
On the Relative Efficiency of Dynamic and Static
Top-Down Compilation to Decision-DNNF
Alexis de Colnet #

Algorithms and Complexity Group, TU Wien, Austria

Abstract
Top-down compilers of CNF formulas to circuits in decision-DNNF (Decomposable Negation Normal
Form) have proved to be useful for model counting. These compilers rely on a common set of
techniques including DPLL-style exploration of the set of models, caching of residual formulas, and
connected components detection. Differences between compilers lie in the variable selection heuristics
and in the additional processing techniques they may use. We investigate, from a theoretical
perspective, the ability of top-down compilation algorithms to find small decision-DNNF circuits for
two different variable selection strategies. Both strategies are guided by a graph of the CNF formula
and are inspired by what is done in practice. The first uses a dynamic graph-partitioning approach
while the second works with a static tree decomposition. We show that the dynamic approach
performs significantly better than the static approach for some formulas, and that the opposite also
holds for other formulas. Our lower bounds are proved despite loose settings where the compilation
algorithm is only forced to follow its designed variable selection strategy and where everything else,
including the many opportunities for tie-breaking, can be handled non-deterministically.

2012 ACM Subject Classification Theory of computation → Dynamic programming

Keywords and phrases Knowledge compilation, top-down compilation, decision-DNNF Circuits

Digital Object Identifier 10.4230/LIPIcs.SAT.2024.11

Funding This work has been supported by the Austrian Science Fund (FWF), ESPRIT project
FWF ESP 235.

1 Introduction

The foundation of knowledge compilation is the idea that different representations of a
function facilitate solving different kind of problems. Classes of representations where specific
problems become tractable are studied under the name of (compilation) languages [10, 11, 12].
The purpose of (knowledge) compilers is to transform (or compile) propositional formulas,
circuits, or other, into a target language where some intractable problems become solvable
in polynomial time. Compilers to languages where model counting is linear-time are, for
obvious reasons, particularly investigated. In practice, one of the main language for doing
model counting is decision-DNNF : the class of circuits in decision decomposable negation
normal form [20], with compilers building decision-DNNF circuits from CNF formulas such
as c2d [9], dsharp [19], d4 [17] and the compiler version of sharpsat-TD [16, 15].

From a complexity theory point of view, compilation is often seen as a preprocessing task
where only the size of the compiled form (that is, the output of the compiler) matters [4, 6].
In practice of course, running time matters, and perhaps is the priority since a compiler that
ends rapidly is also guaranteed to construct a reasonably small compiled form (though the
converse is not true). So practical compilers use strategies, heuristics and whatnot to try to
terminate within a certain time window. But then we ask what are the consequences of these
implementation choices on their ability to find small compiled forms. Are there formulas
that admit small decision-DNNF circuits but for which our compilers always construct
large circuits? In this paper, we answer this question positively for two, hopefully realistic,
algorithms for top-down compilers of CNF to decision-DNNF. More precisely, we confront

© Alexis de Colnet;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024).
Editors: Supratik Chakraborty and Jie-Hong Roland Jiang; Article No. 11; pp. 11:1–11:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:decolnet@ac.tuwien.ac.at
https://orcid.org/0000-0002-7517-6735
https://doi.org/10.4230/LIPIcs.SAT.2024.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 The Relative Efficiency of Dynamic and Static Compilation

the two algorithms by finding formulas that are hard to compile for one, in the sense that it
returns super-polynomial-size compiled forms, but easy to compile for the other, and vice
versa. The two algorithms share many similarities and are top-down.

Top-down compilation refers to a compilation based on an exhaustive DPLL search that
uses caching and independent components identification. Here, “exhaustive” means that the
DPLL procedure does not stop after finding one model of the formula but keeps searching
for all of them. Caching allows to save time and memory by preventing the compiler to work
twice on the same formula [1, 23, 9]. Independent components identification also speeds up
compilation by determining when a formula can be split into independent subformulas that
are then compiled separately [14, 8, 1]. Without this mechanism, the compiled form are
FBDDs (free binary decision diagrams) [13], which are generally significantly less succinct
than decision-DNNF circuits [2]. In practice, identifying independent subformulas means
checking whether some graph of the formula has several connected components. Compilers
work toward splitting the graph through heuristics and strategies that guide the choices of
the branching variables [18]. The idea is to favor variables that belong to certain cutsets,
or separators, of the graph. This is explicit in a compiler like d4 that uses (hyper)graph
partitioning tools to find such cutsets. In c2d, the cutsets are computed beforehand from
recursive graph partitioning or from a tree decomposition and organized in a data structure
called a dtree that is passed on to the compiler. In a model counter like sharpsat-TD, cutsets
are hidden in a tree decomposition used to influence the scores of the variables to branch on.
The two top-down compilation algorithms we study are inspired by these compilers. The
first one always branch on variables from a cutset determined by a static tree decomposition
of the primal graph of the original CNF and the second dynamically looks for cutsets that
are balanced separators of the graph of the current formula.

Results on the efficiency of static decomposition-based model counters compared to
dynamic model counters or compilers are not novel. For instance, more than twenty years
ago, for model counting, the authors of [1] showed that decomposition-based techniques
like recursive conditioning [7] do not poly-time simulate a dynamic variant of the counting
algorithm #DPLLCache. But these are results on running time, and besides they are proved
for unsatisfiable formulas. This is not very useful for us since we only care about the size
of the compiler output and, even if it takes a long time, a good compiler always returns
a constant-size output on unsatisfiable inputs. In addition, we want our algorithms to be
realistic in their variable selection behavior, so they cannot be completely non-deterministic.
It is typically not clear for which deterministic version of #DPLLCache the results of [1] still
hold. Closer to our work, the authors of [5] show lower bounds on the size of decision-DNNF
circuits that are structured-decomposable which they argue correspond the circuits constructed
by c2d. This is true if certain features of compilers are disabled, in particular inprocessing
techniques like unit propagation, which is not something we want for our results. Yet we
believe it is true that the compilers based on static decompositions construct circuits “more
structured” (though not structured-decomposable) than those relying on more dynamic
approaches. Our lower bounds on the static decomposition-based compilation algorithm are
in fact proved using some different notion of structuredness. These lower bounds are not
surprising since it is known that structured-decomposability tends to dramatically increase
the size of the circuits [22]. But then it is a bit more surprising that our decomposition-based
algorithm can largely outperform our dynamic algorithm, whose output is barely structured,
on specific instances.

The paper is organized has follows. We start with some preliminaries in Section 2. In
Section 3 we describe our framework for top-down compilation and the loose settings in
which we our results fit: basically the cutset selection mechanism is strict but every other

A. de Colnet 11:3

procedures (caching, inprocessing, variable selection inside the cutset) are mostly undefined,
so that positive upper bound results hold even with naive procedures and negative lower
bound results hold even with non-deterministic procedures. We then show in Section 4
that the static approach returns compiled forms that have some “structure”. We use this in
Section 5 to design functions that are easy to compile in the dynamic approach but hard for
the static approach. Finally we prove that the opposite holds for other functions in Section 6.

2 Preliminaries

We use the notations [n] = {1, 2, . . . , n} and [0, n] = {0, 1, . . . , n}.
The domain of a Boolean variable is {0, 1} ({false, true}). An assignment to a set X of

Boolean variables is a mapping α : X → {0, 1}. A partial assignment to X is an assignment
to a subset of X. A Boolean function f over X maps the assignments to X to {0, 1}. α is a
model of f when α ∈ f−1(1). We sometimes write f(X) to precise that f is a function over
X. When X is not explicit we refer to it as var(f). Given a partial assignment α to var(f),
we denote by f |α the Boolean function over var(f) \ var(α) whose models are the models of
f consistent with α and projected onto var(f) \ var(α). Constants 0 and 1 are sometimes
seen as functions over ∅.

A literal is a variable x or its negation ¬x, also written x̄. The negated literal ℓ̄ equals
x if ℓ = x̄, and equals x̄ if ℓ = x. A clause is a disjunction of literals and a CNF formula
(Conjunctive Normal Form) F is a conjunction of clauses. CNF formulas are sometimes
seen as sets of clauses, and we write c ∈ F to mean c ∈ clause(F). For us, F |α is the CNF
formula obtained by removing all clauses of F containing literals satisfied by α, and all
literals falsified by α from the remaining clauses. If F |α is empty, then it is replaced by 1. If
F |α contains an empty clause, then it is replaced by 0. The primal graph GF of F is the
graph whose vertices are F ’s variables and such that there is an edge between x and y if
and only if there is a clause c ∈ F such that x ∈ var(c) and y ∈ var(c). The connected
components of GF correspond to the the largest subformulas of F that share no variable.
We denote by components(F) the set of these subformulas.

2.1 Graphs Separators and Tree Decompositions
For T a tree and t and t′ two nodes T , t ≤T t′ means that t′ is an ancestor of t or that t′ = t,
whereas t <T t′ means that t′ is an ancestor of t and t ̸= t′. Let G be a graph with vertex set
V (G) and edge set E(G). For V ⊆ V (G), G[S] is the graph with vertex set S and edge set
{{u, v} | u ∈ S, v ∈ S, {u, v} ∈ E(G)}. We write G− S = G[V (G) \ S]. A tree decomposition
T of G is a pair (T, b) where T is a rooted tree and b is a function b : V (T)→ P(V (G)) such
that

for every v ∈ V (G), there exists t ∈ V (T) such that v ∈ b(t);
for every {u, v} ∈ E(G), there exists t ∈ V (T) such that {u, v} ⊆ b(t);
for every v ∈ V (G), T [{t | v ∈ b(t)}] is connected (so it is a tree).

