
Entailing Generalization Boosts Enumeration
Dror Fried #

Department of Mathematics and Computer Science, The Open University of Israel, Ra’anana, Israel

Alexander Nadel #Ñ

Intel Corporation, Israel and Faculty of Data and Decision Sciences, Technion, Haifa, Israel

Roberto Sebastiani #Ñ

DISI, University of Trento, Italy

Yogev Shalmon #

Intel Corporation, Israel and The Open University of Israel, Ra’anana, Israel

Abstract
Given a combinational circuit Γ with a single output o, AllSAT-CT is the problem of enumerating
all solutions of Γ. Recently, we introduced several state-of-the-art AllSAT-CT algorithms based
on satisfying generalization, which generalizes a given total Boolean solution to a smaller ternary
solution that still satisfies the circuit. We implemented them in our open-source tool HALL. In this
work we draw upon recent theoretical works suggesting that utilizing generalization algorithms,
which can produce solutions that entail the circuit without satisfying it, may enhance enumeration.
After considering the theory and adapting it to our needs, we enrich HALL’s AllSAT-CT algorithms
by incorporating several newly implemented generalization schemes and additional SAT solvers. By
conducting extensive experiments we show that entailing generalization substantially boosts HALL’s
performance and quality (where quality corresponds to the number of reported generalized solutions
per instance), with the best results achieved by combining satisfying and entailing generalization.
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1 Introduction

Enumerating the solutions of a given propositional formula is often a required task in
computer science [20, 11, 22, 49, 52]. In AllSAT-CT, the formula is provided in a form of a
combinational circuit Γ = ⟨I,G, o⟩ with inputs I, gates G and a single output o. Then, the
goal is to enumerate all the possible assignments to Γ’s inputs, for which Γ’s output is 1 (see
Fig. 1 for an example). AllSAT-CT’s applications include model checking [28, 17, 18] and
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Figure 1 The circuit Γ = ⟨I = {a, b, c} , G = {n ↔ a ∧ b, p ↔ ¬n ∧ c} , o ≡ ¬p⟩ is shown. An
AllSAT-CT solver could return the following two solutions: σ1 ≡ {c := 0} and σ2 ≡ {a := 1; b := 1}.
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(a) Γ = ⟨I = {a, b} , G =
{n ↔ a ∧ b, k ↔ a ∧ ¬b, p ↔ n ∨ k} , o ≡ p⟩.

C1 = (n ∨ ¬a ∨ ¬b),
C2 = (¬n ∨ a), C3 = (¬n ∨ b),

C4 = (k ∨ ¬a ∨ b),
C5 = (¬k ∨ a), C6 = (¬k ∨ ¬b),

C7 = (¬p ∨ k ∨ n),
C8 = (p ∨ ¬k), C9 = (p ∨ ¬n)

(b) Encoding G to CNF.

Figure 2 An example where UC generalization returns an e-hard solution (that is, an e-
generalization which cannot be subsumed by any s-generalization). Let σ ≡ {a := 1, b := 1}
be the solution to Γ, depicted in Fig. 2a, we are interested to generalize to τ ≡ {a := 1}. τ is an
e-generalization of σ, since with a = 1 the output must be 1 whether b is assigned 1 or 0, but not
an s-generalization, since ternary simulating τ would assign X to k, n and o. Clearly, τ is also not
subsumed by any other solution, so τ is e-hard. The translation of ¬Γ to CNF using Tseitin encoding
would contain the clauses in Fig. 2b and the unit clause (¬p) representing the negation of the output.
Propagating ¬p by the SAT solver would imply ¬n and ¬k in the clauses C8 and C9. One can now
see that assuming a = 1 is sufficient to get a conflict between C1 and C4, hence the unit cube Q = a

could potentially be returned by the solver as the UC, which induces τQ ≡ {a := 1} as required.

ATPG [9, 48]. Moreover, we apply AllSAT-CT solving in our industrial practice for Static
Timing Analysis (STA) [46, 14], which is a crucial step in circuit design that validates the
timing of a circuit by checking all possible paths for timing violations.

