
Antichain with SAT and Tries
Lukáš Holík #

Faculty of Information Technology, Brno University of Technology, Czech Republic

Pavol Vargovčík #

Faculty of Information Technology, Brno University of Technology, Czech Republic

Abstract
We introduce a SAT-enabled version of an antichain algorithm for checking language emptiness of
alternating finite automata (AFA) with complex transition relations encoded as compact logical
formulae. The SAT solver is used to compute predecessors of AFA configurations, and at the same
time, to evaluate the subsumption of newly found configurations in the antichain of the previously
found ones. The algorithm could be naively implemented by an incremental SAT solver where the
growing antichain is represented by adding new clauses. To make it efficient, we 1) force the SAT
solver to prioritize largest/subsumption-strongest predecessors (so that weaker configurations are
not even generated), and 2) store the antichain clauses in a special variant of a trie that allows fast
subsumption testing. The experimental results suggest that the resulting emptiness checker is very
efficient compared to the state of the art and that our techniques improve the performance of the
SAT solver.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Regular languages

Keywords and phrases SAT, Trie, Antichain, Alternating automata, Subset query

Digital Object Identifier 10.4230/LIPIcs.SAT.2024.15

Supplementary Material Software (Source Code): https://github.com/p4l1ly/antisat/tree/
5901055e699e7b95ba3dec63d11445fcd791f5de [50]

archived at swh:1:rev:5901055e699e7b95ba3dec63d11445fcd791f5de

Funding This work was supported by the Czech Ministry of Education, Youth and Sports ERC.CZ
project LL1908 and the FIT BUT internal project FIT-S-23-8151.

1 Introduction

This paper presents a modification of a known antichain algorithm for deciding language
emptiness of alternating finite automata (AFA and AFA emptiness for short) that utilizes
SAT solving to handle complex transition relations over large structured alphabets.

AFA add conjunctive branching to nondeterminism. That is, a transition may require
the rest of the word is accepted not by one successor state, but by each state in a set
of successor states. This makes them exponentially more succinct than non-deterministic
automata [12, 36]. The succinctness of AFA is paid for by the PSPACE-completeness of
the language emptiness test. The test is based on a de-alternation that converts the AFA
to a nondeterministic finite automaton (NFA), of at most exponential size, and checks the
reachability of a final state from an initial one in the NFA. The de-alternation constructs the
NFA by making explicit reachable configurations of the AFA and transitions between them,
where a configuration is a set of all conjunctive branches possibly reached after reading some
word. Efficient AFA emptiness testing algorithms mitigate the worst-case complexity by
focusing on the reachability question while avoiding generating the entire NFA. They exploit
the structure of the configurations to define effective state space pruning and abstraction
techniques. The search is done on-the-fly, while constructing the NFA, the NFA transitions
stay implicit.

© Lukáš Holík and Pavol Vargovčík;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024).
Editors: Supratik Chakraborty and Jie-Hong Roland Jiang; Article No. 15; pp. 15:1–15:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:holik@fit.vutbr.cz
https://orcid.org/0000-0001-6957-1651
mailto:ivargovcik@fit.vutbr.cz
https://orcid.org/0009-0007-3831-9198
https://doi.org/10.4230/LIPIcs.SAT.2024.15
https://github.com/p4l1ly/antisat/tree/5901055e699e7b95ba3dec63d11445fcd791f5de
https://github.com/p4l1ly/antisat/tree/5901055e699e7b95ba3dec63d11445fcd791f5de
https://archive.softwareheritage.org/swh:1:rev:5901055e699e7b95ba3dec63d11445fcd791f5de
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Antichain with SAT and Tries

AFA can be practical in applications where automata are combined with Boolean and
similar operations, as demonstrated in works on string solving [1, 51], LTL model checking
such as [48, 19, 26], analyzing regular expressions [15, 14], and deciding logics as WS1S
[47, 25] and have a strong potential to improve efficiency in regular model checking [7, 2, 53]
or deciding linear arithmetics [6, 52]. These applications indeed generate AFA with complex
transition relations over large alphabets (often in the form of bit-vectors). To keep them
manageable, it is necessary to work with transition relations represented symbolically.

We present a variation on the antichain AFA emptiness test of [22] that targets this
scenario. The original antichain algorithm fights the NFA state-space explosion by pruning
the reached configurations that are smaller than others (we say they are subsumed). This is
guaranteed to preserve the answer to the reachability query. We use the variant with the
backward exploration, found superior in [15, 24]. We assume that complex transition relations
are represented symbolically as boolean formulae over states and symbol bits. In this case,
the main bottlenecks are the computation of predecessors of already reached configurations
and the pruning of predecessors that are subsumed by other already reached configurations.

Our main contribution is a way to address both these bottlenecks simultaneously and
efficiently using a SAT solver. We use the SAT solver as a white box, giving us a direct
access to its internal data structures and routines and to leverage their efficiency optimally.
Specifically, (1) we use SAT solving with preferences [11, 21] and force the SAT solver to give
priority to solutions that correspond to subsumption stronger configurations. We also encode
the subsumption testing against reached configurations into the SAT query, and we boost
its performance by equipping the SAT solver with a specialised data structure, based on a
trie, for storing the antichain of reached configurations. We introduce novel techniques that
optimize the trie. Mainly, we allow elements of every branch of the trie to be sorted in its
unique way that maximizes prefix sharing (the standard trie uses a global fixed order), and
we integrate into it a technique of double clause watches to facilitate fast unit propagation.

We compared an implementation of our AFA emptiness check against the best AFA
emptiness checkers on a comprehensive benchmark from [24] (which compares accessible AFA
checkers). The results confirm a positive impact of our new techniques and show that our
AFA checker outperforms the state of the art on a significant portion of the benchmark, such
as examples coming from boolean combinations of regular properties, and has a strongly
orthogonal performance to the other checkers.

2 Related Work

Existing approaches to AFA emptiness and related problems [15, 34, 51, 28] adapt model-
checking algorithms such as IC3/PDR [8, 33, 9] or Impact [39], or use purely automata
approaches, antichain algorithms [54, 22], on which we build here, possibly enhanced with the
abstraction [29] or the up-to congruence techniques [16]. Available existing implementations
were recently compared in [24], showing complementary results of different tools and al-
gorithms. We note that despite being presented as a modification of the antichain algorithm,
our techniques could be applied to most of the above algorithms, and to any algorithm that
generates subset-maximal predecessors/successors under a transition relation formula and
prunes away those subsumed by existing configurations (also e.g. antichain algorithms for
inclusion checking of NFA, tree automata, context-free grammars).

Many approaches and tools use symbolic representations of transitions, BDDs, logical
formulae, or intervals of numbers [41, 35, 32, 37]. The concept of symbolic automata
encapsulates a class of symbolic representations generically [17, 16]. The works [15, 34, 51]

L. Holík and P. Vargovčík 15:3

end up translating the transition relations to and-inverter graphs [40] and delegating the
decision problem to a model checker. Our representation of AFA, with the transition relation
described by boolean formulae over states and symbol bits, is one of the most permissive
and hence compact and flexible (the other approaches require for instance that the formula
is a conjunction of a part talking only about symbols and a part talking only about states,
which by itself may lead to verbosity).

Among many existing SAT solvers, MiniSAT [23], on which we build, is relatively old,
but still performing well on a number of real-world problems. It is a textbook example of a
modern SAT solver based on the CDCL algorithm (conflict-driven clause learning) which is
simple and well-documented. All modern SAT solvers are based on CDCL (except few based
on deep learning [43, 3]) and share many similarities with MiniSAT, some of them [4, 44] are
even founded on its source code. They differ mostly in heuristics, preprocessing, inprocessing
(i.e. simplification of the problem during solving), and specialized features (like XOR support
in Cryptominisat [44]). The SAT Competition 2023 was dominated by CaDiCaL and Kissat
[5], which are focused on advanced heuristics and inprocessing, fine-tuned for typical SAT
benchmark classes.

SATO solver [55] is the only SAT solver that used a trie-based data structure and
achieved moderate speed-ups in general SAT solving. Unlike us, they did not specialise in
AFA emptiness, trie in SATO were not combined with clauses and CDCL was hence harder
to implement efficiently (SATO has dropped its use of tries before implementing CDCL),
they also did not consider the mixed-order trie. Our implementation of watched literals also
allows more utilization of the prefix sharing in the trie. The trie was also used in the CNF
preprocessor of Alembic [31], to achieve reusing the preprocessor state on shared prefixes of
clauses.

We use the trie primarily for the subset query: testing whether a given set has a superset
among sets stored in a data structure. There are alternative data structures for that. We have
made a preliminary comparison of the applicable data structures: LVBDDs [30], covering
sharing trees [20], set tries [27], and SAT, which has indicated that the trie has the best
performance and is simpler than the covering sharing trees that performed similarly.

3 Preliminaries

Boolean formulas and SAT. A Boolean formula 𝜓 over a set of variables 𝑋 is generated by
the grammar 𝜓 ::= 0 | 1 | 𝑥 | 𝜓 ∧ 𝜓 | 𝜓 ∨ 𝜓 | ¬𝜓 where 𝑥 ∈ 𝑋. We use B(𝑋) to denote the set
of all Boolean formulae over 𝑋. A positive Boolean formula is a Boolean formula without
negation and 0. The set of all positive Boolean formulae over 𝑋 is denoted B+ (𝑋). A literal is
a variable or a negated variable. 𝑚 |= 𝜑 denotes that the (boolean) assignment 𝑚 : 𝑋 → {0, 1}
satisfies 𝜑 (it is a model/solution). We will often abuse the notation and treat a boolean
assignment as the set of variables assigned 1 in it (we write 𝑥 ∈ 𝑚 to denote 𝑚(𝑥) = 1 and
relate assignments using ⊆). 𝜑 is satisfiable iff it has a model. A formula in CNF (conjunctive
normal form) is a conjunction of clauses, each being a disjunction of literals.

