for an additive
IPIR; the main difference being in the second proof part to analyze the balls-and-bins
distribution after the IPIR sharing which now involves CNF shares instead of additive shares.

Y. Ishai, M. Kelkar, D. Lee, and Y. Ma 6:15

Let s-CNF-Shareu be the distribution of the balls-and-bins configuration upon sharing
each ball in u into s CNF shares in Gs−1. Now, given (δ, N)-valid configurations u and v,
we want to bound the edit distance between s-CNF-Shareu and s-CNF-Sharev; Through a
natural group theoretic formulation, this turns out essentially reduce to understanding the
(cyclic rotational) symmetries of the CNF-sharing. Concretely, this allows us to show that:

ED(s-CNF-Shareu, s-CNF-Sharev) ≤ sN (s−1)/2
√

δ.

Notice how this bound asymptotically generalizes the one from the 2-additive IPIR construc-
tion. Once we have this bound, the rest of the security proof of proceeds in exactly the same
way as the one for Add-ShPIR. The complete proof is given in the full version.

6.3 Concrete Constructions based on Reed-Muller Code
We can now concretely instantiate OPIR with the Reed-Muller PIR and IPIR with the CNF
PIR to achieve our main result below.

▶ Theorem 10. For every constant 0 < γ < 1, there exists a Reed-Muller PIR Φ and
a (⌈2/γ⌉)-CNF PIR Ψ, such that on any database size n ∈ N, given any ϵ > 0, for all
C ≥ c0n1+4/γ/ϵ8 where c0 is some constant, the construction ShPIR(Φ, Ψ) is a (Π, C, ϵ)-
secure PIR where Π is uniform. Furthermore, assuming one-time preprocessing, we get:

per-query server computation O(nγ),
per-query client computation O(nγ),
per-query communication O(nγ),
per-query message complexity O(nγ),
server storage is Õ(n1+γ/2).

We defer the full proof of Theorem 10 to the full version. One thing to note here is that
the reduced communication per client with CNF shares comes at a price – to achieve the
same level of security, we need a larger number of clients.

▶ Remark 11 (Sub-polynomial communication assuming super-polynomial number of clients). An
interesting consequence of the CNF-based IPIR is that it also enables more efficient protocols
in the shuffle model. Using a (log n)-server CNF-based protocol as our IPIR, we can achieve
communication of O(polylog(n)) with the assumption that there are at least some super-
polynomial nO(log n) number of clients. This results in better asymptotic complexity than
the best existing protocols [20] in the standard-model PIR which use a constant numbers
of servers. Note that the shuffle model compilation means that still only one server is
required for our protocol and therefore we do not require the non-collusion assumptions of
the standard-model CNF-based PIR.

▶ Remark 12 (Negligible security with slightly sublinear communication). Our main result only
achieves inverse-polynomial rather than negligible security error. We note that if one settles
for slightly sublinear communication, there is a simple solution that achieves negligible security
error and proceeds as follows. The server writes the n-bit database as an m×m matrix over
Z2 where m =

√
n. Each client writes the column it is interested in as a unit vector q ∈ Zm

2 .
Assuming C clients query at the same time, where C is super-linear in n, each client splits
the vector q into k = O((m + σ)/ log C) additive shares, for security parameter σ = log2 n.
For each query q′ ∈ Zm

2 , the server responds with X · q′ ∈ Zm
2 . By the tight security analysis

of the additive split-and-mix protocol [8, 23, 32], the security error is negligible in n, i.e.,
Θ(1/nlog n), and both the query and the answer are of size k ·m = O(n/ log n).

ITC 2024

6:16 Information-Theoretic Single-Server PIR in the Shuffle Model

6.4 Combining with Standard-Model PIR

Our shuffle PIR can be used as a blackbox to reduce server cost for standard single-server
PIR by any constant factor (even 10× is a concretely substantial improvement).

Take any standard single-server PIR scheme stdPIR and denote the shuffle PIR construc-
tion as ShPIR. The server organizes the size-n database as an ℓ× (n/ℓ) matrix where ℓ is a
constant. The key idea here is to use stdPIR to retrieve a column and ShPIR to retrieve a
row. The server treats each column as a database in ShPIR and runs ShPIR.Setup on it. The
server stores the preprocessed results as lookup tables (hence n/ℓ tables in total).

Suppose a client wants to retrieve the entry at r-th row and c-th column. The client runs
the query algorithm of ShPIR on index r ∈ [ℓ] and generates k sub-queries. Then the client
sends k messages anonymously, where the j-th message consists of the j-th sub-query of
ShPIR and a stdPIR query for index c ∈ [n/ℓ]. On receiving each message, the server first
processes the sub-query of ShPIR (essentially n/ℓ table lookup operations), which results in
n/ℓ elements; then the server processes the stdPIR query on these n/ℓ elements.

Compared to running stdPIR on a size-n database, this technique reduces server compu-
tation by a factor of ℓ. And the ShPIR database size is ℓ, which neither requires too many
clients nor incurs high anonymity cost. The tradeoff is that a client sends k messages in the
stdPIR-ShPIR combination instead of one message when using stdPIR only.

6.5 Lower Bound on Security

We show that for shuffle PIR protocols constructed in the inner-outer paradigm, 1/poly(n)
statistical security is tight in the sense that negligible security cannot be achieved with
polynomially many clients using the additive inner PIR. The proof is deferred to the full
version. This result does not rule out the information-theoretic constructions with negligible
error, in particular, an interesting open problem to consider is instantiating the inner PIR
with the Reed-Muller construction.

▶ Theorem 13 (Lower bound on security for ShPIR). Let Φ be any multi-server PIR scheme.
Denote the number of possible vectors of sub-queries as KΦ. Let Ψ be a constant-server
additive PIR (Construction A.1). On any database size n ∈ N, for all (Π, C, ϵ)-secure
ShPIR(Φ, Ψ) constructions where C, KΦ and KΨ are all bounded by polynomial p1(n), there
exists a polynomial p2 such that ϵ ≥ 1/p2(n).

7 Conclusion and Open Questions

We demonstrate that PIR in the shuffle model can circumvent several limitations of standard-
model PIR. This includes information-theoretic security with a single server, which opens a
direction of constructing concretely efficient single-server schemes in the future.

The main technical question we leave open in this work is the possibility of obtaining similar
results with negligible security error (recall that we can achieve this with slightly sublinear
communication, see Remark 12). We conjecture that polylogarithmic communication per
client with negligible security can be achieved by instantiating both OPIR and IPIR with the
Reed-Muller PIR construction with a polylogarithmic security threshold and a polylogarithmic
communication complexity.

Finally, an interesting direction for future research is obtaining concretely efficient PIR
schemes in the shuffle model, possibly by settling for computational security.

Y. Ishai, M. Kelkar, D. Lee, and Y. Ma 6:17

References
1 Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blinder - scalable, robust anonymous

committed broadcast. In CCS, pages 1233–1252, 2020.
2 Shweta Agrawal, Yuval Ishai, Eyal Kushilevitz, Varun Narayanan, Manoj Prabhakaran,

Vinod M. Prabhakaran, and Alon Rosen. Secure computation from one-way noisy communica-
tion, or: Anti-correlation via anti-concentration. In CRYPTO, pages 124–154, 2021.

3 Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian. XPIR:
Private information retrieval for everyone. In PETS, 2016.

4 Kinan Dak Albab, Rawane Issa, Mayank Varia, and Kalman Graffi. Batched differentially
private information retrieval. In USENIX Security, pages 3327–3344, 2022.

5 Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann, Karn Seth,
and Kevin Yeo. Communication-computation trade-offs in PIR. In USENIX Security, pages
1811–1828, 2021.

6 Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. PIR with compressed queries and
amortized query processing. In IEEE S&P, pages 962–979, 2018.

7 Borja Balle, James Bell, and Adrià Gascón. Amplification by shuffling without shuffling. In
CCS, pages 2292–2305, 2023.

8 Borja Balle, James Bell, Adria Gascon, and Kobbi Nissim. Private summation in the multi-
message shuffle model. In CCS, pages 657–676, 2020.

9 Amos Beimel, Yuval Ishai, and Eyal Kushilevitz. General constructions for information-
theoretic private information retrieval. In Journal of Computer and System Sciences, 2005.

10 Andrea Bittau, Ulfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan, David
Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard Seefeld. PROCHLO:
Strong privacy for analytics in the crowd. In SOSP, pages 441–459, 2017.

11 Elette Boyle, Niv Gilboa, Yuval Ishai, and Victor I. Kolobov. Programmable distributed point
functions. In CRYPTO, pages 121–151, 2022.

12 David L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. In
Communications of the ACM (CACM), 1981.

13 Albert Cheu, Adam D. Smith, Jonathan R. Ullman, David Zeber, and Maxim Zhilyaev.
Distributed differential privacy via shuffling. In EUROCRYPT, pages 375–403, 2019.

14 Albert Cheu and Jonathan R. Ullman. The limits of pan privacy and shuffle privacy for
learning and estimation. In STOC, pages 1081–1094, 2021.

15 Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information
retrieval. In FOCS, pages 41–50, 1995.

16 Richard Cleve. Limits on the security of coin flips when half the processors are faulty. In
STOC, pages 364–369, 1986.

17 Alex Davidson, Gonçalo Pestana, and Sofía Celi. FrodoPIR: Simple, scalable, single-server
private information retrieval. In PETS, 2023.

18 Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion
router. In USENIX Security, 2004.

19 Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In PODS, 2003.
20 Zeev Dvir and Sivakanth Gopi. 2-server pir with sub-polynomial communication. In STOC,

2015.
21 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to

sensitivity in private data analysis. In TCC, 2006.
22 Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Shuang Song, Kunal

Talwar, and Abhradeep Thakurta. Encode, shuffle, analyze privacy revisited: Formalizations
and empirical evaluation. CoRR, abs/2001.03618, 2020. URL: https://arxiv.org/abs/2001.
03618.

23 Badih Ghazi, Pasin Manurangsi, Rasmus Pagh, and Ameya Velingker. Private aggregation
from fewer anonymous messages. In EUROCRYPT, 2020.

ITC 2024

https://arxiv.org/abs/2001.03618
https://arxiv.org/abs/2001.03618

6:18 Information-Theoretic Single-Server PIR in the Shuffle Model

24 Dov Gordon and Jonathan Katz. Partial fairness in secure two-party computation. In
EUROCRYPT, 2010.

25 Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. Learning to
reconstruct: Statistical learning theory and encrypted database attacks. In IEEE S&P, 2019.

26 Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty, Lorenzo Alvisi, and Michael
Walfish. Scalable and private media consumption with Popcorn. In NSDI, 2016.

27 Daniel Günther, Maurice Heymann, Benny Pinkas, and Thomas Schneider. Gpu-accelerated
pir with client-independent preprocessing for large-scale applications. In USENIX Security,
2022.

28 Ryan Henry. Polynomial batch codes for efficient IT-PIR. In PETS, 2016.
29 Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meiklejohn, and

Vinod Vaikuntanathan. One server for the price of two: Simple and fast single-server private
information retrieval. In USENIX Security, 2023.

30 Kyle Hogan, Sacha Servan-Schreiber, Zachary Newman, Ben Weintraub, Cristina Nita-Rotaru,
and Srinivas Devadas. Shortor: Improving tor network latency via multi-hop overlay routing.
In IEEE S&P, 2022.

31 Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and their
applications. In STOC, 2004.

32 Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography from anonymity.
In FOCS, 2006.

33 Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing schemes realizing general access
structure. In IEEE Global Telecommunication Conference, 1987.

34 Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Generic attacks on secure
outsourced databases. In CCS, 2016.

35 Dogan Kesdogan, Jan Egner, and Roland Büschkes. Stop-and-go-mixes providing probabilistic
anonymity in an open system. In Information Hiding, 1998.

36 Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In FOCS, 1997.

37 Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket Kate, and
Andrew K. Miller. Honeybadgermpc and asynchromix: Practical asynchronous MPC and its
application to anonymous communication. In CCS, pages 887–903, 2019.

38 Samir Jordan Menon and David J. Wu. Spiral: Fast, high-rate single-server pir via fhe
composition. In IEEE S&P, 2022.

39 Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss. In TCC, 2009.
40 Raphael R. Toledo, George Danezis, and Ian Goldberg. Lower-cost ϵ-private information

retrieval. In PETS, 2016.
41 Jelle van den Hoof, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela: Scalable

private messaging resistant to traffic analysis. In SOSP, 2015.
42 Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are belong

to us: The power of file-injection attacks on searchable encryption. In USENIX Security, 2016.

A Background on Multi-Server PIR Constructions

A.1 Two-Server PIR with Additive Shares
The first construction we describe is a PIR scheme from Beimel et al. [9] which uses two
non-colluding servers. Figure A.1 contains the full description.

Setup. Consider a field F within which Σ can be encoded. The Setup algorithm encodes a
database x ∈ Σn into an m-variate polynomial Px ∈ F[Z1, . . . , Zm] as follows. First, choose
m and d < m such that

(
m
d

)
≥ n, and let M = (M1, . . . Mn) denote a list of n monomials in

the variables Z1, . . . , Zm with total degree exactly d and the degree of each variable at most

Y. Ishai, M. Kelkar, D. Lee, and Y. Ma 6:19

Let x be a database with size n and F be a field, where each entry xi is in Σ = F.

PIR.Setup(x)→ P :
1. Choose m, d such that

(
m
d

)
≥ n.

2. Let M = (M1, . . . , Mn) be a list of n monomials in F[Z1, . . . , Zm] with total degree d

and intermediate degree at most 1. Sort all monomials that have m variables with
degree d by a lexicographic order of the variables indices.

3. Compute Px =
∑n

i=1 xiMi ∈ F[Z1, . . . , Zm].
4. Compute a 2m-variate degree-d polynomial P from Px such that

P (Z1,1, Z1,2, . . . , Zm,1, Zm,2) = Px(Z1,1 + Z1,2, . . . , Zm,1 + Zm,2).
5. Output P .
PIR.Query(i; n)→ ((q1, q2), st), where i ∈ [n]:

1. Let z = (z1, . . . , zm) be the i-th binary vector such that zj = 1 if and only if the
monomial Mi contains the variable Zj .

2. Let z1
$←− Fm

2 , z2 ← z− z1; and let qℓ ← zℓ for ℓ = 1, 2. Set st = (z1, z2).
3. Output ((q1, q2), st).
PIR.Answerℓ(P, qℓ)→ aℓ (for ℓ = 1, 2):

1. Let {M ′
j}j∈[2mn] be all monomials where the number Z_,ℓ is at least half of the

variables.
2. Output aℓ ←

∑
j∈[2mn] M ′

j(qℓ).

PIR.Recon((a1, a2), st)→ xi:
1. Parse st as (z1, z2).
2. Compute xi ← a1(z2) + a2(z1) (note that a1 and a2 are polynomials).
3. Output xi.

Construction A.1 A two-server information-theoretic PIR [9].

1. For simplicity, we pick the first n such monomials in lexicographic order of the variable
indices. The encoding Px is now simply the linear combination Px =

∑n
i=1 xiMi.1

Query. The Query algorithm starts by encoding the query index i ∈ [n] into a binary vector
z(i) = (z(i)

1 , . . . , z
(i)
m) ∈ {0, 1}m defined such that each z

(i)
j = 1 if and only if the monomial

Mi contains the variable Zj . Observe here that the Hamming weight of z(i) is d since
the monomials are also of degree d. Such encoding ensures that Px(zi) = xi. Then the
sub-queries are generated by splitting z(i) into two additive shares z(i)

1 = (z(i)
1,1, . . . , z

(i)
m,1) and

z(i)
2 = (z(i)

1,2, . . . , z
(i)
m,2), i.e., z(i) = z(i)

1 + z(i)
2 . Here, z(i)

ℓ is sent to the ℓ-th server for ℓ = 1, 2.

Answer . The Answerℓ algorithm run by the servers first views the database encoding Px as
a 2m-variate polynomial P ′

x defined as:

P ′
x(Z1,1, Z1,2, . . . , Zm,1, Zm,2) = Px(Z1,1 + Z1,2, . . . , Zm,1 + Zm,2).

Now, the ℓth server selects all the monomial terms in P ′
x such that the number of Z_,ℓ (i.e.,

the variables where the second subscript is ℓ) is at least half of the variables in that term (in
the exactly half case, the monomials are split between the two servers in a pre-determined
way). Note that the total number of monomials in P ′

x is 2d · n, so there should be 2d−1 · n
monomials for each server. The ℓ-th server then evaluates its selected monomials at the

1 One can choose a more complicated encoding in [9] (E1 encoding scheme) that allows better parameters,
namely

∑d

ℓ=0

(
m
ℓ

)
≥ n.

ITC 2024

6:20 Information-Theoretic Single-Server PIR in the Shuffle Model

point z(i)
ℓ and responds with the sum as the answer aℓ (which is now a polynomial in the

remaining m variables). Further, observe that each monomial in P ′
x is of degree d, and so

after the server evaluation, the answer polynomial aℓ will be of degree at most d/2.
Reconstruction. Finally, given answer polynomials a1, a2, the client evaluates a1 at z(i)

2 and
a2 at z(i)

1 , and sums up the evaluation results in F to get Px(z(i)) = xi.

Cost. The parameters m and d can be chosen to be both Θ(log n) such that
(

m
d

)
≥ n. In

this case, the query size is O(log n) (since m elements in F2 are sent to each server) and
the answer size is O(

√
n) (since specifying an m-variate polynomial of degree d/2 requires(

m
d/2

)
= O(

√
n) terms).

Let x be a database with size n, each entry xi is in Σ = F. There are s non-colluding servers.
PIR.Setup(x)→ P :

1. Choose m, d such that
(

m
d

)
≥ n.

2. Let M = (M1, . . . , Mn) be a list of n monomials in F[Z1, . . . , Zm] with total degree
exactly d and intermediate degree at most 1. Sort all monomials that have m variables
with degree d by a lexicographic order of the variables indices.

3. Compute Px =
∑n

i=1 xiMi ∈ F[Z1, . . . , Zm].
4. Compute a sm-variate degree-d polynomial P from Px such that

P (Z1,1, . . . , Z1,s, . . . , Zm,1 . . . Zm,s) = Px(Z1,1 + . . . + Z1,s, . . . , Zm,1 + . . . + Zm,s).
5. Output P .

PIR.Query(i; n)→ ((q1, . . . , qs), st), where i ∈ [n]:
1. Let z = (z1, . . . , zm) be the i-th binary vector such that zj = 1 if and only if the

monomial Mi contains the variable Zj .
2. Let z1, . . . , zs−1

$←− Fm
2 and zs ← z−

∑s−1
j=1 zj .

3. Let qℓ ← (zℓ+1, . . . , zs, z1, . . . , zℓ−1) for ℓ ∈ [s]. // cyclic shift
4. Set st = (z1, . . . , zs).
5. Output ((q1, . . . , qs), st).
PIR.Answerℓ(P, qℓ)→ a, for ℓ ∈ [s]:

1. Let {M ′
j}j∈[smn] be all monomials pre-determined

such that the number of Z_,ℓ is at most 1/s fraction.
2. Output a←

∑
j∈[sdn] M ′

j(qℓ).

PIR.Recon((a1, . . . , aℓ), st)→ xi:
1. Parse st as (z1, . . . , zs).
2. Compute xi ←

∑
ℓ∈[s] aℓ(z1, . . . , zℓ − 1, zℓ+1, zs).

3. Output xi.

Construction A.2 An s-server PIR with CNF shares [9]. Note that when s = 2, this is simply
the 2-server additive PIR.

k-server PIR with additive shares. The above protocol can also be generalized to k servers
where the encoding z is now split into k additive shares. In this case, the servers express the
m-variate degree-d polynomial Px as km-variate degree-d polynomial P ′

x. Let Zℓ be the set
of monomials such that for each monomial, there are more Z_,ℓ than Z_,ℓ′ for any ℓ′ ̸= ℓ.
The set Zℓ is assigned to the ℓ-th server. Moreover, the monomials in P ′

x but not in any of
Z_,ℓ’s will be divided to k servers in a pre-determined way. To issue a query for index i, the
client encodes it as before to a binary string z ∈ Fm

2 , and then splits it to k additive shares
over Fm

2 , denoted as z1, . . . , zk. The client sends to the ℓ-th server the share zℓ, and the

Y. Ishai, M. Kelkar, D. Lee, and Y. Ma 6:21

server evaluates the assigned monomials using zℓ. The evaluation result is a polynomial of
degree (k − 1)d/k; this implies the answer size (which dominates the communication cost) is
O(n(k−1)/k).

Observe that using more additive shares gives worse efficiency but better privacy (since
collusion between any k−1 servers can be tolerated). Efficiency can be significantly improved
to O(n1/k) using CNF shares [33] (instead of additive shares) where each server is now given
a different (k− 1)-sized subset of the additive shares. This is because the evaluation of Px at
k − 1 shares results in an answer polynomial of degree at most O(n1/k). The efficiency gain,
however, comes at the cost of much stronger non-collusion assumption for PIR, namely that
no two database servers can collude. Looking ahead, an interesting consequence of using
the shuffle model is that our CNF-sharing based construction (Section 6.2) can significantly
reduce communication without making any non-collusion assumptions on database servers
(since there is only one database).

For simplicity, going forward, we will refer to the k-server PIR with additive shares as
k-additive PIR and its CNF-variant as k-CNF PIR.

A.2 k-Server PIR with Shamir Shares
In this section, we describe the k-server t-private PIR that uses Shamir secret sharing from [9].
Full description is provided in Figure A.3. We also call this the Reed-Muller PIR as it is
closely related to Reed-Muller code.

Let x = (x1, . . . , xn) ∈ Fn be a database.

PIR.Setup(x)→ Px:
1. Choose parameters m, d, k, t such that(

m+d
d

)
≥ n and |F| > k > td.

2. Compute Px =
∑n

i=1 xiP
(i)(z1, . . . , zm), where P (i)(PIR.Enc(i)) = 1 and P (i)(PIR.Enc(j)) = 0

for all i, j ∈ [n] and i ̸= j.
3. Output Px.

PIR.Query(i; n)→ ((q1, . . . , qk), st), where i ∈ [n]:
1. Run PIR.Enc(i) and gets z ∈ Fm.
2. Choose a set of degree-t random polynomials R = (R1, . . . , Rm) such that R(0) = z.
3. For ℓ ∈ [k]:

Randomly choose rℓ from F.
Set qℓ ← Q(rℓ). Note that each qℓ ∈ Fm.

4. Set st = (r1, . . . , rk).
5. Output ((q1, . . . , qk), st).
PIR.Answer(Px, q)→ a:

1. Compute a← Px(a).
2. Output a.
PIR.Recon((a1, . . . , ak), st)→ xi:

1. Parse st = (r1, . . . , rk).
2. Interpolate a degree-td univariate polynomial R ◦ Px from {(rℓ, aℓ)}k

ℓ=1.
3. Output xi ← (R ◦ Px)(0).

Construction A.3 A k-server t-private PIR based on Reed-Muller code [9].

ITC 2024

6:22 Information-Theoretic Single-Server PIR in the Shuffle Model

Setup. Consider a field F within which Σ can be encoded. The Setup algorithm encodes a
database x ∈ Σn into a polynomial Px ∈ F[Z1, . . . , Zm] as follows: First, choose m and d

such that
(

m+d
d

)
≥ n and |F| > k > td (typically m, d, t are chosen first and then k and the

field size |F| are deteremined accordingly). Let α0, . . . , αd be distinct elements in F (note
that d < |F|). The index i is encoded to the i-th vector z(i) of the form (αλ1 , . . . , αλm

) ∈ Fm

where
∑m

j=1 λj ≤ d. There exists a set of polynomials P (i)(z1, . . . , zm) of degree at most d

such that P (i)(z(i)) = 1 and P (i)(z(j)) = 0 for all i, j ∈ [n] and i ≠ j. The full details of this
encoding and the construction of P (i)’s are provided in [9, Appendix B].
Query. To generate the sub-queries, after encoding the index i to z(i), the client first
chooses m univariate polynomials (R1, . . . , Rm) = R each of degree t such that R(0) =
(R1(0), . . . , Rm(0)) = z(i). It then randomly picks r1, . . . , rk ∈ F and computes the sub-query
to be sent to the ℓth server as qℓ = R(rℓ) ∈ Fm.
Answer. The Answerℓ algorithm evaluates Px at qℓ and sends back aℓ = Px(qℓ). Note that
the answer algorithm for this protocol is the same for all k servers.
Reconstruction. Finally, the Recon algorithm uses Lagrange interpolation on the points
(r1, a1), . . ., (rk, ak) to compute a degree td polynomial S = Px ◦R; the evaluation S(0) will
give the desired database entry xi. This interpolation is possible when k > td and |F| > k.

Other notation. For a PIR protocol Φ, we use EΦ to denote the encoding space of all
indices. We use QΦ to denote the space of all possible sub-queries (note that QΦ may not
equal EΦ). For example, in the two-server construction above, EΦ contains all binary strings
with Hamming weight d, and the space QΦ is Fm

2 , i.e, in this case EΦ ⊂ QΦ.

B Composed PIR Construction

The complete composed PIR construction in the inner-outer paradigm is given in Construc-
tion B.1.

Y. Ishai, M. Kelkar, D. Lee, and Y. Ma 6:23

ShPIR Composition. A shuffle model PIR protocol ShPIR(OPIR, IPIR) built using the
inner-outer paradigm from a k-server OPIR, and a s-server IPIR is defined as follows:

ShPIR.Setup(x)→ P :
1. Let Px ← OPIR.Setup(x).
2. Define a database x′ of size n′ as follows:

Let n∗ = |QOPIR| and let L = (L1, . . . , Ln∗) denote the sorting of the sub-query
space QOPIR.
If the Answer algorithm is the same for all OPIR servers:

For all i ∈ [n∗], let x′
i ← OPIR.Answer(Px, Li).

As a result, x′ is of size n′ = n∗.
If the Answer algorithm is different for the k OPIR servers:

For i ∈ [n∗], ℓ ∈ [k]: let x′
i+n′·(ℓ−1) ← OPIR.Answerℓ(Px, Li).

As a result, x′ is of size n′ = kn∗.
3. Run IPIR.Setup(x′) and output its result as P .

ShPIR.Query(i; n)→ (q1, . . . , qh), where i ∈ [n] and h = k(s + 1):
1. Initialize (uℓ,j)ℓ∈[k],j∈[s].
2. Let (q′

1, . . . , q′
k)←$ OPIR.Query(i; n).

3. For ℓ ∈ [k],
If the Answer algorithm is the same for all k OPIR servers:

Map q′
ℓ to the corresponding index i′

ℓ ∈ [n′],
i.e., xi′

ℓ
= OPIR.Answer(Px, q′

ℓ).
If the Answer algorithm is different for the k OPIR servers:

Map q′
ℓ to the corresponding index i′

ℓ ∈ [kn′],
i.e., xi′

ℓ
= OPIR.Answerℓ(Px, q′

ℓ).
Let (q̃1, . . . , q̃s)←$ IPIR.Query(i′

ℓ; n′).
Set (uℓ,1, . . . , uℓ,s)← (q̃1, . . . , q̃s).

4. Let (r1, . . . , rk) $←− QOPIR. // dummies
5. Output (u1,1, . . . , uk,s, r1, . . . , rk).
ShPIR.Answer(P, q)→ a:

1. If IPIR has the same Answer algorithms for server, return a = IPIR.Answer(P, q);
otherwise return

a =
{

(IPIR.Answerℓ(P, q), label ℓ)
}

ℓ∈[s]
.

ShPIR.Recon(a1, . . . , ah)→ xi:
1. Initialize (vℓ,j)ℓ∈[k],j∈[s] and (a′

ℓ)ℓ∈[k].
2. For ℓ ∈ [k], j ∈ [s]:

Let a(ℓ−1)·k+j be the answer to sub-query q(ℓ−1)·k+j , namely uℓ,j .
If IPIR has different Answer algorithms for the servers, parse a(ℓ−1)·k+j as

{(ã1, label 1), . . . , (ãs, label s)} , let vℓ,j := ãj (whose associated label is j).

If IPIR has the same Answer algorithms for the servers, let vℓ,j = a(ℓ−1)·k+j .
3. For ℓ ∈ [k]:

a′
ℓ ← IPIR.Recon(vℓ,1, . . . , vℓ,s).

4. Output xi ← OPIR.Recon(a′
1, . . . , a′

k).

Construction B.1 Composed ShPIR built using the inner-outer paradigm.

ITC 2024

Improved Trade-Offs Between Amortization and
Download Bandwidth for Linear HSS
Keller Blackwell #

Department of Computer Science, Stanford University, CA, USA

Mary Wootters #

Departments of Computer Science and Electrical Engineering, Stanford University, CA, USA

Abstract
A Homomorphic Secret Sharing (HSS) scheme is a secret-sharing scheme that shares a secret x

among s servers, and additionally allows an output client to reconstruct some function f(x) using
information that can be locally computed by each server. A key parameter in HSS schemes is
download rate, which quantifies how much information the output client needs to download from the
servers. Often, download rate is improved by amortizing over ℓ instances of the problem, making ℓ

also a key parameter of interest.
Recent work [23] established a limit on the download rate of linear HSS schemes for computing

low-degree polynomials and constructed schemes that achieve this optimal download rate; their
schemes required amortization over ℓ = Ω(s log(s)) instances of the problem. Subsequent work
[6] completely characterized linear HSS schemes that achieve optimal download rate in terms of a
coding-theoretic notion termed optimal labelweight codes. A consequence of this characterization
was that ℓ = Ω(s log(s)) is in fact necessary to achieve optimal download rate.

In this paper, we characterize all linear HSS schemes, showing that schemes of any download
rate are equivalent to a generalization of optimal labelweight codes. This equivalence is constructive
and provides a way to obtain an explicit linear HSS scheme from any linear code. Using this
characterization, we present explicit linear HSS schemes with slightly sub-optimal rate but with
much improved amortization ℓ = O(s). Our constructions are based on algebraic geometry codes
(specifically Hermitian codes and Goppa codes).

2012 ACM Subject Classification Theory of computation → Cryptographic primitives; Theory of
computation → Error-correcting codes

Keywords and phrases Error Correcting Codes, Homomorphic Secret Sharing

Digital Object Identifier 10.4230/LIPIcs.ITC.2024.7

Related Version Full Version: https://arxiv.org/abs/2403.08719

Funding Keller Blackwell: KB is supported by a National Science Foundation Graduate Research
Fellowship and by a graduate fellowship award from Knight-Hennessy Scholars at Stanford University.
KB’s work is supported partially supported by NSF grant CCF-2231157.
Mary Wootters: MW’s work was partially supported by NSF grants CCF-1844628, CCF-2133154,
and CCF-2231157.

Acknowledgements We thank the anonymous referees for helpful feedback.

1 Introduction

A Homomorphic Secret Sharing (HSS) scheme is a secret sharing scheme that supports
computation on top of the shares [4, 12, 13]. Homomorphic Secret Sharing has been a useful
primitive in cryptography, with applications ranging from private information retrieval to
secure multiparty computation (see, e.g., [9, 13]).

© Keller Blackwell and Mary Wootters;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal; Article No. 7; pp. 7:1–7:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kellerb@cs.stanford.edu
https://orcid.org/0000-0003-3588-9199
mailto:marykw@cs.stanford.edu
https://orcid.org/0000-0002-2345-2531
https://doi.org/10.4230/LIPIcs.ITC.2024.7
https://arxiv.org/abs/2403.08719
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Trade-Offs Between Linear HSS Amortization, Bandwidth

In this work, we focus on information-theoretically secure HSS schemes for the class of
degree d, m-variate polynomials. Suppose m secrets, x1, . . . , xm, are shared independently
with a t-private secret sharing scheme Share1and that server j receives the m shares yk,j for
k ∈ [m]. Denote by POLYd,m(F) ⊆ F[X1, . . . , Xm] an arbitrary set of degree d, m-variate
polynomials. Given a polynomial f ∈ POLYd,m(F), each server j does some local computation
on its shares yk,j for k ∈ [m] to obtain an output share zj = Eval(f, j, (y1,j , . . . , ym,j)). An
output client receives the output shares z1, . . . , zs and runs a recovery algorithm Rec to
obtain f(x1, . . . , xm) = Rec(z1, . . . , zs). The HSS scheme π is given by the tuple of functions
(Share, Eval, Rec); see Definition 7 for a formal definition.

Parameters of interest

A key parameter of interest in an HSS scheme is the download rate (Definition 12), which is
the ratio of the number of bits in f(x) to the number of bits in all of the output shares zj .
Ideally this rate would be as close to 1 as possible, because that would mean that the output
client does not have to download too much more information than it wishes to compute.

Another parameter of interest is the amortization that the scheme uses. As in previous
work [23, 6], we consider HSS schemes for low-degree polynomials that amortize over ℓ

instances of the problem. This means that we have ℓ batches of m secrets, x
(i)
k for i ∈ [ℓ]

and k ∈ [m], and ℓ polynomials f1, . . . , fℓ. Each of these mℓ secrets is shared independently,
as before, but the output shares zj are allowed to depend on all ℓ batches. Then the output
client is responsible for computing fi(x(i)

1 , . . . , x
(i)
m) for all i ∈ [ℓ].

Trade-offs between download rate and amortization

[23, 6] previously studied the optimal download rate possible for linear HSS schemes2, and
also studied what amount of amortization is necessary to obtain this optimal rate. In this
work, we show that by backing off from the optimal rate by a small amount, one can get
asymptotic improvements in the amortization parameter.

In more detail, [23] showed that for t-private, s-server linear HSS schemes for m-variate
degree-d polynomials, the best download rate possible is 1 − dt/s. They achieved this
download rate with schemes that had amortization ℓ = Ω(s log(s)). In follow-up work,
[6] showed that in fact amortization ℓ = Ω(s log(s)) was necessary to achieve the optimal
download rate of 1− dt/s. Their result followed from a characterization optimal-rate linear
HSS schemes in terms of a coding theoretic notion they introduce, termed optimal labelweight
codes.

In our work, informally, we show that by backing off from the optimal rate by a small
amount, we are able to get asymptotic improvements in the amortization required; in some
cases we need only ℓ = O(s). We obtain this by generalizing the characterization from [6] to
all HSS schemes, not just optimal ones. We discuss our main results below in more detail.

1 A t-private secret sharing scheme shares a secret x among s servers by computing s shares, Share(x) =
(y1, . . . , ys). The t-privacy guarantee means that no t of the servers should be able to learn anything
about x given their shares.

2 A linear HSS scheme is a scheme where both Share and Rec are linear over some field F. Note that Eval
need not be linear.

K. Blackwell and M. Wootters 7:3

1.1 Main Results
For all of our results, we consider CNF sharing [27] (see Definition 16). It is known that CNF
sharing is universal for linear secret sharing schemes, in that t-CNF shares can be locally
converted to shares of any linear t-private secret sharing scheme [18].

Main Contributions

1. A complete characterization of the Rec functions for all linear HSS schemes for
POLYd,m(F). As mentioned above, [6] gives a characterization of optimal-download-rate
linear HSS schemes in terms of codes with good labelweight. In our work, we extend that
characterization to all linear HSS schemes.
Our characterization is constructive, and in particular it gives an efficient algorithm to
convert any code with good labelweight into a linear HSS scheme, and vice-versa.

2. Improved amortization without much loss in rate. The work [6] showed that to
achieve optimal rate, it was necessary to have amortization ℓ = Ω(s log s). Leveraging
our characterization from Item 1, we give efficient constructions of linear HSS schemes
that achieve near-optimal download rate while requiring amortization parameter only
ℓ = O(s). We compute the parameters of our constructions in practical parameter regimes
and show that our schemes achieve a near order-of-magnitude savings in amortization
parameter, even for reasonable values of s, d, m.

We describe our results in greater detail below.

(1) Characterization of arbitrary-rate linear HSS schemes

Theorem 2 below is a characterization of all linear HSS schemes for POLYd,m(F). In
particular, our characterization extends that of [6], which only characterized optimal-rate
linear HSS schemes. We show that the Rec algorithms for such schemes (with CNF sharing)
are equivalent to a class of linear codes with sufficiently good labelweight, a generalization of
Hamming distance that was introduced by [6].

▶ Definition 1 (Labelweight). Let C ⊆ Fn be a linear code of dimension ℓ. Let L : [n]→ [s]
be any surjective function, which we refer to as a labeling function. The labelweight of c ∈ C
is the number of distinct labels that the support of c touches:

∆L(c) = |{L(i) : i ∈ [n], ci ̸= 0}|.

The labelweight of C is the minimum labelweight of any nonzero codeword:

∆L(C) = min
c∈C\{0}

∆L(c).

In particular, if s = n and L(j) = j for all j ∈ [n], then ∆L(C) is just the minimum Hamming
distance of C. Thus, the labelweight of a code generalizes the standard notion of distance.

Our main characterization theorem is the following.

▶ Theorem 2 (Linear HSS schemes are equivalent to labelweight codes. (Informal, see Theorem
18)). Let π = (Share, Eval, Rec) be a t-private, s-server linear HSS for POLYd,m(F) with
download rate R and amortization parameter ℓ. Let G ∈ Fℓ×(ℓ/R) be the matrix that represents
Rec (see Observation 10). Then there is some labeling function L so that G is the generator
matrix for a code C of dimension ℓ, with rate R and with ∆L(C) ≥ dt + 1.

ITC 2024

7:4 Trade-Offs Between Linear HSS Amortization, Bandwidth

Conversely, suppose that there is a labeling function L : [n]→ [s] and a linear code C ⊆ Fn

of dimension ℓ with rate R and ∆L(C) ≥ dt + 1. Then any generator matrix G of C describes
a linear reconstruction algorithm Rec for an s-server t-private linear HSS for POLYd,m(F)
that has download rate R and amortization parameter ℓ.

We remark that the converse direction is constructive: given the description of such a
code C, the proof (see Theorem 20) gives an efficient construction of the Eval function as
well as the Rec function.

(2) Achieving practical trade-off between download rate and amortization parameter

Using the complete characterization of all linear HSS schemes, we construct linear HSS
schemes that achieve near-optimal download rate at amortization parameters that are strictly
linear in in the number of servers s. Through the lens of Theorem 2, this is equivalent to
constructing high-labelweight, high-rate linear codes.

While the construction of [6] use Reed-Solomon codes as a starting point to constructing
optimal rate linear HSS schemes, we use two well-studied families of algebraic geometry
(AG) codes – Hermitian codes and Goppa codes. For any code C, observe that the minimum
labelweight ∆L(C) is sharply upper-bounded by the code’s minimum distance. Therefore, so
as to maximize labelweight, we use the trivial labeling scheme where n = s and L : [n]→
[s], x 7→ x is the identity function. Such labelweight codes, though straightforward, yield
linear HSS schemes with attractive parameters for realistic server counts. Furthermore, their
intuitive construction underscores the fundamental relationship between classical codes and
linear HSS. We loosely summarize these results in Table 1; see Theorems 22, 27 for additional
details and formal statements.

Table 1 Comparing our AG-based constructions to [23], [6].

[23],[6] Hermitian-based HSS Goppa-based HSS
Download Rate 1 − dt/s 1 − dt/s − O(s−1/3) 1 − (dt/s) · O(log(dt))
Amortization (s − dt) log(s) s − dt − O(s2/3) s − dt · O(log(dt))

Furthermore, for completeness we show in Appendix A that, perhaps surprisingly, a
random coding approach does not lead to amortization savings over [23], [6], even backing
off from the optimal rate. More precisely, linear HSS schemes instantiated from random
labelweight codes result in HSS schemes with amortization parameter at least Ω(s log(s)).
This motivates additional study of linear codes with algebraic structure as a basis for linear
HSS with attractive parameters.

1.2 Technical Overview
In this section, we give a high-level overview of the techniques underpinning Theorem 2,
which states that any t-private, s-server linear HSS scheme for POLYd,m(F) is equivalent to
a labelweight code with minimum labelweight ≥ dt + 1.

To give some intuition for the connection, we recount the simplest non-trivial case of
the forward direction, which was proven by [6]. We consider HSS for concatenation [23]:
ℓ secrets x =

(
x(1), . . . , x(ℓ)) ∈ Fℓ are shared independently among s servers who in turn

communicate them to an output client. The objective is for the output client to download
as little information as possible - in particular, significantly less than the naive solution of
simply downloading t + 1 shares of each secret.

K. Blackwell and M. Wootters 7:5

Let z ∈ Fn be the n-tuple of F-symbols downloaded by the output client; since the output
client instantiates a linear reconstruction algorithm Rec, there exists G ∈ Fℓ×n such that
Gz = x. Define a labeling function L : [n]→ [s] satisfying the property that for all i ∈ [n],
L(i) = r ∈ [s] if and only if zi was downloaded from server r.

▷ Claim 3. The rows of G generate a linear code C satisfying ∆L(C) ≥ t + 1.

Proof. Suppose towards a contradiction that for some non-zero m ∈ Fℓ, ∆L(mG) ≤ t. Then
mGx = cx (for some non-zero c ∈ Fn) is a linear combination of secrets recoverable by a set
of t servers, contradicting the t-privacy they were originally secret shared with. ◁

In this example, the function evaluated on the secret shares is identity; the generalization
of this example requires consideration of more general functions, but the fundamental principle
is similar.

The converse requires showing that any labelweight code C implies a linear HSS scheme.
In the setting of optimal download rate, [6] leveraged the specific properties of optimal
labelweight codes in order to prove this; their work relied on the fact that optimal labelweight
codes are highly structured. In particular, [6] showed that, in the optimal download rate
setting:

(i) the output client must download an equal number of symbols from each server; and
(ii) up to elementary row operations, the matrix parameterizing the output client’s linear

Rec algorithm is a rectangular array of invertible matrices, with the property that any
square sub-array is itself invertible.

These strong symmetry properties are key to the equivalence result of [6]. However, in
our setting, where we do not assume that the optimal download rate is attained, neither of
the aforementioned properties hold. Our result thus requires proving additional properties of
labelweight codes.

1.3 Related Work
Though linear HSS schemes are implicit in classical protocols for secure multi-party com-
putation and private information retrieval [4, 3, 15, 19, 1, 2, 16], the systematic study of
HSS was introduced by [13]. Most HSS schemes reply on cryptographic hardness assump-
tions [10, 21, 11, 12, 22, 13, 14, 8, 17, 28, 29, 20].

In contrast, the HSS schemes presented in this work are information-theoretically secure.
The information-theoretic setting was explored in [13] and was further studied in [23] and
[6]; these latter two works are the closest to our work, and we discuss them more below.

The work of [23] focused on the download rate of information-theoretically secure HSS
schemes (both linear and non-linear) and proved a tight impossibility result regarding the
highest download rate achievable by linear HSS schemes. They paired this with an explicit
construction that showed a large amortization parameter is a sufficient condition for a linear
HSS scheme to achieve optimal download rate.

▶ Theorem 4 ([23]). Let s, d, t ∈ Z+ such that s > dt. Let π be a t-private, s-server linear
HSS scheme for POLYd,m(F). Then DownloadRate(π) ≤ 1− dt/s.

Furthermore, for all integers j ≥ log|F|(s), there exists a t-private, s-server linear HSS π

satisfying DownloadRate(π) = 1− dt/s with amortization parameter ℓ = j(s− dt).

The work [6] focused on linear schemes with optimal download rate, meeting the bound
showed in [23]. They proved that in fact a large amortization parameter is necessary for a
linear HSS scheme to achieve optimal download rate.

ITC 2024

7:6 Trade-Offs Between Linear HSS Amortization, Bandwidth

▶ Theorem 5 ([6]). There exists a t-private, s-server linear HSS scheme for POLYd,m(F)
with download rate (s− dt)/s and amortization parameter ℓ only if ℓ = j(s− dt) for some
j ∈ Z+ satisfying

j ≥ ⌈max
{

logq(s− dt + 1), logq(dt + 1)
}
⌉.

The key technique in their proof was showing that optimal-rate linear HSS is in fact
equivalent to optimal labelweight linear codes; more precisely, they showed the following
theorem.

▶ Theorem 6 ([6]). There exists a t-private, s-server linear HSS scheme for POLYd,m(F)
with download rate (s−dt)/s and amortization parameter ℓ if and only if there exists a linear
code C ⊆ Fn with information rate (s− dt)/s and dimension ℓ; and surjection L : [n]→ [s]
such that ∆L(C) ≥ dt + 1.

Our work extends the characterization of [6] to all linear HSS schemes with arbitrary
download rate; in particular, we show that arbitrary-rate linear HSS schemes are equivalent
to a broader class of labelweight codes than those considered by [6]. Though our proof
syntactically resembles that of Theorem 6 from [6], as discussed in Section 1.2, we need to
overcome additional technical difficulties introduced by the lack of strong symmetries in
the more general arbitrary-rate setting. Furthermore, we present explicit constructions that
approach the optimal download rate from Theorem 15, while asymptotically improving the
amortization parameter ℓ.

1.4 Organization
In Section 2, we set notation and record a few formal definitions that we will need. In
Section 3, we show that linear HSS schemes (with arbitrary download rate) are equivalent to
codes with sufficient labelweight: Lemma 19 establishes that HSS schemes imply codes with
sufficient labelweight, and Theorem 20 constructively establishes the converse.

In Section 4, we derive labelweight codes from Hermitian codes and construct the
corresponding linear HSS scheme by Theorem 20. We formally state its parameters in
Theorem 22 and compare its performance against constructions from [23] and [6]. In Section
5, we do the same but use Goppa codes as the basis for a family of labelweight codes.

2 Preliminaries

We begin by setting notation and the basic definitions that we will need throughout the
paper. (We note that these definitions and notation closely follow that of [23] and [6]).

Notation. For n ∈ Z+, we denote by [n] the set {1, 2, . . . , n}. We use bold symbols (e.g.,
x) to denote vectors. For an object w in some domain W , we use ∥w∥ = log2(|W|) to denote
the number of bits used to represent w.

2.1 Homomorphic Secret Sharing
We consider homomorphic secret sharing (HSS) schemes with m inputs and s servers; each
input is shared independently. We denote by F = {f : Xm → O} the class of functions we
wish to compute, where X and O are input and output domains, respectively.

K. Blackwell and M. Wootters 7:7

▶ Definition 7 (HSS). Given a collection of s servers and a function class F = {f : Xm → O},
consider a tuple π = (Share, Eval, Rec), where Share : X ×R → Ys, Eval : F × [s]× Y → Z∗,
and Rec : Z∗ → O are as follows3:

Share(xi, ri): For i ∈ [m], Share takes as input a secret xi ∈ X and randomness ri ∈ R;
it outputs s shares (yi,j : j ∈ [s]) ∈ Ys. We refer to the yi,j as input shares; server j

holds shares (yi,j : i ∈ [m]).
Eval (f, j, (y1,j , y2,j , . . . , ym,j)): Given f ∈ F , server index j ∈ [s], and server j’s input
shares (y1,j , y2,j , . . . , ym,j), Eval outputs zj ∈ Znj , for some nj ∈ Z. We refer to the zj

as output shares.
Rec(z1, . . . , zs): Given output shares z1, . . . , zs, Rec computes f(x1, . . . , xm) ∈ O.

We say that π = (Share, Eval, Rec) is a s-server HSS scheme for F if the following requirements
hold:

Correctness: For any m inputs x1, . . . , xm ∈ X and f ∈ F ,

Pr
r∈Rm

[
Rec(z1, . . . , zs) = f(x1, . . . , xm) :

∀i ∈ [m], (yi,1, . . . , yi,s)← Share(xi, ri)
∀j ∈ [s], zj ← Eval (f, j, (y1,j , . . . , ym,j))

]
= 1

Note that the random seeds r1, . . . , rm are independent.
Security: Fix i ∈ [m]; we say that π is t-private if for every T ⊆ [s] with |T | ≤ t and
xi, x′

i ∈ X , Share(xi)|T has the same distribution as Share(x′
i)|T , over the randomness

r ∈ Rm used in Share.

▶ Remark 8. We remark that in the definition of HSS, the reconstruction algorithm Rec does
not need to know the identity of the function f being computed, while the Eval function
does. In some contexts it makes sense to consider an HSS scheme for F = {f}, in which
case f is fixed and known to all. Our results in this work apply for general collections F of
low-degree, multivariate polynomials, and in particular cover both situations.

We focus on linear HSS schemes, where both Share and Rec are F-linear over some finite
field F; note that Eval need not be linear.

▶ Definition 9 (Linear HSS). Let F be a finite field.
We say that an s-server HSS π = (Share, Eval, Rec) has linear reconstruction if:
Z = F, so each output share zi ∈ Fni is a vector over F;
O = Fo is a vector space over F; and
Rec : F

∑
i

ni → Fo is F-linear.
We say that π has linear sharing if X , R, and Y are all F-vector spaces, and Share is
F-linear.
We say that π is linear if it has both linear reconstruction and linear sharing. Note there
is no requirement for Eval to be F-linear.