The set b(t) is called the bag of t. The width of T is the maximum size of a bag, so
maxt∈V (T) |b(t)|. The treewidth of G, noted tw(G), is the minimum width for a tree decom-
position of G minus 1. We denote by b↓(t) the union of b(t) and of the bags of all descendants
of t, i.e., b↓(t) =

⋃
t′≤T t b(t′).

Suppose G is connected. A separator of G, or a cutset of G, is a subset S ⊆ V (G) such
that G− S has more than one connected component. For δ ∈ [0, 1], a δ-balanced separator of
G is a separator S of G such that every connected component of G− S has at most δ|V (G)|
vertices. We denote by sδ(G) the smallest size of a δ-balanced separator of G.

SAT 2024

11:4 The Relative Efficiency of Dynamic and Static Compilation

(1∨2∨3)(1̄∨2̄)(2̄∨3)(1̄∨3)(3̄∨7)(3̄∨8)(7∨8)(1∨
2∨ 5̄∨6)(1∨2∨5∨4)(1̄∨ 3̄∨4∨5)(1̄∨ 3̄∨ 4̄∨5)

Primal graph:
1 2 3

6 5 4 7 8

Tree decomposition:

1, 2, 3

1, 2, 3, 4, 5 3, 7, 8

1, 2, 5, 6

1

2 3

3 3 2

∧ ∧

5

4 6

7

8

4

5 5

1

Figure 1 A CNF formula and a decision-DNNF circuit that represents it.

2.2 Decision-DNNF Circuits
A decision-DNNF (decision Decomposable Negation Normal Form) circuit is a directed
acyclic graph with a single source and whose nodes are of three types: sinks, decision nodes
and decomposable ∧-nodes. Each node v computes a Boolean function ⟨v⟩ over var(v).

A sink has out-degree 0 and is labeled by a constant c ∈ {0, 1}. Here ⟨v⟩ = c and
var(v) = ∅.
A decision node v is labeled by a Boolean variable x and has two children: the 0-child v0
and the 1-child v1, with x ̸∈ var(v0) ∪ var(v1). We write v = ite(x, v1, v0) (if x then v1
else v0). Here ⟨v⟩ = (x̄ ∧ ⟨v0⟩) ∨ (x ∧ ⟨v1⟩) and var(v) = {x} ∪ var(v0) ∪ var(v1).
A decomposable ∧-node v is labeled by the conjunction symbol ∧, it has children v1, . . . , vk

with k ≥ 1 such that var(vi) ∩ var(vj) = ∅ for every i ̸= j. The node is interpreted as
⟨v⟩ = ⟨v1⟩ ∧ · · · ∧ ⟨vk⟩ and var(v) = var(v1) ∪ · · · ∪ var(vk).

A decision-DNNF circuit C with source node v computes, or represents, the Boolean function
⟨v⟩ over var(n). We directly see C as a Boolean function and write var(C) = var(v).
Graphically, for α an assignment to var(C), the value C(α) = ⟨v⟩(α) can be determined
starting from v and by descending the circuit as follows: upon encountering the node u, if u

is a decision node for x then continue from its α(x)-child, if u is sink then stop, and if u is
a decomposable ∧-node then continue the from all its children u1, . . . , uk in parallel. If at
least one sink 0 is reached then C(α) = 0, otherwise C(α) = 1. Given a partial assignment β

to var(C), a decision-DNNF circuit for C|β is constructed as follows: for every x ∈ var(β)
and every decision node v = ite(x, v1, v0) in C, redirect all parents of v to vβ(x) and delete v.
Once this is done, remove all subcircuits not reachable from the source.

An example of decision-DNNF circuit is shown in Figure 1. Graphically, a decision node
for x is represented with a circle labeled by x. It is connected to its 0-child by a dashed line
and to its 1-child by a solid line. Only the 1-sink is represented in Figure 1. Missing outputs
for decision nodes go straight to the 0-sink.

3 A Framework for Top-Down Compilation to decision-DNNF

Algorithm 1 encompasses the behavior of top-down compilers from CNF to decision-DNNF.
It is largely inspired from [17]. The priority of the algorithm is to split the primal graph
GF of the input formula F . This is done by selecting a cutset of the graph, that is, a set of

A. de Colnet 11:5

vertices/variables whose removal leaves the graph disconnected. Assigning a variable to 0 or 1
removes at least this variable from the graph. The cutset variables are assigned in all possible
ways until the graph is disconnected, which may happen before all are assigned. Every
variable assignment adds a decision node to the circuit (line 11). Between two successive
variable assignments, the algorithm checks whether the graph is disconnected and, if so, a
decomposable ∧-node is created and the subformulas for each components are dealt with
independently (line 7). The cutset is reset to ∅ for these subformulas to notify that a new
cutset must be computed. Due to its recursive nature, Compile requires two arguments: F

and a subset S of F ’s variables that corresponds to what remains of the cutset. When S is
empty (which is the case initially) we write Compile(F) instead of Compile(F, ∅).

Cutset selection corresponds to the procedure selectCutset. It is the one procedure
where the two algorithms studied in this paper behave differently. In the dynamic approach,
selectCutset(F) returns a balanced separator of GF whose size is minimal, or close to
minimal. In the static approach, we have access to a tree decomposition T of GF or of a
supergraph of GF and selectCutset(F) returns the bag of a highest node of T which has a
non-empty intersection with var(F). There will always be a unique such node in our settings.
We give names to the two variants of Compile.

Compiled,ϵ(F) is the algorithm Compile where selectCutset(F) returns a 2/3-balanced
separator of GF of size at most (1 + ϵ)s2/3(GF).
Compiles(F, T) is the algorithm Compile with an extra argument: a tree decomposition
T that remains constant through the whole algorithm, and where selectCutset(F)
returns a highest bag of T that has a non-empty intersection with var(F).

The dynamic approach requires solving a hard problem (graph balanced-partitioning) several
time during compilation while the static approach requires a hard preprocessing step, namely
computing a tree decomposition whose width is close to minimal. We disregard running times
in this paper, so we just ignore the complexity of these problems. However, to be a bit closer
to reality we try not to put too much constrain on selectCutset, hence the requirement
that the size of the cutset in the dynamic approach is minimal up to a fixed constant factor.
One forces the dynamic compile algorithm to find a minimal-size cutset by setting ϵ = 0. We
will write Compiled instead of Compiled,0. Similarly, for the static approach, we will allow
tree decompositions of width minimal up to a fixed constant factor. We leave tie-breaking
non-deterministic when several candidates exist for the output of selectCutset. We stress
out that the two variants of Compile work on the primal graph. Practical compilers may
choose other graphs, like d4 which uses a dual hypergraph of F [17].

Variable selection corresponds to the procedure selectVariable for selecting the
next variable to assign in the cutset. We leave this procedure undefined. One can select
variables in a predefined order, or use frequency-based heuristic, or heuristics influenced by
the outcome of the algorithm on previous branches like VSIDS, or a non-deterministic oracle,
etc. Our results are agnostic to this procedure. The only rule is to not select a variable
outside of the cutset. For the static approach, this is actually a deviation from practical
tree-decomposition-based compilers and model counters. For instance, sharpSAT-TD [16]
selects variables based on a score computed using the depth of the variables in the tree
decomposition but also their frequency and VSIDS scores. On the one hand, the depth
component of the score makes it more likely to select a variable appearing in the highest bag
of the decomposition, which corresponds to our cutset in the static approach. On the other
hand, the VSIDS and frequency components can force the selection of a variable outside of
the cutset. It has been noticed that the depth component is dominant in practice and that
the other components mostly serve as a tie-breaking mechanism [16, Section 5]. So we think
our model is quite realistic. Though we do not know if it is for the functions that we use to
prove our results.

SAT 2024

11:6 The Relative Efficiency of Dynamic and Static Compilation

Caching allows to avoid constructing a decision-DNNF for the same formula twice. By
default, cache(F) equals nil for every formula F . We consider two caching variants: one
realistic, the other idealized. The realistic caching is syntactical: in Line 5, cache(F) ̸= nil
means that the formula F has already been seen in previous calls to the algorithm. The
idealized caching is semantical: in Line 5, cache(F) ̸= nil means that some formula F ′

logically equivalent to F , with var(F ′) ⊆ var(F), has been seen in previous calls (for instance
F = (x1∨x2∨x3)∧ (x1∨ x̄3) and F ′ = (x1∨x2)∧ (x1∨ x̄3)), and then cache(F) is defined as
cache(F ′). The condition var(F ′) ⊆ var(F) is here to avoid situations where decomposability
of ∧-nodes would be compromised because of caching. We write Compile[smc](. . .) to precise
that semantical caching is used. Otherwise, syntactical caching is used (no caching is not
allowed).

Inprocessing simplifies the formula between every two variable selections. This is the
procedure process(F) at Line 2. Here it returns a modified formula for F and a term
(a conjunction of literals) τ . A classical procedure is unit propagation: while there is a
unit clause ℓ ∈ F , ℓ is added to the term τ and F is replaced by F |ℓ. Unit propagation
is linear-time, but we can also have more complex processing procedures like satisfiability
checking: if F is unsatisfiable, then it is replaced by 0. The stronger procedure we consider
is backbone identification: τ contains all literals ℓ such that F |= ℓ and F is replaced by
F |τ . Note that backbone identification subsumes both unit propagation and satisfiability
checking. Indeed if F is unsatisfiable, then F |= x and F |= x̄ for every x and we just assume
process(F) returns (0, {x, x̄|x ∈ var(F)}). A compiler may implement several processing
techniques at the same time. In practice NP-hard processing procedures require calling an
external SAT solver. Again, we just disregard the running time of process and assume it
is sound and complete. We write Compile[bb](. . .) when backbone identification is enabled
(and a fortiori unit propagation and satisfiability checking). Without [bb] inprocessing is
disabled (even unit propagation), then process(F) returns (F, ∅). When τ is not empty,
then it is added to the output with a ∧-node at line 7 or 11. For instance, if F = (x1) ∧
(x̄1 ∧ x̄2)∧ (x2 ∨ x̄1 ∨ x3)∧ (x4 ∨ x5 ∨ x6)∧ (x̄3 ∨ x̄4 ∨ x̄5 ∨ x6), and backbone identification is
enabled, then process(F) = ((x4 ∨ x5 ∨ x6)∧ (x̄4 ∨ x̄5 ∨ x6), x1 ∧ x2 ∧ x3) and the algorithm
goes through lines 9, 10 and 11. Say x4 is selected line 10, then line 11 returns the following:

∧

x1 x2 x3 x4

0 1
Compile

(x5∨x6, S−x4)
Compile

(x̄5∨x6, S−x4)

Figure 2

where each literal of τ = x1 ∧ x2 ∧ x3 is converted into a decision node to make sure
that the resulting circuit is a decision-DNNF. Admittedly, in this paper we are far from
exhaustive when it comes to inprocessing, for instance we do not consider literal equivalences
detection [17], vivification [21], elimination of redundant clauses, etc.