An instance of the satisfiability problem (SAT) is a CNF, and its solution is a model or the
answer UNSAT if no model exists. For simplicity, we will present our algorithms in the context
of the well-known Davis–Putnam–Logemann–Loveland (DPLL) method [18], even though
most of the modern solvers (including ours) are based on its successor, conflict-driven clause
learning (CDCL) [38, 42]. Our novel techniques are not affected by the CDCL extension.

SAT 2024

15:4 Antichain with SAT and Tries

Algorithm 1 DPLL augmented for computing preferred models [11].

Input: 𝑚: a partial model, 𝑃: preferred literals, 𝜑: immutable CNF, 𝜑mut: mutable
CNF

Output: a set 𝑀 of preferred models (w.r.t. 𝑃) of 𝜑 ∧ 𝜑mut
1 Function SAT-PREF-REC(𝑚, 𝑃, 𝜑, var 𝜑mut):

// 𝑚′ is an updated (partial) model or CONFLICT, resp. UNSAT
2 𝑚′ ← unit-propagate(𝑚, 𝜑 ∧ 𝜑mut);
3 if 𝑚′ ≠ CONFLICT then
4 if 𝑚′ has an unassigned preferred literal 𝑝 ∈ 𝑃 then
5 return SAT-PREF-REC(𝑚′ ∪ {𝑝}, 𝑃, 𝜑, var 𝜑mut) ∪
6 SAT-PREF-REC(𝑚′ ∪ {¬𝑝}, 𝑃, 𝜑, var 𝜑mut);
7 else
8 𝑚′ ← SAT(𝑚′, 𝜑 ∧ 𝜑mut);
9 if 𝑚′ ≠ UNSAT then

10 𝜑mut ← 𝜑mut ∧
∨

𝜆∈𝑃 ∧ 𝑚′ |=¬𝜆 𝜆;
11 return {𝑚′};
12 return ∅;

SAT with preferences. We consider an extension of DPLL introduced in [11] that adds a
set of preferred literals 𝑃 as an additional input to the problem. SAT with preferences is a
procedure SAT-PREF(P,𝜑, 𝜑mut) that, given a set of preferred literals 𝑃, the immutable part 𝜑

of the input formula, and the mutable part 𝜑mut, returns the set of preferred models 𝑀 of the
conjunction 𝜑 ∧ 𝜑mut. The set of the preferred models consists of exactly one representative
per every class of models of 𝜑 ∧ 𝜑mut satisfying some maximal subset of 𝑃 (maximal wrt. ⊆).
The input formula is split into two parts because they are internally processed differently.
The mutable part is iteratively updated and a specialised data structure for it is a major
part of our contribution. Since it is relevant to the technicalities of our work, we recall in
more detail its implementation through a recursive procedure SAT-PREF-REC in Algorithm 1
(it is initially called with the empty partial model 𝑚). It is a basic DPLL scheme with two
differences:
1. On lines 4-6, the splitting heuristic chooses from the unassigned preferred literals first or

continues with the normal SAT procedure if all preferred literals are assigned.
2. If a model is found (at line 8), it is not returned immediately. Instead, the model is added

to the set of results and a clause is added (line 10) that prunes models with a subset of
positive preferred literals from the further search.

Alternating automata. Let 𝑉 = {𝑣1, 𝑣2, . . .} be a set of symbol-variables. An assignment
𝑎 : 𝑉 → {0, 1} is a symbol and Σ is an alphabet, the set of all symbols. A word is a sequence
of symbols and Σ∗ is the set of all (finite) words.

We consider alternating automata in a form used in [49]. Symbols are encoded as bit-
vectors and the transition relation for each state is given as a Boolean formula over states and
symbol-bits. The solutions of the transition formula encode both the symbol as well as the
set of states into which the state can transition. The formula allows to mix symbol-variables
and states almost arbitrarily, the only restriction is that states do not appear under negation.
This is more permissive and succinct than in other works, which typically require a separation
of a formula talking about symbols from the one talking about states, and sometimes even
the state formula in DNF.

L. Holík and P. Vargovčík 15:5

𝑄 = {𝑞1 · · · 𝑞5}, 𝑉 = {𝑣1, 𝑣2}, 𝜄 = 𝑞1, 𝐹 = ∅
𝛿(𝑞1) = ¬(𝑣1 ∨ 𝑣2) ∨ (𝑞1 ∧ ((𝑣1 ∧ 𝑞2) ∨ (𝑣2 ∧ 𝑞5)))
𝛿(𝑞2) = 𝑞3

𝛿(𝑞3) = 𝑞4

𝛿(𝑞4) = 𝑣1

𝛿(𝑞5) = 𝑣2 ∨ 𝑣1

Figure 1 AFA generated from an LTL formula ((𝑣1𝑋𝑋𝑋𝑣1) ∨ (𝑣2𝑋 (𝑣2 ∨ 𝑣1)))𝑈¬(𝑣1 ∨ 𝑣2). Even
though its set of final states F is empty, its language is not empty. A short accepting run exists, namely
{𝑞1}[𝑣1=0, 𝑣2=0]∅, as the transition to the empty configuration is enabled, as the model 𝑎∪𝑐2 = ∅∪∅ =
[𝑣1=0, 𝑣2=0, 𝑞1=0, · · · , 𝑞5=0] satisfies the first operand of the top-level disjunction in 𝛿(𝑞1). An example
of a longer accepting run would be {𝑞1}[𝑣1= 𝑣2= 1]{𝑞1, 𝑞2}[𝑣1= 𝑣2= 0]{𝑞3}[𝑣1= 𝑣2= 0]{𝑞4}[𝑣1= 𝑣2= 1]∅.

Formally, an alternating finite automaton (AFA) is a quintuple M = (𝑄,𝑉, 𝛿, 𝜄, 𝐹) where
1) 𝑄 is a finite set of states; 2) 𝑉 is a finite set of symbol-variables; 3) 𝛿 : 𝑄 → B+ (𝑄 ∪ B(𝑉))
is a transition function; 4) 𝜄 ∈ 𝑄 is the initial state; and 5) 𝐹 ⊆ 𝑄 is the set of final states.
A configuration of M is a boolean assignment to states 𝑐 : 𝑄 → {0, 1}. The automaton
has the single initial configuration {𝜄} and the subsets of 𝐹 are final configurations. A
configuration 𝑘 transitions into a configuration ℓ via a symbol 𝑎, denoted as 𝑘

𝑎−−→ ℓ,
whenever 𝑎 ∪ ℓ |= ∧

𝑞∈𝑘 𝛿(𝑞). We write 𝑘 −→ ℓ if there exists a symbol 𝑎 such that 𝑘
𝑎−−→ ℓ

and say that ℓ is a successor of 𝑘 and that 𝑘 is a predecessor of ℓ. We will usually use 𝑐, 𝑑 for
configurations in a general context and 𝑘, ℓ when speaking about a pair of a predecessor and
a successor. We write Pre(𝑎, ℓ) and Pre(ℓ) to denote the sets {𝑘 | 𝑘 𝑎−−→ ℓ} and {𝑘 | 𝑘 −→ ℓ}
of predecessors of ℓ via the symbol 𝑎 or via any symbol, respectively. A run of M over a
word 𝑎1 · · · 𝑎𝑛 ∈ Σ∗ is a sequence 𝑐0, 𝑎1, 𝑐1, 𝑎2, . . . , 𝑎𝑛, 𝑐𝑛 of configurations interleaved with
symbols such that for all 𝑖 : 0 ≤ 𝑖 < 𝑛, 𝑐𝑖 𝑎𝑖+1−−−−−→ 𝑐𝑖+1. The run is accepting if 𝑐0 = {𝜄} and
𝑐𝑛 ⊆ 𝐹. The language of M is the set L(M) of all words with an accepting run. The AFA
emptiness problem, that we are concerned with in this paper, is to decide whether L(𝑀) = ∅.
Figure 1 has an example of an automaton with a non-empty language and its accepting run.
In the rest of the paper, we will consider a fixed AFA M = (𝑄,𝑉, 𝛿, 𝜄, 𝐹).

Antichain algorithm for AFA emptiness. In this paragraph, we will recall the backward
antichain algorithm for AFA emptiness which we optimize in this paper. AFA emptiness
is well known to be a PSPACE-complete problem. It requires deciding the reachability of
a final configuration from the initial one in the graph of the relation −→. A naive forward
algorithm explores the graph from the initial configuration in a search for a final one, the
naive backward algorithm starts from the final configurations and searches for the initial
configuration following −→ backwards. An obvious problem is the possible exponential
explosion of the search space of configurations. The antichain algorithms, first proposed
in [22], introduce a search space pruning strategy based on subsumption of configurations.
Antichain algorithms exist in several variants, from which we use the backward antichain.
It is based on the backward naive algorithm and was found empirically superior over the
forward variant in [15, 24].

Let us first outline the essence of the backward antichain informally. The subsumption
relation used to prune the space of configuration is, in its basic variant which we use here,
simply the set containement: a configuration 𝑐′ subsumes a configuration 𝑐 iff 𝑐 ⊆ 𝑐′. The

SAT 2024

15:6 Antichain with SAT and Tries

Algorithm 2 Basic antichain algorithm.

Input: AFA M = (𝑄,𝑉, 𝛿, 𝜄, 𝐹)
Output: Is the language of M empty?