The assumption of linearity implies that the function Rec can be represented by a matrix,
as per the following observation that was also used by [6].

▶ Observation 10 ([6]). Let ℓ, t, s, d, m, n be integers. Let π = (Share, Eval, Rec) be a t-
private, s-server HSS for some function class F ⊆ POLYd,m(F)ℓ with linear reconstruction
Rec : Fn → Fℓ.

3 By Z∗, we mean a vector of some number of symbols from Z.

ITC 2024

7:8 Trade-Offs Between Linear HSS Amortization, Bandwidth

Then there exists a matrix Gπ ∈ Fℓ×n so that, for all f ∈ F and for all secrets x ∈ (Fm)ℓ,
there exists some z ∈ Fn such that

Rec(z) = Gπz = f(x) =
[
f1(x(1)), f2(x(2)), . . . , fℓ(x(ℓ))

]T
.

For a linear HSS π, we call Gπ as in the observation above the reconstruction matrix
corresponding to Rec. It was shown in [6] that any such reconstruction matrix must be full
rank.

▶ Lemma 11 ([6]). Let t, s, d, m, ℓ be positive integers so that m ≥ d and n ≥ ℓ, and let π be
a t-private s-server linear HSS for some F ⊆ POLYd,m(F), so that F contains an element
(f1, . . . , fℓ) where for each i ∈ [ℓ], fi is non-constant. Then Gπ ∈ Fℓ×n has rank ℓ.

Finally, we formally define the download rate of an HSS scheme.

▶ Definition 12 (Download cost, dowload rate). Let s, t be integers and let F be a class of
functions with input space Xm and output space O. Let π be an s-server t-private HSS for
F . Let zi ∈ Zni for i ∈ [s] denote the output shares.

The download cost of π is given by

DownloadCost(π) :=
∑
i∈[s]

∥zi∥,

where we recall that ∥zi∥ = ni log2 |Z| denotes the number of bits used to represent zi.
The download rate of π is given by

DownloadRate(π) := log2 |O|
DownloadCost(π) .

Thus, the download rate is a number between 0 and 1, and we would like it to be as close
to 1 as possible.

2.2 Polynomial Function Classes
Throughout, we will be interested in classes of functions F comprised of low-degree polyno-
mials.

▶ Definition 13. Let m > 0 be an integer and F be a finite field. We define

POLYd,m(F) := {f ∈ F[X1, . . . , Xm] : deg(f) ≤ d}

to be the class of all m-variate polynomials of degree at most d, with coefficients in F.

We are primarily interested in amortizing HSS computation over ℓ instances of POLYd,m(F),
as discussed in the Introduction. We can capture this as part of Definition 7 by taking
the function class F to be (a subset of) POLYd,m(F)ℓ for some ℓ ∈ Z+. Note that this
corresponds to the amortized setting discussed in the Introduction.

▶ Definition 14. Let F ⊆ POLYd,m(F)ℓ. We say that F is non-trivial if there exists some
f = (f1, . . . , fℓ) ∈ F so that for all i ∈ [ℓ], fi contains a monomial with at least d distinct
variables.

The work [23] showed that any linear HSS scheme for POLYd,m(F)ℓ (for any ℓ) can have
download rate at most (s− dt)/s: We recall the following theorem from [23].

▶ Theorem 15 ([23]). Let t, s, d, m, ℓ be positive integers so that m ≥ d. Let F be any finite
field and π be a t-private s-server linear HSS scheme for POLYd,m(F)ℓ. Then dt < s, and
DownloadRate(π) ≤ (s− dt)/s.

K. Blackwell and M. Wootters 7:9

2.3 CNF Sharing
The main Share function that we consider in this work is CNF sharing [27].

▶ Definition 16 (t-private CNF sharing). Let F be a finite field. The t-private, s-server CNF
secret-sharing scheme over F is a function Share : F × F(s

t)−1 →
(
F(s−1

t)
)s

that shares a

secret x ∈ F as s shares yj ∈ F(s−1
t), using

(
s
t

)
− 1 random field elements, as follows.

Let x ∈ F, and let r ∈ F(s
t)−1 be a uniformly random vector. Using r, choose yT ∈ F for

each set T ⊆ [s] of size t, as follows: The yT are uniformly random subject to the equation

x =
∑

T ⊆[s]:|T |=t

yT .

Then for all j ∈ [s], define Share(x, r)j = (yT : j ̸∈ T) ∈ F(s−1
t).

We observe that CNF-sharing is indeed t-private. Any t + 1 servers between them hold all
of the shares yT , and thus can reconstruct x =

∑
T yT . In contrast, any t of the servers (say

given by some set S ⊆ [s]) are missing the share yS , and thus cannot learn anything about x.
The main reason we focus on CNF sharing is that it is universal for linear secret sharing

schemes:

▶ Theorem 17 ([18]). Suppose that x ∈ F is t-CNF-shared among s servers, so that server
j holds yj ∈ F(s−1

t), and let Share′ be any other linear secret-sharing scheme for s servers
that is (at least) t-private. Then the shares yj are locally convertible into shares of Share′.
That, is there are functions ϕ1, . . . , ϕs so that (ϕ1(y1), . . . , ϕs(ys)) has the same distribution
as Share′(x, r) for a uniformly random vector r.

2.4 Linear Codes
Throughout, we will be working with linear codes C ⊂ Fn, which are just subspaces of Fn.
For a linear code C ⊆ Fn of dimension ℓ, a matrix G ∈ Fℓ×n is a generator matrix for C if
C = rowSpan(G). Note that generator matrices are not unique. The rate of a linear code
C ⊂ Fn of dimension ℓ is defined as Rate(C) := ℓ

n .

3 Equivalence of Linear HSS and Labelweight Codes

In this section we show that linear HSS schemes for low-degree multivariate polynomials
are equivalent to linear codes with sufficient labelweight. Concretely, we have the following
theorem, which formalizes the statement of Theorem 2.

▶ Theorem 18. Let ℓ, t, s, d, m, n be integers, with m ≥ d, ℓ ≤ n. There exists a t-private,
s-server F-linear HSS π = (Share, Eval, Rec) for any non-trivial F ⊆ POLYd,m(F)ℓ, with
download rate DownloadRate(π) = ℓ/n, if and only if there exists a linear code C ⊆ Fn with
rate DownloadRate(π) and a labeling L : [n]→ [s] so that ∆L(C) ≥ dt + 1.

The work of [6] proved this equivalence for only the optimal-rate setting and left the
equivalence in an arbitrary-rate setting as an open question. Theorem 18 settles this question
and shows that linear HSS and linear codes of sufficient labelweight are indeed equivalent in
all parameter regimes. The proof of Theorem 18 follows from Lemma 19 (for the forward
direction) and Theorem 20 (for the converse) below.

We begin with the forward direction.

ITC 2024

7:10 Trade-Offs Between Linear HSS Amortization, Bandwidth

▶ Lemma 19 (Follows from the analysis of [6]). Let ℓ, t, s, d, m, n be integers, with m ≥ d, ℓ ≤ n.
Suppose there exists a t-private, s-server F-linear HSS π = (Share, Eval, Rec) for any non-
trivial (see Definition 14) F ⊆ POLYd,m(F)ℓ, with download rate DownloadRate(π) = ℓ/n.
Then there exists a linear code C ⊆ Fn with rate DownloadRate(π) and a labeling L : [n]→ [s]
so that ∆L(C) ≥ dt + 1.

Though the statement of Lemma 19 is more general than its optimal-rate counterpart
in [6], the proof is analogous; a careful reading of Lemma 12 in [6] shows that this forward
direction does not leverage any of the strong symmetries of optimal rate linear HSS. Thus,
we refer the reader to [6] for a proof.

Thus, in the rest of this section we focus on the converse, which does deviate from the
analysis of [6], as we cannot leverage the same strong symmetries that they did, as discussed
in Section 1.2. We first formally state the converse.

▶ Theorem 20. Let ℓ, t, s, d, m, n be integers, with m ≥ d. Suppose that there exists a linear
code C ⊆ Fn with dimension ℓ and rate ℓ/n. Suppose there exists a labeling L : [n]→ [s] so
that ∆L(C) ≥ dt + 1. Then there exists a t-private, s-server linear HSS π = (Share, Eval, Rec)
for POLYd,m(F)ℓ with download rate ℓ/n and amortization parameter ℓ.

The main ingredient in proving this direction without the strong symmetries of optimal
rate linear HSS is the following lemma, which neatly generalizes the results of Lemma 13
and Corollaries 14, 15 of [6].

▶ Lemma 21. Let C be a length n, dimension ℓ linear code over Fq with generator matrix
G ∈ Fℓ×n

q . Let L : [n]→ [s] be a surjective labeling such that ∆L(C) ≥ dt + 1.
For Λ ⊆ [s], let G(Λ) denote the restriction of G to the columns r ∈ [n] so that L(r) ∈ Λ.

Then for any |Λ| ≥ s− dt, G(Λ) has full row rank.

Proof. Let Λ = Λ′ ∪Λ′′ where Λ′ ∩Λ′′ = ∅ and |Λ′| = s− dt. If G(Λ′) achieves full row rank,
then so does G(Λ), since adding columns to a matrix does not induce linear independence
among its rows. Hence, it suffices to consider only |Λ| = s− dt.

Up to a permutation of columns, G can be written as G = [G(Λ) | G([s] \ Λ)]. Let w

denote the number of columns in G(Λ).
Assume towards a contradiction that there exists some v ∈ Fℓ

q such that vG(Λ) = 0w.
Then

vG = [vG(Λ) | vG([s] \ Λ)] = [0w | vG([s] \ Λ)] .

Since |[s] \ Λ| = dt, it follows that

∆L(vG) = ∆L(vG([s] \ Λ)) ≤ dt

which contradicts ∆L(C) ≥ dt + 1. ◀

Let Gπ be a reconstruction matrix. At a high level, Lemma 21 says that any sufficiently
large submatrix of Gπ, obtained by only considering columns labeled with a sufficiently
large subset Λ ⊆ [s], must be full-rank. [6] proved that such a property held for Gπ in
the optimal-rate regime that relied heavily on the fact that, in optimal-rate linear HSS,
the output client downloads an equal number of output symbols from each server. This
is equivalent to requiring that the sets L−1(y) := {x ∈ [n] : L(x) = y} be the same size
for all y ∈ [s]. The proof of Lemma 21 shows that, perhaps surprisingly, sufficiently large
submatrices of Gπ still achieve full-rank even when the output client is allowed to download
arbitrary numbers of output symbols from each server.

The remainder of the proof of Theorem 20 proceeds in a familiar syntax to that of [6]; we
omit its presentation here and refer the interested reader to the full manuscript [7].

K. Blackwell and M. Wootters 7:11

4 Linear HSS from Hermitian Codes

Linear HSS schemes presented by [23], [6] both achieve optimal download rate 1 − dt/s

but require large amortization parameters to do so. [23] showed it was sufficient to take
amortization parameter ℓ = (s − dt) log(s) = O(s log(s)), and [6] proved that such an
amortization parameter is in fact necessary in many parameter regimes, and is off by at most
1 otherwise.

It is a natural to ask whether linear HSS schemes that achieve a better trade-off between
download rate and amortization parameter exist. Specifically, can we make minor concessions
to download rate and save substantially on the amortization needed?

Through the lens of Theorem 20, this is equivalent to asking whether there exists
a labelweight code with minimum labelweight ≥ dt + 1 that achieves good rate at low
dimension. A natural first attempt at an existential result would be via random coding;
specifically, building a linear HSS scheme by starting with a random linear code and following
the construction of Theorem 20. Unfortunately (and perhaps surprisingly!), we show in
Appendix A that this results in strictly worse parameters than [23], [6].

In the following sections we take a different approach. We derive our labelweight codes
straightforwardly from well-studied algebraic geometric codes: we set the number of servers
s equal to the block length n of the codes and label each coordinate by the identity function
L : [n]→ [s], x 7→ x. In this setting, labelweight is equivalent to Hamming weight. Note that
the trivial labeling maximizes labelweight; the reverse direction of Theorem 18 showed that
maximizing labelweight given a fixed download rate implies a linear HSS scheme where the
greatest values of d, t can be considered.

This section constructs a family of linear HSS schemes from Hermitian codes; notably,
such schemes achieve asymptotically optimal download rate while requiring an amortization
parameter that is only linear in s.

▶ Theorem 22. Let ℓ, t, s, d, m be positive integers and q a prime power satisfying m ≥ d, s−
dt > 0, and s = q3. Then there exists an explicit t-private, s-server HSS π = (Share, Eval, Rec)
for any non-trivial F ⊆ POLYd,m(Fq2) with

DownloadRate(π) = 1− dt

s
− s1/3 + 1

2s2/3

and amortization parameter

ℓ = s− dt− s2/3 − s1/3

2 .

We note that the above download rate is off of the optimal 1− dt/s by only a O(s−1/3)
term; it converges asymptotically to the optimal rate 1− dt/s. Furthermore, it achieves this
near-optimal download rate while requiring amortization only linear in s. We place these
parameters in the context of [23], [6] in Figure 2.

Table 2 Comparison of Theorem 22 to [23], [6]. When q = O(1) and s = ω(1), the download
rate in Theorem 22 approaches the optimal rate; while the amortization is asmyptotically better.

[23],[6] Theorem 22
Download Rate 1 − dt/s 1 − dt/s − O(s−1/3)
Amortization (s − dt) logq2 (s) s − dt − O(s2/3)

ITC 2024

7:12 Trade-Offs Between Linear HSS Amortization, Bandwidth

We can compare these download rates (and the amortization parameters required to
achieve them) for up to 1,000 servers s ∈ (dt, 1000] in Table 3; we visualize this data in
Figure 2.

The key takeaway from these numerical illustrations of Theorem 22 is that even in
non-asymptotic parameter regimes, small concessions in rate result in notable savings in
amortization.

Table 3 Comparison of download rates, amortization parameters from [23], [6] and Theorem 22
when d = t = 2.

Servers [23], [6] Theorem 22 % Difference
DL Rate Amort. DL Rate Amort. DL Rate Amort.

50 0.92 69 0.75 42 -18% -39%
100 0.96 145 0.83 88 -13% -39%
200 0.98 294 0.88 182 -10% -38%
300 0.98 444 0.90 277 -8% -38%
400 0.99 594 0.91 373 -7% -37%
500 0.99 744 0.92 469 -7% -37%
1000 0.99 1494 0.94 951 -5% -36%

Figure 1 The left (right) plot compares the download rates (amortization parameters) of [23], [6]
with that achieved by Theorem 22 when d = t = 2. The x-axis denotes the number of servers and
ranges from 1 to 1,000,000 to illustrate the asymptotic convergence of Theorem 22 to the optimal
rate of [23], [6] at a constant factor less amortization.

4.1 Hermitian Code Definition, Parameters
The construction proceeds by building an optimal labelweight code from Hermitian codes
before applying the construction of Theorem 20 to derive the specification of a linear HSS
scheme. We begin by recalling the definition and key properties of Hermitian codes. We
defer a full treatment of this well-studied family of algebraic geometry codes to [30], [26].

▶ Definition 23 (Hermitian Curve [30]). The (affine) Hermitian Curve is given by the planar
curve

g(x, y) = yq + y − xq+1.

K. Blackwell and M. Wootters 7:13

▶ Definition 24 (Hermitian Code [26]). Let k ∈ Z+ and let M ⊆ Fq2 [x, y] denote the set of
all bi-variate polynomials f(x, y) with total degree deg(f) < k. Denote by

Z :=
(
(x, y) ∈ F2

q2 : g(x, y) = 0
)

the affine rational points of g, and fix any arbitrary ordering of its elements. Then the
k-dimensional Hermitian code H is given by the set of codewords

H := {evZ(f) : f ∈M}

where evZ(f) = (f(x, y) : (x, y) ∈ Z) denotes the standard evaluation map.

▶ Theorem 25 (Hermitian Code Parameters [26]). The k-dimensional Hermitian code H is a
linear code of length n = q3 and rate k/n with minimum distance

q3 − k − q(q − 1)
2 + 1. (1)

4.2 Proof of Theorem 22
We first show the following lemma.

▶ Lemma 26. Let s = q3, d, t ∈ Z+ for some prime power q such that s − dt > 0. There
exists a linear code C ⊆ Fn

q2 and labeling function L : [n]→ [s] satisfying ∆L(C) ≥ dt + 1 with
rate

R = 1− dt

s
− s1/3 + 1

2s2/3

and dimension

k = s− dt− s2/3 − s1/3

2 . (2)

Proof. Let H be the k-dimensional Hermitian code defined over alphabet Fq2 . By Theorem
25, such a code has length n = s = q3.

Allowing dimension k to be as specified in Equation 2, it follows from Equation 1 that
∆(H) is given by

s−
(

s− dt− s2/3 − s1/3

2

)
− s1/3(s1/3 − 1)

2 + 1 = dt + 1.

The rate of H is given by

RH = 1
s

(
s− dt− s2/3 − s1/3

2

)
= 1− dt

s
− s1/3 + 1

2s2/3 .

Set H = C and L : [s] → [s], x 7→ x; it immediately follows that RH = RC and ∆(H) =
∆L(C) = dt + 1, as desired. ◀

We are now prepared to prove Theorem 22 by applying Theorem 20.

Proof of Theorem 22. By Lemma 26, there exists a linear code C ⊆ Fs
q2 and a labeling

L : [s]→ [s], x 7→ x such that ∆L(C) ≥ dt + 1; furthermore C has dimension

ℓ = s− dt− s2/3 − s1/3

2

ITC 2024

7:14 Trade-Offs Between Linear HSS Amortization, Bandwidth

and rate

R = 1− dt

s
− s1/3 + 1

2s2/3 .

By Theorem 20, the existence of such a labelweight code is equivalent to the existence
of a linear HSS scheme with corresponding parameters; in particular, there exists a t-
private, s-server, Fq2 -linear HSS scheme π = π(Share, Eval, Rec) that achieves download rate
DownloadRate(π) = R and amortization parameter ℓ. ◀

5 Linear HSS from Goppa Codes

In this section we construct a family of linear HSS schemes from Goppa codes; unlike
Theorem 22, these schemes do not achieve asymptotically optimal rate. However, this family
of schemes stands apart from those of Theorem 22 by allowing us to compute over the binary
field regardless of the number of servers employed. Furthermore, such schemes achieve a
super-constant factor of amortization savings at practical server counts. We first state the
result before considering its performance in realistic parameter regimes.

▶ Theorem 27. Let ℓ, t, s, d, m, u be positive integers satisfying m ≥ d, s − dt > 0, and
s = 2u, where

u > log2

(
2(dt)2 − 4dt + 2(dt + 1)

√
(dt)2 − 2dt + 2 + 3

)
.

Then there exists an explicit t-private, s-server HSS π = (Share, Eval, Rec) for some
non-trivial F ⊆ POLYd,m(F2) with

DownloadRate(π) = 1− u
dt

s

and amortization parameter ℓ = s− udt.

Noting that u ≥ 3 for all d, t ∈ Z+, we see that the download rate does not converge
asymptotically to 1 − dt/s as the construction of Theorem 22 does; however, we show in
Table 4 that for small parameter values, Theorem 27 vastly outperforms Theorem 22 in terms
of preserving rate and saving on amortization. In particular, compared to Theorem 27, the
construction of Theorem 27 concedes less rate while delivering an order-of-magnitude savings
in amortization in practical parameter regimes. We illustrate these results graphically in
Figure 2.

Table 4 Comparison of Download Rates and Amortization Values with Percentage Differences
between FIKW and Goppa.

Servers [23],[6] Theorem 27 % Reduction
DL Rate Amortize DL Rate Amortize DL Rate Amortize

64 0.93 360 0.65 42 -31% -88%
128 0.96 868 0.82 106 -15% -88%
256 0.98 2016 0.91 234 -7% -88%
512 0.99 4572 0.96 490 -3% -89%
1024 0.99 10200 0.98 1002 -1.8% -90%
2048 0.99 22484 0.99 2026 -0.9% -91%

K. Blackwell and M. Wootters 7:15

Figure 2 The left (right) plot compares the download rates (amortization parameters) of [23], [6]
with that achieved by Theorem 27 when d = t = 2. The x-axis represents the number of servers and
ranges from 1 to 512. This emphasizes the super-constant amortization savings of Theorem 27 at
practical parameter regimes relative to [23], [6], with small concessions to rate.

5.1 Goppa Code Definition, Parameters
The proof of Theorem 27 is constructive; it proceeds by building an optimal labelweight code
from Goppa codes before applying the construction of Theorem 20 to arrive at a linear HSS
scheme with the desired properties. We begin by recalling the definition and key properties
of binary Goppa codes, deferring a fuller treatment to [5], [24].

▶ Definition 28 (Goppa Polynomial [5]). For some n ∈ Z+, fix V = {α1, . . . , αn} ⊆ F2u , u ∈
Z+. A Goppa polynomial is a polynomial

g(x) = gV (x) = g0 + g1x + · · ·+ grxr ∈ F2u [x]

satisfying deg(g) = r and g(αi) ̸= 0 for all αi ∈ V .

Given the definition of the Goppa polynomial above, we can define a binary Goppa code.

▶ Definition 29 (Goppa Codes [5]). Let n, u, r ∈ Z+. Fix V = {α1, . . . , αn} ⊆ F2u , u ∈ Z+

and let gV ∈ F2u [x] be a Goppa polynomial of degree r. Then the Goppa code is the set of
codewords given by

Γn,u,r = Γn,u,r(g, V) :=
{

c = (c1, . . . , cn) ∈ Fn
2 :

n∑
i=1

ci

x− αi
≡ 0 mod g(x)

}
.

The parameters of Goppa codes are given by the following theorem.

▶ Theorem 30 (Goppa Code Parameters [5]). For n, u, r ∈ Z+ let Γ = Γn,u,r be a binary
Goppa code as in Definition 29. Then Γ is a linear code of length n, dimension k ≥ n− ur,
and minimum distance d(Γ) ≥ r + 1.

The parameters given by Theorem 30 only allow us to determine rate and minimum
distance up to a lower bound, making it difficult to ascertain download rate and amortization
when used to construct linear HSS schemes. Fortunately, these lower bounds are known to
be sharp under additional assumptions. The following theorem gives one such instance.

ITC 2024

7:16 Trade-Offs Between Linear HSS Amortization, Bandwidth

▶ Theorem 31 ([31]). Fix u, r ∈ Z+ satisfying

2r − 2 <
2u − 1
2u/2 (3)

and let g ∈ F2u [x] be a Goppa polynomial of degree r with no repeated roots. Set V = F2u

and let Γ = Γ2u,u,r(g, V) be a Goppa code as in Definition 29. Then Γ is a binary linear code
with dimension precisely k = n− ur.

We observe that, performing the appropriate manipulations, Equation 3 is satisfied for all

u ≥ max
{ ⌈

log2

(
2r2 − 4r + 2(r + 1)

√
r2 − 2r + 2 + 3

)⌉
, (4)

log2

(
2r2 − 4r + 2(r + 1)

√
r2 − 2r + 2 + 3

)
+ 1

}
.

5.2 Proof of Theorem 27
In this section we prove Theorem 27. We first show the following lemma.

▶ Lemma 32. Let s, d, t, u ∈ Z+ satisfy s− dt > 0 and s = 2u, where

u = max
{ ⌈

log2

(
2(dt)2 − 4dt + 2(dt + 1)

√
(dt)2 − 2dt + 2 + 3

)⌉
, (5)

log2

(
2(dt)2 − 4dt + 2(dt + 1)

√
(dt)2 − 2dt + 2 + 3

)
+ 1

}
.

There exists a linear code C ⊆ Fn
2 and labeling function L : [n]→ [s] satisfying ∆L(C) ≥

dt + 1 with rate R = 1− udt/s and dimension ℓ = s− udt.

Proof. Fix V = F2u and let g ∈ F2u [x] be an irreducible polynomial of degree r = dt; set
n = 2u. Let Γ = Γn,u,r(g, V) be the binary Goppa code given by Definition 29. It follows
from Equation 5 and the observation of Equation 4 that Γ has dimension k = n−ur = s−udt.
It follows from Theorem 30 that Γ has minimum distance d(Γ) ≥ r + 1 = dt + 1. Set C = Γ
and define L : [n]→ [s], x 7→ x to be the identity labeling. It immediately follows that C has
the desired rate and dimension. ◀

It is now straightforward to prove Theorem 27 by leveraging Theorem 20.

Proof of Theorem 27. By Lemma 32, there exists a linear code C ⊆ Fs
2 and a labeling

L : [s]→ [s] such that ∆L(C) ≥ dt + 1; furthermore C has dimension ℓ = s− udt and rate
R = 1− udt/s. By Theorem 20, the existence of such a labelweight code is equivalent to the
existence of a linear HSS scheme with corresponding parameters. ◀

References
1 Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle queries. In STACS 90,

pages 37–48, 1990.
2 Donald Beaver, Joan Feigenbaum, Joe Kilian, and Phillip Rogaway. Security with low

communication overhead. In CRYPTO ’90, pages 62–76, 1990.
3 Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-

cryptographic fault-tolerant distributed computation (extended abstract). In STOC, 1988.
4 Josh Cohen Benaloh. Secret sharing homomorphisms: Keeping shares of A secret sharing. In

Andrew M. Odlyzko, editor, CRYPTO ’86, pages 251–260, 1986.
5 Elwyn Berlekamp. Goppa codes. IEEE Transactions on Information Theory, 19(5):590–592,

1973.

K. Blackwell and M. Wootters 7:17

6 Keller Blackwell and Mary Wootters. A characterization of optimal-rate linear homomorphic
secret sharing schemes, and applications. In 15th Innovations in Theoretical Computer Science
Conference (ITCS 2024). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

7 Keller Blackwell and Mary Wootters. Improved trade-offs between amortization and download
bandwidth for linear hss. arXiv preprint arXiv:2403.08719, 2024.

8 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient
pseudorandom correlation generators: Silent OT extension and more. In CRYPTO, pages
489–518, 2019.

9 Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù. Homomorphic
secret sharing: optimizations and applications. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 2105–2122, 2017.

10 Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In EUROCRYPT 2015,
Part II, pages 337–367, 2015.

11 Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure
computation under DDH. In Matthew Robshaw and Jonathan Katz, editors, Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2016, Proceedings, Part I, volume 9814 of Lecture Notes in Computer
Science, pages 509–539. Springer, 2016. doi:10.1007/978-3-662-53018-4_19.

12 Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and
extensions. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016, pages 1292–1303. ACM,
2016. doi:10.1145/2976749.2978429.

13 Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro. Foundations of
homomorphic secret sharing. In Anna R. Karlin, editor, 9th Innovations in Theoretical
Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA,
volume 94 of LIPIcs, pages 21:1–21:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018. doi:10.4230/LIPIcs.ITCS.2018.21.

14 Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing from lattices without
FHE. In EUROCRYPT 2019, Part II, pages 3–33, 2019.

15 David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure
protocols (extended abstract). In STOC, 1988.

16 Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information
retrieval. J. ACM, 1998.

17 Geoffroy Couteau and Pierre Meyer. Breaking the circuit size barrier for secure computation
under quasi-polynomial LPN. In EUROCRYPT 2021, Part II, pages 842–870, 2021.

18 Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion, pseudorandom secret-
sharing and applications to secure computation. In Joe Kilian, editor, Theory of Cryptography,
Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, February
10-12, 2005, Proceedings, volume 3378 of Lecture Notes in Computer Science, pages 342–362.
Springer, 2005. doi:10.1007/978-3-540-30576-7_19.

19 Ronald Cramer, Ivan Damgård, and Ueli M. Maurer. General secure multi-party computation
from any linear secret-sharing scheme. In EUROCRYPT, 2000.

20 Quang Dao, Yuval Ishai, Aayush Jain, and Huijia Lin. Multi-party homomorphic secret
sharing and sublinear mpc from sparse lpn. In Annual International Cryptology Conference,
pages 315–348. Springer, 2023.

21 Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption and
its applications. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part III, volume 9816 of Lecture Notes in Computer Science,
pages 93–122. Springer, 2016. doi:10.1007/978-3-662-53015-3_4.

ITC 2024

https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.4230/LIPIcs.ITCS.2018.21
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-662-53015-3_4

7:18 Trade-Offs Between Linear HSS Amortization, Bandwidth

22 Nelly Fazio, Rosario Gennaro, Tahereh Jafarikhah, and William E. Skeith III. Homomorphic
secret sharing from Paillier encryption. In Provable Security, 2017.

23 Ingerid Fosli, Yuval Ishai, Victor I Kolobov, and Mary Wootters. On the download rate of
homomorphic secret sharing. In 13th Innovations in Theoretical Computer Science Conference
(ITCS 2022). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

24 Valerii Denisovich Goppa. Codes associated with divisors. Problemy Peredachi Informatsii,
13(1):33–39, 1977.

25 Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding theory. Draft from
http://www.cse.buffalo.edu/atri/courses/coding-theory/book, 2019.

26 James William Peter Hirschfeld, Gábor Korchmáros, and Fernando Torres. Algebraic curves
over a finite field, volume 20. Princeton University Press, 2008.

27 Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing scheme realizing general access
structure. Electronics and Communications in Japan (Part III: Fundamental Electronic
Science), 72(9):56–64, 1989.

28 Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier: Homomorphic secret
sharing and public-key silent OT. In EUROCRYPT 2021, Part I, pages 678–708, 2021.

29 Lawrence Roy and Jaspal Singh. Large message homomorphic secret sharing from DCR and
applications. In CRYPTO 2021, Part III, pages 687–717, 2021.

30 Henning Stichtenoth. Algebraic Function Fields and Codes. Springer Publishing Company,
Incorporated, 2nd edition, 2008.

31 M. Van der Vlugt. The true dimension of certain binary goppa codes. IEEE Transactions on
Information Theory, 36(2):397–398, 1990. doi:10.1109/18.52487.

A Linear HSS from Random Codes

In this section we show that the natural random coding approach does not appear to yield
linear HSS schemes that meaningfully outperform the ℓ = O(s log(s)) amortization parameter
required by [23], [6]. Indeed, the standard argument established that random linear codes
correspond to linear HSS schemes that can attain good download rates, but – like [6, 23] –
only with large amortization parameters.

A.1 Notation
To justify the notion that “random labelweight codes don’t outperform Reed-Solomon codes
in linear HSS amortization”, we proceed by generalizing the well-known Gilbert-Varshamov
Bound to the labelweight setting. One standard proof of this result (see, e.g., [25]) analyzes
the distance of a random linear code, and we follow the same path here. We first introduce
some notation.

▶ Definition 33 (Labelweight Ball). Let L : [n]→ [s] be a surjective labeling. We define the
labelweight ball BL(r) of radius 0 ≤ r ≤ n to be the set

BL(r) :=
{

c ∈ Fn
q : ∆L(c) ≤ r

}
and define the volume of the labelweight ball to be VolL(r) = |BL(r)|.

For the purposes of our analysis, we consider only a fixed labeling function.

▶ Assumption 1. Let n, s, w ∈ Z+ such that n = sw. In this section we will only consider
the labeling

L : [n]→ [s], x 7→
⌈x

s

⌉
.

https://doi.org/10.1109/18.52487

K. Blackwell and M. Wootters 7:19

When paired with a code of length n, this balanced labeling simply labels the first w

coordinates with 1, the second w coordinates with 2, and continues analogously until the last
w coordinates are labeled with s. Intuitively, for fixed n, s ∈ Z+, such a balanced labeling
pattern maximizes labelweight in expectation over random linear codes.

Under this fixed, balanced labeling function of Assumption 1, we have the following
algebraic formulation of labelweight ball volume.

▶ Observation 34. Let n, s, w, r ∈ Z+ such that n = sw and 0 ≤ r ≤ n. Then

VolL(r) = |BL(r)| =
r∑

i=0

(
s

i

)
(qw − 1)i

.

Finally, we will need to define relative labelweight for labelweight codes, which is the
natural analogue of relative minimum distance for linear codes.

▶ Definition 35 (Relative Labelweight). Let C ⊆ Fn
q be a linear code and L : [n] → [s] a

surjective labeling such that ∆L(C) = d. We define the relative labelweight of C to be δ = d/s.

A.2 Generalization of q-ary Entropy
In the standard proof of the Gilbert-Varshamov bound, the volume of a Hamming ball is
estimated by the q-ary entropy function. To generalize the proof to labelweight, we introduce
the following generalization of the q-ary entropy function, which captures the volume of
labelweight balls.

▶ Definition 36 (Generalized q-ary Entropy). Let q ≥ 2, w ≥ 1. For x ∈ (0, 1), we denote by
Hq,w(x) the generalized q-ary entropy function:

Hq,w(x) = x logq(qw − 1)− x logq(x)− (1− x) logq(1− x),

where Hq,w(0), Hq,w(1) are defined as the limit of Hq,w as x→ 0, 1, respectively.

Note that the case where w = 1 is the standard q-ary entropy function. We notice that,
when properly normalized, the generalized entropy function can be approximated linearly.

▶ Observation 37. For all x ∈ [0, 1− 1/qw], x ≤ w−1Hq,w(x) ≤ x + logq(21/w).

Proof. Observe that

g(x) := w−1Hq,w(x)− x = w−1 (
x logq(qw − 1)− x logq(x)− (1− x) logq(1− x)

)
− x

≤ w−1 (
−x logq(x)− (1− x) logq(1− x)

)
.

Since −x logq(x)− (1− x) logq(1− x) is a concave function which attains its maximal value
when x = 1/2, it follows that w−1Hq,w(x)− x ≤ w−1 logq(2) as desired. The lower bound
follows from observing that g is itself a concave function, since

g′′(x) = − 1
w · x · (1− x) · ln(q) ≤ 0 ∀x ∈ [0, 1− 1/qw]

and that its values at the endpoints of the domain [0, 1 − 1/qw] are non-negative; i.e.,
g(0), g(1− 1/qw) ≥ 0. ◀

Equipped with this definition, our goal becomes to express the volume of a given la-
belweight ball in terms of the generalized entropy function. To do so, we note two helpful
relations; we omit the proofs, which are elementary algebraic manipulations.

ITC 2024

7:20 Trade-Offs Between Linear HSS Amortization, Bandwidth

▶ Observation 38. Let s, p ∈ R such that s, p ≥ 0. Then

q−sHq,w(p) = (1− p)(1−p)s

(
p

qw − 1

)ps

▶ Observation 39. Let w ∈ Z+ and p ∈ [0, 1) satisfy 0 ≤ p ≤ 1− 1/qw. Then
p

(1− p)(qw − 1) ≤ 1.

We now give the volume of a labelweight ball in terms of the generalized entropy function.

▶ Lemma 40. Let s, w ∈ Z+ and p ∈ [0, 1) satisfy 0 ≤ p ≤ 1− 1/qw and ps ∈ Z+. Then

VolL(ps) ≤ qsHq,w(p).

Proof. Observe that

1 = (p + (1− p))s =
s∑

i=0

(
s

i

)
pi(1− p)s−i ≥

ps∑
i=0

(
s

i

)
pi(1− p)s−i.

Multiplying through by 1 = (qw − 1)i/(qw − 1)i and applying Observation 39 yields

1 ≥
ps∑

i=0

(
s

i

)
(qw − 1)i(1− p)s

(
p

(1− p)(qw − 1)

)ps

.

Finally, applying Observation 38 yields

1 ≥
ps∑

i=0

(
s

i

)
(qw − 1)iq−sHq,w(p)

= VolL(ps)q−sHq,w(p). ◀

A.3 Gilbert-Varshamov Bound for Random Labelweight Codes
We are finally equipped to prove a generalization of the Gilbert-Varshamov bound for
labelweight codes. This generalization will quantify the rate, and labelweight trade-off we
can guarantee through random linear codes; viewed through the lens of Theorem 20, this
tells us the download rate and amortization parameters that can be guaranteed by linear
HSS scheme constructed from random linear codes.

▶ Theorem 41. For q ≥ 2, let n, s, w ∈ Z+ satisfy n = sw. Let δ ∈ [0, 1 − 1/qw] satisfy
δs ∈ Z+. For ε ∈ [0, 1−Hq,w(δ)], let

k = n− sHq,w(δ)− nε (6)

and let G ∈ Fk×n
q be chosen uniformly at random.

Then with probability > 1− q−εn, G is the generator matrix of a length n, dimension k,
and relative labelweight ≥ δ linear code with rate

R = 1− sHq,w(δ)
n

− ε.

Note that when n = s and w = 1, Theorem 41 becomes the standard Gilbert-Varshamov
Bound. Before we show the proof of Theorem 41, we interpret its statement in terms of
linear HSS parameters.

K. Blackwell and M. Wootters 7:21

▶ Example 42. Let s, d, t ∈ Z+ satisfying s− dt > 0 parameterize a linear HSS scheme as in
Definition 7. Let s be as stated in Theorem 41 and set δ = (dt + 1)/s.

For the sake of illustration, suppose w = logq(s) and ε > 0 a negligible constant. Let
C denote the linear code with properties guaranteed by Theorem 41 and let π denote the
t-private, s-server linear HSS constructed from C as in Theorem 20. Applying Observation
37 to Theorem 20, π has download rate at most

DownloadRate(π) ≤ 1− dt + 1
s
− ε = 1− dt

s
−O(s−1)

with amortization parameter at least

ℓ ≥ (1− ε)s logq(s)− s logq(2)− (dt + 1) logq(s) = Ω(s log(s))

for sufficiently small ε. In particular, we note that such a construction has an amortization
parameter (at least) on the same Ω(s log(s)) order as that of [23], [6], while achieving a rate
comparable to that of our Hermitian code-based construction of Theorem 22. We summarize
this situation in Table 5.

Table 5 Comparison of Theorem 22 to Example 42.

Thm. 22 (Hermitian code-based) Ex. 42 (Random code-based)
Download Rate 1 − dt/s − O(s−1/3) ≤ 1 − dt/s − O(s−1)
Amortization s − dt − O(s2/3) Ω(s log(s))

We conclude this section by proving Theorem 41.

Proof of Theorem 41. Let C = {mG : m ∈ Fk
q} be the linear code generated by G. It

suffices to show that ∆L(mG) ≥ d for all non-zero m.
Accordingly, let m ∈ Fk

q be a uniformly random non-zero vector; then mG is uniformly
distributed over Fn

q . It follows from Lemma 40 that

Pr [δL(mG) < d] = VolL(d− 1)
qn

≤ qsHq,w(δ)

qn
= q−k q−nε.

Taking the Union Bound over all m ∈ Fk
q yields the observation that with probability 1−q−nε,

∆L(C) ≥ d as desired. ◀

ITC 2024

Breaking RSA Generically Is Equivalent to
Factoring, with Preprocessing
Dana Dachman-Soled #

University of Maryland, College Park, MD, USA

Julian Loss #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Adam O’Neill #

Manning College of Information & Computer Sciences, UMass Amherst, MA, USA

Abstract

We investigate the relationship between the classical RSA and factoring problems when preprocessing
is considered. In such a model, adversaries can use an unbounded amount of precomputation to
produce an “advice” string to then use during the online phase, when a problem instance becomes
known. Previous work (e.g., [Bernstein, Lange ASIACRYPT ’13]) has shown that preprocessing
attacks significantly improve the runtime of the best-known factoring algorithms. Due to these
improvements, we ask whether the relationship between factoring and RSA fundamentally changes
when preprocessing is allowed. Specifically, we investigate whether there is a superpolynomial
gap between the runtime of the best attack on RSA with preprocessing and on factoring with
preprocessing.

Our main result rules this out with respect to algorithms that perform generic computation
on the RSA instance xe mod N yet arbitrary computation on the modulus N , namely a careful
adaptation of the well-known generic ring model of Aggarwal and Maurer (Eurocrypt 2009) to the
preprocessing setting. In particular, in this setting we show the existence of a factoring algorithm
with polynomially related parameters, for any setting of RSA parameters.

Our main technical contribution is a set of new information-theoretic techniques that allow us
to handle or eliminate cases in which the Aggarwal and Maurer result does not yield a factoring
algorithm in the standard model with parameters that are polynomially related to those of the
RSA algorithm. These techniques include two novel compression arguments, and a variant of the
Fiat-Naor/Hellman tables construction that is tailored to the factoring setting.

2012 ACM Subject Classification Security and privacy → Public key (asymmetric) techniques;
Security and privacy → Information-theoretic techniques

Keywords and phrases RSA, factoring, generic ring model, preprocessing

Digital Object Identifier 10.4230/LIPIcs.ITC.2024.8

Related Version Full Version: https://eprint.iacr.org/2022/1261

Funding Dana Dachman-Soled: Supported in part by NSF grants #CNS-1933033, #CNS-1453045
(CAREER), and by financial assistance awards 70NANB15H328 and 70NANB19H126 from the U.S.
Department of Commerce, National Institute of Standards and Technology.
Julian Loss: Supported by the European Union, ERC-2023-STG, Project ID: 101116713. Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union. Neither the European Union nor the granting authority can be held responsible
for them.

Acknowledgements We thank Nikki Sigurdson for collaboration in the early stages of this work.

© Dana Dachman-Soled, Julian Loss, and Adam O’Neill;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal; Article No. 8; pp. 8:1–8:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:danadach@umd.edu
mailto:loss@cispa.de
https://orcid.org/0000-0002-7979-3810
mailto:adamo@cs.umass.edu
https://orcid.org/0009-0006-0233-6466
https://doi.org/10.4230/LIPIcs.ITC.2024.8
https://eprint.iacr.org/2022/1261
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

1 Introduction

1.1 Motivation and Main Results
Background. Use of the RSA function [26] fN,e(x) = xe mod N where N = pq is ubiquitous
in practice, and attacks against it have been the subject of intensive study, see e.g. [4]. A
key question about its security is its relationship to factoring N . While it is trivial to see
that factoring N allows one to invert RSA, the converse is a major open problem. To make
progress on this question, researchers have studied it in restricted (aka. idealized) models of
computation. To our knowledge, this approach was initiated by Boneh and Venkatesan [5],
who showed that a reduction from factoring to low-exponent RSA that is a straight-line
program (SLP) gives rise to an efficient factoring algorithm. An SLP is simply an arithmetic
program (performing only ring operations) that does not branch. A complementary approach,
which we pursue in this work, is to consider RSA adversaries that are restricted. The best
known result of this nature is due to Aggarwal and Maurer (which we abbreviate as AM) [1],
who showed that breaking RSA and factoring are equivalent wrt. so-called “generic-ring
algorithms” (GRAs), namely ones that treat the ring ZN like a black-box, only performing
ring operations and equality checks that allow branching. Put another way, GRAs work in
any efficient ring isomorphic to ZN . Note that SLPs are a special case of GRAs.

In the context of any cryptographic problem or protocol it is valuable to consider
preprocessing attacks, because an adversary may be willing to perform highly intensive
computation to break many instances of the problem, if that computation only has to be
performed once. To model this, one considers an unbounded algorithm that produces a short
“advice” string that can be used to efficiently solve a problem instance once it becomes known
(much more efficiently than without the advice string). Note that above-mentioned attacks on
RSA from [4] do not take advantage of preprocessing. However, in the preprocessing setting,
Bernstein and Lange [3] describe a Number Field Sieve (NFS) with preprocessing, based
on work by Coppersmith [7], which significantly reduces the exponent in the running-time
compared to the standard NFS factoring algorithm, and they use this to get an improved
attack on RSA. Thus, a natural question is:

Does the relationship between RSA and factoring fundamentally change in the pre-
processing setting?

The Need for a New Model. To answer this question, we need to formalize a model of
computation for this setting. The generic ring model (GRM) of AM considers an algorithm
(called a generic ring algorithm or GRA) models generic computation on ZN via a directed
acyclic graph where nodes are labelled with constants (or the input indeterminate) in ZN
and operations (+, ×, ÷); execution corresponds to a walk in the graph according to suitable
rules. Now, it is instructive to see why this model, extended to the preprocessing setting
in the obvious way, is not suitable. In such an extension, at the end of the preprocessing
stage, the adversary outputs a GRA to run in the online stage. But then observe that
the best the adversary against RSA with preprocessing is the one that simply outputs, in
the preprocessing stage, a GRA of size at most some T that obtains optimal advantage,
where the advantage is computed with respect to the random choice of N with bitlength
at most security parameter κ and random choice of y = xe (mod N). The description of
this optimal GRA would then be passed to the online stage. This model, however, does not
capture our intuition for the best-possible preprocessing attack against RSA in the GRM. For
example, the following simple adversary is better but not captured: During preprocessing,

D. Dachman-Soled, J. Loss, and A. O’Neill 8:3

it picks many instance-solution pairs ((N1, e1, x
e1
1 mod N1), x1), . . . , ((Ni, ei, xei

i mod Ni), xi)
and inserts them into a hash table, then outputs this hash table as well as the aforementioned
optimal GRA. Then, in the online stage, it performs a hash table lookup on the input RSA
instance (N∗, e∗, y∗) to obtain a list of possible preimages x∗1 . . . , x∗j (these all being stored
in the same location in the hash table). It returns x∗k such that (x∗k)e∗ mod N∗ = y∗ if it
exists, and runs the optimal GRA otherwise. This attack is not captured because the hash
table lookup uses the bit-representation of the RSA instance, while a GRA is agnostic of the
particular representation of the ring. However, the attack is still “generic” because it works
for any bit-representation of the ring (not just the canonical encoding of ZN). While this is
a simple example, it captures techniques originating from Hellman tables [19], a common
strategy for preprocessing algorithms in practice. In other words, such strategies crucially
use the bit-representation of the problem instance.

Our New “GRM-with-Preprocessing” Model. To capture these types of representation-
specific strategies, we will associate integers y of bitlength at most κ with random labels.
We note that Damgard and Koprowski [12] and later Dodis et al. [15] previously considered
random labels to model the multiplicative group Z∗N (with N known to the adversary); it
has not been done for the full ring ZN . (See below for a detailed comparison with these
works.) That is, in our model, we consider an injective mapping π that encodes every element
in {0, 1}κ as a unique random string in {0, 1}m, where m > κ. We let the unbounded
preprocessing algorithm read the entire description π and perform arbitrary computation. It
produces a short advice string state that is passed to the online phase. The online algorithm
is split into two parts, an intermediate algorithm, and a GRA. The intermediate algorithm
is non-generic and gets the RSA instance (N∗, e∗, π((x∗)e∗ mod N∗)), where N∗ = pq has
bit-length κ, but does not get access to π. This intermediate algorithm is what allows
computation that depends on the bit-representation of the RSA instance, so that the next
online stage can leverage the result in addition to the advice from the preprocessing stage.
The intermediate algorithm outputs an oracle-aided GRA that computes relative to π, which
we then run on the RSA instance. By “relative to π,” we mean an addition step of the
oracle-aided GRA takes as input two strings y1, y2 ∈ {0, 1}m and outputs π(π−1(y1)+π−1(y2)
(mod N)). (Multiplication and division proceed analogously.). We call S = |state| the space
of the adversary and its running-time is specified by the pair (T1, T2), where T1 is the
runtime of the intermediate algorithm, and T2 is the run-time of the GRA output by the
intermediate algorithm. (Note that we require that T2 ≤ T1.) We refer to this model as the
“GRM-with-preprocessing” for simplicity. It is instructive to see that the simple adversary
related to Hellman tables above is captured by it. This is because the intermediate algorithm
can perform a hash table lookup on the input RSA instance (N∗, e∗, y∗ = π((x∗)e∗ mod N∗))
to get a list π(x∗1), . . . , π(x∗j) of possible preimages, returning the GRA that on input y∗
returns π(x∗k) such that y∗ = π(x∗k)e∗ mod N∗ if it exists (note finding this value uses access
to π, i.e., the ring operations) and runs the aforementioned optimal GRA otherwise. We
view the GRM-with-preprocessing model as a main conceptual contribution of our work and
contend that it faithfully captures our intuition for preprocessing attacks in the GRM.

We note that the study of upper and lower bounds on preprocessing in idealized models
was pioneered by Corrigan-Gibbs and Kogan (CK) [10], who treated discrete-log-related
problems in the case of groups. (See a more detailed comparison below.) Our modeling
above follows their approach, but a key difference is that in their setting the group is
fixed throughout the offline and online phase, whereas in our setting the group is fixed
together with the RSA instance only in the online phase. Moreover, while the proofs of

ITC 2024

8:4 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

our results (described in Section 2) like those of CK use compression, the details differ
substantially. For example, we do not use the random self-reducibility of RSA, whereas
CK rely on self-reducibility of discrete log. This makes our results potentially applicable to
broader settings.

