
Entailing Generalization Boosts Enumeration
Dror Fried #

Department of Mathematics and Computer Science, The Open University of Israel, Ra’anana, Israel

Alexander Nadel #Ñ

Intel Corporation, Israel and Faculty of Data and Decision Sciences, Technion, Haifa, Israel

Roberto Sebastiani #Ñ

DISI, University of Trento, Italy

Yogev Shalmon #

Intel Corporation, Israel and The Open University of Israel, Ra’anana, Israel

Abstract
Given a combinational circuit Γ with a single output o, AllSAT-CT is the problem of enumerating
all solutions of Γ. Recently, we introduced several state-of-the-art AllSAT-CT algorithms based
on satisfying generalization, which generalizes a given total Boolean solution to a smaller ternary
solution that still satisfies the circuit. We implemented them in our open-source tool HALL. In this
work we draw upon recent theoretical works suggesting that utilizing generalization algorithms,
which can produce solutions that entail the circuit without satisfying it, may enhance enumeration.
After considering the theory and adapting it to our needs, we enrich HALL’s AllSAT-CT algorithms
by incorporating several newly implemented generalization schemes and additional SAT solvers. By
conducting extensive experiments we show that entailing generalization substantially boosts HALL’s
performance and quality (where quality corresponds to the number of reported generalized solutions
per instance), with the best results achieved by combining satisfying and entailing generalization.

2012 ACM Subject Classification Mathematics of computing → Solvers

Keywords and phrases Generalization, Minimization, Prime Implicant, AllSAT, SAT, Circuits

Digital Object Identifier 10.4230/LIPIcs.SAT.2024.13

Supplementary Material Software: https://github.com/yogevshalmon/allsat-circuits
archived at swh:1:dir:9c4d2c70cd996ca68c8837178682cb4c32cd4e20

Funding We acknowledge the support of the MUR PNRR project FAIR – Future AI Research
(PE00000013), under the NRRP MUR program funded by the NextGenerationEU. The work was
partially supported by the project “AI@TN” funded by the Autonomous Province of Trento. Also
funded in part by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or the European Health
and Digital Executive Agency (HaDEA). Neither the European Union nor the granting authority
can be held responsible for them. Grant Agreement no. 101120763 - TANGO.
Yogev Shalmon: This research was supported by The Open University of Israel’s Research Fund.

Acknowledgements We are grateful to Ben Emanuel for helpful discussions which played an important
role in shaping our research. Also, we thank the anonymous reviewers for their comments and useful
suggestions.

1 Introduction

Enumerating the solutions of a given propositional formula is often a required task in
computer science [20, 11, 22, 49, 52]. In AllSAT-CT, the formula is provided in a form of a
combinational circuit Γ = ⟨I,G, o⟩ with inputs I, gates G and a single output o. Then, the
goal is to enumerate all the possible assignments to Γ’s inputs, for which Γ’s output is 1 (see
Fig. 1 for an example). AllSAT-CT’s applications include model checking [28, 17, 18] and

© Dror Fried, Alexander Nadel, Roberto Sebastiani, and Yogev Shalmon;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024).
Editors: Supratik Chakraborty and Jie-Hong Roland Jiang; Article No. 13; pp. 13:1–13:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dfried@openu.ac.il
https://orcid.org/0000-0002-2108-1167
mailto:alexander.nadel@intel.com
http://www.cs.tau.ac.il/research/alexander.nadel
https://orcid.org/0000-0003-4679-892X
mailto:roberto.sebastiani@unitn.it
https://disi.unitn.it/rseba
https://orcid.org/0000-0002-0989-6101
mailto:yogev.shalmon@intel.com
https://orcid.org/0009-0004-3720-4004
https://doi.org/10.4230/LIPIcs.SAT.2024.13
https://github.com/yogevshalmon/allsat-circuits
https://archive.softwareheritage.org/swh:1:dir:9c4d2c70cd996ca68c8837178682cb4c32cd4e20;origin=https://github.com/yogevshalmon/allsat-circuits;visit=swh:1:snp:77c0ab696262b71180021ae29d9d264062a498d6;anchor=swh:1:rev:3ae2ee30a9a98f2d9449b046058da865b3598ea7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Entailing Generalization Boosts Enumeration

n

p
c

b

a

o

Figure 1 The circuit Γ = ⟨I = {a, b, c} , G = {n ↔ a ∧ b, p ↔ ¬n ∧ c} , o ≡ ¬p⟩ is shown. An
AllSAT-CT solver could return the following two solutions: σ1 ≡ {c := 0} and σ2 ≡ {a := 1; b := 1}.

n

k
p

b

a

o

(a) Γ = ⟨I = {a, b} , G =
{n ↔ a ∧ b, k ↔ a ∧ ¬b, p ↔ n ∨ k} , o ≡ p⟩.

C1 = (n ∨ ¬a ∨ ¬b),
C2 = (¬n ∨ a), C3 = (¬n ∨ b),

C4 = (k ∨ ¬a ∨ b),
C5 = (¬k ∨ a), C6 = (¬k ∨ ¬b),

C7 = (¬p ∨ k ∨ n),
C8 = (p ∨ ¬k), C9 = (p ∨ ¬n)

(b) Encoding G to CNF.

Figure 2 An example where UC generalization returns an e-hard solution (that is, an e-
generalization which cannot be subsumed by any s-generalization). Let σ ≡ {a := 1, b := 1}
be the solution to Γ, depicted in Fig. 2a, we are interested to generalize to τ ≡ {a := 1}. τ is an
e-generalization of σ, since with a = 1 the output must be 1 whether b is assigned 1 or 0, but not
an s-generalization, since ternary simulating τ would assign X to k, n and o. Clearly, τ is also not
subsumed by any other solution, so τ is e-hard. The translation of ¬Γ to CNF using Tseitin encoding
would contain the clauses in Fig. 2b and the unit clause (¬p) representing the negation of the output.
Propagating ¬p by the SAT solver would imply ¬n and ¬k in the clauses C8 and C9. One can now
see that assuming a = 1 is sufficient to get a conflict between C1 and C4, hence the unit cube Q = a

could potentially be returned by the solver as the UC, which induces τQ ≡ {a := 1} as required.

ATPG [9, 48]. Moreover, we apply AllSAT-CT solving in our industrial practice for Static
Timing Analysis (STA) [46, 14], which is a crucial step in circuit design that validates the
timing of a circuit by checking all possible paths for timing violations.