1 if 𝜄 ∈ 𝐹 then return NOT EMPTY ;
2 Visited ← {𝐹};
3 𝑊 ← {𝐹};
4 while 𝑊 ≠ ∅ do
5 ℓ ← pop(𝑊);
6 for 𝑎 ∈ Σ do
7 for 𝑘 ∈ Pre(𝑎, ℓ) do
8 if not 𝑘 ⊆∈ Visited then
9 if 𝜄 ∈ 𝑘 then return NOT EMPTY ;

10 Visited ← ⌈Visited ∪ {𝑘}⌉;
11 push(𝑊, 𝑘);
12 return EMPTY

key property that allows to discard the configurations subsumed by other already reached
configurations in antichain algorithms is that the subsumption is a simulation relation on
the (reversed) relation −→. The property that holds with our definition of AFA is actually
even stronger: If 𝑘 −→ ℓ, 𝑘 ′ ⊆ 𝑘, and ℓ ⊆ ℓ′, then 𝑘 ′ −→ ℓ′. This can be shown to justify the
correctness of an optimized AFA emptiness test that: (1) starts the backward exploration
of configuration space from only the maximal accepting configuration 𝐹, (2) keeps only
the antichain (a set of incomparable elements) of the subsumption-maximal configurations
through the search, and (3) concludes reaching the target on finding any configuration that
includes 𝜄.

Let us now recall the backward antichain algorithm for testing AFA emptiness more
formally. For a set/configuration 𝑐 and a set of configurations/sets 𝐴, the subset query of
𝑐 towards 𝐴, denoted 𝑐 ⊆∈ 𝐴, stands for ∃𝑑 ∈ 𝐴.𝑐 ⊆ 𝑑. An antichain is a set of elements
incomparable wrt some preorder, here a set of configurations ordered by ⊆. For any set of
configurations 𝐴, ⌈𝐴⌉ = {𝑐 ∈ 𝐴 | ¬∃𝑑 ∈ 𝐴. 𝑐 ⊂ 𝑑} is the set of its inclusion-maximal elements.

The pseudocode of the backward antichain algorithm is in Algorithm 2. In addition to
the antichain of the inclusion-maximal set of visited configurations Visited, it maintains a
worklist 𝑊 of configurations to be explored, where exploring a configuration means finding
all its predecessors on lines 6-7, filtering out the subsumed ones on line 8, checking for the
initialness on line 9, and updating the antichain and worklist on lines 10-11. In the paper, we
focus on scenarios where the transition relation is large as a consequence of a large alphabet
Σ. In such cases, Algorithm 2 has two bottlenecks.

First, the algorithm spends most of its time on line 8 with the subset query, where, for
every predecessor of a visited configuration ℓ, it checks that it is not subsumed by other
visited configurations stored in the antichain Visited. The efficiency of this subset query is
obviously the primary concern since the antichain may grow exponentially large. A similar
and also expensive operation is line 10, pruning the antichain from configurations subsumed
by 𝑘. Line 10 is however called only a fraction of times line 8 is called (only when the test
on line 8 passes), so it is much cheaper overall.

The second bottleneck is the iteration through all predecessors, Pre(ℓ), on lines 6 and 7.
We call it predecessor iteration. When the alphabet is large, it is often the case that Pre(𝑎, ℓ)
and Pre(𝑏, ℓ) have a non-empty intersection, and the inner for-loop body is thus called many
times to generate the same predecessor 𝑘.

L. Holík and P. Vargovčík 15:7

(a)
𝛿(𝑞1) = 𝑞1 ∨ (𝑣1 ∧ 𝑞2)
𝛿(𝑞2) = (𝑞2 ∧ 𝑣1) ∨ ¬𝑣1

(d)

(b)

(c)

Figure 2 Representation of 𝛿 and its transformation to CNF. The transition formulae in (a)
correspond to the trees in (b) where isomorphic sub-trees can be shared as in (c) and the CNF
obtained by Tseyitin transformation is in (d). The links connecting states to their transition formula
in (b) and (c) are shown in blue. In (d), the green literals are the names assigned by the Tseyitin
transformation to the original sub-formulae (shown in grey), Δ is shown in blue, and original
sub-formulae are also annotated with their equivalents produced by Tseyitin transformation. The
Tseytin variables are indexed by the top-most operator of the sub-formulae they represent plus a
number to distinguish between sub-formulae with the same top-most operator. Δ is depicted in blue.

This paper addresses the two bottlenecks, the subset query and the predecessor iteration,
via the use of a succinct symbolic representation of the transition function and SAT solvers.

4 Symbolic Transition Function as Formula DAG

Various tools use a symbolic representation of large transition relations with large alphabets,
using BDDs, intervals, formulae, effective boolean algebras, and implement the predecessor
iteration efficiently in a manner that does not unfold the succinct representation. We use an
alternative that is general and often very succinct. The transitions from a state are represented
as a state-positive boolean formula in a compact DAG form (each single sub-formula is
represented only once). The transition function 𝛿 particularly maps states to boolean formulae.
The forest of abstract syntax trees of all formulae in the image of 𝛿 is a directed acyclic graph
(DAG). Nodes are labelled by the function symbols 0, 1, 𝑞 ∈ 𝑄, 𝑣 ∈ 𝑉,∧,∨,¬ and represent
subformulae, and each state 𝑞 in the domain of 𝛿 is linked to the node representing 𝛿(𝑞). See
Figure 2b, where links from the domain are blue. Structurally equivalent nodes are merged,
see Figure 2c.

Since we are going to process the formulae in a SAT solver, we transform the forest of
transition formulae into CNF using the Tseytin transformation. It is almost the standard
Tseytin transformation, up to that it does not generate a Tseytin variable for the entire
formula. We briefly detail it below. It generates the CNF formula CNF(𝛿). First, the name
of a formula 𝜑, 𝑛(𝜑), is defined as 𝜑 itself if 𝜑 is a variable, as ¬(𝑛(𝜓)) if 𝜑 is ¬𝜓, and as
the Tseytin variable 𝑣𝜑 if 𝜑 = 𝜓 ⊕ 𝜓′, ⊕ ∈ {∧,∨}. In the last case, we also define a naming
formula of 𝜑 as the CNF version of the equivalence 𝑣𝜑 ↔ 𝑛(𝜓) ⊕ 𝑛(𝜓′). Finally, CNF(𝛿) is
the conjunction of all naming formulae of (con/dis)junctions that are sub-formulae in the
image of 𝛿.

The representation of 𝛿 that we will use then consists of 1) the formula CNF(𝛿), 2) the
mapping Δ : 𝑄 → 𝑉𝑇 ∪𝑉 ∪𝑄 ∪ {¬𝑣 | 𝑣 ∈ 𝑉𝑇 ∪𝑉} that maps each 𝑞 ∈ 𝑄 to the name of 𝛿(𝑞),
the literal 𝑛(𝛿(𝑞)). An example is in Figure 2d.

SAT 2024

15:8 Antichain with SAT and Tries

5 Predecessor-subset Query with SAT Solvers

We will now show how SAT solving with preferences can be used in AFA emptiness check
in a way that makes good use of the fast internal data structures of the solver, and how to
further improve this by specialised data structures.

We combine the subset query and the predecessor iteration into a predecessor-subset
query. Given a successor ℓ and an antichain of configurations Visited, the predecessor-subset
query returns the antichain of maximal predecessors of ℓ that are not subsumed by Visited,
that is, the set

newpre(ℓ,Visited) = ⌈Pre(ℓ) ∪Visited⌉ \Visited

This is done by calling the procedure SAT-PREF(𝑃 := Δ(𝑄), 𝜑, 𝜑Visited) from Algorithm 1
on the formula that consists of the immutable part 𝜑 that represents the AFA transition
relation and ℓ, and the mutable part 𝜑Visited that represents the antichain Visited. The set
of preferred literals is specified as 𝑃 := Δ(𝑄), the variables that correspond to the predecessor
states in the CNF formula CNF(𝛿) from Section 4 representing the transition relation.

The immutable part 𝜑 is

𝜑 := CNF(𝛿) ∧ 𝜑ℓ where 𝜑ℓ =
∧

𝑞∈𝑄\ℓ
¬𝑞

After the transition relation in the first conjunct, the second conjunct 𝜑ℓ expresses that we
want a predecessor of particularly ℓ. It asserts that after taking the transition from the
predecessor, no state outside ℓ should be touched.

The mutable formula 𝜑Visited , used to prune the solutions subsumed by the antichain
Visited, is

𝜑Visited :=
∧

𝑐∈Visited

∨
𝑞∈𝑄\𝑐

Δ(𝑞)

Here, a clause for 𝑐 ∈ Visited says that some state not in 𝑐 must appear in a new predecessor
clause, a solution to the SAT problem. The new predecessor cannot be a subset of 𝑐. The
antichain Visited is initialised with Visited := {𝐹}.

The predecessor will be read from each model m𝑘 from the returned set of preferred
models as

𝑘 (m𝑘) := {𝑞 ∈ 𝑄 | m𝑘 |= Δ(𝑞)}

Note that, by the construction of the input formulae, m𝑘 encodes precisely one transition
𝑘

𝑎−−→ ℓ. We extract the states of 𝑘 by taking the Δ-variables, representing the pre-image,
that are set to 1. The procedure SAT-PREF guarantees that it will be a maximal predecessor
of ℓ not subsumed by Visited.

The emptiness test needs to add the newly generated predecessor to the antichain. In
SAT-PREF, this is done automatically because of the choice of 𝜑Visited as the mutable part
and of Δ(𝑄) as the preferred literals. Indeed, adding a configuration 𝑐 to the antichain
Visited represented by 𝜑Visited means adding a clause with the literal Δ(𝑞) for every 𝑞 not
contained in 𝑐. Let 𝑐 = 𝑘 (m𝑘). Since the states 𝑞 that are not contained in 𝑐 are just the
ones for which Δ(𝑞) is not satisfied by m𝑘 , adding the predecessor 𝑘 (m𝑘) to the antichain
can be described by the following assignment:

𝜑Visited ← 𝜑Visited ∧
∨

𝑞∈𝑄 ∧m𝑘 |=¬Δ(𝑞)
Δ(𝑞)

L. Holík and P. Vargovčík 15:9

Algorithm 3 Clausal antichain, antichain algorithm with combined subset-predecessor
query.