4 Decision-DNNF Organized by Tree Decompositions

The output of Compiles(F, T) is a decision-DNNF circuit organized by T . We introduce
this notion in this section. In a decision-DNNF circuit, a path from the source to a sink
is a sequence of nodes (v1, v2, . . . , vk) with v1 the source, vi+1 a child of vi, and vk a sink.

A. de Colnet 11:7

Algorithm 1 The general Compile procedure.
1: input: a CNF formula F , a set of variable S ⊆ var(F)
2: (F, τ)← process(F) // τ is a conjunction of literals
3: S ← S \ var(τ)
4: if F = 0 or F = 1 then return F

5: if cache(F) ̸= nil then return cache(F) // cache check
6: if F has more than one connected component then
7: C ← τ ∧

∧
H∈components(F) Compile(H, ∅) // create a decomposable ∧-node

8: else
9: if S = ∅ then S ← selectCutset(F)

10: x← selectVariable(S, F)
11: C ← τ ∧ ite(x, Compile(F |x, S − x), Compile(F |x̄, S − x)) // create a decision node
12: end if
13: cache(F)← C // cache update
14: return C

Note that, when i < k, vi may be a decision node or an ∧-node. We use · to denote path
concatenation. For instance (v1, v2, v3, v4) = (v1, v2) · (v3, v4). A variable x appear in a path
p if p contains a decision node for x. For T = (T, b) and x ∈ var(F) we denote by tx the
highest node of T whose bag contains x, that is, x ∈ b(tx), and there is no t ∈ V (T) such
that both tx <T t and x ∈ b(t).

▶ Definition 1. Let F be a CNF formula and let T = (T, b) be a tree decomposition of GF .
A path p in a decision-DNNF circuit C is organized by T when, for every two decision
nodes vx and vy on p for the variables x and y, respectively, vx appears before vy in p only if
ty ≤T tx. C is organized by T when all its paths are organized by T .

For example, the decision-DNNF circuit of Figure 1 is organized by the tree decomposition
shown in the same figure. Readers well-versed in knowledge compilation may know the
concept of structured-DNNF circuits [22] and may see similarities with our circuits organized
by tree decompositions. But they should also note that the circuit shown in Figure 1 is
not structured-decomposable. Indeed, a structured-DNNF circuit cannot have the two paths
highlighted in the figure since they both contain the variables 2, 3, 4, 5 but in different order.

We are show that the output of Compiles[smc, bb](F, T) is organized by T . We call
residual component of F any R ∈ components(F |α) where α is a partial assignment to
var(F). Note that GR is connected.

▶ Lemma 2. Let F be a CNF formula, let T = (T, b) be a tree decomposition of GF and
let R be a residual component of F such that var(R) ̸= ∅. Then there is a unique highest
tR ∈ T such that var(R) ∩ b(tR) ̸= ∅.

Proof. Let t1, . . . , tk be the highest nodes in T whose bags intersect var(R). Suppose, toward
a contradiction, that k > 1. Then let t be the least common ancestor of t1, . . . , tk. t has
at least two children cℓ and cr such that some ti is a descendant of cℓ (or is cℓ itself) and
some tj , j ̸= i, is a descendant of cr (or is cr itself). By assumption, var(R) ∩ b(t) = ∅. As
a general property of tree decompositions, b(t) is a vertex separator of GF [b↓(t)] such that
no component of GF [b↓(t)]− b(t) contains at the same time variables from b↓(cℓ) \ b(t) and
variables from b↓(cr) \ b(t). So, since GR is a subgraph of GF [b↓(t)]− b(t), we cannot have
that GR is connected and intersect both b(ti) and b(tj). This is a contradiction, so k = 1. ◀

▶ Lemma 3. Let F be a CNF formula and T be a tree decomposition of GF . Compiles(F, T)
returns a decision-DNNF circuit organized by T and representing F .

SAT 2024

11:8 The Relative Efficiency of Dynamic and Static Compilation

Proof. Here we have no inprocessing and only syntactical caching. Let T = (T, b) and let C

be the output of Compiles(F, T). The statement follows from Lemma 2 and the fact that,
given any residual component R of F , Compiles(R, T) constructs a decision-DNNF circuit
over var(R). Indeed, suppose C contains a path that violates Definition 1, that is, the path
contains a decision node vx for a variable x before the decision node vy for the decision
node y whereas ty ≰T tx. Let R be the residual component of F for which Compiles(R, T)
constructed the node vx. We have {x, y} ⊆ var(R). By Lemma 2, Compiles(R, T) must
select a variable from b(tR) and, by uniqueness of tR, tR is either ty or a strict ancestor of
both tx and ty. In both cases x ̸∈ b(tR) so Compiles(R, T) cannot select x and thus does
not construct vx. A contradiction. ◀

▶ Remark 4. Decision-DNNF circuits organized by tree decompositions lie between general
decision-DNNF circuits and decision-structured-DNNF circuits (see for instance [5]). In the
extreme case where T is a single bag containing all variables, every decision-DNNF circuit
is organized by T . Thus, the “one-bag” tree decomposition, while useless in practice, is
the best for Compiles (more possibility for the output). But this is only because the only
constraint for variableSelect is to select a variable from the bag. Using the “one-bag” tree
decomposition essentially means lifting that constraint.

Lemma 3 still holds when non-deterministic caching is enabled.

▶ Lemma 5. Let F be a CNF formula and T be a tree decomposition of GF . Algorithm
Compiles[smc](F, T) returns a decision-DNNF circuit organized by T that represents F .

Proof sketch. We start with a trivial but key observation. Let p = (v1, . . . , vk) and p′ =
(v′

1, . . . , v′
h) be two paths organized by T . For some i ∈ [k − 1] and some j ∈ [h − 1] let

p1 = (v1, . . . , vi), p2 = (vi+1, . . . , vk), p′
1 = (v′

1, . . . , v′
j), p′

2 = (v′
j+1, . . . , v′

h). If for every
variable x appearing in p1 and every variable y appearing in p′

2 we have ty ≤T tx, then the
path p1 · p′

2 is organized by T .
Now consider a run of Compiles[smc](F, T). Suppose every paths constructed up to the

call Compiles[smc](R, S, T), with R a residual component of F , are organized by T . Let p

be the path corresponding to the branch that lead to Compiles[smc](R, S, T) and suppose
that for all y ∈ var(R) and all x ∈ var(p) we have ty ≤T tx. Assume Compiles[smc](R, S, T)
identifies that there exists a CNF formula R′ with C ′ = cache(R′) ̸= nil such that R is
logically equivalent to R′ and such that var(R′) ⊆ var(R). Since var(C ′) ⊆ var(R′), for all
y ∈ var(C ′) and x ∈ var(p), ty ≤T tx holds true. So, by the previous observation, since all
paths in C ′ are organized by T , concatenating a path of C ′ to p does not create any path
not organized by T . So, if Compiles(F, T) returns a circuit organized by T , then so does
Compiles[smc](F, T). ◀

Now let us further assume that process does backbone identification. Given F ,
process(F) returns τ = ite(ℓ1, 1, 0) ∧ · · · ∧ ite(ℓk, 1, 0) where F |= ℓi for every literal
ℓi (k = 0 and τ = 1 if no such literal exists), and replaces F by F |ℓ1 . . . ℓk. When k > 0
the algorithm calls the decision nodes of τ are conjoined to the circuit. We say that these
decision nodes have been inferred from backbone identification. Let p = (v1, v2, . . . , vk) be
a source-to-sink path in C. There can be only one decision node inferred from backbone
identification in this path: vk−1 (vk is a sink). Every decision node vi appearing before vk−1
on this path is for a variable yi that has been selected from a bag of the tree decomposition.
Let us call x the variable for vk−1. For any given yi we have tx ≤T tyi

. Indeed, let R be
the connected residual formula of F such that the call Compiles(R, T) constructed vi. By
Lemma 2, since x ∈ var(R), we have that tx ≤T tR, and since yi was selected we also have

A. de Colnet 11:9

tR = tyi . So we see that adding backbone identification, and a fortiori unit propagation
or satisfiability testing, does not change the fact that Compiles returns a decision-DNNF
organized by T .

▶ Lemma 6. Let F be a CNF formula and T be a tree decomposition of GF . Algorithm
Compiles[smc, bb](F, T) returns a decision-DNNF circuit organized by T that represents F .

We finish this section with a result on the manipulation of decision-DNNF circuits
organized by tree decomposition which will be needed in proofs to come. For S ⊆ V (G) we
denote by T − S the tree decomposition of G− S obtained from T by removing every vertex
of S from its bags. Formally, when T = (T, b), we have T − S = (T, b′) with b′(t) = b(t) \ S.