In a recent work of ours [14], we have introduced several anytime AllSAT-CT algorithms
that work by iteratively retrieving a solution, generalizing it, reporting it to the user, and
subsequently blocking it. These algorithms, implemented into an open-source tool called
HALL, exhibited state-of-the-art performance and quality (where quality corresponds to the
number of reported generalized solutions). Increasing the quality is vital in AllSAT-CT,
particularly in STA, where testing as few potential timing violations as possible is required.
In this work, we have substantially improved both performance and quality of HALL on a
wide range of benchmarks, mainly by upgrading HALL’s generalization component, leveraging
the insights outlined below.

We first discuss generalization. Given a circuit Γ and its total Boolean solution σ(I), it is
often required to generalize σ to a small ternary solution by replacing as many Boolean values
as possible by X’s (don’t cares), while making sure that the generalized σ is still a solution
to Γ. Generalization is a variant of (prime) implicant generation, the latter extensively
studied since the 1950th [39, 27, 44, 19, 7, 10, 38, 23], where in generalization there is a
starting solution that must be subsumed by the resulting implicant. Since the early 2010s,
generalization has been widely used as a core component in IC3 (aka PDR) model checking

D. Fried, A. Nadel, R. Sebastiani, and Y. Shalmon 13:3

algorithm and its derivatives [6, 8, 12, 51, 21]. A careful look, however, reveals that the
definition of generalization is ambiguous. Indeed, since generalization generates ternary
assignments, to define it one must answer the following question: what does it mean for a
given ternary input assignment τ(I) : I 7→ {0, 1, X} to serve as a solution to the circuit? One
possibility would be as follows. Every τ(I) can be expanded to the assignment τS(I∪G∪{o})
by propagating τ(I) to every gate and the output by ternary simulation (see Sect. 2). We
then say that τ satisfies Γ (denoted by τ |≈Γ), if τS(o) = 1. For example, in Fig. 1, we have
{c := 0}|≈Γ and {a := 1; b := 1}|≈Γ (assuming any omitted variables in ternary assignments
are assigned X). One could have defined that a ternary τ is a solution to Γ iff τ |≈Γ. Another
option, however, inequivalent to satisfaction, is to define a ternary τ to comprise a solution to
Γ iff τ entails the circuit, where τ entails Γ (denoted by τ |=Γ), if ρS(o) = 1 for any ρ which
substitutes every X in τ by any Boolean value. To understand why entailment is preferable
to satisfaction for solution definition, consider the circuit Γ in Fig. 2a (for now ignore Fig. 2’s
caption, discussed in Sect. 3) and the assignment ψ ≡ {a := 1}. ψ qualifies as a solution to
Γ through both intuitive understanding and our entailment-based solution definition, since
ternary simulation renders either k = 1 or n = 1 for either b = 0 or b = 1, respectively, so
o = 1 is implied no matter what. However, ψ does not satisfy Γ, since, given b = X, ternary
simulation would assign X to both the gates k and n and then the output too.

The core of our analysis is based on our previously unpublished work [42] and later
follow-ups [30, 31], which made the key distinction between entailment and satisfaction and
surmised that integrating duality [15, 29]-based generalization algorithms, expected to output
solutions which entail the formula without satisfying it, should boost enumeration. Our work,
however, is the first to exhibit how to capitalize on this observation to advance the state of
the art in enumeration empirically, thereby bridging the gap between theory and practice
(the duality-based model counter dualiza [29] can also solve AllSAT-CT, but Sect. 5 shows
that it is inefficient).

As such, we present in Sect. 3 three distinct generalization definitions, ordered in a
hierarchy, including the most powerful entailing (e-)generalization where the generalized
τ has to merely entail Γ, followed by satisfying (s-)generalization where τ must satisfy Γ,
itself followed by an even more restricted gate (g-)generalization (intended to argue that
generalizing after reducing the circuit to clauses is inefficient). The first two definitions
are based on our previously unpublished work [42], while the third one is novel. We then
classify commonly used generalization algorithms based on our hierarchy and observe that
duality-based Unsatisfiable Core-based (UC) generalization [8] can potentially actualize the
advantage of e-generalization.

Next, we leverage our analysis to boost HALL, so far based on (forward) ternary gener-
alization [41, 12], restricted to s-generalization. Substituting ternary by UC generalization
substantially improves HALL’s performance and quality, further improved by combining
ternary and UC generalization (as UC generalization does not guarantee the smallest cardin-
ality). Additionally, we study and compare the impact of the following newly implemented
components in HALL: the SAT solvers CaDiCaL [4], MergeSat [25] and CryptoMiniSAT [45]
(added alongside IntelSAT [35]), backward ternary generalization [41] (aka justification [43])
and UC generalization [8] with or without minimization [40, 32]. In what follows, Sect. 4
discusses AllSAT-CT. Sect. 5 is dedicated to experimental evaluation. In Sect. 6 we conclude.

2 Preliminaries

We briefly review the relevant syntax of Boolean logic. Let V be the set of Boolean variables.
A literal l is either a variable v ∈ V or its negation ¬v. A clause/cube is a disjunction/con-
junction of literals. A formula F (V) is in Conjunctive/Disjunctive Normal Form (CNF/DNF)

SAT 2024

13:4 Entailing Generalization Boosts Enumeration

if it is a conjunction/disjunction of clauses/cubes. A (combinational Boolean single-output)
circuit Γ = ⟨I = {v1, · · · vn}, G = {vn+1, · · · vn+m}, o ∈ {vn+m,¬vn+m}⟩ is a tuple, where
I are the inputs, G are the gates and o is the output. Every gate comprises the formula
vk ↔ (li ∧ lj), where i, j < k and li, lj are literals of variables vi and vj respectively (us-
ing only ∧ operator does not restrict the generality [5]). Tseitin encoding [50] converts a
given circuit Γ to a CNF formula by translating every gate v ↔ l1 ∧ l2 to three clauses
(v ∨ ¬l1 ∨ ¬l2) ∧ (¬v ∨ l1) ∧ (¬v ∨ l2) and adding the unit clause (o) to assert the output.

For brevity, we skip the standard Boolean logic semantics. Ternary logic [37] extends
Boolean logic with an additional value called don’t-care (X). Formally, a ternary assignment
τ : V 7→ {0, 1, X} assigns each variable to one of the ternary values {0, 1, X}. The cardinality
|τ | of a ternary assignment τ is the number of variables in τ assigned 0 or 1 (inducing an
order relation between assignments). A ternary assignment is also a total Boolean assignment
iff it has the maximal cardinality. To evaluate a formula in Boolean logic syntax under a
ternary assignment τ , one can use Boolean logic semantics extended by the rules (¬X ≡ X),
(X ∧ 1 ≡ X), (X ∧ 0 ≡ 0) and (X ∧X ≡ X).