Input: AFA M = (𝑄,𝑉, 𝛿, 𝜄, 𝐹)
Output: Is the language of M empty?

1 if 𝜄 ∈ 𝐹 then return NOT EMPTY ;
2 𝜑Visited ←

∨
𝑞∈𝑄\𝐹 Δ(𝑞);

3 𝑊 ← {𝐹};
4 while 𝑊 ≠ ∅ do
5 ℓ ← popMaxSize1 (𝑊) ;
6 for m𝑘 ∈ SAT-PREF(Δ(𝑄), CNF(𝛿) ∧ 𝜑ℓ , var 𝜑Visited) do
7 if 𝜄 ∈ 𝑘 (m𝑘) then return NOT EMPTY ;
8 push(𝑊, 𝑘 (m𝑘));
9 return EMPTY

Since we call SAT-PREF with 𝜑mut := 𝜑Visited and 𝑃 := Δ(𝑄), this assignment corresponds to
the update of 𝜑mut at line 10 of Algorithm 1, namely 𝜑mut ← 𝜑mut ∧

∨
𝜆∈𝑃 ∧m𝑘 |=¬𝜆 𝜆.

The full SAT-enhanced antichain algorithm is summarized in Algorithm 3, where the
predecessor-subset query covers the entire loop on line 6 of Algorithm 2, except worklist
update and the initialness check. Note that SAT-PREF here indeed simultaneously finds
newpre(ℓ,Visited), i.e., solves the subset query and the maximal predecessor iteration, and
updates the antichain represented by 𝜑Visited .

We call Algorithm 3 the clausal antichain. A brief experiment has shown that its
maximisation of predecessors via preferences is fundamental for the performance of the
antichain algorithm, hence we use the feature by default in all our experiments. The lack of
support for preferences in incremental SAT solvers is a major reason why one cannot just
seamlessly exchange out-of-the-shelf solvers in the clausal antichain algorithm. The ease of
implementing modifications such as this is one of the reasons why we are using MiniSAT.

6 Trie for Storing the Antichain

The antichain is the largest data structure that can grow exponentially in |𝑄 | and the
subsumption queries over it are the most costly operations of the emptiness check. We
have therefore introduced a specialised data structure based on trie for it. It replaces the
internal SAT solver structures for the mutable formula, that represents the antichain. The
clausal antichain equipped with a trie will be called trie antichain. Our trie data structure is
designed to fit the following requirements:
1. a compact representation of the antichain Visited,
2. a fast insertion of the newly found predecessors into Visited, and
3. a fast subset query that integrates well with the routines and data structures of the SAT

solver.

Our choice to use the trie was based on a small experiment that we did with known data
structures for storing sets of sets, specialized for fast subset queries. The experiment was
running unoptimized implementations of lattice-valued BDD (LVBDD) [30], set tries [27],

1 popMaxSize is a simple heuristic, implemented previously e.g. in VATA [37], that takes a configuration
with the greatest cardinality first, in a belief that its predecessors could prune a large part of the search
space (our short experiment has indeed shown a performance improvement over FIFO/LIFO).

SAT 2024

15:10 Antichain with SAT and Tries

(a)
(𝑣1 ∨ 𝑣4)∧
(𝑣2 ∨ 𝑣4)∧

(𝑣3 ∨ ¬𝑣5 ∨ 𝑣6)∧
(𝑣3 ∨ ¬𝑣5 ∨ 𝑣7)

(b)

Figure 3 Clauses (a) and the corresponding trie (b) with the fixed ordering 𝑣1 < · · · < 𝑣7.

Figure 4 Trie that is smaller with a nonfixed ordering than with any fixed one.

covering sharing trees [20], and SAT unit propagation for positive boolean formulae (AND-
OR graphs) with various approaches to formula simplification and sharing detection. The
algorithms were solving a number of subset queries 𝑥 ⊆∈ 𝑌 with random sets. We were
counting the numbers of reads and writes to the internal data structures, to get a picture
of how could the optimized counterparts perform. LVBDDs solved the subset query very
efficiently but their construction was unbearably prone to explosion. Set tries performed the
best, closely followed by covering sharing trees (which are harder to implement). AND-OR
graphs performed much worse than set tries and covering-sharing trees.

Standard trie. Trie is a data structure that was originally introduced in [27] for a compact
representation of sets of strings. It is an ordered tree with a single root on top, denoted
𝜀, and edges pointing downwards. The other nodes are labelled with alphabet symbols.
Immediate successors of a parent node are its children and nodes without children are leaves.
A branch of a trie node 𝑛 is a path from 𝑛 to a leaf, excluding 𝑛. A trie represents a set
of strings, which are obtained by concatenating node labels of branches of 𝜀, denoted root
branches. Trie has been used to represent sets of sets of totally ordered elements, where a
single set corresponds to a sorted string of its elements. It can thus be used to represent
a CNF, viewed as a set of sets of literals. We use it to represent the antichain clauses of
𝜑Visited . An example of a trie representing the clauses from Figure 3a is shown in Figure 3b.

Mixed order trie. Sorting each branch using the same (fixed) order does not give optimal
sharing of subsets as prefixes, as illustrated in Figure 4, where no fixed order would create
as small trie as the one shown in the figure. Even if a good fixed order existed, it would
be hard to guess it in advance. We therefore introduce a mixed-order trie where we do not
fix the ordering. Allowing every branch to be sorted differently does indeed make our trie
more compact. A new set 𝑥 is added to the trie by finding a root branch 𝑦 with a longest
prefix that is a subset of 𝑥, and appending a new branch with the elements 𝑥 \ 𝑦 after its
prefix with the elements 𝑥 ∩ 𝑦 (with elements sorted arbitrarily). This would normally make
the addition more expensive, as it would involve a search for a root branch with the largest
prefix included in 𝑥. However, as we will explain in Section 6.2.2, in the context of AFA
emptiness and generation of newpre(ℓ,Visited), the search can be completely avoided.

L. Holík and P. Vargovčík 15:11

6.1 Clausal Watches

We adapt the well known double-watch literals scheme to our trie data structure. The
scheme has been introduced in [55] and is consistently used in modern SAT solvers where it is
essential for the efficiency of unit propagation and detection of conflicts. Let us recapitulate
it briefly. The solver constantly watches two unassigned literals at each clause that is not
yet known to be satisfied.2 When one of the watched literals is assigned 0 and all the other
unwatched literals are 0 as well, then unit propagation is triggered and assigns 1 to the other
watched literal because it is the only way to satisfy the clause. When 0 gets assigned to both
watched literals and all other literals in the clause are assigned 0, then a conflict is detected.
Otherwise, if other literals are unassigned or 1 on assigning 0 to a watched literal, the watch
is simply moved to one of them. No action is required during backtracking where some of
the watched variables may change values from 1 to X, keeping the only invariant that two
distinct non-0 literals are watched.

6.1.1 Double-Watch Scheme in Trie

We will detail our adaptation of the double-watch literals scheme to the clauses stored in the
trie. It concerns clause prefix sharing, avoidance of repeated scanning of clauses on triggering
a watch, and handling of backtracking. We will also show in Section 6.2 how our technique
can work in synergy with the SAT search for preferred models, especially when it is used to
generate newpre(𝑐,Visited).

The double-watch technique is implemented on tries using two sets of guards, the Front
and the Rear guards, that are essentially watches that can be assigned to nodes (and store
some additional data, e.g., a pointer from Front to Rear). The SAT solver will start with
one Front and one Rear at the root of the tree, and they will descend down the tree, Rear
following Front. The following invariant will hold after the initialisation (described below)
and after every unit propagation phase. For every root branch of the trie (clause):
1. If the root branch is not yet satisfied (does not have a 1 valued node), then it contains a

single Front and a single Rear . In satisfied root branches, Front may be missing.
2. The Rear is never below the Front.
3. The Rear is at the first node valued X or 1 (X means no value assigned yet).
4. If the Rear is valued X, then the Front is on the second highest node that is X or 1.

Initially, we have a single Front and a single Rear at the root of the trie. Note that
the root is a special node without a literal. We work with it as it had the constant value
0. The invariant (points 1-4 above) is established by initialisation, by calling functions
move-front-down and then move-rear-down on the root. The functions implement a
recursive descent of the guard watches through the tree and spreading of the guard watches
to the branches, and are used to reestablish the invariant after a decision or unit propagation.
The descend functions and the handlers of assigning 0 to literals are given in pseudocode in
Algorithm 4.

The move-front-down procedure searches for a new place for Front in the branches of
the node on which it was called. In every branch, it either

2 The MiniSAT solver provides a watch interface where handlers can be registered to a literal. When the
SAT solver valuates the watched literal with 0, its registered handlers get triggered.

SAT 2024

15:12 Antichain with SAT and Tries

Figure 5 Initial movement of front (blue) and rear (tan) guards; unit propagation is violet.

1. places a watched copy of the Front at the highest node valued X (unassigned value) (lines
7-9), or,

2. on arrival at the leaf without seeing X on the way, it calls unit propagation (line 12) that
assigns 1 to the literal guarded by the Rear above or triggers a conflict if the Rear ’s
literal is already 0.

The move-rear-down procedure called on a node with a Rear guard works analogously, but
1. The Front is also sent downwards, in order to stay below the Rear (lines 19-22).
2. Rear never triggers unit propagation at leaves, as that is done when handling Front.

