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Abstract
We propose a method for efficient handling string constraints with string-integer conversions. It
extends the recently introduced stabilization-based procedure for solving string (dis)equations with
regular and length constraints. Our approach is to translate the conversions into a linear integer
arithmetic formula, together with regular constraints and word equations. We have integrated it
into the string solver Z3-Noodler, and our experiments show that it is competitive and on some
established benchmarks even several orders of magnitude faster than the state of the art.
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1 Introduction

String constraint solving (string solving for short), has garnered significant attention in recent
years, particularly due to its important role in verifying web programs. These programs are
often written in string-intensive programming languages, such as PHP or JavaScript. Careless
handling of strings can inadvertently expose systems to severe security vulnerabilities, such
as SQL injection or cross-site scripting (XSS), both of which remain prevalent security
risks [29, 28]. Since string constraints establish a general formal framework for working with
strings, new applications of string solving still emerge. Notable examples include analyzing
user policies within Amazon Web Services [25] and analyzing smart contracts [7].

String solvers are typically integrated into general SMT solvers as theory solvers, enabling
the combination of string constraints with other SMT theories. The most mature SMT
solvers supporting string constraints are cvc4/5 [8, 31] and Z3 [22]. Furthermore, the
original string theory solver can be replaced, leading to string solvers such as Z3str3RE [13],
Z3str4 [27], Z3-Trau [3, 2], OSTRICH [16] (based on the Princess SMT solver [32]),
and, most recently, Z3-Noodler [18, 17]. Except these general SMT solvers, there are some
string-only solvers, such as Norn [5], Kepler22 [24], Woorpje [21], or Retro [19, 20].

In order to handle constraints occurring in real-world applications, string solvers need to
support not only basic constraints, such as string equations, regular membership queries, and
length constraints, but also extended constraints such as various kinds of string functions and
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14:2 Cooking String-Integer Conversions with Noodles

predicates (e.g., replace, indexof, substr, or prefix) or string-integer conversions allowing
to identify strings with their numeric values. These string manipulating functions are widely
used in particular in the context of verification of web programs, as they correspond to the
string operations in programming languages such as PHP or JavaScript.

Complex combinations of various types of basic and extended constraints, which is how
they typically appear, is challenging for today’s solvers. In this paper, we combine the
recently introduced stabilization-based procedure for solving basic string constrains [14, 18]
with a novel technique for handling string-integer conversions. The fundamental principle
of the stabilization-based procedure is an iterative refinement of regular constraints of
string variables, which represent all solutions of the string constraint, until a stable form
is reached. In order to handle the string-integer conversion, namely to_int, from_int,
to_code, and from_code predicates, our procedure performs reasoning over the stabilized
regular constraints of string variables used in the conversions. The proposed procedure
generates a linear integer arithmetic (LIA) formula concisely encoding possible numerical
values from strings of a stabilized regular constraint and relate them with their particular
lengths. If this LIA formula is satisfiable, so is the original constraint with conversions. To
avoid exponential blow-up during the formula generation, we express languages as finite
sets of intervals encoding all valid numerical values. Since different conversions may be
applied on the same variable/sequence of variables, the generated formula must also relate
the values of these conversions. In order to be precise, our procedure requires finiteness of
stabilized languages of variables occurring in conversions. For infinite languages, we propose
an underapproximation restricting the languages to strings of a particular length.

We implemented the proposed technique into Z3-Noodler [18, 17, 34], a string solver
based on Z3 implementing the stabilization-based procedure, and compared our technique
with other string solvers on all benchmarks from SMT-LIB containing string-integer conver-
sions. Our experimental evaluation shows that our proposed technique is competitive and on
many instances even several orders of magnitude faster than the state of the art.

2 Related work

The decidability of various fragments of string constraints have been studied for a long time.
If a string constraint contains only string equations, the satisfiability problem is decidable [26].
Moreover, it is decidable even if we add regular constraints [33]. A question whether the
combination of string equations and length constraints is decidable is still open. Adding
string-integer conversions to string equations with regular and length constraints leads to
undecidability [23]. The undecidability still holds even if we keep only the concatenation
instead of full string equations [12].

The tools supporting string-integer conversions therefore implement incomplete proced-
ures. The string solver cvc4/5 implements a derivation-based decision procedure for solving
code-point conversions (conversions between characters and their numeric values), which are
then used to define a universally quantified formula for handling string-integer conversions [30].
Z3-Trau implements string-integer conversions as a part of the flattening-based procedure [1].
The main differences between the approach to string-integer conversions in Z3-Trau and
our proposed technique are twofold: (i) The approach of Z3-Trau is integrated to a string
procedure underapproximating the variable languages by flat languages. We combine our
approach with the fundamentally different stabilization-based procedure working with arbit-
rary precise regular languages. (ii) Z3-Trau underapproximates string-integer conversions
restricting arguments having at most m digits (m is a parameter). To the contrary, our
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conversion approach works with precise regular languages describing all solutions and is
complete for finite languages. We only underapproximate if the languages for conversion
are infinite. Moreover, we underapproximate the precise languages and not the already
underapproximated flat languages as is the case of Z3-Trau. More tools providing a (limited)
support for string-integer conversions are Z3 [22], Z3str4 [11], and OSTRICH [16].

3 Preliminaries

Functions, strings and languages. We use Z to denote the set of integers and [k1, k2],
k1, k2 ∈ Z, for the set of all integers between k1 and k2, including k1 and k2. For a set X
we use idX to denote the identity function over X. We fix a finite alphabet Σ (we denote
symbols as a, b, c, . . . ) and for the rest of the paper, we assume that it contains symbols '0',
'1', . . . , '9'. A string over Σ is a finite sequence u = a1 . . . an of symbols from Σ. We use ϵ
to denote the empty string. To avoid confusion with integers, we sometimes use quotes to
denote strings with digits, e.g., '42' (we skip it if it is clear from the context). We further
use |u| to denote the length of u with |ϵ| = 0. The set of all strings is denoted by Σ∗. The
concatenation of strings u and v is denoted u · v, or uv for short (ϵ is the neutral element).
A language is a subset of Σ∗. The concatenation of two languages L1 and L2 is defined as
L1 · L2 = {u · v | u ∈ L1 ∧ v ∈ L2}. Bounded iteration of a string/language x for i ≥ 0 is
defined recursively as (i) x0 = {ϵ} for the case of languages and x0 = ϵ for the case of strings,
and (ii) xi+1 = xi · x. Iteration is then defined as x∗ =

⋃
i≥0 x

i and positive iteration is
defined as x+ =

⋃
i≥1 x

i. We denote regular languages using regular expressions RE with the
following standard notation:

RE ::= ∅ | a | ϵ | (RE) | RE∗ | RE RE | RE + RE | REn

where a ∈ Σ and n ∈ N. We further use RE+ as a syntactic sugar for RE RE∗ and S to denote
the regex v1 + · · · + vn, where S = {v1, . . . , vn} is a finite subset of Σ∗.

String constraints. In this paper, we consider string constraints over alphabet Σ, string
variables X, and integer variables I. The string variables range over Σ∗ and integer variables
over Z. The syntax of a string contraint φ is given by the following grammar:

φ ::= ti ≤ ti | ts = ts | ts ∈ RE | φ ∧ φ | ¬φ
ts ::= v ∈ X | ts · ts | from_code(ti) | from_int(ti)
ti ::= v ∈ I | k ∈ Z | ti + ti | |ts| | to_code(ts) | to_int(ts)

where ts is a string term consisting of a concatenation of string variables1 and string-integer
conversions, and ti is a linear integer arithmetic (LIA) term containing among usual arithmetic
terms also a string-length term and integer conversions of string terms.

Semantic of the conversion functions is then given as follows2. The conversions
from_int(k) and to_int(s) convert between strings and integers: if k ≥ 0, from_int(k)
is the string representation (without leading zeroes) of the number k and ϵ otherwise,
while to_int(s) returns the non-negative number represented by the string s, or −1 if
s does not represent a non-negative integer (with leading zeros allowed). For example,
from_int(5) = '5', from_int(−6) = ϵ, and to_int('a') = −1. On the other hand,

1 Note that an explicit string u ∈ Σ∗ can be encoded by a fresh variable x and a regular constraint x ∈ u.
2 following the definition of the string theory of the SMT-LIB standard [10]
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14:4 Cooking String-Integer Conversions with Noodles

from_code(k) and to_code(s) convert between a Unicode symbol and its code point. More
specifically, if s is a single symbol, then to_code(s) returns its code point, otherwise it
returns −1; from_code(k) returns the symbol s whose code point is k (and ϵ if k is out of
the range of Unicode symbols). For example, to_code('0') = 48 and from_code(48) = '0'.