In a recent work of ours [14], we have introduced several anytime AllSAT-CT algorithms
that work by iteratively retrieving a solution, generalizing it, reporting it to the user, and
subsequently blocking it. These algorithms, implemented into an open-source tool called
HALL, exhibited state-of-the-art performance and quality (where quality corresponds to the
number of reported generalized solutions). Increasing the quality is vital in AllSAT-CT,
particularly in STA, where testing as few potential timing violations as possible is required.
In this work, we have substantially improved both performance and quality of HALL on a
wide range of benchmarks, mainly by upgrading HALL’s generalization component, leveraging
the insights outlined below.

We first discuss generalization. Given a circuit Γ and its total Boolean solution σ(I), it is
often required to generalize σ to a small ternary solution by replacing as many Boolean values
as possible by X’s (don’t cares), while making sure that the generalized σ is still a solution
to Γ. Generalization is a variant of (prime) implicant generation, the latter extensively
studied since the 1950th [39, 27, 44, 19, 7, 10, 38, 23], where in generalization there is a
starting solution that must be subsumed by the resulting implicant. Since the early 2010s,
generalization has been widely used as a core component in IC3 (aka PDR) model checking
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algorithm and its derivatives [6, 8, 12, 51, 21]. A careful look, however, reveals that the
definition of generalization is ambiguous. Indeed, since generalization generates ternary
assignments, to define it one must answer the following question: what does it mean for a
given ternary input assignment τ(I) : I 7→ {0, 1, X} to serve as a solution to the circuit? One
possibility would be as follows. Every τ(I) can be expanded to the assignment τS(I∪G∪{o})
by propagating τ(I) to every gate and the output by ternary simulation (see Sect. 2). We
then say that τ satisfies Γ (denoted by τ |≈Γ), if τS(o) = 1. For example, in Fig. 1, we have
{c := 0}|≈Γ and {a := 1; b := 1}|≈Γ (assuming any omitted variables in ternary assignments
are assigned X). One could have defined that a ternary τ is a solution to Γ iff τ |≈Γ. Another
option, however, inequivalent to satisfaction, is to define a ternary τ to comprise a solution to
Γ iff τ entails the circuit, where τ entails Γ (denoted by τ |=Γ), if ρS(o) = 1 for any ρ which
substitutes every X in τ by any Boolean value. To understand why entailment is preferable
to satisfaction for solution definition, consider the circuit Γ in Fig. 2a (for now ignore Fig. 2’s
caption, discussed in Sect. 3) and the assignment ψ ≡ {a := 1}. ψ qualifies as a solution to
Γ through both intuitive understanding and our entailment-based solution definition, since
ternary simulation renders either k = 1 or n = 1 for either b = 0 or b = 1, respectively, so
o = 1 is implied no matter what. However, ψ does not satisfy Γ, since, given b = X, ternary
simulation would assign X to both the gates k and n and then the output too.

The core of our analysis is based on our previously unpublished work [42] and later
follow-ups [30, 31], which made the key distinction between entailment and satisfaction and
surmised that integrating duality [15, 29]-based generalization algorithms, expected to output
solutions which entail the formula without satisfying it, should boost enumeration. Our work,
however, is the first to exhibit how to capitalize on this observation to advance the state of
the art in enumeration empirically, thereby bridging the gap between theory and practice
(the duality-based model counter dualiza [29] can also solve AllSAT-CT, but Sect. 5 shows
that it is inefficient).

As such, we present in Sect. 3 three distinct generalization definitions, ordered in a
hierarchy, including the most powerful entailing (e-)generalization where the generalized
τ has to merely entail Γ, followed by satisfying (s-)generalization where τ must satisfy Γ,
itself followed by an even more restricted gate (g-)generalization (intended to argue that
generalizing after reducing the circuit to clauses is inefficient). The first two definitions
are based on our previously unpublished work [42], while the third one is novel. We then
classify commonly used generalization algorithms based on our hierarchy and observe that
duality-based Unsatisfiable Core-based (UC) generalization [8] can potentially actualize the
advantage of e-generalization.