A Result in the Random Injective Function Model. We present two main results below,
which both emanate from a more basic result in random injective function model (RIM). In
the RIM, the adversary has access to a random injective function with suitable parameters.
We show that in the GRM-with-preprocessing model, any RSA algorithm with preprocessing
implies the existence of a factoring algorithm with preprocessing in the RIM, with polynomially
related parameters. This gets us a long way in answering our question for RSA algorithms
in the GRM-with-preprocessing model and shows that the relationship of RSA and factoring
does not fundamentally change in this setting, as long as we permit the factoring algorithm
to operate in the RIM.

▶ Theorem 1 (Informal). Suppose there is an RSA adversary in the GRM-with-preprocessing
model with space Sr and running-time (T1,r, T2,r) that succeeds with probability ϵr. Then
there is a factoring adversary in the random injective function model (RIM) with space
Sf = Sr +O(1) and running-time Tf = poly(κ, T1,r, T2,r, 1/ϵr) that succeeds with probability
ϵf = poly(ϵr).

See Theorem 7 for the formal statement. We will explain the bounds (which are identical) in
the context of our random oracle model result below. Since our model allows an inefficient
preprocessing phase, the RI function cannot easily be removed from our final factoring
algorithm while maintaining the desired polynomially related space complexity and runtime
from Theorem 1. The reason is that in the preprocessing phase of the factoring algorithm,
the entire RI function could be queried and global information about it could be stored in the
preprocessing advice. In this case, it is no longer possible for the online part of the factoring
algorithm to simulate the RI “on the fly” since the responses generated by the simulator
need to be consistent with the global information learned in the preprocessing phase. One
approach to removing the RI would be to show that the global information about the random
injective function (which has length Sf) can be simulated by fixing the input/output of some
set of some q queries to the random injective function, and showing that any remaining
queries not in this set can still be chosen “on the fly.” This “bit-fixing” technique has
been studied in a number of works, e.g. [9, 14]. However, this line of work proved a lower
bound that q must be larger than SfTf/(ϵf)2 for simulation by the plain-model adversary
to be ϵf -indistinguishable to an RIM adversary making Tf queries (note that we require
≈ ϵf -indistinguishability to guarantee that the factoring algorithm in the plain model still
succeeds with probability poly(ϵf) = poly(ϵr)). For us, this would lead to trivial parameter
settings. We show how to remove the RI function using an alternative argument below.

In particular, we extend the RIM result in two ways.

A result in the random oracle model. We first note that the RIM is much less natural
to study factoring-with-preprocessing in than its counterpart the random oracle model
(ROM) [2], hence we would like a result in the latter. The classical result of Luby and Rackoff
shows that a 4-round Feistel network with random oracles in place of round functions is
indistinguishable from a random permutation with forwards and backwards access. However,
the distinguishing probability of an (unbounded) adversary is Ω(q2

2κ/2), where κ/2 is the
input/output length of the random oracle, and q is the number of queries made by the
adversary, and this bound is known to be tight. In the preprocessing setting, the adversary

D. Dachman-Soled, J. Loss, and A. O’Neill 8:5

can query the entire random oracle q = 2κ/2, and so the distinguishing probability becomes
vacuous. We present a technique to lift the Luby-Rackoff result to the case of unbounded
preprocessing by using a slight modification of a 4-round Feistel network to implement a
random injective function, instead of a random permutation. This 4-round Feistel will use
round functions with input/output length m/2 to implement an injective function with
domain size of 2κ ≪ 2m/2 and will thus circumvent the issue discussed above. We thus
obtain the following result (see Theorem 11 for the formal statement), with the same concrete
bounds as the RIM result.

▶ Theorem 2 (Informal). Suppose there is an RSA adverary in the GRM with preprocessing
model with space Sr and running-time (T1,r, T2,r) that succeeds with probability ϵr. Then
there is a factoring adversary in the random oracle model (ROM) with space Sf = Sr +O(1)
and running-time Tf = poly(κ, T1,r, T2,r, 1/ϵr) that succeeds with probability ϵf = poly(ϵr).

Note that the space complexity of our factoring algorithm is essentially the same as
that of the RSA algorithm, namely S + O(1). In terms of time complexity and success
probability, our bounds are similar to those achieved by AM, which is to be expected. We
differ from AM in that the success probability of our factoring algorithm ϵf depends only on
ϵr, and not on T1,r, T2,r. We discuss additional differences between the time complexity and
success probability of our ROM factoring algorithm and that of AM in Section 4. We believe
using the ROM for the above result is reasonable since prior work on space/time tradeoffs
(such as the seminal results of Hellman [19] and Fiat-Naor [17]) either required a random
oracle or achieved simplified algorithms/improved parameters in the random oracle model.
Nevertheless, it begs the question of whether the situation could change in the plain model.

A result in the plain model. Above we explained why it is difficult to remove the RI function
while maintaining the desired parameters. Nevertheless, by developing new techniques for
our setting we are finally able to show the following theorem statement, which is in the plain
model.

▶ Theorem 3 (Informal). Suppose there is an RSA adverary in the GRM with preprocessing
model with space Sr and running-time (T1,r, T2,r) that succeeds with probability ϵr. Then
there is a factoring adversary in the plain model with space Sf = O(Sr) and running-time
Tf = poly(κ, T1,r, T2,r, 1/ϵr) that succeeds with probability ϵf = poly(ϵr).

The parameters are thus worse than what we obtain in the ROM, which is why we include
the ROM result above. The main insight used for the plain-model result is to note that
the online stage of the RI factoring algorithm we obtain has a particular form in which
only a single uniformly random query is made to the forward direction of π, and a set of
non-adaptive queries is made to the backward direction of π−1. Combining a compression
argument with a new argument based on a lemma of Drucker [16] (which to the best of our
knowledge has not been previously used in a generic model setting) we are able to show that
the online portion of the RIM factoring algorithm can be efficiently simulated in the plain
model. Note, however, that we still include the ROM result above as it is obtained en route
to our plain model result, illustrating many of our main techniques, and it enjoys a tighter
reduction.

On Interpretation of our Results. To understand the significance of our results, it is helpful
to recall the motivation for the GRM in the first place. AM explain that the GRM is an
important computational model to consider for problems like RSA, where the adversary
must output a function of its input that results in a ring element. As also mentioned below,

ITC 2024

8:6 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

there exist decisional problems (e.g., Jacobi symbol computation) that are hard in the GRM
but easy in ZN . Nevertheless, this does not seem to affect the question of the hardness
of RSA. Indeed, an interesting question for future work would be to extend our results to
hold relative to a Jacobi symbol oracle. Now, moving onto our GRM-with-preprocessing
model, we stress that the intermediate stage, being non-generic, can run standard factoring
algorithms on N such as NFS. Of course, if it simply factors N to break RSA, there is nothing
to show. However, our results demonstrate that such non-generic computation cannot be
fruitfully combined with generic computation on the RSA instance to obtain a significantly
faster-than-factoring attack on RSA. In other words, essentially the entire computation by
an RSA adversary needs to be non-generic for such a speed-up to be possible.

Finally, both our model and main theorem are very general in the sense that they show
existence of a factoring algorithm with polynomially related parameters for any setting of
RSA parameters T1,r, T2,r, Sr, ϵr and for a general class of algorithms. That is, our result
does not restrict the relationship between (T1,r, T2,r, Sr) (other than the requirement that
T1,r ≥ T2,r, which is implied by the model) and we show that generic RSA with preprocessing
implies factoring with preprocessing, even for unconventional parameter settings (such as
setting Sr to be larger than the time complexity of the best online factoring algorithm). We
believe it is important to cover all parameter regimes, as this ensures that our result actually
suggests a mathematical connection between the factoring and RSA problems themselves,
rather than just showing that for the typical parameter settings used in practice the best
factoring and RSA algorithms happen to have the same complexity.

On Using Bit-Fixing Instead of Compression. Another question is whether it is possible
to rely on bit-fixing as alternative to our use of the compression technique (cf. [8]). That
is, one would first show that an RSA algorithm of the form (A0, A1, A2) with advice of size
Sr, making at most Tr number of queries, and achieving success probability ϵr, implies the
existence of an RSA algorithm of the form (A′1, A′2) making at most T ′r number of queries,
and achieving success probability ϵ′r in the bit fixing model, which fixes the labelling function
π in q locations. It is possible that the AM reduction could then be applied more directly to
(A′1, A′2) to obtain a factoring algorithm without going through a compression argument.

Unfortunately, similarly to the discussion above, this approach requires the number of
fixed locations q to be at least SrTr/(ϵr)2. Since A′1 cannot itself make oracle queries, for
it to be able to choose A′2 adaptively in the bit-fixing model, the information about the q
fixed locations would need to be given to A′1 as non-uniform advice. This would mean that
the space of the RSA algorithm, and hence the resulting factoring algorithm, be at least
SrTr/(ϵr)2, leading to trivial parameter settings.

On our use of information-theoretic techniques. We leverage information-theoretic tech-
niques in three points in our proofs. First, in Section 4, we use a compression argument along
with a theorem of De, Trevisan, Tulsiani [13] to show that the output of a successful RSA
algorithm in the GRM with preprocessing model will satisfy a certain condition with high
probability (see technical overview for more details). The condition being satisfied with high
probability will then imply that the Aggarwal-Maurer factoring algorithm can be efficiently
instantiated in the ideal cipher or random oracle model.

In Section 4.2, we use a different compression argument along with a theorem of
Drucker [16] to show that our factoring algorithm (which invokes the Aggarwal-Maurer
algorithm) in the ideal-cipher model can be efficiently simulated in the standard model by
augmenting the preprocessing advice with a small table consisting of oracle query/response

D. Dachman-Soled, J. Loss, and A. O’Neill 8:7

pairs. Note that this argument is not straightforward, since the online part of the factoring
algorithm must respond to queries consistently with the pre-processing information, and it is
not clear that this can be done efficiently (e.g. sampling the responses of the ideal cipher
“on-the-fly” can lead to inconsistencies with the pre-processing information which may depend
on global properties of the oracle).

Finally, in the full version [11], we use a variant of the Fiat-Naor/Hellman tables [19, 17]
to obtain a factoring algorithm with the required space, time complexity for a range of
parameters that is not covered by our factoring algorithm (which invokes the Aggarwal-Maurer
algorithm) from above.

1.2 Related Work
There is an extensive body of literature on the hardness of the RSA problem and is relationship
to factoring. Boneh and Venkatesan [5] gave the first among these results. Their result shows
that reducing low-exponent RSA from factoring using a straight-line reduction is as hard as
factoring itself. A similar result by Joux et al. [20] shows that when given access to an oracle
computing eth roots modulo N of integers x+ c (where c is fixed and x varies), computing
eth roots modulo N of arbitrary numbers becomes easier than factoring.

A more closely related line of work initiated by Brown [6] shows that for generic adversaries,
computing RSA (or variants thereof), is as hard as factoring the modulus N . Brown’s initial
work considered only the case of SLPs without division and was subsequently extended by
Leander and Rupp [22] to the case of GRAs without division.The work of Aggarwal and
Maurer [1] finally showed that the problems are equivalent even for GRAs with division. A
subsequent result of Jager and Schwenk showed that computing Jacobi symbols is equivalent
to factoring for GRAs. Their result puts into question the soundness of the generic ring
model (GRM), as it shows that there are problems which are hard in the GRM, but easy
in the plain model. On the other hand, this result has no immediate implication for other
computational problems like the RSA problems, which may still be meaningful to consider
in the GRM. A recent work by Rotem and Segev also showed how the GRM can been used
to analyze the security of verifiable delay functions [29].

The Generic Group Model (with Preprocessing). Starting with Nechaev [25], a long
line of work has studied the complexity of group algorithm in the generic group model
(GGM) [30, 24]. Algorithms in this model of Maurer [24] are restricted to accessing the group
using handles and cannot compute on group elements directly. This makes it possible to
prove information theoretic lower bounds on the running times and success probabilities of
generic group algorithms for classic problems in cyclic groups (e.g., DLP, CDH, DDH). To the
best of our knowledge, only two works have considered the RSA problem in idealized group
models. The first of these work is due to Damgard and Koprowski [12] who ported Shoup’s
generic group model [30] to the setting of groups with unknown order and showed the generic
hardness of computing eth roots in this model. The second work is that of Dodis et al. [15]
who considered the instantiability of the hash function in FDH-RSA. On the one hand, unlike
the GRA model that we use for online adversary, they only model the multiplicative group
Z∗N as generic. In other words, they do not allow the adversary to take advantage of the
full ring structure of ZN . On the other, their model allows the online adversary to perform
arbitrary side computations. Recall that we do not allow such computations in our model,
as the online adversary is a GRA. We face many additional technical issues due to this point
as well as preprocessing. More recently, the work of Corrigan-Gibbs and Kogan [10] initiated
the study of preprocessing algorithms in the GGM. They considered generic upper and

ITC 2024

8:8 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

lower bounds for the discrete logarithm problem and associated problems. Their modelling
approach is very similar to our own, in that the algorithm in the offline phase has access
to the labelling oracle π and can pass an advice string of bounded size to the online phase
of the algorithm. In addition to modeling differences mentioned above, they also consider
adversaries who, in the online phase, may perform arbitrary side computations. Finally, the
distinction between Maurer’s and Shoup’s GGM (i.e., whether or not a labeling function is
used) was studied in detail by Zhandry [32]; to our knowledge, the analogous issue has not
been studied for GRAs.

The Algebraic Group Model. More recently, a series of works has explored the algebraic
group model [18] as a means to abstract the properties of the groups QRN and the multiplic-
ative group Z∗N more faithfully. The work of Katz et al. [21] introduced a quantitative version
of the algebraic group model called the strong algebraic group model to relate the RSW
assumption [27] over QRN to the hardness of factoring (given that N is a product of safe
primes p, q). Their model and ideas were extended to Z∗N by Stevens and van Baarsen [31]
who gave a general framework for computational reductions in the (strong) algebraic group
model over Z∗N . Additionally, Rotem [28] reduces RSA to factoring in the algebraic group
model over Z∗N .

2 Technical Overview

Our main result shows that any generic attack on RSA with preprocessing gives rise to a
factoring algorithms with preprocessing in the random oracle model and plain models with
polynomially related parameters. We begin by recapping the subclass of RSA algorithms we
consider, and then discuss the high level approach of our proof of equivalence.

The RSA algorithm. Recall that we consider RSA adversaries that are split into two “fixed”
parts (Aπ0 , A1) and a third part Gπ that is adaptively chosen by A1 upon seeing the RSA
instance. In more detail, Aπ0 gets oracle access to π : {0, 1}κ → {0, 1}m and is completely
unbounded both in terms of computation and number of queries to π. Aπ0 finally outputs
a state state of size Sr (called A’s space). A1 takes as input state and the RSA instance
(N, e, π(y) = π(xe)), runs in time T1,r, and outputs a GRA Gπ of size (and hence running-
time) T2,r. The GRA Gπ is an oracle-aided program that computes relative to π. In other
words, each multiplication (resp. division, addition) step of Gπ with inputs y1, y2 outputs
π(π−1(y1) ·π−1(y2) (mod N)) (resp. π(π−1(y1) ·(π−1(y2))−1 (mod N)), π(π−1(y1)+π−1(y2)
(mod N))). A1 is computationally bounded but may run for superpolynomial time. However,
it may not make any queries to the oracle π. Finally, Gπ takes as input π(y) and evaluates
Gπ(π(y)). In the following, we fix π, a state state of some bounded size Sr output by
Aπ0 , as well as a modulus N and value e with gcd(e, ϕ(N)) = 1. We consider the success
probability ϵr on input π(y) of A1 relative to these fixed values in outputting Gπ such that
Gπ(π(y)) = π(x) and xe = y (mod N). Here, the success probability is taken over random
choice of y ← ZN and coins of A1. Fixing π, state, N, e simplifies our discussion and can
easily be justified by an averaging argument. Our final analysis, however, considers these
values drawn from an appropriate distribution. Our goal is to construct a factoring algorithm
with preprocessing and with parameters Sf , Tf , ϵf (space, time, and success probability) that
are polynomially related to Sr, T1,r, T2,r, ϵr. Specifically, we require that Sf = Sr + O(1),
Tf = poly(κ, T1,r, T2,r, 1/ϵr) and ϵf = poly(ϵr), where κ = log(N) is security parameter. We
consider algorithms with unbounded preprocessing. Moreover, the algorithm A1 does not

D. Dachman-Soled, J. Loss, and A. O’Neill 8:9

have access to π, but can perform arbitrary (and superpolynomially many) operations after
learning the modulus N and the RSA instance π(xe). Only then does it hand over the
remaining computation to the fully generic program Gπ. In order for this to be possible,
we must do several case analyses. To simplify this technical overview, we will henceforth
conflate the online portion of algorithm’s running times by setting Tr = Tr,1 + Tr,2.
In the following, we first restrict our attention to the special case where A1 outputs a
straight-line program (SLP) with addition/multiplication only (i.e., without equality checks).
This special case already requires most of the key ideas of our proof. We then briefly explain
how to extend our result to the case where A1 may output a generic ring algorithm (GRA).

First case analysis: Fiat-Naor argument. In the case that Tr · Sr ≥ ϵr · 2κ/4, we will
completely ignore the RSA algorithm, and construct a different Factoring algorithm in the
RO model “from scratch.” The idea is to use a theorem of Fiat and Naor [17], which extends
Hellman’s seminal result on space/time tradeoffs for inversion of a random function [19], to
obtain space/time tradeoffs for inversion of any function f . Specifically, Fiat and Naor consider
an arbitrary function f : D → D and show that f can be inverted with probability 1− 1/|D|
in the random oracle (RO) model with space S and time T , as long as S2 · T ≥ |D|3 · q(f),
where q(f) is the probability that two random elements in D collide under f .1 We apply
Fiat-Naor to the factoring problem by viewing f as the function that takes two κ/2 bit
strings and multiplies them to obtain a κ-bit string, where κ = log(N). By carefully setting
parameters and using properties of the second moment of the divisor function, to bound q(f)
as q(f) ∈ O(κ

3

2κ), we obtain a factoring algorithm Sf = Sr, Tf = poly(κ) · T 2
2,r and inversion

probability O(ϵr). Note that all parameters are polynomial in the parameters of the RSA
algorithm. See [11] for more details.

Factoring from RSA. We now consider the main parameter regime of interest, where
Tr · Sr < ϵr · 2κ/4. In this parameter regime, we will show how to use the RSA algorithm to
construct a factoring algorithm. However, before we can do that, we need to eliminate a
crucial case in which the RSA algorithm is unhelpful for constructing a factoring algorithm.
Let us first consider when and why the RSA algorithm is useful for factoring. Then we will
show how to eliminate the remaining case.

Note that if A is successful with probability ϵr, then with probability ϵr the SLP S output
by A1 is such that on a randomly chosen y = xe, Sπ(π(y)) = π(x). We begin by defining
an “inversion procedure” on SLP’s that, given Sπ with oracle access to π and such that
Sπ(π(y)) = π(x), outputs an SLP S̃ with no oracle access such that S̃(y) = x. (Crucially,
the inversion procedure itself requires oracle access to π.) This, in turn, means that y is a
root of the SLP S̃(Y)e − Y , with respect to formal variable Y . In AM’s analysis, they were
able to conclude that if A is successful, then S̃(Y)e − Y must have many roots. Then, they
showed an algorithm that successfully factors, given as input a non-zero SLP S̃(Y)e − Y
with a sufficiently large fraction of roots. In our setting, however, we cannot necessarily
conclude this. This is because we allow A1 to output a different SLP Sππ(y) after seeing input
π(y) (we use the notation Sππ(y) to emphasize that the chosen SLP may depend on π(y)).
This means that the SLP Sππ(y) output by A1 can be tailored to succeed on π(y) and on
only few other inputs. Note that it is possible for A1 to maintain an overall high success
probability with this strategy. So while w.h.p. y itself must still be a root of the “inverted
SLP” S̃π(y)(Y)e − Y , we are not guaranteed that S̃π(y)(Y)e − Y has many roots overall. In
this case, factoring fails.

1 Their final algorithm actually requires only k-wise independent hash functions instead of a RO. For this
overview, we assume a RO with O(1) evaluation time.

ITC 2024

8:10 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

The above reasoning leads to the second and third cases considered in our proof: The
second case is that w.h.p. y is a root of S̃π(y)(Y)e − Y , and S̃π(y)(Y)e − Y has at most J
roots. The third case is that w.h.p. the SLP S̃π(y)(Y)e− Y , has at least J roots. The second
case will lead to contradiction due to a compression argument. We will therefore be left with
a (comparatively simple) third case which will imply existence of a factoring algorithm using
the arguments of AM.

Second case analysis: Compression. For this case, we show how to construct an encoding
routine that compresses the function table of a random injection π. Our main leverage to
achieve this is the following idea. Suppose that y is a root of S̃π(y)(Y)e−Y , and S̃π(y)(Y)e−Y
has at most J roots. Then there is a space-efficient way for an encoding routine Eπ (with
oracle access to π) to transmit y to a decoder D (without oracle access to π) who knows only
S̃π(y): Simply output the index of y among the J roots of S̃π(y)(Y)e − Y . (This takes log(J)
bits.) Intuitively, we save space when log(J) is small compared to the trivial encoding of y,
which specifies the index of y among all pre-images that are not yet mapped to an image in
the encoding which is being constructed by Eπ. Making this intuition rigorous, however, is
quite challenging.

First, we must show how the encoder can efficiently transmit the description of S̃π(y)
to the decoder. We may assume that A1 and state will be known to the decoder (we can
include state in the encoding). However, to obtain the correct SLP S̃π(y), the decoder must
run A1 on the correct random coins ρ and on the correct input π(y). Furthermore, A1 is
only guaranteed to output an SLP Sππ(y) that is successful on π(y) w.h.p., when π(y) = π(xe)
and ρ are chosen uniformly at random. But we cannot afford to transmit the value of a
random π(y), nor the value of random coins ρ of A1, while still achieving compression. To
solve both of these problems, we rely, as prior work of Corrigan-Gibbs and Kogan [10] did,
on a lemma of De, Trevisan, and Tulsiani [13]. This lemma proves incompressibility of an
element x from a sufficiently large set X in a setting that allows the encoder and decoder
to pre-share a random string of arbitrary length. For our purposes, this random string will
allow us to both (1) select a random π(y) from the set of images whose preimages are not yet
known and (2) select the random tape ρ for A1 to use together with input π(y). Thus, the
successful randomness can simply be encoded by its index within the shared random string,
thus saving space. We mention that Corrigan-Gibbs and Kogan avoided encoding successful
π(y) values by using the random self-reducibility property of the discrete log problem to
obtain an adversary that succeeds w.h.p. on every input. Unlike Corrigan-Gibbs and Kogan,
our argument does not require random self-reducibility, and rather uses the random tape to
select a random image π(y) instead. Thus, while RSA also enjoys random self-reducibility,
our proof does not make use of it, potentially making our techniques applicable to broader
settings.

The third challenge is that in order to obtain S̃π(y) from Sπ(y), the decoder must run the
SLP inversion procedure, which requires access to π. Therefore, our encoder Eπ includes
all the responses of queries to π during evaluation of the SLP inversion procedure in the
encoding, replacing any query to π−1(π(y)) itself with the formal variable Y . The final
challenge is the delicate setting of parameters needed for the result to go through. We must
set the value J (the number of roots in the SLP S̃π(y)(Y)e − Y) such that compression is
achieved when the number of roots is at most J and, looking ahead, such that efficient
factoring (with parameters Sf , Tf , ϵf that are polynomially related to Sr, Tr, ϵr) is possible
when the number of roots is at least J . We note that our techniques for analyzing the
encoding length are significantly different from those used by Corrigan-Gibbs and Kogan
and may be of independent interest. (See the full version [11] for more details.)

D. Dachman-Soled, J. Loss, and A. O’Neill 8:11

Factoring and Extending to the GRA case. Once we have ensured that the the SLP
Sπ(y)(Y)e − Y has at least J roots w.h.p., we can directly apply a theorem of AM to obtain
a factoring algorithm. Our final step will then be to extend the above discussion to a slightly
broader setting in which A1 outputs a GRA Gπ rather than an SLP Sπ. Here, we once again
build on arguments of AM, although we need to put in some additional effort to make them
work in our setting with preprocessing. In particular, the final factoring algorithm (with
preprocessing) that we obtain is in the random injection (RI) model, where the algorithm
requires access to both π and π−1. This is because our factoring algorithm requires access to
such a random injection in order to consistently simulate the oracle π to the RSA adversary
over the preprocessing phase and the online phase in a space efficient manner. Thus, it
remains to show how this oracle can be simulated in order to obtain a factoring algorithm
in the plain model. For simplicity, we omit our intermediate result in the Random Oracle
Model from this technical overview.

Obtaining our plain model result. In the following, we denote the random injective function
by H and we denote by π the GRM oracle interface expected by the RSA adversary. We
note that using backwards and forwards access to H, one can easily simulate queries made to
π. We show that with some additional work one can dispense with the RI in our result and
obtain a result in the plain model. To do so, we first observe that the online portion of our
factoring algorithm in the RI model makes only a single query to H in the forward direction
(on a uniformly random input modulo N), and makes a series of non-adaptive queries to
H−1. We will first show that we can simulate all the responses to the queries to H−1 while
adding only a small overhead to the non-uniform advice. We will then show that the single
query to the forward direction of H can be simulated as well.
Simulating queries to H−1. Recall that A1 receives the non-uniform advice state and the
input (N, e, π(xe mod N)) and outputs a GRA. The factoring algorithm will run the GRA
inversion algorithm by evaluating π−1 on hardcoded labels in the GRA that are not equal
to the input label π(xe mod N). Intuitively, since π is expanding, and since A1 may not
query the oracle, the only way A1 can hardcode a valid label into the GRA is if this label is
somehow stored in state. To formalize this intuition, for a fixed π, we consider the set Sπ
of valid images of π that are hardcoded into a GRA outputted by A1 with sufficiently high
probability over choice of input (N, e, π(xe mod N)) and the random coins of A1.
We use a compression argument to show that for most choices of π, the set Sπ is sufficiently
small such that it can be added to A1’s advice state. By definition, for a fixed π, it is unlikely
for A1 to hardcode images of π into its outputted GRA if these images are not part of Sπ.
Thus, queries to π−1 can be simulated without making a corresponding query to H by using
state as a lookup table.
Simulating the query to H. There is still a single query to the forward direction of H that
must be taken care of. This is the query made by the factoring algorithm when generating
the input to A1. Specifically, it is a query with input y = xe mod N and output π(y) = ỹ.
To simulate this query without accessing H, we construct a simulated plain model factoring
algorithm as follows: In the preprocessing phase, the plain model algorithm internally samples
a random injective function H, and the output of A0 in the preprocessing stage is computed
relative to this chosen H. Note that we can view A0’s input in the preprocessing stage as
the entire oracle, and in particular, this will include the input/output pair (y, ỹ′), where
y = xe mod N corresponds to the input value that will be given to A1 in the online phase.
In the online phase, our plain model factoring algorithm will actually resample the output
value of H on input y and replace it with a uniform random string ỹ. This resampled value

ITC 2024

8:12 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

ỹ will then be given to A1 in the online phase as the supposed value of π(y). A lemma of
Drucker [16] implies that (on average) the output distribution of a compressing algorithm
A0, which outputs state, does not change much when a single input in a randomly chosen
location (location y) is switched from a fixed value to a randomly resampled value. This
implies that the RI factoring algorithm will behave roughly the same when π is simulated in
this manner. See the full version [11] for further details.

3 Preliminaries

3.1 Notation and Conventions

We denote the sampling of a uniformly random element x from a set S as x← S. Similarly,
we denote the output y of a randomized algorithm A on input x as y ← A(x). We sometimes
also write y := A(x;ω) to denote that A deterministically computes y on input x and random
coins ω. To denote that an algorithm A has access to an oracle O during runtime, we write
AO. We denote as ZN the ring of integers modulo N , and as [N] the set {1, ..., N}. We write
νN (f) to denote the fraction of roots of a polynomial f over ZN , i.e.,

νN (f) := |{a ∈ ZN | f(a) = 0}|
N

.

Throughout, we denote the security parameter as κ. For k,m ∈ N we denote by Func[k,m]
the set of functions F : {0, 1}k → {0, 1}m. Denote by Perm[m] the set of permutations on
{0, 1}m. We denote by FuncInj[k,m] the set of injective functions I : {0, 1}k → {0, 1}m.

3.2 Incompressibility Lemmas

We use the following lemma by De et al. [13].

▶ Lemma 4 (De, Trevisan, Tulsiani [13]). Let E : X × {0, 1}ρ → {0, 1}m and D : {0, 1}m →
X × {0, 1}ρ be randomized encoding and decoding procedures such that, for every x ∈
X ,Prr←{0,1}ρ [D(E(x, r), r) = x] ≥ γ. Then, m ≥ log |X | − log 1/γ.

▶ Remark 5. As noted by [10], this lemma also holds when the encoding and decoding
algorithms have access to a common random oracle.

The following lemma is from Drucker [16].

▶ Lemma 6 (Drucker [16]). Let N,S,m ≥ 1 be integers. Given a possibly-randomized
mapping A0(ỹ0, . . . , ỹN−1) : {0, 1}N×m → {0, 1}S, and a collection D0, . . . ,DN−1 of mutually
independent distributions over {0, 1}m, for y ∈ ZN , let

γy := Eỹ∼Dy [||A0(D0, . . . ,Dy−1, ỹ,Dy+1, . . . ,DN−1)−A0(D0, . . . ,DN−1)||stat],

where the notation || · − · ||stat denotes the statistical distance between two distributions.
We have that

1
N

∑
y∈ZN

γy ≤
√

ln 2
2 · S + 1

N
.

D. Dachman-Soled, J. Loss, and A. O’Neill 8:13

4 Main Results

We begin by stating two theorems that will be used to obtain both our plain model and RO
model results.
▶ Theorem 7. Let Sr := Sr(κ), T1,r := T1,r(κ), T2,r := T2,r(κ), ϵ = ϵ(κ) such that for
sufficiently large κ, Sr · T2,r ≤ ϵ/162κ. Let A = (Aπ0 ,A1) be an (Sr, T1,r, T2,r)-GP-RSA
algorithm relative to RSAGen, and let Advag-rsa

RSAGen(A) = ϵ.
Then there exists a (Sf , Tf)-factoring algorithm B in the random injective function model

relative to RSAGen such that

Advfac
RSAGen(B) ∈ Ω(ϵ3),

such that Tf := poly(κ) · (T1,r + T 5
2,r + T

7/2
2,r

ϵ3/2), and such that Sf := Sr.
This theorem is proved in the full version [11].

▶ Remark 8. We give a comparison here of the bounds we achieve in Theorem 7 versus
those achieved by AM’s factoring algorithm. First, we consider our runtime of Tf :=

poly(κ) · (T1,r + T 5
2,r + T

7/2
2,r

ϵ3/2), and focus on the (T1,r + T 5
2,r + T

7/2
2,r

ϵ3/2) part. The first term’s
dependence on T1,r is unavoidable, since the factoring algorithm must run the RSA algorithm
at least once. The second term of T 5

2,r comes from running the SLPFACπ algorithm with
M ′ := poly(κ) · (T2,r)2. This corresponds exactly to running AM’s Algorithm 1 M ′ number
of times, whereas they only run it once. The reason for one of the T2,r factors in M ′ is
that the success probability of AM’s Algorithm 1 depended linearly on 1/T2,r (the size of
the SLP) and we wanted to remove the dependence on T2,r from our factoring algorithm’s
success probability. The reason for the second T2,r factor is that the success probability of
AM’s Algorithm 1 also depends linearly on the fraction of roots in the SLP. For them, this
is essentially equivalent to the RSA algorithm’s success probability. But for us, due to our
compression argument, the fraction of roots in the SLP is only guaranteed to be at least
J/N ≈ ϵ/T2,r. Since we want to remove the dependence on T2,r from the success probability
of the factoring algorithm, this accounts for the second factor of T2,r in our runtime. Moving

to the third term of T
7/2
2,r

ϵ3/2 , this comes from the runtime of Alg2AM which is essentially the
same as Algorithm 2 of AM. We are able to reduce from ϵ3/2 to ϵ5/2 in the denominator, since
we assume that ϵ > 1/N and since we ignore polylog(N) = poly(κ) factors in our analysis.

Next we move on to our success probability. We have ϵ3 compared to linear dependence
on ϵ in AM because we only provide a factoring algorithm when a certain event occurs.
The event that we consider is only guaranteed to occur with probability ϵ with respect to
ϵ-fraction of oracles.
▶ Remark 9. Note that achieving the desired factoring algorithm when Tr,2 ≥ 2κ/10 or
ϵ′ ≤ 1/2κ/6 is trivial since there is a trivial factoring algorithm that runs in time Tf =
O

(
(2κ/10)5)

= O
(
2κ/2)

, with zero pre-processing and success probability 1, as well as a
trivial factoring algorithm that achieves success probability Ω

(
(2−κ/6)3)

= Ω
(
2−κ/2)

with
zero pre-processing and poly(κ) time (which just guesses a random number in [2κ/2] as one
of the factors of N). We therefore assume WLOG that Tr,2 < 2κ/10 and ϵ′ > 2−κ/6.

The following theorem instantiates the algorithm of Fiat-Naor in the setting of factoring-
with-preprocessing.
▶ Theorem 10. Let S̃ = S̃(κ), T̃ = T̃ (κ), ϵ̃ = ϵ̃(κ) such that for sufficiently large κ,
S̃ · T̃ ≥ ϵ̃2κ. Then there exists a plain-model (Sf , Tf)-factoring-with-preprocessing algorithm
A such that for κ ∈ N, we have

Advfac
RSAGen(A) ∈ Ω(ϵ̃),

we further have that Sf = S̃, and Tf = poly(κ) · T̃ 2.

ITC 2024

8:14 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

This theorem is proved in the full version [11].
In Section 4.1 and 4.2 we formally state our results for the RO and plain model and

explain how Theorems 7 and 10 are used to obtain those results.

4.1 The RO model result

▶ Theorem 11. Let A = (Aπ0 ,A1) be an (Sr, T1,r, T2,r)-GP-RSA algorithm relative to RSAGen,
and let ϵ := Advag-rsa

RSAGen(A).
Then there exists a (Sf , Tf)-factoring algorithm B in the random injective function model

relative to RSAGen such that

Advfac
RSAGen(B) ∈ Ω(ϵ3),

such that Tf := poly(κ) · (T1,r + T 5
2,r + T

7/2
2,r

ϵ3/2), and such that Sf := Sr +O(1).

To prove Theorem 11 we first show that the RI-model factoring algorithm from Theorem 7
(which gets backwards and forwards access to the random injective function), can be converted
into a factoring algorithm in the Random Oracle model with the same parameters.

Specifically, in Proposition 21 we take A to be our final factoring algorithm FACπ (see [11])
and q = 2κ. Now set L such that

22κ/L ∈ O(N2/L) ≤ 1/(2N) .

As ϵf ∈ Ω(1/N) where ϵf is the advantage FACπ relative to a random injection on [L], we
have

ϵ′f ≥ ϵf/2

where ϵ′f is the advantage of the factoring algorithm in RO model that runs FACπ, answering
its queries via Luby-Rackoff. This RO-model factoring algorithm is for the case that for
sufficiently large κ, Sr · T2,r ≤ ϵ/162κ.

Setting S̃ = Sr, T̃ = T2,r, ϵ̃ = ϵ/16 and applying Theorem 10, we obtain a plain
model factoring algorithm with parameters Sf = Sr, Tf = poly(κ) · T 2

2,r, and advantage
ϵf ∈ Ω(ϵ). This plain-model factoring algorithm is for the case that for sufficiently large κ,
Sr · T2,r ≥ ϵ/162κ.

Note that it is also possible that neither of the above cases is satisfied and that, rather,
for infinitely many κ, Sr(κ) · T2,r(κ) ≥ ϵ(κ) · 2κ/16, and simultaneously, for infinitely many
κ, Sr(κ) · T2,r(κ) < ϵ(κ) · 2κ/16. If this occurs, we obtain our factoring algorithm by having
the unbounded pre-processing stage of the factoring algorithm do the following: On fixed
input κ, it will run the GP-RSA algorithm exhaustively on all possible random coins and
inputs to determine the exact constants Sr(κ), Tr,2(κ), ϵ(κ). It will then check whether
Sr(κ) · Tr,2(κ) ≥ ϵ(κ) · 2κ/16 or Sr(κ) · Tr,2(κ) < ϵ(κ) · 2κ/16. If the former is true, it will
append a “0” bit to the preprocessing advice state to tell the online portion of the factoring
algorithm to run the factoring algorithm for the first case. If the latter is true, it will append
a “1” bit to the preprocessing advice to tell the online portion of the factoring algorithm to
run the factoring algorithm for the second case. Thus, the preprocessing advice increases by
a single bit (so it still satisfies Sf = Sr +O(1)) and the other parameters Tf ,Advfac

RSAGen(B)
remain the same and therefore satisfy the required constraints of Theorem 11.

D. Dachman-Soled, J. Loss, and A. O’Neill 8:15

4.2 The plain model result
▶ Theorem 12. Let A = (Aπ0 ,A1) be an (Sr, T1,r, T2,r)-GP-RSA algorithm relative to RSAGen,
and let ϵ := Advag-rsa

RSAGen(A).
Then there exists a (Sf , Tf)-factoring algorithm B in the plain model relative to RSAGen

such that

Advfac
RSAGen(B) ∈ Ω(ϵ6),

such that Tf := poly(κ) · (T1,r + T 5
2,r + T

7/2
2,r

ϵ3/2), and such that Sf := O(Sr).

To prove Theorem 12 we start from the RI model factoring algorithm obtained in
Theorem 7 and prove the following theorem:

▶ Theorem 13. Let Sr := Sr(κ), T1,r := T1,r(κ), T2,r := T2,r(κ), ϵ = ϵ(κ). Let A = (Aπ0 ,A1)
be an (Sr, T1,r, T2,r)-GP-RSA algorithm relative to RSAGen, and let ϵ := Advag-rsa

RSAGen(A).
There exists a constant c such that, if for sufficiently large κ, Sr · T2,r ≤ c · ϵ62κ, then

there exists a (Sf , Tf)-factoring algorithm B in the plain model relative to RSAGen such that

Advfac
RSAGen(B) ∈ Ω(ϵ6),

such that Tf := poly(κ) · (T1,r + T 5
2,r + T

7/2
2,r

ϵ3/2), and such that Sf := Sr.

The proof of Theorem 13 appears in the full version [11]. To obtain an algorithm for the
case that for sufficiently large κ, Sr · T2,r ≥ c · ϵ62κ, we set S̃ = Sr, T̃ = T2,r, ϵ̃ = c · ϵ6 and
apply Theorem 10. This yields a plain model factoring algorithm with parameters Sf = Sr,
Tf = poly(κ) · T 2

2,r, and advantage ϵf ∈ Ω(ϵ6). Using the same argument as in Section 4.1,
we obtain a single factoring algorithm that covers all cases in the plain model with the
parameters of Theorem 12.

Two Events. Fix A, N, e, π and state as in Lemma 5 in [11]. We consider the probability of
two events over the randomness of ComGRA and choice of y ← ZN . Set J := (1−ϵ′/2)ϵ′·N

8 logNT2,r
=

(1−ϵ′/2)·N
4R1T2,r

= N · δ, where δ := J/N .
Event E[N, e, state, π]1: ComGRA[A]π on input π(y) returns a list of polynomials
{R1, . . . , Rψ+1} s.t. y is negatively oriented with respect to one of {R1, . . . , Rψ+1}.
Event E[N, e, state, π]2: ComGRA[A]π on input π(y) returns a list of polynomials
{R1, . . . , Rψ+1} s.t. νN (Rψ+1) ∈ (δ, 1− δ).

▶ Corollary 14 (of Lemma 5 in [11]). Suppose that the conditions of Lemma 5 in [11] hold.
Then at least one of the events E[N, e, state, π]1 or E[N, e, state, π]2 occurs with probability
at least ϵ/4.

Looking ahead, if E[N, e, state, π]1 occurs, then A will be useless for factoring. Our task,
therefore, is to prove that E[N, e, state, π]1 occurs with probability less than ϵ′ = ϵ/4 (which
we do in the full version [11] via a compression argument). We therefore conclude that
E[N, e, state, π]2 occurs with probability at least ϵ′ = ϵ/4.

References
1 Divesh Aggarwal and Ueli Maurer. Breaking RSA generically is equivalent to factoring. In

Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 36–53. Springer,
Heidelberg, April 2009. doi:10.1007/978-3-642-01001-9_2.

ITC 2024

https://doi.org/10.1007/978-3-642-01001-9_2

8:16 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

2 Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu,
and Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November 1993. doi:
10.1145/168588.168596.

3 Daniel J. Bernstein and Tanja Lange. Non-uniform cracks in the concrete: The power
of free precomputation. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part II, volume 8270 of LNCS, pages 321–340. Springer, Heidelberg, December 2013. doi:
10.1007/978-3-642-42045-0_17.

4 Dan Boneh. Twenty years of attacks on the rsa cryptosystem. Notices of the American
Mathematical Society (AMS), 46(2):203–213, 1999.

5 Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to factoring.
In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 59–71. Springer,
Heidelberg, May / June 1998. doi:10.1007/BFb0054117.

6 D. R. L. Brown. Breaking rsa may be as difficult as factoring. Eprint Cryptology Archive,
2006.

7 Don Coppersmith. Modifications to the number field sieve. J. Cryptol., 6(3):169–180, 1993.
8 Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. Non-uniform bounds in the random-

permutation, ideal-cipher, and generic-group models. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 693–721. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96884-1_23.

9 Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John P. Steinberger. Random oracles and
non-uniformity. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part I, volume 10820 of LNCS, pages 227–258. Springer, Heidelberg, April / May 2018.
doi:10.1007/978-3-319-78381-9_9.

10 Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-logarithm problem with preprocessing.
In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume
10821 of LNCS, pages 415–447. Springer, Heidelberg, April / May 2018. doi:10.1007/
978-3-319-78375-8_14.

11 Dana Dachman-Soled, Julian Loss, and Adam O’Neill. Breaking rsa generically is equivalent
to factoring, with preprocessing. Cryptology ePrint Archive, Paper 2022/1261, 2022. URL:
https://eprint.iacr.org/2022/1261.

12 Ivan Damgård and Maciej Koprowski. Generic lower bounds for root extraction and signature
schemes in general groups. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of
LNCS, pages 256–271. Springer, Heidelberg, April / May 2002. doi:10.1007/3-540-46035-7_
17.

13 Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks against
one-way functions and prgs. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010,
pages 649–665, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

14 Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks in the concrete: Random oracles
with auxiliary input, revisited. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 473–495. Springer, Heidelberg,
April / May 2017. doi:10.1007/978-3-319-56614-6_16.

15 Yevgeniy Dodis, Iftach Haitner, and Aris Tentes. On the instantiability of hash-and-sign
RSA signatures. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 112–132.
Springer, Heidelberg, March 2012. doi:10.1007/978-3-642-28914-9_7.

16 Andrew Drucker. New limits to classical and quantum instance compression. In 53rd FOCS,
pages 609–618. IEEE Computer Society Press, October 2012. doi:10.1109/FOCS.2012.71.

17 Amos Fiat and Moni Naor. Rigorous time/space tradeoffs for inverting functions. In Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Orleans,
Louisiana, USA, pages 534–541, January 1991. doi:10.1145/103418.103473.

https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/978-3-319-96884-1_23
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-319-78375-8_14
https://doi.org/10.1007/978-3-319-78375-8_14
https://eprint.iacr.org/2022/1261
https://doi.org/10.1007/3-540-46035-7_17
https://doi.org/10.1007/3-540-46035-7_17
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-642-28914-9_7
https://doi.org/10.1109/FOCS.2012.71
https://doi.org/10.1145/103418.103473

D. Dachman-Soled, J. Loss, and A. O’Neill 8:17

18 Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of
LNCS, pages 33–62. Springer, Heidelberg, August 2018. doi:10.1007/978-3-319-96881-0_2.

19 Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory,
26(4):401–406, 1980.

20 Antoine Joux, David Naccache, and Emmanuel Thomé. When e-th roots become easier than
factoring. In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 13–28.
Springer, Heidelberg, December 2007. doi:10.1007/978-3-540-76900-2_2.

21 Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock puzzles and
timed commitments. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part III,
volume 12552 of LNCS, pages 390–413. Springer, Heidelberg, November 2020. doi:10.1007/
978-3-030-64381-2_14.

22 Gregor Leander and Andy Rupp. On the equivalence of RSA and factoring regarding generic
ring algorithms. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006, volume 4284 of
LNCS, pages 241–251. Springer, Heidelberg, December 2006. doi:10.1007/11935230_16.

23 Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 17(2), 1988.

24 Ueli M. Maurer. Abstract models of computation in cryptography (invited paper). In Nigel P.
Smart, editor, 10th IMA International Conference on Cryptography and Coding, volume 3796
of LNCS, pages 1–12. Springer, Heidelberg, December 2005.

25 V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical
Notes, 55(2):165–172, 1994.

26 Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the Association for Computing
Machinery, 21(2):120–126, 1978.

27 Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, MIT, 1996.

28 Lior Rotem. Revisiting the uber assumption in the algebraic group model: Fine-grained
bounds in hidden-order groups and improved reductions in bilinear groups. In Dana Dachman-
Soled, editor, 3rd Conference on Information-Theoretic Cryptography, ITC 2022, July 5-7,
2022, Cambridge, MA, USA, volume 230 of LIPIcs, pages 13:1–13:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022.

29 Lior Rotem and Gil Segev. Generically speeding-up repeated squaring is equivalent to
factoring: Sharp thresholds for all generic-ring delay functions. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 481–509.
Springer, Heidelberg, August 2020. doi:10.1007/978-3-030-56877-1_17.

30 Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May
1997. doi:10.1007/3-540-69053-0_18.

31 Aron van Baarsen and Marc Stevens. On time-lock cryptographic assumptions in abelian
hidden-order groups. In ASIACRYPT, pages 367–397, 2021.

32 Mark Zhandry. To label, or not to label (in generic groups). In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology - CRYPTO 2022 - 42nd Annual International
Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Pro-
ceedings, Part III, volume 13509 of Lecture Notes in Computer Science, pages 66–96. Springer,
2022.

A Relevant Problems

In this section, we introduce the main relevant problems: the RSA Problem, the Factoring
Problem, and the general Function Inversion Problem (all with preprocessing). Algorithm
RSAGen on input 1κ generates (N, e, d, p, q) where N = pq and p, q are primes of bit-length
κ/2 with leading bit 1. Finally, ed = 1 mod ϕ(N).

ITC 2024

https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-540-76900-2_2
https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1007/11935230_16
https://doi.org/10.1007/978-3-030-56877-1_17
https://doi.org/10.1007/3-540-69053-0_18

8:18 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

▶ Definition 15 (Factoring with Preprocessing). Let F = (F0, F1) be an algorithm and RSAGen
be an RSA generator. Consider the factoring-with-preprocessing game facF

RSAGen:
Offline Phase. Run F0 on input 1κ to obtain an advice string state.
Online Phase. Run RSAGen on input 1κ to obtain(N, e, d, p, q). Then run F1 on input
(N, state).
Output Determination. When F1 returns p′, the experiment returns 1 if p = p′ or
q = p′. It returns 0 otherwise.

Define F’s advantage in the above experiment as

Advfac
RSAGen(F) = Pr[facF

RSAGen = 1] .

We call F an (S, T)-factoring algorithm relative to RSAGen if F0 outputs advice strings of
size at most S and F1 runs in time at most T .

▶ Definition 16 (RSA with Preprocessing). Let A = (A0,A1) be an adversary. Consider the
RSA-with-preprocessing game rsaARSAGen:

Offline Phase. Run A0 on input 1κ to obtain an advice string state.
Online Phase. Run RSAGen on input 1κ to obtain(N, e, d, p, q). Sample x← ZN and
run A1 on input (N, e, state, xe mod N).
Output Determination. When A1 returns x′, the experiment returns 1 if x = x′

(mod N). It returns 0 otherwise.
Define A’s advantage in the above experiment as

Advrsa
RSAGen(A) = Pr[rsaA

RSAGen = 1] .

We call A an (S, T)-RSA algorithm relative to RSAGen if A0 outputs advice strings of size at
most S and A1 runs in time at most T .

In the following, we consider a domain D of finite size along with a randomized point
generator G that outputs points in D.