An assignment ν is a mapping ν : (X → Σ∗)∪ (I → Z). The value of a term in ν is defined
as usual. An assignment ν is a model of an atomic constraint t = s iff ν(t) = ν(s), of t ∈ RE
iff ν(t) ∈ RE, and of t ≤ s iff ν(t) ≤ ν(s). The definition of model is extended to Boolean
combinations of constraints as usual.

We will often work with a pair (Lang, σ), where Lang : X → 2Σ∗ is a language assignment
assigning a language to each string variable and σ : X → X+ is a substitution. We use σ(Φ) to
denote the string constraint where every occurrence of every x ∈ X is replaced by σ(x). We
define the composition of two substitutions σ1 and σ2 as σ1 ◦ σ2 = {x 7→ σ1(σ2(x))}. We say
that a substitution σ is flat if for each string variable x appearing in its image, σ(x) = x

(hence σ ◦ σ = σ).

Normalization of string constraints. We assume that our decision procedure is used within
a DPLL(T )-based SMT solver, which has the property that theory solvers are always given
conjunctions of (possibly negated) atomic constraints (in the given theory). In the rest of the
paper, we therefore assume that string constraints have this normal form, more specifically,
that they are of the form E ∧ R ∧ L ∧ C where

E is a conjunction of (dis)equations of concatenated string variables, i.e., they do not
contain conversions from_int(ti) and from_code(ti). We can remove each such conversion
by replacing it with a fresh string variable x and adding a new equation x = from_int(ti)
(or x = from_code(ti)) to C.
R is a conjunction of regular constraints of the form x ∈ RE for x ∈ X. We can convert
any predicate ts ∈ RE into this form by replacing it in R with x ∈ RE and adding x = ts
to E , where x is a fresh variable. Negated regular constraints x /∈ RE can be rewritten
into the positive form by complementing the corresponding regular language.
L is a LIA constraint without conversions (length constraints are allowed). Again, conver-
sions to_int and to_code are replaced with a fresh integer variable and a corresponding
equation in C.
C is a conjunction of equations of the form x = from_code(y), x = from_int(y), y =
to_code(x), and y = from_code(x) for x ∈ X and y ∈ I (if needed, the generic terms in
arguments of conversions are replaced with a fresh variable and a corresponding equation).

Note that in the rest of the paper, we sometimes treat a conjunction of literals (i.e., atomic
constraints or their negations) as a set of these literals.

4 Stabilization-based Procedure for String Constraints

We briefly describe the stabilization-based procedure from [14, 18] for solving a conversions-
free string constraint E ∧ R ∧ L where E contains only equations (no disequations). From
a high-level point of view, the stabilization-based procedure iteratively splits equations
(where the equation splits are represented by substitution maps) and refines the language
assignments until a stable solution is found, which is then used to generate a LIA formula
describing lengths of all solutions that this language assignment represents.

Stable solution. We say that (Lang, σ), a pair of a language assignment and a substitution,
is a stable solution of E ∧ R if each language in Lang is nonempty, σ is flat, and every
assignment ν : X → Σ∗, such that ν(x) ∈ Lang(x) and ν(x) = ν(σ(x)) holds for all x ∈ X,
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is a model of E ∧ R. Loosely speaking, the stability means that we can choose arbitrary
assignments of the substituted variables from Lang and, using σ, construct a model of the
original constraint.

▶ Example 1. Consider a string constraint xy = z∧w = xx∧w ∈ a+ over the alphabet {a, b}.
Let v1, v2 be fresh variables, Lang a language assignment where Lang(v1) = Lang(w) = a+

and all other variables are mapped to (a + b)∗, and let σ = {x 7→ v1, w 7→ v1v1, z 7→ v1v2,
y 7→ v2, v1 7→ v1, v2 7→ v2} a substitution. Note that σ is flat and by selecting words for v1
and v2, we can get words for the other variables using σ. Furthermore, for an arbitrary
selection of words from the languages of v1 and v2, the corresponding string assignment
is a model of the string constraint. For instance, ν = {x 7→ a,w 7→ aa, y 7→ b, z 7→ ab,
v1 7→ a, v2 7→ b} is a model for a selection of words v1 7→ a ∈ Lang(v1) and v2 7→ b ∈ Lang(v2).
Therefore, (Lang, σ) is a stable solution. ⌟

Noodlification. A key notion of the stabilization-based procedure introduced in [14] and
later extended to string constraints with lengths [18] is noodlification. Noodlification allows
to steer the generation of possible equation splits (or alignments) only to feasible ones.
An equation split is a splitting of variables to a concatenation of new fresh variables so
that boundaries between variables on both sides of an equation match. A variable split
is performed together with splitting the variable’s language in Lang. A feasible split has
a property that the fresh variables have nonempty languages. For instance, for the equation
xyu = wz with Lang = {x 7→ a∗, p 7→ (a+ b)∗ | p ∈ {y, u, w, z}}, one possible feasible split
is {x = v1v2, y = v3, u = v4, w = v1, z = v2v3v4} together with the language assignment
Lang′ = Lang ∪ {v1 7→ a∗, v2 7→ a∗, v3 7→ (a+ b)∗, v4 7→ (a+ b)∗}.

The length-aware noodlification, denoted as noodlify(t = s, Lang), generates a set of all
feasible splits of the equation t = s. A split is a pair (E, Lang′) where E is a set of new
equations and Lang′ is a language assignment of fresh variables. An efficient implementation
of noodlification uses nondeterministic finite automata (NFAs) to represent the language
assignment3. The noodlification then constructs ϵ-preserving products P of ϵ-concatenated
automata of t and s. Each side has a different ϵ-symbol serving as a delimiter between
variables of each equation side. The resulting feasible splits are then generated by inspecting
parts of the product automaton P.

Simplified stabilization-based procedure. In this paragraph we describe a simplified length-
aware stabilization-based procedure. We briefly discuss particular optimizations of the
procedure introduced in [14, 18] at the end of the paragraph. The stabilization-based
procedure starts from the tuple (E , LangR, idX) where E are string equations and LangR is
the language assignment obtained from the initial regular constraint R. It then proceeds by
applying inference rules given below, trying to reach a tuple (∅, Lang, σ) such that (Lang, σ)
is a stable solution (which denotes satisfiability of the original constraint) or a tuple where
Lang(x) = ∅ for some x ∈ X (which denotes unsatisfiability).

The first rule is Align&Split, which performs noodlification on an equation s = t and
adds equations representing generated feasible alignments, removing s = t from the set of
equations (the formula on the right-hand side of a rule denotes a condition when the rule
can be applied):

3 We start with NFAs obtained from initial regular constraints and in each step perform only regularity-
preserving operations.

SAT 2024



14:6 Cooking String-Integer Conversions with Noodles

xx = w, z = xy w 7→ a+

x = v1, w = v1v1, z = xy w 7→ a+, v1 7→ a+

w = v1v1, z = v1y w 7→ a+, v1 7→ a+, x 7→ a+ x 7→ v1

z = v1y w 7→ aa+, v1 7→ a+, x 7→ a+ x 7→ v1, w 7→ v1v1

w 7→ aa+, v1 7→ a+, x 7→ a+, z 7→ a(a+ b)∗ x 7→ v1, w 7→ v1v1,z 7→ v1y

Align&Split (xx = w)

Subst (x = v1)

Subst (w = v1v1)

Subst (z = v1y)

Figure 1 Part of a proof graph generated by rules of simplified stabilization-based procedure for
the string constraint xy = z ∧ w = xx ∧ w ∈ a+ over the alphabet {a, b}. Tuples (E , Lang, σ) are
visualized by nodes E Lang σ (we omit there implicit language assignments of variables to (a + b)∗ as
well as identity substitutions x 7→ x). Edges are labelled by the used rule together with the selected
equation. The language assignment and substitution in the bottom node form a stable solution.