Next, we leverage our analysis to boost HALL, so far based on (forward) ternary gener-
alization [41, 12], restricted to s-generalization. Substituting ternary by UC generalization
substantially improves HALL’s performance and quality, further improved by combining
ternary and UC generalization (as UC generalization does not guarantee the smallest cardin-
ality). Additionally, we study and compare the impact of the following newly implemented
components in HALL: the SAT solvers CaDiCaL [4], MergeSat [25] and CryptoMiniSAT [45]
(added alongside IntelSAT [35]), backward ternary generalization [41] (aka justification [43])
and UC generalization [8] with or without minimization [40, 32]. In what follows, Sect. 4
discusses AllSAT-CT. Sect. 5 is dedicated to experimental evaluation. In Sect. 6 we conclude.

2 Preliminaries

We briefly review the relevant syntax of Boolean logic. Let V be the set of Boolean variables.
A literal l is either a variable v ∈ V or its negation ¬v. A clause/cube is a disjunction/con-
junction of literals. A formula F (V ) is in Conjunctive/Disjunctive Normal Form (CNF/DNF)

SAT 2024
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if it is a conjunction/disjunction of clauses/cubes. A (combinational Boolean single-output)
circuit Γ = ⟨I = {v1, · · · vn}, G = {vn+1, · · · vn+m}, o ∈ {vn+m,¬vn+m}⟩ is a tuple, where
I are the inputs, G are the gates and o is the output. Every gate comprises the formula
vk ↔ (li ∧ lj), where i, j < k and li, lj are literals of variables vi and vj respectively (us-
ing only ∧ operator does not restrict the generality [5]). Tseitin encoding [50] converts a
given circuit Γ to a CNF formula by translating every gate v ↔ l1 ∧ l2 to three clauses
(v ∨ ¬l1 ∨ ¬l2) ∧ (¬v ∨ l1) ∧ (¬v ∨ l2) and adding the unit clause (o) to assert the output.

For brevity, we skip the standard Boolean logic semantics. Ternary logic [37] extends
Boolean logic with an additional value called don’t-care (X). Formally, a ternary assignment
τ : V 7→ {0, 1, X} assigns each variable to one of the ternary values {0, 1, X}. The cardinality
|τ | of a ternary assignment τ is the number of variables in τ assigned 0 or 1 (inducing an
order relation between assignments). A ternary assignment is also a total Boolean assignment
iff it has the maximal cardinality. To evaluate a formula in Boolean logic syntax under a
ternary assignment τ , one can use Boolean logic semantics extended by the rules (¬X ≡ X),
(X ∧ 1 ≡ X), (X ∧ 0 ≡ 0) and (X ∧X ≡ X).

Ternary simulation propagates a given ternary assignment to the inputs τ across the
gates all the way to the output:

▶ Definition 1 (Ternary Simulation [41, 16]). Given a circuit Γ = ⟨I,G, o⟩ and a ternary
assignment τ(I) : I 7→ {0, 1, X} to Γ’s inputs, ternary simulation transforms τ to the
assignment τS({v1 . . . vn+m}), where τS(v) := τ(v) for every input v ∈ I, and for every gate
vk ↔ (li ∧ lj), we have τS(vk) := τS(li) ∧ τS(lj).

For brevity, we omit variables assigned X when specifying ternary assignments. We say
that a ternary assignment ρ(I) subsumes the ternary assignment τ(I), denoted by ρ ⊆ τ ,
if τ(v) = ρ(v) for every v : ρ(v) ∈ {0, 1}. We say that ρ(I) strictly subsumes τ(I), denoted
by ρ ⊂ τ , if ρ ⊆ τ and |ρ| < |τ |. For example, {x1 := 1} ⊂ {x1 := 1, x2 := 0}. A ternary
assignment τ(I) naturally induces the cube Dτ containing v wherever τ(v) = 1 and ¬v
wherever τ(v) = 0 (variables assigned X’s are skipped). Similarly, a cube D(I) induces a
ternary assignment, denoted by τD, in which τ(v) = 1 for v ∈ D, τ(v) = 0 for ¬v ∈ D and
τ(v) = X if v,¬v ̸∈ D. For example, given I = {a, b, c}, τ(I) ≡ {a := 1, b := 0} induces the
cube Dτ = a ∧ ¬b, while the cube D(I) = a ∧ ¬b induces τD ≡ {a := 1, b := 0}.