▶ Definition 17 (Function Inversion with Preprocessing). Let D be a finite set and let f : D → D

be a function. Let I = (I0, I1) be an adversary and Gen a point generator. Consider the
function-inversion-with-preprocessing game δI

f,Gen:
Offline Phase. Run I0 on input 1κ to obtain an advice string state.
Online Phase. Run Gen on input 1κ to obtain a point y ∈ D. Run I1 on input (y, state)
Output Determination. When I1 returns x′, the experiment returns 1 if f(x′) = y. It
returns 0 otherwise.

Define I’s advantage in the above experiment as

Advδf,Gen(I) = Pr[δI
f,Gen = 1] .

We call I an (S, T)-function-inversion algorithm relative to Gen if I0 outputs advice strings of
size at most S and I1 runs in time at most T .

▶ Definition 18 (Collision Probability). Let D be a finite set and let f : D → D be a function.
For z ∈ D, If (z) denotes the number of preimages for z under f , i.e.

If (z) := |{u ∈ D : f(u) = z}| .

The collision probability of f : D → D, denoted by q(f) is defined as follows:

q(f) :=
∑
z∈D I

2
f (z)

|D|2
.

D. Dachman-Soled, J. Loss, and A. O’Neill 8:19

▶ Theorem 19 (Fiat-Naor [17]). For any D, f,Gen as in Definition 17 and any S, T such that
T ·S2 = |D|3 · q(f), there is an (S, T)-function-inversion algorithm I such that Advδf,Gen(I) ≥
1− 1/|D|.2

B Computational Models

In this section, we review some idealized models that will be relevant in our analyses and
discuss their relationships to each other.

Random Oracle Model (ROM). In the random oracle model [2] all algorithms have oracle
access to a uniformly random function from Func[m1,m2] for some m1,m2 ∈ N specified by
the model.

Random Injection Model (RIM). In the random injection model all algorithms have
forwards and backwards oracle access to a uniformly random function from FuncInj[n,m] for
some n ≤ m specified by the model.

Random Permutation Model (RPM). In the random permutation model all algorithms
have forwards and backwards oracle access to a uniformly random function from Perm[m] for
some m ∈ N specified by the model.

B.1 Switching from RIM to ROM
To switch from the RIM to the ROM, we need to show how to simulate oracle access to a
random injection (forward and backward), given oracle access to a random function. We
implement the random injection by padding the input and using Luby-Rackoff’s strong
pseudorandom permutation construction [23].

Luby-Rackoff. We first recall the Luby-Rackoff construction [23], which we view as a
construction of a random permutation oracle from a random oracle. Formally, suppose ρ is a
RO from {0, 1}m/2 to {0, 1}m/2 for m ∈ N. Define oracle LubRac[ρ] on {0, 1}m as follows:

Parse x as x1∥x2 with |x1| = |x2| = m/2 and apply a 4-round balanced Feistel network
with h as the round function to obtain y. Output y.

Oracle LubRack−1[ρ] is defined accordingly.
▶ Theorem 20 (Luby-Rackoff [23]). For any (even unbounded) adversary A making at most
q queries it holds that

| Pr
ρ←Func[m/2,m/2]

[ALubRack[ρ](·),LubRack−1[ρ](·) outputs 1]−

Pr
π←Perm[m]

[Aπ(·),π−1(·) outputs 1]| ∈ O(q2/2m/2).

Random Injection from Random Permutation. We next show a construction of a random
injection oracle π from a random permutation oracle ψ. Suppose ψ is a random permutation
oracle on m bits and ψ−1 is its inverse. For n ≤ m, define π[ψ] : {0, 1}n → {0, 1}m as
π[ψ](x) := ψ(pad(x)) where pad(x) is the function that pads the LSBs of x with m− n zeros.
Define π[ψ]−1 accordingly. It should be clear that π[ψ] is a random injection oracle.

2 This statement is weaker than the one proven in [17] but is sufficient for our purpose.

ITC 2024

8:20 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

Now, composing the above constructions gives a construction of a random injection
oracle from a random oracle. Namely, suppose ρ : {0, 1}m/2 → {0, 1}m/2 is a RO. Define the
random injection oracle π[ρ] : {0, 1}n → {0, 1}m as π[ρ](x) = LubRac[ρ](pad(x)) and π[ρ]−1

accordingly. By a simple hybrid argument we have:

▶ Proposition 21 (RIM-to-ROM). For any (even unbounded) adversary A making at most q
queries it holds that

| Pr
ρ←Func[m/2,m/2]

[Aπ[ρ](·),π[ρ]−1(·) outputs 1]−

Pr
π←FuncInj[n,m]

[Aπ(·),π−1(·) outputs 1]| ∈ O(q2/2m/2).

B.2 Straight-Line Programs and Generic Ring Algorithms
Let N ∈ N and assume that m ≥ κ, where κ is the bit length of N . Below, we define two
types of programs (aka. algorithms) that use oracles, namely generic-ring algorithms (GRAs)
and straight-line programs (SLPs).

Program Graphs and Their Execution. The below is based on [1]. We consider deterministic
programs that perform arithmetic operations (mod N) on indeterminate Y .

We associate a program on a single input with its program graph over ZN , a labelled
graph where a label of a node represents a (binary) operation and the program implicitly
stores all intermediate results. We only consider programs whose graphs are binary trees.
Vertices can be either branching or non-branching.

Execution of a program corresponds to traversing a labelled path in its program graph
over ZN . Non-branching vertices are used to execute arithmetic operations (mod N) or to
load inputs and constants into the program. They are accordingly labelled with elements
a ∈ ZN corresponding to constants in the program, with a (unique) indeterminate Y

corresponding the programs input, or with an arithmetic operation label (i, j, ◦, b) which
applies the arithmetic ring operation ◦ (mod N) to operands at indices i and j that the
program previously stored. (The flag b ∈ {−1, 1} indicates inversion of the second operand.)
Branching vertices are used to test two values i, j previously computed by the program for
equality (mod N). A branching vertex has two outgoing edges that are labelled 0 (for left)
and 1 (for right).

The program applies the operations indicated by the labels of the vertices and edges it
encounters in the order of traversal as follows:

The first three vertices are a path and are always labelled 0, 1, and Y . That is, they are
used to load the constants 0 and 1, and the single input y of the program. The program
stores the intermediate results y0 = 0, y1 = 1, y2 = y for these vertices, respectively, and
continues execution along this path.
For k ≥ 4:

If the kth vertex vk is labelled with a ∈ ZN , the program stores yk ← a as the
intermediate result for this vertex. It continues execution along this path.
If the kth vertex vk is labelled with (i, j, ◦, b) then the program does as follows. Here
◦ ∈ {·,+}, b ∈ {−1, 1}, and i, j < k correspond to the ith and jth vertices on the
path of traversal, which must be non-branching. The program computes yk := yi ◦ ybj
(mod N) and stores the intermediate result yk for vertex v. In case ◦ = + and b = −1,
then ybj = −yj (mod N). In case ◦ = ·, b = −1, and yj = 0 (mod N), yk := ⊥. In
case yi = ⊥ or yj = ⊥, yk := ⊥. It continues execution along this path.

D. Dachman-Soled, J. Loss, and A. O’Neill 8:21

If the kth vertex vk is labelled (i, j) where i, j < k correspond to the ith and jth
vertices on the path of traversal, which must be non-branching, the program makes an
equality test whether yi = yj (mod N). If the result is 1, the program continues its
execution along the right edge; otherwise, along the left.

Whenever vk is the last vertex on the path, the program computes yk and outputs it,
terminating execution.

Oracle-Aided Programs. Apart from the types of programs we have discussed above, we
are also interested in programs that can perform arithmetic operations via oracle access (as
opposed to directly).

Hence, we define oracles π, eq, and opπ as follows. Oracle π initially samples a random
function π ∈ FuncInj[κ,m] and on query x ∈ ZN returns y = π(x) ∈ {0, 1}m. Here we refer
to y ∈ {0, 1}m as a label. We slightly abuse notation by referring to the oracle π and the
internally sampled function indiscriminately. We also make the convention of parsing x ∈ ZN
as a κ-bit binary string. Given π ∈ FuncInj[κ,m], we first consider an oracle eq for testing
equality. On input y1, y2 ∈ {0, 1}m, eq returns 1 iff π−1(y1) = π−1(y2) (mod N), and 0
otherwise. Now, we define the behavior of the ring oracle opπ on input as y1, y2 ∈ {0, 1}m as

opπ(y1, y2, ◦, b) := π
(
π−1(y1) ◦

(
π−1(y2)

)b mod N
)

for all y1, y2 ∈ {0, 1}m, ◦ ∈ {+, ·}, b ∈ {1,−1}, where the inverse is additive in case
◦ = +, b = −1. We implicitly assume that in case ◦ = ·, b = −1, opπ internally queries
eq(y2, 0). opπ returns ⊥ in case either of the operands is ⊥ or the call to eq returns 1, i.e., if
π−1(y2) = 0 (mod N).
▶ Remark 22. Throughout the paper, when there is no possibility of confusion we abbreviate
oracles opπ and eqπ by π. That is, for an oracle-aided program P we abbreviate P opπ,eqπ by
Pπ.

Oracle-aided program graphs over ZN are labelled very similarly to plain program graphs
over ZN . Roughly speaking, all values in ZN are now replaced with their labels, according
to π. Thus, a non-branching vertex is now labelled in one of two ways. Either it is labelled
with (i, j, ◦, b) where i and j correspond to the ith and jth non-branching vertex among the
vertices previously encountered on the path and ◦ ∈ {+, ·}, b ∈ {1,−1}. Otherwise, it is
labelled with some m-bit label σ in the image of π.

As before, a branching vertex is labeled with (i, j), where i and j correspond to the ith
and jth non-branching vertex among the vertices previously encountered on the path. It has
two outgoing edges labelled 0 (for left edge) and 1 (for right edge). The only difference is
that the program now has to invoke eq on the intermediate values yi and yj so as to test
their equality (rather simply testing whether they are equal).

Execution of an oracle-aided program corresponds to its program graph by adapting the
above correspondence in the straight forward manner:

The first two nodes on a path are always labelled as π(0), π(1), respectively; that is, they
are used to load the constants 0 and 1. The third node on a path is used to load the
(single) input π(y) to the program. It is labelled with a special label ϕ. The program
stores the intermediate results y0 = 0, y1 = 1, y3 = π(y) for these vertices, respectively,
and continues execution along this path.
When the program encounters a non-branching vertex v:

If v is labelled with (i, j, ◦, b), where i, j are indices and b ∈ {0, 1}, and this is the kth
non-branching vertex on the path of traversal for some k ≥ 4, and, then the program
invokes the oracle opπ on input (yi, yj , ◦, b). It stores the output of opπ as yk.

ITC 2024

8:22 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

If v is labelled with σ and this is the kth non-branching index on the path of traversal
for some k ≥ 4, store yk ← σ and continue the execution of the program along this
path.

If the program encounters a branching vertex v: if v is labelled (i, j), the program invokes
the oracle eq on input (yi, yj). If the result is 1, the program continues its execution
along the right edge; otherwise, along the left.
If k is the last vertex on the path, the program outputs yk and terminates.

Types of Programs. We define two types of programs:

▶ Definition 23. A T -step (possibly oracle-aided) straight line program (SLP) S over ZN is
a program whose program graph over ZN is a labelled path v0, . . . , vT+3.

A deterministic generic ring algorithm (GRA) is a generalization of SLPs that allows
equality tests. As explained above, such queries are represented as branching vertices in our
graph representation of a GRA. Thus, an SLP can be seen as special case GRA, where an
SLP is a GRA that contains no branching vertices.

▶ Definition 24. A T -depth deterministic (possibly oracle-aided) generic ring algorithm
(GRA) G over ZN is a program whose program graph over ZN is a depth-(T+3) vertex-labelled
and partially edge-labelled binary tree.

To keep the distinction between oracle aided vs. regular programs clear, we will always
make the dependency on π explicit by superscripting oracle-aided programs with π, i.e., Gπ.

The following definition applies only to non-oracle aided programs. It inductively defines
the polynomial corresponding to an execution of a program on input x ∈ ZN . Essentially, if the
program encounters a non-branching vertex v and v corresponds to an arithmetic operation,
then we associate the resulting tuple (PGv (x), QGv (x)) with vertex v. Here, PGv (x) and QGv (x)
are interpreted as the numerator and denominator of a rational function PGv (x)/QGv (x) that
is the result of applying the arithmetic operation to the rational functions associated with
prior vertices w, u.

▶ Definition 25. For a GRA G (or SLP S) over ZN of size T and non-branching vertex v
in its execution graph, the pair (PGv (x), QGv (x)) of polynomials in ZN [x] associated with v is
defined inductively, as follows:
1. The root has associated the pair (0, 1), the child of the root the pair (1, 1), and the child

of that child has the pair (x, 1).
2. A vertex v labelled with a ∈ ZN is associated with (a, 1).
3. For each non-branching vertex v, labelled with operation (u,w,+, b), we have:

(PGv (x), QGv (x)) :={
(PGu (x) ·QGw(x) + PGw (x) ·QGu (x), QGu (x) ·QGw(x)) b = 1
(PGu (x) ·QGw(x)− PGw (x) ·QGu (x), QGu (x) ·QGw(x)) b = −1

4. For each non-branching vertex v, labelled with operation (u,w, ·, b), we have:

(PGv (x), QGv (x)) :=
(PGu (x) · PGw (x), QGu (x) ·QGw(x)) b = 1
(PGu (x) ·QGw(x), QGu (x) · PGw (x)) b = −1, QGu (x) ̸= 0 (mod N)
⊥ b = −1, QGu (x) = 0 (mod N)

Note that PGv (x) and QGv (x)) can each be represented as an SLP of size at most T .

D. Dachman-Soled, J. Loss, and A. O’Neill 8:23

▶ Definition 26. For an SLP S over ZN of size T , we denote by (PS(x), QS(x)) the pair of
polynomials in ZN [x] associated with the final vertex on the evaluation path. If QS(x) ≡ 1,
we denote by fS the polynomial PS(x). Note that PS(x) and QS(x)) can each be represented
as an SLP of size at most T .
▶ Definition 27. For each non-branching vertex v in the program graph over ZN of an ℓ-step
GRA G with corresponding pair of polynomials (PGv (a), QGv (a)), we associate the function

fGv : ZN → ZN ∪ {⊥} : a 7→ PGv (a)
QGv (a)

where the function is undefined if QGv (a) = 0, which is denoted as fGv (a) =⊥, and where PGv (a)
and QGv (a) are evaluated over ZN . Moreover, for an argument a ∈ ZN , the computation
path from the root v0 to a leaf vℓ+3(a) is defined by taking, for each equality test of the form
(u,w), the edge labeled 0 if fGv (a) = fGw (a), and the edge labeled 1 if fGu (a) ̸= fGw (a). The
partial function fG computed by G is defined as

fG : ZN → ZN ∪ {⊥} : a 7→ fGvℓ+3(a).

We define the output of G on input x ∈ ZN as G(x) := fG(x).

B.3 Model Specific Versions of the RSA Assumption
We introduce a new variant of the RSA game with preprocessing model specifically tailored
to the oracle-aided computational models from the previous section. In the following, we fix
the security parameter κ and an integer m ∈ Z,m ≥ κ.
▶ Definition 28 (Generic RSA Problem with Preprocessing). For a tuple of algorithms A =
(Aπ0 ,A1) and an RSA instance generator RSAGen, define experiment ag-rsaA

RSAGen as follows:
Offline Phase. Sample π ← FuncInj[κ,m]. Run Aπ0 on input 1κ. Let state denote the
return value of Aπ0 .
Online Phase. Compute (N, e, d) ← RSAGen(1κ) and sample x ← ZN . Run A1 on
input (N, e, π(xe), state) and let Gπ denote the output. If Gπ does not correspond to the
description of a GRA, abort. Note that A1 does not get access to oracle π.
Output Determination. Run Gπ on input (N, e, π(xe)). When Gπ outputs z ∈ {0, 1}m,
the experiment evaluates to 1 iff z = π(x).

Define A’s advantage relative to RSAGen as

Advag-rsa
RSAGen(A) = Pr[ag-rsaA

RSAGen = 1] .

We call A = (Aπ0 ,A1) an (S, T1, T2)-generic-RSA-with-preprocessing algorithm (GP-RSA)
relative to RSAGen if Aπ0 outputs advice strings state of size at most S, A1 runs in time at
most T1, and and any program Gπ in the output of A1 runs in time at most T2. Note that
we require that T1 ≥ T2.

We also give an alternative version of this game in which π ∈ FuncInj[κ,m] and (N, e, d) ∈
RSAGen(1κ) are a fixed.
▶ Definition 29 (Fixed Generic RSA Problem with Preprocessing). Fix integers (N, e, d) ∈
RSAGen(1κ), let π ∈ FuncInj[κ,m], and let state be of size at most S. Define experiment
fcrsaA

(N,e,d,state,π) as follows:
Online Phase. Sample x← ZN . Run A on input (N, e, π(xe), state) and let Gπ denote
the output. If Gπ does not correspond to the description of a GRA, abort. Note that A
does not have oracle access to π.

ITC 2024

8:24 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

Output Determination. Run Gπ on input (N, e, π(xe)). When Gπ outputs z ∈ {0, 1}m,
the experiment evaluates to 1 iff z = π(x).

Define A’s advantage relative to (N, e, d, state, π) as

Advfcrsa
(N,e,d,state,π)(A) = Pr[fcrsaA

(N,e,d,state,π)(1κ) = 1],

We call A an (S, T1, T2)-fixed-generic-RSA-with-preprocessing (FGP-RSA) algorithm relative
to (N, e, d, state, π) if A runs in time at most T1, and and any program Gπ in the output of
A runs in time at most T2.

Note that in the above definition we do not require the advice string state to be output
by a preprocessor Aπ0 . However, by a standard averaging argument, we obtain the following
lemma:

▶ Lemma 30. Let A = (Aπ0 ,A1) be an (S, T1, T2)-GP-RSA algorithm and suppose
that Advag-rsa

RSAGen(A) ≥ ϵ. Then with probability at least ϵ/2 over the coins of RSAGen,
the choice of π, and coins of Aπ0 , Aπ0 outputs state and RSAGen outputs (N, e, d) s.t.
Advfcrsa

(N,e,d,state,π)(A1) ≥ ϵ/2.

Time-Space Tradeoffs for Finding Multi-Collisions
in Merkle-Damgård Hash Functions
Akshima # Ñ

NYU Shanghai, China

Abstract

We analyze the multi-collision resistance of Merkle-Damgård hash function construction in the
auxiliary input random oracle model. Finding multi-collisions or m-way collisions, for some parameter
m, in a hash function consists of m distinct input that have the same output under the hash function.
This is a natural generalization of the collision finding problem in hash functions, which is basically
finding 2-way collisions. Hardness of finding collisions, or collision resistance, is an important
security assumption in cryptography. While the time-space trade-offs for collision resistance of hash
functions has received considerable attention, this is the first work that studies time-space trade-offs
for the multi-collision resistance property of hash functions based on the popular and widely used
Merkle-Damgård (MD) constructions.

In this work, we study how the advantage of finding m-way collisions depends on the parameter
m. We believe understanding whether multi-collision resistance is a strictly easier property than
collision resistance is a fundamental problem and our work facilitates this for adversaries with
auxiliary information against MD based hash functions. Furthermore, in this work we study how
the advantage varies with the bound on length of the m colliding inputs. Prior works [1, 19, 3] have
shown that finding “longer” collisions with auxiliary input in MD based hash functions becomes
easier. More precisely, the advantage of finding collisions linearly depends on the bound on the
length of colliding inputs. In this work, we show similar dependence for m-way collision finding, for
any m ≥ 2.

We show a simple attack for finding 1-block m-way collisions which achieves an advantage of
Ω̃(S/mN). For 2 ≤ B < log m, we give the best known attack for finding B-blocks m-way collision
which achieves an advantage of Ω̃(ST/m1/(B−1)N) when m1/(B−1)-way collisions exist on every salt.
For B > log m, our attack achieves an advantage of Ω̃(ST B/N) which is optimal when SB ≥ T and
ST 2 ≤ N . The main results of this work is showing that our attacks are optimal for B = 1 and
B = 2. This implies that in the auxiliary-input random oracle model, the advantage decreases by a
multiplicative factor of m for finding 1-block and 2-block m-way collisions (compared to collision
finding) in Merkle-Damgård based hash functions.

2012 ACM Subject Classification Security and privacy → Cryptography; Security and privacy →
Information-theoretic techniques; Mathematics of computing → Probability and statistics

Keywords and phrases Collision, hash functions, multi-collisions, Merkle-Damgård, pre-computation,
auxiliary input

Digital Object Identifier 10.4230/LIPIcs.ITC.2024.9

Funding Most of this work was done while Akshima was a PhD student at University of Chicago
and was supported in part by NSF Grant No. 1928767. Akshima is supported by Ministry of
Education of P.R.C., through an Overseas Postdoc Special Program (2023), National Natural Science
Foundation of China Grant No. 6210226 and NYTP Grant No. 2012120. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the funding institutions or the governments.

Acknowledgements We thank the anonymous reviewers for their constructive comments on earlier
drafts of the work. We thank David Cash and Siyao Guo for useful discussions.

© Akshima;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal; Article No. 9; pp. 9:1–9:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akshima@nyu.edu
https://sites.google.com/view/akshima-
https://doi.org/10.4230/LIPIcs.ITC.2024.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Time-Space Tradeoffs for Finding Multi-Collisions in MD

1 Introduction

In this work we study multi-collision finding in Merkle-Damgård (MD) hash functions with
auxiliary input generated during a pre-computation. Several recent works [11, 12, 1, 19, 3]
have rigorously studied collision finding in MD hash functions with pre-computation but
currently nothing is known about the upper and lower bounds for m-way collision finding
with pre-computation, where an m-way collision consists of m distinct messages, for some
parameter m, whose hash values are identical.

Auxiliary-Input Random Oracle Model

We will study the problem in the auxiliary-input(AI) random oracle (RO) model in order to
obtain the time-space trade-offs. We note that AI-RO model is strong enough to capture
pre-computing as well as non-uniform adversaries. We informally describe the model next.

An adversary A in this model can be thought of as a pair of algorithms (A1,A2) each of
which corresponds to a stage of A:
1. Offline/pre-computation stage: A1 gets computationally unbounded access to the oracle

(i.e., there is no bound on the number of oracle queries and computation made by A1) and
outputs a fixed-size advice/information about the oracle. Let’s denote this pre-computed
information by σ.

2. A2 takes σ outputted by A1 as input along with challenge, makes a bounded number of
queries to the oracle.

In this work, we will use S to denote the length of σ in bits output by A1 and T to denote
the bound on the number of queries made by A2. We will refer to such an adversary A as
(S, T)-AI adversary.

Specifically for a m-way collision finding (S, T)-AI adversary, the input challenge to A2
consists of a salt for the hash function and A2 needs to output m colliding messages on the
salt to win. There could be an additional restriction that the collisions found are at most B

blocks long.

Why Study Multi-collisions

Multi-collision resistance is a natural generalization of a fundamental and widely used security
property in cryptography, namely collision resistance. Multi-collision resistance property is
seen as a relaxation of the collision resistance and it is a meaningful exercise to understand
whether former is strictly an easier property than the standard collision resistance. In a
recent work [29], Rothblum and Vasudevan studied this and gave a non-black box and
non-constructive transformation from a multi-collision resistant hash function to collision
resistant hash function. In this work, we understand how the complexity of the m-way
collision finding in MD hash functions varies with m for any (S, T)-AI adversary. If the
complexity grows linearly or exponentially in m, then it could be better to reduce the security
of protocols to m-way collisions for larger m’s. Reducing the security to m- way collision
resistance for larger and larger m could allow applications to reduce the length of the output
of the hash function and hence make them more efficient.

For a random hash function (i.e., a hash function modelled as a random oracle) it
was proven that any adversary making T queries can achieve the advantage of the order
(T/m)m/Nm−1 for finding m-way collision. Note that the advantage decreases exponentially
in the size of m. Works dating as early as 1990s had identified that finding m-way collisions
gets harder as m becomes larger and inspired by this observation, the notion of Multi-collision
resistance in hash functions had been used in several existing constructions of applications
such as digital signatures, commitment scheme and more.

Akshima 9:3

The multi-collision resistance primitive has been used in signature schemes [8], identifica-
tion schemes [20], micropayment scheme [28] and commitment scheme [26]. Bitansky et al.
in [7], formally introduced multi-collision resistance as a cryptographic primitive, used it to
construct secure keyless hash functions and study its applications. Berman et al., too, in [5]
used the notion of multi-collision resistance to find secure keyless hash functions.

Liu and Zhandry in [27] analyzed multi-collisions in the quantum setting. As Grover’s
algorithm speeds up the classical birthday attack for finding collisions from O(2n/2) to O(2n/3),
Liu and Zhandry study the speedup on multi-collisions in random hash function with quantum
query. They conclude that it could be better to base the security of constructions on the
multi-collision resistance in the quantum setting as they prove that Ω(2n/2·(1−1/(2m−1)))
queries are required on average to find m-way collision for any constant m.

While it can be provably shown for random functions that finding m-way collisions becomes
exponentially unlikely in m (the probability of finding m-way collisions is θ(T m/Nm−1)),
same cannot be said to hold true for iterated hash function constructions such as Merkle-
Damgård. In fact Joux in [25], showed an attack that requires just log m ·

√
N queries in

expectation to find m-way collision in Merkle-Damgård based hashing algorithms. Note that
this means that the number of queries required to find m-way collisions in Merkle-Damgård
based hashing algorithms increases by just a multiplicative factor of log m with m (unlike
for random functions).

Here we note that Joux’s result does not take into account two things: 1) What if there is
a restriction on the length of permitted collisions? 2) What if adversaries allowed to perform
pre-computation or learn some auxiliary information about the hash function? To the best
of our knowledge, our work is the first to investigate on both of these fronts simultaneously.

From our investigation of the problem with pre-computation, we learn that finding m-way
collisions in MD based hash functions do not get harder in the Auxiliary input random oracle
(AI-RO) model as far as there is no restriction on the length of m-way collisions found. But
what about when there is a restriction on the length of the m-way collisions found with
pre-computation? The biggest question this work investigates is about the hardness of finding
“short” m-way collisions. In fact, for some restricted parameter ranges we manage to show
that any pre-computing adversary’s advantage provably takes a linear hit as m grows larger.

It is worth-noting that m-way collision finding is somewhat related to the fundamental
m-distinctness problem. The difference is that our problem studies collisions on the same
salt whereas m-distinctness applies even when there is an m-way collision with different
salts. Nevertheless both the problems are looking for m-way collisions. In fact, solving
m-distinctness is a trivial problem in the AI-RO model as long as the advice σ is Ω(m log N)
bits long. This is because A1 can simply find the m-way collision on the hash function and
store it as advice for A2 to win certainly. Thus, it is important that A2 gets a random salt as
challenge and the outputted m messages should collide with this salt under the hash function
for A to win.

1.1 Our Contributions

1.1.1 Our Results

First, we summarize our results for m-way collision-finding in table 1. As stated before, let
S denote the size of pre-computed information in bits, T be the number of the queries made
to oracle implementing a random function h in [N]× [M]→ [N] and B be the number of
blocks accepted in the multi-collisions.

ITC 2024

9:4 Time-Space Tradeoffs for Finding Multi-Collisions in MD

Table 1 Asymptotic security bounds on the security of finding B-block m-way collisions in
Merkle-Dam̊gard Hash Functions constructed from a random function h : [N]× [M] 7→ [N] against
(S, T)-algorithms. The attacks assume M is “sufficiently” larger than N for the required collisions
to exist in h. For simplicity, logarithmic terms and constant factors are omitted.

B Best attacks Security bounds

B = 1 S
mN

+ (T/m)m

Nm−1 [Thm 10] S
mN

+ (2T/m)m

Nm−1 [Thm 10]

B = 2 ST
mN

+ (T/m)m

Nm−1 [Thm 8] ST
mN

+ (eT/m)m

Nm−1 [Thm 11]

B < log m ST

m1/(B−1)N
+ (T/m)m

Nm−1 [Thm 8] ST B
N
·max{1, ST 2

N
}+ T 2

N
[3]

[log m, 2 log m) ST
N

+
(

T 2

N log2 m

)log m

[Thm 8] ST B
N
·max{1, ST 2

N
}+ T 2

N
[3]

[2 log m, T] ST B
N

+
(

T 2

N log2 m

)log m

[Thm 8] ST B
N
·max{1, ST 2

N
}+ T 2

N
[3]

Unbounded ST 2

N
[Thm 7] ST 2

N
[11]

We elaborate our results next.

1. For unbounded B (or B ≥ T), a reduction to the collision-finding problem upper bounds
the advantage to Õ(ST 2/N) using a result from [12]. Our interesting finding is a
matching attack based on the attacks of Joux in [25] and Coretti et al. in [12].
Finding an attack that matches this trivial security bound up to poly-log factors is
surprising because this attack shows that finding m-way collision in the AI model requires
about the same effort for any m ≥ 2. To put this into more perspective, this attack shows
that an AI adversary can find an

√
N -way collision in about the same effort as required

for finding a 2-way collision.
2. For any other B, the best we manage to do is again bound the security via reduction to

the collision-finding problem as for unbounded B. The bounded-length version of our
attack from (1) matches the bound when B ≥ log m, SB ≥ T and ST 2 ≤ N .
For B < log m, the best attack we can find has a gap of a factor of m1/(B−1). To elaborate,
we give attack that achieves:

advantage Ω̃
(

ST
m1/(B−1)N

)
for any B > 1 when M > (m1/(B−1)−1) ·N and m = O(N c)

for some constant c.
We restrict to M > (m1/(B−1)−1) ·N , so that an m1/(B−1)-way collision is guaranteed
to exist on every salt in [N] under h by the pigeonhole principle. However, M >

(m1/(B−1)− 1) ·N is not a necessary condition for such collisions to exist. It is the case
that our attack succeeds with advantage Ω̃

(
ST

m1/(B−1)N

)
when m1/(B−1)-way collisions

exist on every salt in [N].
advantage Ω̃

(
ST B

N

)
when B ≥ (d + 1) log m and Md > N for some d ≥ 1.

Let’s first understand this for d = 1. It means we restrict to M > N but again this
is not a necessary condition. Having 2-way collisions on every salt is sufficient for
our attack to achieve Ω̃

(
ST B

N

)
advantage. To get rid of the M > N requirement, we

can set d to be the smallest value such that Md > N and replace h with hd. (Hence,
B ≥ (d + 1) log m.) This is so that the offline adversary will be able to find 2-way
collisions on every salt under hd by the pigeonhole principle. Note that the smallest d

which satisfies this requirement will be at most log N + 1 for any M ≥ 2.

Akshima 9:5

3. For B = 1, we show that advantage for any (S, T)-AI adversary is bounded by
Õ

(
S

mN + T m

Nm−1

)
. Note that this bound shows a loss of factor of m in advantage when

S/mN is the dominating term. The trivial attack stated in section 5 matches this bound.
The proof for this result is via generalizing a technique used in [16], namely “global”
compression.

4. Our result for B = 2 is the most important contribution of this work in terms of techniques
used. We show that no (S, T)-AI adversary can achieve better advantage than Õ

(
ST
mN

)
.

This bound again shows a loss of factor of m in advantage and matches our attack from
(2).
Several prior works have used the relation between the advantage of solving a problem in
the AI model and another model, namely the multi-instance model (MI), so that they
analyze the MI-security and obtain bounds for the AI-security. However, we reduce the
problem to finding m-way collision in a variant of the “parallel” multi-instance model
(MI). It is the way we relate the security in the two models which is new and we believe
could be of independent interest.
Our results suggest that finding m-way collisions doesn’t get harder (as m increases) in

the AI-RO model if the collisions are allowed to be sufficiently long or m is really “small”
(for instance O(logc N) for some constant c because we ignore poly-log factors in our results).
From the practice standpoint, this could mean that if the constructors of applications want
to gain in complexity by reducing their security to larger collision finding, it is imperative to
make sure the relative size of the parameters N, m and B in their application actually makes
that plausible.

Discussion

As in several prior works [24, 1, 10, 19, 3], we also use that the security in the auxiliary input
RO model is closely related to the security in another model that is easier to analyze, namely
the Multi-instance (MI) model. How we relate these two models in this work is different
from the prior works. This allows our analysis of the Multi-instance model to be significantly
different and easier compared to the prior works.

We informally describe the “Parallel” MI model next and follow up with a high level idea
of our technique. We note that there is a “Sequential” variation of the MI model that has
been extensively used in several prior works but this work only uses the Parallel variation.
So whenever we refer to MI model in this paper, we mean the Parallel MI model.

Informally, an adversary in the MI model gets multiple instances of challenges and gets
to make bounded number of queries to the oracle for each challenge instance. The adversary
gets no advice and it is required to succeed on every challenge instance in order to succeed.
Specifically, our parameters in the MI model will be S, T where S will denote the number of
challenge instances given to the adversary (note the parameter S here corresponds to the size
the advice from AI model for optimal reduction) and T will denote the number of queries
the adversary can make for each instance. Note that the adversary will get to make a total
of ST queries.

Our high level approach would be to identify all the types of 2-block m-way collisions.
For 2-block m-way collision finding, there are several types of collisions which an adversary
could find in order to win. We depict the types in fig. 4. (Note that an adversary could find
a collision that is a mix of these types but there will exist an (c ·m)-way collision of one
type where c is a constant.) For a straight-forward AI to MI security reduction used in prior
works, we need to analyze adversaries that could find any one of these five types of m-way
collisions for each of the S challenge salts in MI model and win. However, analyzing such
adversaries seems very hard.

ITC 2024

9:6 Time-Space Tradeoffs for Finding Multi-Collisions in MD

We will relate the AI-security to the MI-security for each of these type of collisions. This
allows us to analyze adversary restricted to finding a certain type of collision for all the S

challenge instances in the MI model. This is the idea that makes the analysis in the MI model
possible. We would like to note here that we are able to do per collision type of relation of
AI-security to MI-security because our analysis in the MI model is insensitive to the order in
which the blocks of colliding messages are found. For full details refer to section 6.

1.2 Related Works
We would like to first note that time-space lower bounds have been studied for several
cryptographic primitives including collision resistance. Some other primitives are function
inversion, discrete log, one-way functions, pseudo-random generators. Refer [11, 15, 9, 14,
13, 22, 21] for further details.

Here we will focus on the prior works for collision resistance in the auxiliary input model.
As far as we know, all the prior works have focused on time-space trade-offs for 2-way
collisions. Ours is the first work that studies the more general primitive, m-way collisions in
hash functions.

Before discussing the prior works, we recall our notations. The adversary in the AI model
works in two stages. The output of the first (offline) stage adversary is bounded length advice
σ. We will denote this length by S-bit, i.e., |σ| = S. The adversary in the second (online)
stage makes bounded number of queries to the oracle, denoted by T . The adversary could
be required to output collisions that have bounded length. We will denote this bound on the
length by B.

Dodis et al. in [16] were the first to study 2-way collision-resistance in AI-RO model.
Dodis et al. studied it for random functions and proved the security bound of θ̃(S/N +T 2/N).
They presented an attack and proved the matching security bound via “global” compression.
To elaborate further, the authors showed that any pre-computing adversary that finds
collisions on “too many” salts can be used to compress the random function. Since random
functions cannot be compressed, this can be used to bound the size of the set of winning
salts for any adversary. Our proof of security bound for 1-block m-way collisions is based on
this technique of Dodis et al..

Coretti et al. in [12] were the first to study (2-way) collision-resistance for Merkle-Damgård
based hash function in the AI-RO model. Coretti et al. proved a bound of O(ST 2/N) on
finding collisions when there is no restriction on the length of the collisions. Coretti et
al. reduced the security of collision finding in the AI-RO model to another model, namely
Bit-fixing random oracle (BF-RO) model which was inspired by the work of Unruh [30]. The
matching attack presented in [12] was inspired by the Hellman’s attack presented in the
seminal work [23] and found collisions that could be order of T blocks long.

The follow-up work of Akshima et al. [1] realized that when accepted collisions were
restricted to B-blocks in length, the best attack they could find achieved an advantage of
Ω(STB/N) and they conjectured it to be the optimal attack. However, Akshima et al. could
prove the optimality of their attack only for a restricted class of pre-computing adversaries
and not any pre-computing adversary. For any pre-computing adversary, they could show
their attack to be optimal only when B = 2. The proof in [1] reduced to Sequential multi-
instance game and proved the required bound via compression. In addition, Akshima et al.
presented an attack that showed it was impossible to achieve the desired bound (bound that
would give optimal bound in AI-RO model) in the parallel multi-instance game, effectively
proving a gap between the two versions of the multi-instance game for collision-finding.

Akshima 9:7

The follow-up work of Ghoshal and Komargodski [19] proved the conjecture in [1] for
any constant B. Ghoshal et al. used similar techniques to those in [1] together with their
observation that it is “unlikely” to find ≥ log N -way collision in a random function to obtain
better results.

Inspired by the idea of [10] to analyze the sequential multi-instance game stage-wise instead
of simultaneously analyzing all the S stages, Akshima et al. in [3] proved the conjecture of [1]
for any B ∈ [2, T) when ST 2 ≤ N . They proved a bound of STB/N ·max{1, ST 2/N}. Our
bounds for “long” m-way collisions is based on this result. Our attack for B ≥ log m blocks
long m-way collision, as in [3], matches the bound (up to poly-log factors) when ST 2 ≤ N .

Freitag et al. in [17] studied 2-way collision-finding for Sponge based hash functions in
the AI random permutation model. They presented an attack for B = 1 which uses inverse
queries of permutation to beat the trivial attack for some parameter ranges. They also prove
loose security bounds for B = 1 and B = 2 block collision finding. Their bound for B = 1
was improved in the follow-up work [2]. In [2], Akshima et al. also showed that relation
between AI security and multi-instance security cannot be used to improve the security
bounds any further for Sponge based constructions.

A recent work [18] by Freitag et al. uses Merkle trees to get a provably improved
hash function construction that gives optimal collision resistance against adversaries with
pre-computation.

1.3 Open Problems

1. An obvious open question is proving a tighter security bound on B-block m-way collision
finding for B < log m or alternatively finding a better attack. We conjecture that the
attack we have presented in this work for that parameter range is optimal.

2. We are aware of few works that have studied multi-collisions in sponge constructions
without pre-processing. In the famous work [6], Bertoni et al. presented the sponge
construction and briefly talked about realizing multi-collisions in sponges. Another work
[4] from 2013 by AlAhmad, Alshaikhli and Nandi formally studied Joux’s attack for
sponges.
As far as we are aware there is no work on security bounds of multi-collision resistance
with pre-processing for Sponge constructions. As Sponge constructions use a permutation
instead of a function, our lower bounds do not extend trivially to Sponge (however, our
attacks do) and it is an interesting problem to consider for future work.

2 Preliminaries

2.1 Notation

For non-negative integers N, k, [N] := {1, . . . , N} and
([N]

k

)
denotes the set of all k-sized

subsets of [N]. For non-negative integers a, b such that a < b, (a, b) is the set of values
between a and b excluding a and b themselves, i.e., (a, b) := {a + 1, a + 2, . . . , b− 1}. For a
set X, x←$ X denotes x is a uniform random variable on X. X+ denotes a list of one or
more elements from X.

O, Ω and Θ are the standard asymptotic notations. The asymptotic notations with˜, e.g.
Õ, ignore the poly-logarithmic terms.

ITC 2024

9:8 Time-Space Tradeoffs for Finding Multi-Collisions in MD

2.2 Merkle Damgård Hash Function
A cryptographic hash function is a function that maps inputs of varied length to a fixed
length output. Merkle Damgård (MD) is one of the popular classical construction for hash
functions. It uses fixed length compression functions. MD5, SHA1, SHA2 and many more
standard hashing algorithms are based on this construction.

In this work, we study an abstraction of the MD construction that takes a salt and
an arbitrary length message as input, breaks the message into blocks of fixed length and
iteratively applies the compression function, denoted h and modelled as a random oracle.
For the remaining of the paper, unless specified otherwise, we will always think of h as a
random function from [N]× [M]→ [N].

For any salt a ∈ [N] and message m ∈ [M], we define MDh(a, m) = h(a, m). For message
m ∈ [M]+ such that m can be written as m = m1|| . . . ||mℓ where m1, . . . , mℓ ∈ [M], we
define MDh on a and m as follows:

MDh(a, m) := h(MDh(a, m1|| . . . ||mℓ−1), mℓ).

We refer to m1, . . . , mℓ as blocks.

2.3 Definitions
Next, we formally define the m-way multi-collision resistance game for MD hash functions in
the auxiliary input (AI) RO model.

▶ Definition 1 ((S, T, m)-AI adversary). A pair of algorithms A = (A1,A2) is an (S, T, m)-AI
adversary against m-way collision resistance in MDh if
Ah

1 gets unbounded access to h (i.e., gets to make unbounded number of oracle queries to
h) and outputs S bits of advice σ;
Ah

2 takes σ and a salt a ∈ [N] as input, issues T queries to h and outputs msg1, . . . , msgm

where h is a function in [N]× [M]→ [N].

The m-way multi-collision resistance security game, namely m-AICR, is defined next.

▶ Definition 2. For a function h in [N]× [M]→ [N] and salt a ∈ [N], the game m-AICR is
defined in fig. 1.

Game m-AICRh,a(A)
σ ← Ah

1
msg1, . . . , msgm ← Ah

2 (σ, a)
If msgi ̸= msgj and MDh(a, msgi) = MDh(a, msgj) ∀i ̸= j ∈ [m]

Then Return 1
Else Return 0

Figure 1 Security game m-AICRh,a(A).

For an (S, T, m)-AI adversary A = (A1,A2), the advantage of A, denoted as
Advm-AICR(A), is defined as the probability of m-AICRh,a(A) returning 1 when h is a random
function in [N]× [M]→ [N] and a is a random salt in [N] drawn independently. We define
the (S, T, m)-AI multi-collision resistance, denoted by Advm-AICR(S, T, m), as the maximum
advantage taken over all (S, T, m)-AI adversaries in the game m-AICR.

Akshima 9:9

Game m-AICRB
h,a(A)

σ ← Ah
1

msg1, . . . , msgm ← Ah
2 (σ, a)

If any of msg1, . . . , msgm have more than B blocks
Then Return 0

If msgi ̸= msgj and MDh(a, msgi) = MDh(a, msgj) ∀i ̸= j ∈ [m]
Then Return 1

Else Return 0

Figure 2 Security game m-AICRB
h,a(A).

▶ Definition 3. For a function h in [N]× [M]→ [N] and salt a ∈ [N], the game m-AICRB

is defined in fig. 2.
For an (S, T, m)-AI adversary A = (A1,A2), the advantage of A in the game m-AICRB,

denoted as Advm-AICR
B (A), is defined as the probability of m-AICRB

h,a(A) returning 1 when h is
a random function in [N]×[M]→ [N] and a is a random salt in [N] drawn independently. We
define the (S, T, m)-AI B-length multi-collision resistance, denoted by Advm-AICR

B (S, T, m),
as the maximum advantage taken over all (S, T, m)-AI adversaries in the game m-AICRB.

2.4 Relevant Results

Compression arguments

▶ Lemma 4 ([15], restated in [16]). Say Enc is an encoding function in {0, 1}ℓ1 → {0, 1}ℓ2 and
Dec is a decoding function in {0, 1}ℓ2 → {0, 1}ℓ1 such that for any ℓ1-bit x, Dec(Enc(x)) = x

with probability at least ϵ, then ℓ2 ≥ ℓ1 − log(1/ϵ) holds true.

2-way collision results

▶ Lemma 5 (from [12]). For any S, T, N

Adv2-AICR(S, T, 2) = Õ

(
ST 2

N

)
.

▶ Lemma 6 (from [3]). For any S, T, N and 2 < B < T

Adv2-AICR
B (S, T, 2) = Õ

(
STB

N
·max

{
1,

ST 2

N

})
.

3 Unbounded Length Multi-Collisions

▶ Theorem 7. For any S, T, m, N and M such that m = O(N c) for some constant c,

Advm-AICR(S, T, m) = Θ̃
(

ST 2

N

)
.

Proof. Note that the security bound is unsurprising and follows from lemma 5 via trivial
reduction. We present the reduction in the full version of the paper for completeness.

ITC 2024

9:10 Time-Space Tradeoffs for Finding Multi-Collisions in MD

. . .

u blocks

z1
1

z2
1

zv
1

z1
2

z2
2

zv
2

z1
u

z2
u

zv
u

Figure 3 u-length chain of v-way collisions.

3.1 Matching Attack
Next we present the matching attack achieving the bound in the theorem. This multi-collision
finding attack is based on the attack of Joux in [25] and the pre-computing attacks given in
[23, 12, 1]. We assume M > N and thus 2-way collisions exist for every salt in [N] under
h (that is because even if M = N + 1 there should exist a 2-way collision on every salt by
pigeonhole principle). Note that it is possible to get rid of this assumption by replacing h

with hc for some c such that M c > N . Then our (S, T, m)- AI adversary A = (A1,A2) is as
follows:
1. In Offline stage, A1 picks s = S/(3 log m · log M) random salts, denoted {a1, . . . , as} and

iteratively computes ai
j = h(ai−1

j , 0) for i ∈ [T/2] and j ∈ [s] to obtain, say {a′
1, . . . , a′

s}
set of salts. Then for each of the salt a′

i in this set, A1 finds a (log m)-length chain of
2-way collisions (refer fig. 3 for a pictorial depiction of u-length chain of v-way collisions)
and store these along with a′

i as advice.
2. In Online stage, A2 takes the advice output by A1 and random salt a and iteratively

queries h(∗, 0) up to T times. If output of any of these queries is some a′ ∈ {a′
1, . . . , a′

s},
then A2 succeeds in outputting an m-way collision.

Let G be the subset of salts that are output of some h(∗, 0) query made in step 1 (Offline
stage). We can show that E[|G|] = Ω̃(ST) in exactly the same manner as in lemma 14 of [12].

Then,

Advm-AICR(A) = Ω̃
(

ST 2

N

)
.

using that the adversary wins if output of any of its first T/2 queries in the online stage is in
G and E[|G|] = Ω̃(ST). ◀

4 B-Block Multi-Collisions

▶ Theorem 8. For any S, T, m, B, N and Msuch that m = O(N c) for some constant c and
B > 1,

Advm-AICR
B (S, T, m) = Ω̃

(
ST

m1/(B−1)N

)
.

when M > (m1/(B−1) − 1) ·N and

Advm-AICR
B (S, T, m) = Ω̃

(
STB

N

)
when B ≥ (d + 1) log m and Md > N for the some d ≥ 1.

Akshima 9:11

Proof. We give an attack that achieves the bound in the theorem. In the attack and its
analysis we assume d = 1 for simplicity. However, it is straightforward to extend it for
other d.

We also assume m = O(N c) for some constant c. Then our proposed (S, T, m)-AI
adversary A = (A1,A2) is a variation of our attack proposed in the proof of theorem 7. Refer
to Appendix A for more details. ◀

▶ Theorem 9. For any S, T, m, N and M

Advm-AICR
B (S, T, m) = Õ

(
max

{
1,

ST 2

N

}
· STB

N
+ T 2

N

)
.

Proof. The proof of the theorem follows from the reduction of 2-way collision finding to
m-way collision finding and lemma 6. ◀

Note that there is a gap between the best known attack and the bounds proved in Thm.
9 for several parameter ranges. In the following sections, we prove optimal security bounds
for some of these parameter ranges, specifically B = 1 and B = 2 block m-way collisions.

5 1-Block Multi-Collisions

▶ Theorem 10. For any S, T, m, N, M and B = 1,

Advm-AICR
B (S, T, m) = Θ̃

(
S

mN
+ (T/m)m

Nm−1

)
.

We refer the readers to Appendix B for the proof.

6 2-Block Multi-Collisions

▶ Theorem 11. For any S, T, m, N, M and B = 2 such that m ≤ T ,

Advm-AICR
B (S, T, m) = Õ

(
ST

mN
+ (eT/m)m

Nm−1

)
.

Proof. Let’s fix an (S, T, m)-AI adversary A. Next, we identify all the types of 2-block
m-way collisions. See fig. 4 for a pictorial depiction of the types. Note that collision type 5
in fig. 4e can be thought of as a generalization of collision types in fig. 4cand fig. 4d but we
treat them separately for simplicity.