It is important to note that both move-front-down and move-rear-down are always
called from a node where the respective guard is no longer present/watched. Either they are
called from the watch handler, that calls line 1 or 13 and removes the watch automatically,
or from line 22, which is preceded by the removal of the watch on line 21.

There are also two interesting implementation details important for efficiency. First,
nodes keep a flag allowing to detect that the guard Front is watched on the node (on line
19), and the flag is kept up to date on lines 8 and 4. Second, a fast unit propagation on line
12 uses instant access from the Front to its Rear . The instant access is used also at line 2,
to check if the root branch is not already satisfied, in which case move-front-down would
be useless. This is facilitated by the pointer front .rear , which is up-to-date initially and is
updated on line 20, where the Rear catches up with the front. Updating only at this point is
indeed enough. Notice that when Rear moves, the connection from the Front guards to its
copies created on line 8 will not be correctly established. It will however be reestablished
in time on line 20. Indeed, the Front must be below the new Rear , hence all the literals
on the way to it are valued 0, since Front moves down only via 0 valued nodes. Therefore,
the descend of Rear , which also continues uninterrupted on 0 valued nodes, will reach the
Front, where the connection is reestablished by line 20. When Front is moving down, it and
its copies are keeping the connection to the right Rear (the function new-front copies the
pointer).

We note that in our implementation of Algorithm 4, every active Rear guard has a list of
locations of the Front guards below and every Front guard has a pointer to its Rear above.
This is used when Rear is assigned 0, to immediately “jump” to the Front guards.

▶ Example 1. Guard movement from their initial position at 𝜀, is shown in Figure 5. At
first, Front guards perform a series of move-front-down from all nodes that have value 0
(including 𝜀). Then, Rear guards are similarly transported from the root node to the nodes
guarded by Front guards, triggering their move-front-down again. The node 𝑣7, on which a
front guard lands, is valuated to zero but as it is a leaf node, instead of a downward move, a
unit propagation of the literal under its rear guard (¬𝑣5) is triggered.

L. Holík and P. Vargovčík 15:13

Algorithm 4 Implementation of Assignment Watches in a Trie.

1 Function front-watch-handler(front):
2 if value (front.rear.literal) ≠ 1 then move-front-down(front) ;
3 Function move-front-down(front):
4 front.node.front ← NULL;
5 if front.node is not a leaf then
6 foreach child of front.node do
7 if value (child.literal) = X then
8 child.front ← new-front(front, child);
9 watch(¬child.literal, front-watch-handler, child.front);

10 else if value (child.literal) = 0 then
11 move-front-down(new-front(front, child));
12 else unit-propagate(front.rear.literal, front.node); // front may cause

conflict
13 Function rear-watch-handler(rear):
14 move-rear-down(rear);
15 Function move-rear-down(rear):
16 foreach child of rear.node do
17 childRear ← new-rear(rear, child);
18 if value (child.literal) ≠ 1 then
19 if child.front then
20 child.front.rear ← childRear;
21 unwatch(child.front);
22 move-front-down(child.front);
23 if value (child.literal) = X then
24 watch(¬child.literal, rear-watch-handler, childRear);
25 else move-rear-down(childRear) ;

6.1.2 Backtracking in Trie with Double Watches

In the case without the trie, there is no need for backtracking a clause state because clauses
have no state. A clause is just scanned from left to right whenever its watched literal is
valuated. The case with the trie is different: the watched guards must satisfy their invariant,
mainly, that on root branches that are not satisfied, Rear and Front watch the highest and the
second highest unassigned node and every other node above them is valued 0. Backtracking
must thus return the positions of the guards to the previous state.

This is achieved by using guard snapshots that are created when decisions happen. A
snapshot at the decision level 𝐿 consists of two vectors: 1) one capturing the state of new
guards, those that exist after the unit propagation triggered by the decision terminates but
did not exist before the decision, 2) and one capturing the state of old guards, those that
existed before but not after 𝐿. When the decision 𝐿 is undone by backtracking, the new
guards get removed and the old guards get reestablished.

As depicted in Figure 6, both lists of guards are empty when a new decision level is
enetered and get updated when guards move downwards within the decision level. Namely,
the functions move-front-down and move-rear-down would additionally call a procedure
that updates the snapshot. The first move of a guard within the decision level adds its
position to the list of old guards, and every further move replaces the guard in the list of
new guards by its descendants received by the children of the current node.

SAT 2024

15:14 Antichain with SAT and Tries

Figure 6 Backtracking. On the left, the position of Rear 𝑅0 and Front 𝐹0 at the end of level
0 (L0) is shown. Then, at the start of L1, the assignment 𝑣6 := 1 is decided, from which an
external clause unit propagates 𝑣1 := 0. This triggers the movement of 𝑅0, which further triggers the
movement of 𝐹0. As 𝑅0 and 𝐹0 were not created in the current level L1, they are added to the list of
old guards. The list of new guards is updated with 𝑅1, 𝐹1, 𝐹2. The unit propagation continues and
another external clause unit propagates 𝑣2 := 0, which triggers further guard movement. The moved
guards have been created in L1, therefore, old𝐿1 is untouched. The moved guards are replaced
in new𝐿1 with their descendants. As 𝐹1 was moved down from the leaf node, it caused a unit
propagation 𝑣3 := 1 at its rear 𝑅2. The consequent unit propagation raises a conflict. If we were in
the context of CDCL, a conflict analysis follows, during which the node of the former 𝐹1 is queried
for the reason of the propagation. The reason contains negations of 0-valued literals of the root
branch that ends in the queried leaf node, namely ¬𝑣1 ∧ ¬𝑣2. Backtracking from L1 recreates the
guards from old𝐿1 and deletes the guards listed in new𝐿1, which reverts the trie to the state at the
end of L0.

This mechanism can be implemented fairly efficiently by equipping every guard with a
pointer to its place in the snapshot. The pointer allows a constant-time quick removal/re-
placement of the guard from the snapshot and an addition of a guard to the snapshot is
constant time.

6.2 Constructing a Trie
A SAT solver can use the trie in two ways. A generic mode that can be used in general SAT
solving can be optimized and fine-tuned to fit the generation of newpre(𝑐,Visited) in the
AFA emptiness check. We will first comment on the generic mode and then contrast the
AFA specialised mode against it.

6.2.1 Constructing a Trie For General SAT Solving
The set of clauses in the input of a SAT solver is added to the trie in a standard way. For
the input clauses to be added to the trie, we first need to pick an ordering of literals and sort
the clauses (a good option is for instance ordering by the frequency of literals in the input
clauses).

A clause is then added by traversing the trie from the root (𝜀) down, simultaneously with
the added clause. The child into which the traversal descends is chosen as the one with the
𝑖th literal of the clause. If the child with the 𝑖th literal is not present, the descend ends and
the remaining literals of the clause are added as a new branch of the current node.

L. Holík and P. Vargovčík 15:15

▶ Example 2. Let us add the clause 𝑣1 ∨ 𝑣3 ∨ ¬𝑣5 into the trie from Figure 3 b). The first
literal 𝑣1 of the clause is found among the children of the root. The second one is not found
among the children of the node 𝑣1, so the new branch 𝑣3,¬𝑣5 is added under the node 𝑣1.

In case that all literals of the added clause are exhausted (𝑖 is larger than the length of
the clause), the descend also ends and the entire subtree beyond the (𝑖 − 1)th visited node is
removed (rather all the sub-trees rooted by the children of the (𝑖 − 1)th node). Indeed, the
removed root branches represented clauses strictly larger than the added clause, hence they
were redundant (by boolean absorption).

▶ Example 3. Adding the clause 𝑣3 into the trie from Figure 3b would remove the nodes
¬𝑣5, 𝑣6, 𝑣7. Note that not all boolean absorption is detected this way – it is highly dependent
on the order of clauses. E.g., the clause 𝑣4 would be created as a new branch of 𝜀 and the
absorbed branches 𝑣1, 𝑣4 and 𝑣2, 𝑣4 would remain in the trie.

6.2.2 Constructing a Trie for AFA
In the AFA emptiness check, we optimize handling of the trie for the particular case of
generating newpre(𝑐,Visited). We use the mixed-order trie, with root branches representing
clauses ordered arbitrarily. The flexible ordering of root branches allows to maximize sharing
of prefixes and hence to reduce the size of the trie. Normally, the cost of allowing the mixed
order would be heavy. Whenever adding a clause, we would have to perform an expensive
depth-first search for a branch with a longest prefix included in the clause. However, as we will
explain below, due to the particular way we are using the trie in generating newpre(𝑐,Visited)
and the particular way of how guards are implemented (Section 6.1.1), an addition of a
clause is cheap and requires no search at all.

Let us now describe the mechanism in detail. Recall that root branches are clauses of the
formula 𝜑Visited . The search for a new predecessor starts in a state in which the previous
SAT call finished with a model m𝑘 that encodes the newly found predecessor 𝑘 such that for
each 𝑞 ∈ 𝑄, (m𝑘 |= Δ(𝑞)) ↔ 𝑞 ∈ 𝑘.

Adding a predecessor to the antichain. To find the next predecessor, we need to add 𝑘 to
Visited and restart the SAT solver, preferably in a way that reuses as much of the previous
computation as possible. Recall that adding 𝑘 to Visited means adding to the trie the clause

𝜓𝑘 =
∨

𝑞∈𝑄\𝑘
Δ(𝑞) =

∨
𝑞∈𝑄 ∧m𝑘 |=¬Δ(𝑞)

Δ(𝑞)

As discussed in Section 6.1.1, the SAT solver finished in a state where on every branch 𝜋,
the Rear guard is on the first non-0-valued literal, and everything in the prefix 𝜋 above it is
valued 0.

▶ Lemma 4. On every branch 𝜋, the prefix 𝜋 ending at the parent of the rear guard is the
largest prefix valued only by zeroes.