Given a CNF formula F , a SAT solver decides whether F is satisfiable. Many SAT solvers
are incremental [13, 36]: they can be invoked multiple times, where, for every new query
SAT(F,A), the SAT solver also receives a cube of assumption literals (assumptions) A, which
hold only for the current query. The solver then decides whether F ∧A is satisfiable (where
F contains all the clauses provided so far). If F ∧A is unsatisfiable, SAT(F,A) returns an
Unsatisfiable Core (UC), that is, a cube A′ ⊆ A, such that F ∧A′ is still unsatisfiable [13].

3 The Generalization Hierarchy

Recall from Sect. 1 the following definitions of a ternary assignment τ(I) : I 7→ {0, 1, X}
satisfying (|≈) and entailing (|=) a given circuit Γ = ⟨I,G, o⟩:
1. τ satisfies Γ (denoted by τ |≈Γ), if τS(o) = 1,
2. τ entails Γ (denoted by τ |=Γ), if ρS(o) = 1 for any ρ which substitutes every X in τ by

any Boolean value.

We define a solution to the least restrictive option sufficient for real-world applications
(e.g., AllSAT-CT or PDR): τ(I) is a solution to Γ iff τ |=Γ.
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In addition, we say that τ satisfies the gate v ∈ G, if τS(v) ̸= X, and that τ gate-satisfies
Γ if τ satisfies Γ and every gate in Γ. Def. 2 offers three alternatives for defining generalization,
where any generalization τ must subsume the given total Boolean solution σ.

▶ Definition 2 (G-,s-,e-generalization). Given a circuit Γ = ⟨I,G, o⟩ and its total Boolean
solution σ(I)|≈Γ, a ternary solution τ(I)|=Γ : τ(I) ⊆ σ(I) is a:

gate (g-) generalization of σ if τ gate-satisfies Γ (that is, τ |≈Γ and ∀v ∈ G : τS(v) ̸= X)
satisfying (s-) generalization of σ if τ |≈Γ
entailing (e-) generalization of σ if τ |=Γ

E-generalization is the least restrictive one, merely requiring τ to be Γ’s solution. S-
generalization requires τ to satisfy the circuit, while g-generalization additionally has τ
satisfying every single gate. We denote the sets of all the g-, s- and e- generalizations for a
given circuit Γ and a total Boolean solution σ|≈Γ by G(Γ, σ), S(Γ, σ) and E(Γ, σ), respectively.
Towards separating between g- and s-generalization as well as between s- and e-generalization,
Def. 3 introduces the notions of s-hard and e-hard solutions.

▶ Definition 3 (S-hard, e-hard). Given a circuit Γ = ⟨I,G, o⟩ and its total Boolean solution
σ(I)|≈Γ, a ternary solution τ(I)|=Γ is

s-hard if τ ∈ S(Γ, σ), but for every ρ ⊆ τ : ρ /∈ G(Γ, σ)
e-hard if τ ∈ E(Γ, σ), but for every ρ ⊆ τ : ρ /∈ S(Γ, σ)

Lemma 4 below presents the generalization hierarchy. It shows that e-generalization
is more powerful (denoted by ≫) than s-generalization in the following sense: every s-
generalization is an e-generalization, but there exists an e-hard solution τ which separates
between e- and s-generalization (that is, τ is an e-generalization, but no ρ ⊆ τ is an s-
generalization). Similarly, s-generalization ≫ g-generalization. The generalization hierarchy
is illustrated in Fig. 3.

▶ Lemma 4 (e-generalization ≫ s-generalization ≫ g-generalization). The lemma is threefold:
I. For every Γ = ⟨I,G, o⟩ and total Boolean σ(I)|≈Γ: G(Γ, σ) ⊆ S(Γ, σ) ⊆ E(Γ, σ).

II. There exists an s-hard solution for some Γ = ⟨I,G, o⟩ and a total Boolean σ(I)|≈Γ.
III. There exists an e-hard solution for some Γ = ⟨I,G, o⟩ and a total Boolean σ(I)|≈Γ.