▶ Lemma 7. conditioning Let F be a CNF formula let C be a decision-DNNF circuit
organized by the tree decomposition T of GF . Let α be a partial assignment to F . Then C|α
is a decision-DNNF circuit organized by the tree decomposition T − var(α) of GF − var(α).

Proof. We prove the statement when α is an assignment to a single variable x. The
lemma then follows by induction. Then C|α is obtained by replacing every decision node
ite(x, v1, v0) by vα(x). It is readily verified that the paths in C|α are subpaths of paths of
C: let v = ite(x, v1, v0), then a path p0 · (v, v¬α(x)) · p1 in C is not kept in C|α while a path
q = q0 · (v, vα(x)) · q1 in C becomes q′ = q0 · (vα(x)) · q1 in C|α. For every variable different
from x, the highest node whose bag contains it in T − {x} is the same as in T , so if q is
organized by T then q′ is organized by T − {x}. ◀

5 Hard Functions for Static Top-Down Compilation

In this section we show that there are CNF formulas that are hard for Compiles but easy for
Compiled.

▶ Theorem 8. There is an infinite class F of CNF formulas and a constant δ ∈ (0, 1]
such that, for every F ∈ F over n variables and every tree decomposition T of GF of width
O(tw(GF)), the following holds:

Compiled(F) returns a decision-DNNF circuit of size nO(1);
Compiles[smc, bb](F, T) returns a decision-DNNF circuit of size 2Ω(nδ).

One can see that, as n increases, tw(GF) has to become negligible compared n, because
if tw(GF) = Ω(n) then the “one-bag” tree decomposition becomes an option and Compiles

essentially finds the smallest decision-DNNF (see Remark 4). One can also guess that tw(GF)
cannot bounded by a constant for all F ∈ F , because Compiles should be able to create
circuits on size 2O(tw(GF))nO(1). Grid graphs are convenient to get a treewidth that is large
enough and yet vanishingly small compared to n. We start with some preliminaries on grid
graphs. Then we describe our functions and explain why Compiled is effective on them.
Finally, we prove the lower bound for Compiles.

5.1 Grid Graphs and Spine Graphs
The grid graph gridn,m contains n×m vertices {xij | i ∈ [n], j ∈ [m]} connected in n rows
and m columns. Grid graphs have a nice well-known properties that we are going to use
several time.

▶ Lemma 9. For every fixed δ ∈ [0, 1), the gridn,n as no δ-balanced separator of size o(
√

n).

SAT 2024

11:10 The Relative Efficiency of Dynamic and Static Compilation

(a) Grow(2). (b) Gcol(4). (c)

Figure 3 Spine subgraphs of grid4,6.

Proof. For S ⊆ V (gridn,n), Let ∂(S) = {{u, v} ∈ E(gridn,n) | u ∈ S, v ̸∈ S}. By [3,
Lemma 3], for every S of size |S| ≤ n2/2, |∂(S)| ≥ min(n, 2

√
|S|) holds true. Suppose S is a

δ-balanced separator of gridn,n. Let V1, V2, . . . be the components of gridn,n − S. There is
V ′, a union of some components of gridn,n−S such that |V ′| ≤ n2/2 and |V ′| = Ω(n2− |S|).
Indeed suppose there is a component Vj of size δn2/2 ≤ |Vj | ≤ δn2. If |Vj | ≤ n2/2 we
can choose V ′ = Vj and we are done. If |Vj | ≥ n2/2 then we choose V ′ =

⋃
i ̸=j Vi and

obtain |V ′| ≥ n2 − |S| − |Vj | ≥ (1 − δ)n2 − |S|. But when Vj does not exist, we let V ′

be V1 ∪ · · · ∪ Vi for the largest i such that |V1 ∪ . . . Vi| ≤ (n2 − |S|)/2, then we have that
|V ′| + |Vi+1| ≥ (n2 − |S|)/2 and |V ′| ≥ ((1 − δ)n2 − |S|)/2. Now, |V ′| ≤ n2/2 implies
that |∂(V ′)| ≥ min(n, 2

√
|V ′|) = Ω(

√
n2 − |S|). It follows that if |S| = o(

√
n), then

|∂(V ′)| ≥ Ω(n). So removing Ω(n) edges is needed to disconnect V ′ from the rest of the
grid. But every vertex in gridn,n has degree at most 4, so removing the vertex set S cannot
remove more than 4|S| = o(

√
n) edges. So removing S is not enough to disconnect V ′ from

the rest of the grid, a contradiction. ◀

For n and m fixed, we write rowi = {xi1, . . . , xim} and colj = {x1j , . . . , xnj}. An edge
{xij , xi j+1} is called an edge of the ith row. An edge {xij , xi+1 j} is called an edge of the
jth column.

▶ Definition 10 (Spine subgraphs). A spine subgraph of G = gridn,m is a subgraph Grow(i),
i ∈ [n] whose edge set comprises all column edges plus all edges of the ith row, or a subgraph
Gcol(j), j ∈ [m], whose edge set comprises all row edges plus all edges of the jth column.
The unique row (resp. column) of Grow(i) (resp. Gcol(j)) is called its spine.

Examples of spine subgraphs are shown in Figures (3a) and (3b). For an unspecified spine
subgraph H, we refer to its spine as spine(H). For every i, k ∈ [n] and j, ℓ ∈ [m], the vertex
xij is at distance |i− k| from Grow(k)’s spine and at distance |j − ℓ| from Gcol(ℓ)’s spine.

▶ Definition 11. For S ⊆ V (gridn,m) and a spine subgraph H of gridn,m, the vertex xij

sees H’s spine despite S if there is no vertex of S \ {xij} on the shortest path connecting xij

to H’s spine.

An example is shown in Figure (3c). The vertices of S are circled in red. The vertices
that see the spine despite S are in black. The vertices that do not are in white. Note that
not all vertices in S see the spine.

▶ Lemma 12. Let c > 1 be a constant, G = gridn,m with m ≥ (3c + 1)n, and S ⊆ V (G)
with n/3 ≤ |S| ≤ cn. For n large enough, there is a spine subgraph H of G such that no
vertex of S is at distance fewer than 2 from spine(H) and such that at least Ω(

√
n) vertices

of S see spine(H) despite S.

A. de Colnet 11:11

Proof. Let I = {i | ∃j, xij ∈ S} and let J = {j | ∃i, xij ∈ S} be the indexes of the rows and
columns, respectively, that intersect S.

If |I| <
√

n/3, then at least one row indexed in I contains
√

n vertices of S. So |J | ≥
√

n.
Moreover, |I| <

√
n/3 implies that at least n−

√
n/3 rows do not intersect S and thus at

least 1
3 (n −

√
n) rows do not intersect S and are such that they neighboring rows do not

intersect S (the neighboring rows of rowi being rowi+1 and rowi−1). Let H be the spine
subgraph Grow(i) for any of these rows. Then all vertices of S are at distance at least 2
from spine(H). Finally, for every j ∈ J , there is one vertex of S ∩ colj that sees spine(H)
despite S.

Now suppose |I| ≥
√

n/3. Since |S| ≤ cn, at least one of the m columns does not intersect
S and is such that its neighboring columns do not intersect S either. Let H be the spine
subgraph for that column. Then spine(H) ∩ S = ∅ and all vertices of S are at distance at
least 2 from spine(H). Finally for every i ∈ I, there is one vertex of S ∩ rowi that sees
spine(H) despite S. ◀

5.2 The Hard Functions
We assume the tree decompositions given to Compiles have minimal width up to a constant
factor ρ ≥ 1 and we write n′ = ⌈12ρ + 1⌉n. There are O(n) spine subgraphs of gridn,n′ . In
this section, we call them H1, H2, . . . For each Hi we have a CNF formula

FHi
=

∧
{x,y}∈E(Hi)

(x ∨ y).

We introduce s = log(n) + O(1) variables Z = {z0, . . . , zs−1} such that 2s is greater than
the number of spine subgraphs. The Z-variables are used as selectors. Every assignment to
Z is interpreted as a number between 1 and 2s by w(Z) = 1 +

∑s−1
k=0 zk2k. We denote by

(w(Z) ̸= i) the clause satisfied exactly by the assignments α to Z verifying w(α) ̸= i. Let X

be the variables/vertices of gridn,n′ . We define

SelectSpinen(X, Z) =
∧

i∈[2s]

∧
c∈FHi

((w(Z) ̸= i) ∨ c).

We then introduce a copy of gridn,n′ over a new set of variables/vertices X ′, and we define

Fn(X, X ′, Z) = SelectSpinen(X, Z) ∧ SelectSpinen(X ′, Z). (1)

The Fn are our hard functions. Notice that the same selectors are used for the two SelectSpine

formulas. The reason for copying the variables is to help Compiled chooses Z as its first
cutset. Indeed, the primal graph of Fn looks like Figure 4. Intuitively, Z is the smallest
2/3-balanced separator of this graph: only O(log(n)) vertices, whereas cutting through one
of the two grids requires Ω(n) vertices. So, Compiled starts by assigning all variables of
Z in every possible way. This represents only O(n) branches that each leads to a formula
FH(X) ∧ FH′(X ′) for two spine subgraphs H and H ′ over disjoint set of variables. The
algorithm create a decomposable ∧-node to deal with FH and FH′ independently and easily
compile them into small decision-DNNF circuits.

▶ Lemma 13. For every n > 0, Compiled(Fn) returns a decision-DNNF circuit of size nO(1),
where Fn(X, X ′, Z) = SelectSpinen(X, Z) ∧ SelectSpinen(X ′, Z) is defined as in (1).

Proof sketch. The primal graph of Fn = SelectSpinen(X, Z) ∧ SelectSpinen(X ′, Z) is
connected. So Compiled(Fn) first computes a minimal-size 2/3-balanced separator of GFn

.
Z is a 2/3-balanced cutset of GFn

so a minimal-size 2/3-balanced cutset S of GFn
contains

no more than O(log(n)) variables.