Ternary simulation propagates a given ternary assignment to the inputs τ across the
gates all the way to the output:

▶ Definition 1 (Ternary Simulation [41, 16]). Given a circuit Γ = ⟨I,G, o⟩ and a ternary
assignment τ(I) : I 7→ {0, 1, X} to Γ’s inputs, ternary simulation transforms τ to the
assignment τS({v1 . . . vn+m}), where τS(v) := τ(v) for every input v ∈ I, and for every gate
vk ↔ (li ∧ lj), we have τS(vk) := τS(li) ∧ τS(lj).

For brevity, we omit variables assigned X when specifying ternary assignments. We say
that a ternary assignment ρ(I) subsumes the ternary assignment τ(I), denoted by ρ ⊆ τ ,
if τ(v) = ρ(v) for every v : ρ(v) ∈ {0, 1}. We say that ρ(I) strictly subsumes τ(I), denoted
by ρ ⊂ τ , if ρ ⊆ τ and |ρ| < |τ |. For example, {x1 := 1} ⊂ {x1 := 1, x2 := 0}. A ternary
assignment τ(I) naturally induces the cube Dτ containing v wherever τ(v) = 1 and ¬v
wherever τ(v) = 0 (variables assigned X’s are skipped). Similarly, a cube D(I) induces a
ternary assignment, denoted by τD, in which τ(v) = 1 for v ∈ D, τ(v) = 0 for ¬v ∈ D and
τ(v) = X if v,¬v ̸∈ D. For example, given I = {a, b, c}, τ(I) ≡ {a := 1, b := 0} induces the
cube Dτ = a ∧ ¬b, while the cube D(I) = a ∧ ¬b induces τD ≡ {a := 1, b := 0}.

Given a CNF formula F , a SAT solver decides whether F is satisfiable. Many SAT solvers
are incremental [13, 36]: they can be invoked multiple times, where, for every new query
SAT(F,A), the SAT solver also receives a cube of assumption literals (assumptions) A, which
hold only for the current query. The solver then decides whether F ∧A is satisfiable (where
F contains all the clauses provided so far). If F ∧A is unsatisfiable, SAT(F,A) returns an
Unsatisfiable Core (UC), that is, a cube A′ ⊆ A, such that F ∧A′ is still unsatisfiable [13].

3 The Generalization Hierarchy

Recall from Sect. 1 the following definitions of a ternary assignment τ(I) : I 7→ {0, 1, X}
satisfying (|≈) and entailing (|=) a given circuit Γ = ⟨I,G, o⟩:
1. τ satisfies Γ (denoted by τ |≈Γ), if τS(o) = 1,
2. τ entails Γ (denoted by τ |=Γ), if ρS(o) = 1 for any ρ which substitutes every X in τ by

any Boolean value.

We define a solution to the least restrictive option sufficient for real-world applications
(e.g., AllSAT-CT or PDR): τ(I) is a solution to Γ iff τ |=Γ.

D. Fried, A. Nadel, R. Sebastiani, and Y. Shalmon 13:5

In addition, we say that τ satisfies the gate v ∈ G, if τS(v) ̸= X, and that τ gate-satisfies
Γ if τ satisfies Γ and every gate in Γ. Def. 2 offers three alternatives for defining generalization,
where any generalization τ must subsume the given total Boolean solution σ.

▶ Definition 2 (G-,s-,e-generalization). Given a circuit Γ = ⟨I,G, o⟩ and its total Boolean
solution σ(I)|≈Γ, a ternary solution τ(I)|=Γ : τ(I) ⊆ σ(I) is a:

gate (g-) generalization of σ if τ gate-satisfies Γ (that is, τ |≈Γ and ∀v ∈ G : τS(v) ̸= X)
satisfying (s-) generalization of σ if τ |≈Γ
entailing (e-) generalization of σ if τ |=Γ

E-generalization is the least restrictive one, merely requiring τ to be Γ’s solution. S-
generalization requires τ to satisfy the circuit, while g-generalization additionally has τ
satisfying every single gate. We denote the sets of all the g-, s- and e- generalizations for a
given circuit Γ and a total Boolean solution σ|≈Γ by G(Γ, σ), S(Γ, σ) and E(Γ, σ), respectively.
Towards separating between g- and s-generalization as well as between s- and e-generalization,
Def. 3 introduces the notions of s-hard and e-hard solutions.

▶ Definition 3 (S-hard, e-hard). Given a circuit Γ = ⟨I,G, o⟩ and its total Boolean solution
σ(I)|≈Γ, a ternary solution τ(I)|=Γ is

s-hard if τ ∈ S(Γ, σ), but for every ρ ⊆ τ : ρ /∈ G(Γ, σ)
e-hard if τ ∈ E(Γ, σ), but for every ρ ⊆ τ : ρ /∈ S(Γ, σ)

Lemma 4 below presents the generalization hierarchy. It shows that e-generalization
is more powerful (denoted by ≫) than s-generalization in the following sense: every s-
generalization is an e-generalization, but there exists an e-hard solution τ which separates
between e- and s-generalization (that is, τ is an e-generalization, but no ρ ⊆ τ is an s-
generalization). Similarly, s-generalization ≫ g-generalization. The generalization hierarchy
is illustrated in Fig. 3.

▶ Lemma 4 (e-generalization ≫ s-generalization ≫ g-generalization). The lemma is threefold:
I. For every Γ = ⟨I,G, o⟩ and total Boolean σ(I)|≈Γ: G(Γ, σ) ⊆ S(Γ, σ) ⊆ E(Γ, σ).

II. There exists an s-hard solution for some Γ = ⟨I,G, o⟩ and a total Boolean σ(I)|≈Γ.
III. There exists an e-hard solution for some Γ = ⟨I,G, o⟩ and a total Boolean σ(I)|≈Γ.

Proof. I is straightforward. For II, consider Fig. 1, where {c := 0} is s-hard, given
σ = {a := 1; b := 1; c := 0} (since the output is satisfied by ternary simulating τ , but gate n
is not). For III, consider Fig. 2a, where {a := 1} is e-hard, given σ = {a := 1, b := 1}. ◀

Next, we classify popular generalization algorithms, based on the hierarchy in Lemma 4.
Consider any Tseitin generalization algorithm which translates the circuit to a CNF using
Tseitin encoding and generalizes at CNF level by any algorithm (see, e.g. [7, 10, 49]) that
turns as many variables as possible to don’t cares, while still guaranteeing that every clause
is satisfied. Such algorithms can only generate g-generalizations. Indeed, in Tseitin encoding,
every gate v ↔ l1 ∧ l2 is translated to (v∨¬l1 ∨¬l2)∧ (¬v∨ l1)∧ (¬v∨ l2). Hence, the variable
v representing the gate must be assigned a Boolean value, since, otherwise, one or two of the
three clauses (depending on the values of l1 and l2) would have been left unsatisfied.