Hence, on every branch 𝜋, the path 𝜋 from the root (excluded) to the parent of the rear
guard is the longest prefix included in 𝜓𝑘 We can therefore add 𝜓𝑘 efficiently to the trie as
follows. We chose a root branch 𝜋 with a deepest rear guard. Thus, 𝜋 is a root branch with
a largest prefix, 𝜋, included in 𝜓𝑘 . We append elements of 𝜓𝑘 \ 𝜋 as a new branch after 𝜋.
We call it newly added branch.
(We abuse the notation and implicitly convert between sequences of nodes and sets of literals.
For example, 𝜓𝑘 \ 𝜋 above stands for the branch that arises from the branch 𝜓𝑘 by removing
the nodes with literals of the path 𝜋.)

SAT 2024

15:16 Antichain with SAT and Tries

Figure 7 Adding a new clause 𝜓𝑘 = 𝑣1 ∨ 𝑣3 ∨ ¬𝑣5 to a trie. Rear/Front guards are tan/blue, the
largest prefix included in 𝜓𝑘 is yellow, the added branch is green.

▶ Example 5. In Figure 7, we are adding a clause 𝜓𝑘 = 𝑣1 ∨ 𝑣3 ∨ ¬𝑣5 to the trie. The
deepest rear guards are 𝑣6, 𝑣7, we select one of them arbitrarily, 𝑣6. The path from 𝜀 to the
parent of 𝑣6 is 𝜋 = 𝑣3,¬𝑣5. It is a longest prefix of the root branches that is included in the
set 𝜓𝑘 . The branch 𝜓𝑘 \ 𝜋 = 𝑣1 is added to the end node of 𝜋. Note that 1) the new root
branch 𝑣3,¬𝑣5, 𝑣1 is fully valuated with 0, hence conflicting; and 2) if we used the fixed order
𝑣1 < · · · < 𝑣7 instead, we would add a longer branch 𝑣3,¬𝑣5 under the node 𝑣1.

Restarting the SAT solver. With a clause 𝑘 added to the antichain, the next call of the
SAT solver that finds the next maximal predecessor can reuse much of the previous state.
First, note that after finding m𝑘 , addition of the branch 𝜓𝑘 will cause a conflict exactly in 𝜓𝑘

(since all its literals are 0 in m𝑘). We may reuse much of the solver’s state by just starting
backtracking from the conflict in 𝜓𝑘 . We need to ensure that after the backtracking, the
guard invariant from Section 6.1.1 will be satisfied. These invariants would hold in common
backtracking during SAT solving, but as we have added a new branch 𝜓𝑘 \ 𝜋, we have to
enrich the snapshots of the guard history with guards in the newly added branch, as if it
always existed. The snapshots of the guards are reconstructed using a simulation of the
decisions that led to constructing m𝑘 .

The simulation uses decision levels of literals in the new root branch to determine positions
of Rear and Front in each decision level. It is based on the property that whenever a guard
movement is triggered in a level 𝐿, the guard moves down through all nodes valuated with a
lesser or equal level to 𝐿, because they already have the value 0, and it stops at the first node
with a higher level than 𝐿, which is still unassigned, or raises a conflict if such node does not
exist. The guard may also temporarily stop at nodes with the same decision level 𝐿, as they
might not be valuated yet, but it will continue from them later in 𝐿 (we are interested only
in the position of the guard at the end of the decision level 𝐿).

For efficient backtracking in the newly added branch, we sort it by the decision levels of
the literals. This way, during the backtracking, the guards in the branch will simply climb up.

▶ Example 6. Before describing the general algorithm, this example shows an intuitive
reconstruction of the guard history in a newly added branch. Figure 8 shows a new root
branch 𝜓𝑘 , with the newly added branch 𝜓𝑘 \ 𝜋 starting at its fifth node 𝑣5. Literals at
nodes are not used in the reconstruction (we only know that they all have values 0, and,
consequently, the deduction always ends with a conflict). The reconstruction is based solely
on decision levels when literals were valuated in the previous SAT solving. The decision
levels are shown on the left side of the nodes. At the right side, we can see the results of the
reconstruction – deduced positions of Rear and Front guards at the end of levels when they
moved.

We start the example at the end of level 1, when Rear is at 𝑣1 and Front is at 𝑣3 (we
skip explanation of why the guards are at those positions, anyway, before level 3, the guard
positions are irrelevant for enriching snapshots, as no guards are present in the newly added
branch).

L. Holík and P. Vargovčík 15:17

Figure 8 Reconstructing the history of guards in a new branch from decision levels of variable
assignments.

During level 3, node 𝑣2 is assigned 0 and the Rear triggers the downward move of the
Front, which stops as far as at node 𝑣6, as it is the first node that is assigned after level
3. The Front is then moved two steps down during level 4, because of 0-assignment to the
literals of the two nodes. In level 5, 0 is assigned to the literal under Rear , and Rear therefore
moves down to Front, triggering the move of Front to the next node. In level 7, another 0
assignment moves Rear one step down, which again moves Front one step down. In level 9,
both guards move from their positions but raise a conflict.

Let us generalize the deduction of guard positions from the previous example in a deduction
algorithm.
The input to the deduction is the new root branch 𝜓𝑘 , partitioned to the shared prefix 𝜋 and
the newly added branch 𝜓𝑘 \ 𝜋. The root branch 𝜓𝑘 is ordered as it is present in the trie –
the new suffix 𝜓𝑘 \ 𝜋 is ordered by the decision levels of its literals, but it may not be the
case for the shared prefix 𝜋.
The output of the deduction are two movement sequences, one for Rear the other for Front.
A movement sequence is either an empty sequence (if the guard does not visit the newly
added branch before the conflict level) or it is an alternation 𝐿1, 𝑁1, 𝐿2, 𝑁2, . . . , 𝑁𝑛−1, 𝐿𝑛 of
levels 𝐿𝑖 and such nodes 𝑁𝑖, onto which the guard moved in 𝐿𝑖. The level 𝐿1 is when the
guard enters the newly added branch and 𝐿𝑛 is the level of the conflict.

1. First, we find the level 𝐿𝑅0, when the Rear enters the newly added branch. It is the
greatest level of the shared prefix 𝜋, or 0 if 𝜋 is empty.

2. Then, we find the node 𝑁𝑅0, where Rear resides at the time when Front enters the newly
added branch (Rear stays at that node as long as until 𝐿𝑅0). It is the topmost node with
𝐿𝑅0, possibly 𝜀.

3. Next, we find the level 𝐿𝐹0 when Front enters the newly added branch. It is the highest
level of 𝜋 \ {𝑁𝑅0}, or 0 if |𝜋 | ≤ 1.
This can be explained as follows. Rear visits 𝑁𝑅0 in the highest level above 𝑁𝑅0 (or in
level 0 if 𝑁𝑅0 is the first in 𝜋), let us call that level 𝐿push. It immediately triggers the

SAT 2024

15:18 Antichain with SAT and Tries

downward move of Front. The Front then continues its movement in the suffix of 𝜋 below
𝑁𝑅0 without being pushed down by Rear and exits 𝜋 in the highest level of the suffix (or
immediately if the suffix is empty or 𝐿push is higher).

4. Next, we record Front movements in the levels 𝐿 such that 𝐿𝐹0 ≤ 𝐿 < 𝐿𝑅0 using the
following loop. The loop starts with 𝐿 ← 𝐿𝐹0 and ends when 𝐿𝑅0 ≤ 𝐿 (which may hold
initially). The following is the loop body. To the movement sequence of Front, we append
a movement 𝐿, 𝑁 where 𝑁 is the topmost node of 𝜓𝑘 \ 𝜋 that has a greater level than 𝐿. If
there is no such node, conflict is reached and the whole deduction is finished. Otherwise,
we set 𝐿 to the level of that node and repeat.

5. In the levels 𝐿 such that 𝐿𝑅0 ≤ 𝐿, both Rear and Front move in the newly added branch.
Rear moves in the same way as Front moved in the previous point. Front is always just
one node below Rear , which follows from the ascending order of decision levels in the
newly added branch. If Rear gets to the leaf, Front cannot be lower, conflict is reached
and the deduction is done.

After the movements of the two guards in the relevant levels are deduced, snapshots are
enriched in an obvious way. Namely, for all levels where a guard moves down (or causes a
conflict), 1) the guard is added to the list of old guards if the move started in the newly
added branch, 2) the moved copy of the guard is added to the list of new guards if it lands
in the newly added branch.

▶ Example 7. In Figure 8, the Front movement sequence is 𝐿3, 𝑣6, 𝐿4, 𝑣8, 𝐿5, 𝑣9, 𝐿7, 𝑣10, 𝐿9
and the Rear movement sequence is 𝐿5, 𝑣8, 𝐿7, 𝑣9, 𝐿9. In level 3, Front has moved into the
newly added branch from outside and landed at node 𝑣6. Therefore, only the list of new
guards of L3 is enriched with Front at that node. In level 4, the old (𝑣6) and new (𝑣8)
position of Front is added to the old and new list respectively. In level 5, Rear is coming
from outside, so its position at 𝑣8 is added only to the new guards, while both old (𝑣8)
and new (𝑣9) positions of Front are added to the respective lists. In level 7, both lists are
enriched with old/new positions of both guards. In level 9, both Rear at 𝑣9 and Front at 𝑣10
are added only to the list of old guards, as they started to move but a conflict was raised.

Initialization of the trie. The trie is initialized with the starting configuration 𝑄 \ 𝐹 of the
backward search represented as the clause

∨
𝑞∈𝑄\𝐹 Δ(𝑞) with an arbitrary ordering of the

literals, and both guards are placed at the root.