SAT 2024

11:12 The Relative Efficiency of Dynamic and Static Compilation

Z-clique

fully connected fully connected

X-grid X ′-grid

Figure 4 The primal graph of SelectSpinen(X, Z) ∧ SelectSpinen(X ′, Z).

Suppose S does not contain Z in its entirety. By Lemma 9, there are no 3/4-balanced
separator of size O(log(n)) of an n× n grid. Let GX be the X-grid and GX′ be the X ′-grid.
Both GX − S and GX′ − S contain a connected component of size at least 3nn′/4. Let ΓX

and ΓX′ be these components. But then ΓX and ΓX′ are connected to a vertex z ∈ Z \ S in
GFn − S and thus GFn − S has a connected component of size at least 6nn′/4. The number
of variables of Fn is 2nn′ + O(log(n)) and 6nn′/4 > 4nn′/3 + O(log(n)) for n large enough.
So S is not a 2/3 balanced separator if it does not contain Z. And since Z is a 2/3-balanced
cutset of GFn

, we have S = Z.
As long as one Z-variable is left unassigned, the primal graph of the formula remains

connected and, since there is no inprocessing mechanisms here, Compiled(Fn) keeps assigning
all Z-variables in all possible way without creating decomposable ∧-nodes. This amounts for
O(n) branches in the algorithms. When, at the end of a branch, all Z-variables are assigned
the algorithm makes a call Compiled(FH ∧ FH′) with H a spine subgraph of the X-grid and
H ′ a spine subgraph of the X ′-grid. A decomposable ∧-node is created and the algorithm calls
Compiled(FH) and Compiled(FH′). H and its connected subgraphs all have 2/3-balanced
separators of constant size, so Compiled(FH) only need O(log(|H|)) = O(log(n)) recursive
calls to finish. ◀

5.3 Lower Bounds for Compiles

We now prove a 2Ω(
√

n) lower bound on the size of the decision-DNNF circuits returned
by Compiles for Fn when given a tree decomposition T = (T, b) of GFn

of width at most
ρ · tw(GFn).

We give some intuition for why the lower bound holds true. Just like Compiled, Compiles

can assign the Z-variables first if they are in the highest bags of T , then it would find O(n)
subformulas of the form FH ∧ FH′ with H a spine subgraph of the X-grid and H ′ a spine
subgraph of the X ′-grid. In such a situation, Compiles will create ∧-nodes and compile FH

and FH′ separately. Let H1, H2, . . . , H2n be the spine subgraphs of the X-grid. The problem
is that Compiles uses the same tree decomposition to compile FH1 , FH2 , . . . , FH2n . For each
i ∈ [2n], there is indeed a tree decomposition T of the X-grid such that Compiles(FHi

, T)
constructs a small circuit, but there is no tree decomposition of the X-grid that simultaneously
give a small circuit for all i. And Compiles is stuck with a unique tree decomposition of GFn

(which contains a tree decomposition of the X-grid), so for some FHi
the circuit constructed

will be large.
Of course the lower bound has to be proved even in cases where the Z variables are not

assigned first. For T fixed, we give a spine subgraph H such that FH does not admit small
decision-DNNF circuits organized by T . Then we will just use Lemma 7 to extract in from a
decision-DNNF circuit C representing Fn and organized by T , a decision-DNNF circuit C ′

representing FH and organized by T . If C ′ is large, then C must be large and we will be
done.

A. de Colnet 11:13

For a given path p of T we let b(p) =
⋃

t∈p b(t).

▶ Lemma 14. Let T be a tree decomposition of width w > 0, there is a path p from its root
to a node such that w ≤ |b(p)| ≤ 2w.

Proof. Let t be one of the highest nodes of T with |b(t)| = w and let q be the path from T ’s
root to t. For every node s ∈ q, let qs be the path from T ’s root to s. For two consecutive
s, s′ in q, s before s′, we have |b(qs′)| − |b(qs)| ≤ w. So, since |b(qt)| = |b(q)| ≥ |b(t)| = w,
there must be a node s ∈ q such that w ≤ |b(qs)| ≤ 2w. ◀

It is known that tw(gridn,n) = n and that there are tree decompositions of gridn,n′ of
width n + 1, so tw(gridn,n′) = n. It is not hard to see that tw(Fn) is at least n and at most
n + O(log(n)) and thus, the width of T is between n and 2ρn for n large enough. The set
b(p) from Lemma 14 for T then contains between n and 4ρn variables from X, X ′ and Z.
There are only O(log(n)) variables in Z so |b(p)∩X| ≥ n/3 or |b(p)∩X ′| ≥ n/3 (for n large
enough). Assuming |b(p) ∩ X| ≥ n/3 holds and setting S = b(p) ∩ X, we claim that the
spine subgraph H, given by Lemma 12 for S in the X-grid, is such that FH has no small
decision-DNNF circuit organized by T .

▶ Lemma 15. For every tree decomposition T of width at most 2ρn of GFn
, there is a

spine subgraph H of the X-grid or of the X ′-grid such that all decision-DNNF circuits that
represent FH and are organized by T have size 2Ω(

√
n).

The proof appears in the next section. We try to give a high-level idea, suppose H is
the spine subgraph represented on the left of Figure 5a. The S-vertices/variables are circled
in red. Since H is found using Lemma 12, many S-vertices see spine(H) despite S and all
S-vertices are at distance at least 2 from spine(H). If we have a decision-DNNF circuit C

organized by T for FH , then we can assign all variables that do not see the spine to 1 (the
white vertices on the figure) and we obtain another decision-DNNF circuit C ′ organized by
T (by Lemma 7) for the formula FH′ where H ′ is shown on the right. Only the S-variables
that see the spine remain, call them S′. In C ′, these variables are assigned first. But one
cannot disconnect H ′ by removing any subset of S′. Also, unit propagation or backbone
identification can only infer the value for the direct neighbors of the S′ variables, but these
neighbors are not on the spine and so their removal along with S′ will let the graph connected.
So we are essentially condemn to assign all the S′-variables and sometimes their neighbors in
H ′, and this create 2Ω(|S′|) = 2Ω(

√
n) nodes in C ′.

(a) S-vertices are circled. Black vertices see the
spine despite S.

(b) The induced subgraph H[V]. S′-vertices are
circled. η(S′)-vertices are squared.

Figure 5

So to prove Theorem 8, the upper bound on Compiled’s output is Lemma 13, and the
lower bound on Compiles’s output follows from Lemmas 6, 7 and 15 since, from the output of
Compiles[smc, bb](Fn, T), one obtains a decision-DNNF organized by T for FH by assigning
the Z-variables to select only the clauses of FH .

SAT 2024

11:14 The Relative Efficiency of Dynamic and Static Compilation

5.4 Proof of Lemma 15
Before starting, let us make a simple observation on the formulas defined over graphs like
FH . We say that a formula F can be decomposed if it can be written as f ∧ g where f and g

are Boolean functions with var(f) ̸= ∅, var(g) ̸= ∅, and var(f) ∪ var(g) = ∅.

▷ Claim 16. Let G be a connected graph whose vertices are seen as variables. The formula
FG =

∧
{x,y}∈G x ∨ y cannot be decomposed. In particular, its backbone is empty.

Proof. Consider a partition (X1, X2) of var(FG) = V (G) where X1 and X2 are non-empty.
We prove that FG ̸≡ f(X1) ∧ g(X2). We have an edge (x1, x2) of G such that x1 ∈ X1 and
x2 ∈ X2. If FG ≡ f ∧ g then we cannot have that f has a model where x1 is set to 0 and
that at the same time g has a model where x2 is set to 0, for otherwise f ∧ g would have a
model that falsifies x1 ∨ x2. Since FG has models where x1 is set to 0 and others where x2 is
set to 0, FG is not equivalent to f(X1) ∧ g(X2). ◁

As explained before, we use the path p from Lemma 14 and we assume, without loss
of generality, that |b(p) ∩X| ≥ n/3. Let H be the spine subgraph given by Lemma 12 for
the X-grid and S = b(p) ∩X. We call S′ the vertices of S that see spine(H) despite S. By
Lemma 12, we have |S′| = Ω(

√
n). Let V ⊆ X be the set of vertices of the whole grid that

see spine(H) despite S and let V̄ = X \ V . It holds that spine(H) ∪ S′ ⊆ V . For instance,
if H is the spine subgraph represented in Figure (5a) with the S-vertices circled, then the
black vertices are V . H[V] is then the subgraph represented in Figure (5b).

Let C be a decision-DNNF circuit organized by T and let β be the assignment to
Z ∪X ′ ∪ V̄ that sets all variables of V̄ ∪X ′ to 1 and that sets Z to select the subgraph H.
By Lemma 7, C ′ = C|β is a decision-DNNF circuit computing Fn|β = FH |β = FH−V̄ =
FH[V] =

∧
{x,y}∈E(H[V])(x∨y), and that is organized by T ′ = (T, V ∩ b). We write b′ = V ∩ b.

We prove several intermediate claims.
For t a node in p, pt is the subpath of p from the root node of T to t. Recall that

b(p) =
⋃

t∈p b(t).

▷ Claim 17. Let t be a node of p such that b′(pt) ⊆ S′. If t has a child c not in p such that
b′

↓(c) ⊈ S′, then for all x ∈ S′, t ≤T tx.