Let (forward) ternary generalization [41, 12] be the algorithm that generalizes a given
solution by iteratively assigning every input v to X iff propagating v := X by ternary
simulation still sets the output to 1. While, in principle, the inputs can be visited in any
order, our implementation visits the inputs in their order from 1 to n.

Note that ternary generalization can also be carried out backwards [41], where backward
ternary generalization is also known as justification [43]. Briefly speaking, backward ternary
generalization traverses the circuit’s gates in a reversed order (starting from the output).

SAT 2024

13:6 Entailing Generalization Boosts Enumeration

m

n

k

p

t

b

a

c

d

o

Figure 3 Illustrating the generalization hierarchy-related concepts on the circuit Γ = ⟨I =
{a, b, c, d} , G = {m ↔ a ∨ b, n ↔ c ∧ d, k ↔ c ∧ ¬d, p ↔ n ∨ k, t ↔ p ∨ m} , o ≡ t⟩. All of the follow-
ing assignments are solutions to Γ: σ ≡ {a := 1, b := 1 c := 1, d := 1}, ρ ≡ {b := 1, c := 1, d := 1},
τ ≡ {b := 1, c := 1} and µ ≡ {c := 1}, where σ is the only Boolean solution, and we have
µ ⊂ τ ⊂ ρ ⊂ σ by construction. Observe that µ is an e-hard e-generalization of σ, τ is an s-hard
s-generalization of σ, whereas ρ is a g-generalization of σ (but ρ is not an s- nor an e-generalization).

Whenever a gate whose output is not X is encountered, the algorithm tries to convert one of
its inputs to X, whenever possible (e.g., for an ∧-gate, whose output and inputs are all 0,
one of the inputs can be converted to X).

Ternary generalization (both forward and backward) can generate s-hard solutions (e.g.,
it could generalize {a := 1; b := 1; c := 0} to {c := 0} in Fig. 1), but not e-hard solutions,
since it uses ternary simulation for establishing satisfiability. Same holds for dual-rail
generalization [14, 43], which applies generalization at CNF level but using ternary-logic-
simulating dual-rail encoding. Specifically, in dual-rail encoding, every variable v in the
original circuit is mapped to two Boolean dual-rail variables (v+, v−) in the resulting CNF,
where assigning both v+ and v− to 0 corresponds to assigning the original v to a don’t-care.
Then, one can guide the SAT solver to return a generalized solution by applying anytime
MaxSAT-inspired heuristics [33, 34] to increase the number of don’t-cares assigned to the
circuit inputs (that is, the number of 0’s assigned to their respective dual-rail variables). In
line with our analysis, state-of-the-art AllSAT-CT algorithms are substantially faster with
ternary or dual-rail generalization than with Tseitin generalization [14].

Finally, recall UC generalization [8] (its predecessors being implication graph-based
approaches [47, 28, 40]). Given a circuit Γ = ⟨I,G, o⟩, let the dual circuit ¬Γ be ⟨I,G,¬o⟩.
Let σ(I) : I 7→ {0, 1} be Γ’s total Boolean solution. Note that σ does not satisfy ¬Γ. Let
¬F be a conversion of ¬Γ to CNF using Tseitin encoding. Unsatisfiable Core-based (UC)
generalization [8] generalizes σ(I) to τQ, where Q is the unsatisfiable core (cube), returned by
the query SAT(¬F ,Dσ). For example, σ ≡ {a := 1, b := 1} is a solution to Γ in Fig. 2a, hence
SAT(¬F , a∧ b) must return UNSAT, and the example UC a would translate to τ ≡ {a := 1},
which generalizes σ. UC generalization guarantees e-generalization as substituting X’s in τQ

by any Boolean values and ternary simulating must render o = 1, otherwise Q ∧ ¬F would
have been satisfiable. Crucially, unlike the other algorithms, UC generalization can generate
e-hard solutions: see Fig. 2 for a detailed example. One can also minimize the UC [40, 32].

4 Generalization-based Enumeration Algorithms

Given a circuit Γ = ⟨I,G, o⟩, an AllSAT-CT solver returns a DNF formula Q(I), where
for every solution cube D(I) ∈ Q(I), we have τD|=Γ, while G ∧ o and Q(I) are logically
equivalent. We next review the AllSAT-CT algorithms from [14] and introduce our new UC

D. Fried, A. Nadel, R. Sebastiani, and Y. Shalmon 13:7

generalization-based algorithms CORE, ROC and CARMA. All the algorithms are implemented
within the well-known blocking framework, which repeatedly enumerates, generalizes and
blocks the solutions [28] (a correctness proof can be found in [28]). This work focuses on
non-disjoint solving (i.e., a total Boolean solution can be subsumed by multiple solutions),
since disjoint solving [52], although supported by HALL, would be impractical for AllSAT-CT
applications in model checking [28, 17, 18], ATPG [9, 48] and STA [46, 14]. As a side note,
AllSAT-CT is simpler than finding all the prime implicants [44, 38, 23], since we only need a
subset of the (not-necessarily-prime) implicants which subsume every total Boolean solution.

Consider Alg. 1 that presents TALE from [14] and our novel CORE and ROC algorithms. To
recall TALE let us follow Alg. 1 in TALE mode (A = TALE). First, the algorithm converts the
given circuit to CNF by applying the Tseitin encoding and provides the CNF as an input
to an incremental SAT solver instance plain (line 1). Line 3 initializes the DNF Q that
will contain all the solutions. Then, the algorithm starts to iteratively produce cubes in the
following way. It queries plain to get a total Boolean solution σ|≈Γ (line 5), applies ternary
generalization (the forward version by default) to generalize σ (line 6), updates DNF Q with
the cube U induced by σ (lines 8 and 12) and blocks U in plain (line 13).

Algorithm 1 Three AllSAT-CT algorithms: TALE, CORE and ROC
Input: Circuit Γ = ⟨I, G, o⟩ Input: A ∈ {TALE, CORE, ROC}
Output: DNF Q(I)

1: plain := CNFTseitin(Γ) ▷ Initialize plain SAT instance
2: if A ̸= TALE then dual := CNFTseitin(¬Γ) ▷ Initialize dual SAT instance, if required
3: Q := {} ▷ Initializing the DNF Q, which will contain all the solutions, to be empty
4: while not UNSAT(plain) do
5: σ := SAT(plain)
6: if A ̸= CORE then σ := TernaryGeneralize(σ, Γ) ▷ Ternary generalization
7: if A = TALE then
8: U := Dσ

9: else
10: U := SAT(dual, Dσ) ▷ Fetch the UC
11: forall a ∈ U : if SAT(dual, U \ {a}) is UNSAT then U := U \ {a} ▷ Minimize the UC
12: Q := Q ∨ U ▷ Q is updated by the cube U
13: plain := plain ∧ ¬U ▷ Blocking U in plain
14: return Q ▷ Q is not guaranteed to be disjoint

We now introduce our first new algorithm CORE which aims at generating e-hard solutions
by switching from ternary to UC generalization. To that end, CORE uses a second incremental
SAT instance dual, initialized by converting the dual circuit ¬Γ to CNF (line 2). Then,
instead of applying ternary generalization at line 6, CORE queries dual under the assumptions
Dσ (line 10), that is, the cube induced by σ, to get an unsatisfiable core (cube) U , followed by
iteratively minimizing it (line 11). Then, similarly to TALE, Q is updated and U is blocked.