Proof. I is straightforward. For II, consider Fig. 1, where {c := 0} is s-hard, given
σ = {a := 1; b := 1; c := 0} (since the output is satisfied by ternary simulating τ , but gate n
is not). For III, consider Fig. 2a, where {a := 1} is e-hard, given σ = {a := 1, b := 1}. ◀

Next, we classify popular generalization algorithms, based on the hierarchy in Lemma 4.
Consider any Tseitin generalization algorithm which translates the circuit to a CNF using
Tseitin encoding and generalizes at CNF level by any algorithm (see, e.g. [7, 10, 49]) that
turns as many variables as possible to don’t cares, while still guaranteeing that every clause
is satisfied. Such algorithms can only generate g-generalizations. Indeed, in Tseitin encoding,
every gate v ↔ l1 ∧ l2 is translated to (v∨¬l1 ∨¬l2)∧ (¬v∨ l1)∧ (¬v∨ l2). Hence, the variable
v representing the gate must be assigned a Boolean value, since, otherwise, one or two of the
three clauses (depending on the values of l1 and l2) would have been left unsatisfied.

Let (forward) ternary generalization [41, 12] be the algorithm that generalizes a given
solution by iteratively assigning every input v to X iff propagating v := X by ternary
simulation still sets the output to 1. While, in principle, the inputs can be visited in any
order, our implementation visits the inputs in their order from 1 to n.

Note that ternary generalization can also be carried out backwards [41], where backward
ternary generalization is also known as justification [43]. Briefly speaking, backward ternary
generalization traverses the circuit’s gates in a reversed order (starting from the output).

SAT 2024
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Figure 3 Illustrating the generalization hierarchy-related concepts on the circuit Γ = ⟨I =
{a, b, c, d} , G = {m ↔ a ∨ b, n ↔ c ∧ d, k ↔ c ∧ ¬d, p ↔ n ∨ k, t ↔ p ∨ m} , o ≡ t⟩. All of the follow-
ing assignments are solutions to Γ: σ ≡ {a := 1, b := 1 c := 1, d := 1}, ρ ≡ {b := 1, c := 1, d := 1},
τ ≡ {b := 1, c := 1} and µ ≡ {c := 1}, where σ is the only Boolean solution, and we have
µ ⊂ τ ⊂ ρ ⊂ σ by construction. Observe that µ is an e-hard e-generalization of σ, τ is an s-hard
s-generalization of σ, whereas ρ is a g-generalization of σ (but ρ is not an s- nor an e-generalization).

Whenever a gate whose output is not X is encountered, the algorithm tries to convert one of
its inputs to X, whenever possible (e.g., for an ∧-gate, whose output and inputs are all 0,
one of the inputs can be converted to X).

Ternary generalization (both forward and backward) can generate s-hard solutions (e.g.,
it could generalize {a := 1; b := 1; c := 0} to {c := 0} in Fig. 1), but not e-hard solutions,
since it uses ternary simulation for establishing satisfiability. Same holds for dual-rail
generalization [14, 43], which applies generalization at CNF level but using ternary-logic-
simulating dual-rail encoding. Specifically, in dual-rail encoding, every variable v in the
original circuit is mapped to two Boolean dual-rail variables (v+, v−) in the resulting CNF,
where assigning both v+ and v− to 0 corresponds to assigning the original v to a don’t-care.
Then, one can guide the SAT solver to return a generalized solution by applying anytime
MaxSAT-inspired heuristics [33, 34] to increase the number of don’t-cares assigned to the
circuit inputs (that is, the number of 0’s assigned to their respective dual-rail variables). In
line with our analysis, state-of-the-art AllSAT-CT algorithms are substantially faster with
ternary or dual-rail generalization than with Tseitin generalization [14].

Finally, recall UC generalization [8] (its predecessors being implication graph-based
approaches [47, 28, 40]). Given a circuit Γ = ⟨I,G, o⟩, let the dual circuit ¬Γ be ⟨I,G,¬o⟩.
Let σ(I) : I 7→ {0, 1} be Γ’s total Boolean solution. Note that σ does not satisfy ¬Γ. Let
¬F be a conversion of ¬Γ to CNF using Tseitin encoding. Unsatisfiable Core-based (UC)
generalization [8] generalizes σ(I) to τQ, where Q is the unsatisfiable core (cube), returned by
the query SAT(¬F ,Dσ). For example, σ ≡ {a := 1, b := 1} is a solution to Γ in Fig. 2a, hence
SAT(¬F , a∧ b) must return UNSAT, and the example UC a would translate to τ ≡ {a := 1},
which generalizes σ. UC generalization guarantees e-generalization as substituting X’s in τQ

by any Boolean values and ternary simulating must render o = 1, otherwise Q ∧ ¬F would
have been satisfiable. Crucially, unlike the other algorithms, UC generalization can generate
e-hard solutions: see Fig. 2 for a detailed example. One can also minimize the UC [40, 32].