Align&Split :
( E ⊎ {s = t}, Lang, σ ){
( E ∪ Aligni, Langi, σ )

}n

i=1

noodlify(s = t, Lang) = {(Aligni, Langi)}
n
i=1

The second rule, Subst, removes a simple equation x = t where x ∈ X from the set of
equations and transforms it into a substitution, which is then applied to the set of equations.

Subst :
( E ⊎ {x = t}, Lang, σ, ){
( σ′

i(E ∪ Align), Langi, σ′
i ◦ σ )

}n

i=1

φSubst

where φSubst
def⇔ noodlify(x = t, Lang) = {(Align ⊎ {x = t′

i}, Langi)}
n
i=1 ∧

∧n

i=1 σ′
i = {x 7→ t′

i}.

In [14, 18] these basic rules were extended by organizing equations in inclusion graphs,
which then determine the order of selecting equations in Align&Split. Moreover, the
notion of equations is replaced by inclusions allowing to distinguish sides of equations, which
is important for the completeness on the chain-free fragment of string constraints [18, 6].
The extended rules also take into account information about length variables, which are
propagated through alignments. During the concatenation of automata corresponding to
non-length variables, ϵ symbols may be removed, leading to a significant reduction of the
number of splits. Additional reduction of the number of generated splits during noodlification
is achieved by eager simulation-based reduction applied on NFAs in the language assignment.

Generating length formulae. In order to check that a stable solution (Lang, σ) is satisfiable
w.r.t. the initial length constraint L, we first generate for each x ∈ X a LIA formula
len(|x|, Lang(x)) describing all possible lengths of words of Lang(x). This can be achieved,
e.g., by using the lasso-automata construction [4]. Consequently, we extend the formula∧

x∈X len(|x|, Lang(x)) with the equality |x| = |x1| + · · · + |xn| for each (x 7→ x1 · · ·xn) ∈ σ

and |x1| + · · · + |xn| = |y1| + · · · + |ym| for each equation x1 · · ·xn = y1 · · · ym from E in
order to obtain the resulting LIA formula φlen. The LIA formula combines length constraints
induced by initial and substituted equations and lengths of the substituted variables. Finally,
we check if the LIA formula L ∧ φlen is satisfiable. Since we work with a stable solution,
a LIA model of this formula can be used to construct a string model satisfying the obtained
LIA model and, hence, satisfying the formula E ∧ R ∧ L.
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▶ Example 2. An example of obtaining a stable solution using rules of simplified stabilization-
based procedure applied on the string constraint xy = z ∧ w = xx ∧ w ∈ a+ is shown in
Figure 1. The relevant part of the LIA formula φlen corresponding to this stable solution is
then given as

φlen
def⇔ |y| ≥ 0 ∧ |x| ≥ 1 ∧ |z| ≥ 1 ∧ |w| ≥ 2 ∧ |v1| ≥ 1 ∧

|x| + |x| = |w| ∧ |z| = |x| + |y| ∧ |x| = |v1| ∧ |w| = |v1| + |v1| ∧ |z| = |v1| + |y|. ⌟

5 String-Integer Conversions

We propose an extension of the stabilization-based procedure from Section 4 so that it can
handle string constraints of the form E ∧ R ∧ L ∧ C. We know that E ∧ R ∧ L is satisfiable if
there is a stable solution (Lang, σ) such that the LIA formula L ∧ φlen is satisfiable. From
a high-level point of view, given a stable solution, our procedure creates a LIA formula
φconv

def⇔
∧

c∈C φc encoding conversions from C so that the string constraint E ∧ R ∧ L ∧ C is
satisfiable iff the LIA formula L ∧ φlen ∧ φconv is satisfiable.

Additional constraint generation. In order to simplify the resulting LIA formula for
conversions φconv, we add additional membership constraints to the set of initial regular
constraints R. The stabilization-based procedure then works with this modified set of
constraints. These additional constraints make the resulting formula smaller and since the
stabilization-based procedure is particularly optimized for working with regular constraints,
the constraints may significantly speed up the whole procedure. More specifically, we enrich
regular constraints with formulae restricting the results of from_int and from_code; i.e., for
each constraint x = from_int(k) from C we add the constraint x ∈ (('1' + · · · + '9')('0' +
· · · + '9')∗) + ϵ, restricting x to a valid representation of a number without leading zeros
or ϵ, and for each x = from_code(k) from C we add the constraint x ∈ Σ + ϵ restricting x to
be either the symbol whose code point we are computing or ϵ for invalid inputs.

5.1 Handling to_int

Let (Lang, σ) be a stable solution of a string constraint without conversions and k =
to_int(x) ∈ C be a conversion that we want to encode into a LIA formula φk=to_int(x).
Generally speaking, generating a LIA formula from a regular language Lang(x) that represents
all encoded numbers is not possible, because some non-linear function such as exponentiation
is necessary [15]. For example, given the language {'5'}{'0'}∗, the corresponding formula
in nonlinear arithmetic would be ℓ = 5 · z ∧ ∃n : n ≥ 0 ∧ z = 10n. For this reason, we assume
that the language Lang(x) is finite. This restriction is relatively strong, but in combination
with our underapproximations from Section 6, it appears to be permissive enough.

As Lang(x) is finite, we could easily enumerate all words of Lang(x) and encode into
φk=to_int(x) that to_int(x) must be equal to one of these values. This would result in the
formula

∨
w∈Lang(x) to_int(x) = to_int(w), with to_int(w) being the integer value that

the string w represents (or −1 if w is a string that does not encode a number) as defined in
Section 3. However, the number of possible words could easily blow up and the resulting
formula would be too large. For example, for the language {'0', . . . , '9'}9, we would need
109 disjuncts. We need a more succinct encoding. Moreover, the encoding must allow efficient
handling the following two issues:

SAT 2024



14:8 Cooking String-Integer Conversions with Noodles

(i) We need to keep the correspondence between the length of x and the value of to_int(x).
The string constraint may, for instance, look like |x| ≤ 3 ∧ z ≥ 1000 ∧ z = to_int(x),
which is unsatisfiable due to the relation between the length of the string and the value
the string represents.

(ii) There can be other variables whose conversion result depend on x. As an example,
assume that σ(x) = z1z2 and we also have to handle the conversion m = to_int(y)
with σ(y) = z2z3. This means that x must end with the same string that y starts
with. The two formulae φk=to_int(x) and φm=to_int(y) obtained from the naive approach,
however, do not encode this relation.

Succinct and efficient encoding. To achieve succinctness, we reduce the number of disjuncts
by working with sets of strings that represent continuous intervals of numbers. For example,
if Lang(x) = {'0', . . . , '3', '5'}{'0', . . . , '9'}{'0', . . . , '9'}, then we get two intervals of
numbers [0 − 399] and [500 − 599], and we can create a significantly smaller LIA formula
φk=to_int(x)

def⇔ k = to_int(x) ∧ (0 ≤ to_int(x) ≤ 399 ∨ 500 ≤ to_int(x) ≤ 599). The two
issues discussed above are then handled as follows:

(i) We relate each interval with the corresponding length.
(ii) We work on the level of substituted variables (according to σ) instead of the original

ones. Because σ is flat, we can directly give a formula to define to_int values of the
substituted variables and then use these to define the original ones. Regarding the
problematic example above, because we know that σ is flat, it holds that σ(z1) = z1,
σ(z2) = z2, and σ(z3) = z3, so we construct formulae for to_int(z1), to_int(z2), and
to_int(z3), and then combine them to get the value of the original to_int(x) and
to_int(y).