Alg. 1 also shows another novel algorithm ROC, which applies ternary generalization
(line 6), followed by UC generalization with minimization (lines 10 and 11). Despite the
overhead, ROC often succeeds in generating smaller solutions than CORE, which ultimately
leads to a reduction in the number of returned solutions. Generalizing further might still be
possible, since our UC extraction algorithm might return a local minimum. However, finding
the smallest UC would have been extremely costly [24].

Note that the initial dual invocation in CORE (line 10) is not expected to encounter any
conflicts during SAT solving. This is because the assumptions represent a total Boolean input
assignment, whose propagation by Boolean Constraint Propagation (BCP) must trigger a
conflict with the clause ¬o prior to any decision. This is not the case during the minimization
loop in CORE (line 11) and any (even the initial) dual invocation in ROC, where the assumptions
might represent a partial assignment to the inputs. This, however, is transparent to both the
user and the high-level algorithm developer.

SAT 2024

13:8 Entailing Generalization Boosts Enumeration

Finally, [14] introduced two additional algorithms: MARS based on dual-rail generalization,
and DUTY, which combines between TALE and MARS. To test the impact of combining dual-
rail and UC generalization, our third new algorithm CARMA upgrades MARS by switching to
UC generalization as follows. CARMA is similar to CORE, but it uses dual-rail encoding and
on-the-fly minimization [14] for plain, while still using Tseitin encoding for dual.

5 Experimental Results

We implemented our new algorithms CORE, ROC and CARMA in HALL [14] and compared them
to the already implemented TALE, MARS and DUTY, where the default HALL uses IntelSAT [35]
SAT solver for plain and CaDiCaL [4] for dual across all the algorithms (we provide an
empirical justification for the default solver selection later in this section). We also ran the
duality-based model counter dualiza [29] in its two enumeration modes: sat and bdd.

We used benchmarks from [14] and [26] with some further extensions. All in all, as
reported below, we had started with 14 benchmark families, 10 benchmarks in each, and
then removed benchmarks solved by none of the solvers in four hours, which left us with
97 benchmarks overall. We transformed each circuit family with multiple outputs to three
one-output families (which AllSAT-CT solvers can handle) as follows: we applied either or
(_or suffix below) or xor (_xor suffix below) operator over all the outputs similarly to [14]
to create the first two one-output families, and took only the last output to create the last
one-output family (_only_last_out suffix below). Below, we list all the benchmark families;
the number of instances from each family solved by at least one solver appears in parenthesis:

random_control_or (9), random_control_xor (6) and
random_control_only_last_out (9) from EPFL benchmark suite [1], used in [14].
arithmetic_or (10), arithmetic_xor (1) and arithmetic_only_last_out (5)
from EPFL benchmark suite [1], also used in [14].
random_circuits_or (9), random_circuits_xor (1) and
random_circuits_only_last_out (7), generated by using aigfuzz [5] as in [14].
iscas85_or (10), iscas85_xor (2) and iscas85_only_last_out (8), used in [26];
this set contains publicly available circuits, including sequential circuits. Since we consider
only combinational circuits, we ignored the buffer commands while parsing the files.
sta_gen (10) [14] – Static Timing Analysis (STA) industrial set: a parametrized
benchmark family, which encapsulates a variety of real-world STA instances [14]. We
removed the two smallest benchmarks resulting in a family of 10 benchmarks.
sta_gen_chunks (10) – another family of STA benchmarks created by parameterizing
the size of each cube, rather than the number of inputs (N). Given the chunk size K
and the constant number N = 12289, the formula F (N,K) consists of a disjunction
of subformulas F1(N,K) and F2(N,K), each comprising a DNF, conjuncted with the
selector vN or ¬vN , respectively. In every DNF, the cubes have K variables and are
mutually disjoint. The resulting formula looks as follows, where j = (N − 1)/2: F (N) :=
F1(N) ∨ F2(N), where F1(N) := ((v1 ∧ v2 . . . ∧ vk) ∨ . . . ∨ (vj−k+1 ∧ . . . vj−1 ∧ vj)) ∧ vN

and F2(N) := ((vj+1 ∧ vj+2 . . . ∧ vj+k) ∨ . . . ∨ (vN−K ∧ . . . v(N−2 ∧ vN−1)) ∧ ¬vN .
We used Intel® Xeon® machines with 32Gb memory and 3Ghz CPU frequency. We set the
timeout to 1 hour and evaluated three criteria. First, Solved stands for the number of solved
instances. The second one is PAR-2 score (similarly to SAT competitions [2]), where every
solved benchmark contributes its run-time and every unsolved benchmark contributes twice
the timeout. The lower the PAR-2 score, the better. The third criterion is Quality: the
size (number of cubes) of the DNF, where we compared solvers by their normalized average

D. Fried, A. Nadel, R. Sebastiani, and Y. Shalmon 13:9

quality, the quality per instance being best-known-DNF-size / current-DNF-size and 0 for
unsolved instances (similarly to anytime categories at MaxSAT Evaluations [3]). The quality
must be within the interval [0, 1], where the higher the quality, the better.

Table 1 Our results (sorted by PAR-2 scores). The best results in each column are highlighted.