Moreover it is possible that an adversary finds an m-way collision which is a mix of two
types of collisions given in fig. 4. For some ℓ in (0, m), consider an m-way collision on salt a

that comprises of msg1, . . . , msgℓ, (msg0
ℓ+1, msg1

ℓ+1), . . . ,

(msg0
m, msg1

m) where for every i ∈ [ℓ], h(a, msgi) = a′ and for every i ∈ [m] \ [ℓ],
h(h(a, msg0

i), msg1
i) = a′. Such an m-way collision can be thought of as ℓ-way collision

of type 1 and (m− ℓ)-way collision of type 3. Note that any m-way collision which is a mix
of two types of collisions contains an m′-way pure collision (i.e., collision of a unique type)
such that m′ ≥ m/2. Thus, we can reduce bounding the security of such a (mixed) m-way
collision-finding adversary to bounding security of an (m/2)-way (pure) collision finding
adversary (adding a multiplicative factor of 2 to our bound for pure collision-finding).

▷ Claim 12. Any m-way collision contains an (m/2)-way collision of exactly one of the types
given in fig. 4.

ITC 2024

9:12 Time-Space Tradeoffs for Finding Multi-Collisions in MD

m-way

(a) Type 1

m-way

(b) Type 2

m-sized
claw

(c) Type 3

m/x-wayx-way

(d) Type 4

··
·

· ·
·

··
·

· ·
·

δ1-way γ1-way

(e) Type 5

Figure 4 Depiction of types of 2-block m-way collisions using function graph of h. The vertices
denote the salt (in [N]) and the arrows correspond to a value in [M].

Proof. For an m-way 2-block collision on an arbitrary salt a, the colliding messages can be
denoted by (msg0

i , msg1
i)m

i=1 such that msg0
i ∈ [M] and msg1

i ∈ [M] ∪ {⊥} where msg1
i = ⊥

denotes that the colliding message is just 1-block, msg0
i . Let’s denote the output salt on

which the messages collide by a′, i.e., h(h(a, msg0
i), msg1

i) = a′ for all i ∈ [m].
One possibility is that for all i ∈ [m], msg1

i = ⊥. Then msg0
1, . . . , msg0

m will have to be
distinct and satisfy h(a, msg0

i) = a′ for every i. This is type 1 collision shown in fig. 4a.
Other possibility is that msg1

i ̸= ⊥ for all i ∈ [m]. Then exactly one of the following will
hold:

msg0
1 = · · · = msg0

m, then msg1
1, . . . , msg1

m will have to be distinct and the messages will
form type 2 collision shown in fig. 4b.
msg0

1, . . . , msg0
m are distinct and h(a, msg0

1), . . . , h(a, msg0
m) are distinct, then the messages

will form type 3 collision shown in fig. 4c.

Akshima 9:13

msg0
1, . . . , msg0

m are neither all equal nor all distinct but h(a, msg0
1) = · · · = h(a, msg0

m),
then the colliding messages will form collision of types 4 shown in fig. 4d.
msg0

1, . . . , msg0
m are not all equal (may or may not be all distinct) and h(a, msg) for

m ∈ {msg0
1, . . . , msg0

m} are neither all equal nor all distinct, then the colliding messages
will form collision of types 5 shown in fig. 4e.

Finally, consider the possibility that msg1
i ̸= ⊥ for some (not all) i ∈ [m]. Then the

messages with msg1
i = ⊥ will be forming type 1 m′-way collision (where m′ is the number

of messages with msg1
i = ⊥) and the remaining messages will satisfy one of the cases listed

above for (m−m′)-way collision. Then there will exist m/2 colliding messages that satisfy
one of the types of collisions depicted in fig. 4. ◁

Let Et be the event that A wins game m-AICR2 by outputting (m/2)-way collision of
type t in fig. 4. Then

Advm-AICR
2 (A) ≤

5∑
t=1

Pr
[
m-AICR2

h,a(A) = 1 ∧ Et

]
Next, we formally define multi-collision resistance game for MD hash functions in the

Multi-instance model. We first define the adversary in the model.

▶ Definition 13 ((S, T, m)-MI adversary). An algorithm A is an (S, T, m)-MI adversary
against m-way collision resistance in MDh if
Ah receives S salts from [N] as input
Ah gets to make ST queries to h and outputs (msgi

1, . . . , msgi
m)S

i=1
where h is a function in [N]× [M]→ [N].

▶ Definition 14. For a function h in [N] × [M] → [N], fixed function S, and any t ∈ [5],
the game m-MICRS,t is defined in fig. 5.

Game m-MICRS,t
h (A)

Sample {a1, . . . , aS} ←$
[(

N
S

)]
(msgi

1, . . . , msgi
m)S

i=1 ← Ah({a1, . . . , aS})
If for any i ∈ [S] and any of msgi

1, . . . , msgi
m have more than 2 blocks

Then Return 0
If ∀i ∈ [S]: (msgi

1, . . . , msgi
m) is m-way collision of type t on ai

Then Return 1
Else Return 0

Figure 5 Security game m-MICRS,t
h (A).

For an (S, T, m)-MI adversary A, the advantage of A in the game m-MICRS,t, denoted
as Adv(m,t)-MICR(A), is defined as the probability of m-MICRS,t

h (A) returning 1 when h is
a random function in [N]× [M]→ [N]. We define the (S, T, m)-MI 2-block multi-collision
resistance, denoted by Adv(m,t)-MICR(S, T, m), as the maximum advantage taken over all
(S, T, m)-MI adversaries.

Next, we define a modified version of the m-MICR game, which we refer to as m-mod-MICR
game. It is different from m-MICR game only in the way the challenge salts are sampled.

▶ Definition 15. For a function h in [N] × [M] → [N], fixed function S, and any t ∈ [5],
the game m-mod-MICRS,t is defined in fig. 6.

The advantages in the game m-mod-MICR is defined similarly to that in the game m-MICR.

ITC 2024

9:14 Time-Space Tradeoffs for Finding Multi-Collisions in MD

Game m-mod-MICRS,t
h (A)

Sample ai ←$ [N] for i ∈ [S]
(msgi

1, . . . , msgi
m)S

i=1 ← Ah({a1, . . . , aS})
If for any i ∈ [S] and any of msgi

1, . . . , msgi
m have more than 2 blocks

Then Return 0
If ∀i ∈ [S]: (msgi

1, . . . , msgi
m) is m-way collision of type t on ai

Then Return 1
Else Return 0

Figure 6 Security game m-mod-MICRS,t
h (A).

Next, we present a lemma that establishes a relation between the advantage in the games
m-MICR and m-mod-MICR for a MI adversary.

▶ Lemma 16. For any S, T, u, m, N , any t ∈ [5] and δ such that δ ≥ S/N , if
Adv(m,t)-MICR(u, T) ≤ δu for every u ≤ S then Adv(m,t)-mod-MICR(S, T) ≤ (2δ)S.

Proof.

Adv(m,t)-mod-MICR(S, T)

≤
S∑

u=1
Pr[u distinct salts among S random salts] ∗ Adv(m,t)-MICR(u, T)

≤
S∑

u=1

(
S

u

)
·
(u

N

)S−u

· δu

≤
(

S

N
+ δ

)S

≤ (2δ)S

where the third inequality follows from the binomial theorem and the last inequality uses
that δ ≥ S/N . ◀

Now we present the theorem that allows bounding the security in the auxiliary input
model by analyzing the multi-instance game. This theorem is a variation of Theorem 4.1 in
[10] and Theorem 3 in [3].

▶ Theorem 17. For any S, T, m, t ∈ [5] and δ ∈ [0, 1], if Adv(m/2,t)-MICR(S, T, m/2) ≤ δS,
then Pr[m-AICR2

h,a(A) = 1 ∧ Et] ≤ 4δ.

Proof. It is given that Adv(m/2,t)-MICR(S, T, m/2) ≤ δS . Using lemma 16 we know that
Adv(m/2,t)-mod-MICR(S, T, m/2) ≤ (2δ)S when ST/mN ≥ S/N (in other words m ≤ T).

Say for some t ∈ [5] there exists an (S, T, m)-AI adversary A = (A1,A2) such that
Pr[m-AICR2

h,a(A) = 1 ∧ Et] > 4δ. Then we can give an (S, T, m)-MI adversary A′ that uses
A and achieves Adv(m/2,t)-mod-MICR(A′) > (2δ)S which is a contradiction. We describe A′

next.
1. A′ randomly chooses S-bit advice, σ.
2. For each element a in the input set of salts {a1, . . . , aS}, A′ runs A2(σ, a) to obtain m

messages that collide under MDh and outputs the m/2 messages that form (m/2)-way
collision of type t.

Akshima 9:15

Let δh := Pra[m-AICR2
h,a(A) = 1 ∧ Et] for a fixed choice of h. Then we know Eh[δh] =

Prh,a[m-AICR2
h,a(A)] > 4δ. Then

Adv(m/2,t)-MICR(S, T, m/2) = Pr
h,a1,...,aS

[(m/2)-MICRS,t
h (A) = 1]

= Eh

[
Pr

a1,...,aS

[(m/2)-MICRS,t
h (A) = 1]

]
= Eh

[
Pr

a1,...,aS

[(m/2)-MICRS,t
h (A) = 1|σ = Ah

1] · Pr[σ = Ah
1]

]
= Eh

[
δS

h ·
1

2S

]
≥ Eh[δh]S

2S
> (2δ)S ,

where the second to last inequality is by Jensen’s inequality. ◀

▶ Lemma 18. For any S, T, N, m and t ∈ [5] such that m = ω(log2 N) and m ≤ ST ,

Adv(m,t)-MICR(S, T, m) =
(

Õ

(
ST

mN
+ (eT/m)m

Nm−1

))S

.

It is worth noting that in the lemma we make an additional assumption that m =
ω(log2 N) which does not contradict with the statement of Thm 11. And that is because for
m = O(logc N), the theorem holds trivially from the reduction of 2-way collision finding to
m-way collision finding and the result of [1].

Now proof of theorem 11 follows from theorem 17 and lemma 18 as follows:

∀t ∈ [5] : Pr[m-AICR2
h,a(A) = 1 ∧ Et] ≤ 4 ·

(
Adv(m,t)-MICR(S, T, m)

)1/S

=⇒ Advm-AICR
2 (A) ≤

5∑
t=1

Pr[m-AICR2
h,a(A) = 1 ∧ Et]

≤ 4 ·
5∑

t=1
(Adv(m,t)-MICR(S, T, m))1/S

= Õ

(
ST

mN
+ (eT/m)m

Nm−1

)
To complete the proof of theorem 11, it only remains to prove lemma 18.

Proof. Let’s fix a (S, T, m)-MI adversary A and let h be a random oracle. We denote the
input of random S-sized set of salts by {a1, . . . , aS}. Let Xt

i be the indicator variable that
A wins on salt ai, i.e., A finds m-way collision of type t on salt ai for t ∈ [5].

To prove the lemma , we need to show for each t ∈ [5], that Adv(m,t)-MICR(S, T, m) =(
Õ

(
ST
mN + (eT/m)m

Nm−1

))S

.
Type 1 collisions are intuitively the easiest to analyze. Consider the adversary gets S

distinct salts, say {a1, . . . , aS}, as input and in order to win on ai for any i ∈ [S], A needs to
make m queries of the form (ai, ∗) such that all their outputs are equal under h. If A wins
on “too many” S-sized subsets of [N], we give an encoder that could use this A to compress
h but that is impossible. Hence, there exists no such A.

The encoding algorithm will be as follows:

ITC 2024

9:16 Time-Space Tradeoffs for Finding Multi-Collisions in MD

Store the Sm queries among the ST queries that are involved in collisions for the S

challenge salts in an unordered set, say W . This would require log
(

ST
Sm

)
bits.

For all i ∈ [S], delete the output of all the queries of the form (ai, ∗) except the first
occurring query in the unordered set W from the table of h. This saves S(m− 1) log N

bits.

Say Adv(m,1)-MICR(A) = ϵ. Then

log ϵ ≤ log
(

ST

Sm

)
− S(m− 1) log N

=⇒ ϵ ≤
(

ST
Sm

)
NS(m−1) ≤

[
(eT/m)m

Nm−1

]S

.

Analysis for collisions of type 2-5 are more evolved. We refer the readers to Appendix C
for a careful analysis of type 2 collisions. Analysis for remaining collision types are based on
similar ideas. However, due to lack of space we omit the complete analysis here. We refer
the readers to the full version of the paper. ◀

◀

References
1 Akshima, David Cash, Andrew Drucker, and Hoeteck Wee. Time-Space Tradeoffs and Short

Collisions in Merkle-Damgård Hash Functions. In Advances in Cryptology - CRYPTO 2020 -
40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA,
August 17-21, 2020, Proceedings, Part I, volume 12170 of Lecture Notes in Computer Science,
pages 157–186. Springer, 2020.

2 Akshima, Xiaoqi Duan, Siyao Guo, and Qipeng Liu. On Time-Space Lower Bounds for Finding
Short Collisions in Sponge Hash Functions. In Theory of Cryptography - 21st International
Conference, TCC 2023, Taipei, Taiwan, November 29 - December 2, 2023, Proceedings, Part
III, volume 14371 of Lecture Notes in Computer Science, pages 237–270. Springer, 2023.
doi:10.1007/978-3-031-48621-0_9.

3 Akshima, Siyao Guo, and Qipeng Liu. Time-Space Lower Bounds for Finding Collisions in
Merkle-Damgård Hash Functions. In Advances in Cryptology - CRYPTO 2022 - 42nd Annual
International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18,
2022, Proceedings, Part III, volume 13509 of Lecture Notes in Computer Science, pages 192–221.
Springer, 2022. doi:10.1007/978-3-031-15982-4_7.

4 Mohammad A AlAhmad, Imad Fakhri Alshaikhli, and Mridul Nandi. Joux Multicollisions
Attack in Sponge Construction. In Proceedings of the 6th International Conference on Security
of Information and Networks, pages 292–296, 2013.

5 Itay Berman, Akshay Degwekar, Ron D Rothblum, and Prashant Nalini Vasudevan. Multi-
Collision Resistant Hash Functions and their Applications. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 133–161. Springer, 2018.

6 Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge Functions. In
ECRYPT hash workshop, volume 2007, 2007.

7 Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-Collision Resistance: a Paradigm
for Keyless Hash Functions. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, pages 671–684, 2018.

8 Ernest Brickell, David Pointcheval, Serge Vaudenay, and Moti Yung. Design Validations
for Discrete Logarithm Based Signature Schemes. In International Workshop on Public Key
Cryptography, pages 276–292. Springer, 2000.

https://doi.org/10.1007/978-3-031-48621-0_9
https://doi.org/10.1007/978-3-031-15982-4_7

Akshima 9:17

9 Dror Chawin, Iftach Haitner, and Noam Mazor. Lower Bounds on the Time/Memory Tradeoff
of Function Inversion. In Theory of Cryptography - 18th International Conference, TCC 2020,
Durham, NC, USA, November 16-19, 2020, Proceedings, Part III, pages 305–334, 2020.

10 Kai-Min Chung, Siyao Guo, Qipeng Liu, and Luowen Qian. Tight Quantum Time-Space
Tradeoffs for Function Inversion. In 2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS), pages 673–684. IEEE, 2020.

11 Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. Non-Uniform Bounds in the Random-
Permutation, Ideal-Cipher, and Generic-Group Models. In Annual International Cryptology
Conference, pages 693–721. Springer, 2018.

12 Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John Steinberger. Random Oracles and
Non-Uniformity. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 227–258. Springer, 2018.

13 Henry Corrigan-Gibbs and Dmitry Kogan. The Discrete-Logarithm Problem with Prepro-
cessing. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 415–447. Springer, 2018.

14 Henry Corrigan-Gibbs and Dmitry Kogan. The Function-Inversion Problem: Barriers and
Opportunities. In TCC, 2019. Also, Crypto ePrint 2019/1046.

15 Anindya De, Luca Trevisan, and Madhur Tulsiani. Time Space Tradeoffs for Attacks against
One-Way Functions and PRGs. In Annual Cryptology Conference, pages 649–665. Springer,
2010.

16 Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing Cracks in the Concrete: Random
Oracles with Auxiliary Input, Revisited. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 473–495. Springer, 2017.

17 Cody Freitag, Ashrujit Ghoshal, and Ilan Komargodski. Time-Space Tradeoffs for Sponge
Hashing: Attacks and Limitations for Short Collisions. In Advances in Cryptology - CRYPTO
2022 - 42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA,
USA, August 15-18, 2022, Proceedings, Part III, volume 13509 of Lecture Notes in Computer
Science, pages 131–160. Springer, 2022. doi:10.1007/978-3-031-15982-4_5.

18 Cody Freitag, Ashrujit Ghoshal, and Ilan Komargodski. Optimal Security for Keyed Hash
Functions: Avoiding Time-Space Tradeoffs for Finding Collisions. In Carmit Hazay and Martijn
Stam, editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April
23-27, 2023, Proceedings, Part IV, volume 14007 of Lecture Notes in Computer Science, pages
440–469. Springer, 2023. doi:10.1007/978-3-031-30634-1_15.

19 Ashrujit Ghoshal and Ilan Komargodski. On Time-Space Tradeoffs for Bounded-Length
Collisions in Merkle-Damgård Hashing. In Advances in Cryptology - CRYPTO 2022 - 42nd
Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August
15-18, 2022, Proceedings, Part III, volume 13509 of Lecture Notes in Computer Science, pages
161–191. Springer, 2022. doi:10.1007/978-3-031-15982-4_6.

20 Marc Girault and Jacques Stern. On the Length of Cryptographic Hash-Values Used in Iden-
tification Schemes. In Annual International Cryptology Conference, pages 202–215. Springer,
1994.

21 Alexander Golovnev, Siyao Guo, Spencer Peters, and Noah Stephens-Davidowitz. Revisiting
Time-Space Tradeoffs for Function Inversion. In Helena Handschuh and Anna Lysyanskaya,
editors, Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology
Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings,
Part II, volume 14082 of Lecture Notes in Computer Science, pages 453–481. Springer, 2023.
doi:10.1007/978-3-031-38545-2_15.

22 Nick Gravin, Siyao Guo, Tsz Chiu Kwok, and Pinyan Lu. Concentration Bounds for Almost
k-wise Independence with Applications to Non-Uniform Security. In Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2404–2423. SIAM, 2021.

ITC 2024

https://doi.org/10.1007/978-3-031-15982-4_5
https://doi.org/10.1007/978-3-031-30634-1_15
https://doi.org/10.1007/978-3-031-15982-4_6
https://doi.org/10.1007/978-3-031-38545-2_15

9:18 Time-Space Tradeoffs for Finding Multi-Collisions in MD

23 M. Hellman. A Cryptanalytic Time-memory Trade-off. IEEE Trans. Inf. Theor., 26(4):401–406,
July 1980.

24 Russell Impagliazzo and Valentine Kabanets. Constructive Proofs of Concentration Bounds. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
13th International Workshop, APPROX 2010, and 14th International Workshop, RANDOM
2010, Barcelona, Spain, September 1-3, 2010. Proceedings, pages 617–631, 2010.

25 Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded Construc-
tions. In Annual International Cryptology Conference, pages 306–316. Springer, 2004.

26 Ilan Komargodski, Moni Naor, and Eylon Yogev. Collision Resistant Hashing for Paranoids:
Dealing with Multiple Collisions. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 162–194. Springer, 2018.

27 Qipeng Liu and Mark Zhandry. On Finding Quantum Multi-Collisions. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 189–218.
Springer, 2019.

28 Ronald L Rivest and Adi Shamir. PayWord and MicroMint: Two Simple Micropayment
Schemes. In International workshop on security protocols, pages 69–87. Springer, 1996.

29 Ron D. Rothblum and Prashant Nalini Vasudevan. Collision-Resistance from Multi-Collision-
Resistance. In Advances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology
Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part
III, volume 13509 of Lecture Notes in Computer Science, pages 503–529. Springer, 2022.
doi:10.1007/978-3-031-15982-4_17.

30 Dominique Unruh. Random Oracles and Auxiliary Input. In Annual International Cryptology
Conference, pages 205–223. Springer, 2007.

A Bounded Length Multi-Collision Attack

The attack is as follows:
1. In the Offline stage,

a. A1 randomly picks s salts, denoted {a0
1, . . . , a0

s}. Let’s define x := max{0, ⌊(B −
log2 m)/2⌋} and y := min{log2 m, B − 1}. Then for every i ∈ [s] and j ∈ [x], A1 first
iteratively computes aj

i = h(aj−1
i , 0) to obtain the set {ax

1 , . . . , ax
s}.

b. Next, A1 finds a y-length chain of m1/y-way collision (recall fig. 3) on ax
i for every

i ∈ [s].
c. Finally, A1 stores the tuple of ax

i and the corresponding y-length chain for every i ∈ [s]
as advice.

2. In the Online stage, A2 is given the advice from A1 and a random salt, denoted a, as
challenge. A2 runs the following steps for k ∈ [⌊T/2x⌋] when x is non-zero and k ∈ [T]
when x = 0:

Set b = h(a, k) and counter = 1
While a, b ̸∈ {ax

1 , . . . , ax
s} and counter < 2x:

query and set b = h(b, 0)
increment counter by 1.

Say b = ax
ℓ for some ℓ, then A2 can learn the y-length chain of m1/y-way collision on

ax
ℓ from the advice and output m colliding messages consisting of k concatenated with

(counter − 1) 0’s followed by m different combinations in the chain.

The analysis of this attack can be found in the full version of the paper.

https://doi.org/10.1007/978-3-031-15982-4_17

Akshima 9:19

B Proof of Theorem 10

We first present the attack for finding 1-block m-way collisions.
Note that the following trivial adversary, say A = (A1,A2), achieves Ω̃

(
S

mN + (T/m)m

Nm−1

)
advantage.
1. In the Offline stage, A1 stores (1-block) m-way collisions for Ω̃(S/m) salts as part of the

advice.
2. In the Online stage, if the input random salt, say a, is one of the salts for which the

advice contains a m-way collision, adversary returns the corresponding m-way collision.
Else the adversary tries to find m-way collision using it’s T queries to the oracle h.

Next we prove the security bound from the theorem. We prove it via “global” compression
which is based on a result in [16].

Fix an (S, T, m)-AI adversary A = (A1,A2) having advantage ϵ. Let σ denote the S-bit
advice output by A1 and let G be the set of salts in [N] on which A2 succeeds in finding
m-way collision when given σ and makes T queries to h.

We want to show that the set G cannot be large for any (S, T, m)-AI adversary. In other
words, it is impossible for any (S, T, m)-AI adversary to succeed in finding m-way collisions
on “too” many salts, irrespective of what information is contained in the S-bit advice σ. The
idea is to give an encoding algorithm that uses such an adversary that succeeds on a “lot” of
salts to compress h, which should be impossible as h is a random function.

Note that since A2 finds m-way collisions on each of the salts in G, for every a ∈ G there
should exist m queries of the type (a, ∗) ∈ [N]× [M] such that outputs of all the m queries
are same under h. Our encoding algorithm uses this repetition in outputs to compress as
follows:
1. Store the advice σ (requires S-bits)
2. Store the size of the set G (in other words, the number of elements in G), denoted |G|

(requires log N bits)
3. Store the set G (requires log

(
N
|G|

)
bits)

4. Store the unordered set of |G| ·m queries corresponding to the m-way collisions for each
salt in G. Let’s denote this set by X . Note that X is a subset of the |G| · T queries made
by A2 using the assumption that A2 has to query it’s outputs. Thus, storing X requires
log

(|G|T
|G|m

)
bits.

5. Delete the outputs of G|(m− 1) queries in X from table of h. (Note that the table for
h is stored as follows: table contains output of h on the queries made by A2 on the
set G followed by the output of h on the remaining entries of queries in [N] × [M] in
lexicographic order.) This saves |G|(m− 1) · log N bits.

Via the compression argument of De et al. [15] (stated as lemma 4 in this paper), the
following holds:

S + log N + log
(

N

|G|

)
+ log

(
|G|T
|G|m

)
+ NM log N − |G|(m− 1) · log N ≥ NM log N

=⇒ S + log N + |G| log
(

N

|G|

)
+ |G|m log

(
|G|T
|G|m

)
≥ |G|(m− 1) log N

=⇒ S + log N ≥ |G| log
(

Nm−1|G|
N(T/m)m

)

ITC 2024

9:20 Time-Space Tradeoffs for Finding Multi-Collisions in MD

We take expectation on both sides of the above equation and use convexity of the function
x log x along with E[|G|] = ϵN as follows:

E[S + log N] ≥ E
[
|G| log

(
Nm−1|G|

N(T/m)m

)]
=⇒ S + log N ≥ E[|G|] log

(
Nm−1E[|G|]
N(T/m)m

)
≥ ϵN · log

(
Nm−1 · ϵN
N(T/m)m

)
≥ ϵN · log

(
Nm−1 · ϵ
(T/m)m

)
Consider the following two cases:

1. If
Nm−1ϵ

(T/m)m
≤ 2m

This simply implies

ϵ ≤ (2T/m)m

Nm−1

2. Otherwise
Nm−1ϵ

(T/m)m
> 2m

which implies

S + log N ≥ ϵN log 2m =⇒ ϵ ≤ S + log N

mN

This completes the proof for the security bound.

C Bounding MI-security for Type 2 collisions

The analysis would be trivial and same as for t = 1 if m-way collision for each salt used
distinct queries. However, queries can be reused among collisions for different salts. Refer to
fig. 4b for a visual depiction.

Say x salts use the same m-way collision structure. Refer fig. 7 for a visual depiction.
Say the adversary finds y such structures where x = δi for the ith structure.

m-wayx-way

Figure 7 Depiction of x salts “sharing” a m-way 1-block collision.

Then it holds that

δ1 + · · ·+ δy ≥ S

The encoding algorithm will be as follows:

Akshima 9:21

1. Store y which requires log S bits.
2. Store the subset of ST queries forming m-way collisions in an unordered fashion. From

the table of h, delete the entries corresponding to the queries in the set except the first
query. There will be y such m-sized sets.

3. Store the number of i ∈ [y] such that δi ≥ m which requires log S-bits.
4. For i ∈ [y]: if δi > m do the following

Store δi

Store the δi-sized set of queries that have the same output. From the table of h,
delete the entries corresponding to the queries in the set except the first query.

Say ϵ is the advantage. For decoding purposes, the encoder must store these sets of
collisions but also store the values of y, {δi|i ∈ [y], δi > m} and |{δi|i ∈ [y], δi > m}|. It holds
by the compression argument that

log ϵ ≤ log S + y log
(

ST

m

)
− y · (m− 1) log N + log S+

∑
i∈[y]:δi≥m

[
log S + log

(
ST

δi

)
− (δi − 1) log N

]
= log S +

∑
i∈[y]:δi<m

[
log

(
ST

m

)
− (m− 1) log N

]
+ log S+

∑
i∈[y]:δi≥m

[
log

(
ST

m

)
− (m− 1) log N + log S + log

(
ST

δi

)
− (δi − 1) log N

]

In the analysis, we consider the following cases:
1. x ≥ m

It would suffice to take into account the probability of x of the ST queries having the
same output, which is:(

ST
x

)
Nx−1 ≤

(
eST

xN

)x

·N ≤
(

2eST

xN

)x

· 1
2x
·N ≤

(
2eST

mN

)x

where the last inequality uses that 1
2x ≤ 1

2m ≤ N as x ≥ m ≥ log N .
2. x < m

Then the probability of an m-way collision is:

≤
(

ST
m

)
Nm−1 ≤

(
eST

mN

)m

·N ≤
(

2eST

mN

)m

· 1
2m
·N ≤

(
2eST

mN

)x

where the last inequality holds for m ≥ log N and 2eST/mN ≤ 1.

Hence, the probability of finding the structure where x salts share a m-way 1-block
collision such that we get type 2 collision on the x salts in the MI setting is at most
(2eST/mN)x irrespective of whether x < m or x ≥ m. This shows that in either case, we
can get the desired bound exponentially small in x.

Then, we know for each i such that δi < m,

log
(

ST

m

)
− (m− 1) log N ≤ log

(
2eST

mN

)δi

ITC 2024

9:22 Time-Space Tradeoffs for Finding Multi-Collisions in MD

and for each i such that δi ≥ m

log
(

ST

m

)
− (m− 1) log N + log S + log

(
ST

δi

)
− (δi − 1) log N

≤ log S + log
(

ST

δi

)
− (δi − 1) log N ≤ log

[
S ·

(
2eST

mN

)δi
]

using 2eST ≤ mN . Then,

=⇒ ϵ ≤ S2 ·

 ∏
i∈[y]:δi<m

(
2eST

mN

)δi

 ·
 ∏

i∈[y]:δi≥m

S ·
(

2eST

mN

)δi

≤ S2 ·

 ∏
i∈[y]:δi<m

(
2eST

mN

)δi

 ·
 ∏

i∈[y]:δi≥m

S · 1
2m
·
(

4eST

mN

)δi

≤ 2S ·

∏
i∈[y]

(
4eST

mN

)δi

= 2S ·
(

4eST

mN

)δ1+···+δy

≤ 2S ·
(

4eST

mN

)S

=
(

8eST

mN

)S

where the last inequality uses that δ1 + δ2 + δy >= S as these structures should give collisions
on S distinct salts.

Secure Multiparty Computation of Symmetric
Functions with Polylogarithmic Bottleneck
Complexity and Correlated Randomness
Reo Eriguchi #

National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract
Bottleneck complexity is an efficiency measure of secure multiparty computation (MPC) protocols
introduced to achieve load-balancing in large-scale networks, which is defined as the maximum
communication complexity required by any one player within the protocol execution. Towards the
goal of achieving low bottleneck complexity, prior works proposed MPC protocols for computing
symmetric functions in the correlated randomness model, where players are given input-independent
correlated randomness in advance. However, the previous protocols with polylogarithmic bottleneck
complexity in the number n of players require a large amount of correlated randomness that is
linear in n, which limits the per-party efficiency as receiving and storing correlated randomness
are the bottleneck for efficiency. In this work, we present for the first time MPC protocols for
symmetric functions such that bottleneck complexity and the amount of correlated randomness are
both polylogarithmic in n, assuming semi-honest adversaries colluding with at most n − o(n) players.
Furthermore, one of our protocols is even computationally efficient in that each player performs
only polylog(n) arithmetic operations while the computational complexity of the previous protocols
is O(n). Technically, our efficiency improvements come from novel protocols based on ramp secret
sharing to realize basic functionalities with low bottleneck complexity, which we believe may be of
interest beyond their applications to secure computation of symmetric functions.

2012 ACM Subject Classification Security and privacy → Information-theoretic techniques

Keywords and phrases Secure multiparty computation, Bottleneck complexity, Secret sharing

Digital Object Identifier 10.4230/LIPIcs.ITC.2024.10

Related Version Full Version: https://eprint.iacr.org/2024/1152

Funding Reo Eriguchi: This work was supported in part by JST CREST Grant Number MJCR22M1
and JST AIP Acceleration Research JPMJCR22U5.

Acknowledgements We thank Keitaro Hiwatashi for his helpful discussions and suggestions.

1 Introduction

Secure multiparty computation (MPC) [48] is a fundamental cryptographic primitive which
enables n players to jointly compute a function f(x1, . . . , xn) without revealing information
on their private inputs xi to adversaries corrupting at most t players. Due to many important
applications, the asymptotic and concrete optimization of MPC protocols has been the
subject of a large body of research. In this work, we consider the dishonest-majority setting,
where the majority of players are corrupted, i.e., t > n/2.

MPC in the correlated randomness model. A popular approach to designing MPC protocols
in the dishonest-majority setting is to employ correlated randomness. In this model, players
receive correlated randomness from a trusted dealer before inputs are known (the offline phase)
and then consume the randomness to perform input-dependent computation (the online
phase). It was shown in [1] that the correlated randomness allows us to construct information-
theoretically secure protocols in the dishonest-majority setting, while such protocols do not

© Reo Eriguchi;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal; Article No. 10; pp. 10:1–10:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eriguchi-reo@aist.go.jp
https://orcid.org/0000-0002-0019-6934
https://doi.org/10.4230/LIPIcs.ITC.2024.10
https://eprint.iacr.org/2024/1152
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 MPC with Polylogarithmic Bottleneck Complexity and Correlated Randomness

exist in the plain model. Subsequently, many optimizations have been proposed and several
of them are even implemented [6, 19, 37, 18, 8, 9]. Two primary efficiency metrics for MPC
in this model are the online communication cost and the amount of correlated randomness
received from a trusted dealer [13, 9]. This is because as opposed to local computation,
communication and storage costs are usually dominant in MPC protocols and minimizing
both costs simultaneously leads to fast and scalable protocols.

Bottleneck complexity. Traditionally, the cost of online communication has been measured
by the total amount of communication across all n players. On the other hand, for practical
applications such as peer-to-peer computations between lightweight devices, the per-party
cost is a more effective measure than the total cost. For example, several existing protocols
(e.g., [17, 14, 29, 22]) require one player to communicate different messages with every other
player. Then, while the total communication cost is possibly scalable, the player must bear
communication proportional to n and his cost quickly becomes prohibitive in large-scale MPC
involving many players. In this work, we focus on a more fine-grained efficiency measure
capturing the load-balancing aspect of protocols, called bottleneck complexity [10], which
is defined as the maximum communication required by any one player during the protocol
execution.

To fit large-scale networks, we aim at designing MPC protocols whose bottleneck com-
plexity scales polylogarithmically with n. Unfortunately, there is a negative result that we
cannot achieve sublinear bottleneck complexity for all functions even without any security
considerations [10]. Due to this result, a line of works [43, 39, 21] have studied the problem
of constructing protocols with low bottleneck complexity for specific classes of functions.
Above all, the class of symmetric functions, whose values are the same no matter the order of
n inputs, is one of the most fundamental functions including majority, counting, and parity
functions. Recently, the authors of [39, 21] constructed information-theoretic protocols for
symmetric functions with O(log n) bottleneck complexity1. However, a main drawback of
the protocols is that every player needs to receive a large amount of correlated randomness
that is linear in n per party. This means that no matter how much bottleneck complexity in
the online phase is improved, the protocols do not work efficiently as receiving and storing
correlated randomness is the bottleneck for efficiency. Motivated by the above considerations,
in this work, we ask:

Can we construct MPC protocols for symmetric functions keeping both bottleneck complexity
and the amount of correlated randomness polylogarithmic in n?

1.1 Our Results
In this work, we answer the above question affirmatively by presenting two different construc-
tions of MPC protocols for symmetric functions, assuming semi-honest adversaries colluding
with at most n− o(n) players. There is a trade-off between bottleneck complexity and the
amount of correlated randomness.

▶ Theorem 1 (Informal). For a parameter ℓ, there exists an information-theoretic MPC pro-
tocol for computing a symmetric function f : {0, 1}n → {0, 1} that has bottleneck complexity
O(log n), per-party correlated randomness of size O(ℓ log n), and tolerates up to n−Θ(n/ℓ)
semi-honest corruptions.

1 The authors of [39] considered a related class of functions called abelian programs. Their protocol can
also compute symmetric functions by setting the underlying abelian group as the ring of integers modulo
n + 1. See Remark 6 for more details.

R. Eriguchi 10:3

Table 1 Information-theoretic MPC protocols for computing symmetric functions with sublinear
bottleneck complexity in the dishonest-majority setting.

Reference BC CR Corruption

[39, 21] O(log n) O(n) n − 1

[21] O(
√

n) O(
√

n) n − 1

Ours (Corollary 8) O(log n) O((log n)2) n − o(n)

Ours (Corollary 15) O((log n)2) O(log n) n − o(n)

Ours (Corollary 9) O(log n) O(log n) (1 − ϵ)n
“BC” stands for bottleneck complexity and “CR” stands for the amount of correlated randomness per party.

ϵ is any constant with 0 < ϵ < 1/2.

▶ Theorem 2 (Informal). For a parameter ℓ, there exists an information-theoretic MPC pro-
tocol for computing a symmetric function f : {0, 1}n → {0, 1} that has bottleneck complexity
O(ℓ log n), per-party correlated randomness of size O(log n), and tolerates up to n−Θ(n/ℓ)
semi-honest corruptions.

A typical choice of the parameter ℓ is ℓ = Θ(log n). Theorem 1 then gives a protocol that
has bottleneck complexity O(log n) and correlated randomness of size O((log n)2). Theorem 2
gives a protocol that has bottleneck complexity O((log n)2) and correlated randomness of size
O(log n). Compared to the previous works, our protocols achieve for the first time polylog(n)
bottleneck complexity and correlated randomness simultaneously (see Table 1). Furthermore,
if we set ℓ ≈ 1/ϵ for a constant 0 < ϵ < 1/2, then both Theorems 1 and 2 give protocols such
that both the bottleneck complexity and the amount of correlated randomness are O(log n)
for a constant fraction of corrupted players (e.g., 99 percent of the parties are corrupted).
Although the corruption threshold t is lower than the maximum n− 1, our protocols are still
secure in the dishonest majority setting t > n/2. A more detailed comparison is shown in
Table 1.

Our first protocol even achieves polylog(n) computational complexity since the local
computation of each player involves only O(log n) arithmetic operations in a field of size O(n).
As a comparison, the previous protocols in [39, 21] have O(n) computational complexity
since every player needs to process vectors or matrices of size O(n).

Technically, we achieve polylogarithmic bottleneck complexity and correlated randomness
with the help of ramp secret sharing [42, 7, 47, 23] (also known as packed secret sharing), a
technique to distribute and operate on multiple secrets simultaneously only paying the cost
of a single secret. This tool was used to realize certain functionalities in several previous
works [14, 22], but they required every player to distribute fresh shares of their local secret,
which leads to inefficient protocols in terms of bottleneck complexity. Our technical novelty
is carefully designing correlated randomness to avoid such resharing processes and keep
polylog(n) bottleneck complexity. See Section 2 for a detailed overview of our techniques.

1.2 Related Work
Boyle et al. [10] constructed a generic compiler from any possibly insecure protocol to
a computationally secure protocol (without correlated randomness) preserving bottleneck
complexity up to a polynomial factor in a security parameter. However, their compiler
is based on fully homomorphic encryption, which can only be instantiated from a narrow
class of cryptographic assumptions [25, 46, 26], and the concrete efficiency leaves much to

ITC 2024

10:4 MPC with Polylogarithmic Bottleneck Complexity and Correlated Randomness

be desired. Orlandi, Ravi, and Scholl [43] constructed a protocol for symmetric functions
in the correlated randomness model assuming garbled circuits. However, in addition to
not achieving information-theoretic security, players need to receive a garbled circuit with
O(log n) input bits as correlated randomness. Since the minimum size of circuits computing
a worst-case function with m input bits is Ω(2m/m) [38], the correlated randomness of [43]
is Ω(λn/ log n) in the worst case, which is not polylogarithmic in n. There are maliciously
secure protocols with sublinear bottleneck complexity for general tasks [20] and specific
tasks [41, 24]. However, these protocols assume the strong honest-majority setting (t < n/3)
and/or only achieve Ω(

√
n) bottleneck complexity.

There is a rich line of works studying total communication complexity of MPC, e.g.,
[27, 4, 11, 44, 15, 35, 34, 17, 2, 16, 19, 5, 36, 12, 30, 31, 40, 29]. However, protocols in all of
the above works require full interaction among players, that is, each player may send different
messages to all the other players in each round of interaction. This feature necessarily results
in high bottleneck complexity Ω(n).

The authors of [33, 32] initiated the study of the communication complexity of MPC with
restricted interaction patterns. Halevi et al. [32] studied a chain-based interaction, in which
players interact over a simple directed path traversing all players. Protocols on a chain-based
interaction possibly achieve low bottleneck complexity since each player communicates with
at most two players. However, since the last player on the chain is allowed to evaluate
the function on every possible input of his choice, the constructions in [32] cannot achieve
the standard security of MPC, which requires that corrupted players learn nothing but the
output.

2 Technical Overview

In this section, we provide an overview of our techniques. More detailed descriptions and
security proofs will be given in the following sections.

2.1 Our First Protocol for Symmetric Functions
To begin with, we recall the protocol computing symmetric functions with O(log n) bottleneck
complexity in [39, 21]. Let h : {0, 1}n → {0, 1} be a symmetric function. Since the value
of h(x1, . . . , xn) depends only on the number of 1’s, which is equal to the sum

∑
i∈[n] xi,

there is the unique function f : {0, 1, . . . , n} → {0, 1} such that h(x1, . . . , xn) = f(
∑

i∈[n] xi).
Roughly speaking, the protocol in [39, 21] proceeds as follows: In the setup, players receive
an additive sharing of the truth-table Tr ∈ {0, 1}n+1 of f permuted with a random shift
r ∈ {0, 1, . . . , n}. Simultaneously, they also receive an additive sharing (ri)i∈[n] of the shift
r. In the online phase, players compute xi + ri, open y =

∑
i∈[n] xi + r, and then open the

y-th component of the permuted truth-table Tr, which is f(y − r) = h(x1, . . . , xn). In this
protocol, however, players need to receive additive shares of the (n+ 1)-dimensional vector
Tr, which results in correlated randomness of size O(n) per party.

Our starting point to reduce this large correlated randomness is using a ramp secret
sharing scheme to share the permuted truth-table Tr of f . Ramp secret sharing [42, 7, 47] is
a variant of secret sharing which can share a secret vector of dimension k keeping the share
size logarithmic in k and n. One may expect that a ramp secret sharing scheme can compress
the (n+1)-dimensional vector Tr into shares each of size logarithmic in n. However, this falls
short of achieving our goal since the efficiency of ramp secret sharing schemes comes at the
cost of decreasing a privacy threshold t to n−k. In our setting, this means that when sharing
the (n+ 1)-dimensional vector Tr, we need to set a privacy threshold t = n− (n+ 1) < 0,
which guarantees no privacy.

R. Eriguchi 10:5

To overcome this, we decompose the permuted truth-table Tr into ℓ vectors Tr =
(U(0),U(1), . . . ,U(ℓ−1)) each of dimension k = (n+ 1)/ℓ. We independently generate shares
of each vector U(j) using a ramp secret sharing scheme. Now, a privacy threshold is
t = n − (n + 1)/ℓ = n − o(n) instead of t = n − (n + 1). In the online phase, players
write y = x + r as y = σk + τ for some σ ∈ {0, 1, . . . , ℓ − 1} and τ ∈ {0, 1, . . . , k − 1},
which implies that the y-th component of Tr corresponds to the τ -th component of U(σ).
Then all players can together reconstruct the output f(y − r) = h(x1, . . . , xn) by opening
the τ -th component of U(σ). A typical choice of the parameter ℓ is ℓ = Θ(log n). Then a
privacy threshold is t = n−Θ(n/ log n) and correlated randomness for each player consists
of O(ℓ) = O(log n) shares. Since a ramp secret sharing scheme requires the underlying field
to contain n+ k = O(n) elements, the size of correlated randomness is O((log n)2) in bits.
Note that the bottleneck complexity is still O(log n) since players open only one share in the
online phase. On the other hand, if we set ℓ ≈ 1/ϵ for a constant 0 < ϵ < 1/2, then both
the bottleneck complexity and the amount of correlated randomness are O(log n) while the
number of corrupted players should be at most (1− ϵ)n.

2.2 Our Second Protocol for Symmetric Functions

Next, we show a protocol which reduces the amount of correlated randomness to O(log n)
bits at the cost of increasing bottleneck complexity to O((log n)2). Our starting point
is a balancing approach in [21] of expressing the truth-table of f : {0, 1, . . . , n} → {0, 1}
(induced by a symmetric function h) as a matrix Mf instead of an (n + 1)-dimensional
vector. More specifically, assume that there are two distinct primes ℓ and k such that
ℓk = n + 1, and fix the one-to-one correspondence ϕ between Zn+1 = {0, 1, . . . , n} and
Zℓ × Zk = {(σ, τ) ∈ Z2 : 0 ≤ σ < ℓ, 0 ≤ τ < k} induced by the Chinese remainder theorem.
Then there exists a matrix Mf ∈ {0, 1}ℓ×k such that the computation of f(

∑
i∈[n] xi) can

be expressed as the following inner product

f(
∑
i∈[n]

xi) = ⟨eσ,Mf · eτ ⟩, (1)

where (σ, τ) = ϕ(
∑

i∈[n] xi) and ej denotes the vector with a 1 in the j-th coordinate and
0’s elsewhere. The task is now reduced to secure computation of matrix-vector products of
size at most max{ℓ, k}, which balances bottleneck complexity and the amount of correlated
randomness. However, if we naively implement secure computation of the inner product (1)
by sharing secret vectors eσ and eτ in an element-wise way, then the best possible bottleneck
complexity is Ω(

√
n) since the primes ℓ, k should satisfy ℓk = Ω(n).

To achieve polylogarithmic bottleneck complexity, we use a ramp secret sharing scheme
and encode secret vectors eσ and eτ into small shares. This reduces the secure computation
of (1) to constructing protocols for the following functionalities:
Linear transformation. Players obtain ramp shares of an ℓ-dimensional vector M ·w from

shares of a k-dimensional secret vector w, where M is a public ℓ-by-k matrix.
Inner product. Players obtain ⟨v,w⟩ from ramp shares of two ℓ-dimensional vectors v and

w.
We note that a protocol for the first functionality was previously considered in [14] but it
requires every player to reshare their local shares, which results in Ω(n) bottleneck complexity.
Our technical novelty is carefully designing correlated randomness to avoid such resharing
processes and keep bottleneck complexity polylogarithmic in n.

ITC 2024

10:6 MPC with Polylogarithmic Bottleneck Complexity and Correlated Randomness

Linear transformation. Ramp secret sharing schemes considered in this paper have linear
reconstruction, that is, a secret vector can be expressed as a linear combination of all shares
over a field. This implies that given shares of w, every player can locally compute an
ℓ-dimensional vector si such that s1 + · · ·+ sn = M ·w. If players were allowed to reshare
all the si’s, they could securely obtain shares of M ·w. However, the resharing of all the
si’s results in high bottleneck complexity Ω(n). Instead, we distribute shares of a randomly
chosen ℓ-dimensional vector r in the offline phase. This enables players to locally compute
xi such that x1 + · · · + xn = M ·w + r and jointly reconstruct M ·w + r, which can be
done by communicating O(ℓ) field elements. Note that since r is unknown to any player,
M ·w + r is just a random vector. It can be done locally to obtain shares of M ·w + r from
it. Players then convert these shares into the ones of M ·w by subtracting the shares of r. In
our protocol, players communicate only O(ℓ) field elements in the online phase and receive a
constant number of field elements in the offline phase.

Inner product. Distributing Beaver triples [1] in the offline phase is a common technique
to compute the product vw from shares of two secrets v and w. Although this technique
successfully works when computing the product of scalars, a naive generalization does not
work if we compute the inner product of vectors shared by a ramp scheme. More specifically,
a common template using Beaver triples is distributing fresh shares of three secrets a, b and
c in the offline phase, where a and b are randomly chosen and c = ab. In the online phase,
players reconstruct v − a and w − b, and then compute shares of vw based on the equation

vw = (v − a)(w − b) + a(w − b) + b(v − a) + c.

This can be done locally since vw is a linear combination of secrets a, b and c with public
coefficients v−a and w− b. To generalize this template, we distribute shares of secret vectors
a, b and c, where a and b are random and c = a ∗ b, where ∗ denotes the element-wise
product. As above, players reconstruct v− a and w− b. Naturally, we extends the above
equation to vectors:

v ∗w = (v− a) ∗ (w− b) + a ∗ (w− b) + b ∗ (v− a) + c.

It is easy to compute shares of the first term since v− a and w− b are public. A technical
difficulty lies in computing shares of the second and third terms. When we only deal with
scalars, players can locally compute shares of a(w− b) from shares of a and a public constant
w − b just by multiplying the shares by the constant. However, when a secret vector a is
shared by a ramp scheme, multiplying shares of a by a constant d results in shares of a
vector d · a, whose entries are all multiplied by d. To obtain shares of a ∗ (w− b), we need
to multiply different entries of a secret vector a by different constants. For that, we rewrite
a ∗ (w− b) = diag(w− b) · a and apply the above protocol for linear transformation with
M = diag(w− b), where diag(w− b) denotes a diagonal matrix whose (i, i)-th entry is the
i-th entry of w− b. Finally, players obtain shares of v ∗w, jointly reconstruct it, and output
⟨1,v ∗w⟩ = ⟨v,w⟩, where 1 is the all-one vector. Since naively reconstructing v ∗w leaks
additional information, we let players add shares of a random secret s such that ⟨1, s⟩ = 0,
which does not affect correctness since ⟨1,v ∗ w + s⟩ = ⟨v,w⟩. In this protocol, players
communicate only O(ℓ) field elements in the online phase and receive a constant number of
field elements in the offline phase.