Proof. S′ ⊆ b(p) so, for all x ∈ S′, tx ∈ p. Suppose there exists x ∈ S′ and t ∈ p such that
tx <T t and t has a child c ̸∈ p with b′

↓(c) ⊈ S′. We have that c ̸∈ p. Let y ∈ b′
↓(c) \S′. Then

x ̸∈ b′(t) and, since b′(t) ⊆ b′(pt) ⊆ S′, we have y ̸∈ b′(t). So there are variables not in b′(t)
appearing in bags under two distinct children of t and thus b′(t) is a separator of H[V] such
that H[V]− b′(t) has two non-empty components. But that cannot be, because b′(t) ⊆ S′

and neither S′ nor any of its subset is a separator of V [H]. ◁

p contains the root r of T and b(p) ∩X = S, so b′(r) ⊆ S′ holds. So by Claim 17, on any
path from C ′’s root to a sink, the variables of S′ appear first: every path q from C ′’s source
to the 1-sink, can be written q′ · q′′ where only variables of S′ appear in q′ and where the q′′

contains no variable of S′.
There can be ∧-nodes in q′. But there are particular ∧-nodes. A decomposable ∧-node is

called an ∧∗-node if exactly one of its children does not compute a term, i.e., a conjunction of
literals. The child in question is called the non-term part of the node, and the term obtained
as the conjunction of all terms under all other children is called the term part of the node.
For instance, Figure 2 represents a ∧∗-node: the first three children all represent terms but
the fourth one (on the right) does not. We are going to prove that every ∧-node appearing
in q′ is ∧∗-node

A. de Colnet 11:15

For v ∈ S′, we denote by η(v) its unique neighbor in H[V] and for any given S′′ ⊆ S′ we
write η(S′′) = {η(v) | v ∈ S′′}. See for instance Figure (5b).

▷ Claim 18. Let α be a partial assignment to S′. FH[V]|α is equivalent to τα ∧ FHα where
τα =

∧
α(v)=0 η(v) and Hα = H[V] − (var(α) ∪ var(τ)) is connected, and FHα

cannot be
decomposed.

Proof. The clause v ∨ η(v) forces that if α(v) = 0, all models of FH[V]|α must assign η(v)
to 1. For convienence, see τα as the assignment η(v) that sets η(v) tp 1 for all v such that
α(v) = 0. Then FH[V]|α = τα ∧ FH[V]|τα = τα ∧ FH[V]−var(α)−var(τα) = τα ∧ FHα

. Since all
vertices of S′ are at distance 2 from spine(H), we have that H[V] − var(α) − var(τα) is
connected. So by Claim 16, FHα

is not decomposable. ◁

▷ Claim 19. Let q = (v1, . . . , vm) = q′ · q′′ be a path in C ′ with only variables of S′

appearing in q′ and no variables of S′ appearing in q′′. Let γ be the (partial) assignment
to S′ corresponding to q′. Then every ∧-node vl in q′ is a ∧∗-node whose term part is a
subterm of τγ =

∧
γ(v)=0 η(v).

Proof. Let vk be the first ∧-node in q′ and let α be the assignment corresponding to
(v1, . . . , vk). By Claim 18, vk is a ∧∗-node whose term part is τα =

∧
α(v)=0 η(v) or a subterm

of τα, which is itself a subterm of τγ .
Now suppose vℓ is some ∧-node in q′, let again α be the assignment corresponding to

(v1, . . . , vℓ) and suppose all ∧-nodes before vℓ on that path are ∧∗-nodes whose term parts
are subterms of τα. By Claim 18, FV [H]|α is equivalent to FHα ∧ τα where FHα is not
decomposable, so C ′

vℓ
computes FHα

∧ τ ′ where τ ′ is τα minus all term parts of all ∧∗-nodes
before vℓ. So vℓ is a ∧∗-node whose term part is τ ′ or a subterm of τ ′, and therefore a
subterm of τγ . ◁

FH[V]|γ is satisfiable for every complete assignment γ to S′ so, for every γ, we can
construct a path q as follows: starting from v1, if the current node v is a decision node for
x ∈ S′, follows the γ(x)-child of v, if instead v is a ∧∗-node then follow the non-term child,
and otherwise adds v to q and stops. This path is unique. We call it qγ . We claim that qγ is
not missing any variable of S′

▷ Claim 20. For every complete assignment γ to S′, qγ contains one decision node for every
variable in S′.

Proof. Let v be the last node of qγ . Let α be the variable assignment to S′ corresponding to
qγ . Clearly α is consistent with γ, but we have to show that var(α) = var(γ). By Claim 18,
FH[V]|α is equivalent to FHα ∧ τα where Hα = H[V]− (var(α)∪ var(τα)). By Claim 19, the
term part of the ∧∗-nodes in q are subterms of τα. So C ′

v represents a function FHα
∧ τ ′ for

τ ′ a subterm of τα (τ ′ is possibly empty). C ′
v has models and counter models so v is not

a sink, it also not a ∧∗-node by construction of qγ , nor is it a more general decomposable
∧-node because FHα

is not decomposable. So v is a decision node for a variable y, and
y ̸∈ S′ by construction of qγ . If α is not a complete assignment of S′, then Hα contains
a variable/vertex x of S′. x is essential in FHα

so it must appear in C ′
vm

. Let y be the
variable for vm. Since y ̸∈ S′, we deduce from Claims 17 that ty <T tx. So x cannot exist
for otherwise C ′ would not be organized by T ′. ◁

Now, the circuit C ′
v rooted under the last node v of qγ computes FHγ

∧ τ , where τ is τγ

or a subterm of τγ . We can then show that the functions computed are logically distinct for
distinct γ.

SAT 2024

11:16 The Relative Efficiency of Dynamic and Static Compilation

▷ Claim 21. Let γ and γ′ be distinct complete assignments to S′ and let v and v′ be the
last nodes of qγ and q′

γ , respectively, then C ′
v and C ′

v′ are not logically equivalent

Proof. Let x ∈ S′ be a variable where γ(x) ̸= γ′(x). Say γ(x) = 1. C ′
v computes FH′ ∧ τ

for τ a subterm of τγ =
∧

γ(v)=0 η(v) and H ′ = H[V] − S′ − var(τ). Note that η(x) is in
H ′ so FH′ and C ′

v essentially depend on η(x) and have models where η(v) is set to 0. C ′
v′

computes FH′′ ∧ τ ′ for τ ′ a subterm of τγ′ =
∧

γ′(v)=0 η(v) and H ′′ = H[V]− S′ − var(τ ′).
Either η(x) is in τ ′ and then C ′

v′ |= η(x), or η(x) is not in τ ′ and then C ′
v′ does not depend

on η(x). In both cases, C ′
v and C ′

v′ are not logically equivalent. ◁

So we have 2|S′| paths (one per γ) each containing a unique node. So C ′ contains at least
2|S′| = 2Ω(

√
n) nodes and this finishes the proof of Lemma 15.

6 Hard Functions for Dynamic Top-Down Compilation

We show the opposite variant of Theorem 8.

▶ Theorem 22. There is an infinite class F of CNF formulas and a constant δ ∈ (0, 1] such
that, for every F ∈ F over n variables we have tw(GF) = o(n) and

Compiled,ϵ[smc, bb](F) returns a decision-DNNF circuit of size 2Ω(nδ);
there exists a tree decomposition T of width O(tw(GF)) such that Compiles(F, T) returns
a decision-DNNF circuit of size nO(1).

There is an asymmetry compared to Theorem 8 though: Theorem 22 is a positive result for
the static compilation approach for some well-chosen tree decomposition of close-to-minimal
width. The result does not hold for all tree decompositions of with the same width.

For the proof we will have δ = 1/4. We have not looked to optimize this exponent and we
could probably do better with formulas more cleverly crafted (but probably more complex).
The point here is just to show that one algorithm has a polynomial size output while the
other does not.

It is counter intuitive that, in our settings where many aspects of the algorithms are
non-deterministic, the dynamic approach can be outperformed by its static counterpart. The
idea is to design formulas where there is a clear optimal order to evaluate variables that can
be hinted to the static approach via the tree decomposition, while the dynamic approach
cannot take advantage of it. The hard formulas are of the form

Fn(X, X ′, X ′′) = Ln(X, X ′) ∧Rn(X, X ′′)

Ln and Rn only share the X-variables. Roughly put, Ln’s role is to ensure that the first
cutset selected by Compiled,ϵ contains X, and Rn is a formula that is hard to compile when
the X-variables are the first selected to be assigned. There are many possibilities for Ln and
Rn. Let us start with the formula chosen for Rn.

Rn(X, Y, Z) =
∧

i∈[0,n−1]

∧
j∈[n]

(x̄i+1 ∨ yj+in ∨ zj+in) ∧ (z̄1 ∨ · · · ∨ z̄n2)

with X = {x1, . . . , xn}, Y = {y1, . . . , yn2} and Z = {z1, . . . , zn2} (so X ′′ = Y ∪ Z).

▶ Lemma 23. Let S such that X ⊆ S and |S| = O(n). The decision-DNNF circuit returned
by Compiled,ϵ[smc, bb](Rn, S) has size at least 2Ω(n).

A. de Colnet 11:17

Proof. We call a clause x̄i+1 ∨ yj+in ∨ zj+in a small clause and z̄1 ∨ · · · ∨ z̄n2 the big clause.
Since |S| = O(n), we have that |(Y ∪Z) \ S| = Ω(n2). Now let I ⊆ [n] such that i ∈ I if and
only if zj+in ̸∈ S and yj+in ̸∈ S for some j ∈ [n]. Since |S| = O(n), we have that |I| = Ω(n).

Let β be the assignment that maps all variables in (Y ∪Z)∩S to 1 and all xi for i ̸∈ I to
0. For α a partial assignment to S consistent with β, the graph of Rn|α remains connected
because α does not satisfies the big clause. The small clauses that remain in Rn|α are of the
form x̄i+1 ∨ yj+in ∨ zj+in or yj+in ∨ zj+in. We claim that the backbone of Rn|α is empty.
To show this, it is sufficient to describe two families of assignments that satisfy Rn|α:

all assignments that set all Y -variables to 1 and one remaining Z-variable to 0 satisfy
Rn|α;
for any yj ∈ var(Rn|α), zj must be in var(Rn|α) (because they appear together in a
small clause), and there must be zj′ ∈ var(Rn|α) \ {zj} (because S is too small to leave
Rn|α with only one Z-variable) so assigning yj to 0, zj to 1, zj′ to 0 and all remaining
variables to 1 satisfies Rn|α.