Algorithm Origin PAR-2 Solved Quality
ROC new 24926.845 94 0.966614
CORE new 25938.178 94 0.888548
CARMA new 27073.553 94 0.886870
TALE [14] 92676.526 85 0.568704
DUTY [14] 99447.688 84 0.560391
MARS [14] 198771.013 70 0.412807
dualiza_sat [29] 263810.947 61 0.459656
dualiza_bdd [29] 332953.818 51 0.397921

0 1000 2000 3000 4000 5000 6000 7000

TALE (PAR2 score)

0

1000

2000

3000

4000

5000

6000

7000

CO
RE

(P
AR

2
sc

or
e)

0.0 0.2 0.4 0.6 0.8 1.0

TALE (Quality)

0.0

0.2

0.4

0.6

0.8

1.0

CO
RE

(Q
ua

lit
y)

0 1000 2000 3000 4000 5000 6000 7000

TALE (PAR2 score)

0

1000

2000

3000

4000

5000

6000

7000

RO
C

(P
AR

2
sc

or
e)

0.0 0.2 0.4 0.6 0.8 1.0

TALE (Quality)

0.0

0.2

0.4

0.6

0.8

1.0

RO
C

(Q
ua

lit
y)

Figure 4 Comparing PAR2 score and quality: TALE to CORE (top) and TALE to ROC (bottom)

Table 1 summarizes the main results. ROC is the best algorithm by every criterion. It
substantially outperforms the previous state-of-the-art (TALE), where the gap in quality is
especially significant. For an instance-by-instance analysis, consider Fig. 4 starting with its

SAT 2024

13:10 Entailing Generalization Boosts Enumeration

Table 2 Comparing TALE configurations (left) and CORE configurations (right).

TALE Config. Solved Quality
Default TALE 85 0.568704
plain := CaDiCaL 83 0.560356
plain := CryptoMS 82 0.555761
plain := MergeSat 80 0.561304
Backward-TerSim 72 0.501580

CORE Config. Solved Quality
Default CORE 94 0.888548
dual := CryptoMS 93 0.846291
dual := IntelSAT 92 0.872976
dual := MergeSat 91 0.824571
No-UC-Minimization 91 0.707390

upper part, which compares TALE to CORE. CORE is almost always on-par or better in terms
of PAR-2 score, but not so in terms of quality. Consider now the lower part of Fig. 4, which
compares TALE to ROC. Unlike CORE, ROC is either better or on-par with TALE in terms of
quality on every single instance, whereas ROC often yields a substantially better quality. ROC
is also always on-par or better than TALE in terms of PAR-2 score.

Finally, Table. 2 explains our choice of four of HALL’s default components. The comparison
of TALE configurations on the left shows why we set the plain SAT solver default to IntelSAT,
as IntelSAT outperforms CaDiCaL [4], MergeSat [25], and CryptoMiniSAT [45] (CryptoMS
in Table. 2). This result is not surprising as IntelSAT was specifically optimized for rapid
incremental mostly satisfiable queries [35]. The comparison on the left also explains why we
decided against migrating from the default forward ternary generalization to the backward
one (recall Sect. 3). The right-side table compares CORE configurations, supporting the choice
of CaDiCaL as the default SAT solver for dual (notably, in dual, unlike in plain, the SAT
queries are unsatisfiable) and the default inclusion of minimization in UC extraction.

6 Conclusion and Future Work

In this work we substantially improved the state of the art in AllSAT-CT solving in terms
of both performance and quality by taking advantage of UC generalization, which can
potentially yield solutions that entail the circuit without satisfying it.

Our best-performing algorithm, ROC, combines ternary and UC generalization as follows:
it iteratively searches for solutions in an IntelSAT-based SAT instance plain. Then, every
solution is generalized using forward ternary generalization, followed by further generalization
to its (locally) minimal unsatisfiable core in a CaDiCaL-based SAT instance dual representing
the dual circuit. The generalized solution is then reported to the user and blocked in plain.
All the algorithms have been implemented in our open-source AllSAT-CT tool HALL.

Our results can be relevant for advancing disjoint AllSAT-CT solving and prime implicant
enumeration [23]. Furthermore, porting our findings to model checking algorithms such as
PDR [6], AVY [51], and CAR [21] could be promising. Notably, while [43] thoroughly compares
different generalization approaches within PDR, it surprisingly does not conclude that UC
generalization enhances PDR’s performance, leaving room for potential improvement.

References
1 Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The EPFL combinational

benchmark suite. In Proceedings of the 24th International Workshop on Logic & Synthesis
(IWLS), 2015.

2 Tomas Balyo, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors. Pro-
ceedings of SAT Competition 2023: Solver, Benchmark and Proof Checker Descriptions.
Department of Computer Science Series of Publications B. Department of Computer Science,
University of Helsinki, Finland, 2023.

D. Fried, A. Nadel, R. Sebastiani, and Y. Shalmon 13:11

3 Jeremias Berg, Matti Järvisalo, Ruben Martins, and Andreas Niskanen, editors. MaxSAT
Evaluation 2023: Solver and Benchmark Descriptions. Department of Computer Science Series
of Publications B. Department of Computer Science, University of Helsinki, Finland, 2023.

4 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of
SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department
of Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.

5 Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 and beyond. Technical Report
11/2, Institute for Formal Models and Verification, Johannes Kepler University, Altenbergerstr.
69, 4040 Linz, Austria, 2011.

6 Aaron R. Bradley. Sat-based model checking without unrolling. In Ranjit Jhala and David A.
Schmidt, editors, Verification, Model Checking, and Abstract Interpretation - 12th International
Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings, volume
6538 of Lecture Notes in Computer Science, pages 70–87. Springer, 2011. doi:10.1007/
978-3-642-18275-4_7.

7 T. Castell. Computation of prime implicates and prime implicants by a variant of the davis
and putnam procedure. In Proceedings Eighth IEEE International Conference on Tools with
Artificial Intelligence, pages 428–429, 1996. doi:10.1109/TAI.1996.560739.

8 Hana Chockler, Alexander Ivrii, Arie Matsliah, Shiri Moran, and Ziv Nevo. Incremental formal
verification of hardware. In Per Bjesse and Anna Slobodová, editors, International Conference
on Formal Methods in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, October 30 -
November 02, 2011, pages 135–143. FMCAD Inc., 2011. URL: http://dl.acm.org/citation.
cfm?id=2157676.

9 Alejandro Czutro, Ilia Polian, Piet Engelke, Sudhakar M. Reddy, and Bernd Becker. Dynamic
compaction in sat-based ATPG. In Proceedings of the Eighteentgh Asian Test Symposium,
ATS 2009, 23-26 November 2009, Taichung, Taiwan, pages 187–190. IEEE Computer Society,
2009. doi:10.1109/ATS.2009.31.

10 David Déharbe, Pascal Fontaine, Daniel Le Berre, and Bertrand Mazure. Computing prime
implicants. In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR,
USA, October 20-23, 2013, pages 46–52. IEEE, 2013. URL: https://ieeexplore.ieee.org/
document/6679390/.

11 Imen Ouled Dlala, Saïd Jabbour, Lakhdar Saïs, and Boutheina Ben Yaghlane. A comparative
study of SAT-based itemsets mining. In Research and Development in Intelligent Systems
XXXIII - Incorporating Applications and Innovations in Intelligent Systems XXIV. Proceedings
of AI-2016., pages 37–52, 2016.