7 Experiments

Implementation. We have implemented the clausal and the trie antichain in the tool
AntiSAT, in C++, as a modification of MiniSAT [46], which we have chosen as a competent
and modern solver, yet still simple and well documented enough to be modified with
a reasonable effort. To implement the trie, we needed the version 1.12b, which is the
last version that supports other constraints than clauses. We have however ported back
major enhancements of the newer versions (except improvements of preprocessing), namely
StrengthenCC [45]. We have implemented the trie data structure with memory locality
and cost of allocations in mind: siblings are stored in a contiguous vector; added branch
is allocated in a single array; guard data are present just next to the data of the guarded
node. For SAT problems, the trie does not change during the solving, so we allocate a single
memory region where the whole trie is moved after the construction.

L. Holík and P. Vargovčík 15:19

Evaluation of AFA emptiness checking. The main focus of our experiment is to evaluate
our AFA emptiness checker against other checkers, and evaluate the impact of using trie
on the performance. We do not present a detailed evaluation of predecessor maximisation.
Without it, our solver was not competitive at all, hence we include it to the baseline.

We have used the benchmark set from [24] with the following modifications. We have
regenerated AFA from LTL because there was an unnecessary removal of final states applied
previously. Additionally, to mitigate the effect of obvious redundancies in automata structure,
we have applied simple preprocessing consisting of basic structural subformula sharing
detection, merging of states with the same subformula and the same finalness, removing
structurally unreachable states and their transitions, removing variables that occur only
positively or only negatively, and applying few boolean laws: double negation, idempotence,
annulment, absorption and complement law.3

We have compared the two variants of AntiSAT (with and without a trie) with the two
most successful tools from [24]: ABC [10] (using IC3/PDR) and Mata [13] (Mata does not
check AFA but boolean combinations of NFA, so it is not applicable to all benchmarks). All
solvers and preprocessing tools are run with a time limit of 60 seconds and a memory limit of
10GiB. The 60s seem sufficient and extending the time limit does not seem to influence the
overall comparison of tools significantly. Memory errors (which are very rare) are displayed
together with timeouts. The experiments were run on a machine with 12th Gen Intel(R)
Core(TM) i7-1260P CPU, running Linux. The results can be seen in Table 1 and Figure 9.
The following can be concluded:
1. The trie in AntiSAT improves solving times (by a factor of 2 to 11 on average), except on

“automata inclusion”, where it is slightly slower (but Mata is here much faster anyway).
2. ABC and Mata are both complementary to AntiSAT. AntiSAT shines in “bool comb”

benchmarks, Mata is very good at solving “automata inclusion”, while ABC wins at
“stranger afa”, “ltl afa”, and “noodler” benchmarks. There are several exceptions though.

3. The “email filter” benchmarks are easy for all solvers and most of the “noodler” benchmarks
too.

The main positive takeout is that AntiSAT solves the entire “bool comb” and many
examples from “ltl afa” and “noodler” much faster than the others, and it is strongly
orthogonal to the other tools.

Regarding the impact of the trie data structure, Table 2 compares numbers of literals
in the clausal and the trie representation of Visited (i.e. the number of trie nodes for
AntiSAT[trie], or the total number of literals in all clauses of 𝜑mut) at the end of solving an
AFA instance. In fact, for the “bool comb” benchmark, where the trie had the greatest effect
in terms of solving time, less prefix sharing is shown than for other benchmarks (but still
saving 500 thousand of literals on average).

Figure 10 shows the solving of three chosen nontrivial benchmark instances: the time
that was spent on each predecessor query, the overall number of predecessor queries, and
the results of the queries. Trie and clausal AntiSAT are compared. In the “bool comb”
benchmark, clausal SAT spends a lot of time on finding predecessors (the SAT queries
that find a model), while final proofs that there are no more predecessors (when the query
results in UNSAT) are very fast. Trie is fast in both cases. The other two benchmarks are
different: SAT queries with the UNSAT result are usually slower than queries that found
predecessors. In the last benchmark, from “automata inclusion”, the trie is slower than
clausal AntiSAT. The performance of the trie does not seem to correlate with the number of
states or symbol-variables.

3 The instances are available at https://github.com/p4l1ly/antisat-afa-benchmarks at tag sat2024.

SAT 2024

https://github.com/p4l1ly/antisat-afa-benchmarks

15:20 Antichain with SAT and Tries

Table 1 Statistics from the solver run-times. |𝐵| is the number of instances in the benchmark,
𝑆1 is the number of benchmarks solved only by the first solver of the two in the column, 𝑆2 only
by the second one, 𝑆12 by both. 𝑇𝑖 is the average time the first/second solver has taken to solve
interesting instances. An instance is interesting if both solvers solved it within 60 seconds and at
least one solver took more than 1 second (to have a comparison of run-times not cluttered by trivial
instances).

benchmark |𝐵 |
AntiSAT[clause] x AntiSAT[trie] ABC x AntiSAT[trie] Mata x AntiSAT[trie]
𝑆1 𝑆2 𝑆12 𝑇1 𝑇2 𝑆1 𝑆2 𝑆12 𝑇1 𝑇2 𝑆1 𝑆2 𝑆12 𝑇1 𝑇2

automata inclusion 136 0 0 123 6.3 9.0 4 9 114 10.3 7.4 12 0 123 1.0 8.7
bool comb 653 0 6 540 11.6 1.0 0 78 468 14.3 1.6 6 97 449 4.1 2.2
email filter 500 0 0 500 NaN NaN 0 0 500 7.3 0.2 0 0 500 1.2 0.1

ltl afa 7087 0 19 5724 14.9 7.9 1161 58 5685 0.3 14.2 Mata not applicable
noodler 13840 0 6 13790 9.0 5.6 42 14 13782 0.4 9.9 Mata not applicable

stranger afa 4058 0 291 3131 31.9 18.1 597 0 3422 0.7 34.0 Mata not applicable

automata inclusion
bool comb

email filter
ltl afa

noodler
stranger afa not empty

empty unknown

Figure 9 Detailed comparison of pairs of AFA emptiness checkers. Exact times are marked with
black dots but to give an idea about the number of overlapping points, there are semitransparent
associated points with small random shifts. The colour of the associated points indicates the
benchmark set, while the shape indicates the answer (empty or not).

Table 2 Statistics of sizes of the clausal and trie representation of Visited taken from the
interesting instances of the comparison AntiSAT[clause] x AntiSAT[trie]. |𝐵𝐼 | is the number of
the interesting instances in the benchmark. The abbreviations SzC/SzT mean size (i.e., the total
number of literals) of clausal/trie representation of Visited.

benchmark |𝐵𝐼 |
SzC / 1000 SzT / 1000

min max avg min max avg

automata inclusion 86 108 5792 2509 51 1019 456
bool comb 60 182 19360 1510 65 18727 1065

ltl afa 62 244 60569 4145 8 15910 540
noodler 62 88 4605 1169 19 1470 245

stranger afa 87 270 32892 10110 5 622 312

total 357 88 60569 4245 5 18727 501

L. Holík and P. Vargovčík 15:21

trie UNSAT
clausal UNSAT
trie SAT
clausal SAT
trie UNSAT accumulative
clausal UNSAT accumulative
trie SAT accumulative
clausal SAT accumulative

Figure 10 A detailed insight into solving three emptiness tests. Each graph shows SAT solving
times throughout the solving of AntiSAT[clausal] and AntiSAT[trie] – the individual solving times
and their accumulation.

8 Conclusion and Future Directions

We have proposed an AFA emptiness check that uses a SAT solver to generate a maximal
predecessor not subsumed by the set of visited configurations. Our techniques performed
significantly better than the state-of-the-art on a large portion of benchmarks. The same
techniques can most probably be used also in the IC3-based AFA emptiness check (which
can be seen as an augmentation of the backward antichain with a form of an abstraction
refinement). Application of our techniques in IC3 may potentially be even more interesting
than the presented adaptation to the backward antichain. A question is whether tries could
be implemented in some top-performing SAT solver as CaDiCaL and have an impact in
general SAT solving or whether a faster base solver would improve the performance of the
AFA emptiness check.

References
1 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Julian Dolby, Petr

Janků, Hsin-Hung Lin, Lukáš Holík, and Wei-Cheng Wu. Efficient handling of string-number
conversion. In Proc. of PLDI’20, pages 943–957. ACM, 2020.

2 Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Julien d’Orso. Regular model
checking made simple and efficient. In Proc. of CONCUR’02, volume 2421 of LNCS, pages
116–130. Springer, 2002.

3 Saeed Amizadeh, Sergiy Matyunin, Helmut Weimer, and Marco Maratea. Learning combinat-
orial optimization algorithms over graphs. In Proc. of NeurIPS’18, volume 31, 2018.

4 Gilles Audemard and Laurent Simon. Glucose: A solver that predicts learnt clauses quality.
In SAT Competition, 2009.

5 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT competition 2020. In SAT Competition,
2020.

SAT 2024

15:22 Antichain with SAT and Tries

6 Bernard Boigelot and Pierre Wolper. Representing arithmetic constraints with finite automata:
an overview. In Proc. of ICLP’02, volume 2401 of LNCS, pages 1–19. Springer, 2002.

7 Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular model checking.
In Proc. of CAV’20, volume 1855 of LNCS, pages 403–418. Springer, 2000.

8 Aaron R Bradley. SAT-based model checking without unrolling. In Proc. of VMCAI’11, pages
70–87. Springer, 2011.

9 Aaron R. Bradley and Zohar Manna. Checking safety by inductive generalization of counter-
examples to induction. In Proc. of FMCAD’07, pages 173–180. IEEE Computer Society,
2007.

10 Robert Brayton and Alan Mishchenko. ABC: An academic industrial-strength verification
tool. In Proc. of CAV’10, pages 24–40. Springer, 2010.