So, in each branch followed by Compiled,ϵ[smc, bb](Rn, S) that leads to the residual formula
Rn|α for some α consistent with β, no decomposable ∧-nodes are created because the graph
always stays connected, and process has no effect because the backbone is always empty.
So for each complete assignment α to S consistent with β, the corresponding branch of the
algorithm creates only decision nodes. For any two distinct complete assignments α and
α′ to S consistent with β, if α and α′ disagree on a variable, then it is some X-variable xi

for i ∈ I and we have that Rn|α ̸≡ Rn|α′ because one formula essentially depends on some
yj+in ̸∈ S while the other does not. So even with semantical caching, the circuit contains at
least one distinct node per α, so at least 2|I| = 2Ω(n) nodes. ◀

Now for Ln consider two disjoint n2 × n2 grids G1 and G2 with vertices V = {vij | i, j ∈
[n2]} and U = {uij | i, j ∈ [n2]}, and the two formulas FG1(V) =

∧
(v,v′)∈E(G1)(v ⇔ v′) and

FG1(U) =
∧

(u,u′)∈E(G2)(u⇔ u′). Then

Ln(X, U, V) =
∧

c∈FG1 ∧FG2

c ∨ x1 ∨ · · · ∨ xn ≡ (FG1 ∧ FG2) ∨ x1 ∨ · · · ∨ xn

FG1 and FG2 are trivial. Their only models are the assignments where all V -variables and
all U -variables are set to 0 or 1. Arguably we could have designed less trivial formulas.
Most formulas with a grid-like primal graphs that are easy to compile would be acceptable
substitutes. We are only interested in their primal graphs for the following lemma.

▶ Lemma 24. For n large enough, every 2/3-balanced separator S of GLn∧Rn of size O(n)
contains X.

Proof. Suppose S does not contain X in its entirety. By Lemma 9, there are no 3/4-balanced
separator of G1 or G2 of size O(n). Thus both GF1 − S and GF2 − S contain a connected
component of size at least 3n4/4. Let H1 and H2 be these components. But then H1
and H2 are connected to a vertex x ∈ X \ S in GLn∧Rn

− S and thus GLn∧Rn
− S has

a component of size at least 6n4/4. The number of variables of Ln ∧ Rn is 2n4 + O(n2)
and 6n4/4 > 4n4/3 + O(n2) for n large enough. So S is not a 2/3 balanced separator of
Ln ∧Rn. ◀

It is readily verified that the backbone of Ln∧Rn is empty and that its graph is connected,
so the first task of Compiled,ϵ[smc, bb](Ln ∧Rn) is to find a balanced separator S of minimal
size up to a factor (1 + ϵ). Thus Compiled,ϵ[smc, bb](Ln ∧ Rn) returns the same circuit as
Compiled,ϵ[smc, bb](Ln ∧Rn, S). By Lemma 24, the chosen separator S contains X and has

SAT 2024

11:18 The Relative Efficiency of Dynamic and Static Compilation

size O(n). If S ⊆ X ∪ Y ∪ Z then by Lemma 23 we have that Compiled,ϵ[smc, bb](Ln ∧Rn)
returns a circuit of size 2Ω(n). Even if S contains some U - and V -variables, we can show that
the same lower bounds hold. This is because assigning U - and V -variables cannot disconnect
the primal graph as long as some X-variables are left unassigned and the impact of assigning
such variables on the backbone of the formula is quasi-null.

▶ Lemma 25. Compiled,ϵ[smc, bb](Ln ∧Rn) returns a circuit of size 2Ω(n).

Proof sketch. By Lemma 24, Compiled,ϵ(Ln ∧Rn) selects a separator S of size O(n) that
contains X. S may contain some U - and V -variables but, once an X-variable is set to 1, all
clauses of Ln disappear and all U - and V -variables with them. Compiled,ϵ(Ln ∧Rn) returns
the same circuit as Compiled,ϵ(Ln ∧Rn, S).

We follow the proof of Lemma 23. The set I and the assignment β are defined the same
way. For α a partial assignment to S consistent with β and that either assigns an X-variable
to 1 or does not assign two X-variables, the graph of (Ln ∧Rn)|α remains connected. Indeed
α does not satisfies the big clause of Rn because it is consistent with β, and if it assigns an
X-variable to 1 then the part of the graph for Ln vanishes, otherwise if some X-variable is
left unassigned then Ln’s graph and Rn’s graph remains connected through that variable.

We claim that the backbone of (Ln ∧Rn)|α is empty. If α sets an X-variable to 1 then
(Ln ∧ Rn)|α = Rn|α so we can just use the proof of Lemma 23. Otherwise, α sets all its
X-variables to 0 but let at least 2 unassigned. In this case, clauses of Ln|α still exist and
contain two X-variables x and x′. We can then extend the assignments to the Y -variables
and the Z-variables described in the proof of Lemma 23 by setting one of x or x′ to 0 and
the other to 1. Such assignments satisfy Ln ∧Rn|α and suffice to show that no X-, Y -, Z-,
U - or V - literals can be in the backbone of Ln ∧Rn|α.

So, each branch followed by Compiled,ϵ[smc, bb](Ln ∧ Rn, S) for one of the assignment
α described above leads to the residual formula (Ln ∧ Rn)|α without creating a single
decomposable ∧-node nor benefiting from process. In particular, along each branch for each
a complete assignment α to S′ that is consistent with β and assigns at least one X-variable
to 1, the algorithm creates only decision nodes. Since for any two such complete assignments
α and α′ we have that (Ln ∧Rn)|α = Rn|α and (Ln ∧Rn)|α′ = Rn|α′, and since we know
by the proof of Lemma 23 that Rn|α ̸≡ Rn|α′, we deduce that each branch for these α

contains a unique node. So there is are least 2|I| − 1 = 2Ω(n) nodes (−1 because we remove
the assignment where all X-variables are set to 0). ◀

It remains to study Compiles on Ln ∧Rn. There is a tree decomposition we can use to
force Compiles to assign the variables in the right order π, namely:

π : x1, y1, z1, y2, z2, y3, z3, . . . , yn, zn,

x2, y1+n, z1+n, y2+n, z2+n, y3+n, z3+n, . . . , y2n, z2n, . . .

xn, y1−n+n2 , z1−n+n2 , y2−n+n2 , z2−n+n2 , . . . , yn2 , zn2 , . . .

where the U -variables and the V -variables are put at the end in any order. This is basically
the reading order of the X, Y, Z-variables as they appear in Rn. To force Compiles to
read the variable in that order, it suffices to use a nice path decomposition, that is, a tree
decomposition T = (T, b) where T is a path and where, first the root bag is empty and,
second, for every two consecutive nodes t and t′ in T , b(t) = b(t′) ∪ {x} or b(t) = b(t′) \ {x}
for some variable x. In a nice path decomposition, the function x 7→ tx is injective (recall
that tx is the highest node of T whose bag contains x): there is a total order σ in which
the variables appear in the bags of T . So a decision-DNNF circuit organized by a nice
path decomposition is guaranteed that on all its paths, the ordering of the variables for the
decision nodes is consistent with σ. We just have to make sure that σ = π.

A. de Colnet 11:19

We use a nice path decomposition where, in a nutshell, the X, Y, Z-variables are added
to the bags in the order given by π until we obtain one big bag containing X ∪ Y ∪ Z, then
Y ∪ Z are removed and the remaining is an O(n2)-width path decomposition of G1 with X

added to all bags, followed by an O(n2)-width path decomposition of G2 with X is added to
all bags. The treewidth of Ln ∧Rn is Θ(n2) because of the n2 × n2 grids in Ln, so the path
decomposition has width O(tw(GLn∧Rn)).

▶ Lemma 26. There exists a tree decomposition T of width O(tw(GLn∧Rn
)) such that

Compiles(Ln ∧Rn, T) returns a circuit of size nO(1).

Proof sketch. In the circuit returned by Compiles(Ln ∧Rn, T), the decision nodes follow
the order π. The clauses (x̄i ∨ yj+in ∨ zj+in are then falsified or satisfied in increasing order
of i and j. For every assignment α to {xi, yj+in | i < k and j + in ≤ h}, only a constant
number of formulas (Ln ∧Rn)|α are possible, so syntactical caching ensures that there are
only a constant number of decision nodes labeled by the same variable in the circuit. ◀

Theorem 22 follows from the combination of Lemmas 25 and 26.

7 Conclusion

We have studied the relative efficiency of two top-down compilation algorithms. Both use
variable selection mechanisms inspired from practical compilers. They both select batches of
variables that correspond to separators of the primal graph, but one uses a dynamic graph
balanced-partitioning approach while the other relies on a pre-computed tree decomposition.
We have shown that the two algorithms construct large decision-DNNF circuits on instances
that yet admit polynomial-size decision-DNNF circuits. Moreover we have shown that there
are instances where only one of two approaches fails to construct a small circuit. Often in
knowledge compilation, we compare languages saying that they offer small compiled forms
for different kind of functions. What we show here is that even within the same language,
similar comparisons are possible for the compilation algorithms: the classes of formulas for
which two compilers to decision-DNNF are able to find polynomial-size compiled forms can
be distinct and not included in one another. This calls for criterion for deciding to which
compilers an instance should be sent.

References
1 Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Algorithms and complexity results

for #sat and bayesian inference. In 44th Symposium on Foundations of Computer Science
(FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 340–351. IEEE
Computer Society, 2003. doi:10.1109/SFCS.2003.1238208.