12 Niklas Eén, Alan Mishchenko, and Robert Brayton. Efficient implementation of property
directed reachability. In 2011 Formal Methods in Computer-Aided Design (FMCAD), pages
125–134, 2011.

13 Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Theory and Applications of
Satisfiability Testing, 6th International Conference, SAT, Proceedings, 2003.

14 Dror Fried, Alexander Nadel, and Yogev Shalmon. AllSAT for combinational circuits. In
Meena Mahajan and Friedrich Slivovsky, editors, 26th International Conference on Theory
and Applications of Satisfiability Testing, SAT 2023, July 4-8, 2023, Alghero, Italy, volume
271 of LIPIcs, pages 9:1–9:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPIcs.SAT.2023.9.

15 Alexandra Goultiaeva and Fahiem Bacchus. Exploiting QBF duality on a circuit representation.
In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010. doi:
10.1609/AAAI.V24I1.7548.

16 James S. Jephson, Robert P. McQuarrie, and Robert E. Vogelsberg. A three-value computer
design verification system. IBM Systems Journal, 8(3):178–188, 1969.

SAT 2024

https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1109/TAI.1996.560739
http://dl.acm.org/citation.cfm?id=2157676
http://dl.acm.org/citation.cfm?id=2157676
https://doi.org/10.1109/ATS.2009.31
https://ieeexplore.ieee.org/document/6679390/
https://ieeexplore.ieee.org/document/6679390/
https://doi.org/10.4230/LIPIcs.SAT.2023.9
https://doi.org/10.1609/AAAI.V24I1.7548
https://doi.org/10.1609/AAAI.V24I1.7548

13:12 Entailing Generalization Boosts Enumeration

17 HoonSang Jin, HyoJung Han, and Fabio Somenzi. Efficient conflict analysis for finding
all satisfying assignments of a boolean circuit. In Nicolas Halbwachs and Lenore D. Zuck,
editors, Tools and Algorithms for the Construction and Analysis of Systems, 11th International
Conference, TACAS 2005, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, volume
3440 of Lecture Notes in Computer Science, pages 287–300. Springer, 2005. doi:10.1007/
978-3-540-31980-1_19.

18 HoonSang Jin and Fabio Somenzi. Prime clauses for fast enumeration of satisfying assignments
to boolean circuits. In Proceedings of the 42nd Design Automation Conference, DAC, 2005.

19 Alex Kean and George K. Tsiknis. An incremental method for generating prime implicant-
s/impicates. J. Symb. Comput., 9(2):185–206, 1990. doi:10.1016/S0747-7171(08)80029-6.

20 Sarfraz Khurshid, Darko Marinov, Ilya Shlyakhter, and Daniel Jackson. A case for efficient
solution enumeration. In Theory and Applications of Satisfiability Testing, 6th International
Conference, SAT, 2003.

21 Jianwen Li, Shufang Zhu, Yueling Zhang, Geguang Pu, and Moshe Y. Vardi. Safety model
checking with complementary approximations. In Sri Parameswaran, editor, 2017 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 2017, Irvine, CA, USA, Novem-
ber 13-16, 2017, pages 95–100. IEEE, 2017. doi:10.1109/ICCAD.2017.8203765.

22 Nuno P Lopes, Nikolaj Bjørner, Patrice Godefroid, and George Varghese. Network verification
in the light of program verification. MSR, Rep, 2013.

23 Weilin Luo, Hai Wan, Hongzhen Zhong, Ou Wei, Biqing Fang, and Xiaotong Song. An efficient
two-phase method for prime compilation of non-clausal boolean formulae. In IEEE/ACM
International Conference On Computer Aided Design, ICCAD 2021, pages 1–9. IEEE, 2021.
doi:10.1109/ICCAD51958.2021.9643520.

24 Inês Lynce and João Marques-Silva. On computing minimum unsatisfiable cores. In SAT
2004 - The Seventh International Conference on Theory and Applications of Satisfiability
Testing, 10-13 May 2004, Vancouver, BC, Canada, Online Proceedings, 2004. URL: http:
//www.satisfiability.org/SAT04/programme/110.pdf.

25 Norbert Manthey. The mergesat solver. In Chu-Min Li and Felip Manyà, editors, Theory and
Applications of Satisfiability Testing - SAT 2021 - 24th International Conference, Barcelona,
Spain, July 5-9, 2021, Proceedings, volume 12831 of Lecture Notes in Computer Science, pages
387–398. Springer, 2021. doi:10.1007/978-3-030-80223-3_27.

26 Gabriele Masina, Giuseppe Spallitta, and Roberto Sebastiani. On CNF conversion for disjoint
SAT enumeration. In Meena Mahajan and Friedrich Slivovsky, editors, 26th International
Conference on Theory and Applications of Satisfiability Testing, SAT 2023, July 4-8, 2023,
Alghero, Italy, volume 271 of LIPIcs, pages 15:1–15:16. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPIcs.SAT.2023.15.

27 E. J. McCluskey. Minimization of boolean functions. The Bell System Technical Journal,
35(6):1417–1444, 1956. doi:10.1002/j.1538-7305.1956.tb03835.x.

28 Kenneth L. McMillan. Applying SAT methods in unbounded symbolic model checking. In
Computer Aided Verification, 14th International Conference, CAV, Proceedings, 2002.

29 Sibylle Möhle and Armin Biere. Dualizing projected model counting. In IEEE 30th International
Conference on Tools with Artificial Intelligence, ICTAI, pages 702–709, 2018. doi:10.1109/
ICTAI.2018.00111.

30 Sibylle Möhle, Roberto Sebastiani, and Armin Biere. Four flavors of entailment. In Luca
Pulina and Martina Seidl, editors, Theory and Applications of Satisfiability Testing - SAT
2020 - 23rd International Conference, Alghero, Italy, July 3-10, 2020, Proceedings, volume
12178 of Lecture Notes in Computer Science, pages 62–71. Springer, July 2020. doi:10.1007/
978-3-030-51825-7_5.