4 Generalization-based Enumeration Algorithms

Given a circuit Γ = ⟨I,G, o⟩, an AllSAT-CT solver returns a DNF formula Q(I), where
for every solution cube D(I) ∈ Q(I), we have τD|=Γ, while G ∧ o and Q(I) are logically
equivalent. We next review the AllSAT-CT algorithms from [14] and introduce our new UC
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generalization-based algorithms CORE, ROC and CARMA. All the algorithms are implemented
within the well-known blocking framework, which repeatedly enumerates, generalizes and
blocks the solutions [28] (a correctness proof can be found in [28]). This work focuses on
non-disjoint solving (i.e., a total Boolean solution can be subsumed by multiple solutions),
since disjoint solving [52], although supported by HALL, would be impractical for AllSAT-CT
applications in model checking [28, 17, 18], ATPG [9, 48] and STA [46, 14]. As a side note,
AllSAT-CT is simpler than finding all the prime implicants [44, 38, 23], since we only need a
subset of the (not-necessarily-prime) implicants which subsume every total Boolean solution.

Consider Alg. 1 that presents TALE from [14] and our novel CORE and ROC algorithms. To
recall TALE let us follow Alg. 1 in TALE mode (A = TALE). First, the algorithm converts the
given circuit to CNF by applying the Tseitin encoding and provides the CNF as an input
to an incremental SAT solver instance plain (line 1). Line 3 initializes the DNF Q that
will contain all the solutions. Then, the algorithm starts to iteratively produce cubes in the
following way. It queries plain to get a total Boolean solution σ|≈Γ (line 5), applies ternary
generalization (the forward version by default) to generalize σ (line 6), updates DNF Q with
the cube U induced by σ (lines 8 and 12) and blocks U in plain (line 13).

Algorithm 1 Three AllSAT-CT algorithms: TALE, CORE and ROC
Input: Circuit Γ = ⟨I, G, o⟩ Input: A ∈ {TALE, CORE, ROC}
Output: DNF Q(I)

1: plain := CNFTseitin(Γ) ▷ Initialize plain SAT instance
2: if A ̸= TALE then dual := CNFTseitin(¬Γ) ▷ Initialize dual SAT instance, if required
3: Q := {} ▷ Initializing the DNF Q, which will contain all the solutions, to be empty
4: while not UNSAT(plain) do
5: σ := SAT(plain)
6: if A ̸= CORE then σ := TernaryGeneralize(σ, Γ) ▷ Ternary generalization
7: if A = TALE then
8: U := Dσ

9: else
10: U := SAT(dual, Dσ) ▷ Fetch the UC
11: forall a ∈ U : if SAT(dual, U \ {a}) is UNSAT then U := U \ {a} ▷ Minimize the UC
12: Q := Q ∨ U ▷ Q is updated by the cube U
13: plain := plain ∧ ¬U ▷ Blocking U in plain
14: return Q ▷ Q is not guaranteed to be disjoint

We now introduce our first new algorithm CORE which aims at generating e-hard solutions
by switching from ternary to UC generalization. To that end, CORE uses a second incremental
SAT instance dual, initialized by converting the dual circuit ¬Γ to CNF (line 2). Then,
instead of applying ternary generalization at line 6, CORE queries dual under the assumptions
Dσ (line 10), that is, the cube induced by σ, to get an unsatisfiable core (cube) U , followed by
iteratively minimizing it (line 11). Then, similarly to TALE, Q is updated and U is blocked.

Alg. 1 also shows another novel algorithm ROC, which applies ternary generalization
(line 6), followed by UC generalization with minimization (lines 10 and 11). Despite the
overhead, ROC often succeeds in generating smaller solutions than CORE, which ultimately
leads to a reduction in the number of returned solutions. Generalizing further might still be
possible, since our UC extraction algorithm might return a local minimum. However, finding
the smallest UC would have been extremely costly [24].