Encoding to_int(xi). To encode to_int(x), assuming that σ(x) = x1 · · ·xn, we need to
first encode to_int(xi) for each xi. We split this encoding into two formulae: φdigit

to_int(xi),
which encodes all words from Langdigit

xi
= Lang(xi)∩{'0', . . . , '9'}∗, i.e., words containing only

digits; and φnondigit
to_int(xi), which encodes all words from Langnondigit

xi
= Lang(xi)\{'0', . . . , '9'}∗,

i.e., words containing at least one non-digit symbol.
To define φdigit

to_int(xi), we introduce the following notation. Let Lxi
= {|w| | w ∈ Langdigit

xi
}

denote the set of all possible lengths of words containing only digits in Lang(xi). Because
we assume that Lang(xi) is finite, then also Lxi

will be finite. Furthermore, let Ixi
(m), for

m ∈ Lxi , be the set of pairs (low, high) of words of the length m from Langdigit
xi

that encode
the largest possible continuous intervals of numbers of the form (to_int(low), to_int(high)).
For example, for Lang(xi) = {ϵ, '0', '1'}{'0', '1', '2'}{'0', . . . , '9'} we have Lxi = {2, 3},
Ixi

(2) = {('00', '29')}, and Ixi
(3) = {('000', '029'), ('100', '129')}. Formally, given an

interval encoding (low, high) ∈ Ixi
(m), we have that |low| = |high| = m and to_int(low) ≤

to_int(high). Further, the words with length m that encode numbers to_int(low) − 1 and
to_int(high) + 1 are not in Langdigit

xi
and all words w whose length is m and to_int(low) ≤

to_int(w) ≤ to_int(high) must belong to Lang(xi). The formula is then defined as

φdigit
to_int(xi)

def⇔
∨

ℓ∈Lxi

|xi| = ℓ ∧
∨

(low,high)∈Ixi
(ℓ)

to_int(low) ≤ to_int(xi) ≤ to_int(high)


where to_int(low) and to_int(high) denote the integers represented by the string literals
low and high respectively. The formula says that for each length ℓ, to_int(xi) must be
a number encoded by one of the words from the language Langdigit

xi
whose length is ℓ. Let us

note that for ℓ = 0 there is only one possible interval (ϵ, ϵ) and for this case it holds that
to_int(xi) = −1 (because of the fact that to_int(ϵ) = −1).
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On the other hand, defining formula for words from Langnondigit
xi

is simple because for each
such word w, we know that to_int(w) = −1. Therefore, we can define it as

φnondigit
to_int(xi)

def⇔ len(|xi|, Langnondigit
xi

) ∧ to_int(xi) = −1

where len(|xi|, Langnondigit
xi

), defined in Section 4, is a LIA formula encoding that |xi| must
be the length of some word from the language Langnondigit

xi
. Note that because this formula

can be created even for an infinite language, we can relax the condition on finiteness of the
language Lang(xi) to only finiteness of the Langdigit

xi
part.

Encoding to_int(x). Having defined the encodings of to_int(xi) for all xi in σ(x) =
x1 · · ·xn, we can now use them to define φk=to_int(x). Again, we split the definition into
two formulae, but instead of splitting it based on whether the given word contains a digit,
we split it into two cases, based on whether x represents a valid number or not, into formulae
φvalid

to_int(x) and φinvalid
to_int(x) respectively.

We start with the definition of a LIA formula φvalid
to_int(x) expressing possible valuations

of inputs that represent valid numbers. Notice that for a given combination (ℓ1, . . . , ℓn) ∈
Lx1 × · · · × Lxn of lengths, we can easily compute the value to_int(x) by summing the
values of to_int(xi) multiplied by the correct power of ten. Therefore, we define φvalid

to_int(x)
as the following formula:

φvalid
to_int(x)

def⇔
∨

ℓ1∈Lx1...
ℓn∈Lxn

ℓ1+···+ℓn ̸=0

(
to_int(x) =

∑
1≤i≤n

(
to_int(xi) · 10ℓi+1+···+ℓn · sgn ℓi

)
∧ ψ[l1 . . . ln]

)

where sgn is the sign function (that sends ℓi to 1 if it is positive and to 0 if it is itself 0),
the corresponding summand to_int(xi) · 10ℓi+1+···+ℓn has to be equal to 0, and

ψ[l1 . . . ln] def⇔
∧

1≤i≤n

(
|xi| = ℓi ∧ (to_int(xi) = −1 ⇒ ℓi = 0)

)
connects the length |xi| with the value of ℓi and discards values of xi that do not represent
numbers (except for the empty word ϵ). Note that if some (but not all) variable xi is an empty
word, then x1 · · ·xn still represents a valid number. Furthermore, because |x| = |x1|+· · ·+|xn|
is a part of φlen, the connection between |x| and the value of to_int(x) can be kept by
putting restrictions only on the values |x1|, . . . , |xn|.

We now define formula φinvalid
to_int(x) encoding the situation when x does not represent

a number and to_int(x) should be equal to −1:

φinvalid
to_int(x)

def⇔ to_int(x) = −1 ∧
(

|x| = 0 ∨
∨

1≤i≤n

(
to_int(xi) = −1 ∧ |xi| ≠ 0

))
The variable x does not represent a number if it is ϵ or if some xi does not represent a number.
However, xi might not represent a number even in the case that xi = ϵ, but as already
mentioned, x can still be a valid representation of a number, so we discard these cases.

Finally, the resulting formula φk=to_int(x) is given as

φk=to_int(x)
def⇔ k = to_int(x)∧

(
φvalid

to_int(x) ∨ φinvalid
to_int(x)

)
∧

∧
1≤i≤n

(
φdigit

to_int(xi) ∨ φnondigit
to_int(xi)

)
.

We note that in the case φvalid
to_int(x) is true, its conjunct ψ[l1 . . . ln] forces φnondigit

to_int(xi) to be
false for all xi.

SAT 2024
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x = yz
x 7→ (Σ + ϵ)3, z 7→ D∗

y 7→ {'0', '1', '2', '3', '6', 'a'}

y = v1,
z = v2

y 7→ {'0', '1', '2', '3', '6', 'a'}, z 7→ D∗,
v1 7→ {'0', '1', '2', '3', '6', 'a'}, v2 7→ (D + ϵ)2 x 7→ v1v2

v1 7→ {'0', '1', '2', '3', '6', 'a'},
v2 7→ (D + ϵ)2

x 7→ v1v2,
y 7→ v1, z 7→ v2

Subst(x = yz)

Subst(y = v1)
Subst(z = v2)

Figure 2 A part of the proof graph generated by the rules of the simplified stabilization procedure
for the string constraint x = yz ∧ x ∈ (Σ + ϵ)3 ∧ y ∈ {'0', '1', '2', '3', '6', 'a'} ∧ z ∈ D∗, where
D = {'0', . . . , '9'}.

▶ Example 3. Let D = {'0', . . . , '9'} be the set of digits and

ψ
def⇔ x = yz ∧ x ∈ (Σ + ϵ)3 ∧ y ∈ {'0', '1', '2', '3', '6', 'a'} ∧ z ∈ D∗ ∧ i = to_int(x)

a string constraint that we want to solve. Figure 2 shows a run of the stabilization procedure
on this string constraint (without the to_int conversion) that results in the stable solution
(Lang, σ), where Lang(v1) = {'0', '1', '2', '3', '6', 'a'}, Lang(v2) = (D+ ϵ)2, σ(x) = v1v2,
σ(y) = v1, and σ(z) = v2 (mappings of other variables in Lang and σ are not relevant). The
relevant part of the LIA formula φlen corresponding to this stable solution is then given as

φlen
def⇔ (|v1| = 1 ∨ |v1| = 2) ∧ 0 ≤ |v2| ≤ 2 ∧ |x| = |v1| + |v2| ∧ |y| = |v1| ∧ |z| = |v2|.

We need to create the formula φi=to_int(x) and because σ(x) = v1v2, we need to first
create the formulae φdigit

to_int(v1), φ
nondigit
to_int(v1), φ

digit
to_int(v2), and φnondigit

to_int(v2). Starting with v1, we
have Langdigit

v1
= {'0', '1', '2', '3', '6'}, Langnondigit

v1
= {'a'}, and Lv1 = {1}. Therefore,

we get

φdigit
to_int(v1)

def⇔ |v1| = 1 ∧ (0 ≤ to_int(v1) ≤ 3 ∨ to_int(v1) = 6) and

φnondigit
to_int(v1)

def⇔ |v1| = 1 ∧ to_int(v1) = −1.