Putting it altogether. Similarly to our first protocol, in the offline phase, we distribute
additive shares of a random mask r ∈ {0, 1, . . . , n} and ramp shares of vectors eσr

and
eτr , where ϕ(r) = (σr, τr) ∈ Zℓ × Zk. In the online phase, players open a masked sum y =

R. Eriguchi 10:7

∑
i∈[n] xi−r and compute ϕ(y) = (σy, τy). Note that (σy +σr, τy +τr) = ϕ(

∑
i∈[n] xi) = (σ, τ).

Then, players obtain ramp shares of eσ by applying the protocol for linear transformation with
w = eσr

and M being the linear operation of shifting a vector by σy. Similarly, players run
the linear transformation protocol on ramp shares of eτr to obtain shares of eτ . Subsequently,
they apply the linear transformation protocol setting w = eτ and M = Mf to obtain ramp
shares of Mf · eτ . Finally, they run the inner product protocol on input eσ and Mf · eτ , and
obtain ⟨eσ,Mf ·eτ ⟩ = f(

∑
i∈[n] xi) = h(x1, . . . , xn). A typical choice of the primes ℓ and k is

ℓ = Θ(log n) and k = Θ(n/ log n). Since a ramp secret sharing scheme requires a field of size
O(n), a field element can be described in O(log n) bits. Therefore, the bottleneck complexity
of our final protocol is O(ℓ log n) = O((log n)2) and the per-party correlated randomness is
O(log n) bits. On the other hand, a privacy threshold is t = n−max{ℓ, k} = n−Θ(n/ log n)
since ℓ-dimensional and k-dimensional secret vectors are shared by a ramp scheme.

3 Preliminaries

3.1 Notations
For m ∈ N, define [m] = {1, . . . ,m}. Define Zm as the ring of integers modulo m. We
identify Zm (as a set) with {z ∈ Z : 0 ≤ z ≤ m− 1}. For a subset X of a set Y , we define
Y \X = {y ∈ Y : y /∈ X}. We write u←$Y if u is chosen uniformly at random from a set Y .
For a vector s = (si)i∈Zm ∈ Xm and r ∈ Zm, we define Shiftr(s) as the vector obtained by
shifting elements by r. Formally, u = (ui)i∈Zm

= Shiftr(s) is defined by ui = s(i−r) mod m for
all i ∈ Zm. If X is a field F, Shiftr can be expressed by a linear operation. Formally, define a
permutation matrix Pr ∈ Fm×m as the one whose (i, j)-th entry is 1 if j = (i−r) mod m and
0 otherwise, where we identify the sets indexing the rows and columns of the matrix as Zm.
Then it holds that Shiftr(s) = Pr · s. It also holds that P−1

r · s = P⊤
r · s = P−r · s = Shift−r(s)

Let 0m be the zero vector of dimension m and 1m be the all-ones vector of dimension m.
We simply write 0 or 1 if the dimension is clear from the context. Let ei denote the i-th
unit vector whose entry is 1 at position i, and 0 otherwise. For a vector v of dimension m,
we define diag(v) as a diagonal matrix whose (i, j)-th entry is the i-th entry of v if j = i

and 0 otherwise. For two vectors u,v over a ring, we denote the standard inner product of u
and v by ⟨u,v⟩. Throughout the paper, we fix the following notations:

n is the total number of players.
t is the maximum number of corrupted players (see Section 3.2).
K is the minimum finite field such that |K| ≥ 2n. Fix 2n pairwise distinct elements
β0, β1, . . . , βn−1, α1, . . . , αn ∈ K.

3.2 Secure Multiparty Computation
We denote the set of n players by {P1, . . . ,Pn}, where Pi is called the i-th player. Assume that
each player Pi has a private input xi from a finite set D. Let F(x1, . . . , xn) = (y1, . . . , yn) be
an n-input/n-output randomized functionality. We assume the correlated randomness model,
in which there is a trusted dealer who samples (r1, . . . , rn) according to a joint distribution D
over the Cartesian product R1×· · ·×Rn of n sets, and gives ri ∈ Ri to each player Pi before
he decides his input. We assume computationally unbounded adversaries who passively
corrupt up to t players. (We do not consider active adversaries whose corrupted players
deviate from protocols arbitrarily.) Let Π be a protocol between n players in the correlated
randomness model. For a subset T ⊆ [n] of size at most t and any input x = (xi)i∈[n],
consider the following two processes:

ITC 2024

10:8 MPC with Polylogarithmic Bottleneck Complexity and Correlated Randomness

Ideal process. This process is defined with respect to a simulator Sim. Let (y1, . . . , yn)←
F(x). The output of this process is IdealF,Sim(T,x) := (Sim(T, (xi, yi)i∈T), (yi)i∈[n]).

Real process. Suppose that all players each holding an input xi execute Π honestly. Let
ViewΠ,i(x) denote the view of Pi at the end of the protocol execution (which consists
of his private input xi, correlated randomness ri, and messages that he received or sent
during the execution of Π), and let OutputΠ,i(x) be the output of Pi. The output of this
process is RealΠ(T,x) := ((ViewΠ,i(x))i∈T , (OutputΠ,i(x))i∈[n]).

We say that Π is a t-secure MPC protocol for F if for any subset T ⊆ [n] of size at most t
and any input x = (xi)i∈[n], the distributions IdealF,Sim(T,x) and RealΠ(T,x) are perfectly
identical to each other.

Let g be a deterministic function on Dn. We say that Π is a t-secure protocol computing
g if it is a t-secure protocol for the functionality that takes x as input and gives g(x) to every
player. Then we have that Π is a t-secure MPC protocol computing g if and only if
Correctness. For any input x and any i ∈ [n], it holds with probability 1 that OutputΠ,i(x) =

g(x).
Privacy. For any set T ⊆ [n] of size at most t and any pair of inputs x = (xi)i∈[n], w =

(wi)i∈[n] such that (xi)i∈T = (wi)i∈T and g(x) = g(w), the distributions (ViewΠ,i(x))i∈T

and (ViewΠ,i(w))i∈T are perfectly identical to each other.

We denote by Commi(Π) the total number of bits sent or received by the i-th player
Pi during the execution of a protocol Π with worst-case inputs. We define the bottleneck
complexity of Π as BC(Π) = maxi∈[n]{Commi(Π)}. We denote by Randi(Π) the size of
correlated randomness for Pi, i.e., the total number of bits received by Pi in the setup of Π,
and define CR(Π) = maxi∈[n]{Randi(Π)}. We denote by Round(Π) the round complexity of
Π, i.e., the number of sequential rounds of interaction.

Let G be a functionality. We say that a protocol Π is in the G-hybrid model if players
invoke G during the execution of Π, that is, a trusted third party receives messages from
players and gives them the correct output of G. The composition theorem [28] implies that if
a protocol Π securely realizes a functionality F in the G-hybrid model and a protocol ΠG
securely realizes G, then the composition of Π and ΠG , i.e., the protocol obtained by replacing
all invocations of G in Π with ΠG , also securely realizes F . While the above theorem assumes
sequential composition, a set of protocols in the paper can be composed concurrently.

3.3 Basic Algorithms and Protocols

Let G be an abelian group (e.g., a finite field or a ring of integers modulo m). Define
AdditiveG(s) as an algorithm to generate additive shares over G for a secret s ∈ G. Formally,
on input s ∈ G, AdditiveG(s) chooses (s1, . . . , sn) ∈ Gn uniformly at random conditioned on
s =

∑
i∈[n] si, and outputs it.

Broadcast. Let FBroadcast,i be the functionality which receives an input y from the i-th
player and gives y to all players. Since all players are supposed to be semi-honest, a
protocol ΠBroadcast,i realizing FBroadcast,i with low bottleneck complexity is straightforward
(see [21] for a formal description). Roughly speaking, assume that the set of n players is
represented by a binary tree whose height is O(log n) and root is Pi. Each player sends his
two children the element that he received from his parent node. The complexity of ΠBroadcast,i
is CR(ΠBroadcast,i) = 0, BC(ΠBroadcast,i) = O(ℓy), and Round(ΠBroadcast,i) = O(log n), where
ℓy is the bit-length of y.

R. Eriguchi 10:9

Functionality FSum((xi)i∈[n])✓ ✏
Upon receiving a group element xi ∈ G from each player Pi, FSum gives every player
s :=

∑
i∈[n] xi.✒ ✑

Protocol ΠSum✓ ✏
Input. Each player Pi has a group element xi ∈ G.
Output. Every player obtains s =

∑
i∈[n] xi.

Protocol.
1. Each player Pi chooses ri←$ G and sets yi = xi + ri.
2. P1 sends y1 to P2.
3. For each i = 2, 3, . . . , n − 1, Pi lets zi−1 be the message from Pi−1, computes

zi = zi−1 + yi, and sends zi to Pi+1.
4. Pn sends zn = zn−1 + yn to P1.
5. P1 sends w1 = zn − r1 to P2.
6. For each i = 2, 3, . . . , n − 1, Pi lets wi−1 be the message from Pi−1, computes

wi = wi−1 − ri, and sends wi to Pi+1.
7. Pn computes s = wn−1 − rn and invokes FBroadcast,n with input s.
8. Each player Pi outputs s.✒ ✑

Figure 1 The functionality FSum and a protocol ΠSum implementing it.

Sum. In Fig. 1, we describe the functionality FSum which receives group elements
x1, . . . , xn ∈ G, each from Pi, and gives s :=

∑
i∈[n] xi to all players. We show a pro-

tocol ΠSum for FSum without any correlated randomness while the protocol in [43, 21] requires
correlated randomness of size O(log |G|) per party. In our protocol, each player Pi masks his
input xi with a random element ri, players compute s′ :=

∑
i∈[n](xi + ri) in a round-table

structure, and then unmask s′ in the same round-table structure. The formal description of
ΠSum is shown in Fig. 1. The complexities are CR(ΠSum) = 0, BC(ΠSum) = O(log |G|) and
Round(ΠSum) = O(n).

3.4 Ramp Secret Sharing
Recall that K is the minimum finite field such that |K| ≥ 2n and we fix 2n pairwise distinct
elements β0, β1, . . . , βn−1, α1, . . . , αn ∈ K. Let ℓ be a positive integer such that ℓ ≤ n. Define
RSSℓ(s) as an algorithm to generate shares of the (t, ℓ, n)-ramp secret sharing scheme for a
secret vector s ∈ Kℓ. Formally, for s ∈ Kℓ, we define a set Rs of polynomials as

Rs := {φ ∈ K[X] : degφ ≤ t+ ℓ, (φ(β0), . . . , φ(βℓ−1)) = s}

On input s ∈ Kℓ, RSSℓ(s) chooses a polynomial φ uniformly at random from Rs, and then
outputs (φ(α1), . . . , φ(αn)).

Regarding RSSℓ, we recall basic mathematical facts that we will use to construct our
protocols in the following lemmas. We defer the proofs to the full version.

▶ Lemma 3. Let T ⊆ [n] be any set of size at most t and s ∈ Kℓ. Then, there is a polynomial
∆s ∈ Rs such that ∆s(αi) = 0 for all i ∈ T .

ITC 2024

10:10 MPC with Polylogarithmic Bottleneck Complexity and Correlated Randomness

▶ Lemma 4. Let s,u ∈ Kℓ and φs ∈ Rs. If φu is uniformly distributed over Ru, then
φs + φu is uniformly distributed over Rs+u.

▶ Lemma 5. Let s = (s0, . . . , sℓ−1) ∈ Kℓ. Then, there is an algorithm Reconstℓ such that∑
i∈[n] Reconstℓ(j, i; vi) = sj for any j and any possible shares (v1, . . . , vn) ← RSSℓ(s).

Furthermore, Reconstℓ is linear in the sense that Reconstℓ(j, i; v) + Reconstℓ(j, i; v′) =
Reconstℓ(j, i; v + v′) for any v, v′ ∈ K.

We introduce a deterministic algorithm FixedShareℓ that outputs predetermined shares
consistent with a given secret vector. Formally, we fix a deterministic algorithm FixedSampleℓ

which on input s ∈ Kℓ, computes a polynomial ψs ∈ Rs. It can be implemented efficiently,
e.g., with Gaussian elimination. Define FixedShareℓ as follows: On input i ∈ [n] and
s ∈ Kℓ, FixedShareℓ(i, s) computes ψs = FixedSampleℓ(s) and outputs ψs(αi). Note that
(FixedShareℓ(i, s))i∈[n] is a tuple of possible shares of a secret vector s.

4 Our First Protocol for Symmetric Functions

We call a function h : {0, 1}n → {0, 1} symmetric if h(xσ(1), . . . , xσ(n)) = h(x1, . . . , xn) for
any input (x1, . . . , xn) ∈ {0, 1}n and any permutation σ : [n]→ [n]. By definition, the value
of a symmetric function h is determined only by the Hamming weight w of the input, i.e.,
w := |{i ∈ [n] : xi = 1}| =

∑
i∈[n] xi. Thus, there is the unique function f : {0, 1, . . . , n} →

{0, 1} such that f(x1 + · · ·+ xn) = h(x1, . . . , xn) for all (x1, . . . , xn) ∈ {0, 1}n.
▶ Remark 6. The authors of [43, 39] considered a related class of functions called abelian
programs. Specifically, a function h̃ : Gn → {0, 1} is called an abelian program over an abelian
group G if there exists a function f : G→ {0, 1} such that h̃(x̃1, . . . , x̃n) = f(x̃1 + · · ·+ x̃n)
for all (x̃1, . . . , x̃n) ∈ Gn, where addition is taken over G. As pointed out in [3], abelian
programs can compute a symmetric function h : {0, 1}n → {0, 1} by setting G = Zn+1 and
viewing each input xi ∈ {0, 1} as an element x̃i ∈ Zn+1 (i.e., embed {0, 1} into Zn+1). The
authors of [39] presented an information-theoretic MPC protocol Π for an abelian program
h̃ : Gn → {0, 1} such that CR(Π) = O(|G|) and BC(Π) = O(log |G|). Based on the above
correspondence, the protocol has CR(Π) = O(n) and BC(Π) = O(log n) when computing a
symmetric function h : {0, 1}n → {0, 1}.

First, for a parameter ℓ, we show an (n − Θ(n/ℓ))-secure protocol for any symmetric
function h such that the bottleneck complexity is O(log n) and the amount of correlated
randomness is O(ℓ log n). If we set ℓ = Θ(log n), then we obtain an (n−o(n))-secure protocol
such that the bottleneck complexity is O(log n) and the amount of correlated randomness is
O((log n)2).

▶ Theorem 7. Let h : {0, 1}n → {0, 1} be a symmetric function. Let ℓ be any integer such
that ℓ ≤ n+ 1, and suppose that t ≤ n− ⌈(n+ 1)/ℓ⌉. The protocol ΠSym described in Fig. 2
is a t-secure MPC protocol computing h in the FSum-hybrid model. Implementing FSum, the
protocol ΠSym achieves CR(ΠSym) = O(ℓ log n) and BC(ΠSym) = O(log n).

Proof. First, we prove the correctness of ΠSym. Let x ∈ {0, 1}n be any input. Since
r =

∑
i∈[n] ri, it holds that y = r+

∑
i∈[n] xi. Since (v(j)

i)i∈[n] are shares of RSSk for a secret
vector U(j), it also holds that

z =
∑
i∈[n]

zi =
∑
i∈[n]

Reconstk(τ, i; v(σ)
i) = (U(σ))τ = (S)σk+τ = (S)y = F(y−r) mod m

where (U(σ))τ is the τ -th element of U(σ) and (S)y is the y-th element of S. Therefore, we
have that z = f(

∑
i∈[n] xi) = h(x1, . . . , xn).

R. Eriguchi 10:11

Next, we prove the privacy of ΠSym. Let T ⊆ [n] be the set of corrupted players. Let
H = [n] \ T be the set of honest players and fix an honest player j ∈ H. Note that in the
FSum-hybrid model, corrupted players’ view can be simulated from the following elements
since the other elements are locally computed from them:
Correlated randomness. (ri, v

(0)
i , . . . , v

(ℓ−1)
i) for all i ∈ T ;

Online messages. y =
∑

i∈[n] xi + r and z.
Let x = (xi)i∈[n], x̃ = (x̃i)i∈[n] ∈ {0, 1}n be any pair of inputs such that xi = x̃i (∀i ∈ T)
and h(x1, . . . , xn) = h(x̃1, . . . , x̃n). It is sufficient to prove that the distribution of the above
elements during the execution of ΠSym on input x is identical to that on input x̃. To show
the equivalence of the distributions, we show a bijection between the random strings used by
ΠSym on input x and the random strings used by ΠSym on input x̃ such that the correlated
randomness and the online messages received by T are the same under this bijection. The
set of all random strings is

R =
{(

(ri)i∈[n], ϕ
(0), . . . , ϕ(ℓ−1)

)
: ri ∈ Zm, ϕ

(j) ∈ RU(j)

}
,

where r =
∑

i∈[n] ri and (U(0), . . . ,U(ℓ−1)) = Shiftr(F). We denote the randomness
of ΠSym on input x by R = ((ri)i∈[n], ϕ

(0), . . . , ϕ(ℓ−1)) and that on input x̃ by R̃ =
((r̃i)i∈[n], ϕ̃

(0), . . . , ϕ̃(ℓ−1)). We consider a bijection that maps the randomness R ∈ R to
R̃ ∈ R in such a way that

r̃i =
{
ri, if i ∈ T,
ri + xi − x̃i, if i ∈ H,

and ϕ̃(j) = ϕ(j) + ∆Ũ(j)−U(j)

where

r :=
∑
i∈[n]

ri, (U(0), . . . , U(ℓ−1)) := Shiftr(F), r̃ :=
∑
i∈[n]

r̃i, (Ũ(0), . . . , Ũ(ℓ−1)) := Shift̃
r
(F),

and ∆Ũ(j)−U(j) ∈ RŨ(j)−U(j) is a polynomial such that ∆Ũ(j)−U(j)(αi) = 0 for all i ∈ T ,
whose existence is guaranteed by Lemma 3. The image is indeed a consistent random string,
i.e., ((r̃i)i∈[n], ϕ̃

(0), . . . , ϕ̃(ℓ−1)) ∈ R, since ϕ(j) ∈ RU(j) implies that ϕ̃(j) = ϕ(j)+∆Ũ(j)−U(j) ∈
RŨ(j) . The above map is indeed a bijection since it has the inverse

ri =
{
r̃i, if i ∈ T,
r̃i + x̃i − xi, if i ∈ H,

and ϕ(j) = ϕ̃(j) −∆Ũ(j)−U(j) .

This bijection does not change the correlated randomness (ri, v
(0)
i , . . . , v

(ℓ−1)
i)i∈T of T since

ṽ
(j)
i = ϕ̃(j)(αi) = ϕ(j)(αi) + ∆Ũ(j)−U(j)(αi) = ϕ(j)(αi) = v

(j)
i for all i ∈ T . It can be seen

that x̃i + r̃i = x̃i + (ri +xi− x̃i) = xi + ri for i ∈ H . In particular, the message y is the same
in both executions. Since h(x1, . . . , xn) = h(x̃1, . . . , x̃n), the message z is also the same in
both executions, which implies that the bijection does not change online messages seen by
corrupted players.

Finally, since players also need to receive correlated randomness for two executions of the
protocol ΠSum implementing FSum, we have CR(ΠSym) = O(logm + ℓ log |K|) + O(logm +
log |K|) = O(ℓ log n) and BC(ΠSym) = O(logm+ log |K|) = O(log n). ◀

Setting ℓ = Θ(log n), we obtain the following corollary.

▶ Corollary 8. If t = n−Θ(n/ log n), then there exists a t-secure MPC protocol Π computing
a symmetric function h : {0, 1}n → {0, 1} such that CR(Π) = O((log n)2) and BC(Π) =
O(log n).

ITC 2024

10:12 MPC with Polylogarithmic Bottleneck Complexity and Correlated Randomness

Protocol ΠSym✓ ✏
Notations.

Let h : {0, 1}n → {0, 1} be a symmetric function.
Let f : {0, 1, . . . , n} → {0, 1} be a function such that h(x1, . . . , xn) = f(

∑
i∈[n] xi)

for all (x1, . . . , xn) ∈ {0, 1}n.
Let ℓ ≤ n+ 1, k := ⌈(n+ 1)/ℓ⌉ and m := ℓk.
Define F = (Fi)i∈Zm

∈ Km by Fi = f(i) if 0 ≤ i ≤ n and Fi = 0 otherwise.
Input. Each player Pi has xi ∈ {0, 1}.
Output. Every player obtains z = h(x1, . . . , xn).
Setup.

1. Let r←$ Zm and (ri)i∈[n] ← AdditiveZm(r).
2. Define S ∈ Km by S = Shiftr(F) and decompose S into ℓ vectors U(0), . . . ,U(ℓ−1)

of dimension k, i.e., S = (U(0), . . . ,U(ℓ−1)).
3. For each j = 0, 1, . . . , ℓ− 1, let (v(j)

i)i∈[n] ← RSSk(U(j)).
4. Each player Pi receives (ri, v

(0)
i , . . . , v

(ℓ−1)
i).

Protocol.
1. Each player Pi computes yi = xi + ri mod m.
2. Players obtain y = FSum((yi)i∈[n]).
3. Each player computes (σ, τ) ∈ Zℓ × Zk such that y = σk + τ .
4. Each player Pi computes zi = Reconstk(τ, i; v(σ)

i).
5. Players obtain z = FSum((zi)i∈[n]).
6. Each player Pi outputs z.✒ ✑

Figure 2 Our first protocol ΠSym for computing a symmetric function.

Setting ℓ ≈ 1/ϵ for a constant 0 < ϵ < 1/2, we also obtain a (1− ϵ)n-secure protocol such
that both bottleneck complexity and the amount of correlated randomness are O(log n).

▶ Corollary 9. For any constant ϵ such that 0 < ϵ < 1/2, there exists a (1 − ϵ)n-secure
MPC protocol Π computing a symmetric function h : {0, 1}n → {0, 1} such that CR(Π) =
O(ϵ−1 log n) = O(log n) and BC(Π) = O(log n).

▶ Remark 10 (Round complexity). We have Round(ΠSym) = O(n) if FSum is instantiated with
ΠSum. The round complexity of ΠSum can be reduced to O(log n) without changing asymptotic
bottleneck complexity and amount of correlated randomness. Indeed, there is a more
round-efficient protocol Π′

Sum realizing FSum such that CR(Π′
Sum) = O(log |G|), BC(Π′

Sum) =
O(log |G|), and Round(Π′

Sum) = O(log n), where G is an abelian group from which inputs take
values [21]. If we implement FSumwith Π′

Sum, then ΠSym achieves Round(ΠSym) = O(log n).
This modification increases the amount of correlated randomness by O(logm) +O(log |K|) =
O(log n) but does not change overall complexities in an asymptotic sense. In summary, we have
a t-secure MPC protocol ΠSym for h such that CR(ΠSym) = O(ℓ log n), BC(ΠSym) = O(log n)
and Round(ΠSym) = O(log n).

▶ Remark 11 (Computational complexity). Each player receives O(ℓ) elements in K and
performs a constant number of operations in K. The computational complexity of ΠSym is
thus O(ℓ) field operations.

R. Eriguchi 10:13

5 Our Second Protocol for Symmetric Functions

In this section, we show a protocol for any symmetric function whose bottleneck complexity
is O((log n)2) and amount of correlated randomness is O(log n). First, we construct two
building-block protocols with low bottleneck complexity, and then we show our main protocol.

5.1 Additional Building Blocks
For parameters k, ℓ, we consider the following sub-functionalities:
Linear transformation FLT. Given ramp shares of a k-dimensional secret vector s, players

obtain ramp shares of an ℓ-dimensional vector u := M · s, where M is a public ℓ-by-k
matrix. The formal description is shown in Fig. 4.

Inner product FIP. Given ramp shares of two ℓ-dimensional vectors v and w, players obtain
the inner product ⟨v,w⟩. The formal description is shown in Fig. 5.

We show protocols for FLT and FIP. The formal descriptions and proofs are given in
Appendices A and B.

▶ Proposition 12. Let k, ℓ be positive integers with ℓ ≤ k ≤ n and M be an ℓ-by-k matrix
over K. Suppose that t ≤ n− ℓ. Then, the protocol ΠLT described in Fig. 4 is a t-secure MPC
protocol for FLT in the FSum-hybrid model. Implementing FSum, the protocol ΠLT achieves
CR(ΠLT) = O(log n) and BC(ΠLT) = O(ℓ log n).

▶ Proposition 13. Let ℓ be a positive integer with ℓ ≤ n. Suppose that t ≤ n− ℓ. Then, the
protocol ΠIP described in Fig. 5 is a t-secure MPC protocol for FIP in the (FSum,FLT)-hybrid
model. Implementing FSum and FLT, the protocol ΠIP achieves CR(ΠIP) = O(log n) and
BC(ΠIP) = O(ℓ log n).

5.2 Main Protocol
Now, for two primes k, ℓ with ℓk > n, we show an (n− k)-secure protocol for any symmetric
function h such that the bottleneck complexity is O(ℓ log n) and the amount of correlated
randomness is O(log n).

▶ Theorem 14. Let h : {0, 1}n → {0, 1} be a symmetric function. Let ℓ, k be primes
such that ℓ < k and n + 1 ≤ ℓk ≤ O(n), and suppose that t ≤ n − k. The protocol Π′

Sym
described in Fig. 3 is a t-secure MPC protocol for Fh in the (FSum,FLT,FIP)-hybrid model.
Implementing FSum, FLT and FIP, the protocol Π′

Sym achieves CR(Π′
Sym) = O(log n) and

BC(Π′
Sym) = O(ℓ log n).

Proof. First, we prove the correctness of Π′
Sym. Let x ∈ {0, 1}n be any input. Since

r =
∑

i∈[n] ri, it holds that y = r −
∑

i∈[n] xi. Let (σ′, τ ′) := (σ + u, τ + v). Note that
we have ϕ(

∑
i∈[n] xi) = ϕ(y) + ϕ(r) = (σ′, τ ′). Since (di)i∈[n] are shares of RSSℓ for a

secret vector ev, the functionality of FLT implies that (d′
i)i∈[n] are shares of a secret vector

Ny · ev = P⊤
σ ·M · Pτ · ev = P⊤

σ ·M · eτ ′ . Furthermore, since (ci)i∈[n] are shares of
RSSk for a secret vector eu, the functionality of FIP implies that z = ⟨eu,P⊤

σ ·M · eτ ′⟩ =
⟨Pσ · eu,M · eτ ′⟩ = ⟨eσ′ ,M · eτ ′⟩ = M[σ′, τ ′] where M[σ′, τ ′] is the (σ′, τ ′)-th entry of M.
Therefore, we have that z = f(ϕ−1(σ′, τ ′)) = f(

∑
i∈[n] xi) = h(x1, . . . , xn).

Next, we prove the privacy of Π′
Sym. Let T ⊆ [n] be the set of corrupted players. Recall

that αi (resp. βj) is the point associated with the i-th share (resp. the j-th component of a
secret vector) of RSSℓ and RSSk. To simplify notations, we denote (φ(αi))i∈T by φ(αT) for a

ITC 2024

10:14 MPC with Polylogarithmic Bottleneck Complexity and Correlated Randomness

polynomial φ. In the FSum-hybrid model, corrupted players’ view at Step 2 only contains their
inputs (yi)i∈T to FSum and the output y. Also, in the FLT-hybrid model, corrupted players’
view at Step 5 (including their correlated randomness for FLT) only contains their inputs
(di)i∈T to FLT and the outputs (d′

i)i∈T . It is sufficient to show that the joint distribution of
the following elements is simulated from (xi)i∈T and h(x1, . . . , xn) since the other elements
are locally computed from them:
Correlated randomness. (ri, ci, di) for all i ∈ T ;
Online messages. y =

∑
i∈[n] xi + r, (d′

i)i∈T , and z.
To analyze the distribution of the above element, we define View = ((ri, ci, di, d

′
i)i∈T , y, z).

Observe that the distribution of View is given by

View =

(ri)i∈T , ϕc(αT), ϕd(αT), ϕd′(αT), y =
∑
i∈[n]

xi +
∑
i∈[n]

ri, z

 ,

where (r1, . . . , rn)←$ Zn
m, (u, v) = ϕ(

∑
i∈[n] ri), ϕc←$Reu , ϕd←$Rev , and ϕd′ ←$RNy·ev .

The correctness of Π′
Sym implies that

View =

(ri)i∈T , ϕc(αT), ϕd(αT), ϕd′(αT), y =
∑
i∈[n]

xi +
∑
i∈[n]

ri, h(x1, . . . , xn)

 .

Lemma 3 ensures that for any v ∈ Kℓ, there is a polynomial ∆v ∈ Rv such that ∆v(αi) =
0 for all i ∈ T . If ϕ̃c are uniformly distributed over R0ℓ

, then ϕ̃c + ∆eu
is uniformly

distributed over Reu from Lemma 4 and (ϕ̃c + ∆eu)(αi) = 0 for all i ∈ T . Similarly, if
ϕ̃d, ϕ̃d′ ←$R0k

, then it holds that ϕ̃d + ∆ev
←$Rev

and ϕ̃d′ + ∆Ny·ev
←$RNy·ev

. It also
holds that (ϕ̃d + ∆ev)(αi) = ϕ̃d(αi) and (ϕ̃d′ + ∆Ny·ev)(αi) = ϕ̃d′(αi) for all i ∈ T . We thus
have that

View =

(ri)i∈T , ϕ̃c(αT), ϕ̃d(αT), ϕ̃d′(αT), y =
∑
i∈[n]

xi +
∑
i∈[n]

ri, h(x1, . . . , xn)

 ,

where (r1, . . . , rn)←$ Zn
m, ϕ̃c←$R0ℓ

, ϕ̃d, ϕ̃d′ ←$R0k
. Since T ≠ [n] and (ri)i∈[n] are in-

dependent and uniformly random elements, the joint distribution of (ri)i∈T and y =∑
i∈[n] xi +

∑
i∈[n] ri is the uniform distribution over Z|T |+1

m . We thus have that

View =
(

(r̃i)i∈T , ϕ̃c(αT), ϕ̃d(αT), ϕ̃d′(αT), ỹ, h(x1, . . . , xn)
)
,

where ((r̃i)i∈T , ỹ)←$ Z|T |+1
m , ϕ̃c←$R0ℓ

, ϕ̃d, ϕ̃d′ ←$R0k
. Therefore, we conclude that View is

simulated from h(x1, . . . , xn) only.
Finally, since players also need to receive correlated randomness for executions of protocols

implementing FSum, FLT and FIP, we have CR(Π′
Sym) = O(logm) + O(log n) + O(log n) =

O(log n) and BC(Π′
Sym) = O(logm) +O(ℓ log n) +O(ℓ log n) = O(ℓ log n). ◀

Thanks to Bertrand’s postulate [45, Theorem 5.8], we can choose primes k, ℓ such that
k = Θ(n/ log n) and ℓ = Θ(log n). Then we obtain an (n− o(n))-secure protocol such that
the bottleneck complexity is O((log n)2) and the amount of correlated randomness is O(log n).
More formally, the following corollary holds.

▶ Corollary 15. If t = n − Θ(n/ log n), then there exists a t-secure MPC protocol Π
computing a symmetric function h : {0, 1}n → {0, 1} such that CR(Π) = O(log n) and
BC(Π) = O((log n)2).

R. Eriguchi 10:15

Protocol Π′
Sym✓ ✏

Notations.
Let h : {0, 1}n → {0, 1} be a symmetric function.
Let f : {0, 1, . . . , n} → {0, 1} be a function such that h(x1, . . . , xn) = f(

∑
i∈[n] xi)

for all (x1, . . . , xn) ∈ {0, 1}n.
Let ℓ, k be primes such that ℓ < k and n+ 1 ≤ ℓk, and set m = ℓk.
Let ϕ : Zm → Zℓ ×Zk be the ring isomorphism induced by the Chinese remainder
theorem.
Define a matrix M ∈ Kℓ×k as follows: For (σ, τ) ∈ Zℓ × Zk, the (σ, τ)-th entry of
M is f(ϕ−1(σ, τ)) if ϕ−1(σ, τ) ∈ {0, 1, . . . , n}, and 0 otherwise, where we identify
the sets indexing the rows and columns of M as Zℓ and Zk, respectively.

Input. Each player Pi has xi ∈ {0, 1}.
Output. Every player obtains z = h(x1, . . . , xn).
Setup.

1. Let r←$ Zm, (ri)i∈[n] ← AdditiveZm
(r), and (u, v) = ϕ(r).

2. Let (ci)i∈[n] ← RSSℓ(eu) and (di)i∈[n] ← RSSk(ev), where eu ∈ Kℓ (resp. ev ∈ Kk)
is the unit vector whose entry is 1 at position u ∈ Zℓ (resp. v ∈ Zk), and 0
otherwise.

3. Each player Pi receives (ri, ci, di).
Protocol.

1. Each player Pi computes yi = xi − ri mod m.
2. Players obtain y = FSum((yi)i∈[n]).
3. Each player computes (σ, τ) = ϕ(y) ∈ Zℓ × Zk and Ny = P⊤

σ ·M ·Pτ .
4. Players obtain (d′

i)i∈[n] ← FLT(Ny; (di)i∈[n]).
5. Players obtain z ← FIP((ci, d

′
i)i∈[n]).

6. Each player Pi outputs z.✒ ✑
Figure 3 Our second protocol Π′

Sym for computing a symmetric function.

Note that setting k and ℓ as primes close to ϵn and 1/ϵ (resp.) leads to a protocol with
asymptotically the same complexity as Corollary 9.
▶ Remark 16 (Round and computational complexity). The round complexity of Π′

Sym is
Round(Π′

Sym) = O(n). Since the computation of Ny = P⊤
σ ·M ·Pτ is just permuting rows

and columns of M, it can be done by O(ℓk) field operations. The computational complexities
of ΠLT implementing FLT and ΠIP implementing FIP are O(ℓk) and O(ℓ2) field operations,
respectively. Since ℓ < k, the computational complexity of Π′

Sym is O(ℓk) = O(n) field
operations.

References
1 Donald Beaver. Efficient multiparty protocols using circuit randomization. In Advances in

Cryptology – CRYPTO ’91, pages 420–432, 1992.
2 Zuzana Beerliová-Trubíniová and Martin Hirt. Perfectly-secure mpc with linear communication

complexity. In Theory of Cryptography, pages 213–230, 2008.
3 Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, and Anat

Paskin-Cherniavsky. Non-interactive secure multiparty computation. In Advances in Cryptology
– CRYPTO 2014, Part II, pages 387–404, 2014.

ITC 2024

10:16 MPC with Polylogarithmic Bottleneck Complexity and Correlated Randomness

4 Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, pages 1–10, 1988.

5 Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure multiparty
computation with a dishonest minority. In Advances in Cryptology – CRYPTO 2012, pages
663–680, 2012.

6 Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic
encryption and multiparty computation. In Advances in Cryptology – EUROCRYPT 2011,
pages 169–188, 2011.

7 G. R. Blakley and C. Meadows. Security of ramp schemes. In Advances in Cryptology –
CRYPTO ’84, pages 242–268, 1985.

8 Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation with preprocessing via function
secret sharing. In Theory of Cryptography, pages 341–371, 2019.

9 Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Sublinear gmw-style compiler for mpc
with preprocessing. In Advances in Cryptology – CRYPTO 2021, pages 457–485, 2021.

10 Elette Boyle, Abhishek Jain, Manoj Prabhakaran, and Ching-Hua Yu. The Bottleneck
Complexity of Secure Multiparty Computation. In 45th International Colloquium on Automata,
Languages, and Programming (ICALP 2018), volume 107 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 24:1–24:16, 2018.

11 David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure
protocols. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
STOC ’88, pages 11–19, 1988.

12 Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and
Ariel Nof. Fast large-scale honest-majority MPC for malicious adversaries. In Advances in
Cryptology – CRYPTO 2018, Part III, pages 34–64, 2018.

13 Geoffroy Couteau. A note on the communication complexity of multiparty computation in
the correlated randomness model. In Advances in Cryptology – EUROCRYPT 2019, pages
473–503, 2019.

14 Ronald Cramer, Ivan Damgård, and Robbert de Haan. Atomic secure multi-party multiplication
with low communication. In Advances in Cryptology – EUROCRYPT 2007, pages 329–346,
2007.

15 Ronald Cramer, Ivan Damgård, and Ueli Maurer. General secure multi-party computation
from any linear secret-sharing scheme. In Advances in Cryptology – EUROCRYPT 2000, pages
316–334, 2000.

16 Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computation
and the computational overhead of cryptography. In Advances in Cryptology – EUROCRYPT
2010, pages 445–465, 2010.

17 Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty
computation. In Advances in Cryptology – CRYPTO 2007, pages 572–590, 2007.

18 Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. The tinytable
protocol for 2-party secure computation, or: Gate-scrambling revisited. In Advances in
Cryptology – CRYPTO 2017, pages 167–187, 2017.

19 Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Advances in Cryptology – CRYPTO 2012, pages
643–662, 2012.

20 Varsha Dani, Valerie King, Mahnush Movahedi, Jared Saia, and Mahdi Zamani. Secure
multi-party computation in large networks. Distributed Computing, 30:193–229, 2017.

21 Reo Eriguchi. Unconditionally secure multiparty computation for symmetric functions with
low bottleneck complexity. In Advances in Cryptology – ASIACRYPT 2023, pages 335–368,
2023.

R. Eriguchi 10:17

22 Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. TurboPack: Honest
majority mpc with constant online communication. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’22, pages 951–964, 2022.

23 Matthew Franklin and Moti Yung. Communication complexity of secure computation (extended
abstract). In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of
Computing, STOC ’92, pages 699–710, 1992.

24 Yuval Gelles and Ilan Komargodski. Optimal load-balanced scalable distributed agreement.
Cryptology ePrint Archive, Paper 2023/1139, 2023. URL: https://eprint.iacr.org/2023/
1139.

25 Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
Forty-First Annual ACM Symposium on Theory of Computing, STOC ’09, pages 169–0178,
2009.

26 Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances in Cryptology
– CRYPTO 2013, pages 75–92, 2013.

27 O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proceedings of
the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87, pages 218–229,
1987.

28 Oded Goldreich. Foundations of cryptography: volume 2, basic applications. Cambridge
University Press, 2009.

29 Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and Yifan Song. ATLAS:
Efficient and scalable MPC in the honest majority setting. In Advances in Cryptology –
CRYPTO 2021, Part II, pages 244–274, 2021.

30 Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient unconditional MPC with
guaranteed output delivery. In Advances in Cryptology – CRYPTO 2019, Part II, pages
85–114, 2019.

31 Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery comes free in honest
majority MPC. In Advances in Cryptology – CRYPTO 2020, Part II, pages 618–646, 2020.

32 Shai Halevi, Yuval Ishai, Abhishek Jain, Eyal Kushilevitz, and Tal Rabin. Secure multiparty
computation with general interaction patterns. In Proceedings of the 2016 ACM Conference
on Innovations in Theoretical Computer Science, ITCS ’16, pages 157–168, 2016.

33 Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web: Computing
without simultaneous interaction. In Advances in Cryptology – CRYPTO 2011, pages 132–150,
2011.

34 Martin Hirt and Ueli Maurer. Robustness for free in unconditional multi-party computation.
In Advances in Cryptology – CRYPTO 2001, pages 101–118, 2001.

35 Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient secure multi-party computation.
In Advances in Cryptology – ASIACRYPT 2000, pages 143–161, 2000.

36 Martin Hirt and Daniel Tschudi. Efficient general-adversary multi-party computation. In
Advances in Cryptology – ASIACRYPT 2013, Part II, pages 181–200, 2013.

37 Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat Paskin-
Cherniavsky. On the power of correlated randomness in secure computation. In Theory
of Cryptography, pages 600–620, 2013.

38 Stasys Jukna. Boolean Function Complexity. Springer, Berlin, Heidelberg, 1 edition, 2012.
39 Hannah Keller, Claudio Orlandi, Anat Paskin-Cherniavsky, and Divya Ravi. MPC with low

bottleneck-complexity: Information-theoretic security and more. In 4th Information-Theoretic
Cryptography (ITC) Conference, 2023. URL: https://eprint.iacr.org/2023/683.

40 Marcel Keller. MP-SPDZ: A versatile framework for multi-party computation. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security, CCS ’20,
pages 1575–1590, 2020.

41 Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In SODA,
volume 6, pages 990–999, 2006.

ITC 2024

https://eprint.iacr.org/2023/1139
https://eprint.iacr.org/2023/1139
https://eprint.iacr.org/2023/683

10:18 MPC with Polylogarithmic Bottleneck Complexity and Correlated Randomness

42 R. J. McEliece and D. V. Sarwate. On sharing secrets and Reed-Solomon codes. Communica-
tions of the ACM, 24(9):583–584, 1981.

43 Claudio Orlandi, Divya Ravi, and Peter Scholl. On the bottleneck complexity of mpc with
correlated randomness. In Public-Key Cryptography – PKC 2022, Part I, pages 194–220, 2022.

44 T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority. In Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing,
STOC ’89, pages 73–85, 1989.

45 Victor Shoup. A computational introduction to number theory and algebra. Cambridge
university press, 2009.

46 Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In Advances in Cryptology – EUROCRYPT 2010, pages 24–43,
2010.

47 H. Yamamoto. Secret sharing system using (k, L, n) threshold scheme. Electronics and
Communications in Japan (Part I: Communications), 69(9):46–54, 1986.

48 Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, SFCS ’82, pages 160–164, 1982.

A Proof of Proposition 12

Functionality FLT(M; (vi)i∈[n])✓ ✏
1. Players have shares (vi)i∈[n] of RSSk for a secret s = (s0, . . . , sk−1).
2. FLT receives vi ∈ K from each player Pi.
3. FLT reconstructs sj =

∑
i∈[n] Reconstk(j, i; vi) for all j = 0, 1, . . . , k−1, and computes

u = M · s ∈ Kℓ.
4. FLT computes shares (wi)i∈[n] ← RSSℓ(u) and gives wi to each player Pi.✒ ✑
Protocol ΠLT✓ ✏

Input. Each player Pi has the i-th share vi ∈ K of RSSk for a secret s = (s0, . . . , sk−1).
Output. Each player Pi obtains wi, where (wi)i∈[n] ← FLT(M; (vi)i∈[n]).
Setup.

1. Let r←$ Kℓ.
2. Let (ai)i∈[n] ← RSSℓ(r) and (bi)i∈[n] ← RSSℓ(0ℓ).
3. Each player Pi receives (ai, bi).

Protocol.
1. Each player Pi computes

xi = M ·

 Reconstk(0, i; vi)
...

Reconstk(k − 1, i; vi)

−
 Reconstℓ(0, i; ai)

...
Reconstℓ(ℓ− 1, i; ai)

2. Players obtain y = FSum((xi)i∈[n]), where FSum is invoked in an element-wise way.
3. Each player Pi computes w′

i = FixedShareℓ(i,y).
4. Each player Pi outputs wi = w′

i + ai + bi.✒ ✑
Figure 4 The functionality FLT and a protocol ΠLT implementing it.

R. Eriguchi 10:19

Recall that αi (resp. βj) is the point associated with the i-th share (resp. the j-th
component of a secret vector) of RSSℓ and RSSk. To simplify notations, we denote (φ(αi))i∈T

by φ(αT) for a set T ⊆ [n] and a polynomial φ.
Let T be a subset of size at most t and (vi)i∈[n] be an input to the protocol Π = ΠLT.

Let s be the secret of RSSk determined by (vi)i∈[n] and set u = M · s.
Consider the real process. Observe that the ai’s and bi’s can be written as ai = A(αi)

and bi = B(αi) for random polynomials A←$Rr and B←$R0ℓ
. Also, it holds that

y =
∑
i∈[n]

xi

= M ·
∑
i∈[n]

 Reconstk(0, i; vi)
...

Reconstk(k − 1, i; vi)

− ∑
i∈[n]

 Reconstℓ(0, i; ai)
...

Reconstℓ(ℓ− 1, i; ai)

= M · s− r
= u− r.

Furthermore, for all i ∈ [n],

wi = ψy(αi) +A(αi) +B(αi),

where ψy ∈ Ry is the polynomial computed by the deterministic algorithm FixedShareℓ.
Thus, the output of the real process in the FSum-hybrid model is

RealΠ(T, (vi)i∈[n]) = ((ViewΠ,i((vi)i∈[n]))i∈T ; (OutputΠ,i((vi)i∈[n]))i∈[n])
= ((vi)i∈T , A(αT), B(αT),y; (ψy +A+B)(α[n])),

where r←$ Kℓ, A←$Rr, y = u− r, and B←$R0ℓ
. Here, we omit xi and w′

i from the view
of corrupted players since they are locally computed by the other elements.

Since t ≤ n − ℓ, Lemma 3 ensures that there exists a polynomial ∆r ∈ Rr such that
∆r(αi) = 0 for all i ∈ T . If we set A′ = A−∆r, then A′ is uniformly distributed over R0ℓ

and A′(αi) = A(αi) for all i ∈ T from Lemma 4. Thus, we have that

RealΠ(T, (vi)i∈[n]) = ((vi)i∈T , A
′(αT), B(αT),y; (ψy +A′ + ∆r +B)(α[n])),

where r←$ Kℓ, y = u− r, and A′, B←$R0ℓ
. Since u− r is uniformly distributed over Kℓ,

we have that

RealΠ(T, (vi)i∈[n]) = ((vi)i∈T , A
′(αT), B(αT),y′; (ψy′ +A′ + ∆u−y′ +B)(α[n])),

where y′←$ Kℓ and A′, B←$R0ℓ
. Since ψy′ ∈ Ry′ , A′ ∈ R0k

and ∆u−y′ ∈ Ru−y′ , it holds
that ψy′ + A′ + ∆u−y′ ∈ Ru. If we set ϕ′ := ψy′ + A′ + ∆u−y′ + B, then ϕ′ is uniformly
distributed over Ru from Lemma 4. Since ∆u−y′(αi) = 0 for all i ∈ T , we have that

RealΠ(T, (vi)i∈[n]) = ((vi)i∈T , A
′(αT), (ϕ′ − ψy′ −A′ −∆u−y′)(αT),y′;ϕ′(α[n]))

= ((vi)i∈T , A
′(αT), (ϕ′ − ψy′ −A′)(αT),y′;ϕ′(α[n])),

where y′←$ Kℓ, A′←$R0ℓ
and ϕ′←$Ru.

On the other hand, we define a simulator Sim(T, (vi)i∈T , (wi)i∈T) as follows: First, it
samples ỹ←$ Kℓ and Ã←$R0ℓ

, and sets ãi = Ã(αi) and b̃i = wi − ψỹ(αi)− Ã(αi) for i ∈ T .
Then, it outputs

Sim(T, (vi)i∈T , (wi)i∈T) = ((vi)i∈T , (ãi)i∈T , (̃bi)i∈T , ỹ).

ITC 2024

10:20 MPC with Polylogarithmic Bottleneck Complexity and Correlated Randomness

Note that the functionality F = FLT gives players fresh shares of RSSℓ for a secret u. Formally,
the i-th player Pi receives ϕ(αi), where ϕ←$Ru. Then, the output of the ideal process with
respect to the functionality F and the simulator Sim is

IdealF,Sim(T, (vi)i∈[n]) = (Sim(T, (vi)i∈T , ϕ̃(αT)); ϕ̃(α[n])),

where ϕ̃←$Ru. From the construction of Sim, we have that

IdealF,Sim(T, (vi)i∈[n]) = ((vi)i∈T , Ã(αT), (ϕ̃− ψỹ − Ã)(αT), ỹ; ϕ̃(α[n])),

where ỹ←$ Kℓ, Ã←$R0ℓ
, and ϕ̃←$Ru.

Therefore, we conclude that

IdealF,Sim(T, (vi)i∈[n]) = RealΠ(T, (vi)i∈[n]).

Since players receives two shares of RSSℓ, the size of correlated randomness is CR(ΠLT) =
O(log |K|) = O(log n). In the online phase, the protocol invokes FSum ℓ times and hence we
have BC(ΠLT) = O(ℓ log |K|) = O(ℓ log n).

B Proof of Proposition 13

Let x = (x0, . . . , xℓ−1) (resp. y = (y0, . . . , yℓ−1)) be the secret determined by shares (vi)i∈[n]
(resp. (wi)i∈[n]).