2 Paul Beame, Jerry Li, Sudeepa Roy, and Dan Suciu. Lower bounds for exact model counting
and applications in probabilistic databases. In Ann E. Nicholson and Padhraic Smyth, editors,
Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, UAI 2013,
Bellevue, WA, USA, August 11-15, 2013. AUAI Press, 2013. URL: https://dslpitt.org/
uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2366&proceeding_id=29.

3 Béla Bollobás and Imre Leader. Edge-isoperimetric inequalities in the grid. Comb., 11(4):299–
314, 1991. doi:10.1007/BF01275667.

4 Marco Cadoli, Francesco M. Donini, Paolo Liberatore, and Marco Schaerf. Preprocessing of
intractable problems. Inf. Comput., 176(2):89–120, 2002. doi:10.1006/INCO.2001.3043.

5 Andrea Calì, Florent Capelli, and Igor Razgon. Non-fpt lower bounds for structural restrictions
of decision DNNF. CoRR, abs/1708.07767, 2017. arXiv:1708.07767.

SAT 2024

https://doi.org/10.1109/SFCS.2003.1238208
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2366&proceeding_id=29
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2366&proceeding_id=29
https://doi.org/10.1007/BF01275667
https://doi.org/10.1006/INCO.2001.3043
https://arxiv.org/abs/1708.07767

11:20 The Relative Efficiency of Dynamic and Static Compilation

6 Hubie Chen. Parameterized compilability. In Leslie Pack Kaelbling and Alessandro Saffiotti,
editors, IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005, pages 412–417. Professional
Book Center, 2005. URL: http://ijcai.org/Proceedings/05/Papers/0644.pdf.

7 Adnan Darwiche. Recursive conditioning. Artif. Intell., 126(1-2):5–41, 2001. doi:10.1016/
S0004-3702(00)00069-2.

8 Adnan Darwiche. A compiler for deterministic, decomposable negation normal form. In Rina
Dechter, Michael J. Kearns, and Richard S. Sutton, editors, Proceedings of the Eighteenth
National Conference on Artificial Intelligence and Fourteenth Conference on Innovative Ap-
plications of Artificial Intelligence, July 28 - August 1, 2002, Edmonton, Alberta, Canada,
pages 627–634. AAAI Press / The MIT Press, 2002. URL: http://www.aaai.org/Library/
AAAI/2002/aaai02-094.php.

9 Adnan Darwiche. New advances in compiling CNF into decomposable negation normal form.
In Ramón López de Mántaras and Lorenza Saitta, editors, Proceedings of the 16th Eureopean
Conference on Artificial Intelligence, ECAI’2004, including Prestigious Applicants of Intelligent
Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004, pages 328–332. IOS Press, 2004.

10 Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif. Intell. Res.,
17:229–264, 2002. doi:10.1613/JAIR.989.

11 Hélène Fargier, Pierre Marquis, Alexandre Niveau, and Nicolas Schmidt. A knowledge
compilation map for ordered real-valued decision diagrams. In Carla E. Brodley and Peter
Stone, editors, Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada, pages 1049–1055. AAAI Press, 2014. doi:
10.1609/AAAI.V28I1.8853.

12 Hélène Fargier and Jérôme Mengin. A knowledge compilation map for conditional preference
statements-based languages. In Frank Dignum, Alessio Lomuscio, Ulle Endriss, and Ann
Nowé, editors, AAMAS ’21: 20th International Conference on Autonomous Agents and
Multiagent Systems, Virtual Event, United Kingdom, May 3-7, 2021, pages 492–500. ACM,
2021. doi:10.5555/3463952.3464014.

13 Jinbo Huang and Adnan Darwiche. DPLL with a trace: From SAT to knowledge compilation.
In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI-05, Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland,
UK, July 30 - August 5, 2005, pages 156–162. Professional Book Center, 2005. URL: http:
//ijcai.org/Proceedings/05/Papers/0876.pdf.

14 Roberto J. Bayardo Jr. and Joseph Daniel Pehoushek. Counting models using connected
components. In Henry A. Kautz and Bruce W. Porter, editors, Proceedings of the Seventeenth
National Conference on Artificial Intelligence and Twelfth Conference on on Innovative
Applications of Artificial Intelligence, July 30 - August 3, 2000, Austin, Texas, USA, pages
157–162. AAAI Press / The MIT Press, 2000. URL: http://www.aaai.org/Library/AAAI/
2000/aaai00-024.php.

15 Rafael Kiesel and Thomas Eiter. Knowledge compilation and more with sharpsat-td. In
Pierre Marquis, Tran Cao Son, and Gabriele Kern-Isberner, editors, Proceedings of the 20th
International Conference on Principles of Knowledge Representation and Reasoning, KR 2023,
Rhodes, Greece, September 2-8, 2023, pages 406–416, 2023. doi:10.24963/KR.2023/40.

16 Tuukka Korhonen and Matti Järvisalo. Integrating tree decompositions into decision heuristics
of propositional model counters (short paper). In Laurent D. Michel, editor, 27th International
Conference on Principles and Practice of Constraint Programming, CP 2021, Montpellier,
France (Virtual Conference), October 25-29, 2021, volume 210 of LIPIcs, pages 8:1–8:11.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.CP.2021.8.

17 Jean-Marie Lagniez and Pierre Marquis. An improved decision-dnnf compiler. In Carles
Sierra, editor, Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 667–673. ijcai.org,
2017. doi:10.24963/IJCAI.2017/93.

http://ijcai.org/Proceedings/05/Papers/0644.pdf
https://doi.org/10.1016/S0004-3702(00)00069-2
https://doi.org/10.1016/S0004-3702(00)00069-2
http://www.aaai.org/Library/AAAI/2002/aaai02-094.php
http://www.aaai.org/Library/AAAI/2002/aaai02-094.php
https://doi.org/10.1613/JAIR.989
https://doi.org/10.1609/AAAI.V28I1.8853
https://doi.org/10.1609/AAAI.V28I1.8853
https://doi.org/10.5555/3463952.3464014
http://ijcai.org/Proceedings/05/Papers/0876.pdf
http://ijcai.org/Proceedings/05/Papers/0876.pdf
http://www.aaai.org/Library/AAAI/2000/aaai00-024.php
http://www.aaai.org/Library/AAAI/2000/aaai00-024.php
https://doi.org/10.24963/KR.2023/40
https://doi.org/10.4230/LIPICS.CP.2021.8
https://doi.org/10.24963/IJCAI.2017/93

A. de Colnet 11:21

18 Jean-Marie Lagniez, Pierre Marquis, and Anastasia Paparrizou. Defining and evaluating
heuristics for the compilation of constraint networks. In J. Christopher Beck, editor, Principles
and Practice of Constraint Programming - 23rd International Conference, CP 2017, Melbourne,
VIC, Australia, August 28 - September 1, 2017, Proceedings, volume 10416 of Lecture Notes in
Computer Science, pages 172–188. Springer, 2017. doi:10.1007/978-3-319-66158-2_12.

19 Christian Muise, Sheila A. McIlraith, J. Christopher Beck, and Eric Hsu. DSHARP: Fast
d-DNNF Compilation with sharpSAT. In Canadian Conference on Artificial Intelligence, 2012.

20 Umut Oztok and Adnan Darwiche. On compiling CNF into decision-dnnf. In Barry O’Sullivan,
editor, Principles and Practice of Constraint Programming - 20th International Conference,
CP 2014, Lyon, France, September 8-12, 2014. Proceedings, volume 8656 of Lecture Notes in
Computer Science, pages 42–57. Springer, 2014. doi:10.1007/978-3-319-10428-7_7.

21 Cédric Piette, Youssef Hamadi, and Lakhdar Sais. Vivifying propositional clausal formulae.
In Malik Ghallab, Constantine D. Spyropoulos, Nikos Fakotakis, and Nikolaos M. Avouris,
editors, ECAI 2008 - 18th European Conference on Artificial Intelligence, Patras, Greece, July
21-25, 2008, Proceedings, volume 178 of Frontiers in Artificial Intelligence and Applications,
pages 525–529. IOS Press, 2008. doi:10.3233/978-1-58603-891-5-525.

22 Knot Pipatsrisawat and Adnan Darwiche. New compilation languages based on structured
decomposability. In Dieter Fox and Carla P. Gomes, editors, Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17,
2008, pages 517–522. AAAI Press, 2008. URL: http://www.aaai.org/Library/AAAI/2008/
aaai08-082.php.

23 Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz, and Toniann Pitassi. Combining
component caching and clause learning for effective model counting. In SAT 2004 - The Seventh
International Conference on Theory and Applications of Satisfiability Testing, 10-13 May 2004,
Vancouver, BC, Canada, Online Proceedings, 2004. URL: http://www.satisfiability.org/
SAT04/programme/21.pdf.

SAT 2024

https://doi.org/10.1007/978-3-319-66158-2_12
https://doi.org/10.1007/978-3-319-10428-7_7
https://doi.org/10.3233/978-1-58603-891-5-525
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php
http://www.satisfiability.org/SAT04/programme/21.pdf
http://www.satisfiability.org/SAT04/programme/21.pdf

	1 Introduction
	2 Preliminaries
	2.1 Graphs Separators and Tree Decompositions
	2.2 Decision-DNNF Circuits

	3 A Framework for Top-Down Compilation to decision-DNNF
	4 Decision-DNNF Organized by Tree Decompositions
	5 Hard Functions for Static Top-Down Compilation
	5.1 Grid Graphs and Spine Graphs
	5.2 The Hard Functions
	5.3 Lower Bounds for Compile_s
	5.4 Proof of Lemma 15

	6 Hard Functions for Dynamic Top-Down Compilation
	7 Conclusion