For v2, we have Langdigit
v2

= (D + ϵ)2, Langnondigit
v2

= ∅, and Lv2 = {0, 1, 2}. We obtain

φdigit
to_int(v2)

def⇔ (|v2| = 0 ∧ to_int(v2) = −1) ∨ (|v2| = 1 ∧ 0 ≤ to_int(v2) ≤ 9)

∨ (|v2| = 2 ∧ 0 ≤ to_int(v2) ≤ 99)

and, since Langnondigit
v2

is empty, φnondigit
to_int(v2) is false. The formula φvalid

to_int(x) is then given as

φvalid
to_int(x)

def⇔
(
to_int(x) = to_int(v1) ∧ |v1| = 1 ∧ |v2| = 0 ∧ to_int(v1) ̸= −1

)
∨

(
to_int(x) = to_int(v1) · 10 + to_int(v2) ∧ |v1| = 1

∧ |v2| = 1 ∧ to_int(v1) ̸= −1 ∧ to_int(v2) ̸= −1
)

∨
(
to_int(x) = to_int(v1) · 100 + to_int(v2) ∧ |v1| = 1

∧ |v2| = 2 ∧ to_int(v1) ̸= −1 ∧ to_int(v2) ̸= −1
)
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and φinvalid
to_int(x) as

φinvalid
to_int(x)

def⇔ to_int(x) = −1 ∧(
|x| = 0 ∨ (to_int(v1) = −1 ∧ |v1| ≠ 0) ∨ (to_int(v2) = −1 ∧ |v2| ≠ 0)

)
.

The final formula φi=to_int(x) is then

φi=to_int(x)
def⇔ i = to_int(x) ∧

(
φvalid

to_int(x) ∨ φinvalid
to_int(x)

)
∧

(
φdigit

to_int(v1) ∨ φnondigit
to_int(v1)

)
∧ φdigit

to_int(v2)

which is the only conjunct of φconv. ⌟

5.2 Handling from_int

We briefly describe the handling of from_int. Assume that x = from_int(k) is the conversion
from C that we want to encode and σ(x) = x1 · · ·xn. We proceed similarly to the to_int
case, but instead of encoding the possible values of the result x, we will instead restrict
the argument k to values that yield the given possible values of the result x. The formula
φvalid

x=from_int(k) expressing valid conversions is the same as φvalid
to_int(x) after replacing to_int(x)

with k:

φvalid
x=from_int(k)

def⇔
∨

ℓ1∈Lx1...
ℓn∈Lxn

ℓ1+···+ℓn ̸=0

(
k =

∑
1≤i≤n

(
to_int(xi) · 10ℓi+1+···+ℓn · sgn ℓi

)
∧ ψ[l1 . . . ln]

)
.

Furthermore, from_int(k) always returns the string encoding a non-negative number k,
except for the case when k < 0. In this case, it returns ϵ, therefore, the formula φinvalid

x=from_int(k)
is defined as

φinvalid
x=from_int(k)

def⇔ k < 0 ∧ |x| = 0.

The resulting formula φx=from_int(k) is then given as

φx=from_int(k)
def⇔

(
φvalid

x=from_int(k) ∨ φinvalid
x=from_int(k)

)
∧

∧
1≤i≤n

(
φdigit

to_int(xi) ∨ φnondigit
to_int(xi)

)
.

▶ Example 4. Let us take the string constraint from Example 3 extended with i ≤ j ∧ z =
from_int(j). As we added only LIA and conversion constraints, the stable solution (Lang, σ)
from Example 3 stays the same. We know that σ(z) = v2, Lang(v2) = (D + ϵ)2, and
Lv2 = {0, 1, 2}. We also already have φdigit

to_int(v2) from Example 3 (φnondigit
to_int(v2) is unsatisfiable),

therefore, in order to encode φz=from_int(j), we only need

φvalid
z=from_int(j)

def⇔ (j = to_int(v2) ∧ |v2| = 1 ∧ to_int(v2) ̸= −1) ∨

(j = to_int(v2) ∧ |v2| = 2 ∧ to_int(v2) ̸= −1) and

φinvalid
z=from_int(j)

def⇔ j < 0 ∧ |z| = 0.

We can then add

φz=from_int(j)
def⇔

(
φvalid

z=from_int(i) ∨ φinvalid
z=from_int(i)

)
∧ φdigit

to_int(v2)

to φconv. ⌟
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5.3 Handling to_code

The semantic of to_code(x) is simple (see Section 3): if |x| = 1, then to_code(x) represents
the code point of the symbol x, otherwise the result is −1. We want to encode this behavior
in the formula φk=to_code(x). Assuming that σ(x) = x1 · · ·xn, we will first, for each xi, encode
the value to_code(xi) in a formula φto_code(xi), so that we relate the substituted variables
between multiple to_code conversions (similarly as in to_int case). We could take a naive
approach and enumerate all possible symbols of xi (there is only a finite number of possible
symbols, so this method is complete). However, such a naive approach could easily blow-up.

In order to overcome this blow-up problem, we can notice that, despite the high number
of possible symbols, the input string formula usually uses only a small subset of them (usually
a subset of ASCII symbols). We therefore restrict the alphabet Σ only to these symbols, all
digit symbols, and one special symbol δ that represents all unused4 non-digit symbols (if there
are any). Using only δ for all unused symbols has no impact on the stabilization-based
procedure from Section 4, as it handles only a conjunction of positive equations with regular
and length constraints, where unused symbols “behave in the same way”. However, digit
symbols are important for to_int/from_int conversions. We therefore keep all of them in Σ
and δ then represents all unused symbols that are not digits.

We then encode the fact that either to_code(xi) is a code point of the symbol xi, or,
if xi is not a single symbol, to_code(xi) = −1:

φto_code(xi)
def⇔

((
|xi| = 1 ∧

∨
a∈Lang(xi)∩Σ

ψ(a)
)

∨
(

|xi| ≠ 1 ∧ to_code(xi) = −1
))

where ψ(a) encodes that to_code(xi) is equal to the code-point of the symbol a as follows:
For a normal symbol a ̸= δ, we have ψ(a) def⇔ to_code(xi) = to_code(a) (recall that
to_code(a) for a ∈ Σ \ {δ} denotes the numeric value of the code point of the symbol a).
For δ, we have to encode the fact that to_code(δ) can acquire any possible code point of
unused symbols. Therefore, given that maxchar denotes the largest possible code point5,

ψ(δ) def⇔ 0 ≤ to_code(xi) ≤ maxchar ∧
∧

b∈Lang(xi)∩(Σ\{δ})

to_code(xi) ̸= to_code(b)

We can then define φto_code(x) as

φto_code(x)
def⇔

((
|x| = 1 ∧ to_code(x) ̸= −1 ∧

∨
1≤i≤n

to_code(x) = to_code(xi)
)

∨

(
|x| ≠ 1 ∧ to_code(x) = −1

))
relating the value x with the substituted variables xi. The second part of the formula handles
the case when x is not a symbol. For the case that x is a symbol, there must be exactly
one xi that is also the (same) symbol, and all other xj , for i ≠ j, must be empty strings.
For each such xj , we have to_code(xj) = −1, so by requiring to_code(x) ̸= −1, we force
the equality to_code(x) = to_code(xi). The resulting formula is then

φk=to_code(x)
def⇔ k = to_code(x) ∧ φto_code(x) ∧

∧
1≤i≤n

φto_code(xi).

4 Unused here means that they are not explicitly used, so for example in the formula x ∈ Σ ∧ y ∈ {a, b},
the explicitly used symbols are only a and b, and δ will represent all other symbols. We then get
a formula with three symbols: x ∈ {a, b, δ} ∧ y ∈ {a, b}.

5 According to the SMT standard [10], it is the number 196,607.
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Connecting string and code conversions. Finally, we need to address the problem of relating
to_code and to_int. For example, we could have both conversions to_int(x) and to_code(y)
with σ(x) = z1z2 and σ(y) = z2z3. Right now, to_int(z2) and to_code(z2) can have some
valid values, which are, however, not related. For example, if Lang(z2) = {'4', '5'}, then
we could end up with the situation where to_int(z2) = 5 but to_code(z2) = 52, which is
the code point of '4'.

Therefore, for each variable x for which both φto_int(x) and φto_code(x) are defined,
we create the following formula

|x| ≠ −1 ∨ (to_int(x) = −1∧¬(48 ≤ to_code(x) ≤ 57)) ∨ (to_code(x) = to_int(x)+48),

which we add to the conversion formula φconv. This formula represents three (non-necessarily
disjoint) cases: (i) the string x is not a symbol, which means that to_code(x) = −1 and
to_int(x) does not depend on the value of to_code(x); (ii) x is not a digit, therefore
to_code(x) cannot lie in the interval [48, 57], which corresponds to digits '0' through '9';
and (iii) x is a digit, so to_code(x) must be its code point.