First, we see the correctness of ΠIP. The linearity of RSSℓ implies that at Step 1 of the
protocol, (v′

i)i∈[n] (resp. (w′
i)i∈[n]) are shares of a secret x− a (resp. y− b). We thus have

that x′ = x− a, y′ = y− b and z′ = (x− a) ∗ (y− b) at Steps 3 and 4. On the other hand,
the functionality of FLT ensures that (a′

i)i∈[n] are shares of a secret

a′ := diag(y′) · a = (y− b) ∗ a

and similarly, (b′
i)i∈[n] are shares of a secret b′ := (x− a) ∗ b. The linearity of RSSℓ implies

that di = z′
i + a′

i + b′
i + ci + ri is the i-th share of a secret

z′ + a′ + b′ + c + s = (x− a) ∗ (y− b) + (y− b) ∗ a + (x− a) ∗ b + a ∗ b + s
= x ∗ y + s.

Thus it holds that d = x ∗ y + s. The correctness follows from

z = ⟨1ℓ,d⟩ = ⟨1ℓ,x ∗ y⟩+ ⟨1ℓ, s⟩ = ⟨x,y⟩.

We show the privacy of ΠIP. Let T ⊆ [n] be the set of corrupted players. Recall that αi

(resp. βj) is the point associated with the i-th share (resp. the j-th component of a secret
vector) of RSSℓ. To simplify notations, we denote (φ(αi))i∈T by φ(αT) for a polynomial
φ. In the FSum-hybrid model, corrupted players’ view at Steps 3 and 7 (including their
correlated randomness for FSum) only contains their inputs (x′

i,y′
i,di)i∈T to FSum and the

outputs x′,y′,d. Also, in the FLT-hybrid model, corrupted players’ view at Step 5 (including
their correlated randomness for FLT) only contains their inputs (ai, bi)i∈T to FLT and the
outputs (a′

i, b
′
i)i∈T . It is therefore sufficient to show that the joint distribution of the following

elements is simulated from (vi, wi)i∈T and z = FIP((vi, wi)i∈[n]) since the other elements are
locally computed from them:
Correlated randomness. (ai, bi, ci, ri)i∈T ;

R. Eriguchi 10:21

Functionality FIP((vi, wi)i∈[n])✓ ✏
1. Players have shares (vi)i∈[n] and (wi)i∈[n] of RSSℓ for secrets x = (x0, . . . , xℓ−1) and

y = (y0, . . . , yℓ−1), respectively.
2. FIP receives shares vi, wi ∈ K from each player Pi.
3. FIP reconstructs

xj =
∑
i∈[n]

Reconstℓ(j, i; vi), yj =
∑
i∈[n]

Reconstℓ(j, i;wi)

for all j = 0, 1, . . . , ℓ− 1, and computes z = ⟨x,y⟩.
4. FIP gives z to every player Pi.✒ ✑
Protocol ΠIP✓ ✏

Input. Each player Pi has the i-th shares vi, wi ∈ K of RSSℓ for secrets x = (x0, . . . , xℓ−1)
and y = (y0, . . . , yℓ−1), respectively.

Output. Each player Pi obtains z = FIP((vi, wi)i∈[n]).
Setup.

1. Let a,b←$ Kℓ and c = a ∗ b, where ∗ is the element-wise multiplication.
2. Let (ai)i∈[n] ← RSSℓ(a), (bi)i∈[n] ← RSSℓ(b) and (ci)i∈[n] ← RSSℓ(c).
3. Choose a random vector s ∈ Kℓ such that ⟨1ℓ, s⟩ = 0.
4. Let (ri)i∈[n] ← RSSℓ(s).
5. Each player Pi receives (ai, bi, ci, ri).

Protocol.
1. Each player Pi computes v′

i = vi − ai and w′
i = wi − bi.

2. Each player Pi computes

x′
i = (Reconstℓ(0, i; v′

i), . . . ,Reconstℓ(ℓ− 1, i; v′
i)),

y′
i = (Reconstℓ(0, i;w′

i), . . . ,Reconstℓ(ℓ− 1, i;w′
i)).

3. Players obtain x′ = FSum((x′
i)i∈[n]) and y′ = FSum((y′

i)i∈[n]), where FSum is
invoked in an element-wise way.

4. Each player Pi computes z′ = x′ ∗ y′ and z′
i = FixedShareℓ(i, z′).

5. Players obtain

(a′
i)i∈[n] ← FLT(N; (ai)i∈[n]), (b′

i)i∈[n] ← FLT(M; (bi)i∈[n]),

where M = diag(x′) and N = diag(y′).
6. Each player Pi computes di = z′

i + a′
i + b′

i + ci + ri and

di = (Reconstℓ(0, i; di), . . . ,Reconstℓ(ℓ− 1, i; di)).

7. Players obtain d = FSum((di)i∈[n]).
8. Every player outputs z = ⟨1ℓ,d⟩.✒ ✑

Figure 5 The functionality FIP and a protocol ΠIP implementing it.

ITC 2024

10:22 MPC with Polylogarithmic Bottleneck Complexity and Correlated Randomness

Online messages. x′ = x− a, y′ = y− b, (a′
i, b

′
i)i∈T and d = x ∗ y + s.

To analyze the distribution of the above elements, we define

View = ((ai, bi, ci, ri, a
′
i, b

′
i)i∈T ,x′,y′,d).

Observe that the distribution of View is given by

View = (ϕa(αT), ϕb(αT), ϕc(αT), ϕs(αT), ϕa′(αT), ϕb′(αT),x− a,y− b,x ∗ y + s),

where

a,b←$ Kℓ, s←$V0 := {s ∈ Kℓ : ⟨1ℓ, s⟩ = 0}, ϕa←$Ra, ϕb←$Rb,

ϕc←$Ra∗b, ϕs←$Rs, ϕa′ ←$R(y−b)∗a, ϕb′ ←$R(x−a)∗b.

Lemma 3 ensures that for any v ∈ Kℓ, there is a polynomial ∆v ∈ Rv such that ∆v(αi) = 0
for all i ∈ T . If ϕ̃a is uniformly distributed over R0ℓ

, then ϕ̃a + ∆a is uniformly distrib-
uted over Ra from Lemma 4 and (ϕ̃a + ∆a)(αi) = ϕ̃a(αi) for all i ∈ T . Similarly, let
ϕ̃b, ϕ̃c, ϕ̃s, ϕ̃a′ , ϕ̃b′ ←$R0ℓ

, and then it holds that

ϕ̃b + ∆b←$Rb, ϕ̃c + ∆a∗b←$Ra∗b, ϕ̃s + ∆s←$Rs,

ϕ̃a′ + ∆(y−b)∗a←$R(y−b)∗a, ϕ̃b′ + ∆(x−a)∗b←$R(x−a)∗b.

It also holds that(
ϕ̃b + ∆b

)
(αi) = ϕ̃b(αi),

(
ϕ̃c + ∆a∗b

)
(αi) = ϕ̃c(αi),

(
ϕ̃s + ∆s

)
(αi) = ϕ̃s(αi),(

ϕ̃a′ + ∆(y−b)∗a

)
(αi) = ϕ̃a′(αi),

(
ϕ̃b′ + ∆(x−a)∗b

)
(αi) = ϕ̃b′(αi)

for all i ∈ T . We thus have that

View = (ϕ̃a(αT), ϕ̃b(αT), ϕ̃c(αT), ϕ̃s(αT), ϕ̃a′(αT), ϕ̃b′(αT),x− a,y− b,x ∗ y + s),

where a,b←$ Kℓ, s←$V0, and ϕ̃b, ϕ̃c, ϕ̃s, ϕ̃a′ , ϕ̃b′ ←$R0ℓ
. Since ã := x− a and b̃ := y− b

are uniformly distributed over Kℓ, we have that

View = (ϕ̃a(αT), ϕ̃b(αT), ϕ̃c(αT), ϕ̃s(αT), ϕ̃a′(αT), ϕ̃b′(αT), ã, b̃,x ∗ y + s),

where ã, b̃←$ Kℓ, s←$V0, and ϕ̃b, ϕ̃c, ϕ̃s, ϕ̃a′ , ϕ̃b′ ←$R0ℓ
. Since z = FIP((vi, wi)i∈[n]) =

⟨x,y⟩, it holds that ⟨1ℓ,x ∗ y− z · e0⟩ = ⟨x,y⟩ − z = 0. and hence s0 := x ∗ y− z · e0 ∈ V0,
where e0 = (1, 0, . . . , 0) ∈ Kℓ. Furthermore, since V0 is a linear space, if s is uniformly
distributed over V0, then so is s + s0. In particular, if s, s̃←$V0, then x ∗ y + s and z · e0 + s̃
follow the same distribution. We then have that

View = (ϕ̃a(αT), ϕ̃b(αT), ϕ̃c(αT), ϕ̃s(αT), ϕ̃a′(αT), ϕ̃b′(αT), ã, b̃, z · e0 + s̃),

where ã, b̃←$ Kℓ, s̃←$V0, and ϕ̃a, ϕ̃b, ϕ̃c, ϕ̃a′ , ϕ̃b′ , ϕ̃s←$R0ℓ
. Therefore, we conclude that

View is simulated from z only.
Since players receive four shares of RSSℓ and correlated randomness for two invocations

of FLT, we have CR(ΠIP) = O(log |K|) = O(log n). In the online phase, the protocol invokes
FSum three times and FLT twice, and hence we have BC(ΠIP) = O(ℓ log |K|) = O(ℓ log n).

Fast Secure Computations on Shared Polynomials
and Applications to Private Set Operations
Pascal Giorgi # Ñ

LIRMM, Univ. Montpellier, CNRS, France

Fabien Laguillaumie # Ñ

LIRMM, Univ. Montpellier, CNRS„ France

Lucas Ottow # Ñ

LIRMM, Univ. Montpellier, CNRS, France

Damien Vergnaud # Ñ

LIP6, Sorbonne University, CNRS, France

Abstract
Secure multi-party computation aims to allow a set of players to compute a given function on their
secret inputs without revealing any other information than the result of the computation. In this
work, we focus on the design of secure multi-party protocols for shared polynomial operations. We
consider the classical model where the adversary is honest-but-curious, and where the coefficients
(or any secret values) are either encrypted using an additively homomorphic encryption scheme or
shared using a threshold linear secret-sharing scheme. Our protocols terminate after a constant
number of rounds and minimize the number of secure multiplications.

In their seminal article at PKC 2006, Mohassel and Franklin proposed constant-rounds protocols
for the main operations on (shared) polynomials. In this work, we improve the fan-in multiplication
of nonzero polynomials, the multi-point polynomial evaluation and the polynomial interpolation (on
secret points) to reach a quasi-linear complexity (instead of quadratic in Mohassel and Franklin’s
work) in the degree of shared input/output polynomials.

Computing with shared polynomials is a core component of several multi-party protocols for
privacy-preserving operations on private sets, like the private disjointness test or the private set
intersection. Using our new protocols, we are able to improve the complexity of such protocols and
to design the first variants which always return a correct result.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols; Security and
privacy → Information-theoretic techniques

Keywords and phrases Multi-party computation, polynomial operations, privacy-preserving set
operations

Digital Object Identifier 10.4230/LIPIcs.ITC.2024.11

Related Version Full Version: https://eprint.iacr.org/2024/470

Funding This work was supported by the France 2030 ANR project SecureCompute ANR-22-
PECY-0003, the French ANR SANGRIA project ANR-21-CE39-0006, and the French project
CRYPTANALYSE ANR-22-PECY-0010.

Acknowledgements We would like to thank the anonymous reviewers for their helpful comments.

1 Introduction

Secure multi-party computation (MPC), which dates back to fundamental works by Yao
[36] and Goldreich, Micali, and Widgerson [19], is a family of cryptographic techniques that
enables parties to jointly compute a function over their private inputs while keeping those
inputs confidential. This approach ensures that none of the participating parties need to
reveal any information on their data to one another, yet they can still obtain the desired

© Pascal Giorgi, Fabien Laguillaumie, Lucas Ottow, and Damien Vergnaud;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal; Article No. 11; pp. 11:1–11:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pascal.giorgi@lirmm.fr
http://www.lirmm.fr/~giorgi
https://orcid.org/0000-0002-0489-5134
mailto:fabien.laguillaumie@lirmm.fr
http://www.lirmm.fr/~laguillaum
https://orcid.org/0000-0001-6464-1139
mailto:lucas.ottow@lirmm.fr
https://www.lirmm.fr/lucas-ottow/
https://orcid.org/0009-0007-8382-5233
mailto:damien.vergnaud@lip6.fr
https://lip6.fr/Damien.Vergnaud/
https://orcid.org/0000-0002-2113-3967
https://doi.org/10.4230/LIPIcs.ITC.2024.11
https://eprint.iacr.org/2024/470
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Fast Secure Comp. on Shared Polynomials & Applications to Private Set Operations

computation result. Unconditionally secure MPC protocols were first proposed by Ben-Or,
Goldwasser, and Widgerson [2] and Chaum, Crépeau and Damgård [5]. On the other hand,
several computationally secure protocols have been proposed, relying on many different
techniques, like verifiable secret sharing [8, 15] or linearly homomorphic encryption [12, 9].

In the realm of computer algebra, polynomial evaluation and interpolation algorithms
stand out as versatile tools with applications spanning numerous domains [14]. In 2006,
Mohassel and Franklin [27] proposed several secure MPC protocols for various polynomial
operations where the polynomial coefficients are private inputs of the parties. It is the main
goal of this paper to improve some of their protocols and to illustrate their usability via
several applications to private set operations protocols. All of the presented protocols are
considered in the honest-but-curious model.

1.1 Secure computation on shared data
The computation on shared elements dates back to the works of Ben-Or, Goldwasser, and
Widgerson [2] and Bar-Ilan and Beaver [1]. In the general setting, it involves m players that
want to compute a function (seen as an arithmetic circuit) over secret inputs (that we will
consider as elements of Fq). These secret inputs are assumed to be shared between the parties
before any computation. This can done either via a secret-sharing scheme (such as an additive
secret-sharing scheme or Shamir’s secret-sharing scheme [35], in the information theoretical
model) or via a threshold linearly homomorphic scheme (such as a threshold variant of
Paillier’s encryption [32] or CL encryption [3], in the computational model). Parties can
compute any arithmetic circuit on the shared inputs by combining several basic operations
on the shared data (additions and multiplications). While the work in [2, 1] addresses the
general problem of computing any circuit, many other results have been provided to improve
the efficiency on specific problems [7, 27, 11, 10, 28]. Our work follows the latter line of
research without relying on any specific underlying secret-sharing scheme or any threshold
homomorphic encryption scheme. One of our main objectives is to derive protocols in a
general framework, encompassing both theoretical and computational models, that achieve a
constant number of rounds of communication between each party while minimizing the total
amount of exchanged data.

Let us denote by [x] an element x ∈ Fq that is shared among the parties. In order to
simplify the presentation, we will often assume that our protocols are implemented using a
secret-sharing scheme. Therefore, we will note by [x]j the part of the secret belonging to the
j-th player. Our framework assumes that the players are able to do elementary operations,
such as addition of two shares, scalar multiplication with public value, and multiplication of
two shares, in a constant number of rounds.

In the information-theoretic model, the first two operations do not require any commu-
nication as each player j can just compute individually: [a + b]j = [a]j + [b]j and λ[a]j to get
a share of the results a + b and λa. Computing the product [ab] from the shares of [a], [b] is
trickier, and cannot be done locally. Several interactive solutions exist: the BGW protocol
[2], or Beaver triples [1] offer alternatives which can be both done in a constant number of
rounds.

In the case of threshold linearly homomorphic schemes, the first two operations can
also be done locally on encrypted data, and solutions exist to compute the product of two
encrypted field elements. Finally, our framework further requires that the sharing method
allows for secure constant-round methods to share a constant element (for example to share
the values 1 or 0) and to share a uniformly random (unknown) element.

P. Giorgi, F. Laguillaumie, L. Ottow, and D. Vergnaud 11:3

The complexity measure of our multi-party protocols will be given as the number of
“secure multiplication” in the base field Fq, i.e. multiplication of two shared elements. Since
it is the only operation requiring communication between players, this will express the
communication complexity of our protocols. To guarantee that our protocols still run in
constant-round, we will extensively use parallel executions of constant-round protocols.

We are considering the honest-but-curious model. Therefore, privacy is only a matter of
checking that when a shared value is revealed, the revealed value is uniformly random and
independent of the value of the secret inputs. We achieve security for any of the protocols
presented in this paper as long as the elementary operations presented above (i.e. addition
and multiplications on shared elements of Fq) can be composed in parallel and remain secure.
This follows a long line of work which are based on the same assumptions in secure linear
algebra [1, 7, 31, 24, 10, 28] or in secure polynomial computation [27].

1.2 Toolbox for Secure Polynomial Computation

In their seminal paper, Mohassel and Franklin [27] proposed the very first protocols for
secure polynomial multiplication, division with remainder, and polynomial interpolation.
They considered the scenario in which the coefficients of the involved polynomials, evaluation
points, or values are shared. For a polynomial f =

∑d−1
k=0 fkXk, we denote by [f] a sharing

of the polynomial, that is a collection of sharings of its coefficients [f0], . . . , [fd−1].
The goal of Mohassel and Franklin was to propose efficient protocols with good com-

munication and round complexities. For example, in the case of polynomial interpolation,
assuming that the m parties hold shares (or ciphertexts) of n ≥ 1 pairs ([xi], [yi]) ∈ F2

q for
i ∈ {1, . . . , n} (with xi ̸= xj for i ̸= j), they proposed a protocol with a constant number of
rounds and communication complexity of O(n2) multiplications. Note that this protocol has
remained the most efficient since 2006.

As a first contribution, we present new protocols for efficient and secure operations on
shared polynomials. Our model is identical to the one used by Mohassel and Franklin.
In particular, our proposals can be implemented using a threshold linearly homomorphic
encryption scheme (and in this case achieve semi-honest computational security) or using
threshold linear secret sharing (and achieve then semi-honest information-theoretic security).

Our protocols are parameterized by an integer constant τ . Our protocols have a number
of rounds proportional to τ and they achieve a quasi-optimal communication complexity, i.e.
exponential in 1 + 1/τ . More precisely:

We present a first protocol (FastPolyFanIn) where the parties are given shares of n

non-zero polynomials [f1], . . . , [fn] in Fq[X] of degree less than d and compute shares of
the polynomial [f1×· · ·×fn] of degree at most nd. Mohassel and Franklin [27] proposed a
constant-round protocol with communication complexity of O(n2d) multiplications. Our
improved protocol has communication complexity of only O(τn1+1/τ d) multiplications
and O(τ) rounds.
Our second protocol (FastEval) allows the parties sharing a polynomial [f] ∈ Fq[X]
of degree at most n and shared points [α1], . . . , [αn] in Fq to compute shares of the n

evaluations [f(α1)], . . . , [f(αn)]. This protocol achieves communication complexity of
O(τn1+1/τ) multiplications and O(τ) rounds. The previously best-known protocol has
communication complexity O(n2), see [10].
Our third protocol (FastInterpol) performs polynomial interpolation on shared val-
ues (as in Mohassel-Franklin protocol), with communication complexity of O(τn1+1/τ)
multiplications and O(τ) rounds.

ITC 2024

11:4 Fast Secure Comp. on Shared Polynomials & Applications to Private Set Operations

Table 1 Summary of our improvements on operations on shared polynomials (n is the number of
polynomials for unbounded fan-in multiplication, d bounds the degree of the polynomials and τ is a
predetermined constant).

Our work Mohassel-Franklin ([27])
Unbounded fan-in mult. O(τn1+1/τ d) O(n2d)
Multi-point evaluation O(τn1+1/τ) O(n2)

Interpolation O(τn1+1/τ) O(n2)

All of our protocols are perfectly correct, i.e. the result is always computed correctly.
Furthermore, they are valid in the semi-honest (i.e. honest-but-curious) model. Table 1
summarizes the communication complexity of our protocol compared to existing ones in
[27]. Our protocol for unbounded fan-in multiplication of shared polynomials can be used
straightforwardly to compute the unbounded fan-in multiplication of n shared elements
[x1], . . . , [xn] of Fq that are not necessarily invertible (i.e. some elements might be zero).
This is achieved by setting [f1] = [X − x1], . . . , [fn] = [X − xn] and extracting the constant
coefficient of the product [f1 . . . fn]. This protocol is already mentioned in [7], but it did
not improve upon the more general approach of Bar-Ilan and Beaver [1] yielding a constant
round protocol with a communication complexity of O(n2) secure multiplications. Thanks
to our new result, the latter operations can now be achieved in constant rounds but with
O(τn1+1/τ) secure multiplications.

1.3 Applications to Private Set Operations
As a second contribution, we show that our secure polynomials computation framework can
serve to improve protocols on the so-called privacy-preserving set operations (PSOs), in
particular for the general multi-party case involving more than two players.

The setting of PSOs is the following: each participant owns its private input set. The
goal is to privately compute a predetermined function on these input sets while revealing no
information about each set. We will focus here on some of the most classical functions on
the intersection: emptiness, cardinality, weighted sum, or simply revealing the intersection
set itself, eventually according to a certain threshold size. Private Intersection Set (PSI) is a
crucial tool in privacy-preserving data analysis and collaborative applications where multiple
parties want to discover shared interests, overlaps, or common elements in their datasets
without revealing the specific items in their sets.

Many algebraic approaches, mostly based on cryptographic assumptions, allow to provide
efficient solutions for this problem. In particular, one can either rely on homomorphic
encryption [13, 25] or on oblivious linear evaluation [17, 16] to achieve many of PSO
functionalities. Some of the results, notably on PSI, have been also proposed without any
cryptographic assumptions, achieving security under the information-theoretic model. Note
that all these methods rely on the natural representation of a set {α1, . . . , αn} ⊂ Fq by the
degree-n polynomial f(X) = (X − α1)× · · · × (X − αn) which allow for instance to recover
the intersection as the greatest common divisor of many polynomials. It is then very natural
to rely on our protocol for distributed secure polynomial computation for dealing efficiently
with PSOs.

We shall mention that PSI is an intensively studied topic and many other methods,
not only algebraic, have been designed. We refer the reader to [29] for a nice survey on
the numerous approaches to the PSI problem. While we are only interested in specific
function on the intersection set, the general circuit-PSI problem [33, 34] allows to evaluate

P. Giorgi, F. Laguillaumie, L. Ottow, and D. Vergnaud 11:5

Table 2 Summary of the communication complexities, in terms of secure multiplication, for
Private Disjointness Test protocols. It is assumed that each player hold a set of n entries, and that
τ is a pre-determined constant.

Comm. Rounds # players Uncond.
Ye et al. [37] O(n2) O(1) 2 Yes

Couteau et al. [6] O(n) O(1) 2 No
Chandran et al.[4] O(mn log2(m)) O(log(m log n)) m No

Sathya Narayanan et al. [30] O(mn2) O(log(mn)) m Yes
Ours (section 4.1) O(mn + τn1+1/τ) O(τ) m Yes

any function given as a circuit on the intersection set. This generic problem received also a lot
of attention, and some protocols might yield the best solution for a particular computation,
e.g. testing the emptiness of the intersection set in the multi-party setting [4].

1.3.1 Constant-round multi-party protocol for Private Disjointness Test
Testing the emptiness of the intersection set is called Private Disjointness Test (PDT)
in the literature and many secure protocols have been proposed to deal efficiently with
PDT. The seminal work of Freedman, Nissim and Pinkas [13] proposed the first efficient
solutions to both the two-party and the multi-party setting. Their protocols are secure
against semi-honest adversaries or even malicious in the random oracle model. Their work
has been further improved in [23, 21] notably to remove the random oracle hypothesis in
the two-party setting. While the proposed protocols are efficient in terms of communication
between the parties, the high depth of the protocol makes the need for a linear number of
rounds of communication in the input sets’ sizes.

The first constant round protocol for PDT is due to Ye et al. [37] for both honest-but-
curious and malicious adversary cases. Unlike the previous two-party protocols, their protocols
are unconditionally secure and only require communication complexity that is quadratic in
the input set size. This result is improved under computational assumption by Couteau,
Peters, and Pointcheval [6] who provide a two-party protocol for PDT achieving constant
round, linear communication complexity and being secure against malicious adversaries.

While many works have studied PDT in the two-party setting, only very few works have
been done in the multi-party setting, notably after the seminal work of Ye et al. [37]. Only the
work of Sathya Narayanan et al [30] mentioned a dedicated protocol for PDT for more than
two players. The given protocol is unconditionally secure against a semi-honest adversary,
and it requires a logarithmic number of rounds and a quadratic number of communications
in the input sets’ size. One can achieve a similar result under a computational assumption
(from oblivious transfer and cuckoo hashing) using the circuit-PSI protocol from [4], but
with a number of rounds that is only double-logarithmic in the input sets’ size.

While the challenge of designing constant round protocol having only a linear number of
communication in the input sets’ size is almost done in the two-party setting, the question
remains open for the multi-party setting. By using our new multi-point evaluation protocol,
we are able to propose an unconditionally secure constant-round protocol, against a semi-
honest adversary, that achieves quasi-linear communication complexity in the input sets’ size.
More precisely, assuming the m players all hold a set of n elements, our protocol achieves a
communication complexity of O(mn + τn1+1/τ) multiplications and O(τ) communication
rounds, where τ is any non-zero integer constant given to the protocol. Table 2 summarizes
the different complexity, security, and number of players for the best-known protocol for
PDT in this setting.

ITC 2024

11:6 Fast Secure Comp. on Shared Polynomials & Applications to Private Set Operations

One can see that our protocol is the first to achieve a constant number of rounds in the
multi-party setting. Furthermore, it achieves the lowest number of communications under
unconditional security. While our communication cost might be more important than the
circuit-PSI approach [4] in some cases, the size of the exchanged data will remain in a small
Fq, say of size n, which should make a difference in practice compared to the larger fields of
[4] required to reach the desired computational security.

We shall mention that our solution as well as all the previous works on PDT may produce
an incorrect result, depending on the chosen implementation. In our case, this probability
is negligible if the size of each set n is negligible compared to the domain size q. Moreover,
this probability is one-sided, and having a wrong result does not reveal information about
the inputs. Therefore, the protocol can be repeated to exponentially decrease the error
probability.

1.3.2 A general framework to solve PSOs without any error probability
Among the Private Set Operations, Private Set Intersection has been the most studied since
its introduction by Freedman, Nissim, and Pinkas in [13]. As for PDT the authors propose
efficient protocols for both the two-party and the multi-party PSI, achieving security under
the semi-honest adversary model or the malicious one. However, their protocol does not
achieve a constant number of rounds of communication. Li and Wu provide in [26] the first
constant-round protocol for PSI, and their protocol is unconditionally secure both with
semi-honest and malicious adversaries, but the communication complexity is not yet optimal.
Following a similar idea as [13], Hazay and Venkitasubramaniam propose the first protocol
achieving constant-round and a linear communication complexity, under the computational
model only.

Kissner and Song [25] extend multi-party protocols on sets beyond PSI notably by
computing some other functions on the input sets.: e.g. union, element reduction, and
intersection cardinality. In the Cardinality Set Intersection problem, the goal is to compute
the number of elements in the intersection while not revealing other information on the
intersection set. The protocol in [25] requires some cryptographic assumption and it involves
a linear number of rounds of communication in the input sets size. The article [30] mentioned
a first solution for Cardinality Set Intersection with unconditional security under passive
and active adversaries, achieving a logarithmic number of communication rounds.

T-PSI (Threshold Private Set Intersection) is a variant of PSI in which the intersection
is revealed only if its size surpasses a given threshold t. Gosh and Nilges present in [16] a first
solution for Threshold-PSI in the multi-party setting. Their protocol is based on Oblivious
Linear Evaluations and achieves unconditional security against malicious adversaries. The
communication complexity of their protocol remains however quadratic in the size of each
input set. In the two-party case, by using cryptographic assumption (namely the existence
of fully homomorphic encryption), Ghosh and Simkin [17] managed to achieve a sub-linear
communication complexity, i.e. the number of communications is quasi-linear in the number
of elements that differ between the two sets. This result was extended to the multi-party
setting in [18] using other cryptographic assumptions (the existence of linear homomorphic
encryption and obvious transfer).

One of the most recent problems with private sets is the Private Intersection Sum problem.
The setting, introduced in [22], is that one party has a set of elements together with some
weight for each element, and he wants to compute the sum of the weight of all elements
in common with a set of another party, of course without learning which elements are in
common. The protocol proposed in [22] achieves security only in the computational model
and for the two-party case. To our knowledge, no specific construction for this problem exists
neither in the information-theoretic setting nor for more than two parties.

P. Giorgi, F. Laguillaumie, L. Ottow, and D. Vergnaud 11:7

Unlike PDT, all of these contributions achieve a constant number of rounds and an
optimal number of communications. However, the proposed protocols are not always secure
under the information-theoretic setting, and all of them may fail to produce a correct result.
Our work aims at bridging the gap to always achieve security without any cryptographic
assumptions and to provide protocols designed for more than two parties, and that are
perfectly correct (i.e. no incorrect result can be computed).

Here again, we show that by re-using our multi-point evaluation protocol together with
some techniques that enable us to securely deal with boolean formula [11] we can achieve
a general framework for PSOs that yields constant-round protocol without any incorrect
result. As our solution embraces our generic MPC framework, the results are valid for the
computational as well as the information-theoretic model. More precisely, we achieve a
communication complexity of O(τmn1+1/τ + mn log n log log n) secure multiplications for
PSI, PDT, Cardinality Set Intersection, Threshold-PSI and Private Intersection Sum.

2 Technical overview

In this section, we present a brief overview of the techniques used in our protocols. This
covers protocols on shared polynomials and for private set operations. We only focus on the
main ideas of how the protocols work, and we give the full technical details in later sections.
Without further assumption, the number of parties in the protocols will always be m.

2.1 Fast operations on shared polynomials
In section 3, we present new constant-round protocols for the unbounded fan-in multiplication
of polynomials, multi-point evaluation, and interpolation involving only shared data. Our
approach has some similarities with the work of Mohassel and Weinreb from [28] to lower
the number of communications for secure linear algebra operations. More precisely, our
approach allows us to choose any constant parameter τ ∈ N∗ and provides a quasi-optimal
communication complexity, i.e. exponential in 1 + 1/τ , while achieving a constant number of
rounds of O(τ). Our improvement is based on the observation that the studied operations are
strongly regular and thus can be decomposed into several instances of the same problem with
smaller entries. Therefore, applying a generalized divide and conquer approach, i.e. splitting
the problem of size accordingly to τ , and using existing protocols on sub-instances suffices to
improve the communication complexity. For the sake of clarity, we will only present the idea
behind our protocol for the case τ = 2 in this technical overview. All the technical details
and the more general approach for any τ is postponed to section 3.

2.1.1 Unbounded fan-in multiplication of polynomials
Let [f1], . . . , [fn] be n shared non-zero polynomials in Fq[X] of degree < d. Parties want to
compute shares of the polynomial [f1 × · · · × fn] of degree < nd. Mohassel and Franklin
proposed in [27] a constant round protocol to compute such a product with O(n2d) secure
multiplications in Fq. We must mention that the complexity is quadratic in n because the
protocol uses O(n) products in an extension field of Fq of degree nd. Our goal here is to
perform most of the computation in smaller extension fields to reduce the complexity.

Assuming that n is a perfect square, one may remark that dividing the computation in√
n sub-products of

√
n polynomials allow us to reach a better complexity. Indeed, parties

can compute in parallel each sub-product of
√

n polynomials with
√

n calls to the protocol of
Mohassel and Franklin [27] for a total cost of O(n1.5d) secure multiplication in Fq. To finish

ITC 2024

11:8 Fast Secure Comp. on Shared Polynomials & Applications to Private Set Operations

the computation, parties have to multiply
√

n shared polynomials of degree less than
√

nd.
Again this can be achieved by one call to the protocol from [27] for a cost of O(n1.5d) secure
multiplication in Fq. We thus reduce the number of secured multiplication by

√
n while

we only double the number of rounds. We can generalize this idea to any fixed parameter
τ ∈ N∗ in order to replace

√
n with n1/τ and then achieve a number of secure multiplication

of O(n1+ 1
τ) and O(τ) rounds. Indeed, the explanation corresponds to the particular case of

τ = 2, but grouping the products by chunks of size n
1
τ at each step would only require τ

steps to get the result.

2.1.2 Multi-point evaluation
Let [f] be a shared polynomial in Fq[X] of degree < n and [α1], . . . , [αn] be shared of points in
Fq. Parties want to compute the shares of the n polynomial evaluations [f(α1)], . . . , [f(αn)].

In the case that parties want to evaluate [f] at a single shared point [α], they can rely on
[10] to have a secure protocol that is constant-round and that has a linear communication
complexity in the degree of f . Note that the protocol heavily relies on unbounded fan-in
multiplication of 2× 2 matrices in order to guarantee that no leakage occurs when [α] = [0].
No previous works have considered the simultaneous evaluation on a shared set of points, and
to the best of our knowledge, the single points approach from [10] remains the most efficient
for that case. In particular, this yields a constant-round protocol with a communication
complexity of O(n2) for evaluating f on a set of n shared points.

Instead of relying on computing powers of the [αi] as in [10], our approach relies on the
polynomial division of f by well-chosen polynomials. It is fairly classical that [f(αi)] = [f
mod (X − αi)] (see [14]). Here, we exploit the constant-round protocol for the polynomial
division of Franklin and Mohassel [27] that only requires a linear number of secure multi-
plications according to the dividend size. Unfortunately, applying straightforwardly this
protocol for the division of f by each (X−αi) would also require O(n2) secure multiplications.
Instead, we will re-use our unbounded fan-in multiplication protocol to compute the product
of the n polynomials (X − αi). Together with this product, we can obtain for free the

√
n

intermediate sub-products computed by the protocol (corresponding to the splitting of the
result into

√
n products of degree

√
n). There, we can reduce the polynomial [f] modulo all

these intermediate polynomials at a cost of
√

n call to the division protocol of [27], yielding a
communication complexity of O(n1.5) secure multiplications. Finally, we can further reduce
these

√
n distinct polynomials of degree less than

√
n modulo the corresponding (X − αi).

Here again this can be done with only O(n1.5) secure multiplications since each reduction
modulo one (X − αi) costs O(n0.5).

To generalize this approach for any value of τ , we will exploit the general divide-and-
conquer strategy of our unbounded fan-in multiplication protocol. In particular, we will reduce
the polynomial [f] modulo all the intermediate polynomials computed in our unbounded
fan-in multiplication protocol, using a breadth-first browsing of the τ -ary tree.

2.1.3 Interpolation
Given 2n shared elements [α1], . . . , [αn] and [y1], . . . , [yn] in Fq such that α1, . . . , αn are
distinct, parties want to compute the shares of [f] such that f is the unique polynomial
in Fq[X]<n such that yi = f(αi) for 1 ≤ i ≤ n. Franklin and Mohassel [27] proposed
a constant-round protocol for this operation that requires O(n2) secure multiplications.
Their idea is to use Lagrange interpolation to compute f =

∑n
i=1 yiLi(X)/Li(αi), where

L =
∏n

i (X − αi) and Li = L/(X − αi). Therefore, using constant-round protocols for

P. Giorgi, F. Laguillaumie, L. Ottow, and D. Vergnaud 11:9

unbounded fan-in polynomial multiplication, euclidean division, and field element inversion
suffices to reconstruct f . Unfortunately, this approach requires O(n2) secure multiplication
since most of the tasks boil down to n calls to a protocol that requires a linear number of
multiplications, i.e. n divisions involving the polynomial L or the n polynomial evaluations
Li(αi).

To remove the need to compute the terms depending on the Lis, we use the classical
remark that f/L =

∑n
i=1 ci/(X − αi) where ci = yi/L′(αi) and L′ is the derivative of L.

First, we compute L and then the ci’s using our previous protocols for unbounded fan-in
multiplication of polynomials and multi-point evaluation. This is done in constant round
with O(n1.5) secure multiplications (using τ = 2). Then, we reconstruct the numerator of
the fraction f/L in two steps, using a similar splitting strategy as in our previous protocols.
First, we compute

√
n different sums of

√
n fractions of the form ci/(X − αi).

Let us define the polynomial P1,1 =
∏√

n
l=1(X − αl). We can remark that the follow-

ing equality holds
∑√

n
i=1 ci/(X − αi) = (1/P1,1)

∑√
n

i=1 ciP1,1/(X − αi) and that G1,1 =∑√
n

i=1 ciP1,1/(X − αi) is a polynomial of degree <
√

n.
This equality extends naturally to all the

√
n sums, and we thus can define the resulting

fractions as G1,1/P1,1, . . . , G1,
√

n/P1,
√

n. One may remark that computing numerators of
these fractions amounts to taking linear combinations of the quotient of P1,i/(X−αj), which
are exactly the same quotients as in the multi-point evaluation of L at the αi’s (second step).
This step costs exactly O(n1.5) secure multiplication remarking that there is a total of n

linear combinations of polynomial of degree less than
√

n.
As a second step, we write f =

∑√
n

j=1 G1,j
L

P1,j
where L/P1,j are polynomials of degree

exactly n−
√

n. It thus remains to perform
√

n products of polynomials of degree at most
n and sum the results. Using the division and multiplication protocols of Mohassel and
Franklin [27], both steps can be done in constant rounds with O(n1.5) secure multiplications.
Altogether, we obtain a constant round protocol with O(n1.5) secure multiplications.

As before, splitting every computations in chunks of size n
1
τ implies O(τ) rounds, yielding

a protocol with communication complexity O(τn1+ 1
τ).

2.2 Private set operations
We present in section 4 our solutions to many variants of the PSI problem using our fast
protocols on shared polynomials. In these problems, m parties have the respective sets
A1, . . . ,Am ⊆ Fq of size n each and wish to compute some function of the intersection, i.e.
f(

⋂m
i=1Ai) for a predetermined function f . Following the seminal work of [13], the main

algebraic approaches in the literature rely on encoding the parties’ sets as polynomials. Let
a set A ⊆ Fq, one can define PA(X) =

∏
α∈A(X − α) to be an encoding of A. Each party

can then compute locally its own polynomial Pj = PAj
for all 1 ≤ j ≤ m, and engage in a

constant round protocol to distribute shares of all these polynomials. From there, parties
would have to compute the gcd of these shared polynomials to get a representation of the
intersection, and then apply some computation on this gcd to get the desired result.

2.2.1 Constant-round protocol for Private Disjointness Test
Our first contribution concerns the PDT problem where the m parties want to know
whether the intersection set is empty or not. We revamp a technique from [25] and [26]
that uses a property on the gcd of many polynomials [14, Section 6.9]. More precisely, let
G = gcd(PA1 , . . . , PAm), and R =

∑
j RjPAj where the Rj ’s are random polynomials of

degree at most n in Fq[X]. Therefore, we have that G = gcd(R, PAj
) for 1 ≤ j ≤ m with

ITC 2024

11:10 Fast Secure Comp. on Shared Polynomials & Applications to Private Set Operations

high probability. The protocols of [25] and [26] aim at computing the polynomial R and
making it public so that any party can compute locally the intersection set. Since the Rj are
random polynomials, the security relies on the fact that R will not be distinguishable from
any degree-n polynomial in the polynomial ideal ⟨G⟩.

For PDT we cannot afford to make the polynomial R public. Indeed, every party
would then learn the intersection and this leaks more information than the emptiness
of the intersection. However, we can keep this polynomial R private and use our fast
protocol on shared polynomials to perform the computation. More precisely, let us define
[R] =

∑m
j=2[rj][PAj

] where rj are nonzero random elements from Fq. This polynomial R is
an encoding of the intersection set between the parties (2, . . . , m) with high probability. It
is sufficient to ask the first party to share its elements [αj] such that αj ∈ A1 among all
the participants. Our protocol for PDT consists of evaluating the polynomial [R] on all the
[αj], multiplying these evaluations, and checking whether the product is zero or not. All the
steps are constant round and only need O(mn + τn1+1/τ) secure multiplications using our
multi-point evaluation protocol from Section 3.

As for many of the algebraic solutions to PDT, our approach may fail to produce a correct
answer. Indeed, the polynomial R may contain roots that are not in the intersection while
being an element of the set A1. This could happen with probability at most n/q. By taking
a domain size q that is way larger than the size of the sets n, this probability is negligible.
Moreover, as the error is one-sided, parties can decide to repeat the protocol several times to
further lower the probability of an incorrect result.

2.2.2 Perfectly correct protocol for Private Set Operations
As seen in Section 1.3.2 most of the known protocols for PSO are constant round with an
optimal communication complexity of O(mn) secure multiplications. However, similarly to
our previous approach for PDT, the result may be incorrect due to the use of randomization:
e.g. either because of sampling polynomial in the polynomial ideal defined by the intersection
polynomial [26, 17] or because hashing technique may have collisions [13, 20]. One may ask
whether it would be possible to have a protocol with similar complexities, i.e. constant round
and linear communication, that always returns a correct output.

Our protocol in section 4 is a first step toward achieving such a result. In particular,
we achieve most of the PSO functionalities without any errors, using a constant number of
rounds and a sub-linear communication complexity of O(mn1+ 1

τ + mn log n log log n) for any
integer τ > 0. Our method somehow generalizes the idea in [13, 20] to the multi-party case
without having to call any two-party protocol. Here again, we ask the first party to share its
set of elements with the other parties, and each of the other parties shares their elements
encoded as a polynomial. From there, we can use our multi-point evaluation protocol to
evaluate all parties’ polynomials (except party one) over all the elements of the first party
(or any designated party by the protocol).

Then, we convert all these evaluations into shared booleans using protocols from [11].
These booleans indicate if Pj evaluates to 0 on the i-th element of the first party (for
1 ≤ i ≤ n and 1 ≤ j ≤ m). Since manipulations of these shared booleans are not too difficult
(as explained in [11]), this allows us to solve many problems related to PSI in the claimed
complexities. From this, it is straightforward to compute the logical AND of these booleans
(see [11, Section 5.1]). The result is the booleans [bj], which indicate if the jth element
of the first player is in the intersection. From this, it is easy to compute the solution to
many problems, in a complexity that is smaller or equal to the complexity of the previous
steps. We give here a few examples. The solution to PSI can be computed as

∏
[Qj] where

P. Giorgi, F. Laguillaumie, L. Ottow, and D. Vergnaud 11:11

[Qj] = [bj(X −αj) + (1− bj)] (Qj = X −αj if the jth element αj of the first player is in the
intersection and Qj = 1 otherwise). The solution for PDT can be computed as

∧
bj . The

solution to Cardinality Set Intersection can be computed as
∑

[bj]. The solution to Private
Intersection Sum can be computed as

∑
[bj][yj]. See table 3 for a summary of how to solve

these problems using the shared booleans [bj].

3 Fast operations on shared polynomials

This section is devoted to new protocols for classical operations on shared polynomials that
require a constant number of rounds and an almost optimal communication complexity. This
follows the work of Mohassel and Franklin in PKC’06 [27] that first proposed such optimal
protocols for the multiplication or the Euclidean division of shared polynomials. While
their work also improved on the generic constant-round approach of Bar-Ilan and Beaver
[1] for the interpolation, unbounded fan-in multiplication, and gcd on shared polynomials,
the obtained communication complexity is not yet optimal. In the next sections, we will
provide new constant-round protocols with almost optimal communication complexity, i.e.
quasi-linear in the degree of shared input/output polynomials. This concerns the unbounded
fan-in multiplication of shared polynomials and the multi-evaluation or the interpolation for
polynomials on sets of points that are all shared.

3.1 Technical background
We begin by presenting some existing techniques that we need in our results. All of the
following ideas are presented in either [1], [7] [27] or [10]. In particular, the protocols
specifically designed for polynomials are results from [27]. All of these techniques are secure
and in a constant number of rounds.

Generating a random invertible field element. This protocol generates a shared non-zero
element [y] of Fq (whose value is hidden from the players). This is done by generating two
(unknown) shared elements of Fq, multiplying them together securely, and revealing the result.
If it is invertible, then one of the elements is taken as the result, otherwise, parties rerun
the protocol. This protocol fails with probability at most 2/q, so it only takes a constant
number of secure multiplications (except with negligible probability). In our protocol, we
denote this operation as “[y] $← F∗

q”. Note that this can also be used for generating invertible
matrices of constant size.

Inversion of an invertible field element. To invert an invertible shared element [x] ∈ F∗
q ,

parties can use the previous technique to generate [y] $← F∗
q , compute [z] = [x][y] and reveal

its value. Lastly, each participant can locally compute their share of [x−1] = z−1[y]. It
only takes a constant number of secure multiplication. Note that this can also be used for
inverting invertible matrices of constant size.

Unbounded fan-in multiplication of invertible field elements. Multiplying n shared
invertible elements [x1], . . . , [xn] cannot be done in a naive way in a constant number of
rounds. To compute the product in MPC, parties generate n random invertible elements
[r1], . . . , [rn] in parallel, as well as their inverse. Then, they compute in parallel [p1] = [x1][r1]
and [pj] = [r−1

j−1][xj][rj] for 2 ≤ j ≤ n. The values of the pj ’s are then revealed and everyone
can compute their share of

[∏
xj

]
=

(∏
pj

)
[rn]. This requires 2n− 1 secure multiplications

ITC 2024

11:12 Fast Secure Comp. on Shared Polynomials & Applications to Private Set Operations

in total. Note that this protocol can also be used for computing the shared product of
invertible matrices and that every prefix of the total product can be computed as a sharing,
by locally computing

[∏k
xj

]
=

(∏k
pj

)
[rk]. We denote this protocol as FanInMul.

Powers of any field element. This cannot be done directly using FanInMul with all
multiplicand being the same shared element [x] if [x] might be zero. Indeed, when computing
powers of [0], the protocol would leak that information when revealing the products of the
pj ’s. To overcome this problem, Cramer, Kiltz and Padró in [10, Section 3] replaced x by an
invertible 2× 2 polynomial matrix M(x) whose powers are related to Chebyshev polynomials
of the first kind. Their method to compute shared powers consists then essentially in applying
FanInMul to M(x) and then carrying out public linear operations corresponding to the
change of basis between the Chebyshev basis and the monomial one. Note that this latter
step does not require any communication. The resulting protocol requires O(n) secure
multiplications. From there, they can evaluate a publicly known or shared polynomial of
degree n in a shared point [x] in the same complexity.

Product of two polynomials. Multiplying two shared polynomials of degree n in Fq[X]
naively would require O(n2) secure multiplications in Fq. Mohassel and Franklin [27, Section
3] proposed a protocol in O(n) instead, by noting that evaluating and interpolating a
shared polynomial on public and pre-agreed points does not require any communication. It
therefore suffices to evaluate both polynomials on 2n + 1 public points, securely multiply the
evaluations on each point in parallel, and interpolate the resulting polynomial. Overall, only
2n + 1 = O(n) secure multiplications are performed. Using this protocol makes it possible to
compute secure multiplication on shared elements of an extension field of Fq of degree n in
O(n) secure multiplications in Fq. This protocol needs that parties first agree on a public
quotient polynomial, ensuring that modular reduction can be done with linear communication.
We denote the protocol for polynomial multiplication over Fq[X] by Poly2Mult.

Euclidian division of polynomials. Mohassel and Franklin described in [27, Section 4] a
protocol to compute shares of the quotient and remainder of two shared polynomials [f] and
[g] with d = deg f ≥ deg g. The main idea is to adapt the classical fast division approach
[14, Section 9] to the shared setting. Notably, this is achieved by re-using the protocol for
inverting group element of [1] to the case of the multiplicative subgroup Fq[X]/Xt, i.e. when
computing shared reverse polynomial of the quotient, and to use their subsequent protocol
Poly2Mult. The division protocol requires a total O(d) secure multiplications in Fq, and
we denote it by PolyDiv.

Unbounded fan-in multiplication of non-zero polynomials. Given n non-zero polynomials
[f1], . . . , [fn] of degree less than d, Mohassel and Franklin proposed in [27, Section 5] a
protocol to compute

[∏
fj

]
in constant-round, achieving the best-known complexity to

date. This method boils down to using protocol FanInMul in an extension field of degree
at least n × d and considering the polynomials as elements of this larger field. Since the
protocol FanInMul requires O(n) secure multiplications in this extension field, each of
them requires O(nd) secure multiplications in Fq, thus the whole protocol requires a total of
O(n2d) secure multiplications in Fq. We note that this protocol imposes all parties to agree
on a predetermined irreducible polynomial of degree nd. We suppose that such a polynomial
can be predetermined outside any call of this protocol and thus no communication complexity
will be counted for its computation. We denote this protocol by PolyMult.

P. Giorgi, F. Laguillaumie, L. Ottow, and D. Vergnaud 11:13

3.2 Unbounded fan-in multiplication of polynomials
Let [f1], . . . , [fn] be n shared non-zero polynomials in Fq[X] of degree < d. Parties want to
compute shares of the polynomial [f1 × · · · × fn] of degree < nd. Without loss of generality,
we assume that n = λτ for an integer λ (the extra padding required to achieve this only
adds a size negligible in n). Our approach consists in computing in parallel sub-products of
exactly λ polynomials of increasing degree < λid for i ∈ [0, . . . , τ − 1]. For this, we define
in definition 1 the polynomial products Pi,j that we need to compute and that follow the
following recursive definition. Lemma 2 bounds the degree of those polynomials. See the
appendix for a proof of lemma 2.