Note that the initial dual invocation in CORE (line 10) is not expected to encounter any
conflicts during SAT solving. This is because the assumptions represent a total Boolean input
assignment, whose propagation by Boolean Constraint Propagation (BCP) must trigger a
conflict with the clause ¬o prior to any decision. This is not the case during the minimization
loop in CORE (line 11) and any (even the initial) dual invocation in ROC, where the assumptions
might represent a partial assignment to the inputs. This, however, is transparent to both the
user and the high-level algorithm developer.
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Finally, [14] introduced two additional algorithms: MARS based on dual-rail generalization,
and DUTY, which combines between TALE and MARS. To test the impact of combining dual-
rail and UC generalization, our third new algorithm CARMA upgrades MARS by switching to
UC generalization as follows. CARMA is similar to CORE, but it uses dual-rail encoding and
on-the-fly minimization [14] for plain, while still using Tseitin encoding for dual.

5 Experimental Results

We implemented our new algorithms CORE, ROC and CARMA in HALL [14] and compared them
to the already implemented TALE, MARS and DUTY, where the default HALL uses IntelSAT [35]
SAT solver for plain and CaDiCaL [4] for dual across all the algorithms (we provide an
empirical justification for the default solver selection later in this section). We also ran the
duality-based model counter dualiza [29] in its two enumeration modes: sat and bdd.

We used benchmarks from [14] and [26] with some further extensions. All in all, as
reported below, we had started with 14 benchmark families, 10 benchmarks in each, and
then removed benchmarks solved by none of the solvers in four hours, which left us with
97 benchmarks overall. We transformed each circuit family with multiple outputs to three
one-output families (which AllSAT-CT solvers can handle) as follows: we applied either or
(_or suffix below) or xor (_xor suffix below) operator over all the outputs similarly to [14]
to create the first two one-output families, and took only the last output to create the last
one-output family (_only_last_out suffix below). Below, we list all the benchmark families;
the number of instances from each family solved by at least one solver appears in parenthesis:

random_control_or (9), random_control_xor (6) and
random_control_only_last_out (9) from EPFL benchmark suite [1], used in [14].
arithmetic_or (10), arithmetic_xor (1) and arithmetic_only_last_out (5)
from EPFL benchmark suite [1], also used in [14].
random_circuits_or (9), random_circuits_xor (1) and
random_circuits_only_last_out (7), generated by using aigfuzz [5] as in [14].
iscas85_or (10), iscas85_xor (2) and iscas85_only_last_out (8), used in [26];
this set contains publicly available circuits, including sequential circuits. Since we consider
only combinational circuits, we ignored the buffer commands while parsing the files.
sta_gen (10) [14] – Static Timing Analysis (STA) industrial set: a parametrized
benchmark family, which encapsulates a variety of real-world STA instances [14]. We
removed the two smallest benchmarks resulting in a family of 10 benchmarks.
sta_gen_chunks (10) – another family of STA benchmarks created by parameterizing
the size of each cube, rather than the number of inputs (N). Given the chunk size K
and the constant number N = 12289, the formula F (N,K) consists of a disjunction
of subformulas F1(N,K) and F2(N,K), each comprising a DNF, conjuncted with the
selector vN or ¬vN , respectively. In every DNF, the cubes have K variables and are
mutually disjoint. The resulting formula looks as follows, where j = (N − 1)/2: F (N) :=
F1(N) ∨ F2(N), where F1(N) := ((v1 ∧ v2 . . . ∧ vk) ∨ . . . ∨ (vj−k+1 ∧ . . . vj−1 ∧ vj)) ∧ vN

and F2(N) := ((vj+1 ∧ vj+2 . . . ∧ vj+k) ∨ . . . ∨ (vN−K ∧ . . . v(N−2 ∧ vN−1)) ∧ ¬vN .
We used Intel® Xeon® machines with 32Gb memory and 3Ghz CPU frequency. We set the
timeout to 1 hour and evaluated three criteria. First, Solved stands for the number of solved
instances. The second one is PAR-2 score (similarly to SAT competitions [2]), where every
solved benchmark contributes its run-time and every unsolved benchmark contributes twice
the timeout. The lower the PAR-2 score, the better. The third criterion is Quality: the
size (number of cubes) of the DNF, where we compared solvers by their normalized average
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quality, the quality per instance being best-known-DNF-size / current-DNF-size and 0 for
unsolved instances (similarly to anytime categories at MaxSAT Evaluations [3]). The quality
must be within the interval [0, 1], where the higher the quality, the better.