31 Sibylle Möhle, Roberto Sebastiani, and Armin Biere. On enumerating short projected models.
CoRR, abs/2110.12924, October 2021. arXiv:2110.12924.

https://doi.org/10.1007/978-3-540-31980-1_19
https://doi.org/10.1007/978-3-540-31980-1_19
https://doi.org/10.1016/S0747-7171(08)80029-6
https://doi.org/10.1109/ICCAD.2017.8203765
https://doi.org/10.1109/ICCAD51958.2021.9643520
http://www.satisfiability.org/SAT04/programme/110.pdf
http://www.satisfiability.org/SAT04/programme/110.pdf
https://doi.org/10.1007/978-3-030-80223-3_27
https://doi.org/10.4230/LIPIcs.SAT.2023.15
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1109/ICTAI.2018.00111
https://doi.org/10.1109/ICTAI.2018.00111
https://doi.org/10.1007/978-3-030-51825-7_5
https://doi.org/10.1007/978-3-030-51825-7_5
https://arxiv.org/abs/2110.12924

D. Fried, A. Nadel, R. Sebastiani, and Y. Shalmon 13:13

32 Alexander Nadel. Boosting minimal unsatisfiable core extraction. In Roderick Bloem and
Natasha Sharygina, editors, Proceedings of 10th International Conference on Formal Methods
in Computer-Aided Design, FMCAD 2010, Lugano, Switzerland, October 20-23, pages 221–229.
IEEE, 2010. URL: https://ieeexplore.ieee.org/document/5770953/.

33 Alexander Nadel. Anytime weighted MaxSAT with improved polarity selection and bit-vector
optimization. In Formal Methods in Computer Aided Design, FMCAD, Proceedings, pages
193–202, 2019.

34 Alexander Nadel. Polarity and variable selection heuristics for SAT-based anytime MaxSAT.
Journal on Satisfiability, Boolean Modeling and Computation, 2020.

35 Alexander Nadel. Introducing intel(r) SAT solver. In Kuldeep S. Meel and Ofer Strichman,
editors, 25th International Conference on Theory and Applications of Satisfiability Testing,
SAT 2022, August 2-5, 2022, Haifa, Israel, volume 236 of LIPIcs, pages 8:1–8:23. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SAT.2022.8.

36 Alexander Nadel and Vadim Ryvchin. Efficient SAT solving under assumptions. In Theory
and Applications of Satisfiability Testing - SAT, Proceedings, 2012.

37 Emil L. Post. Introduction to a general theory of elementary propositions. American Journal
of Mathematics, 43, 1921.

38 Alessandro Previti, Alexey Ignatiev, António Morgado, and João Marques-Silva. Prime
compilation of non-clausal formulae. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, pages 1980–1988. AAAI Press, 2015. URL:
http://ijcai.org/Abstract/15/281.

39 W. V. Quine. The problem of simplifying truth functions. The American Mathematical
Monthly, 59(8):521–531, 1952. doi:10.1080/00029890.1952.11988183.

40 Kavita Ravi and Fabio Somenzi. Minimal assignments for bounded model checking. In Kurt
Jensen and Andreas Podelski, editors, Tools and Algorithms for the Construction and Analysis
of Systems, 10th International Conference, TACAS 2004, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 -
April 2, 2004, Proceedings, volume 2988 of Lecture Notes in Computer Science, pages 31–45.
Springer, 2004. doi:10.1007/978-3-540-24730-2_3.

41 J. Paul Roth, Willard G. Bouricius, and Peter R. Schneider. Programmed algorithms to
compute tests to detect and distinguish between failures in logic circuits. IEEE Trans. Electron.
Comput., 16(5):567–580, 1967. doi:10.1109/PGEC.1967.264743.

42 Roberto Sebastiani. Are you satisfied by this partial assignment? CoRR, abs/2003.04225,
February 2020. arXiv:2003.04225.

43 Tobias Seufert, Felix Winterer, Christoph Scholl, Karsten Scheibler, Tobias Paxian, and Bernd
Becker. Everything you always wanted to know about generalization of proof obligations
in PDR. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 42(4):1351–1364, 2023.
doi:10.1109/TCAD.2022.3198260.

44 James R. Slagle, Chin-Liang Chang, and Richard C. T. Lee. A new algorithm for generating
prime implicants. IEEE Trans. Computers, 19(4):304–310, 1970. doi:10.1109/T-C.1970.
222917.

45 Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryptographic
problems. In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing -
SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009.
Proceedings, volume 5584 of Lecture Notes in Computer Science, pages 244–257. Springer,
2009. doi:10.1007/978-3-642-02777-2_24.

46 Robert B. Hitchcock Sr. Timing verification and the timing analysis program. In Proceedings
of the 19th Design Automation Conference, DAC, 1982.

47 P. Tafertshofer and A. Ganz. Sat based atpg using fast justification and propagation in the
implication graph. In 1999 IEEE/ACM International Conference on Computer-Aided Design.
Digest of Technical Papers (Cat. No.99CH37051), pages 139–146, 1999. doi:10.1109/ICCAD.
1999.810638.

SAT 2024

https://ieeexplore.ieee.org/document/5770953/
https://doi.org/10.4230/LIPIcs.SAT.2022.8
http://ijcai.org/Abstract/15/281
https://doi.org/10.1080/00029890.1952.11988183
https://doi.org/10.1007/978-3-540-24730-2_3
https://doi.org/10.1109/PGEC.1967.264743
https://arxiv.org/abs/2003.04225
https://doi.org/10.1109/TCAD.2022.3198260
https://doi.org/10.1109/T-C.1970.222917
https://doi.org/10.1109/T-C.1970.222917
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1109/ICCAD.1999.810638
https://doi.org/10.1109/ICCAD.1999.810638

13:14 Entailing Generalization Boosts Enumeration

48 Abraham Temesgen Tibebu and Görschwin Fey. Augmenting all solution SAT solving for
circuits with structural information. In 21st IEEE International Symposium on Design and
Diagnostics of Electronic Circuits & Systems, DDECS 2018, Budapest, Hungary, April 25-27,
2018, pages 117–122. IEEE, 2018. doi:10.1109/DDECS.2018.00028.

49 Takahisa Toda and Takehide Soh. Implementing efficient all solutions SAT solvers. Journal of
Experimental Algorithmics (JEA), 2016.

50 Grigori S Tseitin. On the complexity of derivation in propositional calculus. Automation of
reasoning: 2: Classical papers on computational logic 1967–1970, pages 466–483, 1983.

51 Yakir Vizel and Arie Gurfinkel. Interpolating property directed reachability. In Armin Biere
and Roderick Bloem, editors, Computer Aided Verification - 26th International Conference,
CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer Science, pages 260–276.
Springer, 2014. doi:10.1007/978-3-319-08867-9_17.

52 Yinlei Yu, Pramod Subramanyan, Nestan Tsiskaridze, and Sharad Malik. All-SAT using
minimal blocking clauses. Proceedings of the IEEE International Conference on VLSI Design,
pages 86–91, 2014.

https://doi.org/10.1109/DDECS.2018.00028
https://doi.org/10.1007/978-3-319-08867-9_17

	1 Introduction
	2 Preliminaries
	3 The Generalization Hierarchy
	4 Generalization-based Enumeration Algorithms
	5 Experimental Results
	6 Conclusion and Future Work