▶ Definition 1. Let Pi,j be a polynomial of Fq[X] defined such that :
P0,j = fj for 1 ≤ j ≤ n, and Pi,j =

∏λ
l=1 Pi−1,(j−1)λ+l for 1 ≤ i ≤ τ, 1 ≤ j ≤ λτ−i.

▶ Lemma 2. For 0 ≤ i ≤ τ and 1 ≤ j ≤ λτ−i, the polynomial Pi,j is of degree less than λid.
Moreover, we have

∏λτ−i

j=1 Pi,j =
∏n

j=1 fj for 0 ≤ i ≤ τ .

From this lemma we notice that Pτ,1 =
∏n

j=1 fj . We are then able to define a protocol
that computes the shared polynomial [Pτ,1] in O(τ) rounds. At each step, starting from step
i = 1, parties compute in parallel all the shares of [Pi,j] from the shares of [Pi−1,j] obtained
in the previous steps. The protocol FastPolyMult is described below as well as theorem 3
ensuring the correctness, security, and complexity of the protocol. The proof is available in
the appendix.

Algorithm 1 FastPolyMult.

Input: n shared non-zero polynomial [f1], . . . , [fn] in Fq[X]<d, and τ ∈ N∗

Output: shares of polynomial
[∏n

i=1 fi

]
1 for i from 1 to τ do

In parallel, players compute for 1 ≤ j ≤ λτ−i:
[Pi,j] =

∏λ
l=1[Pi−1,(j−1)λ+l] ▷ PolyMult

end
2 return [Pτ,1]

▶ Theorem 3. FastPolyMult is correct, secure and requires O(τ) rounds of communications
and O(τn1+ 1

τ d) secure multiplications in Fq.

Note that in this protocol, the shared polynomials [Pi,j] can be also returned as output.
Notably, we will use these polynomials in the next section to improve the multi-evaluation of
a shared polynomial on a shared set of points.

We note that the protocol FastPolyMult can be used to achieve faster unbounded fan-
in multiplication of n shared (possibly zero) elements [x1], . . . , [xn] of Fq. One can use
the technique from [10] to construct a constant-round unbounded fan-in multiplication
protocol having a linear communication complexity. However, such protocol only works
with elements from the subgroup F∗

q . In order to allow elements from Fq one must rely
on the generic framework of Bar-Ilan and Beaver [1], but this comes with an expense of
O(n2) communications. In [7, Section 6.4], the authors suggest an alternative that is to
compute shares of the polynomial

∏
(X − xi) and get its constant term which is (−1)n

∏
xi.

Parties then simply need to multiply this shared coefficient by a publicly known constant to
obtain the desired product. Thanks to our new protocol for unbounded fan-in multiplication
of polynomials, we are now able to tackle this task with an almost linear communication
complexity, improving on any previously known methods.

ITC 2024

11:14 Fast Secure Comp. on Shared Polynomials & Applications to Private Set Operations

We shall mention that our strategy which consists to use a generic divide-and-conquer
strategy with a depth of τ can also be applied to the approach of Bar-Ilan and Beaver. Their
idea consists of replacing the multiplication of two field elements by a constant number of
3× 3 non-zero matrix products. This yields a new unbounded fan-in multiplication problem
with a similar number of terms but with constant-size matrices instead of field elements.
Those products can of course be gathered similarly to our polynomials Pi,j , hence obtaining
also a communication complexity of O(τn1+ 1

τ).
Computing the same operations with potentially zero polynomials in the same multiplic-

ation complexity remains an open question. To our knowledge, the best currently known
method is to consider the input polynomials as elements of a field extension of degree nd, and
then to either use FastPolyMult on polynomials whose coefficients are in the field extension
or to use the approach of Bar-Ilan and Beaver coupled with our generic divide and conquer
strategy in the field extension. Both methods require O(τn2+ 1

τ d) secure multiplications to
compute the product of n potentially zero polynomials of degree less than d.

3.3 Polynomial evaluation on shared set of points

Let [f] be a shared polynomial in Fq[X] of degree < n and [α1], . . . , [αn] be shared of points in
Fq. Parties want to compute the shares of the n polynomial evaluations [f(α1)], . . . , [f(αn)].

Assuming that n is a perfect square, we can replace the n evaluations of f with n

evaluations of polynomials of degrees less than
√

n. Indeed, let P1,1 =
∏√

n
l=1(X − αl) and

R1,1 = f mod P1,1 we have that f(αl) = R1,1(αl) for 1 ≤ l ≤
√

n. The same kind of
relation holds for all polynomials R1,j = f mod P1,j where P1,j follows Definition 1 with
τ =
√

n and fj = (X − αj), i.e. P1,j =
∏j

√
n

l=(j−1)
√

n+1(X − αl) for 1 ≤ j ≤
√

n. Using our
protocol FastPolyMult we can compute the shared polynomials [P1,1], . . . , [P1,

√
n] in constant-

round with only O(n1.5) secure multiplications in Fq. Computing the shared polynomials
[f mod P1,1], . . . , [f mod P1,

√
n] amounts to the same complexity and rounds by using

√
n

calls to the protocol PolyDiv, i.e. each division involves f and a polynomial of degree
√

n.
To conclude the computation, parties have now to take every shared polynomial [f mod P1,j]
of degree <

√
n and to reduce each of them modulo the corresponding linear polynomials

(X − αk). This amounts to exactly n calls to protocol PolyDiv with a dividend of degree
<
√

n and a divisor of degree 1. This final step also costs O(n1.5) secure multiplications in
Fq, and it is also constant-round. This idea generalizes by assuming n = λτ for τ ∈ N∗. We
can define the polynomial Pi.j as in Definition 1 where fj = (X − αj). Let us also define the
polynomials Ri,j as follows, which satisfy a recurrence relationas stated in lemma 4. A proof
for lemma 4 is avaible in the appendix.

▶ Lemma 4. Let Ri,j = f mod Pi,j be a polynomial of Fq[X]. These polynomials satisfy the
following recurrence relation:
Rτ,1 = f, and Ri,j = Ri+1,⌈j/λ⌉ mod Pi,j for 0 ≤ i ≤ τ − 1 and 1 ≤ j ≤ λτ−i.

One may remark from the definitions of the polynomials Ri,j that R0,j = f mod (X−αj) =
f(αj) for 1 ≤ j ≤ n. We can thus obtain a protocol in O(τ) rounds by first computing the
shares of the polynomials [Pi,j] and then apply the recursive property of the polynomials Ri,j

to compute the shares of [R0,j] from [f] and the [Pi,j]’s. Protocol FastEval is described below
as well as theorem 5 ensuring the expected properties for this protocol. The proof for theorem 5
is avaible in the appendix. In the protocol, we let [P0,1], . . . , [P0,n] = [(X−α0)], . . . , [(X−αn)].

P. Giorgi, F. Laguillaumie, L. Ottow, and D. Vergnaud 11:15

Algorithm 2 FastEval.

Input: A shared polynomial [f] of Fq[X]<n, a set [α1], . . . , [αn] of shared points in
Fq and τ ∈ N∗

Output: [f(α1)], . . . , [f(αn)]
1 Players compute [Pi,j] for 1 ≤ i ≤ τ , 1 ≤ j ≤ λτ−i ▷ FastPolyMult
2 for i from τ − 1 down to 0 do

In parallel, players compute for 1 ≤ j ≤ λi:
[Ri,j] = [Ri+1,⌈j/λ⌉] mod [Pi,j] ▷ PolyDiv

end
return [R0,1], . . . , [R0,n] ;

▶ Theorem 5. FastEval is correct, secure and requires O(τ) rounds of communications and
O(τn1+ 1

τ) secure multiplications in Fq.

3.4 Polynomial interpolation
Given 2n shared elements [α1], . . . , [αn] and [y1], . . . , [yn] in Fq such that the αis are dis-
tinct, parties want to compute the shares of [f] such that f is the unique polynomial in
Fq[X]<n such that yi = f(αi) for 1 ≤ i ≤ n. The Lagrange interpolation states that
f =

∑n
i=1 yiLi(X)/Li(αi) where L =

∏n
i (X − αi) and Li = L/(X − αi). It is well known,

see [14], that the computation of Li(αi) can be replaced by L′(αi) where L′ is the derivative
of L. To further remove the need to compute the polynomial Li, one can use the also classical
remark that f/L =

∑n
i=1 ci/(X − αi) where ci = yi/L′(αi). Since our constant-round proto-

cols FastPolyMult and FastEval allow us to compute efficiently the shares of [L] and [L′(αi)]
for 1 ≤ i ≤ n, the only remaining difficulty is the shares of

∑n
i=1 ci/(X − αi). Note that the

derivative of L′ can be done without any communication and the last multiplication by L(X)
is not needed as the αi’s are all distinct hence the denominator of

∑n
i=1 ci/(X − αi) will be

indeed L(X). Assuming that n is a perfect square, as we already did before, we can define
the polynomial P1,1 =

∏√
n

l=1(X−αl). We can remark that the following equality holds for the
first

√
n sumands:

∑√
n

i=1
ci

(X−αi) = 1
P1,1

∑√
n

i=1
ciP1,1

(X−αi) , where G1,1 =
∑√

n
i=1 ciP1,1/(X − αi) is

a polynomial of degree <
√

n by definition of P1,1. Doing similarly for the
√

n chunks of the
equation, each involving

√
n summands, we will get f/L =

∑√
n

j=1
G1,j

P1,j
where all denominators

are of degree exactly
√

n. Therefore, we can write f =
∑√

n
j=1 G1,j

L
P1,j

where L/P1,j are
polynomials of degree n−

√
n.

Assuming that shares of the
√

n polynomial [P1,j] are known, this is the case since they
are needed to compute shares of [L] to get [L′] using protocol FastPolyMult. We also assume
that the shares of [ci] has been computed efficiently using our protocol FastEval. Parties will
have to perform

√
n divisions for each P1,j by the adequate linear forms (X −αi). Since P1,j

is of degree
√

n this amounts to
√

n×O(
√

n) secure multiplications in Fq using PolyDiv for
each Pi,j . Computing all the shares [G1,i] thus requires O(n1.5) secure multiplications in Fq.
Parties then need to compute shares of [L/P1,1], . . . , [L/P1,

√
n]. This is achieved with

√
n

call to PolyDiv with polynomials of degree at most n and it thus requires O(n1.5) secure
multiplications in Fq. Lastly, parties compute the shares of [f] =

∑√
n

j=1[G1,j]× [L/P1,j] which
is done with O(n1.5) secure multiplications in Fq using Poly2Mult, i.e. all polynomials
have degree at most

√
n. Altogether, the whole interpolation protocol is constant-round and

has a communication complexity of O(n1.5).
To further generalize this approach, let us assume that n = λτ for τ ∈ N∗ and the

polynomial Pi.j are defined by Definition 1 where fj = (X − αj). We now define the general
form for the polynomials Gi,j in definition 6, and state lemma 7 which ensures that the
polynomials Gi,j have the expected property. The proof of lemma 7 is avaible in the appendix.

ITC 2024

11:16 Fast Secure Comp. on Shared Polynomials & Applications to Private Set Operations

▶ Definition 6. Let Gi,j be polynomials defined by the following relations, for 0 ≤ i ≤ τ and
1 ≤ j ≤ λτ−i: G0,j = cj , and Gi,j =

∑λ
l=1 Gi−1,(j−1)λ+lPi,j/Pi−1,(j−1)λ+l.

▶ Lemma 7. For 0 ≤ i ≤ τ and 1 ≤ j ≤ λτ−i, Gi,j has degree < λi. Moreover,∑λτ−i

j=1 Gi,j/Pi,j = f/L for 1 ≤ i ≤ τ .

We shall mention that thanks to the definition of the Gi,j we have Gτ,1 = f . Protocol
FastInterpol as well as the related theorem 8 follow. Its proof is avaible in the appendix.

Algorithm 3 FastInterpol.

Input: 2n shared elements [α1], . . . , [αn] and [y1], . . . , [yn] in Fq such that α1, . . . , αn

are distinct, τ ∈ N∗

Output: [f] such that f is the unique polynomial of degree < n such that
yi = f(αi).

1 Players compute [Pi,j] for 1 ≤ i ≤ τ , 1 ≤ j ≤ λτ−i ▷ FastPolyMult
2 Players compute locally [L′] = [P ′

τ,1] ▷ no communication
3 Players compute [L′(α1)], . . . , [L′(αn)] ▷ FastEval
4 Players compute [G0,1, . . . , G0,n] = [y1][L′(α1)−1], . . . , [yn][L′(αn)−1]

▷ only secure multiplications and inversions of field elements
5 for i from 1 to τ do

a. Players compute (in parallel) for 1 ≤ j ≤ λτ−i, 1 ≤ l ≤ λ:
[γi,j,l] = [Pi,j/Pi−1,(j−1)λ+l] ▷ PolyDiv

b. Players compute (in parallel) for 1 ≤ j ≤ λτ−i, 1 ≤ l ≤ λ:
[βi,j,l] = [Gi−1,(j−1)λ+l][γi,j,l] ▷ Poly2Mult

c. Players compute for 1 ≤ j ≤ λτ−i:
[Gi,j] =

∑λ
l=1[βi,j,l] ▷ no communication

end
6 return [Gτ,1]

▶ Theorem 8. FastInterpol is correct, secure and requires O(τ) rounds of communications
and O(τn1+ 1

τ) secure multiplications in Fq.

4 Application to private set operations

In this section, we show how our protocols can be used to design several multi-party protocols
for operations on private sets. We suppose that m players participate in the protocol and
each of them has a set of n elements of Fq. They want to compute a predetermined function
of the intersection of their input sets. We denote by A1, . . . ,Am their respective sets. In the
Private Set Intersection problem, first introduced in [13], the participants want to compute
the intersection

⋂m
i=1Ai. In the Private Disjointness Test problem, also introduced in [13],

the player wants to know whether the intersection
⋂m

i=1Ai is empty or not. In the Cardinality
Set Intersection (CSI) problem, participants want to know the number of elements in the
intersection. In the Threshold Private Set Intersection (T-PSI) problem, parties want to
obtain the intersection if and only if the number of elements inside the intersection exceeds a
public threshold t. In the Private Intersection Sum (PIS) problem, introduced in [22], the
first participant has also a set Y of n integers such that each element is associated with an
element of A1. The goal is to compute the sum of elements of Y such that the associated
elements of A1 are in the intersection

⋂m
i=1Ai.

P. Giorgi, F. Laguillaumie, L. Ottow, and D. Vergnaud 11:17

All the multi-party protocols that we present to solve these problems manipulate shared
polynomials in order to compute the solution without revealing information about a secret
input set. For a set A ⊆ Fq, we define the encoding polynomial PA(X) =

∏
α∈A(X − α),

and we let Pj = PAj for all 1 ≤ j ≤ m. The obvious thing to note is that for x ∈ Fq, x is in
A if and only if PA(x) = 0. Moreover, in our methods, we use polynomial evaluations on a
designated player’s inputs. For the sake of clarity, we suppose that this player is the first
and we let A1 = {α1, . . . , αm}. In section 4.2, we also manipulate shared booleans, which
are equal to 1 when the predicate that the boolean represents is true and 0 otherwise.

4.1 A probabilistic solution for Private Disjointness Test
In this section, we present a protocol for solving the PDT problem using our evaluation
protocol from section 3.3. Our approach is inspired by techniques used for instance in [25]
and [26]. Essentially, it consists in privately generating random polynomials R1, . . . , Rm

and privately computing F =
∑

RiFi before revealing F to all the participants. They then
evaluate F locally on their input elements. This method doesn’t leak any information other
than the intersection because F is in fact a uniformly random multiple of gcd(P1, . . . , Pm) with
a given degree bound. Moreover, with high probability F evaluates to 0 only on the elements
in the intersection among all the input elements. This solution for PSI requires O(mn)
secure multiplications. Our solution for PDT uses the same idea of privately computing a
polynomial G =

∑
riPi. But in this case, G is not revealed so that the ri’s only need to be

random elements in Fq. Then, G is privately evaluated using our protocol FastEval on the
elements of the designated participant, which are denoted by α1, . . . , αn. With probability
n/q, the only αjs on which G evaluates to zero are the points in the intersection. In order
for this probability to be negligible, q needs to be overwhelmingly large compared to n when
using this protocol. Then, since the remark at the end section 3.2 allows participants to use
FastPolyMult to multiply n potentially zero shared field elements, parties can compute the
product of the evaluations. Knowing if the product is zero is enough to know whether the
intersection is empty or not. A formal description of this protocol FastPDT and theorem 9
follow. The proof of theorem 9 is avaible in the appendix.

Algorithm 4 FastPDT.

Input: Player i ≥ 2 knows Ai ⊆ Fq of size n, Player 1 knows
A1 = {α1, . . . , αn} ⊆ Fq, everyone knows τ ∈ N.

Output: All players know whether A1
⋂
· · ·

⋂
Am = ∅ or not.

1 For 2 ≤ i ≤ m, each player i computes Pi =
∏

α∈Ai
(X − α) locally. All these

polynomials as well as α1, . . . , αn are shared between all the participants.
2 In parallel, players generate [ri]

$← Fq for 2 ≤ i ≤ m.
3 In parallel, players compute for 2 ≤ i ≤ m: [riPi] = [ri][Pi]. ▷ multiplications
4 Without communication, players compute [G] =

∑m
i=2[riPi].

5 Players compute [G(α1)], . . . , [G(αn)]. ▷ FastEval
6 Players compute [b] = [G(α1) . . . G(αn)]. ▷ FastPolyMult

7 Players generate the sharing [r] $← F∗
q .

8 Players compute [br] = [b][r] and reveal the value br. If br = 0, players return “not
empty”. Else, players return “empty”.

▶ Theorem 9. FastPDT is secure and requires O(τ) rounds of communications and O(mn +
τn1+1/τ) secure multiplications. Moreover, parties always deduce the correct result if the
intersection is non-empty. If it is empty, then parties deduce the correct result with a
probability larger than 1− n/q.

ITC 2024

11:18 Fast Secure Comp. on Shared Polynomials & Applications to Private Set Operations

4.2 A New Generic Technique for Perfectly Correct Private Set
Operations

We present a general approach to designing secure protocols for PSOs on the intersection of
sets. This solution is slower than our method to solve PDT but can be used as a general
framework to solve multiple problems related to set intersection, with no probability of
returning an incorrect result. We will need two MPC techniques presented in [11]. The first
protocol (cf. [11, Section 7.1]) computes, from a share [x] of an element of Fq, a shared
boolean denoted [x = 0] which is equal to one if and only if x = 0. It is constant-round and
requires O(log q log log q) secure multiplications. The authors explain that with negligible
probability, this protocol can leak information. However, it is possible for the participant
to detect when it is the case, and to abort the protocol and retry it before information is
leaked. The second one is explained in [11, Section 5.1]. It aims to compute a symmetrical
logical operation (in our case we only need to compute the logical “and” and the logical “or”)
from n sharing in constant-round and O(n) secure multiplications, and is secure. For these
protocols to work, it is required that the field Fq is a prime field. Moreover, for this protocol
we can take a prime q such that q = O(n), so that the secure multiplication complexity of
computing [x = 0] from [x] is O(log q log log q) = O(log n log log n).

Our generic method is then as follows: players privately evaluate every polynomial Pi on
the input elements of the first player (using our protocol from 3.3). Then, they convert the
evaluations into booleans using the method from [11], i.e., to get shares of [Pi(αj) ̸= 0] (these
shared booleans are 0 if the evaluation is also 0 and 1 otherwise). These booleans can be used
to privately compute shares of the booleans bj = (αj ̸∈ A1

⋂
· · ·

⋂
Am), which indicate if

each element is in the intersection. This can be done using the second method from [11], since
bj =

∨m
i=2(Pi(αj) ̸= 0). Once the parties have shares of the bj , it is almost straightforward to

get the output of the desired problem. We first present the generic protocol BoolIntersection
and then give a few examples of how it can be used to solve PSI -related problems. The
proof of theorem 10 can be found in the appendix.

Algorithm 5 BoolIntersection.

Input: Player i ≥ 2 knows Ai ⊆ Fq of size n, Player 1 knows
A1 = {α1, . . . , αn} ⊆ Fq, everyone knows τ ∈ N.

Output: [b1] = [α1 ̸∈ A1
⋂
· · ·

⋂
Am], . . . , [bn] = [αn ̸∈ A1

⋂
· · ·

⋂
Am].

1 For 2 ≤ i ≤ m, each player i computes Pi =
∏

α∈Ai
(X − α) locally. All these

polynomials as well as α1, . . . , αn are shared between all the players.
2 In parallel, players compute for 2 ≤ i ≤ m and 1 ≤ j ≤ n:

[Pi(αj)]. ▷ FastEval
3 In parallel, players compute for 2 ≤ i ≤ m and 1 ≤ j ≤ n:

[Pi(αj) ̸= 0]. ▷ [11, Section 7.1]
4 In parallel, players compute for 1 ≤ j ≤ n:

[bj] =
∨m

i=2[Pi(αj) ̸= 0]. ▷ [11, Section 5.1]
5 return [b1], . . . , [bn].

▶ Theorem 10. BoolIntersection is correct, secure and requires O(τ) rounds of communica-
tions and O(mn log n log log n + τmn1+1/τ) secure multiplications.

Once parties execute protocol BoolIntersection, it is easy to solve a multitude of problems
without any error and in a secure manner. We give below a few examples for which the extra
steps require less communication than the protocol to generate the booleans. Table 3 will
summarize the computations that are described below.

P. Giorgi, F. Laguillaumie, L. Ottow, and D. Vergnaud 11:19

Table 3 Algebraization of variants of the PSI primitive for n parties with private sets A1, . . . , An

and the intersection set I = A1 ∩ · · · ∩ An where bj denotes the Boolean bj = (αj ̸∈ A1
⋂

· · ·
⋂

Am)
and Qj = bj(X − αj) + (1 − bj) for j ∈ {1, . . . , n}.

Name Aim Algebraization

PSI I
n∏

j=1

[Qj]

PDT I ?= ∅ [b′] =
∧m

j=1[bj]

CSI #I
n∑

j=1

[bj]

T-PSI I only if #I ≥ t
[
t ≥

∑n

j=1 bj

] n∏
j=1

[Qj]

PIS
∑

j|αj ∈I

yj

n∑
j=1

[bj][yj]

Private Disjointness Test (PDT). Parties can simply compute [b′] =
∧m

j=1[bj] and reveal
its value.

Private Set Intersection (PSI). By letting Qj = bj(X−αj) + (1− bj), we note that Qj = 1
if αj is not in the intersection and Qj = X − αj otherwise. Therefore PA1

⋂
···

⋂
Am

=
∏

Qj .
To solve PSI, parties can compute in parallel [Qj] for 1 ≤ j ≤ n, and then use protocol
FastPolyMult to compute [PA1

⋂
···

⋂
Am

] and then reveal it. Parties can then evaluate locally
this polynomial on their input points in order to know the intersection.

Cardinality Set Intersection (CSI). Parties can simply compute and reveal
∑

[bj] without
secure multiplications to know the number of elements in the intersection.

Threshold Private Set Intersection (T-PSI). Given the threshold t, parties can compute
[l] =

∑
[bj] without communication and then compute [t ≥ l] using techniques presented

in [11]. Then, using the same method as for solving PSI, parties compute [PA1
⋂

···
⋂

Am
]

and they reveal [t ≥ l][PA1
⋂

···
⋂

Am
]. If it is the zero polynomial, then it means that the

threshold is not reached and nothing is revealed. If it is a non-zero polynomial, then it means
the threshold is reached and the intersection can be computed locally by every participant.

Private Intersection Sum (PIS). Given a payload Y = {y1, . . . , yn} known by the first
player, its elements are shared between everyone. Then, players can simply compute [bj][yj]
for 1 ≤ j ≤ n in parallel. Lastly, players compute

∑
[bjyj] and reveal it to obtain the result.

All these constant-round protocols are secure, with no occurrence of an incorrect result,
and require O(τmn1+1/τ + mn log q log log q) secure multiplications.

References

1 Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In Piotr Rudnicki, editor, 8th ACM PODC, pages 201–209.
ACM, August 1989. doi:10.1145/72981.72995.

ITC 2024

https://doi.org/10.1145/72981.72995

11:20 Fast Secure Comp. on Shared Polynomials & Applications to Private Set Operations

2 Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM
STOC, pages 1–10. ACM Press, May 1988. doi:10.1145/62212.62213.

3 Guilhem Castagnos and Fabien Laguillaumie. Linearly homomorphic encryption from DDH.
In Kaisa Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS, pages 487–505. Springer,
Heidelberg, April 2015. doi:10.1007/978-3-319-16715-2_26.

4 Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai Lakshmi Bhavana Obbattu, Sruthi
Sekar, and Akash Shah. Efficient linear multiparty PSI and extensions to circuit/quorum PSI.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 1182–1204. ACM Press,
November 2021. doi:10.1145/3460120.3484591.

5 David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure
protocols (extended abstract). In 20th ACM STOC, pages 11–19. ACM Press, May 1988.
doi:10.1145/62212.62214.

6 Geoffroy Couteau, Thomas Peters, and David Pointcheval. Encryption switching protocols. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 308–338. Springer, Heidelberg, August 2016. doi:10.1007/978-3-662-53018-4_12.

7 Ronald Cramer and Ivan Damgård. Secure distributed linear algebra in a constant number of
rounds. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 119–136. Springer,
Heidelberg, August 2001. doi:10.1007/3-540-44647-8_7.

8 Ronald Cramer, Ivan Damgård, and Ueli M. Maurer. General secure multi-party computation
from any linear secret-sharing scheme. In Bart Preneel, editor, EUROCRYPT 2000, volume
1807 of LNCS, pages 316–334. Springer, Heidelberg, May 2000. doi:10.1007/3-540-45539-6_
22.

9 Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty computation from
threshold homomorphic encryption. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume
2045 of LNCS, pages 280–299. Springer, Heidelberg, May 2001. doi:10.1007/3-540-44987-6_
18.

10 Ronald Cramer, Eike Kiltz, and Carles Padró. A note on secure computation of the Moore-
Penrose pseudoinverse and its application to secure linear algebra. In Alfred Menezes, editor,
CRYPTO 2007, volume 4622 of LNCS, pages 613–630. Springer, Heidelberg, August 2007.
doi:10.1007/978-3-540-74143-5_34.

11 Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft. Uncondi-
tionally secure constant-rounds multi-party computation for equality, comparison, bits and
exponentiation. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS,
pages 285–304. Springer, Heidelberg, March 2006. doi:10.1007/11681878_15.

12 Matthew K. Franklin and Stuart Haber. Joint encryption and message-efficient secure compu-
tation. Journal of Cryptology, 9(4):217–232, September 1996. doi:10.1007/BF00189261.

13 Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set
intersection. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027
of LNCS, pages 1–19. Springer, Heidelberg, May 2004. doi:10.1007/978-3-540-24676-3_1.

14 Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (third edition).
Cambridge University Press, 2013. doi:10.1017/CBO9781139856065.

15 Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In Brian A. Coan and Yehuda Afek,
editors, 17th ACM PODC, pages 101–111. ACM, June / July 1998. doi:10.1145/277697.
277716.

16 Satrajit Ghosh and Tobias Nilges. An algebraic approach to maliciously secure private set
intersection. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III,
volume 11478 of LNCS, pages 154–185. Springer, Heidelberg, May 2019. doi:10.1007/
978-3-030-17659-4_6.

17 Satrajit Ghosh and Mark Simkin. The communication complexity of threshold private
set intersection. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,

https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1145/3460120.3484591
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/978-3-662-53018-4_12
https://doi.org/10.1007/3-540-44647-8_7
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/978-3-540-74143-5_34
https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/BF00189261
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1145/277697.277716
https://doi.org/10.1145/277697.277716
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/978-3-030-17659-4_6

P. Giorgi, F. Laguillaumie, L. Ottow, and D. Vergnaud 11:21

Part II, volume 11693 of LNCS, pages 3–29. Springer, Heidelberg, August 2019. doi:10.1007/
978-3-030-26951-7_1.

18 Satrajit Ghosh and Mark Simkin. Threshold private set intersection with better communication
complexity. In Alexandra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023, Part II,
volume 13941 of LNCS, pages 251–272. Springer, Heidelberg, May 2023. doi:10.1007/
978-3-031-31371-4_9.

19 Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In 14th ACM STOC, pages 365–377. ACM Press, May
1982. doi:10.1145/800070.802212.

20 Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Scalable multi-party private
set-intersection. In Serge Fehr, editor, PKC 2017, Part I, volume 10174 of LNCS, pages
175–203. Springer, Heidelberg, March 2017. doi:10.1007/978-3-662-54365-8_8.

21 Susan Hohenberger and Stephen A. Weis. Honest-verifier private disjointness testing without
random oracles. In George Danezis and Philippe Golle, editors, PET 2006, volume 4258 of
LNCS, pages 277–294. Springer, Heidelberg, June 2006. doi:10.1007/11957454_16.

22 Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth,
Mariana Raykova, David Shanahan, and Moti Yung. On deploying secure computing: Private
intersection-sum-with-cardinality. In IEEE European Symposium on Security and Privacy,
EuroS&P 2020, Genoa, Italy, September 7-11, 2020, pages 370–389. IEEE, 2020. doi:10.
1109/EuroSP48549.2020.00031.

23 Aggelos Kiayias and Antonina Mitrofanova. Testing disjointness of private datasets. In Andrew
Patrick and Moti Yung, editors, FC 2005, volume 3570 of LNCS, pages 109–124. Springer,
Heidelberg, February / March 2005.

24 Eike Kiltz, Payman Mohassel, Enav Weinreb, and Matthew K. Franklin. Secure linear algebra
using linearly recurrent sequences. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS,
pages 291–310. Springer, Heidelberg, February 2007. doi:10.1007/978-3-540-70936-7_16.

25 Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In Victor Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages 241–257. Springer, Heidelberg, August
2005. doi:10.1007/11535218_15.

26 Ronghua Li and Chuankun Wu. An unconditionally secure protocol for multi-party set
intersection. In Jonathan Katz and Moti Yung, editors, ACNS 07, volume 4521 of LNCS,
pages 226–236. Springer, Heidelberg, June 2007. doi:10.1007/978-3-540-72738-5_15.

27 Payman Mohassel and Matthew Franklin. Efficient polynomial operations in the shared-
coefficients setting. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors,
PKC 2006, volume 3958 of LNCS, pages 44–57. Springer, Heidelberg, April 2006. doi:
10.1007/11745853_4.

28 Payman Mohassel and Enav Weinreb. Efficient secure linear algebra in the presence of
covert or computationally unbounded adversaries. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 481–496. Springer, Heidelberg, August 2008. doi:10.1007/
978-3-540-85174-5_27.

29 Daniel Morales, Isaac Agudo, and Javier Lopez. Private set intersection: A systematic literature
review. Computer Science Review, 49:100567, 2023. doi:10.1016/j.cosrev.2023.100567.

30 G. Sathya Narayanan, T. Aishwarya, Anugrah Agrawal, Arpita Patra, Ashish Choudhary, and
C. Pandu Rangan. Multi party distributed private matching, set disjointness and cardinality
of set intersection with information theoretic security. In Juan A. Garay, Atsuko Miyaji, and
Akira Otsuka, editors, CANS 09, volume 5888 of LNCS, pages 21–40. Springer, Heidelberg,
December 2009.

31 Kobbi Nissim and Enav Weinreb. Communication efficient secure linear algebra. In Shai
Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 522–541. Springer,
Heidelberg, March 2006. doi:10.1007/11681878_27.

ITC 2024

https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-031-31371-4_9
https://doi.org/10.1007/978-3-031-31371-4_9
https://doi.org/10.1145/800070.802212
https://doi.org/10.1007/978-3-662-54365-8_8
https://doi.org/10.1007/11957454_16
https://doi.org/10.1109/EuroSP48549.2020.00031
https://doi.org/10.1109/EuroSP48549.2020.00031
https://doi.org/10.1007/978-3-540-70936-7_16
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-540-72738-5_15
https://doi.org/10.1007/11745853_4
https://doi.org/10.1007/11745853_4
https://doi.org/10.1007/978-3-540-85174-5_27
https://doi.org/10.1007/978-3-540-85174-5_27
https://doi.org/10.1016/j.cosrev.2023.100567
https://doi.org/10.1007/11681878_27

11:22 Fast Secure Comp. on Shared Polynomials & Applications to Private Set Operations

32 Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238. Springer,
Heidelberg, May 1999. doi:10.1007/3-540-48910-X_16.

33 Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient
circuit-based PSI with linear communication. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 122–153. Springer, Heidelberg,
May 2019. doi:10.1007/978-3-030-17659-4_5.

34 Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and circuit-PSI from vector-
OLE. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part II,
volume 12697 of LNCS, pages 901–930. Springer, Heidelberg, October 2021. doi:10.1007/
978-3-030-77886-6_31.

35 Adi Shamir. How to share a secret. Communications of the Association for Computing
Machinery, 22(11):612–613, November 1979.

36 Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS,
pages 160–164. IEEE Computer Society Press, November 1982. doi:10.1109/SFCS.1982.38.

37 Qingsong Ye, Huaxiong Wang, Josef Pieprzyk, and Xian-Mo Zhang. Efficient disjointness tests
for private datasets. In Yi Mu, Willy Susilo, and Jennifer Seberry, editors, ACISP 08, volume
5107 of LNCS, pages 155–169. Springer, Heidelberg, July 2008.

A Appendix

Proof of Lemma 2. Let us prove the lemma by induction on 0 ≤ i ≤ τ . When i = 0, for
1 ≤ j ≤ n, P0,j = fj is of degree < d by hypothesis, and

∏n
i=1 P0,i =

∏n
i=1 fi. When

1 ≤ i ≤ τ , by definition Pi,j =
∏λ

l=1 Pi−1,(j−1)λ+l for 1 ≤ j ≤ λτ−i. Therefore, Pi,j is the
product of λ polynomials of degree < λi−1d by induction hypothesis, thus it is a polynomial of
degree < λid. Moreover, we notice that J1, λτ−i+1K = {(j−1)λ+ l | 1 ≤ j ≤ λτ−i, 1 ≤ l ≤ λ}.
Therefore, by induction:

λτ−i∏
j=1

Pi,j =
λτ−i∏
j=1

λ∏
l=1

Pi−1,(j−1)λ+l =
λτ−i+1∏

j=1
Pi−1,j =

n∏
j=1

fj ,

which concludes the proof. ◀

Proof of Lemma 3. Correctness of the protocol is ensured by Lemma 2 while its security is
guaranteed by the use of protocol PolyMult and that the fi’s are non-zero. Since the latter
protocol is constant-round and there is τ sequential steps, the protocol requires O(τ) rounds
of communications. Moreover, PolyMult is used λτ−i times at step i and each call requires
O(λ2λi−1d) secure multiplication,i.e. each call computes the product of λ shared polynomials
of degree < λi−1d. Hence, step i requires O(λτ+1d) secure multiplications. Summing over
all the steps leads to O(τλτ+1d) = O(τn1+ 1

τ d) secure multiplications in Fq. ◀

Proof of Lemma 4. Ri+1,⌈j/λ⌉ is well-defined since 1 ≤ j ≤ λτ−i, therefore 1 ≤ ⌈j/λ⌉ ≤
λτ−i−1. It now suffices to prove that Pi,j |Pi+1,⌈j/λ⌉, because then:

Ri+1,⌈j/λ⌉ mod Pi,j = (f mod Pi+1,⌈j/λ⌉) mod Pi,j = f mod Pi,j = Ri,j .

By letting l = j − (⌈j/λ⌉ − 1)λ, we have that 1 ≤ l ≤ λ and j = (⌈j/λ⌉ − 1)λ + l. By
definition of Pi+1,⌈j/λ⌉ (see Def. 1), we have that Pi,j divides Pi+1,⌈j/λ⌉. This concludes the
proof. ◀

https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1109/SFCS.1982.38

P. Giorgi, F. Laguillaumie, L. Ottow, and D. Vergnaud 11:23

Proof of Theorem 5. Correctness is ensured by the definition of the Ri,j and that the
protocol PolyDiv correctly computes Euclidean division. Moreover, it is secure since the only
used protocols, i.e. FastPolyMult and PolyDiv, are secure protocols. Protocol FastPolyMult
requires O(τ) rounds and PolyDiv is constant-round and is used in τ sequential step, so the
total number of round is O(τ). Lastly, using Lemma 2 one may remark that at step i of the
loop we perform λτ−i divisions with a dividend of degree λi+1 and a divisor of degree λi.
Therefore, step i requires at most O(λτ+1) secure multiplications. Summed over all steps,
this leads to protocol FastPolyMult requiring at most O(τn1+ 1

τ) secure multiplications. ◀

Proof of Lemma 7. The statements are proven by induction for 0 ≤ i ≤ τ . When i = 0,
deg G0,j = deg cj = 0 < 1. Moreover, Lagrange formula implies that f/L =

∑n
i=1 ci/(X −

αi) =
∑λτ

j=1 G0,j/P0,j . When 0 ≤ i ≤ τ , we notice that Pi,j has degree λi and Pi−1,(j−1)λ+l

has degree λi−1 for 1 ≤ j ≤ λτ−i and 1 ≤ l ≤ λ. Therefore using Definition 6:

deg(Gi,j) ≤ max
1≤j≤λτ−i

(
deg(Gi−1,(j−1)λ+l) + deg(Pi,j)− deg(Pi−1,(j−1)λ+l)

)
< λi−1 + λi − λi−1

< λi.

Moreover, J0, λτ−i+1K = {(j − 1)λ + l | 1 ≤ j ≤ λτ−i, 1 ≤ l ≤ λ} thus by using both
Definitions 1 and 6 :

λτ−i+1∑
j=1

Gi−1,j

Pi−1,j
=

λτ−i∑
j=1

λ∑
l=1

Gi−1,(j−1)λ+l

Pi−1,(j−1)λ+l

=
λτ−i∑
j=1

∑λ
l=1 Gi−1,(j−1)λ+lPi,j/Pi−1,(j−1)λ+l

Pi,j

=
λτ−i∑
j=1

Gi,j

Pi,j
.

Therefore, f/L =
∑λτ−i+1

j=1 Gi−1,j/Pi−1,j =
∑λτ−i

j=1 Gi,j/Pi,j . ◀

Proof of Theorem 8. Correctness is ensured by the definition of the polynomials Pi.j and
Gi,j and Lemma 7 and that all the underlying protocols, i.e. FastPolyMult, FastEval,
PolyDiv and Poly2Mult, are correct.

Moreover, the protocol is secure since protocols FastPolyMult, FastEval, PolyDiv and
Poly2Mult are all secure. Protocols FastPolyMult and FastEval require both O(τ) rounds.
Since we call in sequence τ times protocols PolyDiv and Poly2Mult that are constant-round,
our protocol require a total of O(τ) rounds of communications.

For the complexity analysis, steps 1 and 3 require O(τn1+ 1
τ) secure multiplications in

Fq according to theorems 3 and 5. The other steps except step 5 are negligible for the
communication complexity. At step i of the loop, PolyDiv is called λτ−i+1 times on shared
dividends of the form [Pi,j], and by Lemma 2 these polynomials are all of degree < λi,
thus requiring O(λτ+1) secure multiplications in Fq. At the same step, Poly2Mult is
called λτ−i+1 times on shared polynomials of degrees < λi, which requires also O(λτ+1)
secure multiplications in Fq. Overall, summing over the τ loops, step 5 requires at most
O(τλτ+1) = O(τn1+ 1

τ) secure multiplications in K, which concludes the proof. ◀

ITC 2024

11:24 Fast Secure Comp. on Shared Polynomials & Applications to Private Set Operations

Proof of Theorem 9. FastPolyMult, FastEval are secure according to theorem 3 and 5.
Moreover, the only information revealed is br, and since r is a uniformly random element
of F∗

q it only indicates if G was evaluated to zero on at least one αj , which is the intended
output. Thus FastPDT is secure. Moreover, each step requires at most O(1) rounds of
communication except for steps 5 and 6 which require O(τ) rounds. Therefore, the protocol
requires O(τ) rounds. For the multiplication complexity, step 3 requires O(mn) secure
multiplications since the Pi’s are of degree n and there is m− 1 polynomials. Steps 5 and 6
require O(τn1+1/τ) secure multiplications. Other steps require at most a constant number of
secure multiplication. In total, the protocol requires O(mn + τn1+1/τ) secure multiplications.
We now compute the probability of an incorrect result. If the intersection is not empty,
at least one αj will be such that G(αj) = 0, so b = 0, br = 0, and parties will deduce the
correct result. If the intersection is empty, then for each αj , at least one Pi will be such
that Pi(αj) ̸= 0. Therefore riPi(αj) and G(αj) are uniformly random over Fq. The overall
probability of an incorrect result is therefore:

Pr(b = 0) = Pr
(n⋃

j=1
G(αj) = 0

)
≤

n∑
j=1

Pr(G(αj) = 0) ≤ n/q,

which is the desired result. ◀

Proof of Theorem 10. FastEval and protocols from [11] are secure and correct, thus BoolIn-
tersection is also secure and correct. Every step is constant-round except for the calls to
FastEval which requires O(τ) rounds, thus the protocol requires O(τ) rounds. Lastly, Step 2
requires O(τmn1+1/τ) secure multiplication since it consists of calling FastEval m− 1 times.
Step 3 requires O(nm · log n log log n) secure multiplications since it consists of calling the
conversion protocol from [11] n(m− 1) times. Step 4 requires O(nm) secure multiplications
since it consists of calling the protocol from [11, Section 5.1] n times. Overall, the protocol
requires O(mn log n log log n + τmn1+1/τ) secure multiplications. ◀

	p000-Frontmatter
	Preface
	Steering Committee
	Organization

	p001-Banoun
	p002-Applebaum
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.2.1 Single-Round Compression Game
	1.2.2 Focusing on efficiently samplable distribution
	1.2.3 Back to interactive proofs
	1.2.4 Organization

	2 Preliminaries
	2.1 Probability distributions
	2.2 Promise problems
	2.3 Arthur-Merlin Proofs, and NP/Non-Deterministic Circuits
	2.4 Set-lower bound
	2.5 Approximate counting
	2.6 Hashing

	3 Hashing-Based Solution for the Compression Problem
	3.1 Hashing-based compression
	3.2 Improving De-Compressor Communication

	4 Reducing the Communication in Interactive Proofs
	5 Conclusion

	p003-BenDov
	1 Introduction
	1.1 A Brief History of Timing Attacks
	1.2 Prevention Techniques
	1.3 Comparing Our Work With the Existing Ones
	1.4 Our Contributions and Technical Overview

	2 Keyed Functions Secure Against Timing Attacks
	3 Constructions Preserving Key-Obliviousness
	3.1 The GGM Construction of PRFs
	3.2 Format Preserving Encryption - the Cycle Walking Technique
	3.3 Key-oblivious Domain Extension

	4 Key-Oblivious PRPs on Small Domains
	4.1 JSR: Constructing key-oblivious and query-oblivious PRPs

	5 Main Security Theorem, Noticeable Security and Games Definitions
	5.1 Defining Noticeable Security and Cryptographic Games
	5.2 Caveat on Key-Oblivious and an Application of Query-Oblivious

	A Classical Security Definitions are Noticeable Secure
	B Proof of Theorem 23

	p004-Ghazi
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview

	2 Preliminaries
	3 Counting Protocol
	3.1 Algorithm

	4 Analysis of the Protocol
	4.1 Privacy Analysis
	4.2 Utility Analysis
	4.3 Communication Analysis
	4.4 Putting Things Together: Proof of Theorem 6

	5 Non-Asymptotic Comparisons with Previous Work
	6 Conclusions and Open Questions

	p005-Gajulapalli
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Structure of the Paper

	2 Preliminaries
	2.1 The Permutation Inversion Problem

	3 Non-Adaptive Function Inversion
	4 Connections to Communication Complexity
	4.1 Recovering our improved bound

	p006-Ishai
	1 Introduction
	1.1 Our Results
	1.2 Discussion on the Shuffle Model

	2 Technical Overview
	3 Related Work
	4 Preliminaries
	4.1 Multi-Server Information-Theoretic PIR
	4.2 Balls and Bins

	5 Single-Server PIR in the Shuffle Model: Definitions and Preliminary Results
	6 General Constructions for Single-Server Shuffle PIR
	6.1 Composition with an Additive Two-Server IPIR
	6.1.1 Proof Outline of Theorem 5

	6.2 Reducing Communication using CNF Shares
	6.3 Concrete Constructions based on Reed-Muller Code
	6.4 Combining with Standard-Model PIR
	6.5 Lower Bound on Security

	7 Conclusion and Open Questions
	A Background on Multi-Server PIR Constructions
	A.1 Two-Server PIR with Additive Shares
	A.2 k-Server PIR with Shamir Shares

	B Composed PIR Construction

	p007-Blackwell
	1 Introduction
	1.1 Main Results
	1.2 Technical Overview
	1.3 Related Work
	1.4 Organization

	2 Preliminaries
	2.1 Homomorphic Secret Sharing
	2.2 Polynomial Function Classes
	2.3 CNF Sharing
	2.4 Linear Codes

	3 Equivalence of Linear HSS and Labelweight Codes
	4 Linear HSS from Hermitian Codes
	4.1 Hermitian Code Definition, Parameters
	4.2 Proof of Theorem 22

	5 Linear HSS from Goppa Codes
	5.1 Goppa Code Definition, Parameters
	5.2 Proof of Theorem 27

	A Linear HSS from Random Codes
	A.1 Notation
	A.2 Generalization of q-ary Entropy
	A.3 Gilbert-Varshamov Bound for Random Labelweight Codes

	p008-Dachman-Soled
	1 Introduction
	1.1 Motivation and Main Results
	1.2 Related Work

	2 Technical Overview
	3 Preliminaries
	3.1 Notation and Conventions
	3.2 Incompressibility Lemmas

	4 Main Results
	4.1 The RO model result
	4.2 The plain model result

	A Relevant Problems
	B Computational Models
	B.1 Switching from RIM to ROM
	B.2 Straight-Line Programs and Generic Ring Algorithms
	B.3 Model Specific Versions of the RSA Assumption

	p009-Akshima
	1 Introduction
	1.1 Our Contributions
	1.1.1 Our Results

	1.2 Related Works
	1.3 Open Problems

	2 Preliminaries
	2.1 Notation
	2.2 Merkle Damgård Hash Function
	2.3 Definitions
	2.4 Relevant Results

	3 Unbounded Length Multi-Collisions
	3.1 Matching Attack

	4 B-Block Multi-Collisions
	5 1-Block Multi-Collisions
	6 2-Block Multi-Collisions
	A Bounded Length Multi-Collision Attack
	B Proof of Theorem 10
	C Bounding MI-security for Type 2 collisions

	p010-Eriguchi
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Technical Overview
	2.1 Our First Protocol for Symmetric Functions
	2.2 Our Second Protocol for Symmetric Functions

	3 Preliminaries
	3.1 Notations
	3.2 Secure Multiparty Computation
	3.3 Basic Algorithms and Protocols
	3.4 Ramp Secret Sharing

	4 Our First Protocol for Symmetric Functions
	5 Our Second Protocol for Symmetric Functions
	5.1 Additional Building Blocks
	5.2 Main Protocol

	A Proof of Proposition 12
	B Proof of Proposition 13

	p011-Giorgi
	1 Introduction
	1.1 Secure computation on shared data
	1.2 Toolbox for Secure Polynomial Computation
	1.3 Applications to Private Set Operations
	1.3.1 Constant-round multi-party protocol for Private Disjointness Test
	1.3.2 A general framework to solve PSOs without any error probability

	2 Technical overview
	2.1 Fast operations on shared polynomials
	2.1.1 Unbounded fan-in multiplication of polynomials
	2.1.2 Multi-point evaluation
	2.1.3 Interpolation

	2.2 Private set operations
	2.2.1 Constant-round protocol for Private Disjointness Test
	2.2.2 Perfectly correct protocol for Private Set Operations

	3 Fast operations on shared polynomials
	3.1 Technical background
	3.2 Unbounded fan-in multiplication of polynomials
	3.3 Polynomial evaluation on shared set of points
	3.4 Polynomial interpolation

	4 Application to private set operations
	4.1 A probabilistic solution for Private Disjointness Test
	4.2 A New Generic Technique for Perfectly Correct Private Set Operations

	A Appendix