11 Thierry Castell, Claudette Cayrol, Michel Cayrol, and Daniel Le Berre. Using the Davis and
Putnam procedure for an efficient computation of preferred models. In Proc. of ECAI’96,
volume 96, pages 350–354. Citeseer, 1996.

12 Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981.

13 David Chocholatý, Tomáš Fiedor, Vojtěch Havlena, Lukáš Holík, Martin Hruška, Ondřej
Lengál, and Juraj Síč. Mata: A fast and simple finite automata library. In Proc. of TACAS’24,
pages 130–151. Springer, 2024.

14 Arlen Cox. Model Checking Regular Expressions. url: https://mosca19.github.io/slides/
cox.pdf, 2019. Presented at MOSCA’19.

15 Arlen Cox and Jason Leasure. Model checking regular language constraints. CoRR,
abs/1708.09073, 2017. arXiv:1708.09073.

16 Loris D’Antoni, Zachary Kincaid, and Fang Wang. A symbolic decision procedure for symbolic
alternating finite automata. Electronic Notes in Theoretical Computer Science, 336:79–99,
2018.

17 Loris D’Antoni and Margus Veanes. Minimization of symbolic automata. ACM SIGPLAN
Notices – POPL’14, 49(1):541–553, 2014.

18 Martin Davis and Hilary Putnam. A computing procedure for quantification theory. J. ACM,
7(3):201–215, July 1960.

19 M. De Wulf, L. Doyen, N. Maquet, and J. F. Raskin. Antichains: Alternative algorithms for
LTL satisfiability and model-checking. In Proc. of TACAS’08, pages 63–77. Springer, 2008.

20 Giorgio Delzanno and Jean-François Raskin. Symbolic representation of upward-closed sets.
In Proc. of TACAS’00, pages 426–441. Springer, 2000.

21 Emanuele Di Rosa, Enrico Giunchiglia, and Marco Maratea. Solving satisfiability problems
with preferences. Constraints, 15:485–515, 2010.

22 Laurent Doyen and Jean-François Raskin. Antichain algorithms for finite automata. In Proc.
of TACAS’10, LNCS. Springer, 2010. doi:10.1007/978-3-642-12002-2_2.

23 Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proc. of SAT’03, volume 2919
of LNCS, pages 502–518. Springer, 2003.

24 Tomáš Fiedor, Lukáš Holík, Martin Hruška, Adam Rogalewicz, Juraj Síč, and Pavol Vargovčík.
Reasoning about regular properties: a comparative study. In Proc. of CADE’23, pages 286–306.
Springer, 2023.

25 Tomáš Fiedor, Lukáš Holík, Petr Janků, Ondřej Lengál, and Tomáš Vojnar. Lazy automata
techniques for WS1S. In Proc. of TACAS’17, volume 10205 of LNCS, pages 407–425. Springer,
2017.

26 Bernd Finkbeiner and Henny Sipma. Checking finite traces using alternating automata. Formal
Methods in System Design, 24(2):101–127, 2004.

27 Edward Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.
28 Graeme Gange, Jorge A. Navas, Peter J. Stuckey, Harald Søndergaard, and Peter Schachte.

Unbounded model-checking with interpolation for regular language constraints. In Proc. of
TACAS’13, LNCS. Springer, 2013. doi:10.1007/978-3-642-36742-7_20.

https://mosca19.github.io/slides/cox.pdf
https://mosca19.github.io/slides/cox.pdf
https://arxiv.org/abs/1708.09073
https://doi.org/10.1007/978-3-642-12002-2_2
https://doi.org/10.1007/978-3-642-36742-7_20

L. Holík and P. Vargovčík 15:23

29 Pierre Ganty, Nicolas Maquet, and Jean-François Raskin. Fixed point guided abstraction
refinement for alternating automata. Theory of Computer Science, 411(38-39):3444–3459,
2010.

30 Gilles Geeraerts, Gabriel Kalyon, Tristan Le Gall, Nicolas Maquet, and Jean-Francois Raskin.
Lattice-valued binary decision diagrams. In Proc. of ATVA’10, pages 158–172. Springer, 2010.

31 Hyojung Han and Fabio Somenzi. Alembic: an efficient algorithm for CNF preprocessing. In
Proc. of DAC’07, DAC ’07, pages 582–587. ACM, 2007.

32 Jesper G. Henriksen, Jakob L. Jensen, Michael E. Jørgensen, Nils Klarlund, Robert Paige,
Theis Rauhe, and Anders Sandholm. Mona: Monadic second-order logic in practice. In Proc.
of TACAS ’95, volume 1019 of LNCS. Springer, 1995.

33 Krystof Hoder and Nikolaj Bjørner. Generalized property directed reachability. In Proc. of
SAT’12, volume 7317 of LNCS, pages 157–171. Springer, 2012.

34 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar. String
constraints with concatenation and transducers solved efficiently. PACMPL, 2(POPL), 2018.

35 Peter Kelb, Tiziana Margaria, Michael Mendler, and Claudia Gsottberger. MOSEL: A sound
and efficient tool for m2l(str). In Proc. of CAV ’97, volume 1254 of LNCS, pages 448–451.
Springer, 1997. doi:10.1007/3-540-63166-6_45.

36 Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are not that weak. ACM
Trans. Comput. Logic, 2(3):408–429, 2001.

37 Ondřej Lengál, Jiří Šimáček, and Tomáš Vojnar. VATA: A library for efficient manipulation
of non-deterministic tree automata. In Proc. of TACAS’12, volume 7214 of LNCS. Springer,
2012. doi:10.1007/978-3-642-28756-5_7.

38 João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Comput., 48(5):506–521, May 1999.

39 Kenneth L. McMillan. Lazy abstraction with interpolants. In Proc. of CAV’06, volume 4144
of LNCS, pages 123–136. Springer, 2006.

40 Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. DAG-aware AIG rewriting a fresh
look at combinational logic synthesis. In Proc. of DAC ’06, pages 532–535. ACM, 2006.

41 Anders Møller et al. Brics automata library. URL: https://www.brics.dk/automaton/.
42 M. W. Moskewicz, L. Zhang, C. F. Madigan, S. Malik, and Y. Zhao. Chaff: Engineering an

efficient sat solver. In Design Automation Conference, pages 530–535. IEEE Computer Society,
2001.

43 Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L.
Dill. Learning a SAT solver from single-bit supervision. In Proc. of ICLR’19, 2019.

44 Mate Soos. Enhancing CDCL SAT solvers with extended resolution. In Proc. of Pragmatics
of SAT. EasyChair, 2010.

45 Niklas Sörensson and Niklas Eén. Minisat – A SAT solver with conflict-clause minimization.
Proc. of SAT’05, pages 1–2, 2005.

46 Niklas Sörensson and Niklas Eén. Minisat 2.1 and minisat++ 1.0-sat race 2008 editions. Proc.
of SAT’09, page 31, 2009.

47 Dmitriy Traytel. A coalgebraic decision procedure for WS1S. In Proc. of CSL’15, volume 41
of LIPIcs, pages 487–503. Schloss Dagstuhl, 2015.

48 Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Proc. of LICS’96,
volume 1043 of LNCS, pages 238–266. Springer, 1996.

49 Pavol Vargovčík and Lukáš Holík. Simplifying alternating automata for emptiness testing. In
Proc. of APLAS’21, pages 243–264. Springer, 2021.

50 Pavol Vargovčík. AntiSAT. Software, version 0.1.0., Czech Ministry
of Education, Youth and Sports ERC.CZ LL1908 FIT BUT FIT-S-23-
8151, swhId: swh:1:rev:5901055e699e7b95ba3dec63d11445fcd791f5de (vis-
ited on 2024-07-31). URL: https://github.com/p4l1ly/antisat/tree/
5901055e699e7b95ba3dec63d11445fcd791f5de.

51 Hung-En Wang, Tzung-Lin Tsai, Chun-Han Lin, Fang Yu, and Jie-Hong R. Jiang. String
analysis via automata manipulation with logic circuit representation. In Proc. of CAV’16,
volume 9779 of LNCS. Springer, 2016.

SAT 2024

https://doi.org/10.1007/3-540-63166-6_45
https://doi.org/10.1007/978-3-642-28756-5_7
https://www.brics.dk/automaton/
https://archive.softwareheritage.org/swh:1:rev:5901055e699e7b95ba3dec63d11445fcd791f5de
https://github.com/p4l1ly/antisat/tree/5901055e699e7b95ba3dec63d11445fcd791f5de
https://github.com/p4l1ly/antisat/tree/5901055e699e7b95ba3dec63d11445fcd791f5de

15:24 Antichain with SAT and Tries

52 Pierre Wolper. On the use of automata for deciding linear arithmetic. In Proc. of
TABLEAUX’09, volume 5607 of LNCS, page 16. Springer, 2009.

53 Pierre Wolper and Bernard Boigelot. Verifying systems with infinite but regular state spaces.
In Proc. of CAV’98, pages 88–97. Springer, 1998.

54 Martin De Wulf, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin. Antichains:
A new algorithm for checking universality of finite automata. In Proc. of CAV’06, volume
4144 of LNCS, pages 17–30. Springer, 2006.

55 Hantao Zhang and Mark Stickel. Implementing the Davis–Putnam method. Journal of
Automated Reasoning, 24(1):277–296, 2000.

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Symbolic Transition Function as Formula DAG
	5 Predecessor-subset Query with SAT Solvers
	6 Trie for Storing the Antichain
	6.1 Clausal Watches
	6.1.1 Double-Watch Scheme in Trie
	6.1.2 Backtracking in Trie with Double Watches

	6.2 Constructing a Trie
	6.2.1 Constructing a Trie For General SAT Solving
	6.2.2 Constructing a Trie for AFA

	7 Experiments
	8 Conclusion and Future Directions