Table 1 Our results (sorted by PAR-2 scores). The best results in each column are highlighted.

Algorithm Origin PAR-2 Solved Quality
ROC new 24926.845 94 0.966614
CORE new 25938.178 94 0.888548
CARMA new 27073.553 94 0.886870
TALE [14] 92676.526 85 0.568704
DUTY [14] 99447.688 84 0.560391
MARS [14] 198771.013 70 0.412807
dualiza_sat [29] 263810.947 61 0.459656
dualiza_bdd [29] 332953.818 51 0.397921
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Figure 4 Comparing PAR2 score and quality: TALE to CORE (top) and TALE to ROC (bottom)

Table 1 summarizes the main results. ROC is the best algorithm by every criterion. It
substantially outperforms the previous state-of-the-art (TALE), where the gap in quality is
especially significant. For an instance-by-instance analysis, consider Fig. 4 starting with its
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Table 2 Comparing TALE configurations (left) and CORE configurations (right).

TALE Config. Solved Quality
Default TALE 85 0.568704
plain := CaDiCaL 83 0.560356
plain := CryptoMS 82 0.555761
plain := MergeSat 80 0.561304
Backward-TerSim 72 0.501580

CORE Config. Solved Quality
Default CORE 94 0.888548
dual := CryptoMS 93 0.846291
dual := IntelSAT 92 0.872976
dual := MergeSat 91 0.824571
No-UC-Minimization 91 0.707390

upper part, which compares TALE to CORE. CORE is almost always on-par or better in terms
of PAR-2 score, but not so in terms of quality. Consider now the lower part of Fig. 4, which
compares TALE to ROC. Unlike CORE, ROC is either better or on-par with TALE in terms of
quality on every single instance, whereas ROC often yields a substantially better quality. ROC
is also always on-par or better than TALE in terms of PAR-2 score.

Finally, Table. 2 explains our choice of four of HALL’s default components. The comparison
of TALE configurations on the left shows why we set the plain SAT solver default to IntelSAT,
as IntelSAT outperforms CaDiCaL [4], MergeSat [25], and CryptoMiniSAT [45] (CryptoMS
in Table. 2). This result is not surprising as IntelSAT was specifically optimized for rapid
incremental mostly satisfiable queries [35]. The comparison on the left also explains why we
decided against migrating from the default forward ternary generalization to the backward
one (recall Sect. 3). The right-side table compares CORE configurations, supporting the choice
of CaDiCaL as the default SAT solver for dual (notably, in dual, unlike in plain, the SAT
queries are unsatisfiable) and the default inclusion of minimization in UC extraction.

6 Conclusion and Future Work

In this work we substantially improved the state of the art in AllSAT-CT solving in terms
of both performance and quality by taking advantage of UC generalization, which can
potentially yield solutions that entail the circuit without satisfying it.

Our best-performing algorithm, ROC, combines ternary and UC generalization as follows:
it iteratively searches for solutions in an IntelSAT-based SAT instance plain. Then, every
solution is generalized using forward ternary generalization, followed by further generalization
to its (locally) minimal unsatisfiable core in a CaDiCaL-based SAT instance dual representing
the dual circuit. The generalized solution is then reported to the user and blocked in plain.
All the algorithms have been implemented in our open-source AllSAT-CT tool HALL.

Our results can be relevant for advancing disjoint AllSAT-CT solving and prime implicant
enumeration [23]. Furthermore, porting our findings to model checking algorithms such as
PDR [6], AVY [51], and CAR [21] could be promising. Notably, while [43] thoroughly compares
different generalization approaches within PDR, it surprisingly does not conclude that UC
generalization enhances PDR’s performance, leaving room for potential improvement.
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