▶ Example 5. We further extend the string constraint from Example 4 by the constraint
|x| = to_code(y). Again, we only added a conversion to the formula, therefore the stable
solution (Lang, σ) from Example 3 stays the same, and we only need to encode the formula
φ|x|=to_code(y) with σ(y) = v1 and Lang(v1) = {'0', '1', '2', '3', '6', 'a'}. We therefore
get the following formulae:

φto_code(v1)
def⇔

(
|v1| = 1 ∧ (to_code(v1) = 48 ∨

to_code(v1) = 49 ∨
to_code(v1) = 50 ∨
to_code(v1) = 51 ∨
to_code(v1) = 54 ∨
to_code(v1) = 97)

)
∨(

|v1| ≠ 1 ∧ to_code(v1) = −1
)

φto_code(y)
def⇔

(
|y| = 1 ∧ to_code(y) ̸= −1 ∧ to_code(y) = to_code(v1)

)
∨(

|y| ≠ 1 ∧ to_code(y) = −1
)

φ|x|=to_code(y)
def⇔ |x| = to_code(y) ∧ φto_code(y) ∧ φto_code(xi)

Note that in Example 3 we defined to_int(v1) and we have also now defined to_code(v1),
therefore we also need to add the formula connecting these two values together as explained
in the previous paragraph. All in all, the final conversion formula φconv is then defined as

φconv
def⇔

(
|v1| ≠ −1 ∨ (to_int(v1) = −1 ∧ ¬(48 ≤ to_code(v1) ≤ 57)) ∨

(to_code(v1) = to_int(v1) + 48)
)

∧
φi=to_int(x) ∧ φz=from_int(j) ∧ φ|x|=to_code(y). ⌟

5.4 Handling from_code

Similarly to from_int, which is handled using to_int, from_code is handled using to_code.
Given x = from_code(k) and σ(x) = x1 · · ·xn, the formula φx=from_code(k) is defined as

φx=from_code(k)
def⇔

((
|x| = 1 ∧ k ̸= −1 ∧

∨
1≤i≤n

k = to_code(xi)
)

∨

(
|x| = 0 ∧ ¬(0 ≤ k ≤ maxchar)

))
∧

∧
1≤i≤n

φto_code(xi)
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The only two differences from to_code are the following:
1. we are restricting the values of the argument k (instead of computing to_code(x)) and
2. for the case that x is not a symbol (which must mean that x = ϵ, as from_code(k) returns

either a symbol for a valid code point or an empty string, hence the condition |x| = 0),
the argument can be any integer that is an invalid code point.

5.5 Handling word disequations through to_code

The stabilization-based procedure from Section 4 assumes that E does not contain disequations.
As shown in [18], every disequation s ̸= t can be encoded into a combination of equations
and length constraints as

φs̸=t
def⇔ |s| ≠ |t| ∨

(
s = x1a1y1 ∧ t = x2a2y2 ∧ |x1| = |x2| ∧ a1 ∈ Σ ∧ a2 ∈ Σ ∧

dist(a1,a2)︷ ︸︸ ︷
a1 ̸= a2

)
where x1, x2, y1, y2, a1, and a2 are fresh variables and the disequation a1 ̸= a2 between
symbols can be encoded into a LIA formula dist(a1, a2) after the procedure returns a stable
solution. Furthermore, if the original string constraint without disequations is chain-free, then
it stays chain-free even if we add φs̸=t to it. However, the transformation of a1 ̸= a2 to LIA
formula dist(a1, a2) from [18] is incompatible with the way we construct φconv. We can easily
solve this by replacing a1 ≠ a2 in φs ̸=t with to_code(a1) ̸= to_code(a2). Since our procedure
can handle any to_code conversion, this extends one of the richest decidable fragments of
string constraints, chain-free constraints with lengths and arbitrary disequations [18], by
code-point conversions.

6 Implementation and Optimizations

We implemented the proposed technique into the string solver Z3-Noodler [34], which
implements an optimized version of the stabilization-based procedure from Section 4 within
the DPLL(T )-based SMT solver Z3. The LIA formula φconv for string-integer conversions is
constructed after the procedure finds a stable solution. The formula φconv is appended to
the length formula φlen and the result is checked for satisfiability. On top of the proposed
technique, we further introduced several optimizations, described below.

Underapproximation of to_int. We mentioned in Section 5 that the conversion to_int(x)
expects the language Langdigit

x , the subset of words from Lang(x) containing only digits, to
be finite. Although this restriction usually holds in the benchmarks, we implemented an
underapproximation to at least partially handle the case of infinite languages. In particular,
if a variable occurring in a conversion has an infinite language after stabilization, we restrict
the language to strings up to some fixed length. To be more concrete, if Langdigit

x of a variable x
is an infinite language, we restrict it to Langdigit

x ∩(Σ+ϵ)m where m is the underapproximation
parameter (we use m = 5 in the experiments). This approach is sound for the SAT case.

Supporting constraints. In order to keep the variable languages as precise as possible, we
generate additional constraints (axioms) that are used to enrich the initial string constraint.
One such kind of constraints is generated for conversions of the type x = from_int(k), which
always result in x being assigned an infinite language (unless it is restricted by some other
regular constraint). Therefore, we generate an additional constraint k < 10m =⇒ x ∈
(Σ + ϵ)m where m is the same underapproximation parameter as in the previous paragraph,
which is then added to the initial constraint. Furthermore, we infer regular constraints
from LIA formulae. For example, if we have to_int(x) = k, with k ∈ Z, we generate
x ∈ '0'∗ · from_int(k). Moreover, if we have |x| ≤ k, we can set x ∈ (Σ + ϵ)k.
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Table 1 Results of experiments on all benchmark sets. For each benchmark set we give the
number of solved instances, the number of unknowns, and the number of instances where the
particular solver runs out of resources (timeout or out of memory). Moreover, we measure each value
w.r.t. all instances in the benchmark set (all) as well as only to instances containing at least one
conversion function (conv). The number of particular instances is given in the benchmark header.

FullStrInt (16,968 | 16,130) StringFuzz (11,618 | 1,608) StrSmallRw (1,880 | 80) Σ

solved unknown OOR solved unknown OOR solved unknown OOR solved

all conv all conv all conv all conv all conv all conv all conv all conv all conv all conv

Z3-Noodler 16,704 15,872 126 126 138 132 11,616 1,606 2 2 0 0 1,743 73 100 1 37 6 30,063 17,551
cvc5 16,963 16,125 0 0 5 5 10,915 1,579 0 0 703 29 1,861 78 2 2 17 0 29,739 17,782
Z3 16,729 15,896 0 0 239 234 11,081 1,565 0 0 537 43 1,821 78 0 0 59 2 29,631 17,539
OSTRICH 15,909 15,109 0 0 1,059 1,021 11,400 1,558 0 0 217 50 1,709 69 0 0 171 11 29,018 16,736
Z3-Noodlerpr 11,665 10,857 5,299 5,273 4 0 10,050 41 1,568 1,567 0 0 1,615 62 210 18 55 0 23,330 10,960

Interval computation. The solver Z3-Noodler internally represents each Lang(x) using
NFAs. In order to efficiently create the set of intervals Ixi

(n) for encoding to_int(xi) (cf.
Section 5.1), we minimize the automaton for Lang(xi), getting deterministic automaton with
a finite language, i.e., from each state there is at most one transition per symbol and there
are no loops. It is therefore easy to create intervals of digits going from each state, and then
connect these short intervals into longer ones.

7 Experiments

Used tools and environment. We compared Z3-Noodler extended with the support
of string-integer conversions (version 1.1.0) with the other state-of-the-art tools: cvc5
(version 1.1.2), Z3 (version 4.13.0), and OSTRICH (the latest commit 5dd2e10). We also
add comparison with the previous version 1.0.0 of Z3-Noodler (denoted as Z3-Noodlerpr).
We do not include comparison with Z3-Trau and Z3str4 as they give incorrect results on
some instances. The experiments were executed on a workstation with an AMD Ryzen 5
5600G CPU @ 3.8 GHz with 100 GiB of RAM running Ubuntu 22.04.4. The timeout was set
to 120 s, memory limit was set to 8 GiB.

Benchmarks. For the experimental evaluation we selected all benchmark sets from SMT-
LIB [9] (category QF_SLIA) containing string-integer conversions. Concretely, we took the
FullStrInt (16,968 formulae), StringFuzz (11,618 formulae), and StrSmallRw (1,880 formulae)
benchmark sets, which were also used in SMT-COMP’23. Except string-integer conversions,
these benchmarks make heavy use of string (dis)equations and other string predicates and
functions (e.g., substr, indexof, at, . . . ) combined with length and regular constraints.

Results. The results summarizing the number of solved instances are given in Table 1 and
the average running times are shown in Table 2. The scatter plots comparing the running
times of Z3-Noodler and the other tools are given in Figure 3.

Regarding the FullStrInt benchmark set, Z3-Noodler has 138 timeouts (out of which 132
were on formulae with conversions) and 126 unknowns. The number of solved instances
is comparable to Z3, but smaller compared to cvc5 (cvc5 solves all instances except 5).
On the other hand, Z3-Noodler solved 795 instances more than OSTRICH. Concerning
the running time, Z3-Noodler has the lowest average time followed by cvc5 (not counting
Z3-Noodlerpr as it has almost 5,300 unknowns on FullStrInt). The inspection of timeouts of
Z3-Noodler on FullStrInt revealed that the bottleneck on these examples is not the handling
of string-integer conversions but handling of a complex combination of string predicates and
functions (substr, indexof, . . . ) in the stabilization-based procedure. We believe that these
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Table 2 Average running times and standard deviation (in seconds) of solved instances.

FullStrInt StringFuzz StrSmallRw
avg std avg std avg std

Z3-Noodler 0.19 1.26 0.03 0.22 0.14 2.41
cvc5 0.30 1.42 2.81 12.55 0.02 0.56
Z3 1.21 6.90 4.14 15.39 0.12 2.86
OSTRICH 11.86 14.85 4.79 10.00 4.47 6.61
Z3-Noodlerpr 0.02 0.05 0.03 0.08 0.75 6.56

instances could be solved by a tailored preprocessing of input formulae and strengthening
axioms for special cases of string functions and predicates. The unknowns of Z3-Noodler
are caused by the inconclusive result in the case of underapproximation. It is evident from
the table that Z3-Noodler can solve significantly more instances than Z3-Noodlerpr .
Note that although Z3-Noodlerpr has no support for string-integer conversions, it can
solve some instances, for example those containing unsatisfiable LIA parts or those whose
satisfiability can be established without considering the string-integer conversions.

In the StringFuzz benchmark set, Z3-Noodler solved more instances than any other
tool. In particular, Z3-Noodler has only 2 unknowns (caused by the underapproximation),
which is significantly better than the runner-up OSTRICH. Concerning the running time
on this benchmark set, Z3-Noodler has also the lowest average time.

The last considered benchmark set StrSmallRw is not very interesting. It contains only 80
formulae with conversions and from these, already 62 are solved by Z3-Noodlerpr , i.e., they
can be solved without looking at conversions. If we take into account the whole benchmark,
Z3-Noodler has a large amount of unknowns, which are caused by a limited support of the
¬contains predicate. The average running time of Z3-Noodler is comparable to Z3, but
higher than the average time of cvc5, which is the fastest tool on this benchmark.

From the summary statistics in Table 1 it is evident that the proposed procedure and
its integration with the stabilization-based procedure has a significant effect on the number
of solved instances. The previous version Z3-Noodlerpr solved 6,734 instances less than
Z3-Noodler. If we look at the number of solved cases from the perspective of all instances,
Z3-Noodler solved the most formulae compared to any other tool. If we restrict our
attention only to formulae with conversions, Z3-Noodler solves 231 instances less than
cvc5, but more instances than Z3 and OSTRICH. From Figure 3 and the average running
times in Table 2, it is obvious that Z3-Noodler can be (sometimes significantly) faster than
other state-of-the-art tools pointing out to the efficiency of the proposed combined approach.

Discussion. The experimental evaluation shows that our proposed approach combining
the stabilization-based procedure and the translation of the conversions into a LIA formula
can (sometimes significantly) improve the scalability of solving complex string constraints
containing string-integer conversions. Although the generated LIA formula might be large in
the worst-case, based on our experiments, this worst case is avoided in real-world benchmarks
(based on inspecting a couple of instances, the generated LIA formulae contained up to
hundreds of simple atoms). The experiments also revealed that the highest impact on the
LIA formula size was the interval separation (Section 5.1); without this feature the LIA
formula often exploded. Furthermore, based on our experience, the generated LIA formula is
easily solvable by Z3’s LIA solver. The current bottleneck of the solver is not handling the
string-integer conversions but handling the complex combination of string predicates and
functions (as discussed at the results of FullStrInt).
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Figure 3 Scatter plots comparing Z3-Noodler with cvc5, Z3, and OSTRICH. Times are in
seconds, axes are logarithmic. The dashed lines represent unknowns and timeouts/out-of-memory.
Colours distinguish benchmark sets: • FullStrInt, • StringFuzz, and • StrSmallRw.

8 Conclusion

We have proposed an extension of the stabilization-based procedure with the handling of
string-integer conversions. Based on a stable solution, the technique encodes the conversions
into LIA formulae. We have proposed a series of optimizations in order to avoid a blow-
up of the LIA formulae and implemented the approach in the tool Z3-Noodler. Our
experimental evaluation on established benchmarks shows that our technique outperforms
other state-of-the-art tools on many instances.

In the future, we plan to extend the precise handling of conversions from finite languages
to languages with limited forms of iteration. Another direction could be a dynamic analysis
of the underapproximation parameter and adjusting the parameter according to the input
formula characteristics.

References
1 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Julian Dolby,

Petr Janku, Hsin-Hung Lin, Lukás Holík, and Wei-Cheng Wu. Efficient handling of string-
number conversion. In Alastair F. Donaldson and Emina Torlak, editors, Proceedings of
the 41st ACM SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2020, London, UK, June 15-20, 2020, pages 943–957. ACM, 2020.
doi:10.1145/3385412.3386034.

2 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukás Holík,
Ahmed Rezine, and Philipp Rümmer. Flatten and conquer: a framework for efficient analysis
of string constraints. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2017, Barcelona, Spain, June 18-23, 2017, pages 602–617. ACM, 2017. doi:10.1145/3062341.
3062384.

3 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukás Holík, Ahmed
Rezine, and Philipp Rümmer. Trau: SMT solver for string constraints. In Nikolaj S. Bjørner
and Arie Gurfinkel, editors, 2018 Formal Methods in Computer Aided Design, FMCAD
2018, Austin, TX, USA, October 30 - November 2, 2018, pages 1–5. IEEE, 2018. doi:
10.23919/FMCAD.2018.8602997.

4 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukás Holík, Ahmed Rezine,
Philipp Rümmer, and Jari Stenman. String constraints for verification. In Armin Biere and
Roderick Bloem, editors, Computer Aided Verification - 26th International Conference, CAV
2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22,
2014. Proceedings, volume 8559 of Lecture Notes in Computer Science, pages 150–166. Springer,
2014. doi:10.1007/978-3-319-08867-9_10.

SAT 2024

https://doi.org/10.1145/3385412.3386034
https://doi.org/10.1145/3062341.3062384
https://doi.org/10.1145/3062341.3062384
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.1007/978-3-319-08867-9_10


14:18 Cooking String-Integer Conversions with Noodles

5 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukáš Holík, Ahmed Rezine,
Philipp Rümmer, and Jari Stenman. Norn: An SMT solver for string constraints. In CAV’15,
volume 9206 of LNCS, pages 462–469. Springer, 2015.

6 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bui Phi Diep, Lukás Holík, and Petr Janků.
Chain-free string constraints. In Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza, editors,
Automated Technology for Verification and Analysis - 17th International Symposium, ATVA
2019, Taipei, Taiwan, October 28-31, 2019, Proceedings, volume 11781 of Lecture Notes in
Computer Science, pages 277–293. Springer, 2019. doi:10.1007/978-3-030-31784-3_16.

7 Leonardo Alt, Martin Blicha, Antti E. J. Hyvärinen, and Natasha Sharygina. SolCMC:
Solidity compiler’s model checker. In Sharon Shoham and Yakir Vizel, editors, Computer
Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August 7-10,
2022, Proceedings, Part I, volume 13371 of Lecture Notes in Computer Science, pages 325–338.
Springer, 2022. doi:10.1007/978-3-031-13185-1_16.

8 Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann,
Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir,
Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A
versatile and industrial-strength smt solver. In Dana Fisman and Grigore Rosu, editors, Tools
and Algorithms for the Construction and Analysis of Systems, pages 415–442, Cham, 2022.
Springer International Publishing.

9 Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2016.

10 Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Lib-
rary (SMT-LIB): Strings. https://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml,
2023.

11 Murphy Berzish. Z3str4: A Solver for Theories over Strings. PhD thesis, University of
Waterloo, Ontario, Canada, 2021. URL: https://hdl.handle.net/10012/17102.

12 Murphy Berzish, Joel D. Day, Vijay Ganesh, Mitja Kulczynski, Florin Manea, Federico Mora,
and Dirk Nowotka. String theories involving regular membership predicates: From practice to
theory and back. In Thierry Lecroq and Svetlana Puzynina, editors, Combinatorics on Words,
pages 50–64, Cham, 2021. Springer International Publishing.

13 Murphy Berzish, Mitja Kulczynski, Federico Mora, Florin Manea, Joel D. Day, Dirk Nowotka,
and Vijay Ganesh. An SMT solver for regular expressions and linear arithmetic over string
length. In Alexandra Silva and K. Rustan M. Leino, editors, Computer Aided Verification
- 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings,
Part II, volume 12760 of Lecture Notes in Computer Science, pages 289–312. Springer, 2021.
doi:10.1007/978-3-030-81688-9_14.

14 František Blahoudek, Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej
Lengál, and Juraj Síč. Word equations in synergy with regular constraints. In Marsha Chechik,
Joost-Pieter Katoen, and Martin Leucker, editors, Formal Methods, pages 403–423, Cham,
2023. Springer International Publishing.

15 Véronique Bruyàre, Georges Hansel, Christian Michaux, and Roger Villemaire. Logic and
p-recognizable sets of integers. Bulletin of the Belgian Mathematical Society - Simon Stevin,
1(2):191–238, 1994. doi:10.36045/bbms/1103408547.

16 Taolue Chen, Matthew Hague, Anthony W. Lin, Philipp Rümmer, and Zhilin Wu. Decision
procedures for path feasibility of string-manipulating programs with complex operations. Proc.
ACM Program. Lang., 3(POPL):49:1–49:30, 2019. doi:10.1145/3290362.

17 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj
Síč. Z3-Noodler: An automata-based string solver. In Bernd Finkbeiner and Laura Kovács,
editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 24–33,
Cham, 2024. Springer Nature Switzerland.

https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1007/978-3-031-13185-1_16
www.SMT-LIB.org
https://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
https://hdl.handle.net/10012/17102
https://doi.org/10.1007/978-3-030-81688-9_14
https://doi.org/10.36045/bbms/1103408547
https://doi.org/10.1145/3290362


V. Havlena, L. Holík, O. Lengál, and J. Síč 14:19

18 Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj
Síč. Solving string constraints with lengths by stabilization. Proc. ACM Program. Lang.,
7(OOPSLA2), October 2023. doi:10.1145/3622872.

19 Yu-Fang Chen, Vojtech Havlena, Ondrej Lengál, and Andrea Turrini. A symbolic algorithm for
the case-split rule in string constraint solving. In Bruno C. d. S. Oliveira, editor, Programming
Languages and Systems - 18th Asian Symposium, APLAS 2020, Fukuoka, Japan, November 30
- December 2, 2020, Proceedings, volume 12470 of Lecture Notes in Computer Science, pages
343–363. Springer, 2020. doi:10.1007/978-3-030-64437-6_18.

20 Yu-Fang Chen, Vojtěch Havlena, Ondřej Lengál, and Andrea Turrini. A symbolic algorithm
for the case-split rule in solving word constraints with extensions. Journal of Systems and
Software, 201:111673, 2023. doi:10.1016/j.jss.2023.111673.

21 Joel D. Day, Thorsten Ehlers, Mitja Kulczynski, Florin Manea, Dirk Nowotka, and
Danny Bøgsted Poulsen. On solving word equations using SAT. In Emmanuel Filiot, Raphaël M.
Jungers, and Igor Potapov, editors, Reachability Problems - 13th International Conference, RP
2019, Brussels, Belgium, September 11-13, 2019, Proceedings, volume 11674 of Lecture Notes
in Computer Science, pages 93–106. Springer, 2019. doi:10.1007/978-3-030-30806-3_8.

22 Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In TACAS’08,
volume 4963 of LNCS, pages 337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

23 Vijay Ganesh and Murphy Berzish. Undecidability of a theory of strings, linear arithmetic
over length, and string-number conversion, 2016. arXiv:1605.09442.

24 Quang Loc Le and Mengda He. A decision procedure for string logic with quadratic equations,
regular expressions and length constraints. In Sukyoung Ryu, editor, Programming Languages
and Systems, pages 350–372, Cham, 2018. Springer International Publishing.

25 Liana Hadarean. String solving at Amazon. https://mosca19.github.io/program/index.
html, 2019. Presented at MOSCA’19.

26 G. S. Makanin. The problem of solvability of equations in a free semigroup. Matematicheskii
Sbornik, 32(2):147–236, 1977. (in Russian).

27 Federico Mora, Murphy Berzish, Mitja Kulczynski, Dirk Nowotka, and Vijay Ganesh. Z3str4:
A multi-armed string solver. In Marieke Huisman, Corina S. Pasareanu, and Naijun Zhan,
editors, Formal Methods - 24th International Symposium, FM 2021, Virtual Event, November
20-26, 2021, Proceedings, volume 13047 of Lecture Notes in Computer Science, pages 389–406.
Springer, 2021. doi:10.1007/978-3-030-90870-6_21.

28 OWASP. Top 10. https://owasp.org/www-project-top-ten/2017/, 2017.
29 OWASP. Top 10. https://owasp.org/Top10/, 2021.
30 Andrew Reynolds, Andres Nötzli, Clark Barrett, and Cesare Tinelli. A decision procedure for

string to code point conversion. In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors,
Automated Reasoning, pages 218–237, Cham, 2020. Springer International Publishing.

31 Andrew Reynolds, Andres Notzlit, Clark Barrett, and Cesare Tinelli. Reductions for strings and
regular expressions revisited. In 2020 Formal Methods in Computer Aided Design (FMCAD),
pages 225–235, 2020. doi:10.34727/2020/isbn.978-3-85448-042-6_30.

32 Philipp Rümmer. A constraint sequent calculus for first-order logic with linear integer
arithmetic. In Proceedings, 15th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, volume 5330 of LNCS, pages 274–289. Springer, 2008.

33 Klaus U. Schulz. Makanin’s algorithm for word equations-two improvements and a generaliza-
tion. In Klaus U. Schulz, editor, Word Equations and Related Topics, pages 85–150, Berlin,
Heidelberg, 1992. Springer Berlin Heidelberg.

34 Z3-Noodler. Automata-based string solver, 2024. URL: https://github.com/VeriFIT/
z3-noodler.

SAT 2024

https://doi.org/10.1145/3622872
https://doi.org/10.1007/978-3-030-64437-6_18
https://doi.org/10.1016/j.jss.2023.111673
https://doi.org/10.1007/978-3-030-30806-3_8
https://doi.org/10.1007/978-3-540-78800-3_24
https://arxiv.org/abs/1605.09442
https://mosca19.github.io/program/index.html
https://mosca19.github.io/program/index.html
https://doi.org/10.1007/978-3-030-90870-6_21
https://owasp.org/www-project-top-ten/2017/
https://owasp.org/Top10/
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_30
https://github.com/VeriFIT/z3-noodler
https://github.com/VeriFIT/z3-noodler

	1 Introduction
	2 Related work
	3 Preliminaries
	4 Stabilization-based Procedure for String Constraints
	5 String-Integer Conversions
	5.1 Handling to_int
	5.2 Handling from_int
	5.3 Handling to_code
	5.4 Handling from_code
	5.5 Handling word disequations through to_code

	6 Implementation and Optimizations
	7 Experiments
	8 Conclusion

